高一数学:函数及其表示

合集下载

高一数学函数知识总结6篇

高一数学函数知识总结6篇

高一数学函数知识总结高一数学函数知识总结6篇总结就是对一个时期的学习、工作或其完成情况进行一次全面系统的回顾和分析的书面材料,它能够使头脑更加清醒,目标更加明确,让我们好好写一份总结吧。

总结怎么写才能发挥它的作用呢?以下是小编帮大家整理的高一数学函数知识总结,希望对大家有所帮助。

高一数学函数知识总结1一:函数及其表示知识点详解文档包含函数的概念、映射、函数关系的判断原则、函数区间、函数的三要素、函数的定义域、求具体或抽象数值的函数值、求函数值域、函数的表示方法等1. 函数与映射的区别:2. 求函数定义域常见的用解析式表示的函数f(x)的定义域可以归纳如下:①当f(x)为整式时,函数的定义域为R.②当f(x)为分式时,函数的定义域为使分式分母不为零的实数集合。

③当f(x)为偶次根式时,函数的定义域是使被开方数不小于0的实数集合。

④当f(x)为对数式时,函数的定义域是使真数为正、底数为正且不为1的实数集合。

⑤如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合,即求各部分有意义的实数集合的交集。

⑥复合函数的定义域是复合的各基本的函数定义域的交集。

⑦对于由实际问题的背景确定的函数,其定义域除上述外,还要受实际问题的制约。

3. 求函数值域(1)、观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域;(2)、配方法;如果一个函数是二次函数或者经过换元可以写成二次函数的形式,那么将这个函数的右边配方,通过自变量的范围可以求出该函数的值域;(3)、判别式法:(4)、数形结合法;通过观察函数的图象,运用数形结合的方法得到函数的值域;(5)、换元法;以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域;(6)、利用函数的单调性;如果函数在给出的定义域区间上是严格单调的,那么就可以利用端点的函数值来求出值域;(7)、利用基本不等式:对于一些特殊的分式函数、高于二次的函数可以利用重要不等式求出函数的值域;(8)、最值法:对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域;(9)、反函数法:如果函数在其定义域内存在反函数,那么求函数的值域可以转化为求反函数的定义域。

函数及其表示知识点

函数及其表示知识点

函数及其表示知识点一、函数的定义和特征在数学中,函数是一种关系,它将一个或多个输入值映射到一个唯一的输出值。

函数通常用字母表示,例如f(x)或g(y),其中x和y是输入值,f(x)和g(y)是对应的输出。

函数的定义可以用多种方式表达,比如公式、算法或图表。

函数的核心特征是单值性和一对一性。

单值性要求每个输入对应唯一的输出,而一对一性则要求每个输出值只能由一个输入产生。

二、函数的符号表示函数可以用多种符号来表示,最常见的是用函数名和自变量表示函数。

例如,f(x)表示一个以x为自变量的函数。

函数的符号表示还可以用映射符号箭头“→”表示,例如f: x→f(x)。

在离散数学中,函数也可以使用集合的形式表示。

例如,如果定义了一个函数f,将集合A中的元素映射到集合B中的元素,可以用f: A→B表示。

三、函数的图像表示函数的图像是一种常用的表示方式。

通过绘制函数的图像,我们可以直观地了解函数的特点和关系。

函数的图像通常是在笛卡尔坐标系中绘制的。

横轴表示自变量,纵轴表示函数的值。

函数的图像可以是曲线、直线、折线等不同形状。

曲线图像可以反映函数的变化趋势和特征,而直线和折线图像则更加简单明了。

四、函数的性质和分类函数有许多性质和分类。

其中一些重要的性质包括:1. 定义域和值域:函数的定义域是自变量的取值范围,值域是函数的所有可能输出值的集合。

2. 奇偶性:如果一个函数满足f(-x) = -f(x),则称其为奇函数;如果满足f(-x) = f(x),则称其为偶函数。

3. 增减性:函数的增减性描述了函数的单调性。

如果函数在定义域上是递增的,称其为增函数;如果在定义域上是递减的,称其为减函数。

根据函数的具体形式和性质,我们可以将函数进行分类,常见的函数包括:1. 线性函数:形如f(x) = kx + b的函数,其中k和b是常数。

2. 幂函数:形如f(x) = x^a的函数,其中a是常数。

3. 指数函数:形如f(x) = a^x的函数,其中a是常数。

高中数学基础之函数及其表示

高中数学基础之函数及其表示

1.一种优先意识 函数定义域是研究函数的基础依据,对函数的研究,必须坚持定义域优先的 原则. 2.两个关注点 (1)分段函数是一个函数. (2)分段函数的定义域、值域是各段定义域、值域的并集.
核心考点突破
考点一 函数的概念
【例1】 (1)下列对应是从集合A到B的函数是( A ) A.A=N,B=N,f:x→y=(x-1)2 B.A=N,B=R,f:x→y=± x C.A=N,B=Q,f:x→y=x-1 1 D.A={衡中高三·一班的同学},B=[0,150],f:每个同学与其高考数学的分 数相对应
为相等函数.
3.函数的表示法 表示函数的常用方法有 解析法 、图象法和 列表法 .
4.分段函数 (1)若函数在其定义域的不同子集上,因 对应关系 不同而分别用几个不同的
式子来表示,这种函数称为分段函数. (2)分段函数的定义域等于各段函数的定义域的 并集 ,其值域等于各段函数
的值域的 并集 ,分段函数虽由几个部分组成,但它表示的是一个函数.
角度3:待定系数法求函数解析式 【例2-3】 已知f(x)是一次函数,且满足3f(x+1)- 2f(x-1)=2x+17,则f(x)=__2_x_+__7__.
[思路引导] 设f(x)=ax+b(a≠0)→代入已知条件→解出a、b→得f(x).
[解析] 设f(x)=ax+b(a≠0),则3f(x+1)-2f(x-1)=3ax+3a+3b-2ax+2a -2b=ax+5a+b,
角度2:分段函数与不等式问题
【例3-2】 (1)已知函数f(x)= 1)≤1的解集是_(_-__∞__,__-__1_+___2_]_.
-x+1,x<0, x-1,x≥0,
则不等式x+(x+1)f(x+
(2)设函数f(x)= _a_≤___2___.

高一数学必修一第一章(中)函数及其表示练习题及答案

高一数学必修一第一章(中)函数及其表示练习题及答案

高一数学必修一第一章(中)函数及其表示练习题及答案高一数学(必修1)第一章:函数及其表示基础训练选择题1.判断下列各组中的两个函数是同一函数的为()A。

⑴、⑵B。

⑵、⑶C。

⑷D。

⑶、⑸2.函数y=f(x)的图象与直线x=1的公共点数目是()A。

1B。

0或1C。

2D。

1或23.已知集合A={1.2.3.k},B={4.7.a。

4.a^2+3a},且a∈N,x∈A,y∈B*,使B中元素y=3x+1和A中的元素x对应,则a,k的值分别为()A。

2,3B。

3,4C。

3,5D。

2,54.已知f(x)={x+2(x≤-1),x^2(-1<x<2),2x(x≥2)},若f(x)=3,则x的值是()A。

1B。

1或-3C。

1,或±3D。

35.为了得到函数y=f(-2x)的图象,可以把函数y=f(1-2x)的图象适当平移,这个平移是()A。

沿x轴向右平移1个单位B。

沿x轴向右平移1/2个单位C。

沿x轴向左平移1个单位D。

沿x轴向左平移1/2个单位6.设f(x)={x-2(x≥10),f[f(x+6)](x<10)},则f(5)的值为()A。

10B。

11C。

12D。

13填空题1.设函数f(x)={1/(x-1)(x≥1),2/x(xa,则实数a的取值范围是(0.1)。

2.函数y=(x-2)/(x^2-4)的定义域是R-{-2.2}。

3.求函数f(x)=3x/(x+1)的定义域为R-{-1}。

4.函数y=(x-1)/(x-x^2)的定义域是(-∞。

0)∪(1.+∞)。

5.函数f(x)=x+(1/x)的最小值是2.解答题1.求函数f(x)=3x/(x+1)的定义域为R-{-1}。

解:当x+1≠0时,即x≠-1时,f(x)有意义,所以f(x)的定义域为R-{-1}。

2.求函数y=(x^2+x+1)/(x+1)的值域。

解:y=(x^2+x+1)/(x+1)=x+1+1/(x+1),当x→±∞时,y→±∞,所以y的值域为R-{-1}。

高一数学函数及其表示试题答案及解析

高一数学函数及其表示试题答案及解析

高一数学函数及其表示试题答案及解析1.下列各组函数为同一函数的是()A.,B.C.D.【答案】B【解析】选项A中两函数的定义域不同,选项B中两函数的定义域和对应关系均相同,选项C中两函数的定义域不同,选项D中两函数的对应关系不同,所以只有B中两函数是同一个函数.【考点】本小题主要考查函数的三要素的判断,考查学生的判断推理能力.点评:函数有三要素:定义域、值域和对应关系,其实只要定义域和对应关系相同就能得出两函数是同一个函数.2.如图所示,当时,函数的图象是 ( )【答案】D【解析】对于D,当a<0时,b<0,所以抛物线的开口向下,并且直线的斜率为负值,在y轴上的截距为负值.因而选D.3.下列哪组中的两个函数是同一函数()A.与B.与C.与D.与【答案】B【解析】根据同一函数的定义可知,定义域和对应法则相同时。

那么选项A中,定义域不同,选项B中,定义域和对应法则相同;选项C中,定义域不同,选项D中,定义域不同,故选B.4.定义在R上的偶函数满足:对任意的,有.则( ) A.B.C.D.【答案】B【解析】因为函数在R上的偶函数,那么且在给定区间上是减函数,那么在x<0上递增函数,因此可知f(-3)="f(3)," f(-2)=f(2),所以f(-3)<f(-2)< f(1),故选B.5.若函数,则=_____ __ _____【解析】因为函数,,令x=1,则可知f(2)=1-1=0.6.(本小题满分12分)已知,求的值【答案】n-【解析】本试题主要是考查了函数解析式的运用。

根据由已知得,f(1)=且f(x)+ =+=1,得到所求的函数值。

解:由已知得,f(1)=且f(x)+ =+=1∴=n-1+=n-7.下列对应法则中,可以构成从集合到集合的映射的是()A.B.C.D.【答案】B【解析】解:根据映射的概念,在集合A中的每一个元素在集合B中都有唯一的元素和它对应,观察所给的四个选项,对于A选项,在B中有2个元素与它对应,不是映射,对于D选项,在B中没有和A的元素0对应的象,对于C选项,在B中没有与A的元素0对应的象,对于B选项,符合映射的意义,故选B.8.下列对应法则中,可以构成从集合到集合的映射的是()A.B.C.D.【答案】D【解析】解:根据映射的概念,在集合A中的每一个元素在集合B中都有唯一的元素和它对应,观察所给的四个选项,对于A选项,在B中有2个元素与它对应,不是映射,对于B选项,在B中没有和A的元素0对应的象,对于C选项,在B中没有与A的元素0对应的象,对于D选项,符合映射的意义,故选D.9.下列各组函数中表示同一函数的是()①与;②与;③与;④与.A.①②B.②③C.③④D.①④【答案】C【解析】因为①与;中定义域不同②与;对应关系不同,③与;相同。

高中数学必修一 第1讲函数及其表示

高中数学必修一 第1讲函数及其表示

第4讲 函数及其表示基础梳理1.函数的基本概念(1)函数的定义:设A 、B 是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么称f :A →B 为从集合A 到集合B 的一个函数,记作:y =f (x ),x ∈A .(2)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫自变量,x 的取值范围A 叫做定义域,与x 的值对应的y 值叫函数值,函数值的集合{f (x )|x ∈A }叫值域.值域是集合B 的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等;这是判断两函数相等的依据.2.函数的三种表示方法 表示函数的常用方法有:解析法、列表法、图象法.3.映射的概念一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.两个防范(1)解决函数问题,必须树立优先考虑函数的定义域的良好习惯.(2)用换元法解题时,应注意换元后变量的范围.考向一 相等函数的判断【例1】下列函数中哪个与函数)0(≥=x x y 是同一个函数( )A y =( x )2B y=x x 2C 33x y =D y=2x 【例2】x x y 2=与⎩⎨⎧-∞∈-+∞∈=).0,(,);,0(,)(t t t t x f 是相同的函数吗? 考向二 求函数的定义域高中阶段所有基本初等函数求定义域应注意:(1)分式函数中分母不为0;(2)开偶次方时,被开方数大于等于0;(3)对数函数的真数大于0(如果底数含自变量,则底数大于0且不为1);(4)0次幂的底数不为0。

(5)正切函数2ππ+≠k x【例1】►求函数x x x x f -+--=4lg 32)(的定义域。

高一数学函数及其表示测试题及答案

高一数学函数及其表示测试题及答案

高一数学函数及其表示测试题及答案必修1数学章节测试(3)—第一单元(函数及其表示)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。

1.下列四种说法正确的一个是(。

C )。

A。

f(x)表示的是含有x的代数式B。

函数的值域也就是其定义中的数集C。

函数是一种特殊的映射D。

映射是一种特殊的函数2.已知f满足f(ab)=f(a)+f(b),且f(2)=p,f(3)=q,那么f(72)等于(。

B )。

A。

p+qB。

3p+2qC。

2p+3qD。

p×q3.下列各组函数中,表示同一函数的是(。

D )。

A。

y=x-1×x+1,y=x2-1B。

y=x,y=3x3C。

y=2p+3q,y=p+q32D。

y=x+1,y=1-x4.已知函数y=1-x2x-3x-2的定义域为(。

B )。

A。

(-∞,1]B。

(-∞,2]C。

(-∞,-12)∪(12,∞)D。

y=|x|,y=(x)5.设f(x)={x+1,(x>0)。

π,(x=0)。

-x,(x<0)},则f{f[f(-1)]}=(。

A。

)。

A。

π+1B。

πC。

1-πD。

-16.下列图中,画在同一坐标系中,函数y=ax+b与y=cx+d(a≠c,b≠d)函数的图象只可能是(。

C )。

无法插入图片)7.设函数f(x)=x1+x,则f(x)的表达式为(。

B )。

A。

1-xx-1B。

1+x1+xC。

1-xx+1D。

1+x1-x8.已知二次函数f(x)=x2+bx+a(a>0),若f(m)<0,则f(m+1)的值为(。

C )。

A。

正数B。

负数C。

符号与a有关D。

符号与b有关9.已知在x克a%的盐水中,加入XXX的盐水,浓度变为c%,将y表示成x的函数关系式(。

A )。

A。

y=(c-a)x/c-bB。

y=(c-a)x/b-cC。

y=(c-b)x/c-aD。

y=(b-c)x/c-a10.已知f(x)的定义域为[-1,2),则f(|x|)的定义域为(。

高一新知必修1第一章 第2节《函数及其表示》

高一新知必修1第一章 第2节《函数及其表示》
解题后的思考: y f ( 例 3 思路分析:
1)题意分析:已知 f ( x 1) ,求 f ( x ) 2)解题思路:换元法 解答过程:令 t x 1 ,则 x t 1 , f (t ) 2(t 1)2 1 2t 2 4t 3 。
f ( x) 2 x2 4 x 3 。
当 x >-2 时, y = 解题后的思考: 分段函数的定义域是各段函数解析式中自变量取值集合的并集; 分段函数的值域是各段函数 取值集合的并集。 例 9 解答过程:∵-3<0 ∴ f (-3)=0, ∴ f ( f (-3) )= f (0)= ,又 >0 ∴ f ( f ( f (3))) =f( )= +1。 解题后的思考:求分段函数的函数值时,首先应确定自变量在定义域中所处的范围,然后按相应的对应关系 求值。
三、考点分析:
掌握函数的概念与表示,对于映射的概念只需要了解,本节知识点在单独出题时多为简单题,揉在综合题中 考查。
1、函数的概念: 一般地,设 A、B 是非空的数集,如果按照某种确定的对应关系 f ,使对于集合 A 中的任意一个数 x ,在 集合 B 中都有唯一确定的数 f ( x ) 和它对应,那么就称 f :A→B 为从集合 A 到集合 B 的一个函数,记作:
(3) f ( x) x , g ( x)
x2 ;
(4) f ( x) 3 x 4 x3 , F ( x) x 3 x 1 ; (5) f1 ( x) ( 2x 5) 2 , f 2 ( x) 2 x 5 。 A. (1) 、 (2) B. (2) 、 (3) C. (4) D. (3) 、 (5) 2. 函数 y f ( x) 的图象与直线 x 1 的公共点的数目是( ) 3. 已知集合 A 1, 2,3, k , B 4, 7, a , a 3a ,且 a N * , x A, y B ,若使 B 中元素 y 3x 1 和 A 中

高一数学函数及其表示试题答案及解析

高一数学函数及其表示试题答案及解析

高一数学函数及其表示试题答案及解析1.下列函数中,图象如图的函数可能是().A.y=x3B.y=2x C.y=D.y=log2x【答案】C【解析】由图像可知,函数的定义域为,且过点;而选项A:的定义域为,选项B:的定义域为,选项C:的定义域为,且过点,选项D:的定义域为;故选C.考点:函数的图像.2.,则 ( )A.B.C.D.【答案】D【解析】本题主要考查函数解析式.由,故选D.【考点】函数解析式,诱导公式.3.设= .【答案】【解析】因为所以【考点】分段函数求值4.下列各组函数表示同一函数的是()A.B.C.D.【答案】C【解析】排除,因为三个选项中两个函数的定义域各不相同,故C正确。

【考点】函数的三要素。

5.已知函数的对应关系如下表,函数的图像是如下图的曲线,其中则的值为()A.3B.2C.1D.0【答案】B【解析】由的图像与的对应关系表可知,,所以,故选B.【考点】1.函数及其表示;2.复合函数的求值问题.6.已知函数(1)若,求的值;(2)求的值.【答案】(1)1;(2)1006【解析】(1)因为.所以可以计算出的值为1,即表示两个自变量的和为1的函数值的和为1.(2)由(1)可知两个自变量的和为1的函数值的和为1.所以令…①.利用倒序又可得到…②.所以由①+②可得2S=2012.所以S=1006.试题解析:. 5分(2). 10分【考点】1.函数的表示法.2.倒序求和法.7.下列各个对应中,构成映射的是()【答案】B【解析】按照映射的定义,A中的任何一个元素在集合B中都有唯一确定的元素与之对应.在选项A中,前一个集合中的元素2在后一个集合中没有元素与之对应,故不符合映射的定义;在选项C中,前一个集合中的元素2在后一集合中有2个元素和它对应,也不符合映射的定义;在选项D中,前一个集合中的元素1在后一集合中有2个元素和它对应,也不符合映射的定义;只有选项B满足映射的定义,【考点】映射概念.8.某公司一年购买某种货物200吨,分成若干次均匀购买,每次购买的运费为2万元,一年存储费用恰好与每次的购买吨数的数值相等(单位:万元),要使一年的总运费与总存储费用之和最小,则应购买________次.【答案】10【解析】先设此公司每次都购买x吨,利用函数思想列出一年的总运费与总存储费用之和,再结合基本不等式得到一个不等关系即可求得最小值.公司一年购买某种货物200吨,分成若干次均匀购买,每次购买的运费为2万元,一年存储费用恰好与每次的购买吨数的数值相等(单位:万元),要使一年的总运费与总存储费用之和y=2x+,当且仅当x=10时取得最小值,故答案为10.【考点】函数最值的应用点评:本题主要考查了函数最值的应用,以及函数模型的选择与应用和基本不等式的应用,考查应用数学的能力,属于基础题.9.下列所示的四幅图中,可表示为y=f(x)的图像的只可能是()【答案】D【解析】在函数中,取集合A中的任何一个元素x,都能在集合B中找个唯一一个元素y与之对应,选项D具有这样的特点,而其他选项没有。

高一数学上册第一章函数及其表示知识点及练习题含答案

高一数学上册第一章函数及其表示知识点及练习题含答案

函数及其表示(一)知识梳理1.映射的概念设B A 、是两个非空集合,若是依照某种对应法则f ,对A 中的任意一个元素x ,在集合B 中都有唯一确信的元素y 与之对应,则称f 是集合A 到集合B 的映射,记作f(x).2.函数的概念(1)函数的概念:设B A 、是两个非空的数集,若是依照某种对应法则f ,对A 中的 任意数 x ,在集合B 中都有 唯一确信 的数y 和它对应,则如此的对应关系叫做从A 到B 的一个函数,通常记为___y=f(x),x ∈A(2)函数的概念域、值域在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做函数的概念域;与x 的值相对应的y 值叫做函数值, 关于的函数值的集合所有的集合组成值域。

(3)函数的三要素: 概念域 、 值域 和 对应法则3.函数的三种表示法:图象法、列表法、解析法(1).图象法:确实是用函数图象表示两个变量之间的关系;(2).列表法:确实是列出表格来表示两个变量的函数关系;(3).解析法:确实是把两个变量的函数关系,用等式来表示。

4.分段函数在自变量的不同转变范围中,对应法则用不同式子来表示的函数称为分段函数。

(二)考点分析考点1:判定两函数是不是为同一个函数若是两个函数的概念域相同,而且对应关系完全一致,称这两个函数相等。

考点2:求函数解析式方式总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法;(3)若已知抽象函数的表达式,则经常使用解方程组消参的方式求出)(x f函数及其表示练习题(2)一、选择题1. 判定下列各组中的两个函数是同一函数的为( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x =()F x = ⑸21)52()(-=x x f ,52)(2-=x x f .A. ⑴、⑵B. ⑵、⑶C. ⑷D. ⑶、⑸2. 函数()y f x =的图象与直线1x =的公共点数量是( )A. 1B. 0C. 0或1D. 1或23. 已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值别离为( )A. 2,3B. 3,4C. 3,5D. 2,54. 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A. 1B. 1或32C. 1,32或 D.5. 为了取得函数(2)y f x =-的图象,能够把函数(12)y f x =-的图象适当平移, 那个平移是( )A. 沿x 轴向右平移1个单位B. 沿x 轴向右平移12个单位 C. 沿x 轴向左平移1个单位 D. 沿x 轴向左平移12个单位 6. 设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( ) A. 10 B. 11 C. 12 D. 13二、填空题1. 设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 . 2. 函数422--=x x y 的概念域 . 3. 若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则那个二次函数的表达式是 .4. 函数0y=_____________________. 5. 函数1)(2-+=x x x f 的最小值是_________________.三、解答题1. 求函数()1f x x =+的概念域.2. 求函数12++=x x y 的值域.3. 12,x x 是关于x 的一元二次方程22(1)10x m x m --++=的两个实根,又2212y x x =+,求()y f m =的解析式及此函数的概念域.4. 已知函数2()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值.参考答案(2)一、选择题 1. C 2. C 3. D 4. D∴2()3,12,f x x x x ===-<<而∴ x =5. D 平移前的“1122()2x x -=--”,平移后的“2x -”, 用“x ”代替了“12x -”,即1122x x -+→,左移 6. B [][](5)(11)(9)(15)(13)11f f f f f f f =====.二、 1.(),1-∞- 当10,()1,22a f a a a a ≥=-><-时,这是矛盾的; 当10,(),1a f a a a a<=><-时;2. {}|2,2x x x ≠-≠且 240x -≠3. (2)(4)y x x =-+- 设(2)(4)y a x x =+-,对称轴1x =, 当1x =时,max 99,1y a a =-==-4. (),0-∞ 10,00x x x x -≠⎧⎪<⎨->⎪⎩5. 54- 22155()1()244f x x x x =+-=+-≥-.三、 1. 解:∵10,10,1x x x +≠+≠≠-,∴概念域为{}|1x x ≠-2. 解: ∵221331(),244x x x ++=++≥∴y ≥,∴值域为)+∞ 3. 解:24(1)4(1)0,30m m m m ∆=--+≥≥≤得或,222121212()2y x x x x x x =+=+- 224(1)2(1)4102m m m m =--+=-+∴2()4102,(03)f m m m m m =-+≤≥或.4. 解:对称轴1x =,[]1,3是()f x 的递增区间,max ()(3)5,335f x f a b ==-+=即min ()(1)2,32,f x f a b ==--+=即∴3231,.144a b a b a b -=⎧==⎨--=-⎩得。

高中数学必修一之知识讲解-函数及其表示方法

高中数学必修一之知识讲解-函数及其表示方法

函数及其表示方法【学习目标】(1)会用集合与对应的语言刻画函数;会求一些简单函数的定义域和值域,初步掌握换元法的简单运用.(2)能正确认识和使用函数的三种表示法:解析法,列表法和图象法.了解每种方法的优点.在实际情境中,会根据不同的需要选择恰当的方法表示函数;(3)求简单分段函数的解析式;了解分段函数及其简单应用.【要点梳理】要点一、函数的概念1.函数的定义设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.要点诠释:(1)A、B集合的非空性;(2)对应关系的存在性、唯一性、确定性;(3)A中元素的无剩余性;(4)B中元素的可剩余性。

2.构成函数的三要素:定义域、对应关系和值域①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数);②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关.3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.区间表示:<<= {x|a≤x≤b}=[a,b];x a x b a b{|}(,);(]x a x b a b{|},≤<=;x a x b a b<≤=;[){|},(][)≤=∞≤=+∞.x x b b x a x a{|}-,; {|},要点二、函数的表示法1.函数的三种表示方法:解析法:用数学表达式表示两个变量之间的对应关系.优点:简明,给自变量求函数值.图象法:用图象表示两个变量之间的对应关系.优点:直观形象,反应变化趋势.列表法:列出表格来表示两个变量之间的对应关系.优点:不需计算就可看出函数值.2.分段函数:分段函数的解析式不能写成几个不同的方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况.要点三、映射与函数1.映射定义:设A、B是两个非空集合,如果按照某个对应法则f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,这样的对应叫做从A到B的映射;记为f:A→B.象与原象:如果给定一个从集合A到集合B的映射,那么A中的元素a对应的B中的元素b叫做a的象,a叫做b的原象.要点诠释:(1)A中的每一个元素都有象,且唯一;(2)B中的元素未必有原象,即使有,也未必唯一;(3)a的象记为f(a).2.函数与映射的区别与联系:设A、B是两个非空数集,若f:A→B是从集合A到集合B的映射,这个映射叫做从集合A到集合B的函数,记为y=f(x).要点诠释:(1)函数一定是映射,映射不一定是函数;(2)函数三要素:定义域、值域、对应法则;(3)B中的元素未必有原象,即使有原象,也未必唯一;(4)原象集合=定义域,值域=象集合.3.函数定义域的求法(1)确定函数定义域的原则①当函数是以解析式的形式给出时,其定义域就是使函数解析式有意义的自变量的取值的集合.具体地讲,就是考虑分母不为零,偶次根号的被开方数、式大于或等于零,零次幂的底数不为零以及我们在后面学习时碰到的所有有意义的限制条件.②当函数是由实际问题给出时,其定义域不仅要考虑使其解析式有意义,还要有实际意义.③当函数用表格给出时,函数的定义域是指表格中实数x的集合。

高一上册数学人教版知识点

高一上册数学人教版知识点

高一上册数学人教版知识点一、函数及其表示方法
函数的概念与符号表示方法
定义域、值域及其确定方法
函数的图像表示及性质
二、线性函数
线性函数的概念及其表示
线性函数图像与性质
函数的单调性与零点
三、二次函数
二次函数的概念及其表示
二次函数的图像与性质
二次函数的最值与零点的判定
四、指数函数
指数函数的概念与表示方法
指数函数的图像与性质
指数方程与指数不等式的解法
五、对数函数
对数函数的概念与表示方法
常用对数与自然对数的性质
对数方程与对数不等式的解法
六、三角函数
常用三角函数的概念与表示方法三角函数的图像与性质
三角函数的周期性与奇偶性
七、解直角三角形
直角三角形的概念与性质
三角函数在直角三角形中的应用
角度的弧度制与三角函数的关系
八、平面向量
向量的基本概念与表示方法
向量的运算法则
平面向量在几何与代数中的应用
九、数列与数列的极限
数列的概念与表示方法
数列的通项公式与递推关系
数列的收敛性与极限定理
十、概率统计
随机事件与概率的概念
常用概率计算方法
统计的方法与常见统计图表
以上为高一上册数学人教版的知识点概述,通过学习这些知识,能够帮助同学们建立起数学的基本理论框架,为学习数学打下坚
实的基础。

在学习过程中,同学们还需通过大量的练习和实际应
用来巩固这些知识,提高自己的数学能力。

希望同学们能够认真
学习,积极思考,享受数学带来的乐趣!。

高一数学函数的概念知识点详解

高一数学函数的概念知识点详解

高一数学函数的概念知识点详解一、函数的定义和表示方法函数是数学中的重要概念,它描述了输入和输出之间的关系。

函数可以用多种方式来定义和表示,包括集合表示法、公式表示法、图像表示法等。

1.1 集合表示法在集合表示法中,函数可以用有序数对的集合来表示。

例如,如果函数f将集合A中的元素映射到集合B中的元素,则可以表示为f={(a,b)|a∈A, b∈B}。

1.2 公式表示法在公式表示法中,函数可以用一个表达式来表示。

例如,如果函数f将自变量x映射到因变量y,则可以表示为y=f(x)。

1.3 图像表示法在图像表示法中,函数可以通过绘制其图像来表示。

图像是由自变量和因变量的坐标点组成的。

二、定义域和值域在讨论函数时,我们经常会涉及到其定义域和值域。

2.1 定义域定义域是指函数输入的所有可能值的集合。

对于某个函数f,如果自变量x的取值范围在集合D内,则称D为函数f的定义域。

2.2 值域值域是指函数输出的所有可能值的集合。

对于某个函数f,如果因变量y的取值范围在集合R内,则称R为函数f的值域。

三、常见的函数类型在高一数学中,我们会遇到许多常见的函数类型,包括线性函数、二次函数、指数函数、对数函数等。

3.1 线性函数线性函数是指自变量和因变量之间存在一次关系的函数。

它的一般形式为y=ax+b,其中a和b为常数。

3.2 二次函数二次函数是指自变量和因变量之间存在二次关系的函数。

它的一般形式为y=ax^2+bx+c,其中a、b和c为常数。

3.3 指数函数指数函数是指以常数e为底的幂函数。

它的一般形式为y=a^x,其中a为正实数。

3.4 对数函数对数函数是指以某个正实数为底的对数函数。

它的一般形式为y=logₐx,其中a为正实数且不等于1。

四、函数的性质和特点函数有许多重要的性质和特点,包括奇偶性、单调性、极值等。

4.1 奇偶性如果对于任意的x,有f(-x) = f(x),则函数f是偶函数;如果对于任意的x,有f(-x) = -f(x),则函数f是奇函数;如果对于任意的x,既不满足偶函数的性质,也不满足奇函数的性质,则函数f既不是偶函数也不是奇函数。

高一数学函数知识点归纳

高一数学函数知识点归纳

高一数学函数知识点归纳一、函数的概念1. 函数定义:函数是从一个数集A(定义域)到另一个数集B(值域)的映射,通常表示为y=f(x)。

2. 定义域:能够输入到函数中的所有可能的x值的集合。

3. 值域:函数输出的所有可能的y值的集合。

4. 函数图像:函数在坐标系中的图形表示。

二、函数的表示法1. 公式法:用数学公式表示函数关系,如y=2x+3。

2. 表格法:用表格列出x与y的对应值。

3. 图像法:通过函数图像直观表示函数关系。

三、函数的性质1. 单调性:函数在定义域内随着x的增加,y值单调递增或递减。

2. 奇偶性:函数f(x)如果满足f(-x)=-f(x)称为奇函数;如果满足f(-x)=f(x)称为偶函数。

3. 周期性:函数如果存在一个非零常数T,使得对于所有x,都有f(x+T)=f(x),则称函数具有周期性。

4. 有界性:函数的值域在某个区间内有限,称函数在该区间内有界。

四、基本初等函数1. 线性函数:y=kx+b(k≠0),其中k为斜率,b为截距。

2. 二次函数:y=ax^2+bx+c(a≠0),顶点形式为y=a(x-h)^2+k。

3. 幂函数:y=x^n,其中n为实数。

4. 指数函数:y=a^x(a>0,a≠1)。

5. 对数函数:y=log_a(x)(a>0,a≠1)。

6. 三角函数:正弦函数y=sin(x),余弦函数y=cos(x),正切函数y=tan(x)等。

五、函数的运算1. 函数的和差:(f±g)(x)=f(x)±g(x)。

2. 函数的乘积:(f*g)(x)=f(x)g(x)。

3. 函数的商:(f/g)(x)=f(x)/g(x)(g(x)≠0)。

六、复合函数1. 复合函数定义:如果有两个函数f(x)和g(x),那么(f∘g)(x)=f(g(x))。

2. 复合函数的运算法则:(f∘g)(x)=f(g(x)),其中g(x)≠0。

七、反函数1. 反函数定义:如果函数y=f(x)在区间I上是单调的,则存在一个函数x=f^(-1)(y),使得f(f^(-1)(y))=y。

高一数学第四讲函数的概念与表示

高一数学第四讲函数的概念与表示

高一数学第四讲函数的概念与表示一.知识归纳:1.映射(1)映射:设A 、B 是两个集合,如果按照某种映射法则f ,对于集合A 中的任一个元素,在集合B 中都有唯一的元素和它对应,则这样的对应(包括集合A 、B 以及A 到B 的对应法则f )叫做集合A 到集合B 的映射,记作f :A→B。

(2)象与原象:如果给定一个从集合A 到集合B 的映射,那么集合A 中的元素a 对应的B 中的元素b 叫做a 的象,a 叫做b 的原象。

注意:(1)对映射定义的理解。

(2)判断一个对应是映射的方法。

2.函数(1)函数的定义①原始定义:设在某变化过程中有两个变量x 、y ,如果对于x 在某一X 围内的每一个确定的值,y 都有唯一确定的值与它对应,那么就称y 是x 的函数,x 叫作自变量。

②近代定义:设A 、B 都是非空的数的集合,f :x→y 是从A 到B 的一个对应法则,那么从A 到B 的映射f :A→B 就叫做函数,记作y=f(x),其中x ∈A,y ∈B ,原象集合A 叫做函数的定义域,象集合C 叫做函数的值域。

注意:①C ⊂B; ②A,B,C 均非空(2)构成函数概念的三要素:①定义域②对应法则③值域3.函数的表示方法:①解析法 ②列表法 ③图象法注意:强调分段函数与复合函数的表示形式。

二.例题讲解:【例1】下列各组函数中,表示相同函数的是()(A) f(x)=lnx 2,g(x)=2lnx (B)f(x)=xa a log (a>0且a ≠1),g(x)=x (C) f(x)=21x -, g(x)=1−|x| (x ∈[−1,1]) (D) f(x)=xa a log (a>0且a ≠1),g(x)=33x 解答:选D点评:判断两个函数是否相同主要是从定义域、对应法则两个方面加以分析。

变式:下列各对函数中,相同的是( D ) (A) f(x)=2x , g(x)=x (B)f(x)=lgx 2,g(x)=2lgx (C)f(x)=11lg +-x x , g(x)=lg(x-1)-lg(x+1) (D) f(x)=u u -+11,g(x)=v v -+11 【例2】(1)集合A={3,4},B={5,6,7},那么可以建立从A 到B 的映射的个数是;从B 到A 的映射的个数是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点一、映射的概念
1.了解对应大千世界的对应共分四类,分别是:一对一多对一一对多多对多
2.映射:设A和B是两个非空集合,如果按照某种对应关系f,对于集合A中的任意一个元素x,在集合B中都存在的一个元素y与之对应,那么,就称对应f:A→B为集合A到集合B的一个映射(mapping).映射是特殊的对应,简称“对一”的对应。

包括:一对一多对一
考点二、函数的概念
1.函数:设A和B是两个非空的数集,如果按照某种确定的对应关系f,对于集合A中的任意一个数x,在集合B中都存在确定的数y与之对应,那么,就称对应f:A→B为集合A到集合B的一个函数。

记作y=f(x),xA.其中x叫自变量,x的取值范围A叫函数的定义域;与x的值相对应的y的值函数值,函数值的集合叫做函数的值域。

函数是特殊的映射,是非空数集A到非空数集B的映射。

2.函数的三要素:定义域、值域、对应关系。

这是判断两个函数是否为同一函数的依据。

3.区间的概念:设a,bR,且a<b.我们规定:
①(a,b)={xa<x<b}②[a,b]={xa≤x≤b}③[a,b)={xa≤x<b}④
(a,b]={xa<x≤b}
⑤(a,+∞)={xx>a}⑥[a,+∞)={xx≥a}⑦(-∞,b)={xx<b}⑧(-∞,b]={xx≤b}⑨(-∞,+∞)=r
考点三、函数的表示方法
1.函数的三种表示方法列表法图象法解析法
2.分段函数:定义域的不同部分,有不同的对应法则的函数。

注意两点:①分段函数是一个函数,不要误认为是几个函数。

②分段函数的定义域是各段定义域的并集,值域是各段值域的并集。

考点四、求定义域的几种情况
①若f(x)是整式,则函数的定义域是实数集R;
②若f(x)是分式,则函数的定义域是使分母不等于0的实数集;
③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;
④若f(x)是对数函数,真数应大于零。

⑤.因为零的零次幂没有意义,所以底数和指数不能同时为零。

⑥若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;
⑦若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题。

相关文档
最新文档