第24章解直角三角形单元测试卷
新华师大版九年级上册数学第24章解直角三角形单元测试卷
新华师大版九年级上册数学第24章 解直角三角形单元测试卷姓名____________ 时间: 90分钟 满分:150分 总分____________ 一、选择题(每小题3分,共30分)一、选择题(每小题3分,共30分) 满分:150分 时间:100分钟 1.︒45sin 的值等于 【 】 (A )21(B )22 (C )23 (D )12.如图所示,在Rt △ABC 中,∠B=90°,BC=2AB,则=A cos 【 】第2题图ABC(A )25 (B )21(C )552 (D )55 3.在Rt △ABC 中,∠C=90°,若斜边AB 是直角边BC 的3倍,则B tan 的值是 【 】 (A )31(B )3 (C )42 (D )224.在Rt △ABC 中,∠C=90°,若135sin =A ,则A cos 的值为 【 】 (A )125 (B )138 (C )32 (D )1312 5.如图所示,P 是α的边OA 上一点,点P 的坐标是( 12 , 5 ),则αtan 等于 【 】(A )135 (B )1312 (C )125 (D )512 6.如图所示,△ABC 的顶点是正方形网格的格点,则A sin 的值为 【 】第6题图(A )21(B )55 (C )1010 (D )5527.计算()260tan 145tan 30cos 2︒︒︒---的值是 【 】(A )232- (B )0 (C )32 (D )28.在△ABC 中,若021cos 21sin 2=⎪⎭⎫⎝⎛-+-B A ,则C ∠的度数是 【 】(A )30° (B )45° (C )60° (D )90°9.如图所示,已知直线4321//////l l l l ,相邻的两条平行线间的距离均为h ,矩形ABCD 的四个顶点分别在这四条直线上,放置方式如图所示,已知AB=4, BC=6,则αtan 的值等于 【 】第9题图432l 1(A )32 (B )43 (C )34 (D )23 10.如图所示,在一笔直的海岸线l 上有A 、B 两个观测站,AB=2 km,从A 处测得船C 在北偏东45°的方向,从B 处测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为 【 】第10题图(A )4 km (B ))22(+km (C )22 km (D ))24(-km二、填空题(每小题3分,共30分)11.如图所示,在□ABCD 中,AC ⊥BC,E 为AB 的中点,若CE=2,则CD=________.第11题图12.已知α为锐角,3tan =α,则αcos 等于________. 13.在△ABC 中,AB=AC=5,8.0sin =∠ABC ,则BC=________.14.如图所示,在△ABC 中,∠A=30°, ∠B=45°,AC=32,则AB 的长为________.第14题图第15题图15.如图所示,在Rt △ABC 中,∠ACB=90°,D 是AB 的中点,过D 点作AB 的垂线交AC 于点E,BC=6,53sin =A ,则DE=________. 16.如图所示是某水库大坝横断面示意图,其中AB 、CD 分别表示水库上下底面的水平线,∠ABC=120°,BC 的长是50 m,则水库大坝的高度=h ________.第16题图北第17题图17.一艘船向正北方向航行,在A 处看到灯塔S 在船的北偏东30°的方向上,向正航行12海里到达B 点,在B 处看到灯塔S 在船的北偏东60°的方向上,此船继续沿正北方向航行的过程中距灯塔S 的最近距离是________海里.(不作近似计算)图(50)图(51)18.如图(50)所示,在数学活动课中,小敏为了测量校园内旗杆AB 的高度,站在教学楼的C 处测得旗杆底端B 的俯角为45°,测得旗杆顶端A 的仰角为30°,若旗杆与教学楼的距离为9 m,则旗杆AB 的高度是________m.(结果保留根号) 19.如图(51)所示,在□ABCD 中,连结BD,AD ⊥BD,AB=4, 43sin =A ,则□ABCD 的面积是________.20.在Rt △ABC 中,∠C=90°,AB=2BC,现给出下列结论: ①23sin =A ; ②21cos =B ; ③33tan =A ; ④3tan =B . 其中正确的结论是_________.(只需填上正确结论的序号)三、解答题(共90分)21.(每题5分,共30分)计算:(1)︒︒︒︒⋅+⋅60tan 60cos 30tan 30sin (2)︒︒︒++60tan 130sin 130cos(3)︒︒-45tan 230cos 2 (4)︒︒︒︒++30tan 60tan 30cos 30sin 2222(5)︒︒︒++45tan 430sin 260cos 2(6))60cos 460)(tan 60tan 30sin 4(︒︒︒︒+-22.(10分)如图所示,在Rt △ABC 中,∠C=90°,AB=6,BC=3,求∠A 的大小.23.(10分)如图所示,在Rt △ABC 中,∠ACB=90°,AB=5,BC=3,CE 是斜边AB 上的中线,CD 是斜边AB 上的高,求DE 的长.24.(10分)如图所示,在△ABC 中,AD 是BC 边上的高,E 为AC 边上的中点,BC=14, AD=12,54sinB ,求:(1)线段CD的长;(2)EDCtan的值.∠25.(15分)某幼儿园为了加强安全管理,决定将园内的滑梯的倾斜度由45°降为30°,已知原滑梯AB的长为5米,点D、B、C在同一水平面上.求:改善后滑梯会加长多少?(精确到0. 01)(参考数据:449.14142≈≈≈),6.2,7323.126.(15分)图中的铁塔位于我省开封市的铁塔公园,素有“天下第一塔”之称.为了测得铁塔EF 的高度,小明利用自制的测角仪在C 点测得塔顶E 的仰角为45°,从点A 向正前方行进23米到B 处,再用测角仪在D 点测得塔顶E 的仰角为60°.已知测角仪的高度为1.5米,求铁塔EF 的高度(结果精确到0. 1米,73.13 ). (特别介绍:本题为2015年新乡市二模试题)开封铁塔。
华东师大版九上数学24章《解直角三角形》单元测试卷(含解析)
华东师大版 九上数学 24章 《解直角三角形》单元测试卷(含解析)一. 选择题:(每小题2分,共20分)1. 在△EFG 中,∠G=90°,EG=6,EF=10,则cotE=( ) A.43 B.34 C. 53 D.35 2. 在△ABC 中,∠A=105°,∠B=45°,tanC 的值是( ) A. 21B.33 C. 1 D. 3 3. 在△ABC 中,若22cos =A ,3tan =B ,则那个三角形一定是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形4. 如图18,在△EFG 中,∠EFG=90°,FH ⊥EG ,下面等式中,错误的是( ) A.EG EF G =sin B. EF EHG =sinC. FGGH G =sinD. FGFH G =sin5. sin65°与cos26°之间的关系为( )A. sin65°<cos26°B. sin65°>cos26°C. sin65°=cos26°D. sin65°+cos26°=16. 已知30°<α<60°,下列各式正确的是( )A. B. C. D.7. 在△ABC 中,∠C=90°,52sin A ,则sinB 的值是( )A.32B.52 C.54 D. 521 8. 若平行四边形相邻两边的长分别为10和15,它们的夹角为60°,则平行四边形的面积是( )米2A. 150B.375 C. 9 D. 79. 如图19,铁路路基横断面为一个等腰梯形,若腰的坡度为i=2∶3,顶宽是3米,路基高是4米,则路基的下底宽是( )A. 7米B. 9米 C. 12米 D. 15米10. 如图20,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阻影部分)的面积为( )A. αsin 1B. αcos 1C. αsinD. 1二. 填空题:(每小题2分,共10分)11. 已知0°<α<90°,当α=__________时,21sin =α,当α=__________时,Cota=3.12. 若,则锐角α=__________。
九年级上册第24章 解直角三角形检测题及答案及解析
第24章 解直角三角形检测题(本检测题满分:120分,时间:120分钟)一、选择题(每小题2分,共24分)1.计算:A. B.232+ C.23D.231+2.(2014·杭州中考)在直角三角形ABC 中,已知90C ∠=︒,40A ∠=︒,3BC =,则AC =( ) A.3sin 40︒ B.3sin 50︒ C.3tan 40︒ D.3tan 50︒3.(2013·浙江温州中考)如图,在ABC △中,90,5,3,∠C AB BC =︒==则sin A 的值是( )A.34 B.34 C.35D.454.(2013·广州中考)如图,四边形ABCD 是梯形,AD ∥BC ,CA 是∠BCD 的平分线,且AB ⊥AC ,AB =4,AD =6,则tan B =( )A.2B.2C.D.5.(2014·安徽中考)如图,Rt △ABC 中,9,6,AB BC B ==∠=90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A.53B.52C.4D.56.在△ABC 中,若三边BC ,CA ,AB 满足 BC ∶CA ∶AB =5∶12∶13,则cos B =( ) A.125 B.512 C.135 D.1312 7.(2014·杭州中考)已知AD BC ∥,AB AD ⊥,点E ,点F 分别在射线AD ,射线BC 上,若点E 与点B 关于AC 对称,点E 与点F 关于BD 对称,AC 与BD 相交于点G ,则( ) A.1tan 2ADB +∠= B.25BC CF = C.22AEB DEF ∠+︒=∠ D.4cos 6AGB ∠=第题图8.(2013·聊城中考)河堤横断面如图所示,堤高BC =6 m ,迎水坡AB 的坡比为1∶,则AB 的长为( )第9题图第3题图 第8题图 第5题图A.12 mB.4 mC.5 mD.6 m 9.如图,一个小球由地面沿着坡度12∶i =的坡面向上前进了10 m ,此时小球距离地面的高度为( )A.5 mB.25 mC.45 mD.310 m 10.如图,在菱形ABCD 中,⊥DE AB ,3cos 5A =,2BE =,则tan ∠DBE 的值是( ) A .12 B .2 C .52 D .5511.已知直角三角形两直角边长之和为7,面积为6,则斜边长为( ) A. 5 B.C. 7D.12.如图,已知:45°<∠A <90°,则下列各式成立的是( )A.sin cos A A =B.sin cos A>AC.sin tan A>AD.sin cos A<A二、填空题(每小题3分,共18分)13.(2013·陕西中考)比较大小:8cos 31︒35.(填“>”“=”或“<”)14.(2014·山西中考)如图,在△ABC 中,∠BAC =30°,AB =AC ,AD是BC 边上的中线,∠ACE =12∠BAC ,CE 交AB 于点E ,交AD 于点F ,若BC =2,则EF 的长为 . 15.如图,小兰想测量南塔的高度,她在A 处仰望塔顶,测得仰角为30°,再往塔的方向前进50 m 至B 处,测得仰角为60°,那么塔高约为 _________ m.(小兰身高忽略不计,31732.≈)A B C第12题图①1AB C②2ABC第17题图第14题图16.已知等腰三角形的腰长为2,腰上的高为1,则它的底角等于________ .17.图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图②所示的“数学风车”,则这个风车的外围周长是__________. 18.(2013· 杭州中考)在△ABC 中,∠90°,AB =2BC ,现给出下列结论:①sin A =32;②cos B =12;③tan A =33;④tan B =3, 其中正确的结论是 .(只需填上正确结论的序号)三、解答题(共78分)19.(8分)计算下列各题:,此时自B 处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5 m ,请你计算出该建筑物的高度.(取3≈1.732,结果精确到1 m )23.(8分)如图,在梯形ABCD 中,∥AD BC ,AB CD AD ==,⊥BD CD . (1)求sin ∠DBC 的值;(2)若BC 长度为4cm ,求梯形ABCD 的面积.24.(10分)(2014·成都中考)如图,在一次数学课外实践活动中,小文在点C 处测得树的顶端A 的仰角为37°,BC =20 m ,求树的高度AB .(参考数据:sin 370.60≈o ,cos 370.80≈o ,tan 370.75≈o )25.(10分)如图,在小山的东侧A 处有一热气球,以每分钟30m 的速度沿着仰角为60°的方向上升,20 min 后升到B 处,这时热气球上的人发现在A 的正西方向俯角为45°的C 处有一着火点,求热气球的升空点A 与着火点C 的距离(结果保留根号). 26.(14分)(2014·福州中考)如图(1),点O 在线段AB 上,AO =2,OB =1,OC 为射线,且∠BOC =60︒,动点P 以每秒2个单位长度的速度从点O 出发,沿射线OC 做匀速运动,设运动时间为t 秒.(1)当t =12秒时,则OP = ,S △ABP = ;(2)当△ABP 是直角三角形时,求t 的值; (3)如图(2),当AP =AB 时,过点A 作AQ ∥BP ,并使得∠QOP =∠B ,求证:AQ ·BP =3.第26题图BC A东 西 45°60°第25题图 第24题图第24章 解直角三角形检测题参考答案1.C 解析:2.D 解析:在Rt ABC △中,∵ 90C ∠=︒,40A ∠=︒,∴ 50B =︒∠,∴ tan tan 50ACB BC =︒=,∴ tan 503tan 50AC BC =︒=︒g .3.C 解析:3sin 5BC A AB == .4.B 解析:如图,过点D 作DE ∥AB 交BC 于点E ,则四边形ABED 是平行四边形, ∴ BE =AD =6.∵ AB ⊥AC ,∴ DE ⊥AC .∵ CA 是∠BCD 的平分线,∴ CD =CE . ∵ AD ∥BC ,∴ ∠ACB =∠DAC =∠DCA .∴ CD =AD =6. ∴ BC =BE +CE =BE +CD =6+6=12. ∴ AC ===8.∴ tan B ===2.5.C 解析:设BN 的长为x ,则AN =9-x ,由题意得DN =AN =9-x .因为D 为BC 的中点,所以132BD BC ==.在Rt △BND 中,∠B =90°,由勾股定理得222BN BD ND +=,即2223(9)x x +=-,解得4x =. 6.C 解析:设,则,,所以,所以△是直角三角形,且∠.所以在△ABC 中,135135==x x AB BC . 7.A 解析:设AB x =.由题意知AE BC x ==,2BE DE x ==,∴ (21)AD x =+. 在Rt ABD △中,22422BD AB AD x =+=+,又2BF BE x ==, ∴ (21)CF BF BC x =-=-.根据条件还可以得出45ABE AEB EBF ===︒∠∠∠,EBD EDB ∠=∠=22.5FBD ∠=︒,67.5AGB ABG ∠=∠=︒.A.在Rt ABD △中,tan 21(21)AB ADB AD x ===-+∠, ∴ 1tan 2ADB +∠=,故选项A 正确.B.2255(21)BC x CF x =≠=,故选项B 错误.C.226767.5AEB DEF ∠+︒=︒≠∠=︒,故选项C 错误.D.∵ cos cos 422AB AGB ABG BD ∠=∠=+,∴ 4cos 6AGB ∠≠D 错误. 第4题答图8.A 解析:先由坡比的定义,得BC∶AC=1∶.由BC=6 m,可得AC=6m. 在Rt△ABC 中,由勾股定理,得AB==12(m).9.B 解析:设小球距离地面的高度为则小球水平移动的距离为所以解得10.B 解析:设又因为在菱形中,所以所以所以由勾股定理知所以211.A 解析:设直角三角形的两直角边长分别为则在△QFA和△PFO中,∵∠QAF=∠FOP,∠QFA=∠PFO,∴△QFA∽△PFO.∴FQ FAFP FO=,即FQ FPFA FO=.又∵∠PFQ=∠OFA,∴△PFQ∽△OFA.∴∠3=∠1. ∵∠AOC=∠2+∠B=∠1+∠QOP,∠B=∠QOP,∴∠1=∠2.∴∠2=∠3.∴△APQ∽△BPO.∴AQ APBO BP=.∴AQ·BP=AP·BO=3⨯1=3.第26题答图(4)。
九年级上册数学单元测试卷-第24章 解直角三角形-华师大版(含答案)
九年级上册数学单元测试卷-第24章解直角三角形-华师大版(含答案)一、单选题(共15题,共计45分)1、长度分别为,,的三条线段能组成一个三角形,的值可以是()A. B. C. D.2、下列长度的三条线段,能组成三角形的是()A. ,,B. ,,C. ,,D. ,,3、平行四边形中一边长为10cm,则其两条对角线的长度可以是()A.4cm,6cmB.6cm,8cmC.8cm,12cmD.20cm,30cm4、的值等于()A. B. C. D.5、如图,△ABC的顶点是正方形网格的格点,则cos∠C=()A. B. C. D.6、如图,AB是⊙O 的直径,点D是半径OA的中点,过点D作CD⊥AB,交⊙O 于点C,点E为弧BC的中点,连结ED并延长ED交⊙O于点F,连结AF、BF,则()A.sin∠AFE=B.cos∠BFE=C.tan∠EDB=D.tan∠BAF=7、等腰三角形底边长为6,周长为22,则腰长是()A.11B.10C.8D.68、如图,AC是电线杆AB的一根拉线,测得BC的长为6米,∠ACB=50°,则拉线AC的长为()A. 米B. 米C.6cos50°米D. 米9、如图,有两张矩形纸片ABCD和EFGH、AB=EF=2cm,BC=FG=8cm,把纸片ABCD交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合,当两张纸片交叉所成的角最小α时,tanα等于()A. B. C. D.10、如图,在矩形ABCD中,以点A为圆心,AD的长为半径画弧,交AB于点E,取BC的中点F,过点F作一直线与AB平行,且交弧DE于点G,则∠AGF的度数为()A.110°B.120°C.135°D.150°11、如图,在中,,以点为圆心,任意长为半径画弧,分别与,交于点,,再分别以点,为圆心,大于的长为半径画弧,两弧在内部相交于点,作射线,交边于点.若cos,则的长为()A.2B.3C.4D.612、已知三角形的三边为4、5、x ,则不可能是()A.6B.5C.4D.113、如图,等边△ABC的边长为1,D,E两点分别在边AB,AC上,CE=DE,则线段CE的最小值为()A.2﹣B.2 ﹣3C.D.14、已知为锐角,且sin(-10°)=,则等于()A.50°B.60°C.70°D.80°15、如图,点是以为直径的半圆上的动点,于点,连接,设,则下列函数图象能反映与之间关系的是()A. B. C.D.二、填空题(共10题,共计30分)16、如图,已知∠ABM=37°,AB=20,C是射线BM上一点.(1)在下列条件中,可以唯一确定BC长的是________ .(填写所有符合条件的序号)①AC=13;②tan∠ACB=;③连接AC,△ABC的面积为126.(2)在(1)的答案中,选择一个作为条件,画出草图,BC=________.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)17、如图水库堤坝的横断面是梯形,BC长为30m,CD长为20 m,斜坡AB的坡比为1:3,斜坡CD的坡比为1:2,则坝底的宽AD为________m 。
九年级数学上册《第二十四章-解直角三角形》单元测试卷及答案-华东师大版
九年级数学上册《第二十四章 解直角三角形》单元测试卷及答案-华东师大版班级 姓名 学号一、选择题1.如图,利用标杆BE 测量建筑物的高度.已知标杆BE 高1.2m ,AB :AC=1:9,则建筑物CD 的高是( )A .9.6mB .10.8mC .12mD .14m2.如图,在矩形ABCD 中,已知AE BD ⊥于E ,∠BDC=60°,BE=1,则AB 的长为( )A .3B .2C .3D 33.已知33tanA =,A ∠是锐角,则A ∠的度数为( ) A .30︒B .45︒C .60︒D .90︒4.用计算器求 sin 2437︒' 的值,以下按键顺序正确的是( )A .B .C .D .5.如图,在Rt ABC 中,90C ∠=︒和13cosA =,则tanB 的值为( )A .2B .3C 32D 2 6.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高2m ,测得3m 6m AB BC ==,.则建筑物CD 的高是( )A .4mB .9mC .8mD .6m7.边长为5,7,8的三角形的最大角和最小角的和是( ).A .90°B .150°C .135°D .120°8.如图,在Rt ABC 中,∠BAC=90°,若AB=6,AC=8,点D 是AC 上一点,且13CD AD =,则sin DBC ∠的值为( ).A .25B .210C .26D .159.如图,某超市电梯的截面图中,AB 的长为15米,AB 与AC 的夹角为α,则高BC 是( )A .15αsin 米B .15αcos 米C .15αsin 米 D .15αcos 米 10.如图,在一笔直的沿湖道路l 上有A 、B 两个游船码头,观光岛屿C 在码头A 北偏东60︒的方向,在码头B 北偏西45︒的方向4km AC =游客小张准备从观光岛屿C 乘船沿CA 回到码头A 或沿CB 回到码头B ,设开往码头A 、B 的游船速度分别为1v 、2v ,若回到A 、B 所用时间相等,则12v v =:( )A 2B .22C .4D .6二、填空题11.如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA 由B 向A 走去当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得BC =3米,CA =1米,则树的高度为 米.12.已知在ABC 中=AB AC ,∠C=30°,AB ⊥AD ,AD=2cm ,则BC 的长等于 .13.如图,已知大正方形ABCD 的面积是25,小正方形EFGH 的面积是1,那么sin ADF ∠= .14.河堤横断面如图所示,斜坡AB 的坡度3i =:(即BC :AC ),6m AB =则BC 的长是 .三、解答题15.为测量一棵大树的高度,设计的测量方案如图所示:标杆高度3m CD = 人的眼睛A 、标杆的顶端C 和大树顶端M 在一条直线上,标杆与大树的水平距离14m DN =,人的眼睛与地面的高度1.6m AB = 人与标杆CD 的水平距离2m BD =,B 、D 、N 三点共线 AB BN CD BN MN BN ⊥⊥⊥,, 求大树MN 的高度.16.如图,在矩形ABCD 中,两条对角线相交于点O ,120 2.5AOD AB ∠=︒=,求这个矩形对角线的长.17.先化简,再求代数式2311442a a a a +⎛⎫÷+ ⎪+++⎝⎭的值,其中2cos302tan45a =︒-︒.18.如图,小聪全家自驾到某风景区旅游,到达A 景点后,导航显示沿北偏西60︒方向行驶8千米到达B 景点,在B 景点查询C 景点显示在北偏东45︒方向上,到达C 景点,小聪发现C 景点恰好在A 景点的正北方向,求B ,C 两景点的距离.四、综合题19.小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB 的影长OC 为16米,OA 的影长OD 为20米,小明的影长FG 为2.4米,其中O 、C 、D 、F 、G 五点在同一直线上,A 、B 、O 三点在同一直线上,且AO OD ⊥,EF FG ⊥已知小明的身高EF 为1.8米.(1)求建筑物OB的高度;(2)求旗杆的高AB.20.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=8,AB=12,求DEDF的值.21.如图,点E是矩形ABCD中CD边上一点,BCE沿BE折叠为BFE,点F落在AD上.(1)求证:ABF DFE~;(2)若2sin=3DFE∠,AF=6,求BF的值.22.如图,在一片海域中有三个岛屿,标记为A,B,C.经过测量岛屿B在岛屿A的北偏东65︒,岛屿C在岛屿A的南偏东85︒,岛屿C在岛屿B的南偏东70︒.(1)直接写出ABC 的三个内角度数;(2)小明测得较近两个岛屿10km AB =,求BC 、AC 的长度(最终结果保留根号,不用三角函数表示).参考答案与解析1.【答案】B【解析】【解答】解:∵EB ∥CD∴△ABE ∽△ACD ∴BE AB CD AC = ,即 1.219CD = ∴CD=10.8(米). 故答案为:B.【分析】利用EB ∥CD 可证得△ABE ∽△ACD ,利用相似三角形的对应边成比例,可得比列式,即可求出CD 的长.2.【答案】B 【解析】【解答】解:四边形ABCD 为矩形60BDC ∠=︒=60ABD ∴∠︒AE BD ⊥30BAE ∴∠=︒AB 2∴=故答案为:B .【分析】由矩形的性质求出∠ABD=90°,利用三角形内角和求出∠BAE=30°,再根据含30°角的直角三角形的性质即可求解.3.【答案】A【解析】【解答】解:∵3tanA =,且A ∠是锐角∴30A ∠=︒ 故答案为:A.【分析】根据特殊角的三角函数值进行解答.4.【答案】A【解析】【解答】解:先按键“sin ”,再输入角的度数24°37′,按键“=”即可得到结果.故答案为:A .【分析】利用计算器的使用步骤得到结论。
2019年华师大版数学上册九年级《第24章解直角三角形》单元测试卷(解析版)
2019年华师大版数学上册九年级《第24章解直角三角形》单元测试卷一.选择题(共15小题)1.具备下列条件的△ABC中,不是直角三角形的是()A.∠A+∠B=∠C B.∠A﹣∠B=∠CC.∠A:∠B:∠C=1:2:3D.∠A=∠B=3∠C2.如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形B.∠1=∠2C.∠1和∠B都是∠A的余角D.∠2=∠A3.如图,已知∠ACB=90°,CD⊥AB,垂足是D,则图中与∠A相等的角是()A.∠1B.∠2C.∠B D.∠1、∠2和∠B 4.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C(∠C除外)相等的角的个数是()A.3个B.4个C.5个D.6个5.Rt△ABC中,∠C=90°,∠B=54°,则∠A的度数是()A.66°B.36°C.56D.46°6.在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC7.下列命题:(1)相等的角是对顶角.(2)同位角相等(3)直角三角形的两个锐角互余.(4)若两条线段不相交,则两条线段平行.其中正确的命题个数有()A.1个B.2个C.3个D.4个8.如果直角三角形的一个锐角是另一个锐角的4倍,那么这个直角三角形中一个锐角的度数是()A.9°B.18°C.27°D.36°9.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果AC=3,AB=6,那么AD 的值为()A.B.C.D.310.如图,△ABC中,点D在线段BC上,且∠BAD=∠C,则下列结论一定正确的是()A.AB2=AC•BD B.AB•AD=BD•BCC.AB2=BC•BD D.AB•AD=BD•CD11.已知,在Rt△ABC中,∠C=90°,AC=3,BC=4,则sin A的值为()A.B.C.D.12.当锐角A的cos A>时,∠A的值为()A.小于45°B.小于30°C.大于45°D.大于30°13.如果α是锐角,且sinα=,那么cos(90°﹣α)的值为()A.B.C.D.14.在Rt△ABC中,∠C=90°,sin B=,则tan A的值为()A.B.C.D.15.已知sin A=,则锐角A的度数是()A.30°B.45°C.60°D.75°二.填空题(共8小题)16.在Rt△ABC中,∠C=Rt∠,∠A=70°,则∠B=.17.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有(填序号)18.已知:如图,在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,M为AB边的中点,连结ME、MD、ED.设AB=4,∠DBE=30°,则△EDM的面积为.19.如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP为直角三角形时,∠A=°.20.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为.21.如图,若CD是Rt△ABC斜边上的高,AD=3,CD=4,则BC=.22.在△ABC中,∠C=90°,sin A=,BC=4,则AB值是.23.比较大小:sin44°cos44°(填>、<或=).三.解答题(共3小题)24.如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.25.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.26.在△ABC中,∠B、∠C均为锐角,其对边分别为b、c,求证:=.2019年华师大版数学上册九年级《第24章解直角三角形》单元测试卷参考答案与试题解析一.选择题(共15小题)1.具备下列条件的△ABC中,不是直角三角形的是()A.∠A+∠B=∠C B.∠A﹣∠B=∠CC.∠A:∠B:∠C=1:2:3D.∠A=∠B=3∠C【分析】由直角三角形内角和为180°求得三角形的每一个角,再判断形状.【解答】解:A中∠A+∠B=∠C,即2∠C=180°,∠C=90°,为直角三角形,同理,B,C均为直角三角形,D选项中∠A=∠B=3∠C,即7∠C=180°,三个角没有90°角,故不是直角三角形,故选:D.【点评】注意直角三角形中有一个内角为90°.2.如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形B.∠1=∠2C.∠1和∠B都是∠A的余角D.∠2=∠A【分析】在△ABC中,∠ACB=90°,CD⊥AB,因而△ACD∽△CBD∽△ABC,根据相似三角形的对应角相等,就可以证明各个选项.【解答】解:∵∠ACB=90°,CD⊥AB,垂足为D,∴△ACD∽△CBD∽△ABC.A、∵图中有三个直角三角形Rt△ACD、Rt△CBD、Rt△ABC;故本选项正确;B、应为∠1=∠B、∠2=∠A;故本选项错误;C、∵∠1=∠B、∠2=∠A,而∠B是∠A的余角,∴∠1和∠B都是∠A的余角;故本选项正确;D、∵∠2=∠A;故本选项正确.故选:B.【点评】本题主要考查了直角三角形的性质,直角三角形斜边上的高,把这个三角形分成的两个三角形与原三角形相似.3.如图,已知∠ACB=90°,CD⊥AB,垂足是D,则图中与∠A相等的角是()A.∠1B.∠2C.∠B D.∠1、∠2和∠B 【分析】根据直角三角形的两个锐角互余,以及同角的余角相等即可判断.【解答】解:∵∠ACB=90°,即∠1+∠2=90°,又∵直角△ACD中,∠A+∠1=90°,∴∠A=∠2.故选:B.【点评】本题考查了直角三角形的性质:直角三角形的两个锐角互余,以及余角的性质:同角的余角相等.4.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C(∠C除外)相等的角的个数是()A.3个B.4个C.5个D.6个【分析】由“直角三角形的两锐角互余”,结合题目条件,得∠C=∠BDF=∠BAD=∠ADE.【解答】解:∵AD是斜边BC上的高,DE⊥AC,DF⊥AB,∴∠C+∠B=90°,∠BDF+∠B=90°,∠BAD+∠B=90°,∴∠C=∠BDF=∠BAD,∵∠DAC+∠C=90°,∠DAC+∠ADE=90°,∴∠C=∠ADE,∴图中与∠C(除之C外)相等的角的个数是3,故选:A.【点评】此题考查了直角三角形的性质,余角的性质,掌握直角三角形的两锐角互余是解题的关键.5.Rt△ABC中,∠C=90°,∠B=54°,则∠A的度数是()A.66°B.36°C.56D.46°【分析】根据直角三角形的两个锐角互余,即可得出∠A的度数.【解答】解:∵Rt△ABC中,∠C=90°,∠B=54°,∴∠A=90°﹣∠B=90°﹣54°=36°;故选:B.【点评】本题考查了直角三角形的性质:直角三角形的两个锐角互余;熟练掌握直角三角形的性质,并能进行推理计算是解决问题的关键.6.在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC【分析】根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.【点评】本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.7.下列命题:(1)相等的角是对顶角.(2)同位角相等(3)直角三角形的两个锐角互余.(4)若两条线段不相交,则两条线段平行.其中正确的命题个数有()A.1个B.2个C.3个D.4个【分析】此题考查的知识点多,用平行线的性质,对顶角性质,余角的定义等来一一验证,从而求解.【解答】解:①相等的角不一定是对顶角,故错误;②两直线同位角相等,故错误;③直角三角形两锐角互余,故正确;④在同一平面内,若两条直线不相交,则两直线平行,故错误.综上可得只有③正确.故选:A.【点评】本题考查了命题与定理的知识,涉及知识较多,请同学们认真阅读,最好借助图形来解答.8.如果直角三角形的一个锐角是另一个锐角的4倍,那么这个直角三角形中一个锐角的度数是()A.9°B.18°C.27°D.36°【分析】根据直角三角形的两个角互余即可求解.【解答】解:设较小的锐角是x度,则另一角是4x度.则x+4x=90,解得:x=18°.故选:B.【点评】本题主要考查了直角三角形的性质,两锐角互余.9.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果AC=3,AB=6,那么AD 的值为()A .B .C .D .3【分析】根据射影定理得到:AC 2=AD •AB ,把相关线段的长度代入即可求得线段AD 的长度.【解答】解:如图,∵在Rt △ABC 中,∠ACB =90°,CD ⊥AB , ∴AC 2=AD •AB , 又∵AC =3,AB =6,∴32=6AD ,则AD =. 故选:A .【点评】本题考查了射影定理.每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.10.如图,△ABC 中,点D 在线段BC 上,且∠BAD =∠C ,则下列结论一定正确的是( )A .AB 2=AC •BD B .AB •AD =BD •BC C .AB 2=BC •BDD .AB •AD =BD •CD【分析】先证明△BAD ∽△BCA ,则利用相似的性质得AB :BC =BD :AB ,然后根据比例性质得到AB 2=BC •BD . 【解答】解:∵∠BAD =∠C , 而∠ABD =∠CBA , ∴△BAD ∽△BCA , ∴AB :BC =BD :AB , ∴AB 2=BC •BD . 故选:C .【点评】本题考查了射影定理:直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项;每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.也考查了相似三角形的判定与性质.11.已知,在Rt△ABC中,∠C=90°,AC=3,BC=4,则sin A的值为()A.B.C.D.【分析】根据勾股定理,可得AB的长,根据角的正弦,等于角的对边比斜边,可得答案.【解答】解:由勾股定理得AB==5,sin A=,故选:D.【点评】本题考查了锐角三角函数的定义,先求出斜边,再求出正弦值.12.当锐角A的cos A>时,∠A的值为()A.小于45°B.小于30°C.大于45°D.大于30°【分析】明确cos45°=,余弦函数随角增大而减小进行分析.【解答】解:根据cos45°=,余弦函数随角增大而减小,则∠A一定小于45°.故选:A.【点评】熟记特殊角的三角函数值,了解锐角三角函数的增减性是解题的关键.13.如果α是锐角,且sinα=,那么cos(90°﹣α)的值为()A.B.C.D.【分析】根据互为余角三角函数关系,解答即可.【解答】解:∵α为锐角,,∴cos(90°﹣α)=sinα=.故选:B.【点评】本题考查了互为余角的三角函数值,熟记三角函数关系式,是正确解答的基础.14.在Rt△ABC中,∠C=90°,sin B=,则tan A的值为()A.B.C.D.【分析】根据一个角的余弦等于它余角的正弦,可得∠A的余弦,根据同角三角函数的关系,可得∠A的正弦,∠A的正切.【解答】解:由Rt△ABC中,∠C=90°,sin B=,得cos A=sin B=.由sin2A+cos2A=1,得sin A==,tan A===.故选:D.【点评】本题考查了互余两角三角函数的关系,利用一个角的余弦等于它余角的正弦得出∠A的余弦是解题关键.15.已知sin A=,则锐角A的度数是()A.30°B.45°C.60°D.75°【分析】根据30°角的正弦值等于解答.【解答】解:∵sin A=,∴A=30°.故选:A.【点评】本题考查了特殊角的三角函数值,需熟记.二.填空题(共8小题)16.在Rt△ABC中,∠C=Rt∠,∠A=70°,则∠B=20°.【分析】根据直角三角形两锐角互余列式计算即可得解.【解答】解:∵∠C=Rt∠,∠A=70°,∴∠B=90°﹣∠A=90°﹣70°=20°.故答案为:20°.【点评】本题考查了直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.17.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有①②③(填序号)【分析】根据有一个角是直角的三角形是直角三角形进行分析判断.【解答】解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∠C=90°,则该三角形是直角三角形;②∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=90°,则该三角形是直角三角形;③∠A=90°﹣∠B,则∠A+∠B=90°,∠C=90°.则该三角形是直角三角形;④∠A=∠B=∠C,则该三角形是等边三角形.故能确定△ABC是直角三角形的条件有①②③.【点评】此题要能够结合已知条件和三角形的内角和定理求得角的度数,根据直角三角形的定义进行判定.18.已知:如图,在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,M为AB边的中点,连结ME、MD、ED.设AB=4,∠DBE=30°,则△EDM的面积为.【分析】由条件知△ABE,三角形ADB是直角三角形,且EM,DM分别是它们斜边上的中线,证明∠EMD=2∠DAC=60°,从而可得三角形DME是边长为2的等边三角形可得到问题答案.【解答】解:∵在△ABC中,AD⊥BC,BE⊥AC,∴△ABE,△ADB是直角三角形,∴EM,DM分别是它们斜边上的中线,∴EM=DM=AB,∵ME=AB=MA,∴∠MAE=∠MEA,∴∠BME=2∠MAE,同理,MD=AB=MA,∴∠MAD=∠MDA,∴∠BMD=2∠MAD,∴∠EMD=∠BME﹣∠BMD=2∠MAE﹣2∠MAD=2∠DAC=60°,=.所以△DEM是边长为2的正三角形,所以S△DEM故答案为:.【点评】本题考查了直角三角形的性质以及等边三角形的判定和性质和等边三角形的面积计算,题目综合性很好.19.如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP为直角三角形时,∠A=50或90°.【分析】分别从若AP⊥ON与若PA⊥OA去分析求解,根据三角函数的性质,即可求得答案.【解答】解:当AP⊥ON时,∠APO=90°,则∠A=50°,当PA⊥OA时,∠A=90°,即当△AOP为直角三角形时,∠A=50或90°.故答案为:50或90.【点评】此题考查了直角三角形的性质,注意掌握数形结合思想与分类讨论思想的应用.20.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为4.【分析】根据射影定理得到:CD2=AD•BD,把相关线段的长度代入计算即可.【解答】解:∵在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,∴CD2=AD•BD=8×2,则CD=4.故答案是:4.【点评】本题考查了射影定理.Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:①AD2=BD•DC;②AB2=BD•BC;AC2=CD•BC.21.如图,若CD是Rt△ABC斜边上的高,AD=3,CD=4,则BC=.【分析】由三角形的性质:直角三角形中,斜边上的高是两条直角边在斜边上的射影比例中项,即CD2=AD×BD,可将BD的长求出,然后在Rt△BCD中,根据勾股定理可将BC的边求出.【解答】解:∵若CD是Rt△ABC斜边上的高,AD=3,CD=4∴CD2=AD×BD,即42=3×BD解得:BD=在Rt△BCD中,∵BC2=CD2+BD2,∴BC===.故答案为:.【点评】本题主要考查三角形的性质及对勾股定理的应用.22.在△ABC中,∠C=90°,sin A=,BC=4,则AB值是10.【分析】根据正弦函数的定义得出sin A=,即=,即可得出AB的值.【解答】解:∵sin A=,即=,∴AB=10,故答案为:10.【点评】本题主要考查解直角三角形,熟练掌握正弦函数的定义是解题的关键.23.比较大小:sin44°<cos44°(填>、<或=).【分析】首先根据互余两角的三角函数的关系,得cos44°=sin46°,再根据正弦值随着角的增大而增大,进行分析.【解答】解:∵cos44°=sin46°,正弦值随着角的增大而增大,又∵44°<46°,∴sin44°<cos44°.故答案为<.【点评】本题考查了锐角三角函数的增减性:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大);正切值随着角度的增大(或减小)而增大(或减小).同时考查了互余两角的三角函数的关系.三.解答题(共3小题)24.如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.【分析】在Rt△ABF中,∠A=70,CE,BF是两条高,求得∠EBF的度数,在Rt△BCF 中∠FBC=40°求得∠FBC的度数.【解答】解:在Rt△ABF中,∠A=70,CE,BF是两条高,∴∠EBF=20°,∠ECA=20°,又∵∠BCE=30°,∴∠ACB=50°,∴在Rt△BCF中∠FBC=40°.【点评】本题考查了直角三角形的性质,三角形内角和定理,熟练掌握直角三角形的性质是解题的关键.25.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.【分析】(1)由于∠ACD与∠B都是∠BCD的余角,根据同角的余角相等即可得证;(2)根据直角三角形两锐角互余得出∠CFA=90°﹣∠CAF,∠AED=90°﹣∠DAE,再根据角平分线的定义得出∠CAF=∠DAE,然后由对顶角相等的性质,等量代换即可证明∠CEF=∠CFE.【解答】证明:(1)∵∠ACB=90゜,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B;(2)在Rt△AFC中,∠CFA=90°﹣∠CAF,同理在Rt△AED中,∠AED=90°﹣∠DAE.又∵AF平分∠CAB,∴∠CAF=∠DAE,∴∠AED=∠CFE,又∵∠CEF=∠AED,∴∠CEF=∠CFE.【点评】本题考查了直角三角形的性质,三角形角平分线的定义,对顶角的性质,余角的性质,难度适中.26.在△ABC中,∠B、∠C均为锐角,其对边分别为b、c,求证:=.【分析】如图,过A作AD⊥BC于D,如果利用三角函数可以分别在△ABD和△ADC中可以得到sin sB,sin C的表达式,由此即可证明题目的结论.【解答】证明:过A作AD⊥BC于D,在Rt△ABD中,sin B=,∴AD=AB sin B,在Rt△ADC中,sin C=,∴AD=AC sin C,∴AB sin B=AC sin C,而AB=c,AC=b,∴c sin B=b sin C,∴=.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.解题的关键是作辅助线把普通三角形转化为直角三角形解决问题.。
(精练)华师大版九年级上册数学第24章 解直角三角形含答案
华师大版九年级上册数学第24章解直角三角形含答案一、单选题(共15题,共计45分)1、已知三角形三边的长为a、b、c,则代数式(a-b)2-c2的值为()A.正数B.负数C.0D.非负数2、长度分别为3,8,x的三条线段能组成一个三角形,x的值可能是( )A.11B.5C.7D.43、在□ABCD中,对角线AC,BD相交于O点,AC=10,BD=8,则AD长的取值范围是()A.AD>1B.AD<9C.1<AD<9D.AD>104、如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A.200米B.200 米C.220 米D.100(+1)米5、平行四边形的一边长是12,那么这个平行四边形的两条对角线的长可以是()A.10和34B.18和20C.14和10D.10和126、如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为()A.()米B.()米C.()米 D.()米7、活动课上,老师给出长度分别是3cm,4cm,7cm,10cm的四根木棒,要求从中任选三根围成一个三角形,下面是四位同学分别选择的结果,你认为能围成三角形的是()A.3cm,4cm,7cmB.3cm,4cm,10cmC.3cm,7cm,10cm D.4cm,7cm,10cm8、如图,某超市自动扶梯的倾斜角为,扶梯长为米,则扶梯高的长为()A. 米B. 米C. 米D. 米9、一艘轮船从港口O出发,以15海里/时的速度沿北偏东60°的方向航行4小时后到达A处,此时观测到其正西方向50海里处有一座小岛B.若以港口O 为坐标原点,正东方向为x轴的正方向,正北方向为y轴的正方向,1海里为1个单位长度建立平面直角坐标系(如图),则小岛B所在位置的坐标是()A.(30 -50,30)B.(30,30 -50)C.(30 ,30) D.(30,30 )10、若菱形的周长为8,高为1,则菱形两邻角的度数比为()A.3:1B.4:1C.5:1D.6:111、在Rt△ABC中,∠C=90°,若BC=1,AB=,则tanA的值为A. B. C. D.212、如图,在Rt△ABC中,∠C = 90°,∠B = 30°,BC =" 4" cm,以点C为圆心,以2 cm的长为半径作圆,则⊙C与AB的位置关系是().A.相离B.相切C.相交D.相切或相交13、若平行四边形的两条对角线长为6 cm和16 cm,则下列长度的线段可作为平行四边形边长的是()A.5cmB.8cmC.12cmD.16cm14、AE,CF是锐角三角形ABC的两条高,如果AE:CF=3:2,则sin∠BAC:sin∠ACB等于()A.3:2B.2:3C.9:4D.4:915、在Rt△ABC中,∠C=90°,sinA= ,则tanB的值为()A. B. C. D.二、填空题(共10题,共计30分)16、定义;在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫做图形的γ(a,θ)变换。
华师大九年级数学上第24章解直角三角形单元测试含答案解析
第24章解直角三角形单元测试一、单选题(共10题;共30分)1.在△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,下列等式:①b=ccosB;②b=atanB;③a=csinA;④a=ccosB;⑤a=btanA;⑤a=bcotA,其中正确的有()A.1 个B.2 个C.3个D.4个2.Rt△ABC中,∠C=90°,已知cosA=,那么tanA等于( )A. B. C. D.3.在平面直角坐标系中,已知点A(3,0),点B(0,-4),则tan∠OAB的值为().A. B. C. D.4.cos30o=()A. B. C. D.5.如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔60海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为()A.302海里B.303海里C.60海里D.306海里6.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.某同学站在离国旗旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,若这位同学的目高1.6米,则旗杆的高度为()A. 米B.米C.米D.米7.周末,小明和小华来滨湖新区渡江纪念馆游玩,看到高雄挺拔的“胜利之塔”,萌发了用所学知识测量塔高的想法,如图,他俩在塔AB前的平地上选择一点C,树立测角仪CE,测出看塔顶的仰角约为30°,从C点向塔底B走70米到达D点,测出看塔顶的仰角约为45°,已知测角仪器高为1米,则塔AB的高大约为(3≈1.7)()A、141米B、101米C、91米D、86米8.如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡顶A处的俯角为15°,山脚处B的俯角为60°,已知该山坡的坡度i=1: 3 ,点P、H、B、C、A在同一个平面上,点HBC在同一条直线上,且PH⊥BC,则A到BC的距离为()A.10 3 米B.15米C.20 3 米D.30米9.下列是张悦、王强和赵涵的对话,张悦:“从学校向西直走500米,再向北直走100米就到医院了”.王强:“从学校向南直走300米,再向西直走200米就到电影院了.”赵涵:“火车站在电影院正北方向的200米处.”,则医院与火车站相距()A、100 米B、200米C、300米D、500米10.小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为()A.10米B.12米C.15米D.22.5米二、填空题(共8题;共25分)11.如图,三角尺在灯泡O的照射下在墙上形成影子,现测得OA=20cm,=50cm,则这个三角尺的面积与它在墙上所形成影子图形的面积之比是________。
第24章 解直角三角形数学九年级上册-单元测试卷-华师大版(含答案)
第24章解直角三角形数学九年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB,AC于点D,E,则下列结论正确的是()A.AE=3CEB.AE=2CEC.AE=BDD.BC=2CE2、如图,线段是⊙的直径,弦,垂足为,点是上任意一点,,则的值为()A. B. C. D.3、在Rt△ABC中,∠C=90°,若AB=2AC,则sinA 的值是()A. B. C. D.4、如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A. B. C. D.5、已知等腰△ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为()A.45°B.75°C.45°或15°或75°D.60°6、以下列各组线段为边,能组成三角形的是()A.4cm,5cm,6cmB.8cm,2cm,5cmC.12cm,5cm,6cm D.3cm,6cm,3cm7、如图,,是角平分线上一点,,垂足为,点是的中点,且,如果点是射线上一个动点,则的最小值是()A.1B.C.2D.8、如图,已知∠ACB=60°,PC=12,点M,N在边CB上,PM=PN.若MN=3,则CM的长为()A.3B.C.4D.9、定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角的正对记作,即底边:腰.如图,在中,,.则()A. B. C.1 D.210、等腰三角形的两边长分别为5cm和10cm,则此三角形的周长是()A.25cmB.20cmC.15cmD.20cm或25cm11、如图,已知P是射线OB上的任意一点,PM⊥OA于M,且OM:OP=4:5,则cosα的值等于( )A. B. C. D.12、已知:如图,在△ABC中,∠AED=∠B,则下列等式成立的是()A. B. C. D.13、如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A. B. C. D.14、如图,正方形中,为的中点,为上一点,,设,则的值等于().A. B. C. D.15、在中,,,则的值等于()A. B. C. D. 或二、填空题(共10题,共计30分)16、计算:2sin45°cos45°=________.17、如图,已知等边的边长是6,点D在AC上,且延长BC到E,使,连接点F,G分别是AB,DE的中点,连接FG,则FG的长为________.18、如图,优弧纸片所在的半径为2,,点为优弧上一点(点不与,重合),将图形沿折叠,得到点的对称点.当与相切时,则折痕的长________.19、如图,在△ABC中,,,AD是△ABC的中线,AE是∠BAD的角平分线,DF//AB交AE的延长线于点F,则DF的长为________.20、如图,点是圆形纸片的圆心,将这个圆形纸片按下列要求折叠,使弧和弧都经过圆心,已知的半径为,则阴影部分的面积是________.21、已知等边的边长为3,点在直线上,点在直线上,且,若,则的长为________.22、在直角三角形ABC中,若2AB=AC,则cosC=________.23、已知tanα= ,那么sinα=________.(其中α为锐角)24、如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30o得到正方形AB′C′D′,则它们的公共部分的面积等于________ 。
第24章 解直角三角形单元测试卷及参考答案
图(1)图(2)第24章 解直角三角形单元测试卷姓名____________ 时间: 90分钟 满分:120分 总分____________ 一、选择题(每小题3分,共30分)1. 如图(1)所示,在△ABC 中,︒=∠90B ,AB BC 2=,则A cos 等于 【 】 (A )25 (B )21 (C )552 (D )552. 如图(2)所示,在Rt △ABC 中,︒=∠90BAC ,BC AD ⊥于点D ,如果α=∠ABC ,那么下列结论 错误的是 【 】 (A )αsin ACBC =(B )αtan ⋅=AD CD (C )αcos ⋅=AB BD (D )αcos ⋅=AD AC3. 如图(3)所示,在菱形ABCD 中,AB DE ⊥,2,53cos ==BE A ,则DBE ∠tan 的值是 【 】图(3)(A )21(B )2 (C )25 (D )554. 在Rt △ABC 中,︒=∠90C ,已知54sin =A ,则A cos 的值为 【 】 (A )54(B )1 (C )53 (D )525. 如图(4)所示,△ABC 的顶点是正方形网格的格点,则A sin 的值为 【 】图(4)CBA(A )21(B )55 (C )1010 (D )5526. 如图(5)所示,已知︒=∠60AOB ,点P 在边OA 上,,12=OP 点M 、N 在边OB 上,PN PM =,若2=MN ,则OM 等于 【 】A B图(5)N OPM(A )3 (B )4 (C )5 (D )67. 如图(6)所示,在矩形ABCD 中,点E 在AB 边上,沿CE 折叠矩形ABCD ,使点B 落在AD 边上的点F 处,若,5,4==BC AB 则AFE ∠tan 的值为 【 】图(6)D(A )54 (B )53 (C )43 (D )358. 如图(7)所示,在Rt △ABC 中,︒=∠90C ,︒=∠30A ,E 为AB 上一点,且1:4:=EB AE ,AC EF ⊥于点F ,连结FB ,则CFB ∠tan 的值等于【 】(A )33 (B )332 (C )335 (D )35 图(7)图(8)9. 小明利用测角仪和旗杆的拉绳测量学校旗杆的高度,如图(8)所示,旗杆P A 的高度与拉绳PB 的长度相等.小明将PB 拉到PB′的位置,测得α=∠C PB '(C B '为水平线),测角仪D B '的高度为1米,则旗杆P A 的高度为 【 】(A )αsin 11-米 (B )αsin 11+米(C )αcos 11-米 (D )αcos 11+米10. 如图(9)所示,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD 长2米,且与灯柱BC 成︒120角,路灯采用圆锥形灯罩,灯罩的轴线DO 与灯臂CD 垂直,当灯罩的轴线DO 通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC 的高度应该设计为 【 】A图(9)O DBC(A )()2211-米 (B )()22311-米 (C )()3211-米 (D )()4311-米二、填空题(每小题3分,共15分)11. 如图(10)所示,在△ABC 中,12,==BC AC AB ,BD 为高,M 为AB 的中点,且5=DM ,则△ABC 的面积为_________.图(10)图(11)MNBCAD12. 在△ABC 中,如果B A ∠∠、满足021cos 1tan 2=⎪⎭⎫⎝⎛-+-B A ,那么=∠C _________.13. 如图(11)所示,正方形ABCD 的边长为4,N 是DC 的中点,M 是AD 上异于D 的点,且MBC NMB ∠=∠,则=∠ABM tan _________.14. 一般地,当βα,为任意角时,()βα+sin 与()βα-sin 的值可以用下面的公式求得:()βαβαβαsin cos cos sin sin +=+,()βαβαβαsin cos cos sin sin -=-.例如:()4622223222145sin 30cos 45cos 30sin 4530sin 75sin +=⨯+⨯=︒︒+︒︒=︒+︒=︒类似地,可以求得=︒15sin __________.15. 如图(12)所示,已知点()0,35A ,直线b x y +=)0(>b 与y 轴交于点B ,连结AB ,若︒=75α,则=b _________.图(12)三、解答题(共75分)16. 计算:(每小题5分,共20分)(1)︒+︒45cos 360sin 2; (2)130sin 560cos 3-︒︒;(3)︒-︒-︒45tan 230cos 1245sin 22; (4)︒-︒-︒︒60cos 2345tan 60sin 230sin 2.17.(8分)先化简,再求值:1211222++-÷⎪⎭⎫ ⎝⎛+-x x x x x x ,其中︒=30sin x .18.(11分)如图(13)所示,在△ABC 中,AC BE BC AD ⊥⊥,,垂足分别为D 、E ,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当1=AC时,求BF的长.tan=∠ABD,3 Array图(13)19.(12分)如图(14)所示,在矩形ABCD中,点E是BC边上的点,AEAE⊥=,,垂足为点F,连结DE.BCDF(1)求证:DFAB=;(2)若,6=ABAD求EDF10=,tan的值.∠Array图(14)20.(12分)如图(15)所示,小强从自己家的阳台上看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,小强家与这栋楼的水平距离为42 m,这栋楼有多高?图(15)21.(12分)我们定义:等腰三角形中底边与腰的比叫做顶角的正对(记作sad ).如图1,在△ABC 中,AC AB =,顶角A 的正对记作sad A ,这时sad A ABBC==腰底边.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解答下列问题: (1)sad =︒60_________;(2)如图2,在△ABC 中,CA CB =,若sad C 56=,求B tan 的值; (3)如图3,在Rt △ABC 中,︒=∠90C ,若54sin =A ,试求sad A 的值.图 1BCA图 2BAC图 3C第24章 解直角三角形单元测试卷参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共15分)11. 48 12. ︒75 13.3114. 426- 15. 5 三、解答题(共75分)16. 计算:(每小题5分,共20分) (1)︒+︒45cos 360sin 2;解:原式223232⨯+⨯= 62626=+=(2)130sin 560cos 3-︒︒;解:原式1215213-⨯⨯=1= (3)︒-︒-︒45tan 230cos 1245sin 22; 解:原式223322222-⨯-⨯=292321-=--=(4)︒-︒-︒︒60cos 2345tan 60sin 230sin 2.解:原式21231232212⨯--⨯⨯=41324321343131-=-+=--=17.(8分)先化简,再求值:1211222++-÷⎪⎭⎫ ⎝⎛+-x x x x x x ,其中︒=30sin x .解:1211222++-÷⎪⎭⎫ ⎝⎛+-x x x x x x()()()()1111122-=-++⋅+=x x x x x x x x ……………………………………6分当2130sin =︒=x 时……………………………………7分 原式112121-=-=. ……………………………………8分 18.(11分)如图(13)所示,在△ABC 中,AC BE BC AD ⊥⊥,,垂足分别为D 、E ,AD 与BE 相交于点F . (1)求证:△ACD ∽△BFD ;(2)当1tan =∠ABD ,3=AC 时,求BF 的长.图(13)(1)证明:∵AC BE BC AD ⊥⊥, ∴︒=∠+∠︒=∠+∠902,901C C ……………………………………1分 ∴21∠=∠……………………………………2分 ∵︒=∠=∠90BDF ADC ,21∠=∠∴△ACD ∽△BFD ;……………………………………5分 (2)在Rt △ABD 中 ∵1tan =∠ABD ∴1=BDAD……………………………………7分 ∵△ACD ∽△BFD∴13,1===BFBD AD BF AC ∴3=BF .……………………………………9分 19.(12分)如图(14)所示,在矩形ABCD 中,点E是BC边上的点,AE DF BC AE ⊥=,,垂足为点F ,连结DE .(1)求证:DF AB =;(2)若,6,10==AB AD 求EDF ∠tan 的值.图(14)(1)证明:∵四边形ABCD 是矩形 ∴BC AD BC AD ABE =︒=∠,//,90 ……………………………………1分 ∴AEB DAF ∠=∠ ∵AE DF ⊥∴︒=∠=∠90ABE DFA ∵BC AE = ∴DA BC AE == 在△ABE 和△DF A 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠DA AE DAF AEB DFA ABE ∴△ABE ≌△DF A (AAS )……………………………………5分 ∴DF AB =;(2)由(1)可知:△ABE ≌△DF A ∴6==DF AB……………………………………6分 ∵10=AD ∴10=AE在Rt △ABE 中,由勾股定理得:86102222=-=-=AB AE BE……………………………………9分 ∴8=FA∴2=-=FA AE EF……………………………………10分 ∴3162tan ===∠DF EF EDF . ……………………………………12分 20.(12分)如图(15)所示,小强从自己家的阳台上看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,小强家与这栋楼的水平距离为42 m,这栋楼有多高?解:由题意可知:42,=⊥AD BC AD m……………………………………1分 在Rt △ABD 中 ∵ADBDBAD =∠tan ∴3342=BD ∴314=BD m……………………………………6分 在Rt △ACD 中 ∵ADCDCAD =∠tan ∴360tan 42=︒=CD∴342=CD m……………………………………11分 ∴356=+=CD BD BC m……………………………………12分 答:这栋楼的高度为356m.21.(12分)我们定义:等腰三角形中底边与腰的比叫做顶角的正对(记作sad ).如图1,在△ABC 中,AC AB =,顶角A 的正对记作sad A ,这时sad A ABBC==腰底边.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解答下列问题:(1)sad =︒60_________;(2)如图2,在△ABC 中,CA CB =,若sad C 56=,求B tan 的值; (3)如图3,在Rt △ABC 中,︒=∠90C ,若54sin =A ,试求sad A 的值. 解:(1)1;……………………………………3分 (2)作AB CD ⊥.图 2∵CA CB =,AB CD ⊥ ∴AB BD 21=……………………………………4分∵sad C 56=∴56=BC AB 设x AB 6=,则x BC 5=∴x BD 3=在Rt △BCD 中,由勾股定理得:()()xx x BD BC CD 4352222=-=-=……………………………………5分 ∴3434tan ===x x BD CD B . ……………………………………6分 (3)延长AC 至E ,使AE AB =. ……………………………………8分图 3∵54sin =A ∴54=AB BC 设x AB x BC 5,4== ∴x AE 5=在Rt △ABC 中,由勾股定理得:()()xx x BC AB AC 3452222=-=-=……………………………………9分 ∴x AC AE CE 2=-= 在Rt △BCE 中,由勾股定理得:()()xx x CE BC BE 52242222=+=+=∴sad A 552552===x x AB BE .(12分)图 2 mm。
华师大版九年级数学上册 第24章《解直角三角形》单元测试题及答案
华师大版九年级数学上册第24章《解直角三角形》单元检测试卷一、单选题(共10题;共30分)1.在△ABC中,∠C=90°,BC=3,AC=4,则sinA的值是()A. B.C. D.2.一个三角形的两边长分别是3和7,且第三边长为整数,这样的三角形周长最大的值为()A. 15B. 16C. 18D. 193.为测量某河的宽度,小军在河对岸选定一个目标点A,再在他所在的这一侧选点B,C,D,使得AB⊥BC,CD⊥BC,然后找出AD与BC的交点E.如图所示,若测得BE=90m,EC=45m,CD=60m,则这条河的宽AB等于()A. 120mB. 67.5mC. 40mD. 30m4.等腰三角形的周长为20cm,腰长为x cm,底边长为y cm,则底边长与腰长之间的函数关系式为()A. y=20﹣x(0<x<10)B. y=20﹣x(10<x<20)C. y=20﹣2x(10<x<20)D. y=20﹣2x(5<x<10)5.一段拦水坝横断面如图所示,迎水坡AB的坡度为i=1:,坝高BC=6m,则坡面AB的长度()A. 12mB. 18mC. 6D. 126.汶川地震后,抢险队派一架直升飞机去A、B两个村庄抢险,飞机在距地面450米上空的P点,测得A村的俯角为30°,B村的俯角为60°(如图)则A,B两个村庄间的距离是()米.A. 300B. 900C. 300D. 3007.如图,小明晚上由路灯A下的点B处走到点C处时,测得自身影子CD的长为1米,他继续往前走3米到达点E处(即CE=3米),测得自己影子EF的长为2米,已知小明的身高是1.5米,那么路灯A的高度AB是()A. 4.5米B. 6米C. 7.2米 D. 8米8.一个三角形的两边长为2和6,第三边为偶数,则这个三角形的周长为()A. 10B. 12C. 14D. 169.如图,斜面AC的坡度(CD与AD的比)为1:2,AC=3 米,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连.若AB=10米,则旗杆BC的高度为()A. 5米B. 6米C. 8米 D. (3+ )米10.如图,在□ABCD中,AB∶AD=3∶2,∠ADB=60°,那么cosA的值等于()A. B. C.D.二、填空题(共10题;共33分)11.小凡沿着坡角为30°的坡面向下走了2米,那么他下降________米.12.已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是________.13.如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB′的长为________.14.如图,在直角坐标系中,P是第二象限的点,其坐标是(x,8),且OP与x轴的负半轴的夹角α的正切值是 ,则x=________,cosα=________.15.在Rt△ABC中,∠C=90°,如果AC=4,sinB=,那么AB=________16.高4 m的旗杆在水平地面上的影子长6 m,此时测得附近一个建筑物的影长24 m,则该建筑物的高是________m.17.tan________ °=0.7667.18.如图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于________.19.如图,将两块直角三角形的一条直角边重合叠放,已知AC=BC= +1,∠D=60°,则两条斜边的交点E到直角边BC的距离是________.20.已知当x1=a,x2=b,x3=c时,二次函数y= x2+mx对应的函数值分别为y1,y2,y3,若正整数a,b,c恰好是一个三角形的三边长,且当a <b<c时,都有y1<y2<y3,则实数m的取值范围是________.三、解答题(共8题;共57分)21.如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.请问船继续航行多少海里与钓鱼岛A的距离最近?22.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.23.如图,为了测量出楼房AC的高度,从距离楼底C处60 米的点D(点D与楼底C在同一水平上)出发,沿斜面坡度为i=l:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53 °,求楼房AC的高度(参考数据:sin53 °= , cos53 °= , tan53 °= ,≈1.732,结果精确到0.1米)24.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(=1.7).25.“蘑菇石”是我国著名的自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1890m.如图,DE∥BC,BD=1800m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m,可参考数据sin29°≈0.4848,sin80°≈0.9848,cos29°≈0.8746,cos80°≈0.1736)26.在一次数学活动课上,老师带领同学们去测量一座古塔CD的高度.他们首先从A处安置测倾器,测得塔顶C的仰角∠CFE=21°,然后往塔的方向前进50米到达B处,此时测得仰角∠CGE=37°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD的高度.(参考数据:sin37°≈,tan37°≈,sin21°≈,tan21°≈)27.在一次课题学习中,老师让同学们合作编题.某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解.如图,将矩形ABCD的四边BA、CB、DC、AD分别延长至E、F、G、H,使得AE=CG,BF=DH,连结EF、FG、GH、HE.(1)求证:四边形EFGH为平行四边形;(2)若矩形ABCD是边长为1的正方形,且∠FEB=45°,tan∠AEH=2,求AE的长.28.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).答案解析部分一、单选题1.【答案】B【考点】锐角三角函数的定义【解析】【解答】解:在△ABC中,∠C=90°,∵AC=4,BC=3,∴AB= =5.∴sinA= ,故答案为:B.【分析】先根据勾股定理算出AB,再根据正切定义得出结论。
华东师大版九上数学24章-解直角三角形-单元测试题(基础题)含答案
解直角三角形单元测试题一、选择题:1、在△ABC中,若三边BC、CA、AB满足 BC:CA:AB=5:12:13,则sinA的值是( )A. B. C. D.2、已知∠A为锐角,且sinA≤,则()A.0°≤A≤60°B.60°≤A <90°C.0°<A ≤30°D.30°≤A≤90°3、在Rt△ABC中,∠C=90°,∠B=60°,那么sinA+cosB的值为()A.1B.C.D.4、已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A. B. C. D.5、如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧上的一点,则cos∠APB的值是()A.45° B.1 C. D.无法确定6、如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A. B. C. D.7、如图,已知在△ABC中,cosA=,BE、CF分别是AC、AB边上的高,联结EF,那么△AEF和△ABC的周长比为()A.1:2 B.1:3 C.1:4 D.1:98、如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4 m,测得仰角为60°.已知小敏同学身高(AB)为1.6 m,则这棵树的高度约为(结果精确到0.1 m,≈1.73)( )A.3.5 m B.3.6 m C.4.3 m D.5.1 m9、如图,有一轮船在A处测得南偏东30°方向上有一小岛P,轮船沿正南方向航行至B处,测得小岛P在南偏东45°方向上,按原方向再航行10海里至C处,测得小岛P在正东方向上,则A,B之间的距离是( )A.10海里 B.(10-10)海里 C.10海里 D.(10-10)海里10、如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为( )A. B.-1 C.2- D.11、如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为( )A.4米B.6米C.12米 D. 24米12、如图,在高度是90米的小山A处测得建筑物CD顶部C处的仰角为30°,底部D处的俯角为45°,则这个建筑物的高度CD是()(结果可以保留根号)A.30(3+)米 B.45(2+)米C.30(1+3)米 D.45(1+)米二、填空题:13、求值:sin60°•tan30°= .14、如图,∠1的正切值等于.15、如图,在菱形ABCD中,DE⊥AB,,BE=2,则________.16、如图,一人乘雪橇沿坡比1:的斜坡笔直滑下72米,那么他下降的高度为米.17、如图,小岛在港口的南偏东45°方向、距离港口81海里处.甲船从出发,沿方向以9海里/h的速度驶向港口;乙船从港口出发,沿南偏西60°方向,以18海里/h的速度驶离港口.现两船同时出发,当甲船在乙船的正东方向时,行驶的时间为h.(结果保留根号)18、如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,则tan∠APD的值是.三、计算题:19、.20、计算:四、解答题:21、已知顶点为A(2,一1)的抛物线与y轴交于点B,与x轴交于C、D两点,点C坐标(1,O);(1)求这条抛物线的表达式;(2)连接AB、BD、DA,求cos∠ABD的大小;(3)点P在x轴正半轴上位于点D的右侧,如果∠APB=45°,求点P的坐标.22、如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A与点B重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.23、如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.24、先化简,再求代数式的值÷(﹣),其中a=2cos30°﹣tan45°,b=2sin30°.25、如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)26、南沙群岛是我国的固有领土,现在我南海渔民要在南沙群岛某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+)海里的C处,为防止某国的巡警干扰,就请求我A处的鱼监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A、C之间的距离.27、如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)参考答案1、C2、C3、A4、A5、C6、B7、B8、D9、D10、A11、B12、A13、答案为:.14、答案为:.15、答案为:216、答案为:3617、答案为:18、答案为:2,19、.20、=1+2-(+1)-+2=221、解:(1)∵顶点为A(2,﹣1)的抛物线经过点C(1,0),∴可以假设抛物线的解析式为y=a(x﹣2)2﹣1,把(1,0)代入可得a=1,∴抛物线的解析式为y=x2﹣4x+3.(2)令y=0,x2﹣4x+3=0,解得x=1或3,∴C(1,0),D(3,0),令x=0,y=3, ∴B(0,3)∵OB=OD=3,∴∠BDO=45°,∵A(2,﹣1),D(3,0),∴∠ADO=45°,∴∠BD A=90°,∴(3)∵∠BDO=∠DPB+∠DBP=45°,∠APB=∠DPB+∠DPA=45°,∴∠DBP=∠APD,∵∠PDB=∠ADP=135°,∴△PDB∽△ADP,∴PD2=BD•AD=3=6,∴PD=,∴OP=3+,∴点P(3+,0).22、解:(1)∵∠ACB=90°,tanA=,∴=,∴AC=2BC,在Rt△ABC中,BC2+AC2=AB2,即BC2+4BC2=25,解得BC=,所以,AC=2,△ABC的面积=AC•BC=××2=5;(2)设CE=x,则AE=AC﹣CE=2﹣x,∵△ABC沿直线l翻折点A与点B重合,∴BE=AE=2﹣x,在Rt△BCE中,BC2+CE2=BE2,即2+x2=(2﹣x)2,解得x=,所以,CE=,BE=2﹣x=2﹣=,所以,sin∠CBE===.23、(1)过点A作AE⊥BC于点E,∵cosC=,∴∠C=45°.∴在Rt△ACE中,CE=AC·cosC=1.∴AE=CE=1.在Rt△ABE中,tanB=,即=,∴BE=3AE=3.∴BC=BE+CE=4.(2)∵AD是△ABC的中线,∴CD=BC=2.∴DE=CD-CE=1.∵AE⊥BC,DE=AE,∴∠ADC=45°.∴sin∠ADC=.24、解:原式=÷=×=,当a=2cos30°﹣tan45°=2×﹣1=﹣1,b=2sin30°=2×=1时,原式===.25、解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在直角△ADF中,∵AF=80m﹣10m=70m,∠ADF=45°,∴DF=AF=70m.在直角△CDE中,∵DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=70﹣10≈70﹣17.32≈52.7(m).答:障碍物B,C两点间的距离约为52.7m.26、解:作AD⊥BC于D,设AD=x,依题意可知∠ABC=30°,∠ACB=45°,在Rt△ADC中,CD=AD=x,在Rt△ADB中∵=tan30°,∴BD=AD=x,∵BC=CD+BD=x+x=20(1+),即x+x=20(1+),解之得x=20,∴AC=AD=20.∴A、C之间的距离为20海里.27、解:延长CB交PQ于点D.∵MN∥PQ,BC⊥MN,∴BC⊥PQ.∵自动扶梯AB的坡度为1:2.4,∴.设BD=5k米,AD=12k米,则AB=13k米.∵AB=13米,∴k=1,∴BD=5米,AD=12米.在Rt△CDA中,∠CDA=90゜,∠CAD=42°,∴CD=AD•tan∠CAD≈12×0.90≈10.8米,∴BC≈5.8米.答:二楼的层高BC约为5.8米.。
九年级数学上册《第二十四章 解直角三角形》 单元测试卷及答案-华东师大版
九年级数学上册《第二十四章 解直角三角形》 单元测试卷及答案-华东师大版(考试时间:60分钟 总分:100分)一、选择题1.如图,阳光从教室的窗户射入室内,窗户框AB 在地面上的影子长DE =1.8m ,窗户下沿到地面的距离BC =1m ,EC =1.2m ,那么窗户的高AB 为( )A .1.5mB .1.6mC .1.86mD .2.16m2.若某三角形的三边长分别为3,4,m ,则m 的值可以是( )A .1B .5C .7D .93.如图,某段河流的两岸互相平行,为测量此段的河宽AB (AB 与河岸垂直),测得AC 两点的距离为m 米θACB ∠=,则河宽AB 的长为( )A .θm tan ⋅B .θm sin ⋅C .θm cos ⋅D .θmtan 4.在△ABC 中,△C =90°,sinB =45,则tanA =( ) A .43B .34C .35D .455.数学兴趣小组的同学们来到宝安区海淀广场,设计用手电来测量广场附近某大厦CD 的高度,如图,点P 处放一水平的平面镜.光线从点A 出发经平面镜反射后刚好射到大厦CD 的顶端C 处,已知AB BD ⊥,CD BD ⊥且测得1AB =米, 1.5BP =米,48PD =米,那么该大厦的高度约为( )A .32米B .28米C .24米D .16米6.已知等腰三角形周长为13cm ,其中一边长为3cm ,则该等腰三角形的腰长为( )A .7cmB .3cmC .5cm 或3cmD .5cm7.如图2,菱形ABCD 的对角线AC 与BD 相交于点O ,E 为边BC 的中点,连结OE .若68AC BD ==,,则OE =( )A .2B .52C .3D .48.我国汉代数学家赵爽在注解《周髀算经》时给出“赵爽弦图”,如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形面积为25,小正方形面积为1,则θsin =( )A .45B .35 C .25 D .15 9.如图,点A 在双曲线(0)k y x x =-<上,连接OA ,作OB OA ⊥,交双曲线9(0)y x x=>于点B连接AB .若4sin 5B =,则k 的值为( )A .1B .2C .94D .1610.如图所示,有一天桥高AB 为5米,BC 是通向天桥的斜坡45ACB ∠=︒市政部门启动“陡改缓”工程,决定将斜坡的底端C 延伸到D 处,使30D ∠=︒则CD 的长度约为(参考数据:2 1.4143 1.732≈≈,)( )A .1.59米B .2.07米C .3.55米D .3.66米二、填空题11.如图,某学生利用一根长1米的标杆EC 测量一棵树的高度,测得3BC =米,1CA =米,那么树的高度DB 为 米.12.如图,CD 为Rt△ABC 斜边AB 上的中线,E 为AC 的中点.若8AC =,5CD =则DE= .13.454tan ︒= . 14.在Rt ABC 中90C ∠=︒,67sinA =则cosB = . 三、解答题15.位于陕西省渭南市澄城县城以南6公里处的印象古徵民俗文化园将现代都市生活与田园乡村气息完美结合,原汁原味的关中民俗风情诱惑着一批又一批的人前来游览.某个天气晴好的周末,欢欢和乐乐两个人去印象古徵民俗文化园游玩,看见园中的一棵大树,于是他们想运用所学知识测量这棵树的高度.如图,乐乐站在大树AB 的影子BC 的末端C 处,同一时刻,欢欢在乐乐的影子CE 的末端E 处做上标记,随后两人用尺子测得10BC =米,2CE =米.已知乐乐的身高 1.6CD =米,B 、C 、E 在一条直线上DC BE ⊥,AB BE ⊥请你运用所学知识,帮助欢欢和乐乐求出这棵大树的高度AB .16.如图,在Rt ABC 中90ACB ∠=,点D 是斜边AB 的中点CEAB 和CD BE .求证:四边形CDBE 是菱形.17.如图,在△ABC 中,AD△BC ,垂足是点D ,若BC=14,AD=12,tan△BAD=34,求sinC 的值.18.如图是一座人行天桥的示意图,已知天桥的高度6CD =米,坡面BC 的倾斜角45CBD ∠=︒,距B 点8米处有一建筑物NM ,为了方便行人推自行车过天桥,市政府决定降低坡面BC 的坡度,把倾斜角由45︒减至30︒,即使得新坡面AC 的倾斜角为30CAD ∠=︒.若新坡面底端A 处与建筑物NM 之间需要留下至少3米宽的人行道,那么该建筑物是否需要拆除?请说明理由.(结果精确到0.12 1.14≈3 1.73≈)四、综合题19.如图ABC 中,点D 在AB 上,已知AD BD CD ==.(1)求ACB ∠的大小;(2)若30A ∠=︒,4AB =求BCD 的周长.20.已知如图,等腰梯形ABCD 中120AB AD A =∠=︒,,E 为BC 边的中点,连接DE BD 、.(1)求证:四边形ABED是菱形.∠的值为.(2)tan DBC21.为了美化环境,提高民众的生活质量,市政府在三角形花园ABC边上修建一个四边形人工湖泊ABDE,并沿湖泊修建了人行步道.如图,点C在点A的正东方向170米处,点E在点A的正北方、都在点C的正北方向,BD长为100米,点B在点A的北偏东30︒方向,点D在点E 向,点B D的北偏东58︒方向.(1)求步道DE的长度.(2)点D处有一个小商店,某人从点A出发沿人行步道去商店购物,可以经点B到达点D,也可以经点E到达点D,请通过计算说明他走哪条路较近.结果精确到个位)(参考数据:,,,)︒≈︒≈︒≈≈sin cos tan580.85580.5358 1.603 1.73参考答案与解析1.【答案】A【解析】【解答】∵BE△AD∴△BCE△△ACD ∴CB CE AC CD =,即 CB CEAB BC DE EC =++ ∵BC=1,DE=1.8,EC=1.2 ∴1 1.21 1.8 1.2AB =++∴1.2AB=1.8 ∴AB=1.5m . 故答案为:A .【分析】先证明△BCE△△ACD ,再利用相似三角形的性质可得CB CEAC CD=,即 CB CE AB BC DE EC =++,再将数据代入计算可得 1 1.21 1.8 1.2AB =++,最后求出AB 的长即可。
九年级上册数学单元测试卷-第24章 解直角三角形-华师大版(含答案)
九年级上册数学单元测试卷-第24章解直角三角形-华师大版(含答案)一、单选题(共15题,共计45分)1、在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1,则AB边上的中线长为()A.1B.2C.1.5D.2、如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,则DE的长为()A.1B.2C.D.1+3、如果将长度为a-2,a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,那么a 的取值范围是()A.a﹥-1B.a﹥2C.a﹥5D.无法确定4、如图,一根铁管CD固定在墙角,若BC=5米,∠BCD=55°,则铁管CD的长为()A. 米B.5sin55°米C. 米D.5cos55°米5、等腰三角形的两边长为4,9,则它的周长是()A.17B.17或22C.20D.226、以下列各组线段为边,能组成三角形的是()A.1cm,2cm,4cmB.4cm,6cm,8cmC.5cm,6cm,12cm D.2cm,3cm,5cm7、如图是一个的方阵,其中每行,每列的两数和相等,则a可以是()A. B. C.0 D.8、如图,在平面直角坐标系中,菱形的顶点与原点重合,顶点落在轴的正半轴上,对角线、交于点,点、恰好都在反比例函数的图象上,则的值为()A. B. C.2 D.9、如图,小明站在自家阳台上A处观测到对面大楼底部C的俯角为a,A处到地面B处的距离AB=35m,则两栋楼之间的距离BC(单位:m)为()A.35tanαB.35sinαC.D.10、如图,铁路路基横断面为一个等腰梯形,若腰的坡度为i=3:2,顶宽是7米,路基高是6米,则路基的下底宽是()A.7米B.11米C.15米D.17米11、如图,在菱形ABCD中,∠ADC=120°,则BD:AC等于()A. :2B. :3C.1:2D. :112、如果三角形有两边长分别为2和3,那么周长可能是下列哪个数()A.6B.8C.10D.1213、如图,在四边形中,,,,,四边形的面积为,则的长为()A. B.2 C. D.14、在相同时刻,物高与影长成正比.如果高为1.5米的标杆影长为2.5米,那么此时高为18米的旗杆的影长为()A.20米B.30米C.16米D.15米15、如图,已知点A(0,1),B(0,-1),以点A为圆心,AB为半径作圆,交轴的正半轴于点C,则∠BAC等于()A.90°B.120°C.60°D.30°二、填空题(共10题,共计30分)16、已知三角形的两边长分别为3、5,且周长为整数,则这样的三角形共有________ 个.17、如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是以A为圆心4为半径D圆上的一点,连接BD,点M为BD中点,线段CM长度的最小值是________.18、如图,已知在Rt△ACB中,∠C=90°,AB=13,AC=12,则cosB的值为________.19、如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:①若C、O两点关于AB对称,则OA=2 ;②C、O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为;其中正确的是________(把你认为正确结论的序号都填上).20、如图,某校教学楼与实验楼的水平间距米,在实验楼顶部点测得教学楼顶部点的仰角是,底部点的俯角是,则教学楼的高度是________米(结果保留根号).21、如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB=________ 米.22、计算:2sin30°+(﹣1)2018﹣()﹣1=________.23、将矩形纸片ABCD按如图方式折叠,DE、CF为折痕,折叠后点A和点B都落在点O 处.若△EOF是等边三角形,则的值为________.24、如图,已知:在▱ABCD中,AB=AD=2,∠DAB=60°,F为AC上一点,E为AB中点,则EF+BF的最小值为________.25、如图,为了测量河的宽度AB,测量人员在高21m的建筑物CD的顶端D处测得河岸B 处的俯角为45°,测得河对岸A处的俯角为30°(A,B,C在同一条直线上),则河的宽度AB约为________.三、解答题(共5题,共计25分)26、(1)计算:﹣(2015﹣π)0﹣4cos45°+(﹣3)2.(2)解方程组:.27、将一副直角三角尺如图放置,A,E,C在一条直线上,边AB与DE交于点F,已知∠B=60°,∠D=45°,AD=AC= ,求DF的长.28、设等腰三角形的三条边分别为3、m、n,已知m、n是关于x的方程x2﹣4x+k=0的两个根,求k的值.29、如图,l为一条东西方向的笔直公路,一辆小汽车XRS在这段限速为80千米/小时的公路上由西向东匀速行驶,依次经过点A、B、C,P是一个观测点,PC⊥l,PC=60米,tan ∠APC=,∠BPC=45°,测得该车从点A行驶到点B所用时间为1秒.(1)求A、B两点间的距离;(2)试说明该车是否超过限速.30、如图,为加强对市内道路交通安全的监督,王警官利用无人机进行检测.某段限速道路米,当无人机在限速道路的正上方C处时,测得限速道路的起点A的俯角是,无人机继续向右水平飞行到达D处,此时又测得起点A的俯角是,同时测得限速道路终点B的俯角是.求无人机距离地面道路的高度和飞行距离各为多少米.(均精确到1米)(参考数据:)参考答案一、单选题(共15题,共计45分)1、A2、A4、C5、D6、B7、D8、A9、D10、C11、B12、B13、C14、B15、C二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、。
九年级数学上册第24章解直角三角形单元试题(华师大版带答案)
九年级数学上册第24章解直角三角形单元试题(华师大版带答案)华师大版九年级上册第24解直角三角形单元考试题姓名:,成绩:;一、选择题(4×12=48分)1、将一个有4°角的三角板的直角顶点放在一张宽为3的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A.3B.6.D.2、如图所示,△AB的顶点是正方形网格的格点,则sinA的值为()A.B..D.3、在Rt△AB中,∠=90°,则表示()A.sinAB.sA.sinBD.以上都不4、小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABD 沿过点B的直线折叠,使点A落在B上的点E处,还原后,再沿过点E的直线折叠,使点A落在B上的点F处,这样就可以求出67°的角的正切值是()A +1 B +1 2 D5、在Rt△AB中,∠=90°,若tanA= ,则sinA=()A、B、、D、6、已知∠A为锐角,且sinA≤ ,则()A、0°≤A≤60° B、60°≤A<90°、0°<A ≤30° D、30°≤A≤90°7、在Rt△AB中,斜边AB的长为,∠A=°,则直角边B的长是()A.sin°B.s°.D.8、一座楼梯的示意图如图所示,B是铅垂线,A是水平线,BA与A 的夹角为θ.现要在楼梯上铺一条地毯,已知A=4米,楼梯宽度1米,则地毯的面积至少需要()A.米2B.米2.(4+ )米2D.(4+4tanθ)米29、在△AB中,若,,则这个三角形一定是()A、锐角三角形; B、直角三角形; C、钝角三角形; D、等腰三角形10、如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为4°的防洪大堤(横截面为梯形ABD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF的坡比i=1:2.下列说法正确的是()A、AB的长为400米;B、AF的长为10米;C、填充的土石方为19200立方米;D、填充的土石方为384立方米11、如图,△AB中AB=A=4,∠=72°,D是AB中点,点E在A上,DE⊥AB,则sA的值为()A.B..D.12、如图所示,某办公大楼正前方有一根高度是1米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是4°,旗杆底端D到大楼前梯坎底边的距离D是20米,梯坎坡长B是12米,梯坎坡度i=1:,(精确到01米,参考数据:≈141,≈173,则大楼AB的高度约为()≈24)A.306B.321.379D.394二、填空题(4×6=24分)13、直角三角形斜边上的中线长是2,一直角边的长是3,则此直角三角形的面积为.14、如图,在边长相同的小正方形组成的网格中,点A、B、、D都在这些小正方形的顶点上,AB、D相交于点P,则tan∠APD的值是.1、若某人沿坡度i=3:4的斜坡前进10,则他所在的位置比原的的位置升高。
九年级数学第24章解直角三角形单元测试题
九年级数学第24章解直角三角形单元测试题一、填空题(每小题3分,共30分)1.2cos30°+cot60°一2tan45°的值是 . 2.在Rt △ABc 中∠C=90°,sinB=-53,则面BC= 。
3.斜坡AB 的坡度i=3:1,那么斜坡的坡面与水平面所成的角度为则梯子的顶端沿墙面升高了 m .5.有人想沿着梯子爬上高4m 的房顶,梯子的倾斜角(梯子面的夹角)不能大于60°,否则就有危险,那么梯子的长为 .6.直线y=kx 一4与y 轴相交所成的锐角的正切值为21,则k 的值为7。
如图菱形ABCD 的周长为20cm ,DE ⊥AB 于E ,COSA=54,下列结论:①DE=3cm ②EB=lcm ③S ABCD =15cm 2 正 (填序号).8.如图△ABC 中∠C=90°,∠ABC=60°,BD 平分∠ABC .若AD=6,则CD 的值为 。
9.如果方程x 2—4x+3=0的两个根分别是Rt △ABC 两边长,△ABC的最小角的正切值是 。
10.如图,在Rt △ABC 中,∠C=90°,∠A=30°,E 为AB 上一点,且AE :EB=4:1,EF ⊥AC 于F .连结FB ,则tan ∠CFB的值为二、选择(每小题3.分,共18分)11。
在正方形网格中,∠AOB 按右图所示放置,则sin ∠AOB 等于( )A .55.B .552 c .21 D.2 12.等腰三角形的顶角为120°,腰长为2cm ,则它的底边长为( )A .3cmB .334cm C .2cm D.32 cm 13.如图,为了测量河的宽度,王芳同学在河岸边相距200m 的M 和N 两点分别测定对岸一棵树P 的位置,P 在M 的正北方向,在N 的北偏西30°的方向,则河的宽度是 ( )A.2003m B .33200m C .1003m D .100m 14.如图,在梯形ABCD 中,AD ∥BC ,AC=AB .AD=CD ,COS ∠DCA=54,BC=10,则AB 的值是 ( ) A .3 B .6 C .8 D .915.如图,正方形ABCD 的边长为2,如果将线段BD 绕着点转后,点D 落在CB 的延长线上的点D ′处,那么tan ∠BAD'等于( )A .1B .2 C. 22 D. 316.如图,小颖利用有一个锐角是30°的三角尺测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m(即小颖的眼睛距地面的距离),那么这棵树的高是 ( )A .(335+23)m B .(53+23)m C .335m D .4 m三、计算17.(9分)已知如图在△ABC 中,∠B=45°,∠C =60°,AB==6,求BC 的长18.(9分)已知:如图,△ABC 是等腰直角三角形,∠ABC=90°,AB=10,D 为△ABC外一点,连接AD ,BD ,过D 作DH ⊥AB ,垂足为H ,交AC 于E .(1)若△ABD 是等边三角形,求DE 的长.(2)若BD=AB ,且tan ∠HDB=手,求DE 的长.四、解答题19.(10分)水平地面上的甲、乙两楼的距离为30m,从甲楼顶部测得乙楼顶部的仰角为30°,测得乙楼底部的俯角为45°.(1)请你画出测量示意图(大楼的长、宽忽略不计);(2)求甲、乙两楼的高度.20.(10分)如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1:3,且AB=20m,身高为1.7m的小明站在大堤A点,测得高压电线杆端点D的仰角为30°,已知地面CB宽30m,求高压电线杆CD的高度.(结果保留三个有效数字,厢≈1.732)21.(11分)如图,从热气球C上测得建筑物A,B底部的俯角分别为30°和60°.如果这时气球的高度CD为90m,且点A.D,B在同一条直线上,求建筑物A,B间的距离(建筑物高度忽略不计,结果保留根号).22.(11分)某船以每小时36海里的速度向正东方向航行,在点A 测得某岛C 在北偏东 60°方向上,航行半小时后到达点B ,测得该岛在北偏东30°方向上,已知该岛周围16海 里内有暗礁.(1)试说明点B 是否在暗礁区域外;(2)若继续向东航行有无触礁危险?请说明理由.23·(12分)如图在平面直角坐标系中,△ABC 是直角三角形,∠ACB=90°,点A 、C 的坐标分别为A(--3,0),C(1,0),ta n ∠ BAC=43 . (1)求过点A ,B 的直线的函数表达式;(2)在x 轴上找一点D ,连接DB ,使得△ADB 与△ABC相似(不包括全等),并求点D 的坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新华师大版九年级上册数学摸底试卷(十三)
第24章 解直角三角形单元测试卷 B 卷
姓名____________ 时间: 90分钟 满分:120分 总分____________
一、选择题(每小题3分,共30分)
1. 在Rt △ABC 中,5,13,90==︒=∠AC AB C ,则A sin 的值为 【 】
(A )135 (B )1312 (C )125 (D )5
12
2. 如图,在Rt △ABC 中,3,5,90==︒=∠BC AB C ,则B cos 的值是 【 】
(A )53 (B )54 (C )43 (D )3
4
第 2 题图
A
C
B
第 4
题图
3. ︒60sin 的值为 【 】 (A )3 (B )
23 (C )22 (D )2
1
4. 如图,在Rt △ABC 中,斜边AB 的长为m ,︒=∠35A ,则BC 的长为 【 】 (A )︒35sin m (B )︒35cos m (C )
︒
35sin m
(D )︒35cos m
5. 拦水坝横断面如图所示,迎水坡AB 的坡比是1 :
3,坝高10=BC m,则
坡面AB 的长度是 【 】 (A )15 m (B )320m (C )310m (D )20 m
第 5 题图
第 6 题图
6. 某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升机和一艘正在南海巡航的渔政船前往救援,如图,当飞机到达距离海面3000 m 的高空C 处时,测得A 处渔政船的俯角为45°,测得B 处发生险情渔船的俯角为︒30,此时渔政船和渔船的距离AB 是 【 】 (A )33000 m (B )()
133000+ m (C )()
133000- m (D )31500 m
7. 如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知13
12
cos =α,则
小车上升的高度是 【 】 (A )5米 (B )6米 (C )6. 5米 (D
)
12米
第 7 题图第 8 题图
N
M
Q
P
C B
8. 如图上升,某超市从一楼到二楼有一自动扶梯,已知自动扶梯AB 的坡度为1 : 2. 4,AB 的长度是13米,MN 是二楼楼顶,PQ MN //,C 是MN 上处在自动扶梯顶端B 点正上方的一点,MN BC ⊥,在自动扶梯底端A 处测得C 点的仰角为︒42,则二楼的层高BC 约为 【 】 (精确到0. 1米,90.042tan ,67.042sin ≈︒≈︒)
(A )10. 8米 (B )8. 9米 (C )8. 0米 (D )5. 8米
9. 如图,一艘轮船位于灯塔P 的北偏东︒60方向,与灯塔P 的距离为30海里的A 处.轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东︒30方向上的B 处,则此时轮船所在位置B 处与灯塔P 之间的距离为 【 】 (A )60海里 (B )45海里 (C )320海里 (D )330海里
10. 如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5 m 的竹竿AC 斜靠在石坝旁,量出竿长1 m 处的D
点离地面的高度6.0=DE 米,又量得竿底与坝脚的距离3=AB m,则石坝的坡度为 【 】 (A )
43 (B )3 (C )5
3
(D )4
北
第 10 题图
D A
C
B
二、填空题(每小题3分,共15分)
11. 计算:=︒+︒60sin 45cos 22_________. 12. 已知βα,均为锐角,且满足()01tan 2
1
sin 2=-+-
βα,则
=+βα_________.
13. 如图所示,︒=∠=∠90ADC ABC ,M 、N 分别是AC 、BD 的中点,8,10==BD AC ,则=MN
_________.
第 13 题图
第 14 题图
第 15 题图
14. 如图,一山坡的坡度为3:1=i ,小辰从山脚A 出发,沿山坡向上走了200米到达点B,则小辰上升了________米.
15. 如图,在小山的东侧A 点有一个热气球,由于受西风的影响,热气球以30米/分的速度沿与地面成︒75角的方向飞行,25分钟后到达C 处,此时热气球上的人测得B 点的俯角为︒30,则向上东西两侧A 、B 两点间的距离为_________米.
三、解答题(共75分)
22题图
16.计算:(每小题5分,共10分)
(1)︒+︒-︒30sin 45tan 230cos 3; (2)︒--+︒45sin 2360tan 3.
17.(8分)先化简,再求值:12112
2
2++-÷⎪⎭⎫ ⎝
⎛
+-x x x x x x ,其中︒=30sin x .
18.(8分)如图,在Rt △ABC 中,4,3,,90==⊥︒=∠AC BC AB CD ACB ,求BCD ∠的正切值
.
19.(9分)如图,一艘轮船航行到B 处时,测得小岛A 在船的北偏东60°的方向,轮船从B 处继续向正东方向航行200海里到达C 处时,测得小岛A 在船的北偏东30°的方向.已知在小岛周围170海里内由暗礁,若轮船不改变航向继续向前行驶,试问轮船有无触礁的危险?(732.13≈)
20.(10分)如图,从地面上的点A 看一山坡上的电线杆PQ ,测得杆顶端点P 的仰角是︒45,向前走6米到达B 点,测得杆顶端点P 和杆底端点Q 的仰角分别是60°和30°. (1)求BPQ ∠的度数;
(2)求该电线杆PQ 的高度(结果精确到1 m ).
(参考数据:4.12,7.
13≈≈)
21.(10分)如图,水坝的横断面是梯形,背水坡AB 的坡角︒=∠45BAE ,坝
高20=BE 米,汛期来临,为加大水坝的防洪强度,将坝底从A 处向后延伸到F 处,使新的背水坡BF 的坡角︒=∠30F ,求AF 的长度. (结果精确到1米,参考数据:732.13,414.12≈≈)
22.(10分)“五·一”期间,小亮与家人到某旅游风景区登山,他们沿着坡度为5 : 12的山坡AB 向上走了1300米,到达缆车站B 处,乘坐缆车到达山顶C 处,已知点A 、B 、C 、D 在同一平面内,从山脚A 处看山顶C 处的仰角为30°,缆车行驶路线BC 与水平面的夹角为60°,求山高CD .(结果精确到.....1.米.,3≈1.732,2≈1.414)(注:坡度是指坡面的铅直高度与水平宽度的比)
23.(10分)如图所示,我国两艘海监船A 、B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈
,cos53°≈,tan53°≈,
≈1.41)。