大学物理习题答案
大学物理习题答案
大学物理习题答案 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-一、 单项选择题:1. 北京正负电子对撞机中电子在周长为L 的储存环中作轨道运动。
已知电子的动量是P ,则偏转磁场的磁感应强度为: ( C ) (A)eLP π; (B)eL P π4; (C) eLPπ2; (D) 0。
2. 在磁感应强度为B的均匀磁场中,取一边长为a 的立方形闭合面,则通过该闭合面的磁通量的大小为: ( D )(A) B a 2; (B) B a 22; (C) B a 26; (D) 0。
3.半径为R 的长直圆柱体载流为I ,电流I 均匀分布在横截面上,则圆柱体内(R r 〈)的一点P 的磁感应强度的大小为 ( B ) (A) r I B πμ20=; (B) 202R Ir B πμ=; (C) 202rIB πμ=; (D) 202RIB πμ=。
4.单色光从空气射入水中,下面哪种说法是正确的 ( A ) (A) 频率不变,光速变小; (B) 波长不变,频率变大; (C) 波长变短,光速不变; (D) 波长不变,频率不变.5.如图,在C 点放置点电荷q 1,在A 点放置点电荷q 2,S 是包围点电荷q 1的封闭曲面,P 点是S 曲面上的任意一点.现在把q 2从A 点移到B 点,则 (D )(A) 通过S 面的电通量改变,但P 点的电场强度不变;(B) 通过S 面的电通量和P 点的电场强度都改变; (C) 通过S 面的电通量和P 点的电场强度都不变; (D) 通过S 面的电通量不变,但P 点的电场强度改变。
6.如图所示,两平面玻璃板OA 和OB 构成一空气劈尖,一平面单色光垂直入射到劈尖上,当A 板与B 板的夹角θ增大时,干涉图样将 ( C )(A) 干涉条纹间距增大,并向O 方向移动; (B) 干涉条纹间距减小,并向B 方向移动; (C) 干涉条纹间距减小,并向O 方向移动; (D) 干涉条纹间距增大,并向O 方向移动.7.在均匀磁场中有一电子枪,它可发射出速率分别为v 和2v 的两个电子,这两个电子的速度方向相同,且均与磁感应强度B 垂直,则这两个电子绕行一周所需的时间之比为 ( A )(A) 1:1; (B) 1:2; (C) 2:1; (D) 4:1.8.如图所示,均匀磁场的磁感强度为B ,方向沿y 轴正向,欲要使电量为Q 的正离子沿x 轴正向作匀速直线运动,则必须加一个均匀电场E ,其大小和方向为 ( D )(A) E =νB ,E 沿z 轴正向; (B) E =vB ,E 沿y 轴正向;(C) E =B ν,E 沿z 轴正向; (D) E =B ν,E 沿z 轴负向。
(完整版)《大学物理》练习题及参考答案
《大学物理》练习题一. 单选题:1.下列说法正确的是……………………………………() 参看课本P32-36A . 惯性系中,真空中的光速与光源的运动状态无关,与光的频率有关B . 惯性系中,真空中的光速与光源的运动状态无关,与光的频率无关C . 惯性系中,真空中的光速与光源的运动状态有关,与光的频率无关D . 惯性系中,真空中的光速与光源的运动状态有关,与光的频率有关2.下列说法正确的是………………………………… ( ) 参看课本P32-36A . 伽利略变换与洛伦兹变换是等价的B . 所有惯性系对一切物理定律都是不等价的C . 在所有惯性系中,真空的光速具有相同的量值cD . 由相对论时空观知:时钟的快慢和量尺的长短都与物体的运动无关3.下列说法正确的是………………………………… ( )参看课本P58,76,103 A . 动量守恒定律的守恒条件是系统所受的合外力矩为零 B . 角动量守恒定律的守恒条件是系统所受的合外力为零 C . 机械能守恒定律的守恒条件是系统所受的合外力不做功 D . 以上说法都不正确4. 下列关于牛顿运动定律的说法正确的是…………( ) 参看课本P44-45A . 牛顿第一运动定律是描述物体间力的相互作用的规律B . 牛顿第二运动定律是描述力处于平衡时物体的运动规律C . 牛顿第三运动定律是描述物体力和运动的定量关系的规律D . 牛顿三条运动定律是一个整体,是描述宏观物体低速运动的客观规律5.下列关于保守力的说法错误的是…………………( ) 参看课本P71-72 A . 由重力对物体所做的功的特点可知,重力是一种保守力B . 由弹性力对物体所做的功的特点可知,弹性力也是一种保守力C . 由摩擦力对物体所做的功的特点可知,摩擦力也是一种保守力D . 由万有引力对物体所做的功的特点可知,万有引力也是一种保守力6.已知某质点的运动方程的分量式是,,式中R 、ω是常cos x R t ω=sin y R t ω=数.则此质点将做………………………………………………() 参看课本P19A . 匀速圆周运动B . 匀变速直线运动C . 匀速直线运动D . 条件不够,无法确定7.如图所示,三个质量相同、线度相同而形状不同的均质物体,它们对各自的几何对称轴的转动惯量最大的是………( )A . 薄圆筒B . 圆柱体 参看课本P95C . 正方体D . 一样大8.下列关于弹性碰撞的说法正确的是………………() 中学知识在课堂已复习A . 系统只有动量守恒B . 系统只有机械能守恒C . 系统的动量和机械能都守恒D . 系统的动量和机械能都不守恒9.某人张开双臂,手握哑铃,坐在转椅上,让转椅转动起来,若此后无外力矩作用.则当此人收回双臂时,人和转椅这一系统的…………………( ) 参看课本P104A . 转速不变,角动量变大B . 转速变大,角动量保持不变C . 转速和角动量都变大D . 转速和角动量都保持不变10.下列关于卡诺循环的说法正确的是………………( ) 参看课本P144 A . 卡诺循环是由两个平衡的等温过程和两个平衡的绝热过程组成的B . 卡诺循环是由两个平衡的等温过程和两个平衡的等体过程组成的C . 卡诺循环是由两个平衡的等体过程和两个平衡的等压过程组成的D . 卡诺循环是由两个平衡的绝热过程和两个平衡的等压过程组成的11. 如图所示,在场强为E 的匀强电场中,有一个半径为R 的半球面,若场强E 的方向与半球面的对称轴平行,则通过这个半球面的电通量大小为…………………( ) 参看课本P172-173A .B .2E 22R E πC . D . 02R E 12.一点电荷,放在球形高斯面的中心处,下列情况中通过高斯面的电通量会发生变化的…………………………( ) 参看课本P173 A . 将另一点电荷放在高斯面内 B . 将高斯面半径缩小C . 将另一点电荷放在高斯面外D . 将球心处的点电荷移开,但仍在高斯面内13.如图所示,在与均匀磁场垂直的平面内有一长为l 的铜棒B MN ,设棒绕M 点以匀角速度ω转动,转轴与平行,则棒的动B 生电动势大小为……………()参看课本P257A .B . Bl ω2BlωC .D . 12Bl ω212Blω14. 、方均v 、最概然速率为,则这气体分子的三种速率的关系是…………(p v ) A .B 参看课本P125v >p vC .D p v pv =15. 下列关于导体静电平衡的说法错误………………( ) 参看课本P190-191 A . 导体是等势体,其表面是等势面 B . 导体内部场强处处为零 C . 导体表面的场强处处与表面垂直 D . 导体内部处处存在净电荷16. 下列哪种现代厨房电器是利用涡流原理工作的…( ) 参看课本P259A . 微波炉B . 电饭锅17. 下列关于电源电动势的说法正确的是……………() 参看课本P249-250A . 电源电动势等于电源把电荷从正极经内电路移到负极时所作的功B . 电源电动势的大小只取于电源本身的性质,而与外电路无关C . 电动势的指向习惯为自正极经内电路到负极的指向D . 沿着电动势的指向,电源将提高电荷的电势能18. 磁介质有三种,下列用相对磁导率正确表征它们各自特性的是………( r μ)A . 顺磁质,抗磁质,铁磁质 参看课本P39-2400r μ<0r μ<1r μ?B . 顺磁质,抗磁质,铁磁质1r μ>1r μ=1r μ?C . 顺磁质,抗磁质,铁磁质0r μ>0r μ>0r μ> D . 顺磁质,抗磁质,铁磁质1r μ>1r μ<1r μ?19. 在均匀磁场中,一带电粒子在洛伦兹力作用下做匀速率圆周运动,如果磁场的磁感应强度减小,则………………………………………………( ) 参看课本P231 A . 粒子的运动速率减小 B . 粒子的轨道半径减小 C . 粒子的运动频率不变 D . 粒子的运动周期增大20. 两根无限长的载流直导线互相平行,通有大小相等,方向相反的I 1和I 2,在两导线的正中间放一个通有电流I 的矩形线圈abcd ,如图所示. 则线圈受到的合力为…………( ) 参看课本P221-223A . 水平向左B . 水平向右C . 零D . 无法判断21. 下列说法错误的是……………………………………( ) 参看课本P263A . 通过螺线管的电流越大,螺线管的自感系数也越大B . 螺线管的半径越大,螺线管的自感系数也越大C . 螺线管中单位长度的匝数越多,螺线管的自感系数也越大D . 螺线管中充有铁磁质时的自感系数大于真空时的自感系数22. 一电偶极子放在匀强电场中,当电矩的方向与场强的方向不一致时,则它所受的合力F 和合力矩M 分别为…………………………………( ) 参看课本P168-169A . F =0 ,M =0B . F ≠0 ,M ≠0C . F =0 ,M ≠0D . F ≠0 ,M =023. 若一平面载流线圈在磁场中既不受磁力,也不受磁力矩作用,这说明……( )A . 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行 参看课本P223-224B . 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行C . 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直D . 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直24. 下列关于机械振动和机械波的说法正确的是………( ) 参看课本P306A . 质点做机械振动,一定产生机械波B .波是指波源质点在介质的传播过程C . 波的传播速度也就是波源的振动速度D . 波在介质中的传播频率与波源的振动频率相同,而与介质无关25. 在以下矢量场中,属保守力场的是…………………( ) A . 静电场 B . 涡旋电场 参看课本P180,212,258C . 稳恒磁场D . 变化磁场26. 如图所示,一根长为2a 的细金属杆AB 与载流长直导线共面,导线中通过的电流为I ,金属杆A 端距导线距离为a .金属杆AB 以速度v 向上匀速运动时,杆内产生的动生电动势为……( ) 参看课本P261 (8-8)A . ,方向由B →A B .,方向由A →B2ln 20πμεIv i =2ln 20πμεIv i =C . ,方向由B →A D . ,方向由A →B0ln 32i Iv μεπ=3ln 20πμεIv i =27.在驻波中,两个相邻波节间各质点的振动………( ) 参看课本P325A . 振幅相同,相位相同B . 振幅不同,相位相同C . 振幅相同,相位不同D . 振幅不同,相位不同28.两个质点做简谐振动,曲线如图所示,则有( )A . A 振动的相位超前B 振动π/2 参看课本P291B . A 振动的相位落后B 振动π/2C . A 振动的相位超前B 振动πD . A 振动的相位与B 振动同相29.同一点光源发出的两列光波产生相干的必要条件是…() 参看课本P336A . 两光源的频率相同,振动方向相同,相位差恒定B . 两光源的频率相同,振幅相同,相位差恒定C . 两光源发出的光波传播方向相同,振动方向相同,振幅相同D .两光源发出的光波传播方向相同,频率相同,相位差恒定30.如图所示,在一圆形电流I 所在的平面内选取一个同心圆形闭合环路L ,则由安培环路定理可知……………………………………………( ) 参看课本P235A . ,且环路上任一点B =0d 0L B l ⋅=⎰B . ,但环路上任一点B ≠0d 0L B l ⋅=⎰ C . ,且环路上任一点B ≠0d 0 L B l ⋅≠⎰D . ,且环路上任一点B =常量d 0 LB l ⋅≠⎰二. 填空题:31. 平行板电容器充电后与电源断开,然后充满相对电容率为εr 的各向均匀电介质. 则其电容C 将______,两极板间的电势差U 将________. (填减小、增大或不变) 参看课本P195,20032. 某质点沿x 轴运动,其运动方程为: x =10t –5t 2,式中x 、t 分别以m 、s 为单位. 质点任意时刻的速度v =________,加速度a =________. 参看课本P16-1733. 某人相对地面的电容为60pF ,如果他所带电荷为,则他相对地面的电C 100.68-⨯势差为__________,他具有的电势能为_____________. 参看课本P200,20234. 一人从10 m 深的井中提水,起始时,桶中装有10 kg 的水,桶的质量为1 kg ,由于水桶漏水,每升高1m 要漏去0.1 kg 的水,则水桶匀速地从井中提到井口,人所作的功为____________.参看课本P70 (2-14)35.质量为m 、半径为R 、自转运动周期为T 的月球,若月球是密度均匀分布的实球体,则其绕自转轴的转动惯量是__________,做自转运动的转动动能是__________.参看课本P100 (3-4)36. 1mol 氢气,在温度为127℃时,氢气分子的总平均动能是_____________,总转动动能是______________,内能是_____________. 〔已知摩尔气体常量R = 8.31 J/(mol ·K ) 参看课本 P120 (4-8)37. 如图所示,两个平行的无限大均匀带电平面,其面电荷密度分别为+σ和-σ. 则区域Ⅱ的场强大小E Ⅱ=___________ . 参看课本P17738. 用一定波长的单色光进行双缝干涉实验时,要使屏上的干涉条纹间距变宽,可采用的方法是: (1) _________________________;(2) ________________________. 参看课本P34439. 通过磁场中任意闭合曲面的磁通量等于_________. 感生电场是由______________产生的,它的电场线是__________曲线. (填闭合或不闭合) 参看课本P212,25840. 子弹在枪膛中前进时受到的合力与时间关系为,子弹飞出枪口5400410N F t =-⨯的速度为200m /s ,则子弹受到的冲量为_____________. 参看课本P55-5641. 将电荷量为2.0×10-8C 的点电荷,从电场中A 点移到B 点,电场力做功6.0×10-6J . 则A 、B 两点的电势差U AB =____________ . 参看课本P18142. 如图所示,图中O 点的磁感应强度大小B =______________.参看课本P229-23043. 一个螺线管的自感L =10 mH ,通过线圈的电流I =2A ,则它所储存的磁能W =_____________. 参看课本P26744. 理想气体在某热力学过程中内能增加了ΔE =250J ,而气体对外界做功A =50J ,则气体吸收的热量Q = . 参看课本P132-13345. 一平面简谐波沿x 轴的正方向传播,波速为100 m/s ,t =0时的曲线如图所示,则简谐波的波长λ =____________,频率ν =_____________. 参看课本P30946. 两个同心的球面,半径分别为R 1、R 2(R 1R 2),分别<带有总电量为Q 1、Q 2. 设电荷均匀分布在球面上,则两球面间的电势差U 12= ________________________.参看课本P186-187三. 计算题:47. 一正方形线圈由外皮绝缘的细导线绕成,共绕有100匝,每边长为10 cm ,放在B = 5.0T 的磁场中,当导线中通有I =10.0A 的电流时,求: (1) 线圈磁矩m 的大小;(2) 作用在线圈上的磁力矩M 的最大值. 参看课本P225 (7-7)48.如图所示,已知子弹质量为m ,木块质量为M ,弹簧的劲度系数为k,子弹以初速v o射入木块后,弹簧被压缩了L.设木块与平面间的滑动摩擦因数为μ,不计空气阻力.求初速v o.参看课本P80 (2-23)49. 一卡诺热机的效率为40%,其工作的低温热源温度为27℃.若要将其效率提高到50%,求高温热源的温度应提高多少?参看课本P148 (5-14)50. 质量均匀的链条总长为l,放在光滑的桌面上,一端沿桌面边缘下垂,其长度为a,如图所示.设开始时链条静止,求链条刚刚离开桌边时的速度.参看课本P70 (2-18)51.一平面简谐波在t =0时刻的波形如图所示,设波的频率ν=5 Hz,且此时图中P点的运动方向向下,求:(1) 此波的波函数;(2) P点的振动方程和位置坐标.参看课本P318 (10-11)52.如图所示,A和B两飞轮的轴杆可由摩擦啮合器使之连接,A轮的转动惯量J A=10 kg·m2.开始时,B轮静止,A轮以n A= 600 r/min的转速转动.然后使A和B连接,连接后两轮的转速n = 200 r/min.求: (1) B轮的转动惯量J B ;(2) 在啮合过程中损失的机械能ΔE.参看课本P105 (3-9及补充)53.如图所示,载流I的导线处于磁感应强度为B的均匀磁场中,导线上的一段是半径为R、垂直于磁场的半圆,求这段半圆导线所受安培力.参看课本P224-22554.如图所示的截面为矩形的环形均匀密绕的螺绕环,环的内外半径分别a和b,厚度为h,共有N匝,环中通有电流为I .求: (1) 环内外的磁感应强度B;(2) 环的自感L.参看课本P237-238 (7-23及补充)55.如图所示,一长直导线通有电流I,在与其相距d处放在有一矩形线框,线框长为l ,宽为a ,共有N 匝. 当线框以速度v 沿垂直于长导线的方向向右运动时,线框中的动生电动势是多少? 参看课本P255 (8-3)二. 填空题:31. 增大 减小32.33. 1000V 0.03 J1010m/s t -210m/s t -34. 1029 (或1050) J 35. 36. 4986J 3324J 8310 J 225mR 22245mR T π37. 38. (1) 将两缝的距离变小 (2) 将双缝到光屏的距离变大σε39. 零 变化的磁场 闭合 40.41.300V42.0.2N s ⋅0112I R μπ⎛⎫- ⎪⎝⎭43. 0.02 J44. 300 J45. 0.8 m 125 Hz46.1012114Q R R πε⎛⎫- ⎪⎝⎭三. 计算题:47. 线圈磁矩22100100.110A m m NIS ==⨯⨯=⋅线圈最大磁力矩max 10550N mM mB ==⨯=⋅48. 设子弹质量为m ,木块质量为M ,子弹与木块的共同速度v由动量守恒定律得①0()mv m M v =+由功能原理得 ②2211()()22m M gL kL m M v μ-+=-+由①、②式得 0v =49. 卡诺热机效率: 211T T η=-21300500K 110.4T T η⇒===--同理 21300600K 110.5T T η'==='--高温热源应提高的温度 11600500100KT T '-=-=n50. 设桌面为零势面,由机械能守恒定律得21222a a l mg mg mv l -=-+v ⇒=51. 解:(1) 由图中v P <0知此波沿x 轴负向传播,继而知原点此时向y 正向运动原点处0002A y v =->,023ϕπ⇒=-又x = 3m 处3300y v =>,32πϕ⇒=-由 得2x ϕπλ∆∆=2x λπϕ∆=∆30236m 223πππ-=⨯=⎛⎫--- ⎪⎝⎭此波的波函数 02cos 2x y A t ππνϕλ⎛⎫=++ ⎪⎝⎭20.10cos 10m 183t x πππ⎛⎫=+- ⎪⎝⎭(2) P 点处 P P 00y v =,<P 2πϕ⇒=P 点振动方程P P cos(2)y A t πνϕ=+0.10cos 10m 2t ππ⎛⎫=+ ⎪⎝⎭P 点位置坐标 p 363321m22x λ=+=+=52. (1) 由动量矩守恒定律得A A AB ()J J J ωω=+A A AB 2()2J n J J n ππ=+B 60020010(10)6060J ⨯=+⨯2B 20kg m J ⇒=⋅(2) 损失的机械能2222A A A B A A A B 222241111()(2)()(2)222216001200104(1020)4 1.31510J 260260E J J J J n J J n ωωππππ∆=-+=-+⎛⎫⎛⎫=⨯⨯-+⨯=⨯ ⎪ ⎪⎝⎭⎝⎭53. 依题意得 d 0x x F F =∑=d d sin d sin sin d y F F BI l BIR θθθθ===0sin d 2y F F BIR BIRπθθ===⎰54. (1)0d 2B r B r Iπμ⋅=⋅=∑⎰ 环外的磁感应强度 0B =环内的磁感应强度 02B r NIπμ⋅=02NI B rμπ=(2) 0d d d 2NIhBh r r rμΦπ==001d d ln 22b a NIh NIh br r aμμΦΦππ===⎰⎰环的自感 20ln 2N h N b L I I aμψΦπ===55. 线框的动生电动势1212()N B B lvεεε=-=-001122()NIlv NIlav d d a d d a μμππ⎛⎫=-= ⎪++⎝⎭。
《大学物理》各章练习题及答案解析
《大学物理》各章练习题及答案解析第1章 质点运动学一、选择题:1.以下五种运动中,加速度a保持不变的运动是 ( D ) (A) 单摆的运动。
(B) 匀速率圆周运动。
(C) 行星的椭圆轨道运动。
(D) 抛体运动。
(E) 圆锥摆运动。
2.下面表述正确的是( B )(A)质点作圆周运动,加速度一定与速度垂直; (B) 物体作直线运动,法向加速度必为零; (C)轨道最弯处法向加速度最大; (D)某时刻的速率为零,切向加速度必为零。
3.某质点做匀速率圆周运动,则下列说法正确的是( C )(A)质点的速度不变; (B)质点的加速度不变 (C)质点的角速度不变; (D)质点的法向加速度不变4.一运动质点在某瞬时位于矢径()y x r , 的端点处,其速度大小为( D )()()(()22⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx D C dtrd B dt drA5. 一质点在平面上运动,运动方程为:j t i t r222+=,则该质点作( B )(A)匀速直线运动 (B)匀加速直线运动(C)抛物线运动 (D)一般曲线运动6.一质点做曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,s 表示路程,a t 表示切向加速度,对下列表达式,正确的是( B )(A)dt dr v = (B) dt ds v = (C) dtdv a = (D) dt vd a t=7. 某质点的运动方程为 3723+-=t t X (SI ),则该质点作 [ D ](A)匀加速直线运动,加速度沿 x 轴正方向; (B)匀加速直线运动,加速度沿 x 轴负方向; (C)变加速直线运动.加速度沿 x 轴正方向; (D)变加速直线运动,加速度沿 x 轴负方向8.一质点沿x 轴运动,其运动方程为()SI t t x 3235-=,当t=2s 时,该质点正在( A )(A)加速 (B)减速 (C)匀速 (D)静止1.D2. B3. C4.D5.B ,6B ,7A 8 A二 、填空题1. 一质点的运动方程为x =2t ,y =4t 2-6t ,写出质点的运动方程(位置矢量)j t t i t r)64(22-+=,t =1s 时的速度j i v22+=,加速度j a 8=,轨迹方程为x x y 32-=。
大学物理课后习题及答案(1-4章)含步骤解
,根据流量守恒
,
(2)当
(3)当
时,
时,
−
,整理可得:
可得
,即
,
图1-34所示为输液的装置。设吊瓶的截面积为1 ,针孔的截面积为2 ,且1 ≫ 2 ,开始时( = 0),吊瓶内上下
液面距针孔的高度分别为ℎ1 和ℎ2 ,求吊瓶内药液全部输完时需要的时间。
,则针孔的流量为
液体总体积为
Ԧ =
= 2Ԧ − 2 Ԧ = −2Ԧ
1s末和2s末质点的速度为: 1 = 2Ԧ − 2Ԧ(m ∙ s−1 ),2 = 2Ԧ − 4Ԧ(m ∙ s −1 );
1s末和2s末质点的加速度相等:Ԧ = −2Ԧ (m ∙ s−2 )
已知一质点做直线运动,其加速度Ԧ = 4 + 3 m ∙ s−2 , 开始运动时,0 = 5 m,
= 0.06(m)
(2)设弹簧最大压缩量为∆′ , 与碰撞粘在一起的速度为 ′,0 = ( +
) ′,代入已知条件可得 ′ = 4Τ11, + 压缩弹簧的过程中,机械能守恒,则
1
(
2
1
+ ) 2 = 2 ∆′2 ,得∆′ =
+
≈ 0.04(m)
(1)角加速度 =
由 =
∆
∆
=
0−2×1500÷60
50
由 =
=
2×1500
60
= 50 (rad ∙ s −1 )
= − (rad ∙ s−2 )
= −,得 = −,两边进行积分
得到 − 50 = − − 0,
大学物理习题大题答案
1.1质点延Ox轴做直线运动加速度a=-kx,k为正的常量,质点在X0处的速度是V0,求质点速度的大小V与坐标X的函数能量守恒:(m*V0^2 / 2)=(m*V^2 / 2)+(m*K*X^2 )F= ma=-mkx 。
上式解得:V=±根号(V0^2-2K*X^2)1.2飞轮半径为0.4m,自静止启动,其角加速度为0.2转每秒,求t=2s时边缘上,各点的速度、法向加速度、切向加速度、合加速度ω=ω0+a'tω0=0,t=2s,a'=0.2 × 2pi弧度/s^2=1.257弧度/s^2ω=a't=1.257弧度/s^2×2s=2.514弧度/s切向速度:v=ωr=0.4mx1.257弧度/s=1m/s法向加速度:a。
=ω^2r=(2.514弧度/s)^2 × 0.4m=2.528m/s^2切向加速度:a''=dv/dt=rdω/dt=ra'=0.4m × 1.257弧度/s^2=0.5m/s^2合加速度:a=√(a''^2+a。
^2)=2.58m/s^2合加速度与法向夹角:Q=arctan(a''/a。
)=11.2°2.2质量为m的子弹以速度v0水平射入沙土中,设子弹所受的阻力与速度成正比,系数为k,1.求子弹射入沙土后速度随时间变化的函数关系式,a = -kv/m = dv/dt dv/v = - k/m dt 两边同时定积分,得到lnv-lnv0 = kt/m v=v0*exp(-k/m * t)2.求子弹射入沙土的最大深度dv/dt=a=f/m=-kv/m v=ds/dt=ds/dv * dv/dt = -ds/dv * kv/m 整理得:kds=-mdv 同时对等号两边积分,得:ks=mv0 =》 s=mv0/k.3.1一颗子弹在枪筒离前进时所受的合力刚好为F=400-4*10的五次方/3*t,子弹从枪口射出时的速率为300m/s。
大学物理教材习题答案
⼤学物理教材习题答案第⼀章质点运动习题解答⼀、分析题1.⼀辆车沿直线⾏驶,习题图1-1给出了汽车车程随时间的变化,请问在图中标出的哪个阶段汽车具有的加速度最⼤。
答: E 。
位移-速度曲线斜率为速率,E 阶段斜率最⼤,速度最⼤。
2.有⼒P 与Q 同时作⽤于⼀个物体,由于摩擦⼒F 的存在⽽使物体处于平衡状态,请分析习题图1-2中哪个可以正确表⽰这三个⼒之间的关系。
答: C 。
三个⼒合⼒为零时,物体才可能处于平衡状态,只有(C )满⾜条件。
3.习题图1-3(a )为⼀个物体运动的速度与时间的关系,请问习题图1-3(b )中哪个图可以正确反映物体的位移与时间的关系。
答:C 。
由v-t 图可知,速度先增加,然后保持不变,再减少,但速度始终为正,位移⼀直在增加,且三段变化中位移增加快慢不同,根据v-t 图推知s-t 图为C 。
三、综合题:1.质量为的kg 50.0的物体在⽔平桌⾯上做直线运动,其速率随时间的变化如习题图1-4所⽰。
问:(1)设s 0=t 时,物体在cm 0.2=x 处,那么s 9=t 时物体在x ⽅向的位移是多少?(2)在某⼀时刻,物体刚好运动到桌⼦边缘,试分析物体之后的运动情况。
解:(1)由v-t 可知,0~9秒内物体作匀减速直线运动,且加速度为:220.8cm/s 0.2cm/s 4a == 由图可得:0 2.0cm s =,00.8cm/s v =, 1.0cm/s t v =-,则由匀减速直线运动的位移与速度关系可得:22002() t a s s v v -=- 2200()/2t s v v a s =-+ 22[0.8( 1.0)]/20.2 2.0cm =--?+1.1c m =(2)当物体运动到桌⼦边缘后,物体将以⼀定的初速度作平抛运动。
2.设计师正在设计⼀种新型的过⼭车,习题图1- 5为过⼭车的模型,车的质量为0.50kg ,它将沿着图⽰轨迹运动,忽略过⼭车与轨道之间的摩擦⼒。
大学物理习题答案
B 班级 学号 姓名第1章 质点运动学1-2 已知质点的运动方程为r i 3j 6k e e tt-=++。
(1)求:自t =0至t =1质点的位移。
(2)求质点的轨迹方程。
解:(1) ()k j i r 630++= ()k j i r 6e 3e 1-1++= 质点的位移为()j i r ⎪⎭⎫⎝⎛-+-=3e 31e ∆(2) 由运动方程有t x e =,t y -=e 3, 6=z 消t 得 轨迹方程为 1=xy 且6=z1-3运动质点在某瞬时位于矢径()y x,r 的端点处,其速度的大小为( D ) (A)dt dr (B)dt d r(C)dt d r (D)22⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx1-5某质点的运动方程为k j i r 251510t t ++-=,求:t =0,1时质点的速度和加速度。
^解:由速度和加速度的定义得k j r v t dt d 1015+==, k va 10==dtd 所以 t =0,1时质点的速度和加速度为 015==t j v 11015=+=t kj v1010,ka ==t1-8 一质点在平面上运动,已知质点的运动方程为j i r 2235t t +=,则该质点所作运动为[ B ](A) 匀速直线运动 (B) 匀变速直线运动 (C) 抛体运动 (D) 一般的曲线运动*1-6一质点沿Ox 轴运动,坐标与时间之间的关系为t t x 233-=(SI)。
则质点在4s 末的瞬时速度为 142m·s -1 ,瞬时加速度为 72m·s -2 ;1s 末到4s 末的位移为 183m ,平均速度为 61m·s -1 ,平均加速度为 45m·s -2。
解题提示:瞬时速度计算dt dxv =,瞬时加速度计算22dtx d a =;位移为()()14x x x -=∆,平均速度为()()1414--=x x v ,平均加速度为 ()()1414--=v v a】~1-11 已知质点沿Ox 轴作直线运动,其瞬时加速度的变化规律为t a x 3=2s m -⋅。
大学物理习题答案
Pd LθxydE d θ习题1212-3.如习题12-3图所示,真空中一长为L 的均匀带电细直杆,总电量为q ,试求在直杆延长线上到杆的一端距离为d 的点P 的电场强度。
[解] 建立如图所示坐标系ox ,在带电直导线上距O 点为x 处取电荷元x Lqq d d =,它在P 点产生的电电场强度度为()()x x d L Lq x d L qE d 41d 41d 2020-+=-+=πεπε则整个带电直导线在P 点产生的电电场强度度为()()d L d qx x d L Lq E L+=-+=⎰002041d 41πεπε故()i E d L d q+=04πε12-4.用绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正电荷Q ,试求圆心处点O 的场强。
[解] 将半圆环分成无穷多小段,取一小段dl ,带电量l Rq d d π=dq 在O 点的电场强度20204d 4d d R lR Q R q E πεππε== 从对称性分析,y 方向的电场强度相互抵消,只存在x 方向的电场强度l R Q E E d sin 4sin d d 302x ⋅=⋅=θεπθ θd d R l =θεπθd 4sin d 202x RQ E =2020202x x 2d 4sin d R QR Q E E E επθεπθπ====⎰⎰ 方向沿x 轴正方向 12-5. 如习题12-5图所示,一半径为R 的无限长半圆柱面形薄筒,均匀带电,沿轴向单位长度上的带电量为λ,试求圆柱面轴线上一点的电场强度E 。
[解] θd 对应的无限长直线单位长带的电量为θπλd d =q 它在轴线O 产生的电场强度的大小为d θRRq E 0202d 2d d επθλπε==因对称性y d E 成对抵消RE E 02x 2d cos cos d d επθθλθ=⋅= RR E E 02202x 2d cos 2d επλεπθθλπ===⎰⎰ 12-6.一半径为R 的半球面,均匀地带有电荷,电荷面密度为σ,求球心点O 处的场强。
大学物理习题答案
1. 图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是 R =400 cm .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第 5 个明环的半径是0.30 cm.。
(1) 求入射光的波长;(2) 设图中 OA = 1.00 cm ,求在半径为 OA 的范围内可观察到的明 (1) 明环半径 ()212λR k r -=()52105122-⨯=-=Rk r λ cm(2) ()λR r k 2212=-对于r = 1.00 cm ,5.02+=λR r k = 50.5故在 OA 范围内可观察到的明环数目为50个。
2. 在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问 (1) 这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其他极小相重合? 解答及评分标准:(1) 由单缝衍射暗纹公式得111sin λθ=a 222s i n λθ=a (2分) 由题意可知 21θθ= , 21sin sin θθ=代入上式可得 212λλ= (3分)(2) 211112sin λλθk k a == (k 1 = 1, 2, ……) a k /2sin 211λθ=222sin λθk a = (k 2 = 1, 2, ……) (2分) a k /sin 222λθ=若k 2 = 2k 1,则θ1 = θ2,即λ1的任一k 1级极小都有λ2的2k 1级极小与之重合.(3分)1. 波长为λ的单色光垂直照射到折射率为n 2的劈尖薄膜上, n 1<n 2<n 3,如图23.4所示,观察反射光形成的条纹.(1) 从劈尖顶部O 开始向右数第五条暗纹中心所对应的薄膜厚度e 5是多少?相邻的二明纹所对应的薄膜厚度之差是多少? (1)因n 1<n 2<n 3,所以光程差δ=2n 2e暗纹中心膜厚应满足δk =2n 2e k =(2k +1)λ/2 e k =(2k +1)λ/(4n 2)对于第五条暗纹,因从尖端数起第一条暗纹On 1 n 1 n 1λ图23.4δ=λ/2,即 k =0,所以第五条暗纹的k =4,故e 4=9λ/(4n 2)(2)相邻明纹对应膜厚差∆e=e k +1-e k =λ/(2n 2)2. 在折射率n =1.50的玻璃上,镀上n '=1.35的透明介质薄膜,入射光垂直于介质膜表面照射,观察反射光的干涉,发现对λ1=6000Å的光干涉相消,对λ2=7000Å的光波干涉相长,且在6000Å~7000Å之间没有别的波长的光波最大限度相消或相长的情况,求所镀介质膜的厚度. 2.因n 1<n 2<n 3所以光程差 δ=2n 2e λ1相消干涉,有 δ=2n 2e =(2k 1+1)λ1/2 λ2相长干涉,有 δ=2n 2e =2k 2λ2/2因λ2>λ1,且中间无其他相消干涉与相长干涉,有k 1=k 2=k ,故(2k +1)λ1/2=2k λ2/2 k=λ1/[2(λ2-λ1)]=3得 e=k λ2/(2n 2)=7.78⨯10-4mm3.(3685) 在双缝干涉实验中,单色光源S0到两缝 S1和S2的距离别为 和 ,并且 , 为入射光的波长,双缝之间的距离为d ,双缝到屏幕的距离为D ,如图。
大学物理习题集答案
一、 选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。
2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为43π,则t=0时,质点的位置在: [ D ](A) 过1x A 2=处,向负方向运动; (B) 过1x A 2=处,向正方向运动;(C) 过1x A 2=-处,向负方向运动;(D) 过1x A 2=-处,向正方向运动。
3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]x o A ϖ x ω(A) A/2 ω (B) (C)(D)o ooxxxA ϖ x ω ωA ϖA ϖxA/2 -A/2 -A/2 (3)题4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的 (为固有圆频率)值之比为:[ B ](A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:25. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ](A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动;(B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。
6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ]2153(A),or ;A;(B),;332663223(C),or ;(D),;4433ππ±±π±±±π±ππ±±π±±±π±7. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = m 处,且向x 轴正方向运动的最短时间间隔为 [ D ](A)s 81; (B) s 61; (C) s 41; (D) s 218. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后合成的余弦振动的初相为[ C ]xtOx 1x 2(8)题(A) π23; (B) π; (C) π21 ; (D) 0二、 填空题9. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: A=10cm ,/6rad /s =ωπ, /3=φπ10. 用40N 的力拉一轻弹簧,可使其伸长20 cm 。
大学物理学第一章习题答案
习题11、1选择题(1) 一运动质点在某瞬时位于矢径的端点处,其速度大小为(A)(B)(C)(D)[答案:D](2) 一质点作直线运动,某时刻的瞬时速度,瞬时加速度,则一秒钟后质点的速度(A)等于零(B)等于-2m/s(C)等于2m/s (D)不能确定。
[答案:D](3) 一质点沿半径为R的圆周作匀速率运动,每t秒转一圈,在2t时间间隔中,其平均速度大小与平均速率大小分别为(A)(B)(C) (D)[答案:B]1、2填空题(1) 一质点,以的匀速率作半径为5m的圆周运动,则该质点在5s内,位移的大小就是;经过的路程就是。
[答案: 10m;5πm](2) 一质点沿x方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v0为5m·s-1,则当t为3s时,质点的速度v=。
[答案: 23m·s-1 ](3) 轮船在水上以相对于水的速度航行,水流速度为,一人相对于甲板以速度行走。
如人相对于岸静止,则、与的关系就是。
[答案:]1、3一个物体能否被瞧作质点,您认为主要由以下三个因素中哪个因素决定:(1) 物体的大小与形状;(2) 物体的内部结构;(3) 所研究问题的性质。
解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
1、4下面几个质点运动学方程,哪个就是匀变速直线运动?(1)x=4t-3;(2)x=-4t3+3t2+6;(3)x=-2t2+8t+4;(4)x=2/t2-4/t。
给出这个匀变速直线运动在t=3s时的速度与加速度,并说明该时刻运动就是加速的还就是减速的。
(x单位为m,t单位为s)解:匀变速直线运动即加速度为不等于零的常数时的运动。
加速度又就是位移对时间的两阶导数。
于就是可得(3)为匀变速直线运动。
其速度与加速度表达式分别为t=3s时的速度与加速度分别为v=20m/s,a=4m/s2。
因加速度为正所以就是加速的。
大学物理练习题册答案
大学物理练习题册答案一、选择题1. 光在真空中的传播速度是:A. 299792458 m/sB. 299792458 km/sC. 299792458 cm/sD. 299792458 mm/s2. 根据牛顿第二定律,如果一个物体的质量为2 kg,受到的力为6 N,那么它的加速度是:A. 1 m/s²B. 2 m/s²C. 3 m/s²D. 6 m/s²3. 以下哪个不是电磁波的类型?A. 无线电波B. 微波C. 可见光D. 声波4. 一个物体从静止开始做匀加速直线运动,经过4秒后的速度为8m/s,那么它的加速度是:A. 1 m/s²B. 2 m/s²C. 4 m/s²D. 8 m/s²5. 根据能量守恒定律,如果一个物体的势能减少,那么它的:A. 动能增加B. 动能减少C. 总能量不变D. 温度增加二、填空题6. 根据热力学第一定律,能量______,它表明能量不能被创造或销毁,只能从一种形式转换为另一种形式。
7. 波长为600 nm的光的频率是______ Hz(光速为299792458 m/s)。
8. 一个物体在水平面上做匀速直线运动,其动摩擦系数为0.25,如果物体受到的摩擦力是10 N,那么物体的重力是______ N。
9. 根据库仑定律,两个点电荷之间的力与它们的电荷量的乘积成正比,与它们之间的距离的平方成______。
10. 理想气体状态方程是______,其中P代表压强,V代表体积,n代表摩尔数,R代表理想气体常数,T代表绝对温度。
三、简答题11. 简述牛顿第三定律的内容及其在日常生活中的应用。
12. 解释什么是相对论,并简述其对时间和空间概念的影响。
13. 描述麦克斯韦方程组,并解释它们在电磁学中的重要性。
14. 什么是量子力学?它与经典物理学有何不同?15. 描述什么是热力学第二定律,并解释它对能量转换的限制。
大学物理练习题及参考答案
一、填空题 1、一质点沿y 轴作直线运动,速度j t v)43(+=,t =0时,00=y ,采用SI 单位制,则质点的运动方程为=ymt t 223+;加速度y a = 4m/s 2 。
2、一质点沿半径为R 的圆周运动,其运动方程为22t +=θ。
质点的速度大小为 2t R ,切向加速度大小为 2R 。
3、一个质量为10kg 的物体以4m/s 的速度落到砂地后经0.1s 停下来,则在这一过程中物体对砂地的平均作用力大小为 400N 。
4、在一带电量为Q 的导体空腔内部,有一带电量为-q 的带电导体,那么导体空腔的内表面所带电量为 +q ,导体空腔外表面所带电量为 Q -q 。
5、一质量为10kg 的物体,在t=0时,物体静止于原点,在作用力i x F)43(+=作用下,无摩擦地运动,则物体运动到3米处,在这段路程中力F所做的功为5J13mV 21W 2.=∆=。
6、带等量异号电荷的两个无限大平板之间的电场为0εσ,板外电场为 0 。
8、一长载流导线弯成如右图所示形状,则O 点处磁感应强度B的大小为RIR I 83400μπμ+,方向为⊗。
9、在均匀磁场B 中, 一个半径为R 的圆线圈,其匝数为N,通有电流I ,则其磁矩的大小为NIR m 2π=,它在磁场中受到的磁力矩的最大值为NIBR M 2π=。
10、一电子以v垂直射入磁感应强度B 的磁场中,则作用在该电子上的磁场力的大小为F = Bqv F 0=。
电子作圆周运动,回旋半径为qBmvR =。
11、判断填空题11图中,处于匀强磁场中载流导体所受的电磁力的方向;(a ) 向下 ;(b ) 向左 ;(c ) 向右 。
12、已知质点的运动学方程为j t i t r)1(2-+=。
试求:(1)当该质点速度的大小为15-⋅s m 时,位置矢量=r i 1;(2)任意时刻切向加速度的大小τa =1442+t t 。
16、有一球状导体A ,已知其带电量为Q 。
大学物理课后习题答案
大学物理课后习题答案(共15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1—1 一质点在xOy 平面上运动,运动方程为2135,342x t y t t t s x y m =+=+-式中以计,,以计。
(1)以时间t 为变量,写出质点位置矢量的表示式; (2)计算第1秒内质点的位移;(3)计算0t = s 时刻到4t = s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算4t = s 时质点的速度; (5)计算0t = s 到4t = s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算4t = s 是质点的加速度。
(位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)解:(1) 质点t 时刻位矢为:j t t i t r⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移 j y y i x x r)()(01011-+-=∆)(5.33)101(3)01(21)01(32m j i j i +=⎥⎦⎤⎢⎣⎡-+--=(3) 前4秒内平均速度 )s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i tr V ∴ )s m (73)34(314-⋅+=++=j i j i V(5) 前4秒平均加速度)s m (43704204-⋅=-=--=∆∆=j j V V t V a(6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a1—2 质点沿直线运动,速度32132()v t t m s -=++,如果当时t=2 s 时,x=4 m,求:t=3 s 时质点的位置、速度和加速度。
解:23d d 23++==t t txv c t t t c t v x x +++=+==⎰⎰241d d 34 当t =2时x =4代入求证 c =-12 即1224134-++=t t t x tt tv a t t v 63d d 23223+==++= 将t =3s 代入证)s m (45)s m (56)(414123133--⋅=⋅==a v m xP .31 1—9 一个半径R= m 的圆盘,可依绕一个水平轴自由转动,一根轻绳子饶在盘子的边缘,其自由端拴一物体。
大学物理学课后习题参考答案
习题1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dt dr (B)dtr d(C)dtr d ||(D) 22)()(dt dy dt dx +[答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。
[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 (A)t R t R ππ2,2 (B) tRπ2,0(C) 0,0 (D)0,2tRπ [答案:B]填空题(1) 一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。
[答案: 10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v= 。
[答案: 23m ·s -1 ](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V,一人相对于甲板以速度3V 行走。
如人相对于岸静止,则1V 、2V 和3V的关系是 。
[答案: 0321=++V V V]一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状;(2) 物体的内部结构;(3) 所研究问题的性质。
解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
下面几个质点运动学方程,哪个是匀变速直线运动(1)x=4t-3;(2)x=-4t3+3t2+6;(3)x=-2t2+8t+4;(4)x=2/t2-4/t。
给出这个匀变速直线运动在t=3s时的速度和加速度,并说明该时刻运动是加速的还是减速的。
大学物理习题答案
大学物理习题答案
11. 一质点作简谐振动,其运动速度 与时间的曲线如图所示。若质点的振 动规律用余弦函数描述,其初相应为
(A) / 6 ; (B) 5 / 6 ;
(C) 5 / 6 ; (D) / 6 ; (E) 2 /3 。
y Acos(t 0 )
3. 如图,长载流导线ab和cd相互垂直, 它们相距l,ab固定不动,cd能绕中点 O 转动,并能靠近或离开 ab,当电流 方向如图所示时,导线 cd 将
(A) 顺时针转动同时离开ab; (B) 顺时针转动同时靠近ab ; (C) 逆时针转动同时离开ab ; (D) 逆时针转动同时靠近ab .
b
d
; ;
ym
0.5
u
(D) y0.50cos14t2,(SI) 。 1 O 1 2 3
yo
0.5 cos( 8
u
t
16 )
2 u 大学物理习题答案
凑出结果
xm
解: 设P的振动方程为:
yo Acos(t 0 )
已知:A 0.5 2 8
uu
yo
0.5 cos( 8
u
t
0 )
由于 t 2s, yo 0,0 0
0
0.5 cos( 8
u
2
0 )
ym
0.5
u
1 O 1 2 3 x m
8
u
0.5 sin( 8
u
2
0 )
0
16
u
0
2
0
2
大学16u物理习题答y案o
0.5 cos( 8
u
t
2
16
u
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B 班级 学号 姓名第1章 质点运动学1-2 已知质点的运动方程为r i 3j 6k e ett-=++。
(1)求:自t =0至t =1质点的位移。
(2)求质点的轨迹方程。
解:(1) ()k j i r 630++= ()k j i r 6e 3e 1-1++= 质点的位移为()j i r ⎪⎭⎫⎝⎛-+-=3e 31e ∆(2) 由运动方程有t x e =,t y -=e 3, 6=z 消t 得 轨迹方程为 1=xy 且6=z1-3运动质点在某瞬时位于矢径()y x,r 的端点处,其速度的大小为( D ) (A)dt dr (B)dt d r(C)dt d r (D)22⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx1-5某质点的运动方程为k j i r 251510t t ++-=,求:t =0,1时质点的速度和加速度。
解:由速度和加速度的定义得k j r v t dt d 1015+==, k va 10==dtd 所以 t =0,1时质点的速度和加速度为 015==t jv 11015=+=t kj v1010,ka ==t1-8 一质点在平面上运动,已知质点的运动方程为j i r 2235t t +=,则该质点所作运动为[ B ](A) 匀速直线运动 (B) 匀变速直线运动(C) 抛体运动 (D) 一般的曲线运动*1-6一质点沿Ox 轴运动,坐标与时间之间的关系为t t x 233-=(SI)。
则质点在4s 末的瞬时速度为 142m ·s -1 ,瞬时加速度为 72m ·s -2 ;1s 末到4s 末的位移为 183m ,平均速度为 61m ·s -1 ,平均加速度为 45m ·s -2。
解题提示:瞬时速度计算dt dxv =,瞬时加速度计算22dtx d a =;位移为()()14x x x -=∆,平均速度为()()1414--=x x v ,平均加速度为 ()()1414--=v v a1-11 已知质点沿Ox 轴作直线运动,其瞬时加速度的变化规律为t a x 3=2s m -⋅。
在t =0时,0=x v ,10=x m 。
求:(1)质点在时刻t 的速度。
(2)质点的运动方程。
解:(1) 由dtdv a xx =得dt a dv x x =两边同时积分,并将初始条件t =0时,0=x v 带入积分方程,有⎰⎰⎰==t tx v x tdt dt a dv x3解得质点在时刻t 的速度为 223t v x =(2) 由dtdx v x =得 dt v dx x =两边同时积分,并将初始条件t =0时,10=x m 带入积分方程,有⎰⎰⎰==ttx xdt t dt v dx 0201023解得质点的运动方程为 32110t x +=1-12 质点沿直线运动的加速度为227t a -=(SI).如果当3=t s 时,8=x m ,4=v -1s m ⋅.求:(1) 质点的运动方程;(2) 质点在5=t s 时的速度和位置.解:(1) 设质点沿Ox 轴做直线运动,t=0时,0x x =,0v v =。
由tv a x x d d =得t a v x x d d =对上式两边同时积分,并将227t a a x -==代入,有⎰⎰-=tvv x t t v 02d )27d 0(解得质点在时刻t 的速度为30327t t v v -+= (1) 由tx v x d d =得tv x x d d =对上式两边同时积分,并将30327t t v v -+=代入,有⎰⎰-+=txx t t t v x 030d )327(d 0解得6274200t t t v x x -++= (2)将t=3s 时,8=x m ,4=v -1sm ⋅代入式(1)和式(2),得10=v -1sm ⋅,130-=x m将0v 和0x 的值代入式(2)中,可得质点的运动方程为13276124-++-=t t t x (3)(2) 将5=t s 代入式(1)和式(3)得3142-=v 1s m -⋅,6148-=x m1-14一质点作半径r =5m 的圆周运动,其在自然坐标系中的运动方程为2212t t s +=(SI),求:t 为何值时,质点的切向加速度和法向加速度大小相等。
解:由运动方程得t dt dsv +==2 质点的切向加速度为 1==dtdv a t 质点的法向加速度为 ()5222t r v a n +== 当两者相等时,有()1522=+t解得时间t 的值为 25-=t s1-15 质点做半径为1m 的圆周运动,其角位置满足关系式325t θ+=(SI)。
t =1s 时,质点的切向加速度 12m ·s -2 ,法向加速度 36m ·s -2 ,总加速度37.95m ·s -2 。
解:由运动方程325t θ+=得 角速度为12s 6-==t dt d θω , 角加速度为2s 12-==t dtd ωα t 时刻,质点的切向加速度的大小为t t R a t 12112=⨯==α2s m -⋅质点的法向加速度的大小为()42223616t t R ωa n =⨯==2s m -⋅ 质点的总加速度的大小为 ()()242223612t t a a a n t +=+=2s m -⋅将t =1s 代入上面方程,即可得到上面的答案。
班级 学号 姓名第3章 刚体力学3-1当飞轮作加速转动时,对于飞轮上到轮心距离不等的两点的切向加速度t a 和法向加速度n a 有[ D ](A) t a 相同,n a 相同 (B) t a 相同,n a 不同 (C) t a 不同,n a 相同 (D) t a 不同,n a 不同解题提示:可从r αa t =和r a n 2ω=来讨论,转动的刚体上半径不同的质点均具有相同的角位移,角速度和角加速度。
3-2一力j i F 53+=N ,其作用点的矢径为j i r 34-=m ,则该力对坐标原点的力矩为 k M 29= 。
解: ()()j i j i F r M 5334+⨯-=⨯=其中,k i j j i =⨯-=⨯,0=⨯=⨯j j i i ,对上式计算得 k M 29=3-3两个质量分布均匀的圆盘A 和B 的密度分别为A ρ和B ρ(B A ρρ>),且两圆盘的总质量和厚度均相同。
设两圆盘对通过盘心且垂直于盘面的轴的转动惯量分别为J A 和J B , 则有[ B ](A) J A >J B (B) J A <J B (C) J A =J B (D) 不能确定J A 、J B 哪个大解题提示:圆盘对通过盘心且垂直于盘面的轴的转动惯量为221mR J =质量 ()h R V m 2πρρ== 因为B A ρρ>,所以B A R R <,则有J A <J B 。
故选择(B)。
3-5有两个力作用在一个有固定转轴的刚体上,下列说法不正确的是[ C ](A) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零 (B) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零 (C) 当这两个力对轴的合力矩为零时,它们的合力也一定是零(D) 只有这两个力在转动平面内的分力对转轴产生的力矩,才能改变刚体绕转轴转动的运动状态解题提示:(C)不正确。
因为力矩不仅与力有关,还与力的作用点有关。
当转动平面内两个大小相等的力方向相同时,如果这两个力对轴的位置矢量恰好大小相等,方向相反时,其合力矩为零,但合力为力的二倍。
3-6 一个飞轮的质量为m =60kg ,半径R =0.25m ,转速为10001min r -⋅。
现在要制动飞轮,要求在t =5.0s 内使其均匀的减速而最后停下来。
设平板与飞轮间的滑动摩擦系数为μ=0.8,飞轮的质量可看作是全部均匀分布在轮的边缘上。
求:平板对轮子的压力为多大?解:由于飞轮质量全部分布在边缘,所以其转动惯量为()222m kg 75325060⋅=⨯==..mR J根据定义,角加速度为20s 9205601000π20--=⨯-=-=.tωωα 以飞轮为研究对象,受力分析如图所示,设垂直纸面向里为飞轮转动的正方向,则飞轮所受的摩擦阻力矩为NR fR M μ-=-=根据刚体的定轴转动定律,有αJ M =将两个方程联立,可得 飞轮受到的压力 ()N 39225080920753=⨯-⨯-=-=....R J N μαT12 3-7如图所示,质量均为m的物体A和B叠放在水平面上,由跨过定滑轮的不可伸长的轻质细绳相互连接。
设定滑轮的质量为m,半径为R,且A与B 之间、A与桌面之间、滑轮与轴之间均无摩擦,绳与滑轮之间无相对滑动。
物体A在力F的作用下运动后,求:(1) 滑轮的角加速度。
(2) 物体A与滑轮之间的绳中的张力。
(3) 物体B与滑轮之间的绳中的张力。
解:以滑轮,物体A和B为研究对象,分别受力分析,如图所示。
物体A受重力AP、物体B的压力1N'、地面的支持力2N、外力F和绳的拉力2T作用;物体B受重力B P、物体A的支持力1N和绳的拉力1T作用;滑轮受到重力P、轴的支持力N、上下两边绳子的拉力1T'和2T'的作用。
设滑轮转动方向为正方向,则根据刚体定轴转动定律有αJRTRT='-'12其中滑轮的转动惯量221mRJ=根据牛顿第二定律有物体A:maTF=-2其中,11TT'=,22TT'=因绳与滑轮之间无相对滑动,所以有aαR a =将4个方程联立,可得滑轮的角加速度mRFR J mR F 522=+=/α物体A 与滑轮之间的绳中的张力F T T 5322='=物体B 与滑轮之间的绳中的张力 F T T 5211='=3-8 如图所示,质量分别为1m 和2m 的物体A 和B 用一根质量不计的轻绳相连,此绳跨过一半径为R 、质量为m 的定滑轮。
若物体A 与水平面间是光滑接触,求:绳中的张力1T 和2T 各为多少?(忽略滑轮转动时与轴承间的摩擦力,且绳子相对滑轮没有滑动)解:对滑轮、物体A 和B 分别进行受力分析,如图所示。
因绳子不可伸长,故物体A 和B 的加速度大小相等。
根据牛顿第二定律,有a m T 11= (1)a m T g m T P 22222=-=-(2)滑轮作转动,受到重力P '、张力1T '和2T '以及轴对它的作用力N '等的作用。
由于P '和N '通过滑轮的中心轴,所以仅有张力1T '和2T '对它有力矩的作用。
由刚体的定轴转动定律有αJ T R T R ='-'12 (3)因绳子质量不计,所以有11T T =', 22T T ='因绳子相对滑轮没有滑动,在滑轮边缘上一点的切向加速度与绳子和物体的加速度大小相等,它与滑轮转动的角加速度的关系为αR a = (4)滑轮以其中心为轴的转动惯量为221mR J = (5)将上面5个方程联立,得mm m g m m T 2121211++=mm m gm m m T 212121212++⎪⎭⎫ ⎝⎛+= *3-8 如图所示,物体A 和B 分别悬挂在定滑轮的两边,该定滑轮由两个同轴的,且半径分别为1r 和2r (21r r >)的圆盘组成。