3机械振动练习与答案
第3章 多自由度机械振动系统 作业答案
⎤ ⎡ x1 ⎤ ⎡ p1 ( t ) ⎤ ⎢x ⎥ = ⎢ p t ⎥ − k3 ⎥ ⎥ ⎢ 2 ⎥ ⎢ 2 ( )⎥ k3 + k 4 ⎥ ⎦⎢ ⎣ x3 ⎥ ⎦ ⎢ ⎣ p3 ( t ) ⎥ ⎦ 0
d ∂T ∂T ∂U ∂D ( )− + + = Qi i ∂qi ∂qi ∂q i dt ∂q
2、拉格朗日法:
1 1 2 12 + m2 x 2 T = m1 x 2 2
U=
1 2 1 1 2 ⎤ k1 x1 + k2 (2 x2 − x1 ) 2 = ⎡ (k1 + k2 ) x12 + 4k2 x1 x2 + 4k2 x2 ⎣ ⎦ 2 2 2
Dr. Rong Guo
School of automotive studies, tongji university
⎡ k1r 2 K =⎢ 2 ⎣ − k1r
⎡3 2 ⎢ 2 Mr ⎢ ⎢ 0 ⎢ ⎣ 0
⎤ ⎥ ( k1 + k2 ) r 2 ⎦ − k1r 2
− k1r 2 ⎤ ⎡θ1 ⎤ ⎡0 ⎤ ⎥⎢ ⎥ = ⎢ ⎥ θ 2 ⎦ ⎣0 ⎦ ( k1 + k2 ) r 2 ⎦ ⎣
⎤ ⎤ ⎡ k1r 2 ⎥ ⎡θ ⎥ ⎢ 1 ⎥ + ⎢ 3 −k r 2 θ Mr 2 ⎥ ⎣ 2 ⎦ ⎣ 1 ⎥ ⎦ 2
x1 2l + k1 x1 2l + m2 x2l = 0 ⎧m1 ⎨ ⎩m2 x2l + k2 ( 2 x2 − x1 ) 2l = 0 x1 + m2 x2l + 2k1 x1 = 0 ⎧2m1 ⎨ x2 − 2k2 x1 + 4k2 x2 = 0 ⎩ m2 ⎡ 2m1 ⎢ 0 ⎣ m2 ⎤ ⎡ x1 ⎤ ⎡ 2k1 ⎢ ⎥ + ⎢ −2 k m2 ⎥ x 2 ⎦⎣ 2⎦ ⎣ 0 ⎤ ⎡ x1 ⎤ ⎡0 ⎤ ⎢ x ⎥ = ⎢0 ⎥ 4k 2 ⎥ ⎦⎣ 2⎦ ⎣ ⎦
机械振动答案
机械振动答案(1)选择题1解析:选D.如图所示,设质点在A 、B 之间振动,O 点是它的平衡位置,并设向右为正.在质点由O 向A 运动过程中其位移为负值;而质点向左运动,速度也为负值.质点在通过平衡位置时,位移为零,回复力为零,加速度为零,但速度最大.振子通过平衡位置时,速度方向可正可负,由F =-kx 知,x 相同时F 相同,再由F =ma 知,a 相同,但振子在该点的速度方向可能向左也可能向右.2.解析:选B.据简谐运动的特点可知,振动的物体在平衡位置时速度最大,振动物体的位移为零,此时对应题图中的t 2时刻,B 对.3.解析:选BD.质点做简谐运动时加速度方向与回复力方向相同,与位移方向相反,总是指向平衡位置;位移增加时速度与位移方向相同,位移减小时速度与位移方向相反.4解析:选C.因为弹簧振子固有周期和频率与振幅大小无关,只由系统本身决定,所以f 1∶f 2=1∶1,选C.5解析:选B.对于阻尼振动来说,机械能不断转化为内能,但总能量是守恒的.6.解析:选B.因质点通过A 、B 两点时速度相同,说明A 、B 两点关于平衡位置对称,由时间的对称性可知,质点由B 到最大位移,与由A 到最大位移时间相等;即t 1=0.5 s ,则T2=t AB +2t 1=2 s ,即T =4 s ,由过程的对称性可知:质点在这2 s 内通过的路程恰为2 A ,即2A =12 cm ,A =6 cm ,故B 正确.7.解析:选A.两球释放后到槽最低点前的运动为简谐运动且为单摆模型.其周期T =2πR g,两球周期相同,从释放到最低点O 的时间t =T4相同,所以相遇在O 点,选项A 正确.8.解析:选C.从t =0时经过t =3π2L g 时间,这段时间为34T ,经过34T 摆球具有最大速度,说明此时摆球在平衡位置,在给出的四个图象中,经过34T 具有负向最大速度的只有C 图,选项C 正确.9.解析:选CD.单摆做简谐运动的周期T =2πlg,与摆球的质量无关,因此两单摆周期相同.碰后经过12T 都将回到最低点再次发生碰撞,下一次碰撞一定发生在平衡位置,不可能在平衡位置左侧或右侧.故C 、D 正确.10.解析:选D.通过调整发生器发出的声波就能使酒杯碎掉,是利用共振的原理,因此操作人员一定是将声波发生器发出的声波频率调到500 Hz ,故D 选项正确. 二、填空题(本题共2小题,每小题8分,共16分.把答案填在题中横线上)11答案:(1)B (2)摆长的测量、漏斗重心的变化、液体痕迹偏粗、阻力变化……12答案:(1)ABC (2)①98.50 ②B ③4π2k计算题13.(10分)解析:由题意知弹簧振子的周期T =0.5 s ,振幅A =4×10-2m. (1)a max =kx max m =kA m=40 m/s 2. (2)3 s 为6个周期,所以总路程为s =6×4×4×10-2m =0.96 m.答案:(1)40 m/s 2(2)0.96 m14.(10分)解析:设单摆的摆长为L ,地球的质量为M ,则据万有引力定律可得地面的重力加速度和高山上的重力加速度分别为:g =G M R 2,g h =G M R +h2据单摆的周期公式可知T 0=2πLg ,T =2πL g h由以上各式可求得h =(T T 0-1)R . 答案:(T T 0-1)R15.(12分解析:球A 运动的周期T A =2πl g, 球B 运动的周期T B =2π l /4g =πl g. 则该振动系统的周期T =12T A +12T B =12(T A +T B )=3π2l g. 在每个周期T 内两球会发生两次碰撞,球A 从最大位移处由静止开始释放后,经6T =9πlg,发生12次碰 撞,且第12次碰撞后A 球又回到最大位置处所用时间为t ′=T A /4. 所以从释放A 到发生第12次碰撞所用时间为t =6T -t ′=9πl g -2T 2l g =17π2lg. 答案:17π2l g16.(12分解析:在力F 作用下,玻璃板向上加速,图示OC 间曲线所反映出的是振动的音叉振动位移随时间变化的规律,其中直线OC 代表音叉振动1.5个周期内玻璃板运动的位移,而OA 、AB 、BC 间对应的时间均为0.5个周期,即t =T 2=12f=0.1 s .故可利用匀加速直线运动的规律——连续相等时间内的位移差等于恒量来求加速度.设板竖直向上的加速度为a ,则有:s BA -s AO =aT 2①s CB -s BA =aT 2,其中T =152 s =0.1 s ②由牛顿第二定律得F -mg =ma ③ 解①②③可求得F =24 N. 答案:24 N机械振动(2)机械振动(3)1【解析】 如图所示,图线中a 、b 两处,物体处于同一位置,位移为负值,加速度一定相同,但速度方向分别为负、正,A 错误,C 正确.物体的位移增大时,动能减少,势能增加,D 错误.单摆摆球在最低点时,处于平衡位置,回复力为零,但合外力不为零,B 错误.【答案】 C2【解析】 质量是惯性大小的量度,脱水桶转动过程中质量近似不变,惯性不变,脱水桶的转动频率与转速成正比,随着转动变慢,脱水桶的转动频率减小,因此,t 时刻的转动频率不是最大的,在t 时刻脱水桶的转动频率与机身的固有频率相等发生共振,故C 项正确.【答案】 C3【解析】 摆球从A 运动到B 的过程中绳拉力不为零,时间也不为零,故冲量不为零,所以选项A 错;由动能定理知选项B 对;摆球运动到B 时重力的瞬时功率是mg v cos90°=0,所以选项C 错;摆球从A 运动到B 的过程中,用时T /4,所以重力的平均功率为P =m v 2/2T /4=2m v 2T ,所以选项D 错.【答案】 B4【解析】 由振动图象可看出,在(T 2-Δt )和(T2+Δt )两时刻,振子的速度相同,加速度大小相等方向相反,相对平衡位置的位移大小相等方向相反,振动的能量相同,正确选项是D.【答案】 D5【解析】 据受迫振动发生共振的条件可知甲的振幅较大,因为甲的固有频率接近驱动力的频率.做受迫振动物体的频率等于驱动力的频率,所以B 选项正确.【答案】 B6【解析】 由题意知,在细线未断之前两个弹簧所受到的弹力是相等的,所以当细线断开后,甲、乙两个物体做简谐运动时的振幅是相等的,A 、B 错;两物体在平衡位置时的速度最大,此时的动能等于弹簧刚释放时的弹性势能,所以甲、乙两个物体的最大动能是相等的,则质量大的速度小,所以C 正确,D 错误.【答案】 C题号 1 2 3 4 5 6 7 8 9 10答案 ACBADACBDACADD(T 2-T 1)R/T 17【答案】 C8【解析】 根据题意,由能量守恒可知12kx 2=mg (h +x ),其中k 为弹簧劲度系数,h 为物块下落处距O 点的高度,x 为弹簧压缩量.当x =x 0时,物块速度为0,则kx 0-mg =ma ,a =kx 0-mg m =kx 0m -g =2mg (h +x 0)mx 0-g =2g (h +x 0)x 0-g >g ,故正确答案为D.【答案】 D9【解析】 由题中条件可得单摆的周期为T =0.30.2s =1.5s ,由周期公式T =2πlg可得l=0.56m.【答案】 A10【解析】 当摆球释放后,动能增大,势能减小,当运动至B 点时动能最大,势能最小,然后继续摆动,动能减小,势能增大,到达C 点后动能为零,势能最大,整个过程中摆球只有重力做功,摆球的机械能守恒,综上可知只有D 项正确.【答案】 D机械振动(4)1解析:选A.周期与振幅无关,故A 正确.2解析:选C.由单摆周期公式T =2π lg知周期只与l 、g 有关,与m 和v 无关,周期不变频率不变.又因为没改变质量前,设单摆最低点与最高点高度差为h ,最低点速度为v ,mgh =12m v 2.质量改变后:4mgh ′=12·4m ·(v 2)2,可知h ′≠h ,振幅改变.故选C.3解析:选D.此摆为复合摆,周期等于摆长为L 的半个周期与摆长为L2的半个周期之和,故D 正确.4解析:选B.由简谐运动的对称性可知,t Ob =0.1 s ,t bc =0.1 s ,故T4=0.2 s ,解得T =0.8s ,f =1T=1.25 Hz ,选项B 正确.5解析:选D.当单摆A 振动起来后,单摆B 、C 做受迫振动,做受迫振动的物体的周期(或频率)等于驱动力的周期(或频率),选项A 错误而D 正确;当物体的固有频率等于驱动力的频率时,发生共振现象,选项C 正确而B 错误.6解析:选BD.速度越来越大,说明振子正在向平衡位置运动,位移变小,A 错B 对;速度与位移反向,C 错D 对.7解析:选AD.P 、N 两点表示摆球的位移大小相等,所以重力势能相等,A 对;P 点的速度大,所以动能大,故B 、C 错D 对.8解析:选BD.受迫振动的频率总等于驱动力的频率,D 正确;驱动力频率越接近固有频率,受迫振动的振幅越大,B 正确.9解析:选B.读图可知,该简谐运动的周期为4 s ,频率为0.25 Hz ,在10 s 内质点经过的路程是2.5×4A =20 cm.第4 s 末的速度最大.在t =1 s 和t =3 s 两时刻,质点位移大小相等、方向相反.。
机械振动、机械波练习题(答案)
机械振动、机械波练习题(参考答案)3. 【答案】B【解析】由单摆周期公式知,T 1=2πL 1g =0.6π s ,T 2=2π L 2g =π s ,摆球从左到右的时间为t =T 1+T 24=0.4π s 。
4. 【答案】 BD5. 【答案】A6. 【答案】AC9. 【答案】AB10.【答案】C11.【答案】A【解析】 由题意得知,该波的周期为T=4s ,则波长λ=vT=1×4m=4mA 、ac 间距离等于一个波长,则波由a 传到c 的时间为4s ,c 起振方向向上,则在4秒<t <5秒这段时间内,c 点从平衡位置向上运动,加速度逐渐增大.故A 正确.B 、由于周期为4s ,所以在4秒<t <5秒这段时间内,质点a 从平衡位置向上运动,速度逐渐减小.故B 错误.C 、ad 间距离等于3/4 波长,则波由a 传到d 的时间为3s ,d 起振方向向上,则在4秒<t <5秒这段时间内,d 点从波峰向平衡位置运动,即向下运动.故C 错误.D 、af 间距离等于1.25个波长,波传到f 点需要5s 时间,所以在4秒<t <5秒这段时间内,f 还没有振动.故D 错误.12.【答案】ABE【解析】两列波相遇后不改变波的性质,所以振幅不变,振幅仍然为2cm ,A 正确;由图知波长λ=0.4m ,由v =λT 得,波的周期为T =λv =1s ,两质点传到M 的时间为34T ,当t =1s 时刻,两波的波谷恰好传到质点M ,所以位移为-4cm ,B 正确,C 错误;质点不随波迁移,只在各自的平衡位置附近振动,所以质点P 、Q 都不会运动到M 点,C 错误;由波的传播方向根据波形平移法可判断出质点的振动方向:两列简谐横波分别沿x 轴正方向和负方向传播,则质点P 、Q 均沿y 轴负方向运动,故E 正确。
13.【答案】AB【解析】图示时质点a 处是波峰与波谷相遇,两列波引起的位移正负叠加的结果是总位移为零,A 正确,质点b 是波峰与波峰相遇,c 点是波谷与波谷相遇,振动都增强,振幅最大,振幅是一列波振幅的两倍,振动最强 ,B 正确。
机械振动专题练习 (含答案)
1.如图所示为一个水平方向的弹簧振子,小球在MN间做简谐运动,O是平衡位置.关于小球的运动情况,下列描述正确的是(D)A.小球经过O点时速度为零B.小球经过M点与N点时有相同的加速度C.小球从M点向O点运动过程中,加速度增大,速度增大D.小球从O点向N点运动过程中,加速度增大,速度减小2.做简谐运动的物体,振动周期为2 s,下列说法正确的是(C)A.运动经过平衡位置时开始计时,那么当t=1.2 s时,物体正在做加速运动,加速度的值正在增大(1.2s正在由平衡位置向最大位置运动)B.运动经过平衡位置时开始计时,那么当t=1.2 s时,正在做减速运动,加速度的值正在减小C.在1 s时间内,物体运动的路程一定是2AD.在0.5 s内,物体运动的路程一定是A(没有说明是哪1/4周期)3.把一个小球套在光滑细杆上,球与轻弹簧相连组成弹簧振子,小球沿杆在水平方向做简谐运动,它围绕平衡位置O在A、B间振动,如图所示,下列结论正确的是(A)A.小球在O位置时,动能最大,加速度最小B.小球在A、B位置时,动能最大,加速度最大C.小球从A经O到B的过程中,回复力一直做正功D.小球从B到O的过程中,振动的能量不断增加4.若物体做简谐运动,则下列说法中正确的是(C)A.若位移为负值,则速度一定为正值,加速度也一定为正值B.物体通过平衡位置时,所受合力为零,回复力为零,处于平衡状态C.物体每次通过同一位置时,其速度不一定相同,但加速度一定相同D.物体的位移增大时,动能增加,势能减少5.弹簧振子在做简谐振动时,若某一过程中振子的速率在减小,则此时振子的(C)A.速度与位移方向必定相反B.加速度与速度方向可能相同C.位移的大小一定在增加D.回复力的数值可能在减小6.(多选)做简谐振动的质点在通过平衡位置时,为零值的物理量有(AC)A.加速度B.速度C.位移D.动能7.如图所示为某质点在0~4 s内的振动图象,则(C)A.质点振动的振幅是2 m,质点振动的频率为4 HzB.质点在4 s末的位移为8 mC.质点在4 s内的路程为8 mD.质点在t=1 s到t=3 s的时间内,速度先沿x轴正方向后沿x轴负方向,且速度先增大后减小8.某质点的振动图象如图所示,下列说法正确的是(D)A.1 s和3 s时刻,质点的速度相同B.1 s到2 s时间内,速度与加速度方向相同C.简谐运动的表达式为y=2 sin(0.5πt+1.5π) cmD.简谐运动的表达式为y=2 sin(0.5πt+0.5π) cm9.如图甲所示是一个弹簧振子的示意图,O是它的平衡位置,振子在B、C之间做简谐运动,规定向右为正方向.图乙是它的速度v 随时间t变化的图象.下列说法中正确的是(C)A.t=2 s时刻,它的位置在O点左侧4 cm处B.t=3 s时刻,它的速度方向向左,大小为2 m/sC.t=4 s时刻,它的加速度为方向向右的最大值D.振子在一个周期内通过的路程是16 cm10.如图为一水平弹簧振子的振动图象,由此可知(B)A.在t1时刻,振子的动能最大,所受的弹力最大B.在t2时刻,振子的动能最大,所受的弹力最小C.在t 3时刻,振子的动能最小,所受的弹力最小D.在t4时刻,振子的动能最小,所受的弹力最大11.某质点在0~4 s的振动图象如图所示,则下列说法正确的是(C)A.质点振动的周期是2 sB.在0~1 s内质点做初速度为零的加速运动C.在t=2 s时,质点的速度方向沿x轴的负方向D.质点振动的振幅为20 cm12.(多选)某弹簧振子在水平方向上做简谐运动,其位移x随时间t变化的关系为x=A sinωt,振动图象如图所示,下列说法正确的是(ABD)A.弹簧在第1 s末与第3 s末的长度相同B.第3 s末振子的位移大小为C.从第3 s末到第5 s末,振子的速度方向发生变化D.从第3 s末到第5 s末,振子的加速度方向发生变化13.一单摆做小角度摆动,其振动图象如图所示,以下说法正确的是(D)A.t1时刻摆球速度最大,悬线对它的拉力最小B.t2时刻摆球速度为零,悬线对它的拉力最小C.t3时刻摆球速度为零,悬线对它的拉力最大D.t4时刻摆球速度最大,悬线对它的拉力最大14.已知在单摆a完成10次全振动的时间内,单摆b完成6次全振动,两摆长之差为1.6 m,则两单摆摆长la与lb 分别为(B)A.la=2.5 m,lb=0.5 m B.la=0.9 m,lb=2.5 mC.la=2.4 m,lb=4.0 m D.la=4.0 m,lb=2.4 m15.如图所示是一个单摆做受迫振动时的共振曲线,表示振幅A与驱动力的频率f的关系,下列说法正确的是(C)A.摆长约为10 cm B.摆长约为2 mC.若增大摆长,共振曲线的“峰”将向左移动D.若增大摆长,共振曲线的“峰”将向右移动16.如图所示,质量相同的四个摆球悬于同一根横线上,四个摆的摆长分别为L1=2 m、L2=1.5 m、L3=1 m、L4=0.5 m.现以摆3为驱动摆,让摆3振动,使其余三个摆也振动起来,则摆球振动稳定后(D)A.摆1的振幅一定最大B.摆4的周期一定最短C.四个摆的振幅相同D.四个摆的周期相同17.如图所示,在曲轴上悬挂一弹簧振子,转动摇把,曲轴可以带动弹簧振子上下振动.开始时不转动摇把,让振子自由上下振动,测得其频率为2 Hz;然后以60 r/min的转速匀速转动摇把,当振子振动稳定时,它的振动周期为(C)A.0.25 s B.0.5 s C.1 s D.2 s18.如图所示,在一根张紧的绳上挂几个单摆,其中C、E两个摆的摆长相等,先使C摆振动,其余几个摆在C摆的带动下也发生了振动,则(C)A.只有E摆的振动周期与C摆相同B.B摆的频率比A、D、E摆的频率小C.E摆的振幅比A、B、D摆的振幅大D.B摆的振幅比A、D、E摆的振幅大19.一个打磨得很精细的小凹镜,其曲率很小可视为接近平面.将镜面水平放置如图所示.将一个小球从镜边缘释放,小球在镜面上将会往复运动,以下说法中正确的是(C)A.小球质量越大,往复运动的周期越长B.释放点离最低点距离越大,周期越短C.凹镜曲率半径越大,周期越长D.周期应由小球质量、释放点离平衡位置的距离,以及曲率半径共同决定20.(多选)如图所示为同一地点的两单摆甲、乙的振动图象,下列说法中正确的是(ABD) A.甲、乙两单摆的摆长相等B.甲摆的振幅比乙摆大C.甲摆的机械能比乙摆大D.在t=0.5 s时有正向最大加速度的是乙摆21.某个质点的简谐运动图象如图所示.(1)求振动的振幅和周期;(2)写出简谐运动的表达式.21.【答案】(1)10cm8 s(2)x=10sin (t) cm【解析】(1)由题图读出振幅A=10cm简谐运动方程x=A sin代入数据得-10=10sin得T=8 s.(2)x=A sin=10sin (t) cm.。
第三章 机械振动与机械波自我测试题
第三章 机械振动与机械波自我测试题一、选择题1、谐振动是一种什么样的运动?A 匀加速运动;B 匀减速运动;C 匀速运动;D 变加速运动。
2、下列振动中,哪个不是谐振动?A 弹簧振子的振动;B 当摆角不大(<50)时的单摆的振动;C 位移方程满足x=sin(ωt+φ)的振动;D 拍皮球时皮球的振动。
3、一质点作上下方向的谐振动,设向上为正方向。
当质点在平衡位置开始向上振动,则初位相为:A 0;B 2π;C 2π-;D 3π 4、当一物体系在一弹簧上作振动,振幅为A ,无阻尼,则:A 当位移是±A ,它的动能最大;B 在运动过程中它的总机械能有改变;C 在任一时刻其势能不变;D 当位移为零时它的势能为最小。
5、有一质量为4kg 的物体,连在一弹簧上,在垂直方向作简谐振动,振幅是1米。
当物体上升到最高点时为自然长度。
那么物体在最高点时的弹性势能、动能、重力势能之和为:(设弹簧伸到最长时重力势能为零,并取g= l0m/s 2)A 60J ;B 40J ;C 20J ;D 80J 。
6、某质点参与x 1=l0cos(πt -π/2)cm 及x 2=20cos(πt+π/2)cm 两个同方向的谐振动,则合成振动的振幅为:A 20cm ;B l0cm ;C 30cm ;D lcm 。
7、设某列波的波动方程为y=l0sin(10πt -x/100)cm ,在波线上x 等于一个波长处的点的位移方程为:A y= 10sin(10πt - 2π);B y= l0sin10πt ;C y= 20sin5πt ;D y= l0cos(l0πt - 2π).8、已知波动方程为y=0.05sin(l 0πt-πx )cm ,时间单位为秒,当t=T/4时,波源振动速度V 应为:A V= 0.5π;B V=-0.5π2;C V= 0.5πcos10πt ;D V= 0。
9、已知一个lkg 的物体作周期为0.5s 的谐振动,它的能量为2π2J ,则其振幅为:A 2m ;B 0.5m ;C 0.25m ;D 0.2m 。
机械振动期末考试题及答案
机械振动期末考试题及答案一、选择题(每题2分,共20分)1. 简谐振动的周期与振幅无关,这是由哪个定律决定的?A. 牛顿第二定律B. 牛顿第三定律C. 胡克定律D. 能量守恒定律答案:C2. 下列哪个不是阻尼振动的特点?A. 振幅逐渐减小B. 频率逐渐增大C. 能量逐渐减少D. 振幅随时间呈指数衰减答案:B3. 一个物体做自由振动,若其振幅逐渐减小,这表明振动受到了:A. 阻尼B. 共振C. 强迫振动D. 非线性振动答案:A4. 质点的振动方程为 \( y = A \sin(\omega t + \phi) \),其中\( \omega \) 表示:A. 振幅B. 频率C. 角频率D. 相位答案:C5. 弹簧振子的振动周期与下列哪个参数无关?A. 弹簧的劲度系数B. 振子的质量C. 振子的振幅D. 振子的初始相位答案:C6. 阻尼振动的振幅随时间呈指数衰减,其衰减速率与什么有关?A. 振幅大小B. 阻尼系数C. 振动频率D. 振动周期答案:B7. 以下哪个不是振动系统的自由度?A. 1B. 2C. 3D. 无穷大答案:D8. 共振现象发生在以下哪种情况下?A. 系统固有频率等于外部激励频率B. 系统阻尼系数最大C. 系统振幅最小D. 系统能量最大答案:A9. 以下哪个是简谐振动的特有现象?A. 振幅不变B. 频率不变C. 能量不变D. 周期不变答案:A10. 一个物体在水平面上做简谐振动,其振动能量主要由以下哪两个因素决定?A. 振幅和频率B. 振幅和阻尼系数C. 阻尼系数和频率D. 振幅和劲度系数答案:A二、填空题(每空2分,共20分)11. 简谐振动的周期公式为 \( T = \frac{2\pi}{\omega} \),其中\( \omega \) 为________。
答案:角频率12. 当外部激励频率接近系统的________时,系统将产生共振现象。
答案:固有频率13. 阻尼振动的振幅随时间的变化规律可表示为 \( A(t) = A_0 e^{-\beta t} \),其中 \( \beta \) 为________。
大学机械振动考试题目及答案
大学机械振动考试题目及答案一、选择题(每题2分,共10分)1. 在简谐振动中,振幅与振动的能量关系是()。
A. 无关B. 成正比C. 成反比D. 振幅越大,能量越小答案:B2. 下列哪个不是机械振动系统的自由度?()。
A. 转动B. 平动C. 振动D. 形变答案:C3. 一个单自由度系统在受到初始条件激励后,其振动形式是()。
A. 简谐振动B. 阻尼振动C. 受迫振动D. 自由振动答案:D4. 在阻尼振动中,如果阻尼系数增加,振动的振幅将()。
A. 增加B. 不变C. 减小D. 先增加后减小答案:C5. 对于一个二自由度振动系统,其振动模态数量是()。
A. 1B. 2C. 3D. 4答案:B二、填空题(每题2分,共10分)6. 一个物体做自由振动时,其频率称为______。
答案:固有频率7. 当外力的频率与系统的固有频率相等时,系统发生的振动称为______。
答案:共振8. 阻尼力与速度成正比的阻尼称为______阻尼。
答案:线性9. 振动系统的动态响应可以通过______分析法求解。
答案:傅里叶10. 在转子动力学中,临界转速是指转子发生______振动的转速。
答案:自激三、简答题(每题5分,共20分)11. 简述什么是简谐振动,并说明其运动方程的形式。
答案:简谐振动是一种周期性的振动,其加速度与位移成正比,且方向相反。
在数学上,简谐振动的运动方程可以表示为:x(t) = A * cos(ωt + φ)其中,A 是振幅,ω 是角频率,t 是时间,φ 是初相位。
12. 解释什么是阻尼振动,并说明其特点。
答案:阻尼振动是指在振动系统中存在能量耗散,导致振幅随时间逐渐减小的振动。
其特点包括振幅逐渐衰减,振动频率可能会随着振幅的减小而发生变化,且阻尼力通常与振动速度成正比。
13. 描述什么是受迫振动,并给出其稳态响应的条件。
答案:受迫振动是指系统在周期性外力作用下的振动。
当外力的频率接近系统的固有频率时,系统将发生共振,此时振幅会显著增大。
机械振动现象练习题(含答案)
机械振动现象练习题(含答案)1. 一个弹簧常数为3000 N/m, 质量为0.2 kg的物体,在弹簧下端受到一个向下的力2 sin(10t) N,其中t为时间(秒)。
求物体的振动方程。
根据牛顿第二定律,可以得到物体的振动方程为:m * x'' + k * x = F(t)其中,m是物体的质量,x是物体的位移,x''是位移对时间的二阶导数,k是弹簧的常数,F(t)是作用在物体上的外力。
根据题目中给出的数据,代入上述公式,我们可以得到:0.2 * x'' + 3000 * x = 2 sin(10t)这就是物体的振动方程。
2. 一个质点在受到一个力F(t) = 0.1 cos(3t) N的作用下进行振动,已知质点的质量为0.5 kg。
求质点的角频率和振动周期。
根据振动方程的形式,我们可以知道物体的振动频率和周期与力的形式有关。
在这个题目中,我们可以看出力的形式为cos(3t),它是一个正弦函数。
如果将cos(3t)函数展开,我们可以得到下面的表达式:F(t) = a cos(wt)其中,a是振幅,w是角频率。
根据题目中给出的数据,我们可以得到:a = 0.1 N,w = 3 rad/s由于振动的频率与角频率之间是有关联的,振动的周期T可以表示为:T = 2π/w代入上述数据,我们可以得到:T = 2π/3 s这就是质点的振动周期。
3. 一个质点质量为0.3 kg,在一竖直方向上的弹簧中振动,弹簧的劲度系数为2000 N/m。
当质点受到一个外力F(t) = 0.5 cos(5t) N时,求质点的振动方程。
根据题目中给出的数据,我们可以得到:m = 0.3 kg,k = 2000 N/m,F(t) = 0.5 cos(5t)代入振动方程的一般形式,我们可以得到:0.3 * x'' + 2000 * x = 0.5 cos(5t)这就是质点的振动方程。
机械振动 课后习题和答案 第三章 习题和答案
3.1 如图所示扭转系统。
设12122;t t I I k k ==1.写出系统的刚度矩阵和质量矩阵;2.写出系统的频率方程并求出固有频率和振型,画出振型图。
解:1)以静平衡位置为原点,设12,I I 的转角12,θθ为广义坐标,画出12,I I 隔离体,根据牛顿第二定律得到运动微分方程:111121222221()0()0t t t I k k I k θθθθθθθ⎧++-=⎪⎨+-=⎪⎩ ,即:1112122222122()00t t t t t I k k k I k k θθθθθθ⎧++-=⎪⎨-+=⎪⎩所以:[][]12212220,0t t t t t k k k I M K k k I +-⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦系统运动微分方程可写为:[][]11220M K θθθθ⎧⎫⎧⎫⎪⎪+=⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭………… (a)或者采用能量法:系统的动能和势能分别为θθ=+2211221122T E I I θθθθθθθ=+-=++-222211212121221121111()()2222t t t t t t U k k k k k k求偏导也可以得到[][],M K由于12122;t t I I k k ==,所以[][]212021,0111t M I K k -⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦2)设系统固有振动的解为: 1122cos u t u θωθ⎧⎫⎧⎫=⎨⎬⎨⎬⎩⎭⎩⎭,代入(a )可得:[][]122()0u K M u ω⎧⎫-=⎨⎬⎩⎭………… (b)得到频率方程:22121211222()0t t t t k I k k k I ωωω--==--即:224222121()240t t I k I k ωωω=-+=解得:21,222ω==所以:1ω=2ω= ………… (c)将(c )代入(b )可得:112121211122(22220(22t t t t t t k k I k I u u k k k I I ⎡⎤±--⎢⎥⎧⎫⎢⎥=⎨⎬⎢⎥⎩⎭⎢⎥--⎢⎥⎣⎦解得:11212u u =-;12222u u =令21u ,得到系统的振型为:-0.70710.70713.2 求图所示系统的固有频率和振型。
《机械振动》测试题(含答案)
《机械振动》测试题(含答案)一、机械振动选择题1.如图所示为某物体系统做受迫振动的振幅A随驱动力频率f的变化关系图,则下列说法正确的是A.物体系统的固有频率为f0B.当驱动力频率为f0时,物体系统会发生共振现象C.物体系统振动的频率由驱动力频率和物体系统的固有频率共同决定D.驱动力频率越大,物体系统的振幅越大2.如图所示的单摆,摆球a向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b发生碰撞,并粘在一起,且摆动平面不便.已知碰撞前a球摆动的最高点与最低点的高度差为h,摆动的周期为T,a球质量是b球质量的5倍,碰撞前a球在最低点的速度是b球速度的一半.则碰撞后A 5 6 TB 6 5 TC.摆球最高点与最低点的高度差为0.3hD.摆球最高点与最低点的高度差为0.25h3.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。
物体带动纸带一起向左运动时,让单摆小幅度前后摆动,于是在纸带上留下如图所示的径迹。
图乙为某次实验中获得的纸带的俯视图,径迹与中央虚线的交点分别为A、B、C、D,用刻度尺测出A、B间的距离为x1;C、D间的距离为x2。
已知单摆的摆长为L,重力加速度为g,则此次实验中测得的物体的加速度为()A .212()x x gLπ-B .212()2x x gLπ-C .212()4x x gLπ-D .212()8x x gLπ-4.如图所示,弹簧下面挂一质量为m 的物体,物体在竖直方向上做振幅为A 的简谐运动,当物体振动到最高点时,弹簧正好处于原长,弹簧在弹性限度内,则物体在振动过程中A .弹簧的弹性势能和物体动能总和不变B .物体在最低点时的加速度大小应为2gC .物体在最低点时所受弹簧的弹力大小应为mgD .弹簧的最大弹性势能等于2mgA5.在“用单摆测定重力加速度”的实验中,用力传感器测得摆线的拉力大小F 随时间t 变化的图象如图所示,已知单摆的摆长为l ,则重力加速度g 为( )A .224l tπB .22l t πC .2249l t πD .224l tπ6.如图所示的弹簧振子在A 、B 之间做简谐运动,O 为平衡位置,则下列说法不正确的是( )A .振子的位移增大的过程中,弹力做负功B .振子的速度增大的过程中,弹力做正功C .振子的加速度增大的过程中,弹力做正功D .振子从O 点出发到再次回到O 点的过程中,弹力做的总功为零7.质点做简谐运动,其x —t 关系如图,以x 轴正向为速度v 的正方向,该质点的v —t 关系是( )A .B .C .D .8.某质点做简谐运动,其位移随时间变化的关系式为5sin 4x t π=(cm) ,则下列关于质点运动的说法中正确的是( )A .质点做简谐运动的振幅为 10cmB .质点做简谐运动的周期为 4sC .在 t=4s 时质点的加速度最大D .在 t=4s 时质点的速度最大9.如图所示,质量为A m 的物块A 用不可伸长的细绳吊着,在A 的下方用弹簧连着质量为B m 的物块B ,开始时静止不动。
人教版高中物理选修3-4第十一章《机械振动》检测题(含答案解析)
第十一章《机械振动》检测题一、单选题(每小题只有一个正确答案)1.弹簧振子作简谐振动的周期是4 s,某时刻该振子的速度为v,要使该振子的速度变为-v,所需要的最短时间是( )A. 1 s B. 2 s C. 4 s D.无法确定2.小球做简谐运动,则下述说法正确的是( )A.小球所受的回复力大小与位移成正比,方向相同B.小球的加速度大小与位移成正比,方向相反C.小球的速度大小与位移成正比,方向相反D.小球速度的大小与位移成正比,方向可能相同也可能相反3.弹簧振子沿直线作简谐运动,当振子连续两次经过相同位置时下列说法不正确的( ) A.回复力相同 B.加速度相同 C.速度相同 D.机械能相同4.任何物体都有自己的固有频率.研究表明,如果把人作为一个整体来看,在水平方向上振动时的固有频率约为5 Hz.当工人操作风镐、风铲、铆钉机等振动机械时,操作者在水平方向将做受迫振动.在这种情况下,下列说法正确的是( )A.操作者的实际振动频率等于他自身的固有频率B.操作者的实际振动频率等于机械的振动频率C.为了保证操作者的安全,振动机械的频率应尽量接近人的固有频率D.为了保证操作者的安全,应尽量提高操作者的固有频率5.水平放置的弹簧振子先后以振幅A和2A振动,振子从左边最大位移处运动到右边最大位移处过程中的平均速度分别为v1和v2,则( )A.v1=2v2 B. 2v1=v2 C.v1=v2 D.v1=v26.如图所示为某质点在0~4 s内的振动图象,则( )A.质点在3 s末的位移为2 m B.质点在4 s末的位移为8 mC.质点在4 s内的路程为8 m D.质点在4 s内的路程为零7.如图所示是单摆做阻尼运动的位移—时间图线,下列说法中正确的是( )A.摆球在P与N时刻的势能相等 B.摆球在P与N时刻的动能相等C.摆球在P与N时刻的机械能相等 D.摆球在P时刻的机械能小于N时刻的机械能8.某同学在用单摆测重力加速度的实验中,用的摆球密度不均匀,无法确定重心位置,他第一次量得悬线长为L1,测得周期为T1,第二次量得悬线长为L2,测得周期为T2,根据上述数据,重力加速度g的值为( )A. B. C. D.无法判断9.如图所示为演示简谐振动的沙摆,已知摆长为l,沙筒的质量为m,沙子的质量为M,沙子逐渐下漏的过程中,摆的周期( )A.不变 B.先变大后变小 C.先变小后变大 D.逐渐变大10.关于简谐运动周期、频率、振幅说法正确的是( )A.振幅是矢量,方向是由平衡位置指向最大位移处B.周期和频率的乘积不一定等于1C.振幅增加,周期必然增加,而频率减小D.做简谐运动的物体,其频率固定,与振幅无关11.将一个电动传感器接到计算机上,就可以测量快速变化的力,用这种方法测得的某单摆摆动时悬线上拉力的大小随时间变化的曲线如图所示.某同学由此图线提供的信息做出了下列判断①t=0.2 s时摆球正经过最低点.②t=1.1 s时摆球正经过最低点.③摆球摆动过程中机械能减少.④摆球摆动的周期是T=0.6 s.上述判断中,正确的是( )A.①③ B.②③ C.③④ D.②④12.如图为某质点做简谐运动的图象.下列说法正确的是( )A.t=0时,质点的速度为零B.t=0.1 s时,质点具有y轴正向最大加速度C.在0.2 s~0.3 s内质点沿y轴负方向做加速度增大的加速运动D.在0.5 s~0.6 s内质点沿y轴负方向做加速度减小的加速运动13.如图所示,位于竖直平面内的固定光滑圆环轨道与水平面相切于M点,与竖直墙相切于A点,竖直墙上另一点B与M的连线和水平面的夹角为60°,C是圆环轨道的最高点,D是圆环上与M靠得很近的一点(DM远小于).已知在同一时刻:a、b两球分别由A、B两点从静止开始沿光滑倾斜直轨道运动到M点,c球由C点自由下落到M点,d球从D点静止出发沿圆环运动到M点.则下列关于四个小球运动时间的关系,正确的是( )A.tb>tc>ta>td B.td>tb>tc>ta C.tb>tc=ta>td D.td>tb=tc=ta14.如图所示,一轻弹簧上端固定,下端系在甲物体上,甲、乙间用一不可伸长的轻杆连接,已知甲、乙两物体质量均为m,且一起在竖直方向上做简谐振动的振幅为A(A>).若在振动到达最高点时剪断轻杆,甲单独振动的振幅为A1,若在振动到达最低点时间剪断轻杆,甲单独振动的振幅为A2.则( )A.A2>A>A1 B.A1>A>A2 C.A>A2>A1 D.A2>A1>A二、多选题(每小题至少有两个正确答案)15.利用传感器和计算机可以测量快速变化的力.如图是用这种方法获得的弹性绳中拉力随时间的变化图线.实验时,把小球举高到绳子的悬点O处,然后让小球自由下落.从此图线所提供的信息,判断以下说法中正确的是( )A.t1时刻小球速度最大 B.t2时刻绳子最长C.t3时刻小球动能最小 D.t3与t4时刻小球速度大小相同16.物体做简谐运动时,下列叙述正确的是( )A.平衡位置就是回复力为零的位置B.处于平衡位置的物体,一定处于平衡状态C.物体到达平衡位置,合力一定为零D.物体到达平衡位置,回复力一定为零17.在“探究单摆周期与摆长的关系”的实验中,以下说法正确的是( )A.测量摆长时,应用力拉紧摆线B.单摆偏离平衡位置的角度不能太大C.要保证单摆自始至终在同一竖直面内摆动D.应从摆球通过最低位置时开始计时18.(多选)如图所示为半径很大的光滑圆弧轨道上的一小段,小球B静止在圆弧轨道的最低点O处,另有一小球A自圆弧轨道上C处由静止滚下,经t秒与B发生正碰.碰后两球分别在这段圆弧轨道上运动而未离开轨道,当两球第二次相碰时( )A.相间隔的时间为4t B.相间隔的时间为2tC.将仍在O处相碰 D.可能在O点以外的其他地方相碰19.如图所示,物体A与滑块B一起在光滑水平面上做简谐运动,A、B之间无相对滑动,已知轻质弹簧的劲度系数为k,A、B的质量分别为m和M,下列说法正确的是( )A.物体A的回复力是由滑块B对物体A的摩擦力提供B.滑块B的回复力是由弹簧的弹力提供C.物体A与滑块B(看成一个振子)的回复力大小跟位移大小之比为kD.物体A的回复力大小跟位移大小之比为k E.若A、B之间的最大静摩擦因数为μ,则A、B间无相对滑动的最大振幅为三、实验题20.某同学做“用单摆测定重力加速度”的实验,实验步骤如下:Ⅰ.选取一个摆线长约1 m的单摆,把线的上端用铁夹固定在铁架台上,把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自由下垂.Ⅱ.用米尺量出悬线长度,精确到毫米,作为摆长.Ⅲ.放开小球让它来回摆动,用停表测出单摆做30~50次全振动所用的时间,计算出平均摆动一次的时间.Ⅳ.变更摆长,重做几次实验,根据单摆的周期公式,计算出每次实验测得的重力加速度并求出平均值.(1)上述实验步骤有两点错误,请一一列举:Ⅰ.________________________________________________________________________;Ⅱ.________________________________________________________________________;(2)按正确的实验步骤,将单摆全部浸入水中做实验,测得的重力加速度变______.已知测得的单摆周期为T,摆长为L,摆球质量为m,所受浮力为F,当地的重力加速度的真实值g =____________.21.在探究单摆的振动周期T和摆长L的关系实验中,某同学在细线的一端扎上一个匀质圆柱体制成一个单摆.(1)如图,该同学把单摆挂在力传感器的挂钩上,使小球偏离平衡位置一小段距离后释放,电脑中记录拉力随时间变化的图象如图所示.在图中读出N个峰值之间的时间间隔为t,则重物的周期为____________.(2)为测量摆长,该同学用米尺测得摆线长为85.72 cm,又用游标卡尺测量出圆柱体的直径(如图甲)与高度(如图乙),由此可知此次实验单摆的摆长为______cm.(3)该同学改变摆长,多次测量,完成操作后得到了下表中所列实验数据.请在坐标系中画出相应图线(4)根据所画的周期T与摆长L间的关系图线,你能得到关于单摆的周期与摆长关系的哪些信息.四、计算题22.如图所示是一个质点做简谐运动的图象,根据图象回答下面的问题:(1)振动质点离开平衡位置的最大距离;(2)写出此振动质点的运动表达式;(3)在0~0.6 s的时间内质点通过的路程;(4)在t=0.1 s、0.3 s、0.5 s、0.7 s时质点的振动方向;(5)振动质点在0.6 s~0.8 s这段时间内速度和加速度是怎样变化的?(6)振动质点在0.4 s~0.8 s这段时间内的动能变化是多少?答案解析1.【答案】D【解析】要使该振子的速度变为-v,可能经过同一位置,也可能经过关于平衡位置对称的另外一点;由于该点与平衡位置的间距未知,故无法判断所需要的最短时间,故选D.2.【答案】B【解析】简谐运动的回复力与位移关系为:F=-kx,方向相反,A、C、D错;a=,所以加速度与位移成正比,方向相反,B正确.3.【答案】C【解析】弹簧振子在振动过程中,两次连续经过同一位置时,位移、加速度、回复力、动能、势能、速度的大小均是相同的.但速度的方向不同,故速度不同.故选C.4.【答案】B【解析】物体在周期性驱动力作用下做受迫振动,受迫振动的频率等于驱动力的频率,与固有频率无关,可知操作者的实际频率等于机械的振动频率,故A错误,B正确;当驱动力频率等于物体的固有频率时,物体的振幅最大,产生共振现象,所以为了保证操作者的安全,振动机械的频率应尽量远离人的固有频率,故C错误;有关部门作出规定:拖拉机、风镐、风铲、铆钉机等各类振动机械的工作频率必须大于20 Hz,操作者的固有频率无法提高,故D错误.5.【答案】B【解析】弹簧振子做简谐运动,周期与振幅无关,设为T,则从左边最大位移处运动到右边最大位移处所用的时间为;第一次位移为2A,第二次位移为4A,即位移之比为1∶2,根据平均速度的定义式=,平均速度之比为1∶2.6.【答案】C【解析】振动质点的位移指的是质点离开平衡位置的位移.位移是矢量,有大小,也有方向.因此3 s末的位移为-2 m,4 s末位移为零.路程是指质点运动的路径的长度,在4 s内应该是从平衡位置到最大位置这段距离的4倍,即为8 m,C正确.7.【答案】A【解析】由于摆球的势能大小由其位移和摆球质量共同决定,P、N两时刻位移大小相同,关于平衡位置对称,所以势能相等,A正确;由于系统机械能在减少,P、N时刻势能相同,则P处动能大于N处动能,故B、C、D错.8.【答案】B【解析】设摆球的重心到线与球结点的距离为r,根据单摆周期的公式T=2π得T1=2π;T2=2π;联立解得g=,故选B.9.【答案】B【解析】在沙摆摆动、沙子逐渐下漏的过程中,沙摆的重心逐渐下降,即摆长逐渐变大,当沙子流到一定程度后,摆的重心又重新上移,即摆长变小,由周期公式可知,沙摆的周期先变大后变小,故选B.10.【答案】D【解析】振幅是振动物体离开平衡位置的最大距离,是标量,A错;周期和频率互为倒数,B错;做简谐运动的物体的频率和周期由振动系统本身决定,C错误,D正确.11.【答案】A【解析】摆球经过最低点时,拉力最大,在0.2 s时,拉力最大,所以此时摆球经过最低点,故①正确;摆球经过最低点时,拉力最大,在1.1 s时,拉力最小,所以此时摆球不是经过最低点,是在最高点,故②错误;根据牛顿第二定律知,在最低点F-mg=m,则F=mg+m,在最低点的拉力逐渐减小,知是阻尼振动,机械能减小,故③正确;在一个周期内摆球两次经过最低点,根据图象知周期:T=2×(0.8 s-0.2 s)=1.2 s,故④错误.12.【答案】D【解析】由图可知,在t=0时,质点经过平衡位置,所以速度最大,故A错误;当t=0.1 s时,质点的位移为正向最大,速度为零,由加速度公式a=-y,知加速度负向最大.故B错误;在0.2 s时,质点经过平衡位置,0.3 s时质点的位移为负向最大,质点沿y轴负方向做加速度增大的减速运动,故C错误;在0.5 s时,质点的位移为正向最大,速度为零,0.6 s时,质点经过平衡位置,速度负向最大,可知在0.5 s~0.6 s内质点沿y轴负方向做加速度减小的加速运动,故D正确.13.【答案】C【解析】对于AM段,位移x1=R,加速度a1==g,根据x1=a1t得,t1=2.对于BM段,位移x2=2R,加速度a2=g sin 60°=g,根据x2=a2t得,t2=. 对于CM段,位移x3=2R,加速度a3=g,由x3=gt得,t3=2.对于D小球,做类单摆运动,t4==.故C正确.14.【答案】A【解析】未剪断轻杆时,甲、乙两物体经过平衡位置时,弹簧的伸长量为x0=;当剪断轻杆时,甲物体经过平衡位置时,弹簧的伸长量为x=,可知,平衡位置向上移动.则在振动到达最高点时剪断轻杆,A1<A;在振动到达最低点时间剪断轻杆,A2>A;所以有:A2>A>A1.15.【答案】BD【解析】把小球举高到绳子的悬点O处,让小球自由下落,t1时刻绳子刚好绷紧,此时小球所受的重力大于绳子的拉力,小球向下做加速运动,当绳子的拉力大于重力时,小球才开始做减速运动,所以t1时刻小球速度不是最大,故A错误;t2时刻绳子的拉力最大,小球运动到最低点,绳子也最长,故B正确;t3时刻与t1时刻小球的速度大小相等,方向相反,小球动能不是最小,应是t2时刻小球动能最小,故C错误;t3与t4时刻都与t1时刻小球速度大小相同,故D正确.16.【答案】AD【解析】平衡位置是回复力等于零的位置,但物体所受合力不一定为零,A、D对.17.【答案】BCD【解析】测量摆长时,要让摆球自然下垂,不能用力拉紧摆线,否则使测量的摆长产生较大的误差,故A错误.单摆偏离平衡位置的角度不能太大,否则单摆的振动不是简谐运动,故B正确.要保证单摆自始至终在同一竖直面内摆动,不能形成圆锥摆,故C正确.由于摆球经过最低点时速度最大,从摆球通过最低位置时开始计时,测量周期引起的误差最小,故D 正确.18.【答案】BC【解析】因为它是一个很大的光滑圆弧,可以当作一个单摆运动.所以AB球发生正碰后各自做单摆运动.T=2π,由题目可知A球下落的时间为t=T,由此可见周期与质量、速度等因素无关,所以碰后AB两球的周期相同,所以AB两球向上运动的时间和向下运动的时间都是一样的.所以要经过2t的时间,AB两球同时到达O处相碰.19.【答案】ACE【解析】A做简谐运动时的回复力是由滑块B对物体A的摩擦力提供,故A正确;物体B作简谐运动的回复力是弹簧的弹力和A对B的静摩擦力的合力提供,故B错误;物体A与滑块B(看成一个振子)的回复力大小满足F=-kx,则回复力大小跟位移大小之比为k,故C正确;设弹簧的形变量为x,根据牛顿第二定律得到整体的加速度为:a=,对A:F f=ma =,可见,作用在A上的静摩擦力大小F f,即回复力大小与位移大小之比为:,故D错误;据题知,物体间达到最大摩擦力时,其振幅最大,设为A.以整体为研究对象有:kA=(M+m)a,以A为研究对象,由牛顿第二定律得:μmg=ma,联立解得:A=,故E正确.20.【答案】(1)Ⅱ.测量摆球直径,摆长应为摆线长加摆球半径Ⅲ.在细线偏离竖直方向小于5°位置释放小球,经过最点时进行计时(2)小+【解析】(1)上述实验步骤有两点错误Ⅱ.测量摆球直径,摆长应为摆线长加摆球半径;Ⅲ.在细线偏离竖直方向小于5°位置释放小球,经过最点时进行计时.(2)按正确的实验步骤,将单摆全部浸入水中做实验,等效的重力加速度g′=,所以测得的重力加速度变小.已知测得的单摆周期为T,摆长为L,摆球质量为m,所受浮力为F,由单摆的周期公式得出T=2πg=+.21.【答案】(1)(2)88.10 (3)如图所示(4)摆长越长,周期越大,周期与摆长呈非线性关系【解析】(1)摆球做简谐运动,每次经过最低点时速度最大,此时绳子拉力最大,则两次到达拉力最大的时间为半个周期,所以t=(N-1)T解得:T=(2)图乙游标卡尺的主尺读数为47 mm,游标读数为0.1×5 mm=0.5 mm,则最终读数为47.5 mm=4.75 cm.所以圆柱体的高度为h=4.75 cm,摆长是悬点到球心的距离,则摆长l=85.72 cm+=88.10 cm(3)根据描点法作出图象,如图所示:(4)由图象可知,摆长越长,周期越大,周期与摆长呈非线性关系.22.【答案】(1)5 cm (2)x=5sin(2.5πt) cm(3)15 cm (4)正方向负方向负方向正方向(5)速度越来越大加速度的方向指向平衡位置越来越小(6)零【解析】(1)由振动图象可以看出,质点振动的振幅为5 cm,此即质点离开平衡位置的最大距离.(2)由图象可知A=5 cm,T=0.8 s,φ=0.所以x=A sin(ωt+φ)=A sin(t)=5sin(t) cm=5sin(2.5πt) cm.(3)由振动图象可以看出,质点振动的周期为T=0.8 s,0.6 s=3×,振动质点是从平衡位置开始振动的,故在0~0.6 s的时间内质点通过的路程为s=3×A=3×5 cm=15 cm.(4)在t=0.1 s时,振动质点处在位移为正值的某一位置上,但若从t=0.1 s起取一段极短的时间间隔Δt(Δt→0)的话,从图象中可以看出振动质点的正方向的位移将会越来越大,由此可以判断得出质点在t=0.1 s时的振动方向是沿题中所设的正方向的.同理可以判断得出质点在t=0.3 s、0.5 s、0.7 s时的振动方向分别是沿题中所设的负方向、负方向和正方向.(5)由振动图象可以看出,在0.6 s~0.8 s这段时间内,振动质点从最大位移处向平衡位置运动,故其速度是越来越大的;而质点所受的回复力是指向平衡位置的,并且逐渐减小的,故其加速度的方向指向平衡位置且越来越小.(6)由图象可以看出,在0.4 s~0.8 s这段时间内质点从平衡位置经过半个周期的运动又回到了平衡位置,尽管初、末两个时刻的速度方向相反,但大小是相等的,故这段时间内质点的动能变化为零.。
高中物理《机械振动》典型题(精品含答案)
《机械振动》典型题1.摆长为L 的单摆做简谐运动,若从某时刻开始计时(取t =0),当振动至t =3π2Lg 时,摆球具有负向最大速度,则单摆的振动图象是图中的( )2.在飞机的发展史中有一个阶段,飞机上天后不久,飞机的机翼很快就抖动起来,而且越抖越厉害,后来人们经过了艰苦的探索,利用在飞机机翼前缘处装置一个配重杆的方法,解决了这一问题.在飞机机翼前装置配重杆的主要目的是( )A .加大飞机的惯性B .使机体更加平衡C .使机翼更加牢固D .改变机翼的固有频率3.做简谐运动的单摆摆长不变,若摆球质量增加为原来的4倍,摆球经过平衡位置时速度减小为原来的12,则单摆振动的( )A .频率、振幅都不变B .频率、振幅都改变C .频率不变、振幅改变D .频率改变、振幅不变4.一个单摆在地面上做受迫振动,其共振曲线(振幅A 与驱动力频率f 的关系)如图所示,则下列说法正确的是( )A .此单摆的固有周期约为0.5 sB .此单摆的摆长约为1 mC .若摆长增大,单摆的固有频率增大D .若摆长增大,共振曲线的峰将向右移动5.(多选)如图甲所示的弹簧振子(以O 点为平衡位置在B 、C 间振动),取水平向右的方向为振子离开平衡位置的位移的正方向,得到如图乙所示的振动曲线,由曲线所给的信息可知,下列说法正确的是( )A .t =0时,振子处在B 位置 B .振子运动的周期为4 sC .t =4 s 时振子对平衡位置的位移为10 cmD .t =2.5 s 时振子对平衡位置的位移为5 cmE .如果振子的质量为0.5 kg ,弹簧的劲度系数20 N/cm ,则振子的最大加速度大小为400 m/s 26.(多选)一个质点经过平衡位置O ,在A 、B 间做简谐运动,如图(a)所示,它的振动图象如图(b)所示,设向右为正方向,下列说法正确的是( )A .OB =5 cmB .第0.2 s 末质点的速度方向是A →OC .第0.4 s 末质点的加速度方向是A →OD .第0.7 s 末时质点位置在O 点与A 点之间E .在4 s 内完成5次全振动7.(1)在利用单摆测定重力加速度的实验中.若测得的g 值偏大,可能的原因是( )A .摆球质量过大B .单摆振动时振幅较小C .测量摆长时,只考虑了线长,忽略了小球的半径D .测量周期时,把n 个全振动误认为(n +1)个全振动,使周期偏小E .测量周期时,把n 个全振动误认为(n -1)个全振动,使周期偏大 (2)若单摆是一个秒摆,将此摆移到月球上⎝ ⎛⎭⎪⎫g 月=16g 地,其周期是________.(3)实验中停表的读数如图,为________ s.8.(多选)如图所示为同一地点的两单摆甲、乙的振动图象,下列说法中正确的是( )A.甲、乙两单摆的摆长相等B.甲摆的振幅比乙摆大C.甲摆的机械能比乙摆大D.在t=0.5 s时有正向最大加速度的是乙摆E.由图象可以求出当地的重力加速度9.如图甲所示是一个摆线长度可调的单摆振动的情景图,O是它的平衡位置,P、Q是小球所能到达的最高位置.小球的质量m=0.4 kg,图乙是摆线长为l时小球的振动图象,g取10 m/s2.(1)为测量单摆的摆动周期,测量时间应从摆球经过________(填“O”“P”或“Q”)时开始计时;测出悬点到小球球心的距离(摆长)L及单摆完成n次全振动所用的时间t,则重力加速度g=________(用L、n、t表示).(2)由图乙写出单摆做简谐运动的表达式,并判断小球在什么位置时加速度最大?最大加速度为多少?10.弹簧振子以O点为平衡位置,在B、C两点间做简谐运动,在t=0时刻,振子从O、B间的P点以速度v向B点运动;在t=0.20 s时刻,振子速度第一次变为-v;在t=0.50 s时刻,振子速度第二次变为-v.(1)求弹簧振子的振动周期T;(2)若B、C之间的距离为25 cm,求振子在4.00 s内通过的路程;(3)若B、C之间的距离为25 cm,从平衡位置开始计时,写出弹簧振子位移表达式,并画出弹簧振子的振动图象.《机械振动》典型题参考答案1.解析:选C.单摆周期为T=2πLg,当t=3π2Lg=3T4时摆球具有负向最大速度,知摆球经过平衡位置向负方向振动,选项C正确,A、B、D错误.2.解析:选 D.当驱动力的频率与物体的固有频率相等时,振幅较大,因此要减弱机翼的振动,必须改变机翼的固有频率,选D.3.解析:选C.由单摆周期公式T=2πlg知周期只与l、g有关,与m和v无关,周期不变,其频率不变;在没改变质量前,设单摆最低点与最高点高度差为h,最低点速度为v,则mgh=12m v2,质量改变后有4mgh′=12×4m·⎝⎛⎭⎪⎫v22,可知h′≠h,振幅改变,C正确.4.解析:选B.由共振曲线知此单摆的固有频率为0.5 Hz,固有周期为2 s;再由T=2πlg,得此单摆的摆长约为1 m;若摆长增大,则单摆的固有周期增大,固有频率减小,共振曲线的峰将向左移动,B正确,A、C、D错误.5.(多选)解析:选ABE.由图乙可知,振子做简谐振动的振幅为10 cm,其周期T=4 s,t=0和t=4 s时,振子在负的最大位置,即图甲中的B位置.由于振子做变速运动,故t=2.5 s时,振子的位移应大于5 cm,故选项A、B正确,C、D错误,由a=-kxm可知,振子的最大加速度为400 m/s2,选项E正确.6.(多选)解析:选ACE.由图(b)可知振幅为5 cm,则OB=OA=5 cm,A项正确;由图可知0~0.2 s内质点从B向O运动,第0.2 s末质点的速度方向是B→O,B 项错误;由图可知第0.4 s末质点运动到A点处,则此时质点的加速度方向是A→O,C项正确;由图可知第0.7 s末时质点位置在O与B之间,D项错误;由图(b)可知周期T=0.8 s,则在4 s内完成全振动的次数为4 s0.8 s=5,E项正确.7.解析:(1)由单摆周期公式T=2πlg可知,重力加速度g=4π2lT2,进而知重力加速度与摆球质量无关,故A错误;重力加速度与单摆振动的振幅无关,故B错误;测量摆长时,只考虑了线长,忽略了小球的半径,摆长l偏小,由g=4π2l T2可知,所测重力加速度偏小,故C错误;测量周期时,把n个全振动误认为(n+1)个全振动,使周期偏小,由g=4π2lT2可知,所测重力加速度偏大,故D正确;测量周期时,把n个全振动误认为(n-1)个全振动,使周期偏大,由g=4π2lT2可知,所测重力加速度偏小,故E错误.(2)在地球上秒摆的周期T=2 s,将秒摆移到月球上,其周期T=2πLg月=6T=2 6 s.(3)由图示停表可知,分针示数为1 min=60 s,秒针示数为10.8 s,则停表示数为60 s+10.8 s=70.8 s.答案:(1)D (2)2 6 s (3)70.8[综合应用题组]8.(多选)解析:选ABD.由图看出,两单摆的周期相同,同一地点g相同,由单摆的周期公式T=2πlg得知,甲、乙两单摆的摆长l相等,故A正确;甲摆的振幅为10 cm,乙摆的振幅为7 cm,则甲摆的振幅比乙摆大,故B正确;尽管甲摆的振幅比乙摆大,两摆的摆长也相等,但由于两摆的质量未知,无法比较机械能的大小,故C错误;在t=0.5 s时,甲摆经过平衡位置,振动的加速度为零,而乙摆的位移为负向最大,则乙摆具有正向最大加速度,故D正确;由单摆的周期公式T=2πlg得g=4π2lT,由于单摆的摆长未知,所以不能求得当地的重力加速度,故E错误.9.解析:(1)因摆球经过最低点的速度大,容易观察和计时,所以测量时间应从摆球经过最低点O开始计时.单摆周期T=tn,再根据单摆周期公式T=2πL g,可解得g =4π2n 2Lt 2.(2)由图乙可知单摆的振幅A =5 cm ,ω=2πT =2π2 rad/s =π rad/s ,所以单摆做简谐运动的表达式为x =5sin πt (cm).小球在最大位移处的加速度最大,由图乙可看出此摆的周期是2 s ,根据T =2πL g ,可求得摆长为L =1 m ,加速度最大值a m =F m m =mgA Lm =10×5×10-21m/s 2=0.5 m/s 2.答案:(1)O 4π2n 2Lt 2 (2)x =5sin πt (cm) 小球在最大位移处的加速度最大 0.5 m/s 210.解析:(1)画出弹簧振子简谐运动示意图如图所示. 由对称性可得T =⎝ ⎛⎭⎪⎫0.22+0.5-0.22×4 s =1 s (2)若B 、C 之间距离为25 cm , 则振幅A =12×25 cm =12.5 cm振子4.00 s 内通过的路程s =4×4×12.5 cm =200 cm(3)根据x =A sin ωt ,A =12.5 cm ,ω=2πT =2π rad/s 得x =12.5sin 2πt (cm) 振动图象如图所示.答案:(1)1 s (2)200 cm (3)x =12.5sin 2πt (cm) 图象见解析图。
2023高中物理机械振动复习 题集附答案
2023高中物理机械振动复习题集附答案2023高中物理机械振动复习题集附答案1. 单选题1. 在弹簧振子的简谐振动中,下列哪个量不变?A. 动能B. 势能C. 总机械能D. 振动频率答案:D2. 下列哪个不属于弹簧振子的简谐运动特征?A. 周期相等B. 频率相等C. 能量守恒D. 加速度为常数答案:D3. 振动的周期与频率的关系是:A. 周期和频率成反比B. 周期和频率成正比C. 周期和频率无关D. 周期是频率的平方答案:A4. 下列哪个条件不是机械振动的必要条件?A. 有弹性形变B. 有恢复力C. 有质量D. 有外力作用答案:D5. 一个物体做简谐振动,其振动方程为x = 5sin(2πt + π/3),振幅为:A. 5B. 3C. 2D. 1答案:A2. 多选题1. 下列哪些是质点的简谐运动特点?A. 周期相等B. 频率相等C. 振幅相等D. 加速度恒定答案:A、B、C2. 下列哪些物体可以进行机械振动?A. 弹簧B. 摆子C. 电子D. 钢琴弦答案:A、B、D3. 一个弹簧振子的周期为2s,频率为5Hz,则它的角频率为:A. π/10 rad/sB. π/5 rad/sC. π/2 rad/sD. 2π rad/s答案:D4. 对于一个质点做直线简谐运动,振幅为3m,频率为2Hz,则振动的角频率是:A. π rad/sB. 2π rad/sC. 3π rad/sD. 6π rad/s答案:B3. 解答题1. 描述简谐振动的物理量有哪些?答:简谐振动的物理量包括振幅、周期、频率、角频率、相位等。
2. 简述谐振条件及其对应的公式。
答:谐振条件是指在机械振动中,外力频率等于振动体的固有频率时,会出现共振现象。
其对应的公式为f = 1/(2π√(l/g))。
3. 什么是阻尼振动?它与简谐振动有什么区别?答:阻尼振动是指在振动过程中,受到阻力的影响,振动幅度逐渐减小的振动。
与简谐振动不同的是,阻尼振动会消耗能量,振动的幅度逐渐衰减。
机械振动试题(含答案)
机械振动试题(含答案)一、机械振动 选择题1.做简谐运动的水平弹簧振子,振子质量为m ,最大速度为v ,周期为T ,则下列说法正确的是( ) A .从某时刻算起,在2T的时间内,回复力做的功一定为零 B .从某一时刻算起,在2T的时间内,速度变化量一定为零 C .若Δt =T ,则在t 时刻和(t +Δt )时刻,振子运动的速度一定相等 D .若Δt =2T,则在t 时刻和(t +Δt )时刻,弹簧的形变量一定相等 2.如图所示,在一条张紧的绳子上悬挂A 、B 、C 三个单摆,摆长分别为L 1、L 2、L 3,且L 1<L 2<L 3,现将A 拉起一较小角度后释放,已知当地重力加速度为g ,对释放A 之后较短时间内的运动,以下说法正确的是( )A .C 的振幅比B 的大 B .B 和C 的振幅相等 C .B 的周期为2π2L g D .C 的周期为2π1L g3.如图所示的单摆,摆球a 向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b 发生碰撞,并粘在一起,且摆动平面不便.已知碰撞前a 球摆动的最高点与最低点的高度差为h ,摆动的周期为T ,a 球质量是b 球质量的5倍,碰撞前a 球在最低点的速度是b 球速度的一半.则碰撞后A 56T B 65TC .摆球最高点与最低点的高度差为0.3hD .摆球最高点与最低点的高度差为0.25h4.在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律.法国物理学家库仑在研究异种电荷的吸引力问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系.已知单摆摆长为l ,引力常量为G ,地球质量为M ,摆球到地心的距离为r ,则单摆振动周期T 与距离r 的关系式为( ) A .T =2πrGMlB .T =2πrl GM C .T =2πGMr lD .T =2πlr GM5.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。
机械振动(三)答案
机械振动(三)答案1. 如图所示为一做简谐运动的物体所受的回复力F随时间t的变化规律,下列说法正确的是()A.该简谐运动的周期为4sB.1s∼2s的过程中,物体做减速运动C.物体在3s末与5s末的运动方向相反D.5s与7s时物体的位移相同E.0−2s的时间内,回复力的功率先增大再减小【解析】明确振动图象的性质,根据图象即可确定周期以及振子的振动方向;振子做简谐运动,靠近平衡位置过程是加速运动,远离平衡位置过程是减速运动,回复力F=−kx,根据功率公式可确定回复力的功率。
【解答】A、由图象可知该简谐运动的周期为8s,故A错误;B、在t从0到2s时间内,做简谐运动的物体所受的回复力增大,说明位移增大,物体做减速运动,故B正确;C、从图中可得:在t1=3s和t2=5s时,物体所受的回复力大小相等,物体的速度大小相等,方向相同,故C错误;D、从图中可知t2=5s和t3=7s时,回复力大小相等,方向相同,则有物体的位移大小相等,方向相同,故D正确;E、从图中可得:t=0时物体所受回复力为零,则回复力做功的功率为零,t=2s时物体所受的回复力最大,但此时物体的速度为零,则回复力做功的功率为零,因此0∼2s的时间内,回复力做功的功率先增大后减小,故E正确。
2. 如图所示,图甲为一列横波在t=0.5s时的波动图象,图乙为质点P的振动图象,下列说法正确的是()A.波沿x轴正方向传播B.波沿x轴负方向传播C.波速为6 m/sD.波速为4m/s【解析】由振动图象乙上t=0.5s读出P点的速度方向,在波动图象上判断传播方向.由波动图象甲读出波长,由振动图象乙读出周期,可求出波速.【解答】AB、由振动图象乙上t=0.5s时刻,读出P点的速度方向沿y轴负方向,则根据波形的平移法可知,波沿x轴正方向传播。
故A正确,B 错误。
CD、由图该波的波长λ=4m,周期T=1s,则波速v=λT=41=m/s。
故C错误,D正确。
3. 如图为某质点做简谐运动的图象,则由图线可知()A.t=2.5s时,质点的速度与加速度同向B.t=1.5s时,质点的速度与t=0.5s时速度等大反向C.t=3.5s时,质点正处在动能向势能转化的过程之中D.t=0.1s和t=2.1s时质点受到相同的回复力【解析】根据x−t图象的切线斜率分析质点的速度方向,由简谐运动的特征a=−kxm分析加速度的方向。
机械振动试题(含答案)
机械振动试题(含答案)一、机械振动选择题1.悬挂在竖直方向上的弹簧振子,周期T=2s,从最低点位置向上运动时刻开始计时,在一个周期内的振动图象如图所示,关于这个图象,下列哪些说法是正确的是()A.t=1.25s时,振子的加速度为正,速度也为正B.t=1.7s时,振子的加速度为负,速度也为负C.t=1.0s时,振子的速度为零,加速度为负的最大值D.t=1.5s时,振子的速度为零,加速度为负的最大值2.如图所示的单摆,摆球a向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b发生碰撞,并粘在一起,且摆动平面不便.已知碰撞前a球摆动的最高点与最低点的高度差为h,摆动的周期为T,a球质量是b球质量的5倍,碰撞前a球在最低点的速度是b球速度的一半.则碰撞后A 5 6 TB 6 5 TC.摆球最高点与最低点的高度差为0.3hD.摆球最高点与最低点的高度差为0.25h3.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。
物体带动纸带一起向左运动时,让单摆小幅度前后摆动,于是在纸带上留下如图所示的径迹。
图乙为某次实验中获得的纸带的俯视图,径迹与中央虚线的交点分别为A、B、C、D,用刻度尺测出A、B间的距离为x1;C、D间的距离为x2。
已知单摆的摆长为L,重力加速度为g,则此次实验中测得的物体的加速度为()A .212()x x gL π-B .212()2x x gL π-C .212()4x x gLπ-D .212()8x x gLπ-4.如图所示是扬声器纸盆中心做简谐运动的振动图象,下列判断正确的是A .t =2×10-3s 时刻纸盆中心的速度最大B .t =3×10-3s 时刻纸盆中心的加速度最大C .在0〜l×10-3s 之间纸盆中心的速度方向与加速度方向相同D .纸盆中心做简谐运动的方程为x =1.5×10-4cos50πt (m )5.如图1所示,轻弹簧上端固定,下端悬吊一个钢球,把钢球从平衡位置向下拉下一段距离A ,由静止释放。
大学物理机械振动习题含答案
t (s )v (m.s -1)12m v m vo1.3题图题图 第三章 机械振动一、选择题1.质点作简谐振动,距平衡位置2。
0cm 时,加速度a=4.0cm 2/s ,则该质点从一端运动到另一端的时间为(一端运动到另一端的时间为( C )A:1.2s B: 2.4s C:2.2s D:4.4s 解:解:s T t T xax a 2.2422,2222,22===\=====p pw pw w2.一个弹簧振子振幅为2210m -´,当0t =时振子在21.010m x -=´处,且向正方向运动,则振子的振动方程是:[ A ] A :2210cos()m3x t p w -=´-;B :2210cos()m 6x t pw -=´-;C :2210cos()m 3xt pw -=´+ ;D :2210cos()m 6x t pw -=´+;解:由旋转矢量可以得出振动的出现初相为:3p-3.用余弦函数描述一简谐振动,若其速度与时间(v —t )关系曲线如图示,则振动的初相位为:[ A ] A :6p ;B :3p ;C :2p ;D :23p ;E :56p解:振动速度为:max 0sin()v v t w j =-+0t =时,01sin2j =,所以06p j =或056p j = 由知1.3图,0t =时,速度的大小是在增加,由旋转矢量图知,旋转矢量在第一象限内,对应质点的运动是由正最大位移向平衡位置运动,速度是逐渐增加的,旋转矢量在第二象限内,对应质点的运动是由平衡位置向负最大位移运动,速度是逐渐减小的,所以只有06pj =是符合条件的。
符合条件的。
4.某人欲测钟摆摆长,将钟摆摆锤上移1毫米,测得此钟每分快0。
1秒,则此钟摆的摆长为(长为( B )A:15cm B:30cm C:45cm D:60cm 解:单摆周期解:单摆周期 ,2glT p=两侧分别对T ,和l 求导,有:求导,有:cm m m T dT dl l l dl T dT 3060)1.0(2121,21=-´-==\= 1.2题图题图xyoxy二、填空题1.有一放置在水平面上的弹簧振子。
机械振动试题(含答案)(1)
18.铺设铁轨时,每两根钢轨接缝处都必须留有一定的间隙,匀速运行列车经过轨端接缝处时,车轮就会受到一次冲击.由于每一根钢轨长度相等,所以这个冲击力是周期性的,列车受到周期性的冲击做受迫振动.普通钢轨长为12.6m,列车固有振动周期为0.315s.下列说法正确的是( )
(3)他以摆长(L)为横坐标、周期的二次方(T2)为纵坐标作出了T2-L图线,由图象测得的图线的斜率为k,则测得的重力加速度g=_________.(用题目中给定的字母表示)
(4)小俊根据实验数据作出的图象如图所示,造成图象不过坐标原点的原因可能是_________.
24.将一单摆装置竖直悬挂于某一深度为h(未知)且开口向下的小筒中(单摆的下部分露于筒外),如图(甲)所示,将悬线拉离平衡位置一个小角度后由静止释放,设单摆振动过程中悬线不会碰到筒壁,如果本实验的长度测量工具只能测量出筒的下端口到摆球球心间的距离 ,,并通过改变 而测出对应的摆动周期T,再以T2为纵轴、 为横轴做出函数关系图象,就可以通过此图象得出小筒的深度h和当地重力加速度g.
机械振动试题(含答案)(1)
一、机械振动选择题
1.如图所示,物块M与m叠放在一起,以O为平衡位置,在 之间做简谐振动,两者始终保持相对静止,取向右为正方向,其振动的位移x随时间t的变化图像如图,则下列说法正确的是( )
A.在 时间内,物块m的速度和所受摩擦力都沿负方向,且都在增大
B.从 时刻开始计时,接下来 内,两物块通过的路程为A
A.t0时刻弹簧弹性势能最大B.2t0站时刻弹簧弹性势能最大
C. 时刻弹簧弹力的功率为0D. 时刻物体处于超重状态
13.如图所示为某物体系统做受迫振动的振幅A随驱动力频率f的变化关系图,则下列说法正确的是
大学物理机械振动习题附答案要点
一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。
第一个质点的振动方程为x 1 = A cos(ωt + α)。
当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。
则第二个质点的振动方程为:(A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。
若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。
其运动速度与时间的曲线如图所示。
若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 v 与a5.3552期分别为T 1和T 2。
将它们拿到月球上去,相应的周期分别为1T '和2T '。
则有(A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >'[ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。
从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为(A) s 81 (B) s 61 (C) s 41 (D) s 31 (E)[ ]v v 217.5179:一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A . 1/2 sB . 1/4 sC . 1/6 sD . 1/8 s []5.质点作简谐振动,运动速度与时间 的曲线如图所示,若质点的运动规律用余第三次 机械振动练习班 级 _________________________ 姓 名 _________________________ 班内序号 ______________________ 一.选择题1. 一质点做简谐振动,如振动方程为:t=T/2时,质点的速度为:A . - A sinC . - A cos 2.图示为一单摆装置,把小球从平衡位置 b ,拉开一小角度J 。
至a 点, 在t = 0时刻松手让其摆动,摆动规律用余弦函数表示,则在a 》c 的摆动中,F 列哪个说法是正确的?A . a 处动能最小,相位为山;B . b 处动能最大,相位为-/2 ;C . c 处动能为零,相位为-入;D . a.b.c 三处能量相同,相位依次减少。
3.如简谐振动在t = 0时,X • 0, V ”: 0,则表示该简谐振动的旋转矢量图 应该是:4 .质点沿X 轴作简谐振动,振动方程为x = 4 10~2 cos(Z : t 3 )(SI),从t = 0 时刻起,到质点位置为x = -2cm 处、且向X 轴正方向运动的最短时间间隔为:C A>tox = Acos (,i ),周期为T ,贝U 当[ ]B . A 、sin D . A cos二•填空题1.____________________________________ 简谐振动的三个基本特征量为_____________________________________________ 、____________ 和_____________ ;它们分别取决于 ________________ 、________________ 和________________ 。
2._____________________________________________________ 两个同频率、同方向简谐振动的合振动为 _______________________________________ ,合振动的振幅取决于 ________________________________________ ,两个相互垂直的同频率的简谐振动,其合振动的运动轨迹一般为 __________________________ ,若两分振动的频率为简单整数比,则合成运动的轨迹为 __________________________ 。
3.—弹簧振子作简谐振动,振幅为A,周期为T,其运动方程用余弦函数表示,若t = 0时;(1)____________________________________________ 振子在正的最大位移处,则初相位为 ________________________________________ ;(2)__________________________________________________ 振子在平衡位置向负方向运动,则初相位为 ____________________________________ ;(3)___________________________________________________________ 振子在位移为0.5A处,且向正方向运动,贝U初相位为_________________________ 。
4.物块悬挂在弹簧下方作简谐振动,如物块在受力平衡位置时,弹簧的长度比原来长织,则系统的周期T=_____________ 当这物块的位移等于振幅的一半时,其动能是总能量的 ___________ (以物块的受力平衡位置为各种势能的零势能点)。
5.一质量为m的物体,上端与两根倔强系数分别为匕和k2的轻弹簧相连,如下图所示,则当物体被拉离平衡位置而释放时,物体将作简谐振动,其圆频率时= _________________ 、周期T =_________________ 。
6.设作简谐振动物体的x~t曲线如图所示,则其初相位__________ ;位移的绝对值达最大值的时刻为:t = __________________ ;速度为最大值的时刻为:t = ______________ ;弹性势能为最大值的时刻为:t= __________________ : 动能为最大值的时刻为:t = __________________ 。
第5题图第6题图7.两个相同的弹簧各悬挂一物体a 和b,其质量之比为:m a:m b=1:2 。
如果它们在竖直方向作简谐振动,其振幅之比为:A a: A^1:2,则两周期之比T a: T b = _____ ,振动能量之比E a : E b = _______ 。
8._______________________________________________________________ 一谐振子的加速度最大值a m= 48cm ,振幅A = 3cm。
若取速度具有正的最大值的时刻为t = 0,则该振动的振动方程x = _________________________________ 。
9.有两个同方向、同频率的简谐振动,合振动的振幅为A=0.2m,相位与第一振动的相位差」-:1。
如第一振动的振幅为A13 (m),则第二振动的1 6 110振幅A2 = ________ 第一、二振动的相位差®- ® 2 = ____________ 。
三.计算题1.质量为0.25 kg的物体,在弹簧的弹性恢复力下沿X轴作简谐振动,弹簧的恢复系数为16 N m1。
(1)求振动的周期和圆频率;(2)如振幅为20 cm,t = 0时位移x0 =10cm,且物体沿X轴负方向运动,求初速度V。
及初相位「° ;(3)写出该振动的振动方程;(4)求t /2秒时弹簧对物体的作用力。
2.如下图所示,一根恢复系数k = 2.88 2N/m的轻质弹簧的一端连接一质量m=2・..2 10_2kg的滑块,放在光滑水平桌面上;弹簧的另一端固定。
今把弹簧压缩2 2 cm后放手、任其自由振动,以放手时刻为计时起点。
求:(1)滑块的振动方程;(2)t /48秒时,滑块的位移、速度、加速度和受到的作用力;第5题图 第6题图(3) 从起始位置运动到弹簧伸长为 ..2 cm 处所需的最短时间;此时振动系统的动能、势能和总能量。
3. 在一平板上放一质量为 2 kg 的物体,平板在竖直方向作简谐振动, 如振动的周期为T =0.5秒,振幅为 A = 5cm 。
求:(1)物体对平板的最大压力;(2)平板以多大的振幅振动时,物体开始离开平板?3. (1) 0 ; (2) — ; (3) 5. k k 2 m 6. 「0.5 二, (k 1 k 2)(2n 1)s ,1 : 4 。
4. 2兀“ \ g1 1m (————)o k 1 k 28. 4n s , (2n 1) s , 2ns0.03cos4t-05 m 。
9(n = 0,1,2,) 0.1 m , - 0.5二。
三、计算题:1. (1)二 8 rad s _1, ‘ 0.785 s ; 4 As in 0 — 8 0.20si 门十-083 -1.386 (m s^);3 兀 V ,如x = 0.20cos(8t 3) (m) 3F = -kx= -16 0.20cos 寸二-1.6 (N),沿 X 轴负方向。
32. (1)可以解得: 」-, A = 2. 2 10_2m ,■二.^^12 rad s _1振动方程为:* = 22 10_2cos12t •二 m 。
⑵ x^2-2(-10 J-0.02 (m)4. 某质点同时参与两个同振动方向、同频率的简谐振动,振动规律为( SI ):X [ =0.4cos ( 3t 石)X 2 =0.3cos ( 3t -彳)求:(1)合振动的表达式;⑵ 若另有一个同振动方向、同频率的简谐振动x 3 = 0.5cos (3t •「3),当申3为多少时,x 1 > x 2和x 3三个振动的合振动振幅最大? 当「3为多少时,上述合振动的振幅最小?第三次机械振动答案、选择题:1. B 2. B 3. C 4. A 5. D、填空题:1. 振幅、角频率、初相位;振动的能量、振动系统本身固有的特性、 初始时刻的选择。
2. 简谐振动,分振动各自的振幅及分振动的相位差,椭圆,稳定的曲线 (李萨如图形)。
v 1 =12 2 2 10, sin : = 0.24 (m s 」),a = 2.88 (m s'), 卩厂2.2 10*2.888.146 10^(N),方向水平向右;⑶七2 二話 0.1745 (s);总能量 E= ]kA 2 =11.52 2 10,162917 10“ ,2势能 E p 二 *kx 2 =号=4.0729 10,J , 动能 E k 二 E - E p =12.2188 10^J 。
3.以竖直向下为X 轴正向,以平板处于正最大位移时为t = 0 ,则振动方程为x=Acos4二t(1) 对物体:mg • N = ma ,物体对板的压力:2N ' = -N 二 mg - ma = 19.6 16 cos4二 tN 'max = 19.6 1.6二 2 : 35.39 (N)(2) N =0时脱离,co4 t = -1时压力最小,此时mg - 16二2mA = 0,04—0314 . . (1) =arctgarctg arctg0.142857 8 7'48'^ 0.1419 (rad)( 或:arctg , 或:即=arctg 竿- 4 43 4A = 0.5 m , x=0.5cos(3t arctg 1 ) m ;(2)当X 3与x 同相时,合振幅最大,即::3二 二arc tg 扌; 当x 3与x 反相时,合振幅最小,即:'3二一…二arc tg * -A 二 g 26.206 cm16-71。