新人教版 七年级数学上册 第一章 有理数 全册教学设计

合集下载

最新人教版初一数学七年级上册 第一章 有理数 全单元教案设计

最新人教版初一数学七年级上册 第一章 有理数 全单元教案设计

第一章有理数1.1正数和负数目标预设:一、知识与能力借助生活中的实例会判断一个数是正数还是负数,能用正负数表示具有相反意义的量二、过程与方法1、过程:通过实例引入负数,指导学生会识别正负数及其表示法,能应用正负数表示具有相反意义的量。

2、方法:讨论法、探究法、讲授法、观察法。

三、情感、态度、价值观乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用教学重难点:一、重点:理解正数和负数的概念,判断一个数是正数还是负数,应用正负数表示具有相反意义的量二、难点:负数的意义,理解具有相反意义的量。

教学准备:带有负数的实例若干预习导学:在生活、生产、科研中,经常遇到数的表示与数的运算的问题。

例如,⑴天气预报2003年11月某天北京的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?⑵有三个队参加的足球比赛中,红队胜黄队(4∶1),黄队胜蓝队(1∶0),蓝队胜红队(1∶0),如何确定三个队的净胜球数与排名顺序?⑶某机器零件的长度设计为100mm,加工图纸标注的尺寸为100±0.5(mm),这里的±0.5代表什么意思?合格产品的长度范围是多少?(问题1-3友情提示、全班交流、教师点评)教学过程:一、创设情景,谈话引入在小学里我们已经学过哪些类型的数(自然数和分数),它们都是由实际需要而产生的,由记数、排序产生数1,2,3……,由表示“没有”“空位”,产生数0,由分物、测量产生分数,,……,但在预习导学中表示温度、净胜球数、加工允许误差时用到数:-3, 3, 2, -2, 0, +0.5, -0.5。

二、精讲点拨,质疑问难这里出现了一种新数:-3,-2,-0.5。

在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,小于设计尺寸0.5mm,像-3,-2,-0.5这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数。

而3,2,+0.5在问题中分别表示零上3摄氏度,净胜2球,大于设计尺寸0.5mm,它们与负数具有相反的意义。

人教版七年级数学上册《 第一章 有理数 》教学设计

人教版七年级数学上册《 第一章 有理数 》教学设计

人教版七年级数学上册《第一章有理数》教学设计一. 教材分析人教版七年级数学上册《第一章有理数》是学生在小学数学基础上,进一步深入学习数学的重要章节。

本章主要介绍有理数的概念、分类、运算及其性质。

内容主要包括:有理数的定义,有理数的分类,有理数的运算,有理数的性质,以及实数的概念。

这些内容是学生进一步学习数学的基础,对于培养学生的逻辑思维能力和数学素养具有重要意义。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于数学概念和运算有一定的认识。

但是,对于有理数的概念和性质,学生可能还比较陌生,需要通过实例和练习来加深理解。

此外,学生的学习习惯和思维方式也有所不同,需要教师进行针对性的引导和指导。

三. 教学目标1.理解有理数的定义,掌握有理数的分类,了解有理数的性质。

2.熟练掌握有理数的运算方法,能够进行简单的有理数计算。

3.培养学生的逻辑思维能力和数学素养,提高学生的数学学习兴趣。

四. 教学重难点1.有理数的定义和分类,有理数的性质。

2.有理数的运算方法,特别是乘除法和混合运算。

五. 教学方法1.采用问题导入法,通过实例引发学生的思考,引导学生自主探索和发现有理数的性质。

2.采用讲授法,教师讲解有理数的概念、分类和性质,引导学生理解和掌握。

3.采用练习法,通过大量的练习题,让学生熟悉和掌握有理数的运算方法。

4.采用小组合作学习法,让学生在小组内进行讨论和交流,培养学生的合作意识和团队精神。

六. 教学准备1.教材和人教版七年级数学上册《第一章有理数》的教学PPT。

2.与本章内容相关的练习题和测试题。

3.教学黑板和粉笔。

七. 教学过程1.导入(5分钟)通过问题导入法,引导学生思考:“什么是数?我们学过的数有哪些?”然后给出有理数的定义,引导学生自主探索和发现有理数的性质。

2.呈现(10分钟)教师讲解有理数的概念、分类和性质,通过PPT展示相关的内容,让学生直观地理解和掌握。

3.操练(10分钟)让学生进行有理数的运算练习,包括加减乘除法和混合运算。

新人教版七年级上册数学第1章有理数全章教案

新人教版七年级上册数学第1章有理数全章教案

第一章有理数§1.1正数和负数(一)教学目标:知识与技能:掌握正数和负数的概念,能区分两种不同意义的量,会用符号表示正数和负数;培养学生观察、比较和概括的思维能力。

过程与方法:教法主要采用启发式教学学法引导学生自主探索去观察、交流、归纳.情感、态度、价值观:在传授知识、培养能力的同时,注意培养学生勇于探索的精神,通过本节课的教学,渗透对立统一的辩证思想。

教学重点:实际需要产生正数与负数.教学难点:正确了解负数,能准确地举出具有相反意义的量的典型例.教学过程:(一)、提出问题在生产和生活中经常会遇见用数来表示问题,例如①天气预报2003年11月某天北京的温度为-3—30C,它的确切含义是什么?②有三个队参加足球比赛,红队胜黄队(4∶1),蓝队胜红队(1∶0),黄队胜蓝队(1∶0),如何按净胜球排名?③某机器零件的长度设计为100mm,加工图纸标注的尺寸为100±0.5(mm),这里的±0.5代表什么意思?(二)、试一试章前图中表示温度、净胜球、加工允许误差时,用到了-3,3,2,-2,0,+0.5,-0.5等等.请同学们那些数是以前没有学过的数,有–3,-2,-0.5.实际意义是零下3度,净输2球,小于尺寸0.5mm.(三)、探索新数–3,-2,-0.5有什么特征?(学生回答)正数:以前学过的大于0的数(像1、2.5、133、48等的数叫正数)七年级(上)数学教案负数:在正数前面加上负号“-”的数.(像-1、-2.5,-13,-48的数叫负数,读作负1、负2.5、负13、负48.)有时正数前面也可以加上正号“+”,正号“+”可以省略,但负号“-”一定不可以省略.一个数前面的“+”“-”叫它的符号(性质符号).强调0既不是正数,也不是负数,它是中性数.师:(以温度计为例)温度计中的0不是表示没有温度,它通常表示水结成冰时的温度,是零上温度与零下温度的分界点,因此得出:零既不是正数也不是负数。

2024年人教版七年级上册教学设计第一章 有理数第一章 有理数

2024年人教版七年级上册教学设计第一章  有理数第一章  有理数

一、单元学习主题本单元是“数与代数”领域“数与式”主题中的“有理数”.二、单元学习内容分析1.课标分析《义务教育数学课程标准(2022年版)》(以下简称《标准2022》)指出初中阶段数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,是学生理解数学符号,以及感悟用数学符号表达事物的性质、关系和规律的关键内容,是学生初步形成抽象能力和推理能力、感悟用数学的语言表达现实世界的重要载体.“数与式”是代数的基本语言,初中阶段关注用字母表述代数式,以及代数式的运算,字母可以像数一样进行运算和推理,通过字母的运算和推理得到的结论具有一般性.课标的内容要求:①理解负数的意义,会用正数和负数表示具体情境中具有相反意义的量;理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.②借助数轴理解相反数和绝对值的意义,初步体会数形结合的思想方法,掌握求有理数的相反数和绝对值的方法.教师应把握数与式的整体性,一方面,通过对有理数的认识,帮助学生进一步感悟数是对数量的抽象,知道绝对值是对数量大小和线段长度的表达;另一方面,通过代数式和代数式运算的教学,让学生进一步理解用字母表示数的意义,通过基于符号的运算和推理,建立符号意识,感悟数学结论的一般性,理解运算方法与运算律的关系,提升运算能力.在教学过程中,要关注数学知识与实际的结合,让学生在实际背景中理解数量关系和变化规律,经历从实际问题中建立数学模型、求解模型、验证反思的过程,形成模型观念;要关注基于代数的逻辑推理,能在比较复杂的情境中,提升学生发现问题、提出问题、分析问题和解决问题的能力,以及有逻辑地表达与交流的能力.2.本单元教学内容分析人教版教材七年级上册第一章“有理数”,本章包括两个小节:1.1正数和负数;1.2有理数及其大小比较.数及其运算是中小学数学课程的核心内容.小学已经安排了自然数、正分数及其运算等学习内容.本单元借助生活实例引入负数.通过添加负数这一类“新数”,使数的范围扩张到有理数.引入负数是实际的需要,也是学习后续内容,特别是“数与代数”内容的需要,学生可以从中体会根据实际和数学的需要引入“新数”的好处.有理数的概念可以利用数轴来认识、理解;同时,利用数轴又可以把这些概念串在一起.数轴是数形结合思想的产物.引进数轴后,可以用数轴上的点直观地表示有理数,为学生提供了理解相反数、绝对值的直观工具,同时也为学习有理数的运算法则做了准备.引入相反数的概念,一方面可以加深对相反意义的量的认识,另一方面可以为学习绝对值、有理数运算做准备.绝对值概念借助距离概念加以定义.在数轴上,一个点由方向和距离(长度)确定;相应地,一个实数由符号与绝对值确定.这里,“方向”与“符号”对应,“距离”与“绝对值”对应,又一次体现了数与形的结合、转化.所以,绝对值概念可以促进对数轴概念的理解,同时也是学习数的大小比较、数的运算的基础.本单元重点是理解正负数、有理数和绝对值的相关概念;难点是在理解概念的基础上,养成良好的思维习惯.三、单元学情分析本单元内容是人教版教材数学七年级上册第一章有理数.学生在小学已经学习了自然数、正分数及其运算、用字母表示数的知识,这些都是学习本章的基础.实际上,小学学过的数及运算的知识,就是有理数及其运算的知识,数的范围限制在“正数和0”.因此,本单元内容的教学,首先要做好与以往算术知识和方法的衔接,在原有基础上自然引申出新的问题和思路.例如,对负数的认识,借助实际生活、生产中大量存在的“相反意义的量”,提出引入“新数”的需要,然后借助“大于0的数叫作正数”,自然引入“在正数前面加上符号‘-’(负号)的数叫作负数”.另外,本单元渗透了用字母表示数的知识,例如,用-a表示a的相反数;用字母表示求一个数的绝对值的结论;等等.这样,既使问题阐述得更简明、更深入,也使学过的数与代数的知识得到巩固、加强和提高.总之,加强与小学学过的数及运算的衔接,不仅有利于学生理解本单元知识,也有利于培养学生提出问题的能力.四、单元学习目标1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.2.能借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数和绝对值的方法,知道|a|的含义(这里a表示有理数).五、单元学习内容及学习方法概览有理数课时划分内容本质与研究方法1.1正数和负数通过提出问题,根据问题归纳正数和负数的概念;培养学生观察、发现问题的能力,培养学生积极思考、合作交流的意识和能力续表有理数课时划分内容本质与研究方法1.2有理数及其大小比较1.2.1有理数的概念提出问题,根据问题归纳有理数的概念,并对有理数进行分类;培养学生观察、发现问题的能力,培养学生分类讨论的数学思想1.2.2数轴提出问题,根据问题归纳数轴的概念,让学生积极参与探究数轴的活动,并学会与他人交流合作;让学生感受在特定的条件下数与形是可有理数课时划分内容本质与研究方法以互相转化的,让学生体验生活中的数学1.2.3相反数通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;渗透数形结合思想,感受事物之间的对应统一的辩证思想1.2.4绝对值提出问题,通过探索求一个数绝对值的方法让学生通过观察,发现规律,总结方法;培养学生积极参与数学活动,在数学活动中体验成功的乐趣1.2.5有理数的大小比较经历用数轴比较有理数大小的方法和形成过程,体会负数的大小比较与自己原有认知体系的不同;经历形式多样的数学活动,让学生通过观察、思考和自己动手操作,体验有理数大小比较法则的探索过程六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。

人教版七年级数学上册第一章《有理数》(大单元教学设计)

人教版七年级数学上册第一章《有理数》(大单元教学设计)
4.理解绝对值的概念,掌握求一个数的绝对值的方法,并能够应用于解决实际问题。
5.掌握有理数的乘方运算规则,能够求解简单的乘方问题。
(二)过程与方法
1.通过小组讨论、互动问答等方式,培养学生合作学习的能力,提高解决问题的效率。
2.通过实际例题的分析与解答,培养学生运用数学知识解决实际问题的能力,让学生体会数学与生活的紧密联系。
为了巩固学生对有理数知识的掌握,培养他们运用所学解决问题的能力,特布置以下作业:
1.基础知识巩固:
-完成课本第1-2页的练习题,涉及有理数的概念、分类及简单的加减运算。
-结合实际生活,举例说明有理数在生活中的应用。
2.运算能力提升:
-完成课本第3-4页的练习题,涵盖有理数的混合运算,包括加减乘除及括号的运用。
1.回顾本节课所学内容:引导学生回顾有理数的概念、运算规则、相反数和绝对值等知识点。
2.归纳总结:教师总结本节课的重点和难点,强调有理数运算的注意事项。
3.布置作业:布置适量的课后作业,要求学生在课后巩固所学知识。
4.激发兴趣:鼓励学生在课后继续探索有理数的奥秘,提高他们的自主学习能力。
五、作业布置
1.教学方法:
-采用启发式教学,引导学生通过观察、思考、总结,发现有理数的运算规律。
-利用数轴、符号等工具,形象地展示有理数的特点,帮助学生理解和记忆。
-设计丰富的教学活动,如小组讨论、互动问答、实际例题分析等,激发学生的学习兴趣和参与度。
2.教学策略:
-针对学生的认知水平,逐步引导他们从整数运算向有理数运算过渡,降低学习难度。
-对运算过程中容易出错的地方进行重点讲解和示范,帮助学生掌握正确的运算方法。
-注重培养学生的数学思维,引导他们在解决实际问题时,能够灵活运用所学知识。

最新人教版七年级上册数学第一章有理数全章教案

最新人教版七年级上册数学第一章有理数全章教案

最新人教版七年级上册数学第一章有理数全章教案1.1正数和负数的概念教学目标述评▲知识目标:(1). 让学生判断一个数字是正还是负,(2).使学生会用正数或负数表示生活中具有相反意义的量.▲ 能力目标:(1)使学生了解数是为了满足生产和生活的需要而产生、发展起来的。

(2). 列出前后意义相反的数量,培养学生的观察、归纳和概括能力。

(3).经历探索负数概念的形成过程,使学生建立正数与负数的数感。

(4)培养学生的数学应用意识,将数学应用于生活。

▲情感目标:借助情感因素,营造亲切、和谐、活泼的课堂气氛,鼓励全体学生积极参与教学活动。

以团结协作、严谨求实的学习作风、坚韧不拔的毅力和创新精神陪伴和支持他们。

2学情分析评论.从认知特征来看,七年级学生具有探究性、探究性和想象力。

我从教学中的动画视频开始,以孩子们喜欢的方式进入课堂。

在游戏中学习,在活动中成长,在实践中提高。

在教学中,借助情感因素,营造亲切、和谐、活泼的课堂气氛,鼓励全体学生积极参与教学活动。

以团结协作、严谨求实的学习作风、坚韧不拔的毅力和创新精神陪伴和支持他们。

营造自主探索、合作交流的氛围,在个人展示、讲解、观察、实践等活动中运用多媒体,提高教学效率,验证结论,激发学生学习兴趣。

3重点难点评论.要点:了解正数和负数是由实际需要产生的,能够用正数和负数来表示生活中常用的意义相反的量。

难点:学习负数的必要性,能准确地举出具有相反意义的量的典型例子。

4.教学过程4.1第一学时4.1.1教学活动活动1【导入】动画视频导入评论.小学已经学了六年数学,初中将继续学三年。

要学什么?数学自然与数字的研究密不可分。

早在古代,人们就开始了解数字及其混淆!(动画视频导入)活动2【活动】游戏中学习评论.古代人们的困惑是什么?什么是相反的行为?我们在比赛结束后见。

“反讽”游戏中,预习量的含义正好相反。

活动3【活动】小组讨论,合作交流评论.请列举在生活中具有相反意义的数量。

人教版七年级上册第一章有理数教学设计

人教版七年级上册第一章有理数教学设计

人教版七年级上册第一章有理数教学设计一、教学目标1.了解有理数的概念和分类。

2.掌握有理数的加减法运算规律及其计算方法。

3.能够熟练地运用有理数进行实际问题的求解。

二、教学内容1.有理数的概念和分类。

2.有理数的加减法运算规律及其计算方法。

3.有理数的实际应用。

三、教学过程1. 导入(5分钟)•引导学生回忆第一章《有理数》相关的课程内容。

•引出本节课的主要内容和重要性。

2. 阐述有理数的概念和分类(20分钟)•通过图示的方式,引导学生理解有理数的含义。

•分类:正数、负数、零。

•运用现实生活中的例子进行解释。

3. 掌握有理数的加减法运算规律及其计算方法(50分钟)•引导学生发现和总结有理数加减法的运算规律。

•通过几何图形的形式进行有理数的加减法计算。

•利用实际问题引导学生进行实际应用。

•给学生提供大量的练习题进行巩固。

4. 有理数的实际应用(15分钟)•引导学生了解有理数在实际问题中的应用。

•通过实际问题的解答,让学生掌握运用有理数进行实际问题求解的方法。

5. 课堂小结与作业布置(10分钟)•小结讲解本节课的重点、难点以及应掌握的知识点。

•布置有关本节课内容的家庭作业。

四、教学方法本节课采用“讲授、练习、讨论、探究、实践”等多种教学方法进行授课。

五、教学重点、难点1. 教学重点•有理数的概念及分类。

•有理数的加减法运算规律及其计算方法。

•有理数的实际应用。

2. 教学难点•有理数概念的理解和分类。

•有理数加减法的规律及其计算方法。

六、教学评价教师在本节课中应当注重学生的自主学习,重视探究式学习的过程与结果。

在课堂上应当给予充分的思考和实践的机会,引导学生多角度、多维度地理解有理数。

在家庭作业的设计上,应当注重拓展学生对有理数实际应用的认识,加强对知识点的巩固。

人教版七年级数学上册第一章《有理数》教学设计

人教版七年级数学上册第一章《有理数》教学设计

人教版七年级数学上册第一章《有理数》教学设计一. 教材分析人教版七年级数学上册第一章《有理数》是整个初中数学的基础,主要介绍了有理数的定义、分类、运算和性质。

本章内容对于学生来说是比较抽象的,需要通过实例和练习来理解和掌握。

教材通过丰富的例题和练习题,帮助学生逐步掌握有理数的概念和运算方法,为后续的学习打下基础。

二. 学情分析七年级的学生已经具备了一定的数学基础,但对于有理数的抽象概念和运算规则可能还比较陌生。

学生在学习过程中需要通过实际的例子和操作来理解和掌握有理数的概念和运算方法。

此外,学生可能对于负数和分数的概念有一定的困惑,需要通过具体的情境和练习来加深理解。

三. 教学目标1.了解有理数的定义和分类,掌握有理数的运算方法。

2.能够运用有理数的概念和运算方法解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.有理数的定义和分类。

2.有理数的运算方法,特别是负数和分数的运算。

3.有理数在实际问题中的应用。

五. 教学方法1.实例教学:通过具体的例子来引导学生理解和掌握有理数的概念和运算方法。

2.练习法:通过大量的练习题来巩固学生的理解和掌握程度。

3.问题解决法:通过解决实际问题来培养学生的应用能力和解决问题的能力。

六. 教学准备1.教材和教辅资料。

2.投影仪和教学课件。

3.练习题和测试题。

七. 教学过程1.导入(5分钟)通过引入日常生活中的实例,如温度、海拔等,引出有理数的概念和作用。

2.呈现(10分钟)讲解有理数的定义、分类和性质,通过具体的例子来说明。

3.操练(10分钟)让学生进行有理数的加减乘除运算,引导学生理解和掌握运算方法。

4.巩固(5分钟)通过一些练习题来巩固学生对有理数的理解和掌握程度。

5.拓展(5分钟)讲解有理数在实际问题中的应用,让学生尝试解决一些实际问题。

6.小结(5分钟)对本节课的内容进行总结,强调重难点和需要注意的问题。

7.家庭作业(5分钟)布置一些练习题,让学生在家里进行巩固和复习。

新人教版七年级上册数学第一章有理数全章教案

新人教版七年级上册数学第一章有理数全章教案

新人教版七年级上册数学第一章有理数全章教案第一章“有理数”教材分析本章是第三期教科书的第一章,不仅对前两个时期的内容进行了阐述,而且为进一步研究奠定了基础。

本章的主要内容是有理数的相关概念和运算。

首先从实例中引入负数,然后介绍有理数的一些概念。

在此基础上,介绍了有理数的加减运算。

引入负数是实际的需要,也是学习第三学段数学内容,特别是数与代数内容的需要。

引入数轴可以直观地用数轴上的一个点来表示有理数,从而直观地引入对数值和绝对值,为用数轴引入有理数的加法定律和乘法定律做准备。

引入相反数的概念,一方面,可以加深对相反意义的量的认识,另一方面,可以为学习绝对值、有理数减法等作准备。

引入绝对值的概念可以加深对有理数的理解:有理数是由符号和绝对值决定的。

当比较两个负数时,在有理数的运算中也应该使用绝对值的概念。

本章的重点是有理数的运算。

加法与乘法都是在介绍运算法则――着重是符号法则的基础上,进行基本运算,然后结合具体例子引入运算律,并运用运算律简化运算。

减法和除法的重点是如何转化为加法和乘法,从而使用加法和乘法的运算规则和法则。

乘方是几个相同因数的乘积,也就可以利用乘法运算。

科学记数法与乘方有关,因而可进一步加以介绍。

近似数在实际问题中有广泛的应用,有必要在本章作进一步的认识。

近似数的内容与乘方也有一定的联系,例如,大数的近似数用科学记数法表示,可以清楚地看出保留的有效数字的个数。

为了加强与相关操作的联系,计算机计算分散在相关内容中。

例如,教科书使用计算器计算一些负数的幂,然后探索负数幂的符号规律。

通过学习使用计算器进行有理数运算,可以用计算器完成更复杂的计算。

简单的有理数运算仍需要学生熟练地用笔算完成。

本章的教学要求如下:1.通过实际例子,感受引入负数的必要性。

会用正负数表示实际问题中的数量。

2.理解有理数的含义,能够用数轴上的点来表示有理数。

借助数轴理解对数值和绝对值的含义,能够找到有理数的对数值和绝对值(绝对值符号不含字母),能够比较有理数的大小。

新人教版七年级数学上册《有理数》教学设计

新人教版七年级数学上册《有理数》教学设计

新人教版七年级数学上册《有理数》教学
设计
教学设计:有理数
一、教学目标:
1.理解整数、分数、有理数和数集等概念。

2.掌握有理数的分类方法。

3.培养学生分析问题和有条理思考的能力。

二、教学重点与难点:
重点:理解整数、分数、有理数和数集等概念,准确分类给定的数。

难点:掌握有理数的分类方法。

三、教学方法:
采用教师讲授和学生自主探究相结合的方法,辅以讲练结合。

四、学法指导:
主要采取课前预独立思考、教师讲解和小组合作相结合的研究方法,选用以观察探索为主、让学生主动研究。

五、教学准备:
多媒体课件。

六、教学过程:
一、温故知新
引导学生对中国体坛名宿的辉煌历史进行分类,根据学生的回答情况,教师适当进行引导,给出相关概念:正整数、负整数、正分数、负分数、整数、分数、有理数,进而总结出有理数的第一种分类情况。

二、合作探究
1.在给定的数中,正整数有:___,负分数有:___,有理数有:___,分数有:___。

2.学生讨论,教师引导,得出如下结论:
正整数、正分数和零统称为正有理数;
负整数和负分数统称为负有理数;
整数和分数统称为有理数。

通过合作探究,学生可以掌握有理数的分类方法,同时培养分析问题和有条理思考的能力。

人教版七年级数学上册第一章《有理数》全章教学设计

人教版七年级数学上册第一章《有理数》全章教学设计

第一章有理数镇中教课设计1.1.1 正数和负数( 1)[学习目标 ]1、理解正数和负数的观点,会判断一个数是正数仍是负数2、会用正数和负数来表示拥有相反意义的量3、理解数 0 的意义[学习过程 ]一、板书课题:(一)叙述:同学们,今日我们来学习第一章有理数.1.1.1 正数和负数(教师板书)二、出示目标(一)过渡语:要达到什么教课目的呢?请看投影(二)屏幕显示学习目标1、理解正数和负数的观点,会判断一个数是正数仍是负数2、会用正数和负数来表示拥有相反意义的量3、理解数 0 的意义三、自学指导(一)过渡语:如何才能当堂达到学习目标呢?请同学们依据指导认真自学。

(二)出示自学指导认真看课本( P1-3练习前方)① 理解正数的观点,会模仿正数的观点,解说负数的含义;②理解正数、负数和0 表示的实质含义,注意黄色书签的内容;③回答 P3“思虑”中的问题。

若有疑部问,能够小声讨教同桌或举手问老师。

6分钟后,比谁能正确做出检测题。

四、先学(一)学生看书,教师巡视,师敦促每一位学生认真、紧张的自学,鼓舞学生怀疑问难。

(二)检测1、过渡语:同学们,看完的请举手。

懂了的请举手。

好下边就比一比,看谁能正确做出检测题。

2、检测题 P3:1、2、3、43、学生练习,教师巡视。

(改集错误会进行二次备课)五、后教(一)改正:请同学们认真看一看这四名同学的板演,发现错解的请举手(指名改正)(二)议论:评第 1 题:(教师要重申停题格式)①正数找的对吗?为何对?师指引生回答:比0 大的数是正数(师板书)(如对,教师打√)②你还举一些正数的例子吗?③负数找的对吗?为何?师指引生回答:在正数前加“一”的数是负数④你能模仿正数的定义来谈谈负数的吗?师指引生回答:比0 小的数是负数。

(师板书)(如对,教师打√)评 2、3、4 题答案正确吗?为何?师指引生回答:数0 既不是正数也不是负数,是正、负数的分界限。

(师板书)重申“0”的意义不单是表示“没有”,还能够表示温度读报00C(表示标准),山脚的高度 0 米等(表示起点)。

新人教版七年级数学第1章有理数教案(全章)

新人教版七年级数学第1章有理数教案(全章)

第1课时正数和负数(1)第2课时正数和负数(2)第3课时 有理数教 学目 标1、掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;2、了解分类的标准与分类结果的相关性,初步了解“集合”的含义;3、体验分类是数学上的常用处理问题的方法。

教学重点 正确理解分类的标准和按照一定的标准进行分类 教学难点 正确理解有理数的概念教 学 互 动 设 计设计意图一、创设情境 导入新课在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个不同类型数(同时请3个同学在黑板上写出). 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与二、合作交流 解读探究【问题1】观察黑板上的9个数,并给它们进行分类. 学生思考讨论和交流分类的情况.学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.例如,对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.··…(由于小数可化为分数,以后把小数和分数都称为分数)通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数”.正整数:如1,2,3 …; 零:0;负整数:如-1,-2,-3 …正分数:如21,32,715,0.1,5.3… 负分数:如-0.5,25-,32-,-715,-0.1,-150.25…; 所有的正整数组成正整数集合,所有的负整数组成负整数集合。

正整数、0、负整数统称为整数。

把一些数放在一起,就组成了一个集合,简称数集,在表示数集时要注意:⑴数集可以用大括号表示,也可用圆圈表示。

新人教版七年级数学上册全册教案

新人教版七年级数学上册全册教案

新人教版七年级上册数学全册教案第一章 有理数1. 1正数和负数备课:七年级数学教研组【教学目标】一.知识与技能:能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量.二.过程与方法:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性.三、情感、态度与价值观:培养学生积极思考,合作交流的意识和能力.教学重点:两种意义相反的量教学难点:正确会区分两种不同意义的量教学方法:引导、探究、归纳与练习相结合教学手段:多媒体等。

【教学过程】一、预习探究1、冬天,零度以下的数在天气预报中如何表示,如某地一月份某日的平均气温大约是零下3℃,可用____数表示,记作______。

2、零上24摄氏度表示为_______,零下3.5摄氏度表示为__________。

3、如果向南走2米记为+2,那么向北走10米应表示为 。

4、地图册上亚洲西部地中海旁有一个死海湖,图上标有-392,这表明死海湖面与海平面相比 了392米。

二、课堂教学5、中国地形图上,可以看到我国有一座世界最高峰—珠穆朗玛峰,图上标着8848米,在西北部有一吐鲁番盆地,地图上标着-155米,这两个数表示的高度是相对海平面说的,你能说说8848米,-155米各表示什么吗?学生思考讨论,尝试回答大于0的数叫做 ;小于0的数,或在正数前面加“-”号的数叫 ;0既不是 也不是 。

6、判断:下列各数中,哪些是正数?哪些是负数? 12, -9.24,31, -301, 427, 31.25, 0. 7、在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?8、北京冬季里某天的温度为-3℃~+3℃,它的确切含义是什么?9、课堂小结:三、反馈练习:1、小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.2、产品成本提高-10%,实际表示_________.3、甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为__这时甲乙两人相距___m.4、某种药品的说明书上标明保存温度是(20±2)℃,由此可知在__℃~__℃范围内保存才合适。

人教版七年级数学上册第一章有理数的概念(教案)

人教版七年级数学上册第一章有理数的概念(教案)
4.有理数的应用
-解决实际问题
-判断有理数的大小关系
-有理数的混合运算
5.练习题与例题
-各类有理数运算的练习题
-涉及实际应用的有理数问题
-提高学生对有理数概念的理解和应用能力例题解析
二、核心素养目标
1.培养学生数学抽象能力:通过有理数的概念学习,使学生能够抽象出数的本质属性,理解数的分类及其意义,形成数学的抽象思维。
-举例:应用有理数解决温度变化、方向位移等问题。
2.教学难点
(1)有理数概念的理解:学生容易混淆有理数与整数、分数的关系,难以把握有理数的本质。
-突破方法:通过具体例子,让学生感受到有理数包含整数和分数,理解有理数的无限性和可表示性。
(2)相反数和绝对值的概念:学生难以理解相反数的意义,以及绝对值表示的实际意义。
其次,在新课讲授环节,我注意到有些学生在理解有理数概念和性质时显得有些吃力。在讲解过程中,我尽量使用简洁明了的语言,并通过举例来阐述。然而,可能由于讲解速度过快,部分学生还没来得及消化吸收就进入了下一个环节。针对这个问题,我计划在今后的教学中适当放慢讲解速度,增加课堂互动,让学生有更多机会提问和思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.提升逻辑推理素养:引导学生掌握有理数的运算规律,学会运用逻辑推理解决问题,培养严谨的数学逻辑思维。
3.增强数学建模意识:通过实际问题的引入和解决,让学生学会运用有理数知识建立数学模型,提高解决实际问题的能力。

最新人教版初一数学七年级上册 第一章《有理数》全单元教学设计

最新人教版初一数学七年级上册 第一章《有理数》全单元教学设计

人教版七年级上学期数学教案第一章课题: 1.1 正数和负数(1)1.1 正数和负数(2)1.2.1 有理数1.2.2数轴课题:1.2.3 相反数课题: 1.2.4 绝对值课题: 1.3.1 有理数的加法(一)课题: 1.3.1 有理数的加法(二)课题: 1.3.2有理数的减法(1)课题: 1.3.2 有理数的减法(2)教学目标1,理解加减法混合运算统一为加法运算的意义,学会把加减法统一成加法.2,会正确熟练地进行有理数加减混合运算,发展学生的运算能力.3,会使用计算器进行有理数的加、减混合运算,培养学生的程序意识,提高学生的学习积极性与学习数学的兴趣,以及学好数学的信心.教学难点把加、减混合运算统一成加法运算知识重点本节的重点是能把加、减法统一成加法运算,并用加法运算律合理地进行运算。

教学过程(师生活动)设计理念设置情境引入课题一架飞机作特技表演,起飞后的高度变化如下表:此时飞机比起飞点高了多少千米?(组织学生小组讨论并得出答案)学生可能出现的算式:(1)4.5+(-3.2)+1.1+(-1.4)(2)4.5-3.2+1.1-1.4提出课题:有理数加减法混合运算.创设一个有趣的真实情境来激发学生学习加减混合计算的兴趣分析问题探究新知1,回顾小学加减法混合运算的顺序.(从左到右,依次计算)2,以教科书28页例6计算(-20)+(+3)-(-5)一(+7)为例来说明。

鼓励生来进行独立计算。

(这里要给学生充裕的时间,让学生算出答案,估计学生能解决这个问题3,教师引导:这个式子中有加法,也有减法,我们可不可以利用有理数的减法法则,把这个算式改变一下?再给算一算,你发现了什么?(学生小组合作,探讨把减法转化为加法,再利用运算来简化计算)教师巡回观祭,作适当稍导,若学生不能进一步计算,也可以在他们把减法转化为加法后,提示他们使用运算律。

(-20)+(3)一(-5)一(+7)=(-20)+(+3)+(+5)+(-7)=[(-20)+(-7)]+[(+3)+(+5)]=(-27)+(+8)=-194,学生交流汇报.(发现了什么?)充分鼓励学生大胆发现,勇敢交流.(如:计算结果与前面的算法是一样的;把减法都转化为加法可以使用运算律,计算会简单些等)5,归纳明确“减法可以转化为加法”.加减混合运算可以统一为加法运算,如:a+b-c=a+b+(-C).6,省略加号.教师引导:式子(-20)+(+3)十(+5)+(一7)是-20,+3,+5,-7的和,为了书写简单,可以省略式中的括号和加号,把它写为-20+3+5-7,读作:“负20正3正5负7的和”,或读作“负20加3加5减7",鼓励学生使用第一种读法;并让学生体会两种读法的区别.再根据教科书,规范书写例6的运算过程.通过这两种算法,为加减混合运算统一成加减法运算打下伏笔.这里的设计,一方面让学生体会混合运算中运算顺序确定的重要性,另一方面,先让学生按从左到右的顺序来计算,也是为了与接下去的加减混合运算统一成加法运算再利用运算律进行简侠便计算作出比较。

最新人教版七年级数学上册 第一章 有理数 优秀教案教学设计 含教学反思

最新人教版七年级数学上册 第一章 有理数 优秀教案教学设计 含教学反思

第一章有理数1.1正数和负数 (1)第1课时正数和负数的概念 (1)第2课时正数、负数以及0的意义 (3)1.2有理数 (4)1.2.1有理数 (4)1.2.2数轴 (6)1.2.3相反数 (8)1.2.4绝对值 (10)1.3有理数的加减法 (12)1.3.1有理数的加法 (12)第1课时有理数的加法 (12)第2课时相关运算律 (14)1.3.2有理数的减法 (15)第1课时有理数的减法法则 (15)第2课时有理数的加减混合运算 (17)1.4有理数的乘除法 (18)1.4.1有理数的乘法 (18)第1课时有理数的乘法 (18)第2课时相关运算律 (21)1.4.2有理数的除法 (23)第1课时有理数的除法 (23)第2课时有理数的混合运算 (24)1.5有理数的乘方 (26)1.5.1乘方 (26)第1课时有理数的乘方 (26)第2课时有理数的综合运算 (28)1.5.2科学记数法 (29)1.5.3近似数 (31)1.1正数和负数第1课时正数和负数的概念了解正数和负数的产生;知道什么是正数和负数;理解正负数表示的量的意义;知道0既不是正数,也不是负数.重点正、负数的意义.难点1.负数的意义.2.具有相反意义的量.一、新课导入活动1:创设情境,导入新课教师投影展示教材第2页图片,让学生体验自然数的产生,分数的产生离不开生产和生活的需要,可以让学生自由发表意见和感想.二、推进新课活动2:体验负数的引入的必要性教师出示温度计:安排三名同学进行如下活动:研究手中的温度计上刻度的确切含义,一名同学手持温度计,一名同学说出其中三个刻度,一名同学在黑板上速记.教师根据活动情况,如果学生不能引入符号表示,教师也可参与活动,逐步引入负数.强调:0既不是正数,也不是负数.活动3:分组活动,感受正负数的意义各组派一名同学进行如下活动:按老师的指令表演,看哪一组获胜.1.老师说出指令:向前2步,向后3步,向前-2步,向后-3步,学生按老师的指令表演.2.各小组互相监督,派一名同学汇报完成的情况.活动4:深入理解正负数的意义,提高分析解决问题的能力师投影展示问题,讲解课本例题.例:1.一个月内,小明体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重增长值.2.某年,下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家这一年商品进出口总额的增长率.学生讨论后解决.活动5:练习与小结练习:教材第3页练习.小结:这堂课我们学习了哪些知识?你能说一说吗?活动6:作业习题1.1第4,5,6,8题本课是有理数的第一课时,引入负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的.为了接受这个新的数,就必须对原有的数的结构进行整理。

人教版数学七年级上册《 第一章 有理数 》教学设计

人教版数学七年级上册《 第一章 有理数 》教学设计

人教版数学七年级上册《第一章有理数》教学设计一. 教材分析人教版数学七年级上册《第一章有理数》是学生在初中阶段接触数学的基础知识,主要介绍有理数的概念、分类、运算及应用。

本章内容为学生后续学习实数、代数式、方程等知识打下基础。

教材内容紧凑,逻辑清晰,通过丰富的例题和练习,帮助学生掌握有理数的相关知识。

二. 学情分析七年级的学生已经具备一定的数学基础,但对有理数的概念和运算可能还存在一定的困惑。

因此,在教学过程中,要注重引导学生理解有理数的概念,突破运算难点,提高学生的数学思维能力。

三. 教学目标1.了解有理数的概念,掌握有理数的分类。

2.熟练掌握有理数的加、减、乘、除运算方法。

3.能够运用有理数解决实际问题,提高解决问题的能力。

4.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.有理数的概念和分类。

2.有理数的运算方法。

3.有理数在实际问题中的应用。

五. 教学方法1.采用问题驱动法,引导学生主动探究有理数的概念和运算方法。

2.运用实例分析法,让学生通过实际问题理解有理数的应用。

3.采用合作学习法,培养学生的团队协作能力和沟通能力。

4.运用多媒体辅助教学,提高教学效果。

六. 教学准备1.准备相关课件、教案、例题及练习题。

2.准备教学素材,如黑板、粉笔、投影仪等。

3.提前让学生预习教材,了解基本概念。

七. 教学过程1.导入(5分钟)利用生活实例引入有理数的概念,如温度、海拔等,激发学生的学习兴趣。

2.呈现(10分钟)讲解有理数的概念、分类,并通过PPT展示相关知识点,让学生初步了解有理数。

3.操练(10分钟)讲解有理数的加、减、乘、除运算方法,并通过例题让学生现场练习,巩固所学知识。

4.巩固(10分钟)布置一些练习题,让学生独立完成,检验学习效果。

教师及时解答学生遇到的问题。

5.拓展(10分钟)利用多媒体展示一些实际问题,让学生运用有理数解决,提高学生的应用能力。

6.小结(5分钟)总结本节课所学知识点,强调重点和难点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章有理数1.1正数和负数教学目标:1、了解正数与负数是从实际需要中产生的。

2、能正确判断一个数是正数还是负数,明确0既不是正数也不是负数。

3、会用正、负数表示实际问题中具有相反意义的量。

重点:正、负数的概念重点:负数的概念、正确区分两种不同意义的量。

教学过程:一、创设情境,引入新课问题1:为了表示物体的个数和事物的顺序,产生了1,2,3,4……这些数,我们把它们叫做什么数?学生:自然数问题2:为了表示“没有”,我们又引入了一个什么数?学生:0(0也是自然数)问题3:当测量和计算的结果不是整数时,又引进了什么数?学生:分数(小数)问题4:某市某一天的最高温度是零上5℃,最低温度是零下5℃,要表示这两个温度,都记作5℃,我们就不能把它们区别清楚,那么应该要怎么表示呢?要清楚的表示这两个量,我们以前的数就不够用了。

为了表示这些量,我们需要引入一种新数,这就是本节课要学习的内容——正数和负数。

二、合作交流,探索新知1、相反意义的量问题:在日常生活中,常会遇到这样一些量:①气温有零上7℃和零下7℃;②汽车向东行驶2.5千米和向西行驶1.5千米;③收入200元和支出100元;④高于海平面8844m和低于海平面150m。

学生讨论:上面例子出现的各对量,虽然内容不同,但有一个共同点,这个共同点是什么?教师归纳:都是具有相反意义的量。

零上和零下、向东和向西、收入和支出、高于和低于都是具有相反意义的量。

而“相反意义的量”应该包括两方面:一是意义相反;二是在具有相反意义的基础上要有量值。

2、正数和负数教师:如何来表示具有相反意义的量呢?我们现在来解决问题4提出的问题。

结论:零下5℃用-5℃来表示,零上5℃用5℃来表示。

为了用数表示具有相反意义的量,我们把其中一种意义的量。

如零上、向东、收入和高于等规定为正的,而把与它相反的量规定为负的。

正的用小学学过的数(0除外)表示,负的用小学学过的数(0除外)在前面加上“-”(读作负)号来表示。

根据需要,有时在正数前面也加上“+”(读作正)号。

注意:①数0既不是正数,也不是负数。

0不仅仅表示没有,也可以表示一个确定的量,如温度计中的0℃不是没有表示没有温度,它通常表示水结成冰时的温度。

②正数、负数的“+”“-”的符号是表示量的性质相反,这种符号叫做性质符号。

三、巩固知识1、课本P3 练习1,2,3,42、课本P4例归纳:在同一个问题中,分别用正数与负数表示的量具有相反的意义。

四、总结①什么是具有相反意义的量?②什么是正数,什么是负数?③引入负数后,0的意义是什么?五、布置作业课本P5习题1.1第1、2题。

1.2.1有理数教学目标:1、正确理解有理数的概念及分类,能够准确区分正整数、0、负整数、正分数、负分数。

2、掌握有理数的分类方法,会对有理数进行分类,体验分类是数学上常用的处理问题的方法。

重点:正确理解有理数的概念重点:有理数的分类教学过程:一、知识回顾,导入新课什么是正数,什么是负数?问题1:学习了负数之后,我们对数的认识范围扩大了,你能写出三个不同类型的数吗?(请三位同学上黑板上写出,其他同学在自己的练习本上写出,如果有出现不同类型的数,同学们可上黑板补充。

)问题2:观察黑板上的这么数,并给它们分类。

先让学生独立思考,接着讨论和交流分类的情况,得出数的类型有5类:正整数、0、负整数、正分数、负分数。

二、讲授新课1、有理数的定义引导学生对前面的数进行概括,得出:正整数、零、负整数统称为整数;正分数和负分数统称分数。

整数可以看作分母为1的分数,正整数、零、负整数、正分数和负分数都可以写成分数的形式,这样的数称为有理数,即整数和分数统称有理数。

2、有理数的分类让学生在总结出5类数基础上,进行概括,尝试进行分类,通过交流和讨论,再加上老师适当的指导,逐步得出下面的两种分类方式。

(1)按定义分类: (2)按性质分类:三、巩固知识 练习1:课本P8 练习练习2:把下列各数填入它所属的集合内: -12 ,-7,+2.8,-90,-3.5,913 ,0,4 负数集合:{ ,…} 整数集合:{ ,…} 负整数集合:{ ,…}分数集合:{ ,…}四、总结通过本节课,你收获了什么? 可以归纳为以下几点:1、本节主要学习有理数的概念,会将有理数按照一定的标准进行分类;2、主要用到的思想方法是分类思想;3、注意的问题:分类时要做到不重不漏,只要标准统一即可。

五、布置作业课本P14习题1.2第1题。

1.2.2数轴教学目标:有理数整数分数正整数 0 负整数正分数 负分数有理数正有理数负有理数正整数正分数 负整数 负分数1、掌握数轴的概念,理解数轴上的点和有理数的对应关系;2、会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;3、感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

重点:正确理解数轴的概念和用数轴上的点表示有理数重点:数轴的概念和用数轴上的点表示有理数教学过程:一、创设情境,引入新课教师通过实例、课件演示得到温度计读数.问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?(教师在黑板上画出3幅图,三个温度分别为零上、零度和零下)问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m 和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(学生分成小组讨论,交流合作,动手操作)二、讲授新课教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?从而得出数轴的三要素:原点、正方向、单位长度问题3:1、你能举出一些在现实生活中用直线表示数的实际例子吗?2、画一条数轴。

3、如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?4、哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?5、每个数到原点的距离是多少?由此你会发现了什么规律?(小组讨论,交流归纳)归纳出一般结论,即课本P9的归纳。

三、巩固知识课本P10 练习1、2题四、总结请学生作出总结:什么是数轴?数轴的三要素是什么?如何画数轴?如何在数轴上表示有理数?五、布置作业课本P14习题1.2第2题。

1.2.3相反数教学目标:1、掌握相反数的概念,进一步理解数轴上的点与数的对应关系;2、通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;3、体验数形结合的思想。

重点:求已知数的相反数重点:根据相反数的意义化简符号教学过程:一、创设情境,引入新课活动:要求两个学生背靠背站在同一位置,然后一个向右走5步,一个向左走5步问题1:如果向右为正,向右走5步,向左走5步各记作什么?学生回答:向右走5步记作+5步;向左走5步记作-5步。

问题2:在数轴上,画出表示+5,-5的点,并观察表示它们的点具有怎样的特征?师生共同总结出:在数轴上,+5和-5所对应的点位于原点的两边,并且与原点的距离相等。

问题3:举出几组具有这样特征的两个数。

如:2和-2,1.8与-1.8归纳结论:课本P10归纳。

二、讲授新课1、相反数的定义问题:像2和-2,5和-5这样的两个数叫做互为相反数,试问要具备什么特点的两个数才是互为相反数?(学生思考后举手回答)归纳出:只有符号不同的两个数叫做互为相反数。

特别地,0的相反数仍是0。

2、理解概念判断:①-2的相反数是12()②-5是相反数()③相反数等于它本身的数只有0()④符号不同的两个数互为相反数()3、多重符号的化简思考:数轴上表示相反数的两个点和原点有什么关系?a的相反数是-a,a表示任意数——正数、负数、0,求任意一个数的相反数就可以在这个数前加一个“-”号。

问题1:若把a分别换成+5,-7时,这些数的相反数怎样表示?师生共同得出:-(+5)=-5, -(-7)=7问题2:在一个数前面加上“-”号表示求这个数的相反数,如果在这些数前面加上“+”号呢?如,+(-3),+(+6.2) 学生回答:在一个数的前面加上“+”号仍表示这个数,因为“+”号可以省略。

三、巩固知识课本P11 练习1、2、3题四、总结1、相反数的定义2、互为相反数的数在数轴上表示的点的特征3、怎样求一个数的相反数?怎样表示一个数的相反数?五、布置作业课本P15习题1.2第3题。

1.2.4绝对值教学目标:1、理解绝对值的概念及其几何意义,通过从数形两个方面理解绝对值的意义,初步了解数形结合的思想方法。

2、会求一个数的绝对值,知道一个数的绝对值,会求这个数。

3、掌握绝对值的有关性质。

4、通过应用绝对值解决实际问题,培养学生深厚的学习兴趣,提高学生学数学的好奇心和求知欲。

重点:绝对值的概念重点:绝对值的几何意义教学过程:一、创设情境,引入新课问题1:两辆汽车从同一处O出发,分别向东、西方向行驶10km,到达A、B两处。

它们行驶的路线相同吗?它们行驶路程的远近相同吗?首先,先画出一条数轴表示公路,如果以O处为原点,正东方向为正方向,那么正西则为负方向。

再以10km为一单位长度,则可用数轴来表示出上题。

问:两辆汽车相距O处,即原点O的距离是多少?两辆汽车的行驶路线一样吗?学生会答:10km,不一样,一辆向东,一辆向西。

通过这个例子我们可以发现,一个地方的位置要用两个因素来确定——方向和距离。

方向通常我们用正、负表示,那么距离呢?它该怎么表示?今天,我们就来学习新的内容——绝对值。

二、讲授新课问题1:请说出在数轴上,+3和-3分别在原点的哪边?距离原点有几个单位长度?那对于-5,+7,0呢?请两位同学起来回答。

教师归纳:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

为了方便,我们用一种符号来表示一个数的绝对值,约定在一个数的两旁各画一条竖线来表示这个数的绝对值,记作|a|,读作a的绝对值。

学生独立完成后,再对所得的规律进行小组讨论。

教师归纳:由绝对值的定义可知:①一个正数的绝对值是它本身②一个负数的绝对值是它的相反数③0的绝对值是0问题2:把绝对值的代数定义用数学符号如何表示?当a>0时,|a|=a;当a=0时,|a|=0;当a<0时,|a|=-a。

三、巩固知识课本P12 练习第1、2题。

四、总结本节课主要学习绝对值的概念、表示方法及其几何意义,并会求一个数的绝对值。

主要用到的思想是数形结合。

五、布置作业课本P15习题1.2第4题。

有理数的大小比较教学目标:1、能说出有理数大小的比较法则;2、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小。

能利用数轴对多个有理数进行有序排列;3、能正确应用符号“>”、“<”、“∵”、“∴”,写出表示推理过程中简单的因果关系。

相关文档
最新文档