表面活性剂的基本理论知识

合集下载

药剂学第四章表面活性剂

药剂学第四章表面活性剂

产生固-气/固-液界面吸附
液体表面依靠吸附于体系的溶质以降低自由能活 表面张力
产生液-气/液-液界面吸附
2021/1/12
10
液-液(气)吸附:
溶质分子在界面聚集或反聚集,导致溶液表面张 力的变化。
➢ 溶质浓度的增加导致表面张力的缓慢增加,如无 机电解质与水分子具有良好的亲和力。
➢ 20溶21/1质/12 浓度的增加导致表面张力的缓慢降低,如11低
脂肪 单月 单棕 单硬 三硬 单油 三油 酸 桂酸 榈酸 脂酸 脂酸 酸 酸
性质: Spans20-40有一定水溶性,用作 O/W型乳化剂,随着脂肪酸链长的增加和脂 肪酸基团数量的增多,疏水性变大,
2021S/1/p12ans60以上用作W/O乳剂的乳化剂。酸、36
2.多元醇型
(2) 聚山梨酯:吐温[Tweens] 即聚氧乙烯失水山梨醇脂肪酸酯
一、基本概念
界面表面分子收到的作用力和
内部分子受到的作用力和不同。
表面张力:微观上表面分子受到垂直指向液体 内部的合力,宏观上液体表面上任何部分单位 长度直线上的收缩力。
表面张力方向:表面张力的方向与液面相切, 并与液面的任何两部分分界线垂直。单位N/m。
2021/1/12
6
一、基本概念 表面自由能:在表面张力作用下,液面发生收缩,
产品有:泊洛沙姆(poloxamer),商品名普朗尼 克 (Pluronic),。
202性1/1/1质2 :为淡黄色液体或固体;分子量
34
2.多元醇型
该类表面活性剂为疏水性脂肪酸与亲水性多元 醇如甘油、季戊四醇、失水山梨醇作用生成的 酯。
1
失水
2021/1/12
4 5
山梨醇

(完整word版)表面活性剂

(完整word版)表面活性剂

第三章表面活性剂表面活性剂在药物制剂的制备中被广泛应用,其结构特征是具有亲水性与亲脂性两种基团,其作用是能显著降低分散系的表面(界面)张力,因此可用作乳化剂、助悬剂、增溶剂、促吸收剂、润湿剂、起泡剂与消泡剂、去污剂等,是药用乳剂、悬浊剂、脂质体等的重要辅料.本章重点讨论表面活性剂的基本性质(如CMC值、HLB值、Krafft点与昙点等)与测定方法等。

第一节表面活性剂分类一、表面活性剂(surfactant):具有很强表面活性,加入少量就能使液体表面张力显著下降的物质。

1.①纯液体在一定温度有一定的表面张力,是液体的物理常数.②当在水中加入无机盐或糖类物质时,则水的表面张力略有升高;③当在水中加入低级脂肪醇、脂肪酸时,则水的表面张力下降,称此类物质为水的表面活性物质。

④当在水中加入油酸钠、十二烷基硫酸钠(高级脂肪酸)时,则水的表面张力能够显著的降低,称此类物质为该溶剂的表面活性剂(surfactant)。

2.表面活性剂分子的结构特征:是由具有极性的亲水基和非极性的亲油基组成,而且两部分分处两端。

因此,表面活性剂具有既亲水又亲油的两亲性质,但具有两亲性的分子不一定都是表面活性剂。

3.表面活性剂的吸附性:表面活性剂由于其特殊结构可以在两相界面发生定向排列,来改变两相界面性质。

从而起到润湿、乳化、增溶、絮凝、反絮凝、起泡、消泡的作用。

(1)在溶液中的正吸附:表面活性剂在溶液表面层聚集的现象为正吸附,正吸附改变了溶液表面的性质。

最外层疏水,表现低表面张力,产生较好的润湿性、乳化性、增溶性、起泡性.(2)在固体表面的吸附:表面活性剂溶液与固体接触时,表面活性剂分子可能在固体表面发生吸附,使固体表面性质发生改变,易于润湿.二、表面活性剂的类型1。

表面活性剂分类方法有多种,根据来源可分为天然表面活性剂与合成表面活性剂;2。

根据溶解性质可分为水溶性表面活性剂与油溶性表面活性剂;3。

根据极性基团的解离性质分为离子型表面活性剂与非离子型表面活性剂两大类;再根据离子型表面活性剂所带电荷,又分为阳离子、阴离子、两性离子表面活性剂。

表面活化剂结合剂

表面活化剂结合剂

表面活化剂结合剂
表面活性剂结合剂通常指的是一类具有特殊分子结构的化合物,它们能在溶液中形成胶束并降低界面张力。

表面活性剂结合剂的相关信息具体如下:
1.基本概念:表面活性剂是能够改变液体表面张力或两种液体之间界面
张力的物质。

它们的分子结构通常包含亲水基团和疏水基团,这使得它们能在溶液的表面定向排列,从而产生各种作用。

2.分类:根据化学结构的不同,表面活性剂可分为离子型(包括阳离子
型、阴离子型)、非离子型、两性型、复配型等几大类。

3.作用机理:表面活性剂在溶液中的浓度达到临界胶束浓度(CMC)
时,其分子会自发缔合成为胶束,这些胶束可以包裹油脂或其他不溶于水的substances,从而形成稳定的乳化液。

4.应用功能:表面活性剂在工业和日常生活中有着广泛的应用,如洗
涤、乳化、分散、润湿、起泡、增溶等。

5.选择标准:在选择表面活性剂作为结合剂时,需要考虑其与所需结合
物质的相容性、CMC值、以及在特定应用中的性能表现。

总的来说,表面活性剂结合剂在许多领域都发挥着重要作用,从家庭用品到工业应用,其独特的性质使其成为不可或缺的成分之一。

表面活性剂的基本性质及作用

表面活性剂的基本性质及作用

新型绿色表面活性剂的研究与开发
1
新型绿色表面活性剂是指具有环保、低毒、生物 可降解等优点的表面活性剂,如糖基表面活性剂、 磷脂表面活性剂等。
2
新型绿色表面活性剂的合成方法主要包括化学合 成和生物合成两种,其中生物合成方法具有环境 友好、生产成本低等优点。
3
新型绿色表面活性剂在应用过程中需注意其性能 与其他传统表面活性剂的差异,以及大规模生产 和应用的可行性问题。
选择合适的润湿剂需要考虑其润湿性能和稳定性,同时还需要考虑其与其他化学品的兼 容性。
起泡和消泡作用
起泡作用
表面活性剂能够降低液体的表面张力,使气体更容易在液体中形成气泡。在泡 沫灭火器、泡沫混凝土、泡沫清洗等领域中,起泡作用是表面活性剂的重要应 用之一。
消泡作用
在一些工业过程中,如纸浆制造、石油开采等,会产生大量的泡沫,影响生产 效率和产品质量。表面活性剂可以作为消泡剂,有效抑制泡沫的产生和稳定, 提高生产效率和产品质量。
详细描述
农药和医药中间体中的表面活性剂能够增加药物的溶解度,使其更好地分散在水中或穿透细胞膜,从而提高药物 的生物利用度和治疗效果。此外,表面活性剂还可以作为药物的载体,帮助药物在体内更好地分布和吸收。
05

磺化法是一种常用的表面活性剂合成方法, 通过将芳香族化合物与硫酸反应,引入磺酸 基团,从而制备出阴离子型表面活性剂。
总结词
化妆品中添加表面活性剂是为了提高产品的稳定性、润湿性和乳化效果。
详细描述
在化妆品中,表面活性剂可以作为乳化剂、润湿剂和分散剂,有助于将油性成分和水性成分混合在一 起,形成稳定且易于涂抹的质地。同时,表面活性剂还能帮助增加皮肤的水合作用,使皮肤更加柔软 光滑。
农药和医药中间体

表面活性剂知识

表面活性剂知识

表面活性剂基础知识:表面活性剂的分类(1)按表面活性剂在水溶液中能否解离及解离后所带电荷类型分为非离子型表面活性剂、阴离子型表面活性剂、阳离子型表面活性剂和两性离子型表面活性剂;阴离子型:羧酸盐RCOO-硫酸酯盐R-OSO3-磺酸盐R-SO3-磷酸酯盐R-OPO32-非离子型多元醇型主要是失水山梨醇的脂肪酸酯及其聚氧乙烯加成物Span Tween脂肪醇聚氧乙烯醚R-O-(CH2CH2O)nH AEO 、JFC、平平加烷基酚聚氧乙烯醚R-(C6H4)-O(C2H4O)nH OP、NP聚氧乙烯烷基酰胺R-CONH(C2H4O)nH烷醇酰胺环氧乙烷加成数单位mol 加成数+1 分子量增加42(2)按表面活性剂在水和油中的溶解性可分为水溶性和油溶性表面活性剂;(3)按分子量分类,可将分子量大于10000者称为高分子表面活性剂,分子量在1000~10000者称为中分子量表面活性剂及分子量在100~l000者称为低分子量表面活性剂。

几个特征:一、HLB值:亲水亲油平衡值(Hydrophile-lipophile balance),即HLB值,表面活性剂亲水或亲油能力大小的值HLB值越大,其亲水性越强,HLB值越小,其亲油性越强。

HLB 0~40,其中非离子表面活性剂HLB 0~20,即石蜡无亲水基为0,聚乙二醇无亲油基为二,随温度变化的特征值:离子型表面活性剂的克拉夫点:krafft点该类表面活性剂在水中的溶解度在低温时只随温度的升高缓慢的增加,温度升至某一值后,溶解度迅速增大,该点温度即克拉夫点。

当表面活性剂溶质在溶剂中的浓度达到一定值时,会产生聚集而生成胶束,该浓度称为表面活性剂的临界胶束浓度(CMC)。

克拉夫点相对应的溶解度即为该离子表面活性剂的临界胶束浓度(CMC)krafft点是离子表面活性剂的特征值,krafft点越高,则CMC越小。

krafft点亦是离子表面活性剂应用温度的下限,即只有高于krafft点,表面活性剂才能更大地发挥作用。

表面活性剂增溶理论与技术

表面活性剂增溶理论与技术

④聚山梨酯(polysorbate):吐温[Tweens]: 即聚氧乙烯脱水山梨醇 脂肪酸酯
¨ 脱水山梨醇脂肪酸酯+环氧乙烷→Tweens(亲水性化合物), 有一次和二 次脱水,故为混合物。
¨ 脂肪酸品种和数量不同分为:
Tween -20
-40
-60
65 -80 -85
脂肪酸 单月桂 单棕榈 单硬脂 三硬脂 单油 三油
¨ 通式:R·COO·CH2(CH2O CH2)nCH2·OH ¨ 因n不同,产品常用的有:
Myri-45 -49 -51 -52
-53
¨ 应用:具有较强水溶性,乳化能力强,作增溶 剂和油/水型乳化剂。
¨ 常用的有polyoxyl 40 stearate(聚氧乙烯40硬脂酸酯)。
表面活性剂增溶理论与技术
表面活性剂增溶理论与技术
CMC的测定方法
• 1、表面张力法:适合于离子表面活性剂和非离子型 表 面活性剂;无机离子的存在不影响表面张力;
• 少量类似物的存在降低纯表面活性剂的表面张力。 • 2、电导法:适合于离子表面活性剂;无机离子存在
影响表面张力测定; • 3、染料法:表面活性剂溶液增溶染料前后吸收光谱
表面活性剂增溶理论与技术
表面活性剂增溶理论与技术
第二节 表面活性剂的基本特性
一、胶束(micelles)
¨ 溶液的表面正吸附达到饱和后,当溶液内表面活性 剂分子数目不断增加时,分子转入溶液中,其疏水 部分相互吸引,缔合在一起。
¨ 表面活性剂分子自身依靠范德华力相互聚集,形成 亲油基向内,亲水基向外,在水相中温度分散,大 小在胶体粒子范围的缔合体,称为胶束。
酯和脂肪酸二甘油酯。 ¨ 性质:不溶于水,在水、热、酸、碱及

表面活性剂化学复习资料

表面活性剂化学复习资料

表面活性剂化学复习资料一.名词解释。

表面张力:指垂直通过液面上任一单位长度、与液面相切的收缩表面的力(N/m)并且产生表面活性剂:是指在某液体中加入少量某物质时就能使液体表面张力急剧降低,一系列应用功能的物质。

临界胶束浓度:表面活性剂溶液的表面张力随着活性剂浓度的增加而急剧地降低,但是当浓度增加到一定值后,表面张力随溶液浓度的增加而变化不大,此时表面活性剂从分子或离子分散状态缔合成稳定的胶束,从而引起溶液的高频电导、渗透压、电导率等各种性能发生明显的突变,这个开始形成胶束的最低浓度称为临界胶束浓度(CMC)。

亲水亲油平衡值:是表面活性剂中亲水和亲油基团对油或水的综合亲合力,是用来表示表面活性剂的亲水亲油性强弱的数值。

高能固体表面:与一般液体接触后,体系表面能将在很大程度上降低,应为一般液体润湿的表面,称为高能表面。

低能固体表面:物体的表面能与液体不相上下,其表面被称作低能表面。

胶束:两亲分子溶解在水中达一定浓度时,其非极性部分会互相吸引,从而使得分子自发形成有序的聚集体,使憎水基向里、亲水基向外,减小了憎水基与水分子的接触,使体系能量下降,这种多分子有序聚集体称为胶束反胶束:表面活性剂在有机溶剂中形成极性头向内,非极性头尾朝外的含有水分子内核的聚集体,称为反胶束。

表面过剩:若自1cm²的溶液表面和内部各取一部分,其中溶剂的数目一样多,则表面部分的溶质比内部所多的摩尔数。

相转变温度:是指在某一种特定的体系中,表面活性剂的亲水亲油性质达到平衡时的温度。

固体表面未被反离子占据的部位与表面活性剂离子因电性作用而引起的离子对位吸附:吸附。

离子交换吸附:在低浓度时,固体表面的反离子被同电荷符号的表面活性剂离子取代而引起的吸附。

吸附量:单位表面上表面相超过体相的溶质量,有时也叫表面浓度或吸附量。

增溶量:向100ml 已标定浓度的表面活性剂溶液中由滴定管滴加被增溶物,当达到饱和时被增溶物析出,溶液变浑浊,此时已滴入溶液中的被增溶物的物质的量(mol)即为增溶量。

表面活性剂的化学原理

表面活性剂的化学原理

表面活性剂的化学原理表面活性剂是一类广泛应用于日常生活和工业生产中的化学物质。

它们具有降低液体表面张力和增强液体与固体或气体的相互作用能力的特性。

本文将介绍表面活性剂的化学原理,包括其结构、作用机制和应用领域。

一、表面活性剂的结构表面活性剂分为两个部分:亲水基团和疏水基团。

亲水基团是具有亲水性的部分,通常是由含氧、氮或硫等原子组成的极性基团。

疏水基团是具有疏水性的部分,通常是由长链烷基或芳香基等非极性基团组成。

这种结构使得表面活性剂既能与水相互作用,又能与油脂等疏水物质相互作用。

二、表面活性剂的作用机制表面活性剂在液体表面形成一个分子层,称为吸附层。

吸附层的形成是由于表面活性剂分子的亲水基团与水分子形成氢键,同时疏水基团与空气或油脂分子相互作用。

这种吸附层能够降低液体表面的张力,使液体更容易湿润固体表面。

表面活性剂还能够形成胶束结构。

当表面活性剂的浓度超过临界胶束浓度时,表面活性剂分子会自组装形成胶束。

胶束是由亲水基团朝向水相,疏水基团朝向内部形成的微小球状结构。

胶束能够包裹住油脂等疏水物质,使其分散在水相中,从而实现乳化、分散和溶解等作用。

三、表面活性剂的应用领域1. 清洁剂:表面活性剂是清洁剂中的主要成分,能够降低水的表面张力,使水更容易湿润和渗透,从而提高清洁效果。

例如,洗衣液、洗洁精等清洁剂中都含有表面活性剂。

2. 个人护理产品:表面活性剂能够使洗发水、沐浴露等个人护理产品产生丰富的泡沫,提供良好的清洁和洗净效果。

3. 化妆品:表面活性剂在化妆品中起到乳化、分散和稳定等作用。

例如,乳液、面霜和化妆品中的乳化剂和分散剂都是表面活性剂。

4. 农药和农业助剂:表面活性剂可以提高农药的润湿性和渗透性,增强其吸附和渗透作用,提高农药的效果。

5. 石油和化工工业:表面活性剂在石油开采、油田注水、油水分离等过程中起到重要作用。

此外,表面活性剂还广泛应用于润滑剂、防锈剂、乳化剂等领域。

总结:表面活性剂是一类具有降低液体表面张力和增强液体与固体或气体相互作用能力的化学物质。

表面活性剂概述

表面活性剂概述

表面活性剂概述
1.表面活性剂的概念
使液体表面张力降低的性质即为表面活性。

表面活性剂是指那些具有很强表面活性、能使液体的张力显著下降的物质。

2.表面活性剂的结构特征
表面活性剂分子一般由非极性烃链和一个以上的极性基团组成,烃链长度一般在8个碳原子以上,极性基团可以是解离的离子,也可以是不解离的亲水基团。

极性基团可以是羧酸及其盐、磺酸及其盐、硫酸酯及其可溶性盐、磷酸酯基、氨基或胺基及它们的盐,也可以是羟基、酰胺基、醚键、羟酸酯基等。

如肥皂是脂肪酸类
(R-COO-)表面活性剂,其结构中的脂肪酸碳链(R-)为亲油基团,解离的脂肪酸根(COO-)为亲水基团。

表面活性剂化学知识点

表面活性剂化学知识点

表面活性剂化学知识点第一讲 表面活性剂概述1、降低表面张力为正吸附,溶质在溶液表面的浓度大于其在溶液本体中的浓度,此溶质为表面活性物质。

增加表面张力为负吸附,溶质在溶液表面的浓度小于其在溶液本体中的浓度,此溶质为表面惰性物质。

2、表面张力γ :作用于单位边界线上的这种力称为表面张力,用 γ表示,单位是N ·m-1。

影响纯物质的γ的因素(1) 物质本身的性质(极性液体比非极性液体大,固体比液体大)(2) 与另一相物质有关。

纯液体的表面张力是指与饱和了其本身蒸汽的空气之间的界面张力。

(3)与温度有关:一般随温度升高而下降.(4)受压力影响较小.3、表面活性剂的分子结构特点“双亲结构”亲油基:一般是由长链烃基构成,以碳氢基团为主亲水基:一般为带电的离子基团和不带电的极性基团疏水基的疏水性大小:脂肪烷基>脂肪烯基>脂肪烃-芳基>芳基>带有弱亲水基的烃基。

相同的脂肪烃疏水性强弱顺序:烷烃>环烷烃>烯烃>芳香烃。

从HLB 值考虑,亲水基亲水性的大小排序: -SO4Na 、-SO3Na 、-OPO3Na 、-COONa 、—OH 、—O -极性头 8-18C 长链烷基等非极性基团4、离子表面活性剂(一)阴离子表面活性剂:起表面活性作用的部分是阴离子。

1)高级脂肪酸盐:①通式:(RCOO)n-Mn+脂肪酸盐②分类:一价金属皂(钾、钠皂);二价或多价皂(铅、钙、铝皂);有机胺皂(三乙醇胺皂)③性质:具有良好的乳化能力,易被酸及多价盐破坏,电解质使之盐析。

④应用:具有一定的刺激性,只供外用。

2)硫酸化物:①通式:R-OSO3-M+②分类:硫酸化油(硫酸化蓖麻油称土耳其红油);高级脂肪醇硫酸脂(十二烷基硫酸钠) 。

③性质:可与水混溶,为无刺激的去污剂和润湿剂;乳化性很强,稳定、耐酸、钙,易与一些高分子阳离子药物发生沉淀。

④应用:代替肥皂洗涤皮肤;有一定刺激性,主要用于外用软膏的乳化剂。

有时也用于片剂等固体制剂的润湿剂或增溶剂。

表面活性剂的基本理论知识

表面活性剂的基本理论知识

表面活性剂的基本理论知识1.表面张力把液体表面任意单位长度的收缩力称为表面张力,单位为N•m-1。

2.表面活性和表面活性剂将能降低溶剂表面张力的性质称为表面活性,而具有表面活性的物质称为表面活性物质。

把能在水溶液中分子发生缔合且形成胶束等缔合体,并具有较高的表面活性,同时还具有润湿﹑乳化﹑起泡﹑洗涤等作用的表面活性物质称为表面活性剂。

3.表面活性剂的分子结构特点表面活性剂是一种具有特殊结构和性质的有机化合物,它们能明显地改变两相间的界面张力或液体(一般为水)的表面张力,具有润湿﹑起泡﹑乳化﹑洗涤等性能。

就结构而言,表面活性剂都有一个共同的特点,即其分子中含有两种不同性质的基团,一端是长链非极性基团,能溶于油而不溶于水,亦即所谓的疏水基团或憎水基,这种憎水基一般都是长链的碳氢化合物,有时也为有机氟﹑有机硅﹑有机磷﹑有机锡链等。

另一端则是水溶性的基团,即亲水基团或亲水基。

亲水基团必须有足够的亲水性,以保证整个表面活性剂能溶于水,并有必要的溶解度。

由于表面活性剂含有亲水基和疏水基,因而它们至少能溶于液相中的某一相。

表面活性剂的这种既亲水又亲油的性质称为两亲性。

4.表面活性剂的类型表面活性剂是一种既有疏水基团又有亲水基团的两亲性分子。

表面活性剂的疏水基团一般是由长链的碳氢构成,如直链烷基C8~C20,支链烷基C8~C20,烷基苯基(烷基碳原子数为8~16)等。

疏水基团的差别主要是在碳氢链的结构变化上,差别较小,而亲水基团的种类则较多,所以表面活性剂的性质除与疏水基团的大小﹑形状有关外,主要还与亲水基团有关。

亲水基团的结构变化较疏水基团大,因而表面活性剂的分类一般以亲水基团的结构为依据。

这种分类是以亲水基团是否是离子型为主,将其分为阴离子型﹑阳离子型﹑非离子型﹑两性离子型和其他特殊类型的表面活性剂。

5.表面活性剂水溶液的特性①表面活性剂在界面上的吸附表面活性剂分子中具有亲油基和亲水基,为两亲分子。

水是强极性液体,当表面活性剂溶于水中时,根据极性相似相引﹑极性相异相斥原理,其亲水基与水相引而溶于水,其亲油基与水相斥而离开水,结果表面活性剂分子(或离子)吸附在两相界面上,使两相间的界面张力降低。

表面活性剂理论知识详解

表面活性剂理论知识详解
②分类:一价金属皂(钾、钠皂);二价或多价皂(铅、钙、
铝皂);有机胺皂(三乙醇胺皂)。
③性质:具有良好的乳化能力,易被酸及多价盐破坏,
电解质使之盐析。
④应用:具有一定的刺激性,只供外用。
2.硫酸化物:
①通式:R· O· SO3-M+硫酸化油,高级脂肪醇硫酸酯类。
②分类:硫酸化油,如硫酸化蓖麻油,俗称土耳其红
临界胶束浓度(critical micell concentration,
CMC):表面活性分子缔合形成胶束的最低浓度。CMC 的大小与物质的结构、组成有关。

CMC的测定
1.表面张力法:以表面张力对浓度 的对数作图,曲线的转折点即 为 CMC 值。适合于离子表面活性 剂和非离子型表面活性剂。 2.电导法:以表面活性剂溶液的摩 尔电导率对浓度或浓度的平方 根作图,曲线的转折点即 CMC 值。 适合于离子表面活性剂。
HLB 0.5~30,具有乳化、润湿、分散、起泡和消泡等 多种优良性能,但增溶能力较弱。
应用:新型的优良乳化剂、增溶剂,是目前能应用于
静脉注射乳剂的一种合成的乳化剂。
表面活性剂的基本特性
(一)临界胶束浓度
胶束(micelles):当溶液内表面活性剂分子数目不
断增加时,其疏水部分相互吸引,缔合在一起,亲水 部分向着水,几十个或更多分子缔合在一起形成缔合 的粒子,称为胶束。
2、性质: 毒性小,溶血作用较小,化学上不解离, 不易受电解质,pH值的影响;能与大多数药物配伍,广 泛应用于外用、口服制剂和注射剂。
3、常用品种 ①脂肪酸甘油酯 类别:脂肪酸单甘油酯和脂肪酸二甘油酯,如单硬脂酸甘
油酯。
性质:不溶于水,在水、热、酸、碱及酶等下易水解。 应用:HLB 3~4,表面活性弱,用作W/O型辅助乳化剂。

表面活性剂的化学原理

表面活性剂的化学原理

表面活性剂的化学原理表面活性剂,又称为界面活性剂,是一类具有分子结构中同时含有亲水性和疏水性基团的化合物。

它们在溶液中能够降低液体表面或液体与固体之间的表面张力,从而改变液体的性质。

表面活性剂在日常生活和工业生产中有着广泛的应用,比如洗涤剂、乳化剂、泡沫剂等。

那么,表面活性剂的化学原理是什么呢?让我们一起来探讨一下。

一、表面活性剂的结构特点表面活性剂的分子结构通常由亲水性头基和疏水性尾基组成。

亲水性头基可以与水分子相互作用形成氢键,使表面活性剂分子在水中形成胶束结构;而疏水性尾基则喜欢与油脂等疏水性物质相互作用。

这种结构使得表面活性剂在水和油之间起到了“中介”的作用,降低了它们之间的界面张力,使水和油能够混合在一起。

二、表面活性剂的作用原理1. 降低表面张力表面活性剂的一个重要作用就是降低液体的表面张力。

表面张力是液体表面层内分子间的相互作用力,使得液体表面呈现出一种紧致的状态。

添加表面活性剂后,它的分子会在液体表面形成一层薄膜,使得表面张力减小,液体表面变得更加平滑,从而有利于液体的扩散和渗透。

2. 乳化作用由于表面活性剂分子同时具有亲水性和疏水性基团,它们可以在水和油之间形成乳化系统。

在这种系统中,表面活性剂的疏水性基团与油相互作用,亲水性基团与水相互作用,从而使油和水形成均匀的乳状液。

这种乳化作用使得原本不相溶的水和油能够混合在一起,为许多工业生产和日常生活中的应用提供了便利。

3. 分散作用除了乳化作用,表面活性剂还具有分散作用。

当固体颗粒或液滴悬浮在液体中时,表面活性剂的分子可以包裹这些颗粒或液滴,防止它们聚集沉降。

这样就实现了固体颗粒或液滴的分散,保持了液体的均匀性。

4. 泡沫稳定作用表面活性剂还可以在液体中形成稳定的泡沫结构。

当表面活性剂的浓度足够高时,它的分子会在气泡表面形成一层薄膜,阻止气泡破裂和融合。

这种泡沫稳定作用使得泡沫能够长时间存在,广泛应用于洗涤剂、泡沫塑料等领域。

三、表面活性剂的应用领域1. 洗涤剂洗涤剂是表面活性剂最常见的应用之一。

表面活性剂基本理论—表面活性剂在界面的吸附

表面活性剂基本理论—表面活性剂在界面的吸附

25
H2O/气
30
H2O/气
25
H2O/气
25
H2
38
3.68
3.6
46
5.0
2.7
61
2.12
2.7
62
2.10
2.6
63
2.07
3.0
55
2.98
2.75
60
2.94
2.85
58
2.57
2.58
64
3.70
2.74
61
5.32
C12H25(OC2H4)4OH C12H25(OC2H4)5OH C12H25(OC2H4)7OH C12H25(OC2H4)7OH C12H25(OC2H4)7OH C12H25(OC2H4)8OH C13H27(OC2H4)8OH C14H29(OC2H4)8OH C15H31(OC2H4)8OH n-C16H33(OC2H4)6OH n-C12H25N(CH3)2O n-C12H25CH(COO-)N+(CH3)3 C10H21N+(CH3)2CH2COOC12H25N+(CH3)2CH2COOC14H29N+(CH3)2CH2COOC16H33N+(CH3)2CH2COOC12H25CH (NC5H5)+COO-**
(2)表面热力学电位ψ0和stern电位ψs
所谓表面热力学电位ψ0即固体表面至溶液本体相的电位差。当系统以及温度和压力 确定之后,ψ0便是一个确定的热力学量。而其外侧stern面至溶液本体相的电位差为 stern电位ψs,ψs不仅与ψ0有关,还与stern层的特性吸附有关。
表面活性剂在固-液界面的吸附
H3+N-R-COOH+OH-
H++H2N-R-COOH+OH-

表面活性剂知识总结

表面活性剂知识总结

1、浊点(Cloud point),非离子表面活性剂的一个特性常数,其受表面活性剂分子结构和共存物质的影响。

表面活性剂的水溶液,随着温度的升高会出现浑浊现象,表面活性剂由完全溶解转变为部分溶解,其转变时的温度即为浊点温度。

浊点(CP) 是非离子表面活性剂(NS) 均匀胶束溶液发生相分离的温度,是其非常重要的物理参数。

2、根据中华人民共和国国家标准,每100 克样品中环氧乙烷基中氧的含量称为环氧值。

3、红外光谱是物质定性的重要方法之一。

其在化学领域中主要用于分子结构的基团表征,除具有高度的特征性,还有分析时间短、需要的试样量少、不破坏试样、测定方便等优点。

它的解析能够提供许多关于官能团的信息,可以帮助确定部分乃至全部分子类型及结构。

4、质谱分析是将样品转化为运动的带电气态离子,与磁场中按质荷比(m/z)大小分离并记录的分析方法。

质谱分析法是近代发展起来的快速、微量、精确测定相对分子质量的方法。

但是,质谱分析法对样品有一定的要求。

其对盐的耐受能力较低,包括大分子盐(低聚合物)、小分子盐(有机盐、无机盐)等。

盐类由于在电喷雾系统中有强烈的竞争性离子化作用,导致较强的离子抑制效应,使得待测物的灵敏度明显降低。

其次,盐类的存在将产生一系列的离子加合峰,使谱图的解析复杂化。

此外,太多的盐类容易腐蚀和污染质谱系统硬件,需要及时清洗,严重时甚至导致硬件损坏。

5、氢原子具有磁性,如电磁波照射氢原子核,它能通过共振吸收电磁波能量,发生跃迁。

用核磁共振仪可以记录到有关信号,氢原子在分子中的化学环境不同,而显示出不同的吸收峰,峰与峰之间的差距被称作化学位移。

利用化学位移,峰面积和积分值等信息,进而推测其在碳骨架上的位置。

在核磁共振氢谱图中,特征峰的数目反映了有机分子中氢原子在化学环境的种类;不同特征峰的强度比及特征峰的高度比反映了不同化学环境下氢原子的数目比。

6、正交实验法就是利用排列整齐的表-正交表来对试验进行整体设计、综合比较、统计分析,实现通过少数的实验次数找到较好的生产条件,以达到最高生产工艺效果,这种试验设计法是从大量的试验点中挑选适量的具有代表性的点,利用已经造好的表格—正交表来安排试验并进行数据分析的方法。

表面活性剂的基本理论知识

表面活性剂的基本理论知识

表面活性剂的基本理论知识1.表面张力把液体表面任意单位长度的收缩力称为表面张力,单位为N•m-1。

2.表面活性和表面活性剂将能降低溶剂表面张力的性质称为表面活性,而具有表面活性的物质称为表面活性物质。

把能在水溶液中分子发生缔合且形成胶束等缔合体,并具有较高的表面活性,同时还具有润湿﹑乳化﹑起泡﹑洗涤等作用的表面活性物质称为表面活性剂。

3.表面活性剂的分子结构特点表面活性剂是一种具有特殊结构和性质的有机化合物,它们能明显地改变两相间的界面张力或液体(一般为水)的表面张力,具有润湿﹑起泡﹑乳化﹑洗涤等性能。

就结构而言,表面活性剂都有一个共同的特点,即其分子中含有两种不同性质的基团,一端是长链非极性基团,能溶于油而不溶于水,亦即所谓的疏水基团或憎水基,这种憎水基一般都是长链的碳氢化合物,有时也为有机氟﹑有机硅﹑有机磷﹑有机锡链等。

另一端则是水溶性的基团,即亲水基团或亲水基。

亲水基团必须有足够的亲水性,以保证整个表面活性剂能溶于水,并有必要的溶解度。

由于表面活性剂含有亲水基和疏水基,因而它们至少能溶于液相中的某一相。

表面活性剂的这种既亲水又亲油的性质称为两亲性。

4.表面活性剂的类型表面活性剂是一种既有疏水基团又有亲水基团的两亲性分子。

表面活性剂的疏水基团一般是由长链的碳氢构成,如直链烷基C8~C20,支链烷基C8~C20,烷基苯基(烷基碳原子数为8~16)等。

疏水基团的差别主要是在碳氢链的结构变化上,差别较小,而亲水基团的种类则较多,所以表面活性剂的性质除与疏水基团的大小﹑形状有关外,主要还与亲水基团有关。

亲水基团的结构变化较疏水基团大,因而表面活性剂的分类一般以亲水基团的结构为依据。

这种分类是以亲水基团是否是离子型为主,将其分为阴离子型﹑阳离子型﹑非离子型﹑两性离子型和其他特殊类型的表面活性剂。

5.表面活性剂水溶液的特性①表面活性剂在界面上的吸附表面活性剂分子中具有亲油基和亲水基,为两亲分子。

水是强极性液体,当表面活性剂溶于水中时,根据极性相似相引﹑极性相异相斥原理,其亲水基与水相引而溶于水,其亲油基与水相斥而离开水,结果表面活性剂分子(或离子)吸附在两相界面上,使两相间的界面张力降低。

表面活性剂基础知识(三)

表面活性剂基础知识(三)

表面活性剂基础知识(三)表面活性剂的分类(一)按亲水基分类表面活性剂的分类一般是以亲水基团的结构为依据,即按表面活性剂溶于水的离子类型来分类。

表面活性剂溶于水时,凡能解离成离子的叫做离子型表面活性剂,凡不能解离成离子的叫做非离子表面活性剂。

离子型表面活性剂按其在水中生成的表面活性剂离子种类,又可分为阴离子型、阳离子型和两性离子型表面活性剂。

此外,还有近年来发展较快的,既有离子型亲水基又有非离子型亲水基的混合型表面活性剂,因此表面活性剂共有5类。

每大类按其亲水基结构的差别又分为若干小类。

①阴离子型。

极性基带负电,主要有羧酸盐(RCOOM)、磺酸盐(RSO3M)、硫酸酯盐(ROSO3M,一般直接称为硫酸盐)、磷酸酯盐(ROPO3M,一般直接称为磷酸盐)等。

其中R为烷基,M主要为碱金属和铵(胺)离子。

②阳离子型。

极性基带正电,主要有季铵盐(RNR13A,三个R1可以相同,也可以不同)、烷基吡啶盐(RC5H5NA)、胺盐(RNH3A)等。

其中A主要为卤素和酸根离子。

③两性型。

分子中带有两个亲水基团,一个带正电,一个带负电。

其中的正电性基团主要是氨基和季铵基,负电性基团则主要是羧基和磺酸基。

如烷基甜菜碱RN(CH3)2CH2COO-。

④非离子型。

极性基不带电,如聚氧乙烯类化合物[RO(CH2CH2O)n H]、多元醇类化合物(如蔗糖、山梨糖醇、甘油、乙二醇等的衍生物)、亚砜类化合物(RSOR1)、氧化胺[如RN(CH3)2O]等。

⑤混合型。

此类表面活性剂分子中带有两种亲水基团,一个带电,一个不带电。

如醇醚硫酸盐R(OCH2CH2)n OSO3M。

表面活性剂按亲水基的分类如下图所示:表面活性剂的分类(点击放大)(二)按疏水基分类按疏水基来分类,主要有以下几类。

①碳氢表面活性剂。

疏水基为碳氢基团。

②氟表面活性剂。

疏水基为全氟化或部分氟化的碳氟链(碳氢表面活性剂疏水基中的氢全部或部分被氟原子取代)。

③硅表面活性剂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表面活性剂的基本理论知识1.表面张力把液体表面任意单位长度的收缩力称为表面张力,单位为N•m-1。

2.表面活性和表面活性剂将能降低溶剂表面张力的性质称为表面活性,而具有表面活性的物质称为表面活性物质。

把能在水溶液中分子发生缔合且形成胶束等缔合体,并具有较高的表面活性,同时还具有润湿﹑乳化﹑起泡﹑洗涤等作用的表面活性物质称为表面活性剂。

3.表面活性剂的分子结构特点表面活性剂是一种具有特殊结构和性质的有机化合物,它们能明显地改变两相间的界面张力或液体(一般为水)的表面张力,具有润湿﹑起泡﹑乳化﹑洗涤等性能。

就结构而言,表面活性剂都有一个共同的特点,即其分子中含有两种不同性质的基团,一端是长链非极性基团,能溶于油而不溶于水,亦即所谓的疏水基团或憎水基,这种憎水基一般都是长链的碳氢化合物,有时也为有机氟﹑有机硅﹑有机磷﹑有机锡链等。

另一端则是水溶性的基团,即亲水基团或亲水基。

亲水基团必须有足够的亲水性,以保证整个表面活性剂能溶于水,并有必要的溶解度。

由于表面活性剂含有亲水基和疏水基,因而它们至少能溶于液相中的某一相。

表面活性剂的这种既亲水又亲油的性质称为两亲性。

4.表面活性剂的类型表面活性剂是一种既有疏水基团又有亲水基团的两亲性分子。

表面活性剂的疏水基团一般是由长链的碳氢构成,如直链烷基C8~C20,支链烷基C8~C20,烷基苯基(烷基碳原子数为8~16)等。

疏水基团的差别主要是在碳氢链的结构变化上,差别较小,而亲水基团的种类则较多,所以表面活性剂的性质除与疏水基团的大小﹑形状有关外,主要还与亲水基团有关。

亲水基团的结构变化较疏水基团大,因而表面活性剂的分类一般以亲水基团的结构为依据。

这种分类是以亲水基团是否是离子型为主,将其分为阴离子型﹑阳离子型﹑非离子型﹑两性离子型和其他特殊类型的表面活性剂。

5.表面活性剂水溶液的特性①表面活性剂在界面上的吸附表面活性剂分子中具有亲油基和亲水基,为两亲分子。

水是强极性液体,当表面活性剂溶于水中时,根据极性相似相引﹑极性相异相斥原理,其亲水基与水相引而溶于水,其亲油基与水相斥而离开水,结果表面活性剂分子(或离子)吸附在两相界面上,使两相间的界面张力降低。

表面活性剂分子(或离子)在界面上吸附越多,界面张力降低越大。

②吸附膜的一些性质●吸附膜的表面压力:表面活性剂在气液界面吸附形成吸附膜,如在界面上放置一无摩擦可移动浮片,以浮片沿溶液面推动吸附质膜,膜对浮片产生一压力,此压力称为表面压力。

●表面黏度:与表面压力一样,表面黏度是由不溶性分子膜表现出的一种性质。

以细金属丝悬吊一白金环,令其平面接触水槽的水表面,旋转白金环,白金环受水的黏度阻碍,振幅逐渐衰减,据此可测定表面黏度,方法是:先在纯水表面进行实验,测出振幅衰减,然后测定形成表面膜后的衰减,从两者的差值求出表面膜的黏度。

表面黏度与表面膜的牢固度密切有关由于吸附膜有表面压力和黏度,它必定具有弹性。

吸附膜的表面压力越大,黏度越高,其弹性模量就越大。

表面吸附膜的弹性模量在稳泡过程中有重要意义。

③胶束的形成表面活性剂的稀溶液服从理想溶液所遵循的规律。

表面活性剂在溶液表面的吸附量随溶液浓度增高而增多,当浓度达到或超过某值后,吸附量不再增加,这些过多的表面活性剂分子在溶液内是杂乱无章的,抑或以某种有规律的方式存在。

实践和理论均表明,它们在溶液内形成缔合体,这种缔合体称为胶束。

●临界胶束浓度:表面活性剂在溶液中形成胶束的最低浓度称为临界胶束浓度。

●胶束的结构(略)●影响胶束浓度的因素(略)④常见表面活性剂的cmc值。

(注意观看书本)6.亲水亲油平衡值HLB是hydrophile lipophile balance的缩写,表示了表面活性剂的亲水基团和亲油基团具有的亲水亲油平衡值,即表面活性剂HLB值。

HLB值大,表示分子的亲水性强,亲油性弱;反之亲油性强,亲水性弱。

①HLB值的规定HLB值是个相对值,故在制定HLB值时,作为标准,规定无亲水性能的石蜡的HLB值为0,而水溶性较强的十二烷基硫酸钠的HLB值为40。

因此表面活性剂的HLB值一般在1~40范围以内。

通常来说,HLB值小于10的乳化剂为亲油性的,而大于10的乳化剂则是亲水性的。

因此,由亲油性到亲水性的转折点约为10。

根据表面活性剂的HLB值,可大致了解其可能的用途,如表1-3所示。

8~18。

② HLB值的确定(略)。

7.乳化作用和增溶作用两种互不溶的液体,一种以微粒(液滴或液晶)分散于另一种中形成的体系称为乳状液。

形成乳状液时由于两液体的界面积增大,所以这种体系在热力学上是不稳定的,为使乳状液稳定需要加入第三组分—乳化剂以降低体系的界面能。

乳化剂属于表面活性剂,其主要功能是起乳作用。

乳状液中以液滴存在的那一相称为分散相(或内相﹑不连续相),连成一片的另一相叫做分散介质(或外相﹑连续相)。

①乳化剂和乳状液常见的乳状液,一相是水或水溶液,另一相是与水不相混溶的有机物,如油脂﹑蜡等。

水和油形成的乳状液,根据其分散情形可分为两种:油分散在水中形成水包油型乳状液,以O/W(油/水)表示:水分散油中形成油包水型乳状液,以W/O(水/油)表示。

此外还可能形成复杂的水包油包水W/O/W型和油包水包油O/W/O型的多元乳状液。

乳化剂是通过降低界面张力和形成单分子界面膜使乳状液稳定的。

在乳化作用中对乳化剂的要求:a:乳化剂必须能吸附或富集在两相的界面上,使界面张力降低;b:乳化剂必须赋予粒子以电荷,使粒子间产生静电排斥,或在粒子周围形成一层稳定的﹑黏度特别高的保护膜。

所以,用作乳化剂的物质必须具有两亲基团才能起乳化作用,表面活性剂能满足这种要求。

②乳化液的制备方法和影响乳状液稳定性的因素制备乳状液的方法有两种:一种是采用机械法使液体以微小的粒子分散于另一种液体中,工业上多采用这种方法制备乳状液;另一种是将液体以分子状态溶于另一液体中,然后使其适当地聚集而形成乳状液。

乳状液的稳定性是指反抗粒子聚集而导致相分离的能力。

乳状液在热力学上是不稳定的体系,有较大的自由能。

因此所谓乳状液的稳定性实际上是指体系达到平衡状态所需要的时间,即体系中一种液体发生分离所需要的时间。

当界面膜中有脂肪醇﹑脂肪酸和脂肪胺等极性有机物分子时,膜强度显著增高。

这是因为,在界面吸附层中乳化剂分子与醇﹑酸和胺等极性分子发生作用形成“复合物”,使界面膜强度增高的缘故。

由两种以上表面活性剂组成的乳化剂称为混合乳化剂。

混合乳化剂吸附在水/油界面上,分子间发生作用可形成络合物。

由于分子间强烈作用,界面张力显著降低,乳化剂在界面上吸附量显著增多,形成的界面膜密度增大,强度增高。

液珠的电荷对乳状液的稳定性有明显的影响。

稳定的乳状液,其液珠一般都带有电荷。

当使用离子型乳化剂时,吸附在界面上的乳化剂离子其亲油基插入油相,亲水基处于水相,从而使液珠带电。

由于乳状液的液珠带同种电荷,它们之间相互排斥,不易聚结,使稳定性增高。

可见,液珠上吸附的乳化剂离子越多,其带电量越大,防止液珠聚结能力也越大,乳状液体系就越稳定。

乳状液分散介质的黏度对乳状液的稳定性有一定影响。

一般,分散介质的黏度越大,乳状液的稳定性越高。

这是因为分散介质的黏度大,对液珠的布朗运动阻碍作用强,减缓了液珠之间碰撞,使体系保持稳定。

通常能溶于乳状液的高分子物质均能增高体系的黏度,使乳状液的稳定性增高。

此外高分子还能形成坚固的界面膜,使乳状液体系更加稳定。

在某些情况下加入固体粉未也能使乳状液趋于稳定。

固体粉未处于水﹑油中或界面上,取决于油﹑水对固体粉未的润湿能力,若固体粉未完全为水润湿,又能被油润湿,才会滞留于水油界面上。

固体粉未使乳状液稳定的原因在于,聚集于界面的粉未增强了界面膜,这与界面吸附乳化剂分子相似,故固体粉未料子在界面上排列得越紧密,乳状液越稳定。

表面活性剂在水溶液中形成胶束后具有能使不溶或微溶于水的有机物的溶解度显著增大的能力,且此时溶液呈透明状,胶束的这种作用称为增溶。

能产生增溶作用的表面活性剂叫做增溶剂,被增溶的有机物称为被增溶物。

8.泡沫泡沫在洗涤过程中起着重要的作用。

泡沫是指气体分散在液体或固体中的分散体系,气体为分散相,液体或固体为分散介质,前者称为液体泡沫,而后者称为固体泡沫,如泡沫塑料,泡沫玻璃,泡沫水泥等。

(1)泡沫的形成我们这里所说的泡沫,是指被液体薄膜隔开的气泡的聚集物。

这种泡沫由于分散相(气体)和分散介质(液体)的密度相差较大,加之液体的黏度低,因此气泡总是能很快地升到液面。

形成泡沫的过程是将大量气体带入液体,液体中的气泡又很快返回到液面,形成由少量液气隔开的气泡聚集体泡沫在形态上具有两个显著的特点:其一是作为分散相的气泡常常是呈多面体形状,这是因为在气泡的相交处,有一种液膜变薄的趋势使气泡成为多面体,当液膜变薄到一定程度,则导致气泡破裂;其二是,纯净液不能形成稳定的泡沫,能形成泡沫的液体,至少是两个以上的组分。

表面活性剂的水溶液是典型的易产生泡沫的体系,其生成泡沫的能力与其他性能也有一定的关系。

起泡力好的表面活性剂称为起泡剂。

起泡剂尽管具有良好的泡沫能力,但形成的泡沫不一定能维持较长的时间,即其稳定性不一定良好。

为了保持泡沫的稳定,常在起泡剂中加入能增加泡沫稳定性的物质,这种物质称为稳泡剂,常用的稳泡剂有月桂酰二乙醇胺和十二烷基二甲基胺的氧化物。

(2)泡沫的稳定性泡沫是一种热力学不稳定体系,最后的趋势是破泡之后体系内液体的总表面积减小,自由能降低。

消泡过程就是隔开气体的液膜由厚变薄,直至破裂的过程。

因此,泡沫的稳定程度主要是由排液快慢和液膜的强度决定的。

其影响因素还有以下几种。

①表面张力从能量观点考虑,低表面张力对于泡沫的形成比较有利,但不能保证泡沫稳定。

表面张力低,压差小,排液速度变慢,液膜变薄较慢,有利于泡沫的稳定。

②表面黏度决定泡沫稳定性的关键因素在于液膜强度,而液膜强度主要决定于表面吸附膜的坚固性,以表面黏度为其量度。

实验证明,表面黏度较大的溶液所生成的泡沫寿命较长。

这是因为表面吸附分子间的相互作用导致膜强度增大,从而提高泡沫的寿命。

③溶液黏度当液体本身的黏度增大时,液膜中的液体不易排出,液膜厚度变薄的速度较慢,延缓了液膜破裂的时间,增加了泡沫的稳定性。

④表面张力的“修复”作用表面活性剂吸附于表面的液膜,有反抗液膜表面扩张或收缩的能力,我们将这一能力称为修复作用。

这是因为有表面活性剂在表面上吸附的液膜,扩张其表面积将降低表面吸附分子的浓度,增大表面张力。

进一步扩大表面将需要做更大的功。

反之表面积收缩将增加表面吸附分子的浓度,即减小表面张力,不利于进一步的收缩。

⑤气体通过液膜的扩散由于毛细压力的存在,泡沫中小泡的压力要比大泡压力高,会造成小泡中的气体透过液膜扩散到低压的大泡中,造成小泡变小,大泡变大,最终泡沫破裂的现象。

相关文档
最新文档