黄土地层中微量元素含量与古植被古气候的关系_刘俊峰

合集下载

中国黄土及其古气候意义

中国黄土及其古气候意义

中国黄土及其古气候意义作者:焦译漫来源:《科技风》2019年第11期摘要:黄土高原是古气候环境的历史藏在自然界用密码写就的一本本“秘岌”之一。

黄土高原的黄土——古土壤序列对研究古气候变化具有重要意义。

通过黄土——古土壤的交替出现,来研究古气候的变化旋回。

研究发现黄土的颜色、粒度等与古气候变化存在一定的关系。

关键词:黄土——古土壤;颜色;粒度;古气候1 黄土高原简介1.1 成因第四纪时期,青藏高原的存在和上升,阻挡了从印度洋吹来的西南季风的侵入,因此,大陆内部的气候变得越来越干,从而有利于风尘的生成和搬运。

[1]远古地质时期的西北季风将中亚和蒙古高原地区的黄色粉尘源源不断地吹向东部,颗粒较大的粗砂留在了新疆和内蒙古,并在那里形成大片沙漠和戈壁。

其余的粉尘物质随风继续南下被青藏高原和秦岭挡住了去路,向东受制于太行山,最终在甘肃、陕西、山西一带沉降下来。

同时随着风力的减弱粗的粉尘颗粒被抛撒下来,然后是中等颗粒,最后是细小颗粒。

黄土高原降雨少,属于半干旱地区,有利于以粉砂为主体的沉积物的保留,逐渐叠覆形成黄土高原。

1.2 地形黄在地貌学上,黄土高原可称为一个巨地貌单元。

长期的侵蚀和切割形成了土高原特有的地形,最常见的为峁、墚和塬。

峁:多分布于黄土高原北部,为圆锥形丘陵,是一种发育在各种黄土堆积上的参丘。

墚:多分布于黄土高原中部,为长条形的脊状地形,是一种叠加古侵蚀地形;塬:多分布于黄土高原南部,为平台状地形,由多层叠覆的黄土/古土壤层构成。

[1]1.3 黄土地层结构中国黄土在地层上可分为早更新世午城黄土、中更新世离石黄土、晚更新世马兰黄土和全新世黄土。

黄土高原有两种类型的地层结构,分别为连续的黄土——古土壤相和不整合的黄土——河湖相结构。

2 黄土颜色指示的古气候土壤的颜色变化可用两种表色系统表达,分别为芒赛尔表色系统的色调、亮度和色饱和度,以及 CIELAB 表色系统的亮度(L * )、红度(a * )、黄度(b * ),也有研究者用灰度、白度和红度表征土壤颜色变化。

中国黄土及其古气候意义

中国黄土及其古气候意义

中国黄土及其古气候意义中国黄土是中国北方地区特有的一种土壤类型,因其黄色而得名,也是中国古代文明的摇篮。

黄土的分布范围主要位于黄河流域、秦岭--淮河以北地区、六安山地和华北平原,占全国总面积的三成左右。

黄土的形成主要是由于黄河冲积物在地质长期变化过程中逐渐固化而形成的。

黄土的特点是贫瘠、灰壤质、富含矿物质,对于中国的生态环境和古气候变化有着深远的意义。

黄土地貌起源于新生代的上新世和更新世,这一时期的古气候条件对黄土的形成起到了关键作用。

在上新世时期,黄土地区的气候为湿润的季风气候,植被茂盛,土地肥沃。

但在更新世时期,气候开始干燥,植被逐渐减少,土地变得贫瘠。

黄土的形成正是在这一时期,沉积土壤层一层一层地堆积,最终形成了厚厚的黄土地层。

黄土地貌不仅是中国大地的骨骼,也是中国古代文明的摇篮。

黄土地区孕育了中国古代文明的发祥地之一,包括黄河流域和长江流域的古代文明,都与黄土地貌有着密切的联系。

黄土地区的古代居民从事农耕生产,选址建城,赖以生长的农作物等都与黄土地貌有着紧密的联系。

黄土地貌是中国古代文明的发源地之一,并对中国古代文明的形成和发展有着深远的影响。

黄土地貌的形成与古气候条件变化密不可分。

在更新世时期,气候的干燥和寒冷是黄土地貌形成的主要原因。

在这一时期,冰川活动频繁,气温下降,降水减少,原有的植被逐渐凋零退化,最终演变为贫瘠的黄土地貌。

黄土地貌的形成与古气候的变化息息相关。

而通过对黄土地貌的研究,可以揭示中国古气候的变迁,为我们了解古代气候条件和环境演变提供了重要的依据。

黄土地貌的形成还与地质构造有着密切的关系。

中国的黄土地貌主要位于黄土高原、秦岭--淮河以北地区、六安山地和华北平原,这些地区都是地质运动活跃区域,地势较高,地形变化大。

地质运动产生的构造断裂和地形起伏是黄土形成的重要条件。

这些地理条件的变化直接影响了古气候的变迁,也使得黄土成为了古气候变迁研究的重要地质遗迹和代用指标。

通过对黄土地貌的研究,我们可以获取关于古气候的丰富信息。

十五万年以来的古气候及其研究方法综述

十五万年以来的古气候及其研究方法综述

第17卷 第2期1998年 6月地质科技情报Geo logical Science and T echno logy Info r m ati onVol117 No12Jun1 1998十五万年以来的古气候及其研究方法综述①丁 旋(中国地质大学,北京,100083)摘 要 简述了十五万年来古气候变化旋回及其中的短期波动事件,如新仙女木事件;概要地介绍了黄土、古海洋沉积、冰岩芯、树木年轮、洞穴碳酸钙等的古气候研究方法的最新进展;并指出在古气候研究中,必须注意多种方法的互相对比印证,才能保证结论的准确性与可靠性。

关键词 十五万年以来 古气候 研究方法分类号 P532气候变化及其对人类生存环境的影响问题已引起各国政府和科学家们的极大关注,特别是近十多年来气候异常在世界许多地区造成了一系列的自然灾害。

另一方面,由于人类活动造成大气中CO2,CH4等温室气体含量增加,也严重影响到全球气候的变化。

据初步估计,到21世纪中叶,全球年平均气温可增加115~415°C,平均海平面可增加20~40c m〔1〕。

为了避免气候剧变给人类生存环境带来严重的不利影响,了解并掌握气候异常变化的成因机制并予以准确预测,变得极为迫切与重要。

研究过去才能预测未来,通过对晚第四纪古气候的研究,探索古气候变化的动力成因机制并由此预测未来气候变化趋势就成为现阶段各国科学家们致力解决的重大科学问题。

近年来人类生存环境的严重恶化已引起国际有关组织的关注。

70年代以来,国际上召开了一系列会议讨论与气候变化有关的问题,提出了若干个大型研究计划,其中与气候环境变化及预测紧密相关的研究计划有“世界气候研究计划(W CR P)”〔2,3〕,“全球变化,国际地圈—生物圈计划(IGB P)”〔4〕,“国际南北半球古气候计划(PANA SH)”〔5〕,其由IGB P的核心计划之一“过去的全球变化(PA GES)”为将点或区域的研究扩展到全球而提出。

地球化学与古环境研究利用地球化学指标重建古气候和古生态

地球化学与古环境研究利用地球化学指标重建古气候和古生态

地球化学与古环境研究利用地球化学指标重建古气候和古生态地球化学与古环境研究:利用地球化学指标重建古气候和古生态地球化学是一门综合性科学,涉及地球上物质的组成、性质和变化过程。

在古环境研究中,地球化学起着重要作用,通过对地球化学指标的分析和解释,可以揭示古代的气候和生态条件。

本文将从地球化学的角度出发,介绍如何利用地球化学指标重建古气候和古生态。

一、地球化学指标的选择与意义在进行古气候和古生态研究时,选择合适的地球化学指标至关重要。

常用的指标包括岩石中的同位素组成、元素相对丰度和有机质特征等。

这些指标可以直接或间接地反映出古代的环境条件,为重建古气候和古生态提供了重要的线索。

1. 同位素组成同位素是同一元素中具有不同中子数的原子,其存在形式也常常具有不同的化学和物理性质。

因此,同位素组成的分析对于揭示物质来源、环境演化等方面的信息非常有价值。

例如,氧同位素组成可以反映降水的气候特征,碳同位素组成则可以提供有关古植被类型和古环境演化过程的信息。

2. 元素相对丰度不同的地球化学元素在地球物质中的相对丰度具有一定的规律性。

通过测量元素相对丰度的变化,可以了解到不同时期的地球化学环境发生的变化。

例如,古海洋中镁和钙的相对丰度比值(Mg/Ca)可以用于估算海水中的温度变化,硅酸盐中铝和钠的相对丰度比值(Al2O3/Na2O)可以反映岩石风化的程度。

3. 有机质特征有机质是古环境研究中常用的指标之一。

通过对古代有机质的化学组成和特征的分析,可以了解到古植被类型、气候条件和古生态环境的演变。

例如,叶蜡烃的组成可以指示古代植被类型和古代大气二氧化碳浓度的变化。

二、利用地球化学指标重建古气候1. 氧同位素组成氧同位素组成(δ18O)可以反映出水的来源和温度。

通常,寒冷气候下降水中的重氧同位素(18O)相对丰度较高,而温暖气候下降水中的重氧同位素相对丰度较低。

通过分析降水中氧同位素组成的变化,可以重建古气候变化的序列。

第四纪黄土剖面多元古土壤形成发育信息的揭示

第四纪黄土剖面多元古土壤形成发育信息的揭示

第39卷第5期土 壤 学 报V ol139,N o15 2002年9月ACT A PE DO LOG IC A SI NIC A Sep.,2002第四纪黄土剖面多元古土壤形成发育信息的揭示3唐克丽 贺秀斌(中国科学院、水利部水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室,陕西杨凌 712100)摘 要 以时间尺度20万年以来的洛川黄土剖面为研究对象。

采用间隔30~50cm 的密集采样,通过土样的物理、化学、矿物组成和孢粉分析及土壤微形态镜鉴的综合研究,对第四纪生物气候环境演变提出了新的见解。

对原以代表干冷环境沉积为主的黄土地层(L),揭示了内伏半干旱环境的演化及相应的土壤发育过程;对原以代表暖湿环境的红褐色古土壤层,揭示了内伏干旱、半干旱环境的演化及干旱与湿润型孢粉共存的矛盾实质。

研究证示:深厚的黄土剖面是在第四纪生物—气候环境演变过程中,通过黄土沉积、成壤强弱交替演化,形成发育的由不同土壤类型组成的特殊的多元古土壤剖面体系。

关键词 黄土剖面,密集采样,多元古土壤,第四纪环境新信息中图分类号 S151、+3黄土高原深厚的黄土剖面储存了240万年以来丰厚的地学—生物学信息,我国黄土研究的成就为世界所瞩目[1~3]。

笔者在前人研究基础上,融合地质学、土壤学和生态学成就进一步揭示这些信息,对黄土剖面的土壤发育过程及第四纪环境演变,取得了一些新的认识。

80年代初,我们根据古土壤分布特征,将古土壤划分为埋藏型、残积型及残余型三种类型。

研究证示黄土剖面中古土壤条带均属埋藏型古土壤[4]。

武功 土剖面中的红褐色粘化层属浅层埋藏型古土壤,其上部覆盖层除人为耕作施加的土粪外,主要是近三千年来新的黄土沉积物。

通过鉴别土壤中原生和次生碳酸盐及光性粘粒的微形态特征,恢复了古土壤成壤期的环境背景,首次提出黄土剖面中曾发育有森林型土壤的证示[5];同时发现代表干冷气候的黄土层(L),也经历了一定的成壤过程,基本上属草原型土壤[5,6]。

中国黄土及其古气候意义

中国黄土及其古气候意义

中国黄土及其古气候意义【摘要】中国黄土是中国独有的一种土壤类型,其形成过程复杂而值得研究。

黄土记录了数千年来的古气候变化,为气候学家提供了珍贵的数据。

通过对黄土的研究,可以揭示古代气候的特征和变化规律,从而更好地理解地球气候系统。

黄土在古气候研究中有着广泛的应用,可以用来推断古气候条件、预测未来气候趋势。

黄土也为古气候研究提供了重要的启示,帮助人们更好地理解气候变化对人类社会的影响。

未来的研究方向应该更加重视黄土的影响因素,深入探讨其与气候变化之间的关系,为我们更好地了解古气候提供更多的线索。

中国黄土及其古气候意义对于气候学、地质学等领域的研究具有重要意义。

【关键词】中国黄土、古气候、形成过程、气候变化、研究、启示、影响因素、重要性、未来研究方向1. 引言1.1 中国黄土及其古气候意义中国黄土是中国独有的土壤类型,以其广泛分布和特殊的地质形成过程而著名。

黄土主要分布在黄河流域、长江流域、淮河流域等地区,占据中国国土的约三分之一。

由于其在地质、气候、植被等方面的特殊性,中国黄土成为了古气候研究的重要对象。

黄土记录了数百万年来地球气候的变化历史,包含了大量有关古气候的信息,如降水量、温度、植被覆盖等。

通过对黄土中的微粒、氧同位素、有机物等的研究,科学家们可以还原古代气候的变化过程,探讨气候变化与人类活动的关系。

黄土在古气候研究中具有重要的应用价值,可以帮助科学家们了解过去气候的情况,预测未来气候的变化趋势,为应对气候变化提供科学依据。

黄土还可以帮助科学家们研究地质变化、生态环境演变等问题,对人类社会的可持续发展具有重要的参考意义。

中国黄土及其古气候意义的重要性不容忽视,未来的研究方向应当更加深入,探索更多关于黄土和古气候的信息,为人类认识地球的过去与未来、应对气候变化提供更多有益的知识和技术支持。

2. 正文2.1 黄土的形成过程黄土的形成过程通常经历了风化、侵蚀、搬运、沉积、胶结和干旱等多个环节。

黄土的形成始于古老的沉积作用,这意味着大部分时间是在某个地方。

古气候恢复指标

古气候恢复指标
• 沉积环境中,古盐度是古环境和古气候恢复的一个 重要指标。一般认为不同古水体介质的古盐度分别 为:淡水<0.5‰、微咸水0.5~5‰、半咸水5~18‰和 咸水18~40‰。恢复古盐度的方法主要有微量元素 法、微量元素比值法、同位素法、常量元素钾钠比 值法、沉积磷酸岩法。其他方法还有锶钙法、矾钙 比值法等。

• 物源性质是决定陆源碎屑(包括粉砂岩、页岩、 泥岩)沉积岩化学组成的主要因素。沉积岩由 于母岩化学成分不同,其常量元素、微量元素 含量及元素比值等地球化学参数存在差别。沉 积岩母岩的源区性质、构造背景的研究是地质 中重要问题,其研究的方法很多。传统的方法 采用硅质碎屑岩的主要组分来估计源区的成分 及构造背景,但有的学者发现对细碎屑岩(包 括泥、页岩)进行常量、微量和稀土元素的分 析效果更好。煤矸石主要以细碎屑岩为主,适 合通过地球化学方法研究其物源及其构造背景 性质。
• 氧化-还原条件的恢复主要通过变价元素的共生组合关系及含量 的变化来实现。氧化还原条件决定变价元素价态的高低,一些 元素的价态与氧化还原条件密切相关。资料表明[49]自然界中 氧化-还原反应对变价元素(V、Mo、U)的迁移、共生、沉淀有重 要控制作用,可改变元素原有的迁移状态,使同一元素的不同 价态或与其共生元素发生分离,导致不同环境中元素的重新分 配。如在氧化条件下,变价元素呈高价态(U6+、V5+、Mo6+、 Ce4+、S6+),形成的化合物易迁移,还原条件呈低价态(U4+、 V3+、Mo4+、Ce3+、S2-)的化合物易沉淀;与之相反,Fe、Mn、 Cu、Eu呈高价态(如Fe3+、Eu3+)易沉淀,而在还原条件下呈低 价态(Fe2+、Eu2+)易迁移。Fe、Cu、Zn、Cd 等亲硫元素在H2S 含量高的还原环境下生成易沉淀的硫化物,还有些元素(Th、Sc) 一般不受氧化还原条件变化的影响,而与其共生的变价元素(如 U、V 等)相反。

黄土和气候变化

黄土和气候变化

黄土和气候变化1、黄土记录气候后环境变化的机制黄土是记录古气候和古环境变化信息的良好载体,长江三角洲平原及东海岛屿晚更新世黄土地层剖面的发现, 证明了末次冰期以来长江三角洲地区及海域均广泛存在风尘黄土堆积的事实,研究表明长江三角洲平原埋藏黄土和来东海岛屿黄土是下蜀黄土上部地层在中国东部沿海和海域的延伸和继续.中国东部风源尘黄土记录了我国晚更新世以来东部沿海地区的气候变化及东亚季风演变,与中国西北地区黄土地层相比,东部黄土具有沉积厚度小、成因复杂、次生作用强烈的特点;粒度和磁化率等参数垂向变化规律没有西部明显;粘土矿物和常量化学成分显示了东部黄土经历了较强地淋溶作用.在东部风尘黄土研究过程中,更需注意区域环境特征、地貌地形特点以及沉积期后环境变化对风尘黄土沉积物的影响效应,通过多指标的综合验证才能够正确解读黄土地层赋含的环境变化信息以及认识我国东部季风区晚更新世以来的古环境演变过程及规律.2、黄土的显微结构与古气候的关系高原黄土粒度组成中不同粒级组分的古气候意义不同,并且各粒级组分界线随着研究地区的不同而发生变化. 同时发现,黄土粒度分布中可以分离出具有全球的和区域的古气候意义的颗粒组分. 其中较粗颗粒含量变化与东亚冬季风强度变化正相关,它具有全球的古气候意义;较细和细颗粒含量变化与东亚冬季风强度变化反相关,这些颗粒含量可能与粗颗粒的沉降量变化和风化成壤作用强度变化相关3、黄土和气候变化的关系?4、黄土磁化率是怎样反映气候变迁的黄土磁化率(magnetic susceptibility of loess)是黄土在地磁场作用下产生磁性,受单位强度的磁场磁化所产生的磁化强度。

其大小主要取决于黄土中小于等于1微米的细微矿物颗粒,主要是磁铁矿和磁赤铁矿。

一般用磁化率仪以5~20厘米间隔在地层剖面上进行测量,得出黄土磁化率随深度变化的曲线。

研究结果发现古土壤层的磁化率值要比黄土层的为高。

现在磁化率也被认为是反映气候变化的指标之一。

中国黄土及其古气候意义

中国黄土及其古气候意义

中国黄土及其古气候意义中国黄土是指我国黄土高原地区分布的一种土壤类型,主要分布在陕西、甘肃、宁夏、内蒙古等地。

黄土是以粉砂为主要组成成分的黏土,呈现黄色,因此得名。

黄土的形成主要是受到古气候条件的制约,对研究古气候具有重要意义。

中国黄土的形成是一个漫长的过程,追溯到数百万年前的更新世晚期。

在这个时期,中国黄土高原地区比较湿润,气候条件适宜植被的繁衍生息。

植被通过吸收土壤中的水分和养分,使土壤中的黏土颗粒被固定在一起,形成了黄土地层。

随着气候的变干,植被覆盖减少,土壤中的黏土颗粒逐渐松散,黄土逐渐形成。

中国黄土记录了几百万年来的古气候变化,对研究地球气候系统具有重要意义。

通过对黄土中的颗粒组成、矿物组成、化学元素等进行分析,可以推断出当时的气候条件。

黄土中的颗粒组成记录了古植被的类型和覆盖程度。

若黄土中含有大量的植物残骸和林木花粉,则说明当时气候湿润,植被繁茂;反之,如果黄土中缺乏植物残骸和花粉,或者含有少量的沙粒,则说明当时气候干燥,植被较少。

通过对黄土样品的花粉分析,还可以推断出当时的植被类型,如森林、草原等。

黄土中的矿物组成也可以反映出当时的气候条件。

黄土中主要含有石英、长石、云母等矿物。

当气候湿润时,石英和长石的含量较高,而云母的含量较低;当气候干燥时,石英和长石的含量较低,而云母的含量较高。

通过对黄土中各种矿物的含量进行分析,可以推断出当时的气候湿度。

黄土中的化学元素也是研究古气候的重要指标。

黄土中的氧同位素含量可以反映降水的来源和变化;黄土中的有机碳含量可以表征当时的植被生长情况。

通过对中国黄土进行系统的研究和分析,可以还原出近几百万年来的古气候演化过程,为人们研究气候变化的原因提供了重要线索。

黄土也被公认为重要的古气候档案,为了更好地解读其古气候意义,需要对黄土进行多方位的研究和分析,以充分挖掘其蕴含的信息。

甘肃天水全新世黄土—古土壤序列化学风化特征及其古气候意义

甘肃天水全新世黄土—古土壤序列化学风化特征及其古气候意义

甘肃天水全新世黄土—古土壤序列化学风化特征及其古气候意义刘俊余;查小春;黄春长;庞奖励;周亚利;李洋【摘要】对甘肃天水地区师家崖典型黄土—古土壤剖面化学元素的测定和分析结果表明:该剖面中氧化物SiO2、Fe2 O3、K2 O和Al2 O3含量变化趋势基本一致,均在古土壤层(S0上和S0下)中较高,黄土层(L0、L1和Lt)中较低;而氧化物CaO 和Na2 O变化呈相反趋势;根据钙镁比(Ca/Mg)、钾钠比(K/Na)、淋溶系数、退碱系数、残积系数和化学蚀变系数(CIA)等化学参数的统计分析结果,揭示了古土壤层形成时期风化成壤作用强烈,黄土层堆积时期风化成壤作用微弱的规律;以Ti为参比,Si、Fe、K和Al相对富集,而Na和Ca发生不同程度的淋溶,总体处于脱Ca、Na的低等化学风化阶段;SJY剖面全新世以来的沉积环境分为化学风化较弱期、波动增强期和减弱期,记录了该区域气候经历了早全新世温凉、中全新世温暖湿润但不稳定,晚全新世凉干的演变过程,对天水地区的古气候变化具有重要意义.【期刊名称】《沉积学报》【年(卷),期】2018(036)005【总页数】9页(P937-945)【关键词】黄土—古土壤;地球化学;师家崖;常量元素【作者】刘俊余;查小春;黄春长;庞奖励;周亚利;李洋【作者单位】陕西师范大学地理科学与旅游学院地理学国家级实验教学示范中心,西安 710062;陕西师范大学地理科学与旅游学院地理学国家级实验教学示范中心,西安 710062;陕西师范大学地理科学与旅游学院地理学国家级实验教学示范中心,西安 710062;陕西师范大学地理科学与旅游学院地理学国家级实验教学示范中心,西安 710062;陕西师范大学地理科学与旅游学院地理学国家级实验教学示范中心,西安 710062;陕西师范大学地理科学与旅游学院地理学国家级实验教学示范中心,西安 710062【正文语种】中文【中图分类】P5320 引言化学风化是地球表生环境相互作用的重要形式,对于揭示风成黄土成壤环境演变、古气候和古环境重建以及源区自然环境特征具有重要的作用[1-3]。

黄土高原黄土_古土壤序列古气候代用指标综述

黄土高原黄土_古土壤序列古气候代用指标综述

文章编号:1009-6248(2011)02-0177-09黄土高原黄土-古土壤序列古气候代用指标综述杜青松(中国地质大学地球科学与资源学院,北京100083)摘要:黄土高原黄土-古土壤序列是古气候演化在陆相地层中的反映,已经成为认识第四纪地球气候与环境变化的3个重要信息载体之一,可用来探讨东亚季风气候的形成演化和受控机制、气候突变事件的记录乃至反演我国内陆干旱化历史。

稳定同位素、磁化率和孢粉等气候代用指标的地球化学、物理学以及生物学分析为提取黄土-古土壤序列中蕴藏的古气候环境信息提供了新的途径。

随着定量重建古气候方法的不断引进,运用替代指标研究的结果的准确度和精度也在不断提高。

关键词:黄土-古土壤序列;古气候代用指标;对比分析;成壤强度;东亚季风演变中图分类号:P532文献标识码:A1引言青藏高原的隆升、亚洲内陆荒漠的起源和季风气候的形成奠定了我国现代环境的基本格局。

这三者的关系一直为全球气候演化研究人员所重视。

全球气候变化及其对生态系统的影响,尤其是近年来气候异常在许多地区造成了一系列的自然灾害,给人类生存环境带来严重的不利影响。

为了应对气候剧变,探索古气候变化的动力成因机制,并由此预测未来气候变化趋势变得极为迫切(丁旋,1998)。

中国的黄土高原大约有7Ma的历史(H eller F et al1,1982),甚至更长(22M a)(Guo Z T et al1, 2002)。

黄土-古土壤是季风气候下的产物,其中黄土层形成于冬季风相对强盛时期,期间气候干冷,粉尘堆积速率高,风化成壤较弱。

古土壤则代表了夏季风相对强盛期,气候温暖湿润,风化成壤作用强,就形成褐红色的古土壤。

因此黄土-古土壤序列记录了最近7Ma东亚冬季风占优势和夏季风占优势气候期相互交替的变迁历史。

该风尘堆积序列随着青藏高原高度的不断增长,越来越多地显示黄土高原气候向干旱化方向发展(把多辉等,2005)。

赵济(1995)针对全新世时期亚洲大陆的造山运动已基本停止这一情况,提出引起黄土高原环境演变具有全局性意义的自然因素首先是气候的波动。

中国黄土及其古气候意义

中国黄土及其古气候意义

中国黄土及其古气候意义【摘要】中国黄土是中国北方地区特有的地貌类型,其形成于全新世晚期,记录了数万年来的古气候信息。

黄土的特点是贫养、砂粒粗大且富含石英,透水性差。

在古气候研究中,黄土是极为重要的环境指示剖面,可以反映古气候变化和生态环境演变。

黄土记录的古气候信息包括降水量、温度、季风强度等,为研究气候变化提供重要依据。

与气候变化相关,黄土对气候的响应也备受关注,包括气温、降水、干湿指数等方面。

中国黄土在重建古气候中扮演着重要的角色,未来仍将继续为古气候研究提供宝贵的资料和线索。

展望未来,中国黄土在古气候研究中的地位将更加巩固和重要。

【关键词】中国黄土, 古气候, 形成, 特点, 应用, 记录, 信息, 响应, 重建, 研究, 重要性, 展望, 未来1. 引言1.1 中国黄土及其古气候意义中国黄土是中国特有的地质现象,广泛分布于华北平原、黄河流域、长江中下游等地区。

黄土是在特定气候条件下,经过长期风化作用形成的一种特殊土壤类型,其主要成分为石粉和粘粒,颜色呈黄褐色,质地疏松。

黄土在古气候研究中具有重要的应用价值。

通过对黄土的沉积序列、矿物组成、元素含量等进行分析,可以重建出古代气候环境,揭示古代气候变化规律。

黄土记录了地球上数百万年来的气候变迁和生态环境演变过程,为科学家研究古气候提供了珍贵的资料。

黄土在气候变化中起着重要的响应作用。

它的形成与气候变化密切相关,受到降水、温度等气候因素的影响。

通过对黄土的特征和分布规律进行研究,可以更好地理解气候变化对土地的影响,为降水、气候变暖等问题提供参考依据。

中国黄土在研究古气候中具有重要的意义。

展望未来,随着科技的不断发展,我们可以更深入地挖掘黄土中蕴藏的古气候信息,为人类更好地了解气候变化提供更多的数据支持。

2. 正文2.1 黄土的形成及特点中国黄土是指沟壑纵横、黄色土层分布广泛、厚度较大的一种土壤类型。

黄土主要分布在中国黄河流域和长江流域的中西部地区,是中国最广泛的土壤类型之一。

中国黄土及其古气候意义

中国黄土及其古气候意义

中国黄土及其古气候意义中国黄土是指中华大地的一个地貌区域,主要分布在黄河流域及其附近地区。

黄土是中国土壤的一种,因为其颜色呈黄褐色而得名。

黄土属于典型的干旱半干旱区土壤,具有独特的地理和生态特征,对于研究古气候和古环境具有极其重要的意义。

黄土的形成主要是由于地表风蚀作用和流水侵蚀作用,植被破坏和水土流失导致土壤质地细软,极易被风吹蚀。

而长期的风蚀和侵蚀作用,使得地表的薄壤被侵蚀掉,使得地表土壤变得肥沃的上层土壤被磨光,变成一片褐黄色的岩石表层,这就是黄土的形成。

黄土又称长风黄土,主要分布在中国的黄土高原,是世界上最为典型的黄土地貌。

黄土的分布面积约245万平方公里,占到了中国总土地面积的26%,是全国最主要的土壤类型之一。

在地质年代上,黄土约形成于新生代第三纪,距今约1500万年,在这个漫长的历史长河中,黄土不断地与自然环境相互作用,留下了丰富的自然地质史料,反映了中国西北干旱区地质、气候和环境的演变历史。

黄土的形成与古气候密切相关,黄土堆积的层次较为清晰,层与层之间往往夹有厚度不等的一些灰黄色(meaning:包括颗石灰等)夹土或斜坡等地层,有的地层中夹有、有水珠状,有的地层中呈均匀的纹层状土结构。

这些地层多数均为古土壤层或古河流冲积层。

通过黄土地层的研究,可以获得中国古气候的一些重要信息。

黄土地层记录了很长一段时间的气候变迁情况,对于科学家研究古气候和古环境变化具有极为重要的意义。

长期以来,黄土的气候记录一直是人们头痛的难题,如何通过黄土的地层进行气候重建一直是一个具有挑战性的科学问题。

根据黄土地层的分布特点和堆积规律,科学家可以根据黄土中所含的古气候信息进行古气候重建。

黄土地层中包含的粒度和矿物成分、有机质含量、地球化学特征、微体化石等都可以为我们提供重要的古气候信息。

通过对黄土地层的详细分析,我们可以了解到古代气候的干湿变迁、温度变化等情况,为我们探究古气候提供了重要的线索。

研究表明,黄土地层中不同层次的微量元素含量和稳定同位素分布特征,能够准确地反映古气候变化的规律和特征。

黄土堆积过程与古气候重建

黄土堆积过程与古气候重建

黄土堆积过程与古气候重建在地球的历史上,黄土的形成过程与古气候的重建密切相关。

黄土是由经过长期风力作用而堆积形成的一种地层,它不仅记录了地球上古时期的气候变化,还包含了丰富的古生物和古文化遗存。

本文将介绍黄土的形成过程和利用黄土重建古气候的方法。

黄土是由于驱动长距离的风力将沙尘和悬浮粒子携带到远离源区的地方堆积而形成的。

黄土主要分布在中国的黄土高原、青藏高原和东北地区,这些地区受到的风力较大,是黄土的主要产地。

黄土中含有丰富的矿物粒子,如石英、长石和云母等,这些矿物粒子形成了黄土的主要成分。

此外,黄土中还常含有有机质、古植物残体和古文化遗存等,这些都为研究古气候提供了重要依据。

利用黄土来重建古气候是非常有效的方法之一。

研究黄土中的沉积物、矿物和微体化石可以获得大量有关古气候变化的信息。

首先,通过对黄土中的矿物颗粒的形态和组成进行分析,可以获得沉积物的来源地和运输方式。

某些矿物颗粒在不同气候条件下有不同的生成机制,因此可以根据矿物颗粒的组成来推断当时的气候环境。

其次,通过分析黄土中的古生物化石,可以推测当时的植被类型和气候条件。

例如,一些古植物残体和孢粉可以反映出当时地表的植被类型,而动物和昆虫化石可以提供关于当时气温和湿度的信息。

最后,通过对黄土中一些化学元素和同位素的分析,还可以估算出当时的降水量和温度范围。

这些信息的综合分析可以帮助科学家重建古气候的大致状况。

黄土堆积过程和古气候的关系还可以从另一个角度来理解。

黄土堆积是一个相当缓慢的过程,需要长时间的风力作用才能形成厚度较大的黄土层。

因此,黄土可以作为一种“生态指标”来反映古环境的稳定性和变化情况。

在过去的几十万年中,黄土层的发育与气候的周期性变化密切相连。

通过分析不同时期的黄土层,可以了解到地球气候的长期变化趋势。

这对于预测未来气候的变化趋势以及灾害的发生与演化具有重要的意义。

综上所述,黄土的形成过程与古气候的重建有密切关系。

通过研究黄土中的沉积物、矿物和古生物化石,可以获得有关古气候环境的丰富信息。

黄土高原东南缘黄土_古土壤序列的环境磁学结果及其古气候意义

黄土高原东南缘黄土_古土壤序列的环境磁学结果及其古气候意义

论文第51卷第13期 2006年7月黄土高原东南缘黄土-古土壤序列的环境磁学结果及其古气候意义王喜生①*杨振宇②① Reidar Løvlie③裴军令①孙知明①(①中国地质科学院地质力学研究所, 北京 100081; ②南京大学地球科学系, 南京 210093; ③Department of Earth Science, University of Bergen, N-5007 Bergen, Norway. *联系人, E-mail: xishengwang@)摘要对黄土高原东南缘三门峡地区曹村黄土剖面L1~L13(时间跨度约1 Ma)的环境磁学研究表明: (1) 质量磁化率(χ)、饱和等温剩磁(SIRM)和非磁滞剩磁(ARM)等及其组合磁参数均呈明显的线性相关关系.由于超顺磁(SP)磁性颗粒对磁化率贡献最大而对剩磁(包括ARM和IRM)没有贡献, 因而这种线性关系意味着古土壤中由成土作用形成的磁性颗粒仍主要以相对偏细的单畴颗粒(SSD)为主, 而前人所认为的SP颗粒对磁化率的贡献可能被高估了; (2) 曹村剖面的磁粒度参数χARM/χ与黄土高原腹地典型黄土剖面的中值粒径曲线表现出很好的相似性, 在某种程度上反映了χARM/χ可以表征黄土-古土壤序列磁性颗粒的粒径相对变化; (3) 磁组分参数S-ratio和HIRM测试结果表明, 在由成土作用形成的低矫顽力强磁性矿物含量显著增加的同时, 高矫顽力的弱磁性赤铁矿/针铁矿的绝对含量也相应增加.关键词三门峡黄土-古土壤序列磁化率古气候中值粒径目前, 虽然对中国黄土-古土壤序列中古土壤磁化率增强的土壤成因模式已被广泛接受[1], 然而在由成土作用形成的超顺磁(SP)颗粒对磁化率的贡献以及磁化率如何记录古气候变化等问题上还没有达成广泛的一致[2~5]. Maher和Thompson[6]通过等温剩磁和非磁滞剩磁分析, 并与合成的磁性矿物对比, 用多重回归分析方法得出古土壤中磁铁矿的含量是黄土的两倍, 并认为至少90%的古土壤与黄土磁化率的差异是由于SP磁铁矿颗粒含量的不同所造成. Banerjee和Hunt[7]则利用低温剩磁测量技术估算出在15 K时由SP磁铁矿携带的剩磁对古土壤的贡献约占剩磁总量的75%, 而黄土仅占20%. 然而, Han和Jiang[8]通过对不同粒径范围内黄土颗粒的磁化率估算, 则认为SP磁性颗粒对古土壤磁化率的贡献不足3%. 最近, Liu等[9~11]对西部黄土高原黄土-古土壤序列的磁性颗粒粒度大小、分布和古土壤磁化率增强机制等开展了一系列卓有成效的岩石磁学研究, 对由成土作用形成的SP颗粒对古土壤磁化率增强的绝对重要性提出质疑, 认为由成土作用形成的SD磁性颗粒对古土壤磁化率的贡献至少在50%以上, 而且对磁化率增强起决定性作用的细粒磁性颗粒具有固定的粒径分布.由于磁化率是磁性矿物的种类、含量和颗粒大小的综合反映, 其值受源区物质的差异性、成壤期气候条件和降雨量及成土作用持续的时间等诸多因素的控制和影响[12~15]. 而饱和等温剩磁(SIRM)、非磁滞剩磁(ARM)、频率磁化率(χfd%)等及其组合参数对不同粒径范围内磁性矿物含量和粒度的相对变化反应更为灵敏[9,11,15,16]. 为此, 本文选择黄土高原上记录东亚夏季风最灵敏、成土作用最强的黄土高原东南缘三门峡地区的黄土-古土壤序列为研究对象, 通过多参数环境磁学指标来深入分析该区黄土-古土壤磁性颗粒的含量和粒度变化特征, 尝试建立1 Ma以来黄土高原东南缘黄土-古土壤序列环境磁学方面独立的古气候替代性指标, 并对古土壤磁化率增强机制作尝试性探讨.1采样与测试研究剖面位于三门峡市陕县张汴乡东南约1 km 的曹村东侧, 地理坐标34°38’N, 111°09’E. 剖面总厚度为153 m, 包括上部完整的33个黄土层和32个古土壤层(厚度为145 m)和8 m厚的红黏土(未见底). 本次研究从剖面上部的L1~L13(厚为71 m)以10 cm间距采集8 cm × 8 cm × (5~8) cm古地磁大样, 对可能出现的地磁极性转换处(L8~S8和L10~L13)进行了连续取样. 在室内, 对间距为10 cm的样品加工为2 cm × 2 cm ×2 cm的立方体试样, 并在每一层面上获得3块平行样. 对第一套样品的高分辨率古地磁研究已表明: 布容/松山极性转换界线位于S8的顶部, 贾拉米洛正极性亚时的顶、底界分别位于S10和L13的顶部[17].第51卷 第13期 2006年7月论 文本文选择曹村黄土剖面的第二套样品进行低场磁化率(χ)、频率磁化率(χfd %)非磁滞剩磁(ARM)和饱和等温剩磁(SIRM 2T )等环境磁参数测试分析. χ和χfd %由Bartington MS2B 双频磁化率仪完成, 再由频率为160 Hz 的2G 交变场退磁仪施加最大值为100 mT 的交流场和0.1 mT 的直流场来获得ARM. SIRM 2T 由Redcliffe 脉冲磁力仪在垂直于ARM 方向上加2T 直流场获得. 之后由Solenoid 在SIRM 反方向分别加100和300 mT 的直流场来获得IRM −0.1T 和IRM −0.3T . 所有样品的ARM 和IRM 利用Digico 旋转磁力仪完成. 在此基础上计算出HIRM=1/2(SIRM+IRM −0.3T ), S −0.1= -IRM −0.1T /SIRM, S −0.3= −IRM −0.3T /SIRM, S Bloemental = (1−IRM −0.3T /SIRM)/2, χARM /χ和ARM/SIRM 等比值. 此外, 还对部分样品的ARM 和SIRM 进行了系统的交变退磁, 试图通过不同种类剩磁的矫顽力谱线特征来分析其磁性载体类型.2 磁参数的线性相关分析以上测得的磁学参数总体上呈线性正相关关系(图1), 主要反映了黄土-古土壤中强磁性磁铁矿/磁赤铁矿的含量变化特征. 其中χ和ARM 的线性相关系数R 2达0.975(图1(a)). 这种明显的正相关关系可以理解为两种磁成分的叠加, 即原生黄土组分(背景组分)和风化/成土成分(磁增强组分)的相互消长关系[9]. 随风化/成土作用的增加, χ和ARM 同时线性增加, 因而二者拟合直线的斜率反映了不同粒径范围内磁性颗粒对χ和ARM 贡献的综合反映, 而其在χ轴上的截距χ0则可能趋近于未经风化原生黄土的磁化率值[9]. 曹村剖面的χ0值为1.495×10−7 m 3/kg, 与最近报道的九洲台、塬堡和宜川等剖面的马兰黄土(L1)和末次间冰期古土壤(S1)的χ0值(分别为 1.505×10−7, 1.585× 10−7和1.898×10−7 m 3/kg)[9]非常接近, 可能反映图 1 曹村黄土剖面各种磁学参数的线性关系图论 文第51卷 第13期 2006年7月了黄土高原上不同地区发育的黄土具共同的物源区.χ和SIRM 的线性相关系数R 2为0.96(图1(b)), 略低于χ和ARM 的相关系数0.975. 一般来说, χ主要反映铁磁性矿物的含量变化, ARM 仅对粒度较细的SD 强磁性颗粒更灵敏, 而SIRM 则不仅有低矫顽力磁铁矿/磁赤铁矿的贡献, 还可能包含了部分高矫顽力的赤铁矿. 特别是当样品中磁铁矿和赤铁矿共存时, 强场下获得的SIRM 比低场获得的χ和ARM 对赤铁矿的含量变化更灵敏. 对该剖面部分黄土/古土壤样品的ARM 和SIRM 交变退磁结果显示: 经80 mT 的交变退磁, 黄土样品的ARM 可衰减到5%以内, 而古土壤可衰减到2%以内; 几乎所有黄土和古土壤样品的SIRM 2T 经200 mT 交变退磁仍保留10%以上, 部分黄土样品甚至达15%以上(图2). 可见, 弱场ARM 并未饱和高矫顽力的赤铁矿, 而强场SIRM 的交变退磁结果明确指示了黄土/古土壤中存在高矫顽力赤铁矿, 而且其对黄土剩磁的相对贡献要大于古土壤. 因而,χ-ARM 比χ-SIRM 和ARM-SIRM 更好的线性相关关系反映了χ和ARM 的主要磁性载体是磁铁矿/磁赤铁矿,而SIRM 则可能同时反映了铁磁性磁铁矿/磁赤铁矿和部分反铁磁性赤铁矿含量的变化. 此外, 图1(b)也明确表明, 当χ趋近于零时, 黄土样品仍具一定的SIRM, 这也说明赤铁矿对黄土SIRM 的贡献不容忽略. 当χ值增大时, SIRM 值也随之线性增加. 但当χ值达一定数值(>200×10−8m 3/kg)时, 随χ的继续增加, SIRM 缓慢增加或基本保持不变, 导致二者拟合的直线斜率明显增大(图1(b)). 从理论上来讲, 当磁性颗粒在SP 范围时, 磁化率显著增加, 而SP 颗粒对SIRM 的贡献为零. 因而图1(b)中χ>200×10−8 m 3/kg 时SIRM 和χ拟合直线斜率的明显增大反映了样品中由成土作用形成的SP 颗粒显著增加.3 1 Ma 以来曹村剖面黄土-古土壤序列的环境磁学特征图3为曹村剖面L1~L13的环境磁学参数随深度变化曲线, 所有磁学参数的峰/谷基本完全对应, 反映了第四纪以来的冰期-间冰期旋回中, 受东亚季风系统所控制的风尘堆积黄土的磁性颗粒的含量、种类和粒度的周期性变化规律[1,12,15]. 在以黄土堆积为主的气候干冷期, χ, χARM 和SIRM 较小; 而在古土壤发育的温暖湿润期, 以上参数明显增大. 由于χ, χARM 和SIRM 主要反映铁磁性矿物种类和含量的变化, 因图 2 代表性古土壤和黄土代表性样品的非磁滞剩磁ARM ((a), (b))和饱和等温剩磁SIRM 2T ((c), (d))交变退磁结果第51卷第13期 2006年7月论 文图 3 曹村黄土剖面L1~L13的磁学参数随深度变化图而以上变化特征清晰地表明在古土壤相对发育的时期强磁性矿物含量的显著增加. 此外, 虽然在同一层位上SIRM 比χARM 强度要大得多, 但就整个剖面而言,χARM 比SIRM 变化幅度更大, 尤其是发育程度较好的S4和S5古土壤层具有异常高的χARM 值(图3). 由于ARM 比SIRM 对细粒的磁性颗粒更灵敏, 因而这一变化特征明显反映了在暖湿气候条件下形成的古土壤不仅强磁性颗粒含量的增加, 同时也说明其中的磁性颗粒粒度相对变细的特点.磁粒度参数χARM /χ和ARM/SIRM 也表现出与χ,χARM 及SIRM 类似的变化规律. ARM/SIRM 主要反映粒径大于SP 的铁磁质磁性矿物的粒度变化, 其值与磁性颗粒的粒度成反比. 图3所示的曹村剖面L1~L13的ARM/SIRM 变化特征与近年来对典型黄土剖面的高分辨率粒度分析结果所指示的古土壤比黄土粒度细的特点相吻合[18~21]. 与ARM/SIRM 和其他磁学参数所表现出的S5特征的峰值相比, 代表极端暖湿气候S5的χARM /χ峰值并不明显, 甚至低于土壤化程度比其低的S6, S7和S8. 这可能是由于土壤化程度最高的S5经强烈的成土作用从而导致SP 颗粒大量生成的结果. 由于SP 颗粒对χ贡献最大而对 ARM 的贡献为零, 因而χARM /χ比值减小. 然而从黄土高原腹地典型剖面—泾川剖面和渭南剖面的粒度指标随深度变化曲线来看(图4), 虽然在黄土高原上S6的古土壤发育程度明显弱于代表极端湿热气候的S5复合古土壤, 但S6的粒度与S5相比并没有明显变粗[21]. 在渭南剖面, S6的粒度不仅细于古土壤发育更好的S2和S3, 甚至比S5还细[22]. 因而我们也不能排除χARM /χ真实地反映了磁性颗粒粒度变化趋势的可能性. 也就是说, S5低的χARM /χ值可能并不归结于SP 颗粒的大量补偿.4 讨论和结论从理论上来讲, SD 颗粒的ARM 值最大, MD 和PSD 颗粒的ARM 值较低; 而SP 颗粒尽管具有大的χ和χfd %值, 但其不携带任何形式的剩磁(包括ARM 和IRM)[23]. 由于ARM 对SD 颗粒最灵敏, 因而被广为用来检测样品中SD 颗粒的含量[9,11,24,25]. 按照中国黄土-古土壤序列中古土壤磁化率明显高于黄土的特点, Zhou 等人[1]提出了古土壤磁化率增强的成土作用模式, 认为古土壤磁化率的显著增加主要是间冰期内论 文第51卷 第13期 2006年7月图 4 渭南剖面(<2 µm/>10 µm)%粒度参数曲线[22]、泾川剖面中值粒径曲线[21]、曹村剖面χARM /χ和磁化率曲线、洛川剖面磁化率曲线[33]和ODP 677氧同位素曲线[34]对比结果的气候适宜期形成大量次生的SP 磁性矿物的结果.然而, 如图1所示, ARM-SIRM, ARM-χ和SIRM-χ均呈明显的线性相关关系, 并没有表现出χ增强时ARM 和SIRM 保持不变的情形. 可见, 即使就土壤化程度明显高于黄土高原腹地的曹村黄土而言, 虽然古土壤磁粒度较细, 但仍主要以相对偏细的单畴(SSD)亚铁磁性颗粒为主. 虽然曹村剖面的古土壤也表现出χfd %明显高于黄土的特点(图3), 而且χfd %也被广为用来指示SP 颗粒的含量. 但χfd %最大的缺陷是不能有效区分这些细磁性颗粒是SSD 还是SP, 尽管其高值总体上反映了磁性颗粒接近SP/SD 临界区间的特点. 此外, 近年来的研究也表明, χfd %值的大小可能是SP 与SD 磁性颗粒粒度分布范围的反映, 即高的χfd %值意味着SP 与SD 磁性颗粒具较窄的粒度分布范围, 而非SP 颗粒含量的增加[26,27]. 值得注意的是, Liu 等[10,11]对西部黄土高原的塬堡剖面细致的岩石磁学研究也充分表明: SD 磁性颗粒是ARM 的主要携带者; 对于中等发育程度的古土壤(χ<10×10−7m 3/kg),稳定的SD 颗粒对χ的贡献要大于SP 颗粒; 而对于发育更成熟的古土壤(χ>10×10−7~12×10−7 m 3/kg), 与成土作用有关的PSD 颗粒对磁化率的贡献显著增加. 由此可见, 先前认为的由成土作用形成的SP 颗粒对古土壤χ的贡献可能被高估了.S -ratio(包括S −0.3T 和S −0.1T )主要用来衡量磁铁矿/磁赤铁矿和赤铁矿/针铁矿的相对含量[28~30]. 如果S 为1, 表明完全为磁铁矿/磁赤铁矿; 而S 值的降低则表明高矫顽力磁性矿物的影响在增加. 通常用HIRM=1/2(SIRM+IRM −0.3T )来表征高矫顽力矿物(赤铁矿/针铁矿)的含量变化. 由于高矫顽力铁氧化物与强磁性的磁铁矿/磁赤铁矿相比对磁化率和剩磁的贡献要小得多, 因而S -ratio 和HIRM 的结合使用可更客观地反映高矫顽力矿物的相对和绝对变化. 图5表明, 在古土壤发育时期, 在低矫顽力强磁性矿物含量显著增加的同时, 高矫顽力的弱磁性赤铁矿/针铁矿的绝对含量也增加. 最近, Balsam 等[31]通过紫外-可见-近红外反射光谱方法对洛川和灵台剖面的研究也表明, 赤铁矿和针铁矿的含量与磁化率呈明显的正相关关系[31,32]. 本次研究结果为紫外-可见-近红外反射光谱这一快速测量土壤中铁氧化物矿物含量方法的可靠性提供了重要佐证. 可见, 成土作用不仅会导致对古土壤磁性显著增强的磁铁矿及其氧化产物磁赤铁矿含量的增加, 而且诱导了弱磁性铁氧化物(赤铁矿和针铁矿)含量的增加. 而古土壤中这些次生的弱磁性铁氧化物极有可能是在间冰期风化成壤过程中由不稳定硅酸盐矿物(如辉石、黑云母、绿泥石等)分解所形成[15].图4显示, 曹村剖面与洛川经典剖面[33]的磁化率第51卷第13期 2006年7月论 文图 5 曹村黄土剖面的S -ratio 与HIRM 随深度变化图曲线特征表现出较好的一致性, 在局部层位次一级的磁化率峰值甚至比洛川剖面更明显. 特别值得注意的是, 曹村剖面“上粉砂层”L9中部的弱发育古土壤层L9SS1的磁化率曲线与洛川剖面相比显著得多, 其峰值大小达97.1×10−8 m 3/kg, 甚至可与S7和S8相比. 因此, 一种可能的情形是, L9并不代表一个完整的极端气候干冷期, 在L9堆积的中期仍存在一个短暂的气候适宜期. 在这一气候适宜期, 东亚夏季风并没有延伸到黄土高原的腹地, 而位于黄土高原东南缘的三门峡地区黄土则清晰地记录了这一短暂的气候适宜期. 可见, 三门峡地区黄土与黄土高原中部和南部的典型剖面相比既有相似性又有自身的特色, 是黄土高原上记录东亚夏季风最灵敏的地区之一.图4的深海氧同位素曲线不仅明确指示了第四纪以来的冰期-间冰期多旋回特征[34], 更重要的是第四纪以来气候总体上变冷的趋势[35]. 然而, 中国黄土的χ, χARM 和SIRM 等磁学参数并没有这种长周期变化趋势. 虽然黄土-古土壤的粒径与磁化率总体上也具一定的正相关关系, 但从大的时间尺度上来看, 粒度参数遵循深海氧同位素所指示的第四纪以来气候变冷的总体趋势(图4). 自0.78 Ma (布容/松山极性转换界线)以来, 曹村剖面的χARM /χ值也具有这一趋势, 而且曹村剖面的χARM /χ与泾川剖面的中值粒径曲线无论从峰-谷变化特征还是总体趋势都表现出很好的相似性. 虽然目前还没有曹村剖面的粒度分析结果, 但二者之间极好的相似性在某种程度上可能反映了χARM /χ可以用来指示黄土-古土壤序列的磁性颗粒粒度变化特征. 最近, Deng 等[16]对陕西交道黄土剖面CBD 处理前后的χ/χARM 都记录了第四纪以来磁粒度的逐渐变粗和冬季风阶段性增强的趋势, 而且经CBD 处理后的χARM /SIRM 和SIRM/χ使得这一趋势更为明显. 从这一点上来讲, 用黄土(磁)粒度指标来反映大尺度的气候环境变迁似乎比磁化率更具优势. 古气候学研究显示: 自0.9 Ma 以来, 气候主导周期从以地轴倾斜度占主导的41 ka 周期逐渐转变为以偏心率占主导的100 ka 周期[36~38], 而S5恰是在中更新世气候转型的过渡期(922~641 ka)之后形成的[39]. S5标志性的多元古土壤特征和高的磁化率及其后形成的所有古土壤层磁化率值明显增大的特点可能反映了随气候主导周期和北半球冰量韵律的变化而诱导的磁化率等古气候替代性指标的幅度和规模的变化. 在以100 ka 为主导的气候周期内, 比中更新世气候转型期更显著的太阳辐射峰值[36]可分别对应磁化率论文第51卷第13期 2006年7月明显增强的S5及其后形成的各个古土壤层. 因而, 中国黄土的粒度与磁化率总体变化趋势的不一致性可能反映了不同的黄土堆积期黄土粉尘源区的变化性, 但由气候主导周期的变化而诱导的全球冰量韵律变化及不同间冰期内温湿的气候条件、降雨量以及土壤化作用所持续时间等方面的差异可能是导致中国黄土中更新世以来(磁)粒度与磁化率总体变化趋势不协调的更重要原因.致谢感谢刘青松博士与另一名审稿专家对本文的许多建设性建议和修改意见. 本工作受国家自然科学基金项目(批准号: 40202018)、国家人事部留学人员择优资助“优秀类”项目、中国地质调查局地质调查项目(批准号: 200413000035)和中国地质科学院重点开放实验室专项资金资助项目联合资助.参考文献1 Zhou L P, Oldfield F, Wintle A G, et al. Partly pedogenic origin ofmagnetic variations in Chinese loess. Nature, 1990, 346: 737—7392 Forster T, Heller F. Magnetic enhancement paths in loess sedi-ments from Tajikistan, China and Hungary. Geophys Res Lett, 1997, 24: 17—203 Guo Z T, Biscaye P, Weil Y, et al. Summer monsoon variation overthe last 1.2 Ma from the weathering of loess-soil sequences in China. Geophys Res Lett, 1999, 27: 1751—17544 Guo Z T, Liu T S, Fedoroff N, et al. Climate extremes in loess ofChina coupled with the strength of deep-water formation in north Atlantic. Glob Planet Change, 1998, 18: 113—1285 Sun J M, Liu T S. Multiple origins and interpretations of the mag-netic susceptibility signal in Chinese wind-blown sediments. Earth Planet Sci Lett, 2000, 180: 287—2966 Maher B A, Thompson R. Paleoclimatic significance of the min-eral magnetic record of the Chinese loess and paleosols. Quat Res, 1992, 37: 155—1707 Banerjee S K, Hunt C P. Separation of local signals from the re-gional paleomonsoon record of the Chinese loess plateau: A rock magnetic approach. Geophys Res Lett, 1993, 20: 843—8468 Han J M, Jiang W Y. Particle size contribution to bulk magneticsusceptibility in Chinese loess and paleosol. Quat Int, 1999, 62: 103—1109 Liu Q S, Banerjee S K, Jackson M J, et al. Grain sizes of suscepti-bility and anhysteretic remanent magnetization carriers in Chinese loess/paleosol sequences. J Geophys Res, 2004, 109(B3), B03101, doi: 10.1029/2003JB00274710 Liu Q S, Banerjee S K, Jackson M J, et al. Mechanism of themagnetic susceptibility enhancements of the Chinese loess. J Geophys Res, 2004, 109, B12107, doi: 10.1029/2004JB00324911 Liu Q S, Jackson M J, Yu Y, et al. Grain size distribution of pe-dogenic magnetic particles in Chinese loess/paleosols. Geophys Res Lett, 2004, 31, doi: 10.1029/2004GL02109012 Hus J J, Han J M. The contribution of loess magnetism in China tothe retrieval of past global changes-some problems. Phys Earth Planet Inter, 1992, 70: 154—16813 Maher B A, Thompson. Paleorainfall reconstruction from pe-dogenic magnetic susceptibility variations in the Chinese loess and paleosols. Quat Res, 1995, 44: 383—39114 Vidic N J, Singer M J, Verosub K L. Duration dependence ofmagnetic susceptibility enhancement in the Chinese loess-paleo- sols of the last 620ky. Palaeogeogr Palaeoclimatol Palaeoecol, 2004, 211: 271—28815 Deng C L, Zhu R X, Verosub K L, et al. Mineral magnetic proper-ties of loess/paleosol couplets of the central loess plateau of China over the last 1.2 Myr. J Geophys Res, 2004, 109, B01103, doi:10.1029/2003JB00253216 Deng C L, Vidic N J, Verosub K L, et al. Mineral magnetic varia-tion of the Jiaodao Chinese loess/paleosol sequence and its bear-ing on long-term climatic variability. J Geophys Res, 2005, 110, B03103, doi: 10.1029/2004JB00345117 Wang X S, Løvlie R, Yang Z Y, et al. Remagnetization of Quater-nary eolian deposits: A case study from SE Chinese Loess Plateau.Geochem Geophys Geosyst, 2005, 6: 10.1029/2004GC00090118 Ding Z L, Yu Z, Rutter N W, et al. Towards an orbital time scalefor Chinese loess deposits. Quat Sci Rev, 1994, 13: 39—7019 Ding Z L, Rutter N W, Sun J M, et al. Re-arrangement of atomos-pheric circulation at about 2.6 Ma over northern China: evidence from grain size records of loess-paleosol and red clay sequences.Quat Sci Rev, 2000, 19: 547—55820 Lu H Y, Sun D H. Pathways of dust input to the Chinese loess pla-teau during the last glacial and interglacial periods. Catena, 2000, 40: 251—26121 Ding Z L, Derbyshire E, Yang S L, et al. Stacked 2.6 Ma grain sizerecord from the Chinese loess based on five sections and correla-tion with the deep-sea δ18O record. Paleoceanography, 2002, 17, doi: 10.1029/2001PA00072522 Liu T S, Ding Z L. Chinese loess and the palaeomonsoon. AnnRev Earth Planet Sci, 1998, 26: 111—14523 Dunlop D J, Özdemir Ö. Rock Magnetism: Fundamentals andFrontiers. New York: Cambridge University Press, 199724 Egli R, Lowrie W. Anhysteretic remanent magnetization of finemagnetic particles. J Geophys Res, 2002, 107(B10): 2209, doi:10.1029/2001JB0067125 Yu Y, Dunlop D J. Decay-rate dependence of anhysteretic rema-nence: fundamental origin and paleomagnetic applications. J Geophys Res, 2003, 108(B12): 2550, doi: 10.1029/2003JB002589 26 Worm H U. On the superparamagnetic-stable single domain transi-tion for magnetite, and frequency dependence of susceptibility.Geophys J Int, 1998, 133: 201—20627 Worm H U, Jackson M J. The superparamagnetism of YuccaMountain Tuff. J Geophys Res, 1999, 104: 25,415—25,42528 Bloemendal J, King J W, Hall F R, et al. Rock magnetism of LateNeogene and Pleistocene deep-sea sediments: Relationship to sediment source, diagenetic process and sediment lithology. J Geophys Res, 1992, 97: 4361—437529 Bloemendal J, Liu X M. Rock magnetism and geochemistry of twoplio-pleistocene Chinese loess-palaeosol sequences—implications第51卷第13期 2006年7月论文for quantitative palaeoprecipitation reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol, 2005, 226: 149—16630 Liu Q S, Banerjee S K, Jackson M J, et al. Determining the cli-matic boundary between the Chinese loess and palaeosol: Evi-dence from aeolian coarse-grained magnetite. Geophys J Int, 2004, 156: 267—27431 Balsam W, Ji J F, Chen J. Climatic interpretation of the Luochuanand Lingtai loess sections, China, based on changing iron oxide mineralogy and magnetic susceptibility. Earth Planet Sci Lett, 2004, 223: 335—34832 Ji J F, Balsam W, Chen J. Mineralogic and climatic interpretationsof the Luochuan loess section (China) based on diffuse reflectance spectrophotometry. Quat Res, 2001, 56: 23—3033 Lu H Y, Liu X D, Zhang F Q, et al. Astronomical calibration ofloess-paleosol deposits at Luochuan, central Chinese Loess Plateau.Palaeogeogr Palaeoclimatol Palaeoecol, 1999, 154: 237—24634 Shackleton N J, Berger A, Peltier W R. An alternative astronomi-cal calibration of the Lower Pleistocene timescale based on ODPsite 677. Trans R Soc Edinb-Earth Sci, 1990, 81: 251—26135 Pillans B, Naish T. Defining the Quaternary. Quat Sci Rev, 2004,23: 2271—228236 Berger A, Loutre M F. Insolation values for the climate of the last10 million years. Quat Sci Rev, 1991, 10: 297—31737 Ruddiman W F, Raymo M E, Martinson D G, et al. Pleistoceneevolution: Northern hemisphere ice sheets and North Atlantic Ocean. Paleoceanography, 1994, 4: 353—41238 Raymo M E, Oppo D W, Flower B P, et al. Stability of North At-lantic water masses in face of pronounced climate variability dur-ing the Pleistocene. Paleoceanography, 2004, 19, PA2008, doi:10.1029/2003PA00092139 Heslop D, Dekkers M J, Langereis C G. Timing and structure ofthe mid-Pleistocene transition: records from the loess deposits of northern China. Palaeogeogr Palaeocli Palaeoecol, 2002, 185: 133—143(2005-12-08收稿, 2006-03-01接受)《科学通报》投稿指南在《科学通报》发表的原创性研究论文应同时具备以下条件:(ⅰ) 是自然科学基础理论或应用研究的最新成果.(ⅱ) 有重要科学意义, 属国际研究热点课题.(ⅲ) 有创新(新思路、新方法、新认识、新发现等).(ⅳ) 对本领域或/和相关领域研究有较大的促进作用.(ⅴ) 就内容和写作风格而言, 对大同行或非同行科学家都有可读性和启发性.对原创性研究论文的写作要求:文章应论点明确、数据可靠、逻辑严密、结构简明; 尽量避免使用多层标题; 文字、图表要简练, 用较少的篇幅提供较大的信息量; 论述应深入浅出、表达清楚流畅; 专业术语的运用应准确, 前后保持一致.题目是文章的点睛之处, 要紧扣主题, 有足够的信息, 能引起读者的兴趣; 应避免使用大而空的题目, 最好不用“…的研究”、“…的意义”、“…的发现”、“…的特征”等词; 回避生僻字、符号、公式和缩略语. 一般不超过24个汉字, 英文以两行为宜. 不使用副标题.摘要应反映文章的主要内容, 阐明研究的目的、方法、结果和结论, 尽量避免使用过于专业化的词汇、特殊符号和公式. 摘要的写作要精心构思, 随意从文章中摘出几句或只是重复一遍结论的做法是不可取的. 摘要中不能出现参考文献序号.关键词用于对研究内容的检索. 因此, 关键词应紧扣文章主题, 尽可能使用全国科学技术名词审定委员会颁布的主题词, 不应随意造词. 关键词一般为3~10个.正文应以描述文章重要性的简短引言开始. 专业术语、符号、简略或首字母缩略词在第一次出现时应有定义. 所有的图和表应按文中提到的顺序编号.引言是文章的重要组成部分, 关系到文章对读者的吸引力. 在引言中应简要回顾本文所涉及到的科学问题的研究历史, 尤其是近2~3年内的研究成果, 需引用参考文献; 并在此基础上提出本文要解决的问题; 最后扼要交代本研究所采用的方法和技术手段等. 引言部分不加小标题, 不必介绍文章的结构.材料和方法主要是说明研究所用的材料、方法和研究的基本过程, 使读者了解研究的可靠性, 也使同行可以根据本文内容重复有关实验.讨论和结论部分应该由观测和实验结果引申得出, 切忌简单地再罗列一遍实验结果. 讨论得出的结论与观点应明确, 实事求是.致谢部分应先向对本文有帮助的有关人士表示谢意; 然后列出本工作的资助基金来源, 并注明项目批准号.参考文献引用是否得当, 是评价论文质量的重要标准之一. 如果未能在论文中引用与本项研究有关的主要文献, 尤其是近2~3年内的文献, 或是主要引用作者自己的文献, 编辑可能会认为对这篇文章感兴趣的读者不多. 对文中所引参考文献, 作者均应认真阅读过, 对文献的作者、题目、发表的刊物、年代、卷号和起止页码等, 均应核实无误, 并按《科学通报》体例要求的顺序排列. 切忌转引二手文献的不负责任的做法.。

黄土高原黄土粒度组成的古气候意义

黄土高原黄土粒度组成的古气候意义

黄土高原黄土粒度组成的古气候意义一、本文概述《黄土高原黄土粒度组成的古气候意义》这篇文章主要探讨了黄土高原黄土粒度组成对古气候变化的指示作用。

黄土高原,作为中国乃至全球范围内的一个重要地貌景观,其独特的黄土沉积序列记录了丰富的古气候信息。

通过对黄土粒度组成的深入研究,我们可以更好地理解历史时期的气候变化,为古气候重建和预测未来气候变化提供重要依据。

本文首先介绍了黄土高原的地理特征和黄土沉积的基本情况,包括黄土的分布、厚度和形成过程等。

随后,文章详细阐述了黄土粒度组成的概念、分类和测定方法,以及粒度组成与气候变化之间的内在联系。

通过对黄土粒度组成的分析,可以揭示出历史时期的气候变化特征,如干湿交替、季风强弱等。

本文还综述了近年来黄土粒度组成在古气候研究中的应用案例,包括黄土高原不同地区的粒度组成特征及其与气候变化的对应关系。

文章也指出了当前研究中存在的问题和争议,如粒度组成的解释性、不同气候因素对粒度组成的影响等。

本文展望了黄土粒度组成在古气候研究中的未来发展方向,包括改进测定方法、提高解释精度、拓展应用领域等。

通过对黄土粒度组成的深入研究,我们有望更准确地揭示历史气候变化的规律,为应对全球气候变化提供科学依据。

二、黄土高原黄土粒度组成特征黄土高原的黄土沉积,作为一种独特的地貌现象,其粒度组成特征携带了丰富的古气候信息。

黄土粒度,主要指的是黄土中不同粒径颗粒的分布情况,包括砂粒、粉砂和粘土等。

这些粒度的大小及其比例,不仅反映了黄土的形成过程,也揭示了黄土高原地区的历史气候变化。

黄土高原的黄土粒度组成具有显著的特点。

在垂直剖面上,黄土的粒度分布呈现出由底部到顶部逐渐变细的趋势,即所谓的“粒度倒转”现象。

这一特征表明,黄土高原在地质历史时期曾经历过强烈的粉尘搬运和沉积过程。

特别是在干旱或半干旱气候条件下,风力作用强烈,能够携带大量粉尘颗粒物,并在特定区域沉积下来,形成黄土。

黄土高原黄土的粒度组成还呈现出明显的空间变化。

黄土的成壤改造:恢复古气候的重要性.总结

黄土的成壤改造:恢复古气候的重要性.总结

黄土的成壤改造Rob A. Kemp摘要这篇文章阐述了成壤过程对风尘(黄土)的改造作用。

主要分析了黄土的一些特征,这些特征可以指示过去气候条件和变化。

重点研究黄土沉积物中发育的古土壤序列,黄土古土壤序列记录了过去全球变化过程,常被视作是陆地上能够很好的与深海沉积序列对比的沉积物。

通常从广泛的成土过程和环境变化的角度来解释古土壤形成的原因。

即使古土壤的存在具有古气候意义,然而,由于古土壤常被用来指示稳定和更加湿润的地表条件。

事实上,应该更加关注黄土古土壤序列形成时黄土堆积和成壤之间的动态平衡。

在许多区域,间冰期和间冰阶的成壤大于沉积,这是因为气候温暖湿润,沉积物供给和传输不足。

当然,在成壤间断时期沉积速率仍然很大,当沉积速率大于或等于成壤速率时土壤古土壤可能会增厚。

当上覆的沉积物不够厚,不足以隔离下伏古土壤,使它不再受到地表活跃的成土作用时就会形成过渡层。

一般来说,地质和沉积过程应包含在古沉积作用的恢复中。

最近的趋势是把一些黄土古土壤序列作为时间序列,特别是将气候替代指标(磁化率、粒度)随深度函数与深海、冰芯同位素曲线作对比。

关键词:黄土;古土壤;古气候;土壤沉积过程;土壤复合体1 引言黄土是一种陆地碎屑沉积物,由粉砂粒组成,是一种风尘堆积物。

冰缘、山地边缘、沙漠边缘堆积物的区别在于物源。

然而,Pecsis 称,狭义上经历过黄土化过程的风尘叫黄土的断言颇具争议,Pye( 1995)认为,大部分堆积物过多或少得经历过同步或沉积后改造过程。

这些改造过程实际上是成壤改造过程,该过程主要受气候因素的影响。

本文的目的是阐明黄土改造中的成壤作用。

主要分析了黄土的一些特征,这些特征可以指示过去气候条件和变化。

并不是为黄土的分布提供大的地理范围( Pye,1995),也不去研究各分析分析技术的优点及特性的意义(如,磁化率,稳定同位素,微形态) 。

这些内容在其它文献里已有详细的描述 ( Evans,Heller,Zhou )。

准噶尔盆地南缘下侏罗统三工河组地球化学、沉积环境及源区特征分析

准噶尔盆地南缘下侏罗统三工河组地球化学、沉积环境及源区特征分析

准噶尔盆地南缘下侏罗统三工河组地球化学、沉积环境及源区特征分析作者:朱钘刘云华高晓峰夏明哲查显峰罗居德来源:《新疆地质》2024年第01期摘要:准噶尔盆地南缘是重要的油气勘探地区,也是研究盆地构造属性、沉积环境演化的重要区域。

南缘下侏罗统三工河组由上部主体浅青灰色-灰绿色长石岩屑砂岩、粉砂质泥岩、泥质粉砂岩和下部土黄色长石岩屑砂岩、含砾粗砂岩、砾岩组成,对上部样品进行岩石学、岩相学和地球化学研究显示:样品化学蚀变指数(CIA)为77.57,反映物源区经历中等风化作用;碎屑物质磨圆和分选较差,表明沉积物搬运距离短,成分成熟度低;Cu/Zn、V/Cr、V/(V+Ni)、Ni/Co及U/Th值指示古沉积环境为富氧的氧化环境-贫氧过渡环境;Sr/Cu、Al2O3/MgO值指示温暖湿润的气候特征;Li,Sr,Sr/Ba,Th/U值指示淡水环境;综合岩相学特征认为,其上部主体为浅湖亚相沉积,下部为辫状河三角洲平原亚相沉积。

样品中含流纹岩岩屑,La/Th-Hf、La/Sc-Co/Th和Ni-TiO2判别图指示三工河组源岩主要来自于上地壳长英质火山岩;出现少量安山岩岩屑和Th/Co、Th/Cr比值显示源岩有少量中-基性岩。

通过样品与不同构造背景杂砂岩成分对比、Th-Co-Zr/10、La-Th-Sc、Th-Sc-Zr/10判别图显示物源区应为大陆岛弧构造背景。

关键词:准噶尔盆地南缘;三工河组;地球化学;沉积环境;构造背景准噶尔盆地南缘下侏罗统分为八道湾组和三工河组,属同一沉积旋回。

八道湾组为南缘主要烃源岩层位之一[1-3],三工河组同样具有油气成藏条件[4,5],具较好的油气藏勘探前景。

三工河组广泛分布于准噶尔盆地大部分区域。

前人研究结果表明,不同区域沉积特征存在一定差异[4-13]。

前人对南缘和临近中央凹陷三工河组的研究主要围绕着沉积特征[6-8]、砂体结构和水动力条件[9-13],认为区域内沉积水体水动力条件自早期辫状河三角洲相到晚期湖泊相逐渐减弱[14-15],早期发育有河道强、弱冲刷叠置砂体组合等多种砂体组合样式[10]。

古老地质样品的黑碳记录及其对古气候、古环境的响应

古老地质样品的黑碳记录及其对古气候、古环境的响应

古老地质样品的黑碳记录及其对古气候、古环境的响应宋建中;胡建芳;彭平安;万晓樵【摘要】黑碳是由生物质和化石燃料等不完全燃烧所产生的,具有高度稳定的芳香性结构,在地质样品中可以长期地保存。

首先介绍了黑碳的化学性质和地质样品中黑碳的分离测定方法,然后对地质样品中黑碳记录的科学价值进行讨论,并详细论述了不同环境地质样品中黑碳的分布和古气候、古环境意义,并指出了地质样品中黑碳研究的重要方向。

%Black carbon (BC) are a series of carbonaceous products of the incomplete combustion of biomass and fossil fuels, that have both high armoaticity and high resistance to degradation, thereby they can be preserved in the geological sediments for thousands to millons of years. Firstly, this paper briefly described the chemical properties of BC and the methods for iaolation and determination of BC in geological samples. Then, the paper summaried the scientific values of BC record in ancient soils and sediments and reviewed the distribution of BC and their significances in paleoenvironments and paleoclimates in various systems. Finally, the new directions in BC biogeochemistry in ancient geological samples were discussed.【期刊名称】《自然杂志》【年(卷),期】2015(000)002【总页数】7页(P86-92)【关键词】黑碳;火灾;古气候;古环境【作者】宋建中;胡建芳;彭平安;万晓樵【作者单位】中国科学院广州地球化学研究所有机地球化学国家重点实验室,广州510640;中国科学院广州地球化学研究所有机地球化学国家重点实验室,广州510640;中国科学院广州地球化学研究所有机地球化学国家重点实验室,广州510640;中国地质大学生物地质与环境地质国家重点实验室,北京 100083【正文语种】中文黑碳(BC)是生物质和化石燃料等不完全燃烧产生的一系列含碳物质,包括部分炭化的植物残体和木炭,以及由挥发性组分重新聚合而成的烟灰颗粒等[1-5]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档