半导体物理学(刘恩科第七版)课后习题解第五章习题及答案
半导体物理学(刘恩科)第七版第一章到第五章完整课后题答案_百(精)
第一章习题1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k和价带极大值附近能量EV(k分别为:Ec=(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)2. 晶格常数为0.25nm的一维晶格,当外加102V/m,107 V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:得补充题1分别计算Si(100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si在(100),(110)和(111)面上的原子分布如图1所示:(a)(100晶面(b)(110晶面(c)(111晶面补充题2一维晶体的电子能带可写为,式中a为晶格常数,试求(1)布里渊区边界;(2)能带宽度;(3)电子在波矢k状态时的速度;(4)能带底部电子的有效质量;(5)能带顶部空穴的有效质量解:(1)由得(n=0,1,2…)进一步分析,E(k)有极大值,时,E(k)有极小值所以布里渊区边界为(2能带宽度为(3)电子在波矢k状态的速度(4)电子的有效质量能带底部所以(5能带顶部,且,所以能带顶部空穴的有效质量半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
(2)理想半导体是纯净不含杂质的,实际半导体含有若干杂质。
(3)理想半导体的晶格结构是完整的,实际半导体中存在点缺陷,线缺陷和面缺陷等。
2. 以As掺入Ge中为例,说明什么是施主杂质、施主杂质电离过程和n型半导体。
As有5个价电子,其中的四个价电子与周围的四个Ge原子形成共价键,还剩余一个电子,同时As原子所在处也多余一个正电荷,称为正离子中心,所以,一个As 原子取代一个Ge原子,其效果是形成一个正电中心和一个多余的电子.多余的电子束缚在正电中心,但这种束缚很弱,很小的能量就可使电子摆脱束缚,成为在晶格中导电的自由电子,而As原子形成一个不能移动的正电中心。
半导体物理学(刘恩科)第七版第一章到第五章完整课后题答案(精)
1 .设晶格常数为 a 的一维晶格, 导带极小值附近能量 Ec(k) 和价带极大值附近
能量 EV(k) 分别为:
h2k 2 E c=
3m0
h2 (k k1) 2 , EV (k ) m0
h
2
k
2 1
6m0
3h2k 2 m0
m0 为电子惯性质量, k1 ( 1)禁带宽度 ;
, a 0.314nm。试求: a
称为杂质的高度补偿
7. 锑化铟的禁带宽度 Eg=0.18eV,相对介电常数 r=17,电子的有效质量
m
* n
=0.015m 0, m 0 为电子的惯性质量,求①施主杂质的电离能,②施主的弱
束缚电子基态轨道半径。
解:根据类氢原子模型
ED
m
* n
q
4
2( 4 0 r ) 2 2
:
m
* n
E0
m0
2 r
r0
Ga有 3 个价电子,它与周围的四个 Ge原子形成共价键,还缺少一个电子,于是
在 Ge晶体的共价键中产生了一个空穴, 而 Ga原子接受一个电子后所在处形成一
个负离子中心, 所以, 一个 Ga原子取代一个 Ge原子, 其效果是形成一个负电中
心和一个空穴,空穴束缚在 Ga原子附近,但这种束缚很弱,很小的能量就可使
双性行为。
Si 取代 GaAs中的 Ga原子则起施主作用; Si 取代 GaAs中的 As 原子则起受
主作用。导带中电子浓度随硅杂质浓度的增加而增加,当硅杂质浓度增加到
一定程度时趋于饱和。 硅先取代 Ga原子起施主作用, 随着硅浓度的增加, 硅
取代 As 原子起受主作用。
5. 举例说明杂质补偿作用。
半导体物理学(刘恩科第七版)课后习题答案
1.设晶格常数为 a 的一维晶格,导带极小值附近能量 Ec(k)和价带极大值附近 能量 EV(k)分别为: h 2 k 2 h 2 ( k k1 ) 2 h 2 k 21 3h 2 k 2 Ec= , EV (k ) 3m0 m0 6m0 m0 m0 为电子惯性质量,k1
1
在E ~ E dE空间的状态数等于k空间所包含的 状态数。 即d z g (k ' ) Vk ' g (k ' ) 4k ' dk 2( m m m ) 1 3 2 1 dz ' t t l ( E Ec ) 2 V g (E) 4 2 dE h 对于si导带底在100个方向,有六个对称的旋转椭球, 锗在( 111)方向有四个,
解: (1)由
dE (k ) n 0 得 k dk a
(n=0,1,2…) 进一步分析 k ( 2n 1)
a
,E(k)有极大值,
E(k ) MAX k 2n
2 2 ma 2
a
时,E(k)有极小值
所以布里渊区边界为 k ( 2n 1)
a
2 2 ma 2
7. 锑化铟的禁带宽度 Eg=0.18eV,相对介电常数r=17,电子的有效质量
m* n =0.015m0, m0 为电子的惯性质量,求①施主杂质的电离能,②施主的弱束
缚电子基态轨道半径。
解:根据类氢原子模型:
* 4 * mn q mn E0 13.6 E D 0.0015 2 7.1 10 4 eV 2 2 2 m0 r 2(4 0 r ) 17
(2)能带宽度为 E(k ) MAX E ( k ) MIN (3)电子在波矢 k 状态的速度 v (4)电子的有效质量
半导体物理学(刘恩科)第七版第一章到第五章完整课后题答案_百答辩
第一章习题1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k和价带极大值附近能量EV(k分别为:Ec=(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)2. 晶格常数为0.25nm的一维晶格,当外加102V/m,107 V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:得补充题1分别计算Si(100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si在(100),(110)和(111)面上的原子分布如图1所示:(a)(100晶面(b)(110晶面(c)(111晶面补充题2一维晶体的电子能带可写为,式中a为晶格常数,试求(1)布里渊区边界;(2)能带宽度;(3)电子在波矢k状态时的速度;(4)能带底部电子的有效质量;(5)能带顶部空穴的有效质量解:(1)由得(n=0,1,2…)进一步分析,E(k)有极大值,时,E(k)有极小值所以布里渊区边界为(2能带宽度为(3)电子在波矢k状态的速度(4)电子的有效质量能带底部所以(5能带顶部,且,所以能带顶部空穴的有效质量半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
(2)理想半导体是纯净不含杂质的,实际半导体含有若干杂质。
(3)理想半导体的晶格结构是完整的,实际半导体中存在点缺陷,线缺陷和面缺陷等。
2. 以As掺入Ge中为例,说明什么是施主杂质、施主杂质电离过程和n型半导体。
As有5个价电子,其中的四个价电子与周围的四个Ge原子形成共价键,还剩余一个电子,同时As原子所在处也多余一个正电荷,称为正离子中心,所以,一个As 原子取代一个Ge原子,其效果是形成一个正电中心和一个多余的电子.多余的电子束缚在正电中心,但这种束缚很弱,很小的能量就可使电子摆脱束缚,成为在晶格中导电的自由电子,而As原子形成一个不能移动的正电中心。
半导体物理学(刘恩科)第七版第一章到第五章完整课后题答案
料的电阻率n=0.38m2/( 121.8。
V.S),Ge的单晶密度为5.32g/cm3,Sb原子量为
解:该Ge单晶的体积为:;
Sb掺杂的浓度为:
查图3-7可知,室温下Ge的本征载流子浓度,属于过渡区
5. 500g的Si单晶,掺有4.510-5g 的B ,设杂质全部电离,试求该材
料的电阻率p=500cm2/( V.S),硅单晶密度为2.33g/cm3,B原子量为10.8。 解:该Si单晶的体积为:;
21. 试计算掺磷的硅、锗在室温下开始发生弱简并时的杂质浓度为多 少?
22. 利用上题结果,计算掺磷的硅、锗的室温下开始发生弱简并时有 多少施主发生电离?导带中电子浓度为多少?
第四章习题及答案 1. 300K时,Ge的本征电阻率为47cm,如电子和空穴迁移率分别为 3900cm2/( V.S)和1900cm2/( V.S)。 试求Ge 的载流子浓度。 解:在本征情况下,,由知 2. 试计算本征Si在室温时的电导率,设电子和空穴迁移率分别为 1350cm2/( V.S)和500cm2/( V.S)。当掺入百万分之一的As后,设杂质 全部电离,试计算其电导率。比本征Si的电导率增大了多少倍?
5. 利用表3-2中的m*n,m*p数值,计算硅、锗、砷化镓在室温下的NC , NV以及本征载流子的浓度。
6. 计算硅在-78 oC,27 oC,300 oC时的本征费米能级,假定它在禁带 中间合理吗?
所以假设本征费米能级在禁带中间合理,特别是温度不太高的情况 下。
7. ①在室温下,锗的有效态密度Nc=1.051019cm-3,NV=3.91018cm-3, 试求锗的载流子有效质量m*n m*p。计算77K时的NC 和NV。 已知300K 时,Eg=0.67eV。77k时Eg=0.76eV。求这两个温度时锗的本征载流子浓 度。②77K时,锗的电子浓度为1017cm-3 ,假定受主浓度为零,而EcED=0.01eV,求锗中施主浓度ED为多少?
半导体物理学(刘恩科第七版)课后习题解第五章习题及答案
15. 在电阻率为 1cm 的 p 型硅半导体区域中,掺金浓度 Nt=1015cm-3,由边界稳 定注入的电子浓度(n)0=1010cm-3,试求边界 处电子扩散电流。
根据少子的连续性方程 : E n n 2 n n Dp p E pn gp 2 t x x p x 由于p Si内部掺有N t 1015 cm 3的复合中心 n遇到复合中心复合
p
1 1 8.6 10 10 s 17 16 rp N t 1.15 10 10 1 1 1.6 10 9 s 8 16 rn N t 6.3 10 10
p型Si中,Au 对少子件下,是否有载流子的净复合或者净产生: (1)在载流子完全耗尽(即 n, p 都大大小于 ni)半导体区域。 (2)在只有少数载流子别耗尽(例如,pn<<pn0,而 nn=nn0)的半导体区域。 (3)在 n=p 的半导体区域,这里 n>>ni0
2 2 N t rn r( p n ni )
(3)n p, n ni U rn (n n1 ) rp (n p1 ) 0
复合率为正,表明有净复合
12. 在掺杂浓度 ND=1016cm-3,少数载流子寿命为 10us 的 n 型硅中,如果由于外 界作用,少数载流子全部被清除,那么在这种情况下,电子-空穴对的产生 率是多大?(Et=Ei) 。
n
k oT q k 0T n q k 0T n q
Dn
Ln Dn n
0.026 3600 350 10 6 0.18cm
14. 设空穴浓度是线性分布,在 3us 内浓度差为 1015cm-3,up=400cm2/(Vs)。试 计算空穴扩散电流密度。
半导体物理学(刘恩科)第七版-课后题答案
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学(第7版本)刘恩科第五章习题答案
14. 设空穴浓度是线性分布,在 3us 内浓度差为 1015cm-3,up=400cm2/(Vs)。试计算空穴扩散电流密度。
dp dx kT p q 0 p q x p k 0 T p x J P qDP 1015 0.026 400 3 10 4 5.55 A / cm 2
'
1
'
0.32cm.
少数载流子对电导的贡 献 p p 0 .所以少子对电导的贡献 , 主要是p的贡献. p9u p 1016 1.6 10 19 500 0.8 26% 3.06 3.06
1
4. 一块半导体材料的寿命=10us,光照在材料中会产生非平衡载流子,试求光照突然停止 20us 后,其
U
N t rn rp (np ni2 ) rn (n n1 ) rp ( p p1 ) N t rn rp ni2
(1)载流子完全耗尽, n 0, p 0
U
N t rn rp (np ni2 ) rn (n n1 ) rp ( p p1 )
《半导体物理学(刘恩科第七版)》第五章习题解(DOC)
第五章习题1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。
计算空穴的复合率。
2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为,空穴寿命为τ。
(1)写出光照下过剩载流子所满足的方程; (2)求出光照下达到稳定状态时的过载流子浓度。
3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10Ω∙cm 。
今用光照射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm -3∙s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例?s cm pU s cm p Up 3171010010313/10U 100,/10613==∆=====∆-⨯∆-ττμτ得:解:根据?求:已知:τττττg p g p dtp d g Aet p g p dt p d L L tL=∆∴=+∆-∴=∆+=∆+∆-=∆∴-.00)2()(达到稳定状态时,方程的通解:梯度,无飘移。
解:均匀吸收,无浓度cm s pq nq q p q n pq np cm q p q n cm g n p g p pn p n p n pn L /06.396.21.0500106.1101350106.11010.0:101:1010100.1916191600'000316622=+=⨯⨯⨯+⨯⨯⨯+=∆+∆++=+=Ω=+==⨯==∆=∆=+∆-----μμμμμμσμμρττ光照后光照前光照达到稳定态后4. 一块半导体材料的寿命τ=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后,其中非平衡载流子将衰减到原来的百分之几?5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度∆n=∆p=1014cm -3。
计算无光照和有光照的电导率。
%2606.38.006.3500106.1109.,..32.01191610''==⨯⨯⨯=∆∴∆>∆Ω==-σσρp u p p p p cm 的贡献主要是所以少子对电导的贡献献少数载流子对电导的贡 。
半导体物理学(第7版)第五章习题及答案
第五章习题1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。
计算空穴的复合率。
2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为,空穴寿命为τ。
(1)写出光照下过剩载流子所满足的方程; (2)求出光照下达到稳定状态时的过载流子浓度。
3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10Ω∙cm 。
今用光照射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm -3∙s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例?4. 一块半导体材料的寿命τ=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后,其s cm pU s cm p Up 3171010010313/10U 100,/10613==∆=====∆-⨯∆-ττμτ得:解:根据?求:已知:τττττg p g p dtp d g Aet p g p dt p d L L tL=∆∴=+∆-∴=∆+=∆+∆-=∆∴-.00)2()(达到稳定状态时,方程的通解:梯度,无飘移。
解:均匀吸收,无浓度cm s pq nq q p q n pq np cm q p q n cm g n p g p pn p n p n pn L /06.396.21.0500106.1101350106.11010.0:101:1010100.1916191600'000316622=+=⨯⨯⨯+⨯⨯⨯+=∆+∆++=+=Ω=+==⨯==∆=∆=+∆-----μμμμμμσμμρττ光照后光照前光照达到稳定态后%2606.38.006.3500106.1109.,..32.01191610''==⨯⨯⨯=∆∴∆>∆Ω==-σσρp u p p p p cm 的贡献主要是所以少子对电导的贡献献少数载流子对电导的贡中非平衡载流子将衰减到原来的百分之几?5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度∆n=∆p=1014cm -3。
半导体物理学(刘恩科)第七版第一章到第五章完整课后题答案-百(精)
第一章习题1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k和价带极大值附近能量EV(k分别为:Ec=(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)2. 晶格常数为0.25nm的一维晶格,当外加102V/m,107 V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:得补充题1分别计算Si(100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si在(100),(110)和(111)面上的原子分布如图1所示:(a)(100晶面(b)(110晶面(c)(111晶面补充题2一维晶体的电子能带可写为,式中a为晶格常数,试求(1)布里渊区边界;(2)能带宽度;(3)电子在波矢k状态时的速度;(4)能带底部电子的有效质量;(5)能带顶部空穴的有效质量解:(1)由得(n=0,1,2…)进一步分析,E(k)有极大值,时,E(k)有极小值所以布里渊区边界为(2能带宽度为(3)电子在波矢k状态的速度(4)电子的有效质量能带底部所以(5能带顶部,且,所以能带顶部空穴的有效质量半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
(2)理想半导体是纯净不含杂质的,实际半导体含有若干杂质。
(3)理想半导体的晶格结构是完整的,实际半导体中存在点缺陷,线缺陷和面缺陷等。
2. 以As掺入Ge中为例,说明什么是施主杂质、施主杂质电离过程和n型半导体。
As有5个价电子,其中的四个价电子与周围的四个Ge原子形成共价键,还剩余一个电子,同时As原子所在处也多余一个正电荷,称为正离子中心,所以,一个As 原子取代一个Ge原子,其效果是形成一个正电中心和一个多余的电子.多余的电子束缚在正电中心,但这种束缚很弱,很小的能量就可使电子摆脱束缚,成为在晶格中导电的自由电子,而As原子形成一个不能移动的正电中心。
半导体物理 刘恩科 第五章习题解答
(
)
dp 1015 18 −4 = − = − 3.3 × 10 cm ( ) dx 3 × 10−4
空穴扩散电流密度,
Jp = −qD p
dp = 1.6 ×10−19 ×10.4 × 3.3 ×1018 = 5.5 ( A / cm 2 ) dx
15.
ρ = 1Ω ⋅ cm, N t = 1015 cm −3 , (∆n )0 = 1010 cm −3,µ n = 1350cm 2 / (V ⋅ s )
p=0
所以,
ni2 1.5 × 1010 =− ∆p = p − p 0 = − p 0 = − ND 1016
(
)
2
= −2.3 × 10 4 cm −3
达到稳态时,少子产生率,
G = −R = −
∆p
τp
2.3 × 10 4 9 −3 cm = = × ⋅s 2 . 3 10 −5 10
(
)
13.
p n = ∆p + p n 0 ≈ 0, n ≈ nn 0
np < ni2 , U < 0 —— 净产生
在 n = p >> ni 的半导体区域,
np > ni2 , U > 0 (净复合)
12.
N D = 1016 cm −3,τ p = 1 × 10 −5 s, E t = Ei
解:因为少子空穴的浓度,
τ n = 3.5 × 10 −4 s, µ n = 3600cm 2 / (V ⋅ s )
解:由爱因斯坦关系式,得到电子扩散系数,
Dn
µn
k 0T k 0T = → Dn = µn q q
电子扩散长度,
k 0T Ln = Dnτ n = q µ nτ n
半导体物理学(刘恩科)第七版第一章到第五章完整课后题答案_百(精)
1.5k0T 4k0T 10k0T
0.182 0.018
0.223 0.0183
4. 画出 -78oC、室温( 27 oC)、 500 oC 三个温度下的费米分布函数曲线,并进行 比较。
5. 利用表 3-2 中的 m*n,m*p 数值,计算硅、锗、砷化镓在室温下的 及本征载流子的浓度。
NC , NV 以
第三章习题和答案
1. 计算能量在 E=Ec到 解
之间单位体积中的量子态数。
2. 试证明实际硅、锗中导带底附近状态密度公式为式( 3-6 )。
3. 当 E-EF 为 1.5k0T , 4k0T, 10k0T 时,分别用费米分布函数和玻耳兹曼分布函 数计算电子占据各该能级的概率。
费米能级
费米函数
玻尔兹曼分布函数
14. 计算含有施主杂质浓度为 ND=91015cm-3,及受主杂质浓度为 1.11016cm3,的 硅在 33K 时的电子和空穴浓度以及费米能级的位置。
15. 掺有浓度为每立方米为 1022 硼原子的硅材料,分别计算① 300K;② 600K 时费 米能级的位置及多子和少子浓度(本征载流子浓度数值查图 3-7 )。
阻率 n=0.38m2/( V.S,Ge 的单晶密度为 5.32g/cm3,Sb 原子量为 121.8 。
解:该 Ge单晶的体积为:
;
Sb 掺杂的浓度为: 查图 3-7 可知,室温下 Ge的本征载流子浓度
,属ቤተ መጻሕፍቲ ባይዱ过渡区
5. 500g 的 Si 单晶,掺有 4.510-5g 的 B ,设杂质全部电离,试求该材料的电
( 3) NAND时,
不能向导带和价带提供电子和空穴, 称为杂质的高度补偿
6. 说明类氢模型的优点和不足。 7. 锑化铟的禁带宽度 Eg=0.18eV,相对介电常数 r=17,电子的有效质量
半导体物理学(刘恩科第七版)习题答案(比较完全)
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:t k hqE f ∆∆== 得qEkt -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0, 1, 2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =第二章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学 刘恩科 第七版 完整课后题答案
半导体物理学刘恩科第七版完整课后题答案 The document was prepared on January 2, 2021第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ (1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)2. 晶格常数为的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tkh qE f ∆∆== 得qE k t -∆=∆补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图) Si 在(100),(110)和(111)面上的原子分布如图1所示: (a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (,式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π=(n=0,1,2…) 进一步分析an k π)12(+= ,E (k )有极大值,ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -==(4)电子的有效质量能带底部 an k π2=所以m m n2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学(刘恩科)第七版 完整课后题答案)
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX=( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-==能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章习题1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。
计算空穴的复合率。
2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为,空穴寿命为τ。
(1)写出光照下过剩载流子所满足的方程; (2)求出光照下达到稳定状态时的过载流子浓度。
3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10Ω•cm 。
今用光照射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm -3•s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例?s cm pU s cm p Up 3171010010313/10U 100,/10613==∆=====∆-⨯∆-ττμτ得:解:根据?求:已知:τττττg p g p dtp d g Aet p g p dt p d L L tL=∆∴=+∆-∴=∆+=∆+∆-=∆∴-.00)2()(达到稳定状态时,方程的通解:梯度,无飘移。
解:均匀吸收,无浓度cm s pq nq q p q n pq np cm q p q n cm g n p g p pn p n p n pn L /06.396.21.0500106.1101350106.11010.0:101:1010100.1916191600'000316622=+=⨯⨯⨯+⨯⨯⨯+=∆+∆++=+=Ω=+==⨯==∆=∆=+∆-----μμμμμμσμμρττ光照后光照前光照达到稳定态后4. 一块半导体材料的寿命τ=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后,其中非平衡载流子将衰减到原来的百分之几?5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度∆n=∆p=1014cm -3。
计算无光照和有光照的电导率。
%2606.38.006.3500106.1109.,..32.01191610''==⨯⨯⨯=∆∴∆>∆Ω==-σσρp u p p p p cm 的贡献主要是所以少子对电导的贡献献少数载流子对电导的贡 。
后,减为原来的光照停止%5.1320%5.13)0()20()0()(1020s e p p ep t p tμτ==∆∆∆=∆--cms q n qu p q n pp p n n n cm p cm n cm p n cm n K T n p n i /16.21350106.110:,/1025.2,10/10.105.1,30019160000003403160314310=⨯⨯⨯=≈+=∆+=∆+=⨯===∆=∆⨯==---μμσ无光照则设半导体的迁移率)本征空穴的迁移率近似等于的半导体中电子、注:掺杂有光照131619140010(/19.20296.016.2)5001350(106.11016.2)(:--=+=+⨯⨯⨯+≈+∆++=+=cm cm s nq q p q n pq nq p n p n pn μμμμμμσ6. 画出p 型半导体在光照(小注入)前后的能带图,标出原来的的费米能级和光照时的准费米能级。
7. 掺施主浓度N D =1015cm -3的n 型硅,由于光的照射产生了非平衡载流子∆n=∆p=1014cm -3。
试计算这种情况下的准费米能级位置,并和原来的费米能级作比较。
E c E iE vE c EF E i E vE FpE Fn光照前光照后⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧-=-==+⨯=+=∆+=⨯=+=∆+=-T k E E e n p T k E E e n n cmN n p p p cm n n n FP i i o i Fn i Di01414152101420315141503/101010)105.1(10/101.11010 度强电离情况,载流子浓0.229eV 10101.51410Tln 0k i E FP E iPPTln 0k i E FP E 0.291eV 10101.515101.1Tln 0k i E Fn E in n Tln0k i E Fn E -=⨯-=--==⨯⨯=-+=∴8. 在一块p 型半导体中,有一种复合-产生中心,小注入时,被这些中心俘获的电子发射回导带的过程和它与空穴复合的过程具有相同的概率。
试求这种复合-产生中心的能级位置,并说明它能否成为有效的复合中心?9. 把一种复合中心杂质掺入本征硅内,如果它的能级位置在禁带中央,试证明小注入时的寿命τ=τn+τp 。
Tk E E e n p p p p p pn r k E E en n r pn r n Tk E E en r n n r n s n N o F i i tp o it i t n t n to it i n t n t n t t -≈∆+=<<∆=--==001T ,.小注入:由题知,从价带俘获空穴向导带发射电子被电子占据复合中心接复合理论:解:根据复合中心的间不是有效的复合中心。
代入公式很小。
,11,;011tp t n o F i i t p n o Fi i p o i t i n N r N r p n p n E E E E r r Tk E E e n r T k E E en r +==-=-∴≈-=-τTk E E c Tk E E c T k EE c T k E E c n p t p n iT iF V T T C o VF F c eN p e N n e N p e N n p p n r r p p p r p n n r E E EE Si 0001100001010;;)(N )()(::--------====∆++∆+++∆++=== τ根据间接复合理论得复合中心的位置本征10. 一块n 型硅内掺有1016cm -3的金原子 ,试求它在小注入时的寿命。
若一块p型硅内也掺有1016cm -3的金原子,它在小注入时的寿命又是多少?11. 在下述条件下,是否有载流子的净复合或者净产生:(1)在载流子完全耗尽(即n, p 都大大小于n i )半导体区域。
(2)在只有少数载流子别耗尽(例如,p n <<p n0,而n n =n n0)的半导体区域。
(3)在n=p 的半导体区域,这里n>>n i0n p n t p t n p t p n p t n Ti F r N r N p n n r r N p n n r p n n r r N p n n r p n p n E E E τττ+=+=∆++∆+++∆++∆++======11)()()()(000000001100所以:因为:s N r r Au Si p s N r r A Si n cm N t n n n t p p p t 9168101617316106.110103.611106.8101015.111u 10--+----⨯=⨯⨯==⨯=⨯⨯===ττ决定了其寿命。
对少子电子的俘获系数中,型。
决定了少子空穴的寿命对空穴的俘获系数中,型产生复合率为负,表明有净载流子完全耗尽,00,0)1()()()(112112<+-=≈≈+++-=p r n r n r r N U p n p p r n n r n np r r N U p n i p n t p n i p n t 产生复合率为负,表明有净结,(反偏,只有少数载流子被耗尽0)(),)2()()()(11200112<++-=≈<<+++-=p r n n r n r r N U n n p p pn p p r n n r n np r r N U p n i p n t n n n n p n i p n t12. 在掺杂浓度N D =1016cm -3,少数载流子寿命为10us 的n 型硅中,如果由于外界作用,少数载流子全部被清除,那么在这种情况下,电子-空穴对的产生率是多大?(E t =E i )。
复合复合率为正,表明有净(0)()(),)3()()()(1122112>+++-=>>=+++-=p n r n n r n n r r N Un n p n p p r n n r n np r r N U p n i p n t ip n i p n t 03160340203160,0,0,10/1025.2,10p p n p cm n n cm n n p cm N n i D -=∆=∆===⨯====i T k EE v T k E E v i T k EE c Tk EE c p n i p n t p n i p n t n e N e N p n e N e N n p r n n r n r r N p p r n n r n np r r N U o vi v i c C ======++-=+++-=--------0T 00T 111102112)()()()(s cm p p r N n r n r r N n r n r n r n r r N pp t n i p n t ip i n o n i p n t 396400022/1025.210101025.2U ⨯-=⨯⨯-=-=-=-≈++-=-τ13. 室温下,p 型半导体中的电子寿命为τ=350us ,电子的迁移率u n =3600cm -2/(V •s)。
试求电子的扩散长度。
14. 设空穴浓度是线性分布,在3us 内浓度差为1015cm -3,u p =400cm 2/(V •s)。
试计算空穴扩散电流密度。
15. 在电阻率为1Ω•cm 的p 型硅半导体区域中,掺金浓度N t =1015cm -3,由边界稳定注入的电子浓度(∆n )0=1010cm -3,试求边界 处电子扩散电流。
cmqTk D L qTk D q Tk D n n n n n n o nn18.0103503600026.0600=⨯⨯⨯=====-μτμμ:解:根据爱因斯坦关系241500/55.510310400026.0cm A x pT k xp q T k q dxp d qD J ppPP =⨯⨯⨯=∆∆=∆∆=∆-=-μμs N r n cm N Si p g n x E n x nE x n D t n t n n t p p p p p 815831522106.110103.61110:---⨯=⨯⨯==∆=-+∆-∂∂+∂∆∂-∂∆∂=∂∆∂ττμμ遇到复合中心复合的复合中心内部掺有由于根据少子的连续性方程16. 一块电阻率为3Ω•cm 的n 型硅样品,空穴寿命τp =5us,在其平面形的表面处有稳定的空穴注入,过剩浓度(∆p )=1013cm -3。