哥伦比亚大学-离散数学-笔记-第9-12章-3

合集下载

离散数学第四版课后答案(第9章).docx

离散数学第四版课后答案(第9章).docx

第9章习题解答9. 1有5片树叶.分析设T有x个1度顶点(即树叶)•则T的顶点数n = 3 + 2 + x = 5 + x,T的边数m = n- \ =4 + x.由握手定理得方程.2m = 2(4 + x) = y^J(v f) = 3x3 + 2x2 + l- x = 13 + x./=1由方程解出*5.所求无向树T的度数列为1, 1, 1, 1, 1, 2, 2, 3, 3, 3.由这个度数列可以画多棵非同构的无向树,图9. 6给出的4棵都具有上述度数列,且它们是非同构的.9.2 T中有5个3度顶点.分析设T中有x个3度顶点,则T中的顶点数n = l + x,边数加= "-l = 6 + x,由握手定理得力程.2m = 12 + 2x =》d(片)=3x + 7/=!rtl方程解出x=5.所求无向树T的度数列为1, 1, 1, 1, 1, 2, 2, 3, 3, 3.由这个度数列可以画多棵非同构的无向树,图9.6给出的4棵都具有上述度数列,且它们是非同构的.9.2 T中有5个3度顶点.要析设T中有x个3度顶点,则T中的顶点数"7 +小边数加1=6 + .由握手定理得方程.由此解出"5,即T中有5个3度顶.T的度数列为1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3.由于T中只有树叶和3度顶点, 因而3度顶点可依次相邻,见图9. 7所示.还有棵与它非同构的树,请读者自己i田i出.9. 3力肛-1条新边才能使所得图为无向树.分析设具有£个连通分支的森林为G,则G有k个连通分支人込,…八/全为树,心1,2,…&加新边不能在7;内部加,否则必产生回路.因而必须在不同的小树之间加新边.每加一条新边后,所得到的森林就减少一个连通分支.恰好加-1条新边,就使得图连通且无回路,因而是树•在加边过程屮,只需注意,不在同一人连通分支中加边.下面给出一种加边方法,取v,为7;中顶点,加新边(v,,v,+l)z = l,2,---J-l,则所得图为树, 见图9. 8给出的一个特例.图中虚线边为新加的边.9. 4不一定.分析n阶无向树T具有“-I条边,这是无向树T的必要条件,但不是充公条件•例如,阶圈(即“-1个顶点的初级回路) 和一个孤立点组成无向简单图具有”-1条边,但它显然不是树.图9.89. 5非同构的无向树共有2棵,如图9. 9所示.困9.9分析由度数列1, 1, 1, 1,2,2, 4不难看出,唯一的4度顶点必须与2度顶点相邻,它与1个2度顶点相邻,还是与两个2度顶点都相邻,所得树是非同构的,再没有其他情况. 因而是两棵非同构的树. o 、O O9.6有两棵非同构的生I ,——V(1) (2)成树,见图9. 10所示. 图9.10分析图9. 10是5阶图(5个顶点的图),5阶非同构的无向树只有3棵,理由如下.5 阶无向树中,顶点数"=5,边数加=4,各顶点度数Z和为&度数分配方案有3种,分别为①1, 1, 1, 1,4;②1, 1, 1,2,3;③1, 1,2, 2. 2.每种方案只有一棵非同构的树•图9.10所示的5阶图的非同构的生成树的度数列不能超出以上3种,也就是说,它至多有3棵非同构的生成树,但由于图中无4度顶点,所示,不可能有度数列为①的生成树,于是该图最多有两棵非同构的生成树.但在图9. 10中已经找出了两个非同构的生成树, 其中(1)的度数列为③,(2)的度数列为②,因而该图准确地有两棵非同构的牛成树.9. 7 基本回路为:C c = cbad,C e = ead,C g = gfa,C h =hfab.基本回路系统为{C c,C e,C g,C h}.基本回路系统为{S a,S h,S d,S f}.分析1°注意基本回路用边的序列表示,而基本割集用边的集合表示.2°基本回路中,只含一条弦,其余的边全为树枝,其求法是这样的:设弦e = (fj),则%,Vj在生成树T中,且在T中, 之间存在唯一的路径「订与e = (v,,v y)组成的回路为G中对应弦e的基本回路.3°基本割集中,只含一条树枝,其余的边都是弦,其求法是这样的:设树枝e = (i;,Vj),则e为T中桥,于是T-e (将e从T 中支掉),产生两棵小树7;和0,则={e \e在G中且e的两端点分别在7;和3中} S。

离散数学笔记(特级教师精心整理)

离散数学笔记(特级教师精心整理)

离散数学笔记(特级教师精心整理)第一章命题逻辑内容:命题及命题联结词、命题公式的基本概念,真值表、基本等价式及永真蕴涵式,命题演算的推理理论中常用的直接证明、条件证明、反证法证明等方法教学目的:1.熟练掌握命题、联结词、复合命题、命题公式及其解释的概念。

2.熟练掌握常用的基本等价式及其应用。

3.熟练掌握(主)析/合取范式的求法及其应用。

4.熟练掌握常用的永真蕴涵式及其在逻辑推理中的应用。

5.熟练掌握形式演绎的方法。

教学重点:1.命题的概念及判断2.联结词,命题的翻译3.主析(合)取范式的求法4.逻辑推理教学难点:1.主析(合)取范式的求法2.逻辑推理1.1命题及其表示法1.1.1 命题的概念数理逻辑将能够判断真假的陈述句称作命题。

1.1.2 命题的表示命题通常使用大写字母A,B,…,Z或带下标的大写字母或数字表示,如A i,[10],R等,例如A1:我是一名大学生。

A1:我是一名大学生.[10]:我是一名大学生。

R:我是一名大学生。

1.2命题联结词(1) P↑P⇔﹁(P∧P)⇔﹁P;(2)(P↑Q)↑(P↑Q)⇔﹁(P↑Q)⇔ P∧Q;(3)(P↑P)↑(Q↑Q)⇔﹁P↑﹁Q⇔ P∨Q。

(1)P↓P⇔﹁(P∨Q)⇔﹁P;(2)(P↓Q)↓(P↓Q)⇔﹁(P↓Q)⇔P∨Q;(3)(P↓P)↓(Q↓Q)⇔﹁P↓﹁Q⇔﹁(﹁P∨﹁Q)⇔P∧Q。

1.3 命题公式、翻译与解释1.3.1 命题公式定义命题公式,简称公式,定义为:(1)单个命题变元是公式;(2)如果P 是公式,则﹁P是公式;(3)如果P、Q是公式,则P∧Q、P∨Q、P→Q、 P↔Q 都是公式;(4)当且仅当能够有限次的应用(1) 、(2)、(3) 所得到的包括命题变元、联结词和括号的符号串是公式。

例如,下面的符号串都是公式:((((﹁P)∧Q)→R)∨S)((P→﹁Q)↔(﹁R∧S))(﹁P∨Q)∧R以下符号串都不是公式:((P∨Q)↔(∧Q))(∧Q)1.3.2 命题的翻译可以把自然语言中的有些语句,转变成数理逻辑中的符号形式,称为命题的翻译。

离散数学第9章习题答案

离散数学第9章习题答案

习题91. 设G 是一个(n ,m)简单图。

证明:,等号成立当且仅当G 是完全图。

证明:(1)先证结论:因为G 是简单图,所以G 的结点度上限 max(d(v)) ≤ n-1, G 图的总点度上限为 max(Σ(d(v)) ≤ n ﹒max(d(v)) ≤ n(n-1) 。

根据握手定理,G 图边的上限为 max(m) ≤ n(n-1)/2,所以。

(2) =〉G 是完全图 因为G 具有上限边数,假设有结点的点度小于n-1,那么G 的总度数就小于上限值,边数就小于上限值,与条件矛盾。

所以,G 的每个结点的点度都为n-1,G 为完全图。

G 是完全图 =〉 因为G 是完全图,所以每个结点的点度为n-1, 总度数为n(n-1),根据握手定理,图G 的边数 。

■2. 设G 是一个(n ,n +1)的无向图,证明G 中存在顶点u ,d (u )≥3。

证明:反证法,假设,则G 的总点度上限为max(Σ(d(u)) ≤2 n ,根据握手定理,图边的上限为max(m) ≤ 2n/2=n 。

与题设m = n+1,矛盾。

因此,G 中存在顶点u ,d (u )≥3。

■3.确定下面的序列中哪些是图的序列,若是图的序列,画出一个对应的图来: (1)(3,2,0,1,5); (2)(6,3,3,2,2) (3)(4,4,2,2,4); (4)(7,6,8,3,9,5)解:除序列(1)不是图序列外,其余的都是图序列。

因为在(1)中,总和为奇数,不满足图总度数为偶数的握手定理。

可以按如下方法构造满足要求的图:序列中每个数字ai 对应一个点,如果序列数字是偶数,那么就在对应的点上画ai/2个环,如果序列是奇数,那么在对应的点上画(ai-1)/2个环。

最后,将奇数序列对应的点两两一组,添加连线即可。

下面以(2)为例说明:(6 , 3, 3, 2, 2 ) 对应图G 的点集合V= { v 1,v 2,v 3,v 4,v 5}每个结点对应的环数(6/2, (3-1)/2, (3-1)/2, 2/2,2/2) = (3,1,1,1,1)将奇数3,3 对应的结点v 2,v 3一组,画一条连线其他序列可以类式作图,当然大家也可以画图其它不同的图形。

离散数学知识点总结

离散数学知识点总结

注意/技巧:析取符号为V,大写字母Vx + y = 3不是命题前件为假时,命题恒为真运用吸收律命题符号化过程中要注意命题间的逻辑关系,认真分析命题联结词所对应的自然语言中的联结词,不能只凭字面翻译。

也就是说,在不改变原意的基础上,按照最简单的方式翻译通用的方法:真值表法VxP(x)蕴含存在xP(x)利用维恩图解题证明两个集合相等:证明这两个集合互为子集常用的证明方法:任取待证集合中的元素<,>构造相应的图论模型第一章命题逻辑命题和联结词命题的条件:表达判断的陈述句、具有确定的真假值。

选择题中的送分题原子命题也叫简单命题,与复合命题相对简单联结词的真值表要记住非(简单)合取(当且仅当P,Q都为真时,命题为真)析取(当且仅当P,Q都为假时,命题为假),P,Q可以同时成立,是可兼的或条件(→)(当且仅当P为真,Q为假时,命题为假)P是前件,Q是后件只要P,就Q等价于P→Q只有P,才Q等价于非P→非Q,也就是Q→PP→Q特殊的表达形式:P仅当Q、Q每当P双条件(↔)(当且仅当P与Q具有相同的真假值时,命题为真,与异或相反)命题公式优先级由高到低:非、合取和析取、条件和双条件括号省略条件:①不改变先后次序的括号可省去②最外层的括号可省去重言式(永真式)、矛盾式(永假式)、偶然式可满足式:包括重言式和偶然式逻辑等价和蕴含(逻辑)等价:这是两个命题公式之间的关系,写作“⇔”,要与作为联结词的↔区分开来。

如果命题公式A为重言式,那么A⇔T常见的命题等价公式:需要背过被标出的,尽量去理解。

关键是掌握公式是将哪个符号转换为了哪个符号,这对于解证明题有很大的帮助!验证两个命题公式是否等价:当命题变元较少时,用真值表法。

当命题变元较多时,用等价变换的方法,如代入规则、替换规则和传递规则定理:设A、B是命题公式,当且仅当A↔B是一个重言式时,有A和B逻辑等价。

蕴含:若A→B是一个重言式,就称作A蕴含B,记作A⇒B常见的蕴含公式的运用方法同上面的命题等价公式证明A⇒B:①肯定前件,推出后件为真②否定后件,推出前件为假当且仅当A⇒B且B⇒A时,A⇔B,也就是说,要证明两个命题公式等价,可以证明它们相互蕴含联结词的完备集新的联结词:条件否定、异或(不可兼或)、或非(析取的否定)、与非(合取的否定)任意命题公式都可由仅含{非,析取}或{非,合取}的命题公式来等价地表示全功能联结词集合极小全功能联结词集合对偶式对偶式:将仅含有联结词非、析取、合取(若不满足,需先做转换)的命题公式A中的析取变合取,合取变析取,T变F,F变T得到的命题公式A*称为A的对偶式范式析取式:否定+析取合取式:否定+合取析取范式:(合取式)析取(合取式)……析取(合取式)。

离散数学章节总结

离散数学章节总结

离散数学章节总结离散数学章节总结第⼀章[命题逻辑]1.逻辑运算1.否定:Negation? NOT2.交:Conjunction AND3.并:Disjunction OR4.蕴含:Implication IMPLIES5. Biconditional ? IFFXOR2.逆/否/逆否1.逆:converse2.否:inverse3.逆否:conytrapositive3.问题的⼀致性[逻辑等价]→q 等价于?p q 等价于? q→?p2. p q 等价于?p→qp q 等价于?( p→?q)3.(p→q)(p→r) 等价于p→(q r)(p→r)(q→r) 等价于(p q)→r(p→r)(q→r)等价于(p q) →r4.证明等价: 真值表逻辑符号证明找反例(假设左为假右必为假假设右为假左必为假)[ 谓词逻辑]1.量词存在任意量词顺序不能随机改变不全为真:(p1p2…p n) (p1p2…p n) x P(x ) x P(x )没有⼀个为真:(p1p2…p n) (p1p2…p n) x P(x ) x P(x ) [ 推理][ 证明]1.证明⽅法:直接证明间接证明反证列举证明(列举所有情况) 构造证明(构造出满⾜结论的元素)2.证明步骤:正向证明反向证明第⼆章[ 集合及运算]1.特殊集合: R Q Z ⽆穷/有限集2.集合表述⽅法: 列举法描述法图表法3.集合运算: 交/并/补/差/取⼦集P(S)/元素数|S|/乘积P ×Q /BA B A B A B A ?=??=? n i iA 1= X A A ∈ ni iA 1= XA A∈容斥原理A i i =1n=Ai1≤i ≤n ∑-A iAj1≤inA ii =1n4.证明集合相等:1.证明互为⼦集 2.从属表 3.逻辑证明[ 函数]1.函数的定义2.术语:定义域,值域,象,原象,范围, (a)/f(A)第五章[序、归纳]1.序:在某种关系下存在最⼩元素则为well-ordered2.第⼀数学归纳法:basic step P(C)成⽴and inductive step P(k)→P(k+1)3.第⼆数学归纳法:basic step:P(c)成⽴ and inductive step: 任意k⼩于等于nP(k) 成⽴→P(n+1) [递归]1.递归:以相同形式⽤⼩的项来定义的⼤的项不能⼀直递归下去(存在初始项)必须存在可以直接解决问题的⼀项①basic step:原有元素② recursive step:原有元素如何产⽣新元素2.字符串的定义:空字符,回⽂3.结构归纳:⽤于证明递归结构对所有元素都成⽴:①basic step:原有元素成⽴②recursive step:⽤递归式导出的新元素成⽴[递归算法]1.定义:把问题转化为相同形式但值更⼩的算法2.递归算法有初始步骤(是可终⽌的)并且递归时⾄少改变⼀个参数值使之向初始步骤靠拢3.递归时间复杂度⾼,可以⽤⾮递归(loop或 stack)来代替[程序的正确性]1.测试与证明:证明更有说服⼒2.证明:①程序会终⽌②(部分正确)程序只要可以终⽌得出的结论都是正确的正确的程序:对任意可能的输⼊都有正确的输出部分正确,完全正确triple:P{S}QP: precondition S: assertion Q:postconditionP{S}Q:当PQ正确时为部分正确当证明了S的可终⽌性为完全正确4.程序的基本语句:赋值,命题,条件,循环5.弱化结论:P{S}R R→Q:P{S}Q强化条件Q→R R{S}P:Q{S}P复合:P{S1}R R{S2}Q: P{S1;S2}Q第六章[加法乘法原理]1.加法乘法原理:⽅法不重复,互不影响,做1or2 m+n 做1and2 mn2.容斥原理:⽅法有重叠:|A B |=|A ||B ||A B |3.包含条件的问题。

《离散数学》第3章集合

《离散数学》第3章集合

(5) A B (6) ~ (A B)
{2, 4,5} {3}
(7) (A B) ~ C
{1, 3, 5}
(8) (A B) (A C) {1, 4}
二、文氏图 (John Venn)。
1、文氏图。
(1) 用大矩形表示全集 E,
(2) 矩形内的圆表示集合, (3) 除特殊情形外,一般表示两个集合的圆是相交的, (4) 圆中的阴影的区域表示新组成的集合。
其中 A, B 分别表示 A、B的元数.
把包含排斥定理推广到n个集合的情况可用如下定
理表述:
设A1, A2 , A为n 有限集合,其元数分别为 A1 , A2 ,, An ,则
n
A1 A2 An Ai Ai Aj
Ai Aj Ak
i 1
1i jn
解: P(A) ,{,2},{2}, A
第二节 集合的运算
内容: 集合的运算,文氏图,运算律。 重点:(1) 掌握集合的运算
A B, A B, A B, ~ A, A B
(2) 用文氏图表示集合间的相互 关系和运算,
(3) 掌握基本运算律的内容及运用。
一、集合的运算。
例1、 ,A 0,1, B a,b,c
求 A B,B A,A A,A, B。
解:A B 0, a , 0,b , 0, c , 1, a , 1,b , 1,c
(1) A 解: P(A) {}
(2) A {} 解: P(A) {, A}
(3) A ,{}
解:P(A) ,{},{}, A
(4) A 1,{2,3}
解:P(A) ,{1},{2,3}, A
(5) A {, 2},{2}

离散数学笔记总结

离散数学笔记总结

离散数学笔记总结一、命题逻辑。

1. 基本概念。

- 命题:能够判断真假的陈述句。

例如“2 + 3 = 5”是真命题,“1 > 2”是假命题。

- 命题变元:用字母表示命题,如p,q,r等。

2. 逻辑联结词。

- 否定¬:¬ p表示对命题p的否定,若p为真,则¬ p为假,反之亦然。

- 合取wedge:pwedge q表示p并且q,只有当p和q都为真时,pwedge q才为真。

- 析取vee:pvee q表示p或者q,当p和q至少有一个为真时,pvee q为真。

- 蕴含to:pto q表示若p则q,只有当p为真且q为假时,pto q为假。

- 等价↔:p↔ q表示p当且仅当q,当p和q同真同假时,p↔ q为真。

3. 命题公式。

- 定义:由命题变元、逻辑联结词和括号按照一定规则组成的符号串。

- 赋值:给命题变元赋予真假值,从而确定命题公式的真值。

- 分类:重言式(永真式)、矛盾式(永假式)、可满足式。

4. 逻辑等价与范式。

- 逻辑等价:若A↔ B是重言式,则称A与B逻辑等价,记作A≡ B。

例如¬(pwedge q)≡¬ pvee¬ q(德摩根律)。

- 范式:- 析取范式:由有限个简单合取式的析取组成的命题公式。

- 合取范式:由有限个简单析取式的合取组成的命题公式。

- 主析取范式:每个简单合取式都是极小项(包含所有命题变元的合取式,每个变元只出现一次)的析取范式。

- 主合取范式:每个简单析取式都是极大项(包含所有命题变元的析取式,每个变元只出现一次)的合取范式。

二、谓词逻辑。

1. 基本概念。

- 个体:可以独立存在的事物,如人、数等。

- 谓词:用来刻画个体性质或个体之间关系的词。

例如P(x)表示x具有性质P,R(x,y)表示x和y具有关系R。

- 量词:- 全称量词∀:∀ xP(x)表示对于所有的x,P(x)成立。

- 存在量词∃:∃ xP(x)表示存在某个x,使得P(x)成立。

离散数学知识点

离散数学知识点

离散数学知识点(总23页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--说明:定义:红色表示。

定理性质:橙色表示。

公式:蓝色表示。

算法:绿色表示页码:灰色表示数理逻辑:1.命题公式:命题,联结词(,,,,),合式公式,子公式2.公式的真值:赋值,求值函数,真值表,等值式,重言式,矛盾式3.范式:析取范式,极小项,主析取范式,合取范式,极大项,主合取范式4.联结词的完备集:真值函数,异或,条件否定,与非,或非,联结词完备集5.推理理论:重言蕴含式,有效结论,P规则,T规则, CP规则,推理6.谓词与量词:谓词,个体词,论域,全称量词,存在量词7.项与公式:项,原子公式,合式公式,自由变元,约束变元,辖域,换名,代入8.公式语义:解释,赋值,有效的,可满足的,不可满足的9.前束范式:前束范式10.推理理论:逻辑蕴含式,有效结论,-规则(US),+规则(UG),-规则(ES),+规则(EG), 推理集合论:1.集合: 集合, 外延性原理, , , , 空集, 全集, 幂集, 文氏图, 交, 并, 差, 补, 对称差2.关系: 序偶, 笛卡尔积, 关系, domR, ranR, 关系图, 空关系, 全域关系, 恒等关系3.关系性质与闭包:自反的, 反自反的, 对称的, 反对称的, 传递的,自反闭包 r(R),对称闭包 s(R), 传递闭包 t(R)4.等价关系: 等价关系, 等价类, 商集, 划分5.偏序关系:偏序, 哈斯图, 全序(线序), 极大元/极小元, 最大元/最小元, 上界/下界6.函数: 函数, 常函数, 恒等函数, 满射,入射,双射,反函数, 复合函数7.集合基数:基数, 等势, 有限集/无限集, 可数集, 不可数集代数结构:1.运算及其性质:运算,封闭的,可交换的,可结合的,可分配的,吸收律, 幂等的,幺元,零元,逆元2.代数系统:代数系统,子代数,积代数,同态,同构。

笔记离散数学

笔记离散数学

离散数学复习笔记数理逻辑逻辑:以研究人的思维形式及思维规律为目的的一门学科数理逻辑:利用数学符号来协助推理的一门形式逻辑学命题:能表达判断并具有确定真值的陈述句真值:每个命题都具有的一个值,要么为真,要么为假,不能随着环境变化原子命题:不能再分解的命题复合命题:由原子命题符号及联结词组成的有意义的命题表达式否定非P 合取P而且Q 析取P可兼或Q 排斥析取P不可兼或Q 单条件若P 则Q 双条件P当且仅当Q命题公式:满足特定条件的合法的命题表达式分量:命题公式中的原子命题翻译:将自然语言转化为数理逻辑语言真值表:对一个命题公式而言,将对于其分量的各种可能的真值指派汇聚成的表两个命题等价:对两个命题公式A,B,若对于A\B中的所有命题变元P1\P2..对天安门的任一组真值指派A,B相同对应的行的真值相同,则称A与B等价等价定律:交换律,结合律,分配律,摩根律,否定律,同一律重言式:永真式,无论对命题变元作何种真值指派,它都等价于T的命题公式永假式:无论对命题变元作何种真值指派,它都等价于F的命题公式用一个命题公式代替重言式中同一个分量,依然为重言式蕴含式:若A->B永真则称A蕴含B,记做A=>B原命题等价于它的逆否命题三个性质:传递性,A=>B A=>C A=>(B^C), A=>B C=>B AvC=>B有效结论:H1,H2、、、、Hn,C为一组命题公式,若H1^H2^...^Hn=>C,称C 是一组条件下的有效结论三种方法:真值表法,直接证法,间接证法其他连接词:条件否定,与非,或非规范命题表达式:只含非且或合取范氏:当且仅当具有A1^A2^...^An形式,A1,A2...An都是命题变元或其否定组成的析取式析取范式:当且仅当具有A1vA2v...vAn形式,A1,A2...An都是命题变元或其否定组成的合取式一个命题公式的合取范氏或析取范氏并不是唯一的n个命题变元的合取式,称作布尔合取或小项,其中每个变元与它的否定不能同时存在,但两者必须出现且仅出现一次 P^Q P^非Q一般n个命题变元共有2^n个小项n个命题变元的析取式,称作布尔析取或大项,其中每个变元与它的否定不能同时存在,但两者必须出现且仅出现一次 PvQ Pv非Q主析取范式:对于给定的命题公式,如果有一个等价公式,它仅由小项的析取所组成,则称该等价式为原式的主析取范式主合取范式:对于给定的命题公式,如果有一个等价公式,它仅由大项的合取所组成,则称该等价式为原式的主合取范式集合论集合:满足一定特征的对象的全体扩张原则:两个集合相等,当且仅当他们有相同的元素抽象原则:任给一个集合U和一个性质P,存在一个集合A,使得A的各个元素恰好是U的具有性质P的那些成员集合表示:列举法,特征法幂集:对给定的集合A,称以A的全体子集为元素的集合为A的幂集集合的基数:|A|元素的个数无限集合:元素个数能与某个真子集一一对应的集合序偶:有序的二元数组<x,y>笛卡尔积:称A*B={<x,y>|x属于A且y属于B}二元关系:以序偶作为元素的集合即关系xRy,关系前域指x,关系值域指y,关系域是前域和值域的并集。

离散数学精讲第九章

离散数学精讲第九章

19
同类型与同种代数系统
定义9.7 (1) 如果两个代数系统中运算的个数相同,对应运算的元数相 同,且代数常数的个数也相同,则称它们是同类型的代数 系统. (2) 如果两个同类型的代数系统规定的运算性质也相同,则称 为同种的代数系统. 例如 V1=<R, +, · , 0, 1>, V2=<Mn(R), +, · , , E>, 为 n 阶全0 矩阵,E为 n 阶单位矩阵, V3=<P(B), ∪, ∩, , B> V1, V2, V3是同类型的代数系统,它们都含有2个二元运算, 2个代数常数. V1, V2是同种的代数系统,V1, V2与V3不是同种的代数系统
5
二元与一元运算的表示
1.算符 可以用◦, ∗, ·, , , 等符号表示二元或一元运算,称为算符. 对二元运算◦,如果 x 与 y 运算得到 z,记做 x◦y = z 对一元运算, x的运算结果记作x. 2.表示二元或一元运算的方法: 解析公式和运算表
公式表示
例 设R为实数集合,如下定义R上的二元运算∗: x, y∈R, x ∗ y = x. 那么 3∗4 = 3, 0.5∗(3) = 0.5
则矩阵加法和乘法都是Mn(R)上的二元运算. (5) S为任意集合,则∪、∩、-、 为P(S)上二元运算. (6) SS为S上的所有函数的集合,则合成运算为SS上二元运算.
4
一元运算的定义与实例
定义9.2 设S为集合,函数 f:S→S 称为S上的一元运算,简 称一元运算. 例2 (1) 求相反数是整数集合Z,有理数集合Q和实数集合R上 的一元运算 (2) 求倒数是非零有理数集合Q*,非零实数集合R*上一元运算 (3) 求共轭复数是复数集合C上的一元运算 (4) 在幂集P(S)上规定全集为S,则求绝对补运算~是P(S)上的 一元运算. (5) 设S为集合,令A为S上所有双射函数的集合,ASS,求一 个双射函数的反函数为A上的一元运算. (6) 在n(n≥2)阶实矩阵的集合Mn(R)上,求转置矩阵是Mn(R)上 的一元运算.

离散数学(1)复习笔记

离散数学(1)复习笔记

离散数学(1)复习笔记Ch1 命题逻辑的基本概念1.1 命题命题:能判断真假且⾮真即假的陈述句。

命题的真值,真命题,假命题。

* 真值待定 *简单命题 | 原⼦命题,复合命题。

1.2 常⽤的5个命题联结词否定,合取,析取,蕴涵,双蕴涵。

* 异或 | 排斥或 | 不可兼或 * 注意语义判断。

* p→q = ﹁ p∨q ** 必要条件 * 只有……才……;仅当……,……;……,仅当……。

注意命题符号化的蕴涵⽅向。

* domain * A horse is white. (×)联结词集,⼀元联结词,⼆元联结词。

* 优先顺序 * (),﹁,∧,∨,→,↔1.3 合式公式及其赋值命题常项 | 命题常元(值是确定的),命题变项 | 命题变元(真值可以变化的陈述句)。

合式公式 | 命题公式 | 命题形式 | 公式(wff)(well formed formulas),原⼦命题公式(单个命题变项),⼦公式。

* 单个命题变项是合式公式,没说命题常项。

*赋值 | 解释,成真赋值,成假赋值。

真值表。

* 真值表要点:赋值从00…0开始,按照⼆进制加法,直到11…1为⽌;按照运算的优先次序写出各⼦公式。

*命题公式的分类:重⾔式 | 永真式,⽭盾式 | 永假式,可满⾜式。

1.4 重⾔式与代⼊规则代⼊规则。

* 1. 公式中被代换的只能是命题变项(原⼦命题),⽽不能是复合命题。

2.对公式中某命题变项施以代⼊,必须对该公式中出现的所有同⼀命题变项施以相同的代换。

* 1.5 命题形式化命题形式化 | 符号化。

* 注意充分条件和必要条件的区别 ** 注意语义是否考虑完整 *1.6 波兰表达式中置式 | 中缀式,前置式 | 前缀式 | 波兰式,后置式 | 后缀式 | 逆波兰式。

Ch2 命题逻辑的等值和推理演算2.1 等值定理等值 | 等价,等值定理:设A,B为两个命题公式,A = B的充分必要条件是 A↔B为⼀个重⾔式。

大一离散数学知识点总结笔记

大一离散数学知识点总结笔记

大一离散数学知识点总结笔记离散数学是计算机科学和信息技术等领域的基础学科,它主要研究离散对象以及离散结构及其关系。

以下是本文对大一离散数学的知识点总结。

1. 集合论(Set Theory)- 集合的定义和表示方法- 集合间的运算:并、交、差、对称差- 集合的基本性质:幂集、空集、全集- 集合的相等和包含关系- 集合的基数和无穷集合2. 命题逻辑(Propositional Logic)- 命题的定义和符号表示- 命题的逻辑运算:非、合取、析取、条件、双条件- 命题之间的等价和蕴含关系3. 谓词逻辑(Predicate Logic)- 一阶逻辑的基本概念:谓词、量词、项、公式 - 一阶逻辑的语义:解释、真值- 一阶逻辑的语法:公式的语法规则- 命题逻辑与谓词逻辑的比较4. 证明方法与技巧(Proof Methods and Techniques) - 直接证明与间接证明- 分情况讨论和归纳法- 反证法和递归法- 等价变换和代入法5. 计数原理(Counting Principles)- 乘法原理和加法原理- 排列和组合:全排列、循环排列、组合数- 二项式系数和三角形数- 鸽笼原理和抽屉原理6. 图论(Graph Theory)- 图的基本概念:顶点、边、路径、环- 图的存储结构:邻接矩阵、邻接链表- 图的遍历算法:深度优先搜索、广度优先搜索- 最短路径算法:Dijkstra算法、Floyd-Warshall算法7. 关系代数与关系数据库(Relational Algebra and Relational Databases)- 关系代数的基本运算:选择、投影、并、差、笛卡尔积- 关系数据库的基本概念:关系模型、关系实例、关系模式 - 关系数据库查询语言:结构化查询语言(SQL)- 范式理论和函数依赖8. 有限状态自动机(Finite State Automata)- 自动机的定义和表示:状态、转移函数、初始状态、接受状态- 有限状态自动机的类型:确定性有限状态自动机(DFA)、非确定性有限状态自动机(NFA)- 正则表达式与有限状态自动机的等价性- 有限状态自动机的应用:词法分析、编译原理以上是大一离散数学的主要知识点总结,希望对你的学习有所帮助。

离散数学笔记(最新)

离散数学笔记(最新)

第一章命题逻辑内容:命题及命题联结词、命题公式的基本概念,真值表、基本等价式及永真蕴涵式,命题演算的推理理论中常用的直接证明、条件证明、反证法证明等方法教学目的:1.熟练掌握命题、联结词、复合命题、命题公式及其解释的概念。

2.熟练掌握常用的基本等价式及其应用。

3.熟练掌握(主)析/合取范式的求法及其应用。

4.熟练掌握常用的永真蕴涵式及其在逻辑推理中的应用。

5.熟练掌握形式演绎的方法。

教学重点:1.命题的概念及判断2.联结词,命题的翻译3.主析(合)取范式的求法4.逻辑推理教学难点:1.主析(合)取范式的求法2.逻辑推理1.1命题及其表示法1.1.1 命题的概念数理逻辑将能够判断真假的陈述句称作命题。

1.1.2 命题的表示命题通常使用大写字母A,B,…,Z或带下标的大写字母或数字表示,如A i,[10],R等,例如A1:我是一名大学生。

A1:我是一名大学生.[10]:我是一名大学生。

R:我是一名大学生。

1.2命题联结词1.2.1 否定联结词﹁P1.2.2 合取联结词∧1.2.3 析取联结词∨1.2.4 条件联结词→1.2.5 双条件联结词↔1.2.6 与非联结词↑性质:(1) P↑P⇔﹁(P∧P)⇔﹁P;(2)(P↑Q)↑(P↑Q)⇔﹁(P↑Q)⇔ P∧Q;(3)(P↑P)↑(Q↑Q)⇔﹁P↑﹁Q⇔ P∨Q。

1.2.7 或非联结词↓性质:(1)P↓P⇔﹁(P∨Q)⇔﹁P;(2)(P↓Q)↓(P↓Q)⇔﹁(P↓Q)⇔P∨Q;(3)(P↓P)↓(Q↓Q)⇔﹁P↓﹁Q⇔﹁(﹁P∨﹁Q)⇔P∧Q。

1.3 命题公式、翻译与解释1.3.1 命题公式定义命题公式,简称公式,定义为:(1)单个命题变元是公式;(2)如果P 是公式,则﹁P是公式;(3)如果P、Q是公式,则P∧Q、P∨Q、P→Q、 P↔Q 都是公式;(4)当且仅当能够有限次的应用(1) 、(2)、(3) 所得到的包括命题变元、联结词和括号的符号串是公式。

离散数学第8,9章课后习题答案

离散数学第8,9章课后习题答案

第8章 习题参考答案1. 在一次10周年同学聚会上,想统计所有人握手的次数之和,应该如何建立该问题的图论模型?解:将每个同学分别作为一个节点,如果两个人握过一次手就在相应的两个节点之间画一条无向边,于是得到一个无向图。

一个人握手的次数就是这个节点与其他节点所连接的边的条数,进而可得出所有人握手的次数之和。

2. 在一个地方有3户人家,并且有3口井供他们使用。

由于土质和气候的关系,有些井中的水常常干枯,因此各户人家要到有水的井去打水。

不久,这3户人家成了冤家,于是决定各自修一条路通往水井,打算使得他们在去水井的路上不会相遇。

试建立解决此问题的图论模型。

解:将3户人家分别看做3个节点且将3口井分别看做另外3个节点,若1户人家与1口井之间有一条路,则在该户人家与该口井对应的节点之间连一条无向边,这样就得到一个无向图。

3. 某人挑一担菜并带一条狼和一只羊要从河的一岸到对岸去。

由于船太小,只能带狼、菜、羊中的一种过河。

由于明显的原因,当人不在场时,狼要吃羊,羊要吃菜。

通过建立图论模型给出问题答案。

解:不妨认为从北岸到南岸,则在北岸可能出现的状态为24=16种,其中安全状态有下面10种:(人,狼,羊,菜),(人,狼,羊),(人,狼,菜),(人,羊,菜),(Φ),(人,羊),(菜),(羊),(狼),(狼,菜);不安全的状态有下面6种:(人)(人,菜)(人,狼)(狼,羊,菜)(狼,羊)(羊,菜)。

线将北岸的10种安全状态看做10个节点,而渡河的过程则是状态之间的转移,这样就得到一个无向图,如图8-1所示。

图8-1从上述无向图可以得出安全的渡河方案有两种:第1种:(人,狼,羊,菜)→(狼,菜)→(人,狼,菜)→(狼)→(人,狼,羊)→(羊)→(人,羊)→(Φ)。

(人,狼,羊,菜)(人,狼,羊)(人,狼,菜)(人,羊,菜)(人,羊) (狼,菜) (羊) (狼) (菜) (Φ)第2中:(人,狼,羊,菜)→(狼,菜)→(人,狼,菜)→(菜)→(人,羊,菜)→(羊)→(人,羊)→(Φ)。

离散数学知识点全归纳

离散数学知识点全归纳

离散数学知识点全归纳离散数学是数学的一个分支,研究的是离散对象和离散结构。

在计算机科学、信息技术以及其他领域中,离散数学具有重要的应用价值。

以下是离散数学的一些重要知识点的全面总结。

1. 集合论和逻辑- 集合:基本概念、运算、包含关系、并集、交集、差集、幂集等。

- 命题逻辑:命题、命题的连接词、真值表、逻辑等价、析取范式、合取范式等。

- 谓词逻辑:谓词、量词、逻辑推理、存在量词和全称量词等。

2. 证明方法- 直接证明:利用已知事实和逻辑推理,直接得出结论。

- 对证法:从假设的反面出发,利用矛盾推理得出结论。

- 数学归纳法:证明基础情况成立,再证明递推步骤成立。

3. 图论- 图的基本概念:顶点、边、路径、回路、度、连通性等。

- 图的表示:邻接矩阵、邻接表等。

- 最短路径:Dijkstra算法、Floyd-Warshall算法等。

- 最小生成树:Prim算法、Kruskal算法等。

4. 关系与函数- 关系及其性质:自反性、对称性、传递性、等价关系等。

- 函数及其性质:定义域、值域、单射、满射、双射等。

- 逆函数和复合函数:求逆函数、复合函数的定义和性质。

5. 组合数学- 排列和组合:排列、组合的计算公式和性质。

- 递归关系:递推公式、递归算法等。

- 图的着色:色数、四色定理等。

6. 代数系统- 半群、幺半群、群、环、整环和域的定义和性质。

- 同态:同态映射、同构等。

- 应用:编码理论、密码学等。

以上是离散数学的一些重要知识点的概括。

深入理解和掌握这些知识,对于解决实际问题和在相关领域中取得成功非常重要。

在学习过程中,建议结合实际例子和习题进行练习,加深对知识的理解和应用能力。

离散数学最全知识点

离散数学最全知识点
第二篇 数理逻辑
逻辑学: 研究思维规律的学问。包含形式逻 辑、辩证逻辑、名辩逻辑和因明逻辑等。
形式逻辑(传统逻辑):主要通过研究思维形式 来讨论演绎推理。
数理逻辑(符号逻辑):数学的方法研究形式逻 辑。
亚里士多德与三段论
所有的人都会死; 苏格拉底是人; 苏格拉底会死。
亚里士多德(公元前384~前322)古 希腊哲学家、科学家和教育家。
2) 复合命题:可分解为若干个简单命题。
原子命题:今天天气很冷。 复合命题:今天天气很冷并且刮风。 复合命题:今天天气很冷并且刮风,但室内暖和。
3、命题的表示
例设 A:今天天气很冷。 B:今天在刮风。 C:今天室内暖和。
今天天气很冷。
A
今天天气很冷并且刮风。
A并
且B
二、命题联结词
0
1
1
0
0
4、主析取范式和主合取范式之间的转换
主析取范式=>主合取范式
主合取范式=>主析取范式
3.6 命题逻辑的推理理论
一、推理的基本概念和推理形式
二、判断有效结论的常用方法
例 判断下面各推理是否正确:如果天气凉快,小王就不 去游泳;天气凉快。小王没去游泳。
00 1 1
0
1
01 0 1
0
1
莱布尼茨之梦
“精炼我们的推理的唯一方 式是使它们同数学一样切实,这 样我们能一眼就找出我们的错误, 并且在人们有争议的时候,我们 可以简单的说: 让我们计算, 而无须进一步的忙乱,就能看出 谁是正确的。”
莱布尼茨(1646年~1716年) 德国哲学家、数学家。
布尔与布尔代数
“以计算的符号语言来表示 它们,以此为基石建立逻辑的科 学,并且构造他们的方法。”

(完整word版)离散数学重点笔记

(完整word版)离散数学重点笔记

第一章,0 命题逻辑素数 =质数,合数有因子和或假必真同为真(p →q) ∧ (q ←→ r) , (p ∧ q) ∧┐ r , p∧ (q ∧┐ r) 等都是合式公式,而pq→ r ,( p→ (r →q) 等不是合式公式。

若公式 A 是单个的命题变项,则称( ┐ p∧ q) → r ,( ┐ (p →┐ q)) ∧ ((rA 为∨ s)0 层合式┐ p) 分别为 3 层和 4 层公式【例】求下列公式的真值表,并求成真赋值和成假赋值。

(┐p∧ q)→┐ r公式 (1) 的成假赋值为011,其余 7 个赋值都是成真赋值第二章,命题逻辑等值演算( 1)双重否定律 A A( 2)等幂律 A ∧ A A ; A∨A A( 3)交换律 A ∧ B B∧ A ; A∨B B∨ A( 4)结合律(A∧ B)∧ C A∧( B∧ C);(A∨B)∨ C A∨( B∨ C)( 5)分配律(A∧ B)∨ C (A∨C)∧( B∨C);(A∨ B)∧ C ( A∧ C)∨( B∧ C)( 6)德·摩根律(A∨B)A∧ B ;(A∧B)A∨ B( 7)吸收律 A ∨( A∧ B)A;A∧( A∨B) A( 8)零一律 A ∨ 1 1 ; A∧0 0( 9)同一律 A ∨ 0 A ; A∧1 A( 10)排中律 A ∨ A 1( 11)矛盾律 A ∧ A 0( 12)蕴涵等值式 A → B A∨ B( 13)假言易位 A → B B→ A( 14)等价等值式 A B (A→ B)∧( B→ A)( 15)等价否定等值式 A B A B B A( 16)归缪式(A→ B)∧( A→B) AA i (i=1,2, ⋯ ,s) A=A1∧A2∧⋯∧为简单合取式,则A s为合取范式(pA=A1∨ A2∨⋯∨ A s为析取范式∨q∨ r) ∧ ( ┐ p∨┐ q) ∧ r(p ∧┐ q) ∨ ( ┐ q∧┐ r) ∨ p一个析取范式是矛盾式当且仅当它的每个简单合取式都是矛盾式一个合取范式是重言式当且仅当它的每个简单析取式都是重言式主范式【∧小真,∨大假】∧成真小写【例】(p→ q)→ (┐ q→┐ p)= ┐ (┐ p∨ q)∨ (q∨┐ p)( 消去→ )= (p∧┐ q)∨┐ p∨ q(┐内移 ) = (p∧┐ q)∨ (┐ p∧┐ q)∨ (┐ p∧ q)∨ (┐ p∧ q)∨ (p∧ q) (已为析取范式( *))=m2∨ m0∨ m1∨ m1∨ m3= m0∨ m1∨ m2∨ m3( 幂等律、排序 )(*) 由┐ p 及 q 派生的极小项的过程如下:┐ p = ┐ p∧ (┐ q∨q)= (┐p∧┐ q)∨ (┐ p∧ q)q = ( ┐ p∨ p)∧ q= (┐p∧ q)∨ (p∧ q)熟练之后,以上过程可不写在演算过程中。

实用文库汇编之离散数学课本定义和定理

实用文库汇编之离散数学课本定义和定理

作者:风骤起作品编号:31005C58G01599625487创作日期:2020年12月20日实用文库汇编之第1章集合1.1 集合的基本概念1. 集合、元(元素)、有限集、无限集、空集2. 表示集合的方法:列举法、描述法3. 定义1.1.1(子集):给定集合A和B,如果集合A的任何一个元都是集合B中的元,则称集合A包含于B或B包含A,记为或,并称A为B的一个子集。

如果集合A和B满足,但B中有元不属于A,则称集合A真包含于B,记为,并且称A为B的一个真子集。

4. 定义1.1.2(幂集):给定集合A,以A的所有子集为元构成的一个集合,这个集合称为A的幂集,记为或1.2 集合的运算定义1.2.1(并集):设A和B是两个集合,则包含A和B的所有元,但不包含其他元的集合,称为A和B的并集,记为.定义1.2.2(交集):A和B是两个集合,包含A和B的所有公共元,但不包含其他元的集合,称为A和B的交集,记为.定义1.2.3(不相交):A和B是两个集合,如果它们满足,则称集合A和B 是不相交的。

定义1.2.4(差集):A和B是两个集合,属于A而不属于B的所有元构成集合,称为A和B的差集,记为.定义1.2.5(补集):若A是空间E的集合,则E中所有不属于A的元构成的集合称为A的补集,记为.定义1.2.6(对称差):A和B是两个集合,则定义A和B的对称差为1.3 包含排斥原理定理1.3.1设为有限集,其元素个数分别为,则定理1.3.2设为有限集,其元素个数分别为,则定理1.3.3设为有限集,则重要例题P11 例1.3.1第2章二元关系2.1 关系定义2.1.1(序偶):若和是两个元,将它们按前后顺序排列,记为,则成为一个序偶。

※对于序偶和,当且仅当并且时,才称和相等,记为定义2.1.2(有序元组):若是个元,将它们按前后顺序排列,记为,则成为一个有序元组(简称元组)。

定义2.1.3(直接积):和是两个集合,则所有序偶的集合,称为和的直接积(或笛卡尔积),记为.定义2.1.4(直接积):设是个集合,,则所有元组的集合,称为的笛卡尔积(或直接积),记为.定义2.1.5(二元关系)若和是两个集合,则的任何子集都定义了一个二元关系,称为上的二元关系。

离散数学知识点总结

离散数学知识点总结

总结离散数学知识点第二章命题逻辑1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假;2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积;3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反;4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假;5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写;6.真值表中值为1的项为极小项,值为0的项为极大项;7.n个变元共有n2个极小项或极大项,这n2为(0~n2-1)刚好为化简完后的主析取加主合取;8.永真式没有主合取范式,永假式没有主析取范式;9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假)10.命题逻辑的推理演算方法:P规则,T规则①真值表法;②直接证法;③归谬法;④附加前提法;第三章谓词逻辑1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质;多元谓词:谓词有n个个体,多元谓词描述个体之间的关系;2.全称量词用蕴含→,存在量词用合取^;3.既有存在又有全称量词时,先消存在量词,再消全称量词;第四章集合1.N,表示自然数集,1,2,3……,不包括0;2.基:集合A中不同元素的个数,|A|;3.幂集:给定集合A,以集合A的所有子集为元素组成的集合,P(A);4.若集合A有n个元素,幂集P(A)有n2个元素,|P(A)|=||2A=n2;5.集合的分划:(等价关系)①每一个分划都是由集合A的几个子集构成的集合;②这几个子集相交为空,相并为全(A);6.集合的分划与覆盖的比较:分划:每个元素均应出现且仅出现一次在子集中;覆盖:只要求每个元素都出现,没有要求只出现一次;第五章关系1.若集合A有m个元素,集合B有n个元素,则笛卡尔A×B的基数2种不同的关系;为mn,A到B上可以定义mn2.若集合A有n个元素,则|A×A|=2n,A上有22n个不同的关系;3.全关系的性质:自反性,对称性,传递性;空关系的性质:反自反性,反对称性,传递性;全封闭环的性质:自反性,对称性,反对称性,传递性;4.前域(domR):所有元素x组成的集合;后域(ranR):所有元素y组成的集合;5.自反闭包:r(R)=RUI;x对称闭包:s(R)=RU1-R;传递闭包:t(R)=RU2R U3R U……6.等价关系:集合A上的二元关系R满足自反性,对称性和传递性,则R称为等价关系;7.偏序关系:集合A上的关系R满足自反性,反对称性和传递性,则称R是A上的一个偏序关系;8.covA={<x,y>|x,y属于A,y盖住x};9.极小元:集合A中没有比它更小的元素(若存在可能不唯一);极大元:集合A中没有比它更大的元素(若存在可能不唯一);最小元:比集合A中任何其他元素都小(若存在就一定唯一);最大元:比集合A中任何其他元素都大(若存在就一定唯一);10.前提:B是A的子集上界:A中的某个元素比B中任意元素都大,称这个元素是B的上界(若存在,可能不唯一);下界:A中的某个元素比B中任意元素都小,称这个元素是B的下界(若存在,可能不唯一);上确界:最小的上界(若存在就一定唯一);下确界:最大的下界(若存在就一定唯一);第六章函数2种不同的关系,有m n种不同的函数;1.若|X|=m,|Y|=n,则从X到Y有mn2.在一个有n个元素的集合上,可以有22n种不同的关系,有n n种不同的函数,有n!种不同的双射;3.若|X|=m,|Y|=n,且m<=n,则从X到Y有A m n种不同的单射;4.单射:f:X-Y,对任意x,2x属于X,且1x≠2x,若f(1x)≠f(2x);1满射:f:X-Y,对值域中任意一个元素y在前域中都有一个或多个元素对应;双射:f:X-Y,若f既是单射又是满射,则f是双射;5.复合函数:fºg=g(f(x));6.设函数f:A-B,g:B-C,那么①如果f,g都是单射,则fºg也是单射;②如果f,g都是满射,则fºg也是满射;③如果f,g都是双射,则fºg也是双射;④如果fºg是双射,则f是单射,g是满射;第七章代数系统1.二元运算:集合A上的二元运算就是2A到A的映射;2. 集合A上可定义的二元运算个数就是从A×A到A上的映射的个数,即从从A×A到A上函数的个数,若|A|=2,则集合A上的二元运算的个数为2*22=42=16种;3. 判断二元运算的性质方法:①封闭性:运算表内只有所给元素;②交换律:主对角线两边元素对称相等;③幂等律:主对角线上每个元素与所在行列表头元素相同;④有幺元:元素所对应的行和列的元素依次与运算表的行和列相同;⑤有零元:元素所对应的行和列的元素都与该元素相同;4.同态映射:<A,*>,<B,^>,满足f(a*b)=f(a)^f(b),则f为由<A,*>到<B,^>的同态映射;若f是双射,则称为同构;第八章群1.广群的性质:封闭性;半群的性质:封闭性,结合律;含幺半群(独异点):封闭性,结合律,有幺元;群的性质:封闭性,结合律,有幺元,有逆元;2.群没有零元;3.阿贝尔群(交换群):封闭性,结合律,有幺元,有逆元,交换律;4.循环群中幺元不能是生成元;5.任何一个循环群必定是阿贝尔群;第十章格与布尔代数1.格:偏序集合A中任意两个元素都有上、下确界;2.格的基本性质:1) 自反性a≤a 对偶: a≥a2) 反对称性a≤b ^ b≥a => a=b对偶:a≥b ^ b≤a => a=b3) 传递性a≤b ^ b≤c => a≤c对偶:a≥b ^ b≥c => a≥c4) 最大下界描述之一a^b≤a 对偶avb≥aA^b≤b 对偶avb≥b5)最大下界描述之二c≤a,c≤b => c≤a^b对偶c≥a,c≥b =>c≥avb6) 结合律a^(b^c)=(a^b)^c对偶av(bvc)=(avb)vc7) 等幂律a^a=a 对偶ava=a8) 吸收律a^(avb)=a 对偶av(a^b)=a9) a≤b <=> a^b=a avb=b10) a≤c,b≤d => a^b≤c^d avb≤cvd11) 保序性b≤c => a^b≤a^c avb≤avc12)分配不等式av(b^c)≤(avb)^(avc)对偶a^(bvc)≥(a^b)v(a^c)13)模不等式a≤c <=>av(b^c)≤(avb)^c3.分配格:满足a^(bvc)=(a^b)v(a^c)和av(b^c)=(avb)^(avc);4.分配格的充要条件:该格没有任何子格与钻石格或五环格同构;5.链格一定是分配格,分配格必定是模格;6.全上界:集合A中的某个元素a大于等于该集合中的任何元素,则称a为格<A,<=>的全上界,记为1;(若存在则唯一)全下界:集合A中的某个元素b小于等于该集合中的任何元素,则称b为格<A,<=>的全下界,记为0;(若存在则唯一)7.有界格:有全上界和全下界的格称为有界格,即有0和1的格;8.补元:在有界格内,如果a^b=0,avb=1,则a和b互为补元;9.有补格:在有界格内,每个元素都至少有一个补元;10.有补分配格(布尔格):既是有补格,又是分配格;11.布尔代数:一个有补分配格称为布尔代数;第十一章图论1.邻接:两点之间有边连接,则点与点邻接;2.关联:两点之间有边连接,则这两点与边关联;3.平凡图:只有一个孤立点构成的图;4.简单图:不含平行边和环的图;5.无向完全图:n个节点任意两个节点之间都有边相连的简单无向图;有向完全图:n个节点任意两个节点之间都有边相连的简单有向图;6.无向完全图有n(n-1)/2条边,有向完全图有n(n-1)条边;7.r-正则图:每个节点度数均为r的图;8.握手定理:节点度数的总和等于边的两倍;9.任何图中,度数为奇数的节点个数必定是偶数个;10.任何有向图中,所有节点入度之和等于所有节点的出度之和;11.每个节点的度数至少为2的图必定包含一条回路;12.可达:对于图中的两个节点v,j v,若存在连接i v到j v的路,则称i vi与v相互可达,也称i v与j v是连通的;在有向图中,若存在i v到j v的j路,则称v到j v可达;i13.强连通:有向图章任意两节点相互可达;单向连通:图中两节点至少有一个方向可达;弱连通:无向图的连通;(弱连通必定是单向连通)14.点割集:删去图中的某些点后所得的子图不连通了,如果删去其他几个点后子图之间仍是连通的,则这些点组成的集合称为点割集;割点:如果一个点构成点割集,即删去图中的一个点后所得子图是不连通的,则该点称为割点;15.关联矩阵:M(G),m是i v与j e关联的次数,节点为行,边为列;ij无向图:点与边无关系关联数为0,有关系为1,有环为2;有向图:点与边无关系关联数为0,有关系起点为1终点为-1,关联矩阵的特点:无向图:①行:每个节点关联的边,即节点的度;②列:每条边关联的节点;有向图:③所有的入度(1)=所有的出度(0);16.邻接矩阵:A(G),a是i v邻接到j v的边的数目,点为行,点为列;ij17.可达矩阵:P(G),至少存在一条回路的矩阵,点为行,点为列;P(G)=A(G)+2A(G)+3A(G)+4A(G)可达矩阵的特点:表明图中任意两节点之间是否至少存在一条路,以及在任何节点上是否存在回路;A(G)中所有数的和:表示图中路径长度为1的通路条数;2A(G)中所有数的和:表示图中路径长度为2的通路条数;3A(G)中所有数的和:表示图中路径长度为3的通路条数;4A(G)中所有数的和:表示图中路径长度为4的通路条数;P(G)中主对角线所有数的和:表示图中的回路条数;18.布尔矩阵:B(G),v到j v有路为1,无路则为0,点为行,点为列;i19.代价矩阵:邻接矩阵元素为1的用权值表示,为0的用无穷大表示,节点自身到自身的权值为0;20.生成树:只访问每个节点一次,经过的节点和边构成的子图;21.构造生成树的两种方法:深度优先;广度优先;深度优先:①选定起始点v;②选择一个与v邻接且未被访问过的节点1v;③从v出发按邻接方向继续访问,当遇到一个节点所1有邻接点均已被访问时,回到该节点的前一个点,再寻求未被访问过的邻接点,直到所有节点都被访问过一次;广度优先:①选定起始点v;②访问与v邻接的所有节点1v,2v,……,k v,这些作为第一层节点;③在第一层节点中选定一个节点v为起点;1④重复②③,直到所有节点都被访问过一次;22.最小生成树:具有最小权值(T)的生成树;23.构造最小生成树的三种方法:克鲁斯卡尔方法;管梅谷算法;普利姆算法;(1)克鲁斯卡尔方法①将所有权值按从小到大排列;②先画权值最小的边,然后去掉其边值;重新按小到大排序;③再画权值最小的边,若最小的边有几条相同的,选择时要满足不能出现回路,然后去掉其边值;重新按小到大排序;④重复③,直到所有节点都被访问过一次;(2)管梅谷算法(破圈法)①在图中取一回路,去掉回路中最大权值的边得一子图;②在子图中再取一回路,去掉回路中最大权值的边再得一子图;③重复②,直到所有节点都被访问过一次;(3)普利姆算法①在图中任取一点为起点v,连接边值最小的邻接点2v;1②以邻接点v为起点,找到2v邻接的最小边值,如果最小边值2比v邻接的所有边值都小(除已连接的边值),直接连接,否则退回1v,1连接v现在的最小边值(除已连接的边值);1③重复操作,直到所有节点都被访问过一次;24.关键路径例2 求PERT图中各顶点的最早完成时间, 最晚完成时间, 缓冲时间及关键路径.解:最早完成时间TE(v1)=0TE(v2)=max{0+1}=1TE(v3)=max{0+2,1+0}=2TE(v4)=max{0+3,2+2}=4TE(v5)=max{1+3,4+4}=8TE(v6)=max{2+4,8+1}=9TE(v7)=max{1+4,2+4}=6TE(v8)=max{9+1,6+6}=12 最晚完成时间TL(v8)=12TL(v7)=min{12-6}=6TL(v6)=min{12-1}=11TL(v5)=min{11-1}=10TL(v4)=min{10-4}=6TL(v3)=min{6-2,11-4,6-4}=2TL(v2)=min{2-0,10-3,6-4}=2TL(v1)=min{2-1,2-2,6-3}=0 缓冲时间TS(v1)=0-0=0TS(v2)=2-1=1TS(v3)=2-2=0TS(v4)=6-4=2TS(v5=10-8=2TS(v6)=11-9=2TS(v7)=6-6=0TS(v8)=12-12=0关键路径: v1-v3-v7-v825.欧拉路:经过图中每条边一次且仅一次的通路;欧拉回路:经过图中每条边一次且仅一次的回路;欧拉图:具有欧拉回路的图;单向欧拉路:经过有向图中每条边一次且仅一次的单向路;欧拉单向回路:经过有向图中每条边一次且仅一次的单向回路;26.(1)无向图中存在欧拉路的充要条件:①连通图;②有0个或2个奇数度节点;(2)无向图中存在欧拉回路的充要条件:①连通图;②所有节点度数均为偶数;(3)连通有向图含有单向欧拉路的充要条件:①除两个节点外,每个节点入度=出度;②这两个节点中,一个节点的入度比出度多1,另一个节点的入;度比出度少1;(4)连通有向图含有单向欧拉回路的充要条件:图中每个节点的出度=入度;27.哈密顿路:经过图中每个节点一次且仅一次的通路;哈密顿回路:经过图中每个节点一次且仅一次的回路;哈密顿图:具有哈密顿回路的图;28.判定哈密顿图(没有充要条件)必要条件:任意去掉图中n个节点及关联的边后,得到的分图数目小于等于n;充分条件:图中每一对节点的度数之和都大于等于图中的总节点数;29.哈密顿图的应用:安排圆桌会议;方法:将每一个人看做一个节点,将每个人与和他能交流的人连接,找到一条经过每个节点一次且仅一次的回路(哈密顿图),即可;30.平面图:将图形的交叉边进行改造后,不会出现边的交叉,则是平面图;31.面次:面的边界回路长度称为该面的次;32.一个有限平面图,面的次数之和等于其边数的两倍;33.欧拉定理:假设一个连通平面图有v个节点,e条边,r个面,则v-e+r=2;34.判断是平面图的必要条件:(若不满足,就一定不是平面图)设图G是v个节点,e条边的简单连通平面图,若v>=3,则e<=3v-6;35.同胚:对于两个图G1,G2,如果它们是同构的,或者通过反复插入和除去2度节点可以变成同构的图,则称G1,G2是同胚的;36.判断G是平面图的充要条件:图G不含同胚于K3.3或K5的子图;37.二部图:①无向图的节点集合可以划分为两个子集V1,V2;②图中每条边的一个端点在V1,另一个则在V2中;完全二部图:二部图中V1的每个节点都与V2的每个节点邻接;判定无向图G为二部图的充要条件:图中每条回路经过边的条数均为偶数;38.39.树:具有n个顶点n-1条边的无回路连通无向图;40.节点的层数:从树根到该节点经过的边的条数;41.42.树高:层数最大的顶点的层数;43.二叉树:①二叉树额基本结构状态有5种;②二叉树内节点的度数只考虑出度,不考虑入度;③二叉树内树叶的节点度数为0,而树内树叶节点度数为1;④二叉树内节点的度数=边的总数(只算出度);握手定理“节点数=边的两倍”是在同时计算入度和出度的时成立;⑤二叉树内节点的总数=边的总数+1;⑥位于二叉树第k层上的节点,最多有12 k个(k>=1);⑦深度为k的二叉树的节点总数最多为k2-1个,最少k个(k>=1);⑧如果有n个叶子,2n个2度节点,则0n=2n+1;42.二叉树的节点遍历方法:先根顺序(DLR);中根顺序(LDR);后根顺序(LRD);43.哈夫曼树:用哈夫曼算法构造的最优二叉树;44.最优二叉树的构造方法:①将给定的权值按从小到大排序;②取两个最小值分支点的左右子树(左小右大),去掉已选的这两个权值,并将这两个最小值加起来作为下一轮排序的权值;③重复②,直达所有权值构造完毕;45.哈夫曼编码:在最优二叉树上,按照左0右1的规则,用0和1代替所有边的权值;每个节点的编码:从根到该节点经过的0和1组成的一排编码;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Discrete Mathematics Lecture NotesChapter11:Graph TheoryScribe:Denis TchaouchevDecember11,20171Definitions•A graph is a collection of nodes,vertices,and edges.–In a directed graph(digraph)↵={a,b}={b,a}= •A walk is a sequence of alternating vertices and edges.•A trail is a walk with no repeated vertices.•A circuit is a closed trail(starts and stops at the same place).•A Eulerian circuit is a circuit containing every edge.•A Eulerian trail is a trail containing every edge.•A Eulerian graph is a graph containing a Eulerian circuit.Figure1:Examples of Eulerian Circuits(Wendy Sparks)12Konigsberg Bridge ProblemFigure2:The Konigsberg Bridge ProblemThe Konigsberg Bridge Problem asks if it is possible tofind a route,be-ginning at any location,that crosses every bridge and returns to its original starting point.Think of the bridges as edges and the land as vertices.Euler’s Theorem:A connected(9a path between every vertex)undirected graph G has a Eulerian circuit if and only if every vertex in G has an even degree.G has a Eulerian trail if and only if G has exactly two vertices of odd degree. 3Travelling Salesman ProblemFigure3:Examples of Hamiltonian cirucit/path(Robert Almazan)•A Hamiltonian circuit is a circuit that visits each vertex at least once.•A Hamiltonian trail is a trail that visits each vertex at least once.2Theorem:If G is a simple connected graph with n 3vertices and if the degree of each vertex is greater than n 2,then G has a Hamiltonian circuit.It is more di cult to find Hamiltonian circuits/trails than Euler circuits/trails.•A weighted graph is a graph G (v,E,w )such that w ⇤E !R where w (e )is the weight.The weight is the ”cost”to travel from one vertex to another.Figure 4:Sample TSP (Wikimedia Commons)The Travelling Salesman Problem:A travelling salesperson wants to find the quickest way to visit n di ↵erent cities and return to the starting city.In other words,how can the minimum cost Hamiltonian circuit be found?Look at cycles.How many Hamiltonian circuits exist for a connected graph k n ?There are P (n,n )=n !ways to pick starting node and choose paths back-to back.How-ever,we must divide this by n because the path contains n cycles.So there are n !n =(n 1)!2Hamiltonian circuits on k n .As of now there is no e cient solution,every possible path needs to be enumerated to guarantee that a path is the fastest.This is an example of an NP-hard problem,or a problem whose solution can be verified in polynomial time.It is unknown whether the problem is in P ,or the set of problems that can be solved in polynomial time.If the problem were not in P it would imply that P =NP .If one were to find a polynomial time solution to TSP it would imply that P =NPWe saw one example of a polynomial time algorithm and solution that can be verified in polynomial time with the method of computing a determinant via Gaussian elimination.This can be done in cubic time using two subroutines,elimination,and backsubstitution since the determinant of an upper triangular matrix is the same as the determinant of the original matrix.Leibniz’s formula sums over all permutations in S n but the problem can be solved in polynomial time,not factorial time.The solution can also be verified in polynomial time3by checking that the value of x satisfies Ax=b.What is unclear is whether there exists a polynomial time solution to the travelling salesman problem that avoids enumerating all Hamiltonian circuits.4Trees and Cayley’s Formula•A tree is an undirected graph in which any2vertices are connected by exactly one edge.Figure5:A tree•A spanning tree is a subgraph that includes all vertices with the mini-mum number of edges.Can be found using Djikstra’s algorithm.Figure6:A spanning tree(Wikimedia Commons Cayley’s Formula:For every positive integer n,the number of trees on n labeled vertices is n n 2Proof(Summary of Prufer):Let N={1,2,...,n}be the set of nodes in a tree.The number of paths of length n 2in N is n n 2,so we mustfind a bijection between this set and the set of trees on n labeled vertices to show that there are n n 2trees.To map a labeled tree into a sequence of length n 2,continuously remove the lowest vertex until only two are left,while adding each vertex to a list as it is removed.4To map a sequence to a labelled tree,find the smallest number in N that is not in the sequence and attach its vertex it to the vertex of thefirst number in the sequence,then remove thefirst number in the sequence.Repeat until there are no numbers left in the sequence.This will reconstruct a tree from the sequenceSince each sequence can be mapped to a labelled tree and vice versa,there is a bijection between the set of sequences of length n 2and the number of trees on n labelled vertices.5Planar GraphsFigure7:A planar graphIs there a way to draw a same graph(same vertices)without any edges cross-ing?A simple connected graph is planar if it can be drawn without any edges crossing.The drawing is called an embedding.A graph is bipartite if it can be partitioned into two disjoint sets S1,S2 such that for every edge,the endpoint e1is in S1and e2is in S2.Figure8:Bipartite graphs(Wolfram MathWorld) Euler’s Theorem of Graphs:If G is a connected planar graph with r regions,v vertices,and e edges,then v+r=e+2.Proof:By induction.Base case v=1,r=1,e=0.So1+1=0+2!2=2. Inductive Step:e=k edges,assume v+r=e+2holds.Show for k+1edge. Two cases:51.Both vertices that the new edge is incident to are already on graph,so anew region is formed.v+(r+1)=(e+1)+2.Since we assume v+r=e+2 true,this holds.2.A new pendant vertex(by itself)is formed,with a new edge,but no newregion.(v+1)+r=(e+1)+2.Since we assume v+r=e+2true,this holds as well.6。

相关文档
最新文档