动态规划一PPT
合集下载
动态规划-例题众多-详细讲解演示课件.ppt
..........
15
拓展2:低价购买
“低价购买”这条建议是在奶牛股票市场取得成功的一半规则。要想被认为是伟
大的投资者,你必须遵循以下的问题建议:“低价购买;再低价购买”。每次你购买
一支股票,你必须用低于你上次购买它的价格购买它。买的次数越多越好!你的目标
是在遵循以上建议的前提下,求你最多能购买股票的次数。你将被给出一段时间内
为这些子问题做索引 ,以便它们能够在表中更好的存储
与检索 (i.e., 数组array【】)
以自底向上的方法来填写这表格; 首先填写最小子问题 的解.
这就保证了当我们解决一个特殊的子问题时, 可以利 用比它更小的所有可利用的 子问题的解.
由于历史原因, 我们称这种方法为:
动态规划.
在上世纪40年代末 (计算机普及很少时),
棋盘用坐标表示,A 点(0,0)、B 点(n,m)(n,m 为 不超过 20 的整数,并由键盘输入),同样马的位置坐标 是需要给出的(约定: C<>A,同时C<>B)。现在要求 你计算出卒从 A 点能够到达 B 点的路径的条数。 [输入]: 键盘输入
B点的坐标(n,m)以及对方马的坐标(X,Y){不用盘错} [输出]:
案被认为是相同的。
..........
16
拓展3:合唱队形 (vijis1098)
N位同学站成一排,音乐老师要请其中的(N-K)位同学出 列,使得剩下的K位同学排成合唱队形。
合唱队形是指这样的一种队形:设K位同学从左到右依 次编号为1,2…,K,他们的身高分别为T1,T2,…,TK , 则他们的身高满足T1<...<Ti>Ti+1>…>TK(1<=i<=K)。
动态规划算法教学PPT
03
动态规划算法的实现步骤
明确问题,建立数学模型
1
确定问题的目标和约束条件,将其转化为数学模 型。
2
理解问题的阶段划分,将问题分解为若干个子问 题。
3
确定状态变量和决策变量,以便描述子问题的状 态和决策。
划分阶段,确定状态变量和决策变量
01
根据问题的阶段划分,将问题分解为若干个子问题。
02
确定状态变量和决策变量,以便描述子问题的状态 和决策。
02
将子问题的最优解组合起来,得到原问题的最优解。
对最优解进行验证和性能评估,确保其满足问题的要求。
03
04
动态规划算法的优化技巧
分支定界法
分支定界法是一种求解优化问题的算 法,它通过不断生成问题的分支并确 定每个分支的界限,来寻找最优解。 在动态规划中,分支定界法可以用来 优化状态转移方程,减少计算量。
详细描述
多目标规划问题在实际生活中应用广泛,如资源分配、项目计划、城市规划等领 域都有涉及。常用的求解多目标规划的方法包括权重和法、帕累托最优解等。
多阶段决策问题
总结词
多阶段决策问题是动态规划中的一类,解决的问题需要在多个阶段做出决策,每个阶段的决策都会影响到后续阶 段的决策。
详细描述
多阶段决策问题在实际生活中应用广泛,如生产计划、库存管理、路径规划等领域都有涉及。常用的求解多阶段 决策问题的方法包括递归法、动态规划等。
特点
动态规划算法具有最优子结构、重叠 子问题和最优解性质等特征。
动态规划算法的应用领域
计算机科学
在计算机科学中,动态规划算法广泛应用于字符 串处理、排序、数据压缩和机器学习等领域。
电子工程
在电子工程中,动态规划算法用于信号处理、通 信和控制系统等领域。
《动态规划》课件
《动态规划》ppt课 件
xx年xx月xx日
• 动态规划概述 • 动态规划的基本概念 • 动态规划的求解方法 • 动态规划的应用实例 • 动态规划的优化技巧 • 动态规划的总结与展望
目录
01
动态规划概述
定义与特点
定义
动态规划是一种通过将原问题分解为 相互重叠的子问题,并存储子问题的 解以避免重复计算的方法。
特点
动态规划适用于具有重叠子问题和最 优子结构的问题,通过将问题分解为 子问题,可以找到最优解。
动态规划的适用范围
最优化问题
01
动态规划适用于解决最优化问题,如最大/最小化问题、决策问
题等。
子问题重叠
02
动态规划适用于子问题重叠的情况,即子问题之间存在共享状
态或参数。
递归关系
03
动态规划适用于具有递归关系的问题,可以通过递归方式求解
机器调度问题
总结词
动态规划可以应用于机器调度问题,以确定最优的调度方案,满足生产需求并降低成本 。
详细描述
机器调度问题是一个经典的优化问题,涉及到如何分配任务到机器上,以最小化成本或 最大化效率。通过动态规划,可以将机器调度问题分解为一系列子问题,如确定每个任 务的调度顺序、分配机器等,并逐个求解子问题的最优解,最终得到整个调度方案的最
VS
详细描述
记忆化搜索法是一种优化技术,通过存储 已解决的子问题的解,避免重复计算,提 高求解效率。这种方法适用于子问题数量 较少且相互独立的情况。
04
动态规划的应用实例
最短路径问题
总结词
通过动态规划解决最短路径问题,可以找到 从起点到终点的最短路径。
详细描述
在图论中,最短路径问题是一个经典的优化 问题,旨在找到从起点到终点之间的一条路 径,使得路径上的所有边的权重之和最小。 动态规划是一种有效的解决方法,通过将问 题分解为子问题并存储子问题的解,避免了 重复计算,提高了求解效率。
xx年xx月xx日
• 动态规划概述 • 动态规划的基本概念 • 动态规划的求解方法 • 动态规划的应用实例 • 动态规划的优化技巧 • 动态规划的总结与展望
目录
01
动态规划概述
定义与特点
定义
动态规划是一种通过将原问题分解为 相互重叠的子问题,并存储子问题的 解以避免重复计算的方法。
特点
动态规划适用于具有重叠子问题和最 优子结构的问题,通过将问题分解为 子问题,可以找到最优解。
动态规划的适用范围
最优化问题
01
动态规划适用于解决最优化问题,如最大/最小化问题、决策问
题等。
子问题重叠
02
动态规划适用于子问题重叠的情况,即子问题之间存在共享状
态或参数。
递归关系
03
动态规划适用于具有递归关系的问题,可以通过递归方式求解
机器调度问题
总结词
动态规划可以应用于机器调度问题,以确定最优的调度方案,满足生产需求并降低成本 。
详细描述
机器调度问题是一个经典的优化问题,涉及到如何分配任务到机器上,以最小化成本或 最大化效率。通过动态规划,可以将机器调度问题分解为一系列子问题,如确定每个任 务的调度顺序、分配机器等,并逐个求解子问题的最优解,最终得到整个调度方案的最
VS
详细描述
记忆化搜索法是一种优化技术,通过存储 已解决的子问题的解,避免重复计算,提 高求解效率。这种方法适用于子问题数量 较少且相互独立的情况。
04
动态规划的应用实例
最短路径问题
总结词
通过动态规划解决最短路径问题,可以找到 从起点到终点的最短路径。
详细描述
在图论中,最短路径问题是一个经典的优化 问题,旨在找到从起点到终点之间的一条路 径,使得路径上的所有边的权重之和最小。 动态规划是一种有效的解决方法,通过将问 题分解为子问题并存储子问题的解,避免了 重复计算,提高了求解效率。
第8章 动态规划《管理运筹学》PPT课件
Vk,n (sk , uk , , sn1) fk [sk , uk ,Vk 1,n (sk 1, uk 1, , 1)] ③函数 fk (sk , uk ,Vk 1,n ) 对于变量 Vk1,n 要严格单调。
8.2 动态规划模型建立
下面以投资问题为例介绍动态规划的建模条件。
【例8-2】 某公司现有资金20万元,若投资于三个
8.1 动态规划基础知识
(5)状态转移方程:状态转移方程是确定过程由一
个状态转移到另一个状态的演变过程。动态规划中某一状
态以及该状态下的决策,与下一状态之间具有一定的函数
关系,称这种函数关系的表达式为状态转移方程。如果第
k段的状态为 sk ,该阶段的决策为
的状态就可以用下式来表示:
uk
sk
,则第k+1段
阶段的指标函数,是该阶段最优的指标函数。
8.2 动态规划模型建立
建立动态规划模型,就是在分析实际问题的基础上建 立该问题的动态规划基本方程。成功地应用动态规划方法 的关键,在于识别问题的多阶段特征,将问题分解成为可 用递推关系式联系起来的若干子问题,或者说正确地建立 具体问题的基本方程,这需要经验与技巧。而正确建立基 本递推关系方程的关键又在于正确选择状态变量,保证各 阶段的状态变量具有递推的状态转移关系。
第8章 动态规划
动态规划(DYnamic Programming,缩写为DP)方法 ,是本世纪50年代初期由美国数学家贝尔曼(Richard E ,Bellman)等人提出,后来逐渐发展起来的数学分支, 它是一种解决多阶段决策过程最优化问题的数学规划法 。动态规划的数学模型和求解方法比较灵活,对于连续 的或离散的,线性的或非线性的,确定性的或随机性的 模型,只要能构成多阶段决策过程,便可用动态规划方 法求其最优解。因而在自然科学、社会科学、工程技术 等许多领域具有广泛的用途,甚至一定程度上比线性规 划(LP)、非线性规划(NLP)有成效,特别是对于某 些离散型问题,解析数学无法适用,动态规划方法就成 为非常有用的求解工具。
8.2 动态规划模型建立
下面以投资问题为例介绍动态规划的建模条件。
【例8-2】 某公司现有资金20万元,若投资于三个
8.1 动态规划基础知识
(5)状态转移方程:状态转移方程是确定过程由一
个状态转移到另一个状态的演变过程。动态规划中某一状
态以及该状态下的决策,与下一状态之间具有一定的函数
关系,称这种函数关系的表达式为状态转移方程。如果第
k段的状态为 sk ,该阶段的决策为
的状态就可以用下式来表示:
uk
sk
,则第k+1段
阶段的指标函数,是该阶段最优的指标函数。
8.2 动态规划模型建立
建立动态规划模型,就是在分析实际问题的基础上建 立该问题的动态规划基本方程。成功地应用动态规划方法 的关键,在于识别问题的多阶段特征,将问题分解成为可 用递推关系式联系起来的若干子问题,或者说正确地建立 具体问题的基本方程,这需要经验与技巧。而正确建立基 本递推关系方程的关键又在于正确选择状态变量,保证各 阶段的状态变量具有递推的状态转移关系。
第8章 动态规划
动态规划(DYnamic Programming,缩写为DP)方法 ,是本世纪50年代初期由美国数学家贝尔曼(Richard E ,Bellman)等人提出,后来逐渐发展起来的数学分支, 它是一种解决多阶段决策过程最优化问题的数学规划法 。动态规划的数学模型和求解方法比较灵活,对于连续 的或离散的,线性的或非线性的,确定性的或随机性的 模型,只要能构成多阶段决策过程,便可用动态规划方 法求其最优解。因而在自然科学、社会科学、工程技术 等许多领域具有广泛的用途,甚至一定程度上比线性规 划(LP)、非线性规划(NLP)有成效,特别是对于某 些离散型问题,解析数学无法适用,动态规划方法就成 为非常有用的求解工具。
运筹学教材课件(第四章动态规划)
最优解的存在性
对于多阶段决策问题,如果每个 阶段的决策空间是有限的,则存 在最优解。
最优解的唯一性
对于某些多阶段决策问题,可能 存在多个最优解。在这种情况下, 我们需要进一步分析问题的性质 和约束条件,以确定最优解的个 数和性质。
最优解的稳定性
在某些情况下,最优解可能受到 参数变化的影响。我们需要分析 最优解的稳定性,以确保最优解 在参数变化时仍然保持最优。
VS
详细描述
排序问题可以分为多种类型,如冒泡排序 、快速排序、归并排序等。动态规划可以 通过将问题分解为子问题,逐一求解最优 解,最终得到全局最优解。在排序问题中 ,动态规划可以应用于求解最小化总成本 、最大化总效益等问题。
04
动态规划的求解方法
逆推法
逆推法
从问题的目标状态出发,逆向推算出达到目标状态的 最优决策,直到达到初始状态为止。
案例二:投资组合优化问题
要点一
总结词
要点二
详细描述
投资组合优化问题是动态规划在金融领域的重要应用,通 过合理配置资产,降低投资风险并提高投资收益。
投资组合优化问题需要考虑市场走势、资产特性、风险偏 好等多种因素,通过动态规划的方法,可以确定最优的投 资组合,使得投资者在风险可控的前提下,实现收益最大 化。
详细描述
在背包问题中,给定一组物品,每个物品都有一定的重量和价值,要求在不超过背包容量的限制下, 选择总价值最大的物品组合。通过动态规划的方法,可以将背包问题分解为一系列子问题,逐一求解 最优解。
排序问题
总结词
排序问题是动态规划应用的另一个重要 领域,主要涉及到将一组元素按照一定 的顺序排列,以达到最优的目标。
本最小化和效率最大化。
感谢您的观看
动态规划讲解+例子ppt课件
航天飞机飞行控制问题:由于航天飞机的运动的环境是不断变化的,因此就要 根据航天飞机飞行在不同环境中的情况,不断地决定航天飞机的飞行方向和速 度(状态),使之能最省燃料和完成飞行任务(如软着陆)。
5
多阶段决策过程的特点:
• 根据过程的特性可以将过程按空间、时间等标志分为若干个互相联系又
互相区别的阶段。
6 6
E3
F1 4
G 3 F2
4
5
63
背包问题 有一个徒步旅行者,其可携带物品重量的限度为a 公斤,设有n 种物品可供他选择装入包中。已知每种物品的重量及使用价值(作用),问此 人应如何选择携带的物品(各几件),使所起作用(使用价值)最大?
物品
12…j…n
重量(公斤/件) a1 a2 … aj … an 每件使用价值 c1 c2 … cj … cn
112
2
B1
10
14
A
5
B2 610
1
4
13
B3
12 11
C1 3
9 6
C2 5
8
C3 10
D1 5 E
2
D2
8
112
2
B1
10
14
A
5
B2 610
1
4
13
B3
12 11
C1 3
9 6
C2 5
8
C3 10
D1 5
2
D2
解:整个计算过程分四个阶段,从最后一个阶段开始。
第四阶段(D →E): D 有两条路线到终点E 。
学习动态规划,我们首先要了解多阶段决策问题。
2
最短路径问题:给定一个交通网络图如下,其中两点之间的数字表示距离 (或运费),试求从A点到G点的最短距离(总运输费用最小)。
5
多阶段决策过程的特点:
• 根据过程的特性可以将过程按空间、时间等标志分为若干个互相联系又
互相区别的阶段。
6 6
E3
F1 4
G 3 F2
4
5
63
背包问题 有一个徒步旅行者,其可携带物品重量的限度为a 公斤,设有n 种物品可供他选择装入包中。已知每种物品的重量及使用价值(作用),问此 人应如何选择携带的物品(各几件),使所起作用(使用价值)最大?
物品
12…j…n
重量(公斤/件) a1 a2 … aj … an 每件使用价值 c1 c2 … cj … cn
112
2
B1
10
14
A
5
B2 610
1
4
13
B3
12 11
C1 3
9 6
C2 5
8
C3 10
D1 5 E
2
D2
8
112
2
B1
10
14
A
5
B2 610
1
4
13
B3
12 11
C1 3
9 6
C2 5
8
C3 10
D1 5
2
D2
解:整个计算过程分四个阶段,从最后一个阶段开始。
第四阶段(D →E): D 有两条路线到终点E 。
学习动态规划,我们首先要了解多阶段决策问题。
2
最短路径问题:给定一个交通网络图如下,其中两点之间的数字表示距离 (或运费),试求从A点到G点的最短距离(总运输费用最小)。
动态规划(完整)ppt课件
3
• Ⅲ --Ⅳ :
B1—C1—T
4
• Ⅱ--Ⅲ--Ⅳ :A2—B1—C1—T
7
• Ⅰ--Ⅱ--Ⅲ --Ⅳ:
•
Q—A2—B1—C1—T
11
•
Q--A3—B1—C1—T
11
•
Q--A3—B2—C2—T
11
最新版整理ppt
3
最短路径
11
4
7
A1
4
2
6
11
47
3 2
Q
A2
4
B1
1
4 76
3
C1
3
B2 3
最新版整理ppt
16
(4)策略和允许策略集合
策略(Policy)也叫决策序列.策略有全过程 策略和 k 部子策略之分,全过程策略是指具 有n 个阶段的全部过程,由依次进行的 n 个 阶段决策构成的决策序列,简称策略,表示
为 p1,n{x1,x2, ,xn}。从 k 阶段到第 n 阶段,
依次进行的阶段决策构成的决策序列称为 k
新分支的创立。
最新版整理ppt
6
• 动态规划将复杂的多阶段决策问题分解为 一系列简单的、离散的单阶段决策问题, 采用顺序求解方法, 通过解一系列小问题 达到求解整个问题目的;
• 动态规划的各个决策阶段不但要考虑本阶 段的决策目标, 还要兼顾整个决策过程的 整体目标, 从而实现整体最优决策.
最新版整理ppt
第七章 动态规划
主要内容:
§7.1多阶段决策问题 §7.2 动态规划的基本概念和基本原理 §7.3 动态规划应用举例
最新版整理ppt
1
例 求解最短路问题
2
Q
4
第6章_动态规划ppt课件
第三部分 动态规划
第一章 动态规划的基本方法 §1 动态规划的研究对象
特征:包含有随时同变化的因素和变量,整个 过程可以分为若干个相互联系的阶段,而且每个 阶段都要做出决策。
PPT学习交流
1
应用:
企业管理:动态规划可以用来解决最优路径问题、资源 分配问题、生产调度问题、库存问题、装载问题、排序 问题、设备更新问题、生产过程最优控制问题等等。
xk(sk)Dk(sk)
PPT学习交流
10
PPT学习交流
11
在实际过程中,可供选择的策略有一定的范围,此 范围称为允许策略集合,用P表示,从允许策略集合中 找出达到最优效果的策略称为最优策略。
五、状态转移方程
在多阶段决策过程中,第k阶段到第(k+1)阶段的 演变规律,称为状态转移方程。当给定了第K阶段的状 态变量sk和决策变量xk时,根据状态转移方程,第 (k+1)阶段的状态Sk+1的值也随之而定。也就是说, sk+1将依某种函数关系与(sk,xk(sk))相对应,这种对 应关系常记为:
一个阶段包含若干个状态,描述状态的变量称为状 态变量。常用sk表示第k阶段的某一状态。所有状态 变量组成的集合,称为状态变量集合。常用Sk表示第 k阶段的状态变量集合。 三、决策和决策变量
决策就是某阶段状态给定以后,从该状态演变 到下一阶段某状态的选择。描述决策的变量,称为 决策变量。常用xk(sk)表示第k阶段当状态处于sk时 的决策变量,在实际问题中,决策变量的取值往往 限制在某一范围内,此范围称为允许决策集合,通 常用Dk(sK)表示第k阶段的允许决策集合,显然有:
二、动态规划的基本方程 动态规划函数基本方程的一般形式为:
fk(sk)opvk( tsk,xk(sk) )fk 1(sk 1)
第一章 动态规划的基本方法 §1 动态规划的研究对象
特征:包含有随时同变化的因素和变量,整个 过程可以分为若干个相互联系的阶段,而且每个 阶段都要做出决策。
PPT学习交流
1
应用:
企业管理:动态规划可以用来解决最优路径问题、资源 分配问题、生产调度问题、库存问题、装载问题、排序 问题、设备更新问题、生产过程最优控制问题等等。
xk(sk)Dk(sk)
PPT学习交流
10
PPT学习交流
11
在实际过程中,可供选择的策略有一定的范围,此 范围称为允许策略集合,用P表示,从允许策略集合中 找出达到最优效果的策略称为最优策略。
五、状态转移方程
在多阶段决策过程中,第k阶段到第(k+1)阶段的 演变规律,称为状态转移方程。当给定了第K阶段的状 态变量sk和决策变量xk时,根据状态转移方程,第 (k+1)阶段的状态Sk+1的值也随之而定。也就是说, sk+1将依某种函数关系与(sk,xk(sk))相对应,这种对 应关系常记为:
一个阶段包含若干个状态,描述状态的变量称为状 态变量。常用sk表示第k阶段的某一状态。所有状态 变量组成的集合,称为状态变量集合。常用Sk表示第 k阶段的状态变量集合。 三、决策和决策变量
决策就是某阶段状态给定以后,从该状态演变 到下一阶段某状态的选择。描述决策的变量,称为 决策变量。常用xk(sk)表示第k阶段当状态处于sk时 的决策变量,在实际问题中,决策变量的取值往往 限制在某一范围内,此范围称为允许决策集合,通 常用Dk(sK)表示第k阶段的允许决策集合,显然有:
二、动态规划的基本方程 动态规划函数基本方程的一般形式为:
fk(sk)opvk( tsk,xk(sk) )fk 1(sk 1)
TSP问题之动态规划法PPT课件
序号 0 1 2 3 4 5 6 7
集合表示 000 001 002 003 012 013 023 123
.
11
动态规划法(一)
动态规划法: 定义:将每个子问题只求解一次,并将其解保存在一个表格中,当需要再次
求解此子问题时,只是简单地通过查表获得该子问题的解,从而避免了大量 的重复计算。 特点:最优子结构、自底向递归、子问题相互重叠。
d(0, {1, 2, 3})=min{
C01+ d(1, { 2, 3}),
3 6 7
C02+ d(2, {1, 3}), C03+ d(3, {1, 2}) }
C
(
ci j
)
这是最后一个阶段的决策,它必须依据d(1, { 2, 3})、
5 6 3
4 7
2 5
3
2
d(2, {1, 3})和d(3, {1, 2})的计算结果,而:
d(1, {2, 3})=min{C12+d(2, {3}), C13+ d(3, {2})} d(2, {1, 3})=min{C21+d(1, {3}), C23+ d(3, {1})} d(3, {1, 2})=min{C31+d(1, {2}), C32+ d(2, {1})}
继续写下去: d(1, {2})= C12+d(2, {}) d(1, {3})= C13+d(3, {})
动态规划法使用的条件:问题符合最优性原理
.
12
动态规划法(二)
最优性原理:
对于一个具有n个输入的最优化问题,其求解过程往往可以划分 为若干个阶段,每一阶段的决策仅依赖于前一阶段的状态,由决策所 采取的动作使状态发生转移,成为下一阶段决策的依据。
《动态规划》课件
《动态规划》PPT课件
动态规划(Dynamic Programming)是一种用来解决复杂问题的算法思想。
什么是动态规划
动态规划是一种将问题拆分成子问题并进行最优解比较的算法,常用于求解最优化问题。
问题模型
状态
将问题抽象成能够描述当前情况的状态。
目标
定义问题的目标,通常是最小化或最大化某 个指标。
经典面试题:爬楼梯问题
爬楼梯问题是指给定楼梯的阶数,求解爬到楼顶的不同方式的数量。
经典面试题:硬币找零问题
硬币找零问题是指给定一定面值的硬币和一个金额,找到凑出该金额的最少 硬币数。
经典面试题:最长回文子串问题
最长回文子串问题是指找到给定字符串中最长的回文子串。
实用案例:机器人找出路
机器人找出路是指给定一个迷宫,找到从起点到终点的路径。
决策
根据状态作出选择或决策。
转移方程
根据子问题的最优解推导出整体问题的最优 解。
最优子结构和重叠子问题
1 最优子结构
问题的最优解包含了子问题的最优解。
2 重叠子问题
子问题之间存在重复的计算,可以利用记 忆化存储中间结果来优化。
动态规划三部曲
1
定义状态
明确问题的状导转移方程
国王游戏问题
国王游戏问题是指在一个棋盘上放置国王,使得它们无法互相攻击。
编辑距离问题
编辑距离问题是指计算两个字符串之间转换的最小操作次数,包括插入、删 除和替换操作。
矩阵连乘问题
矩阵连乘问题是指给定一系列矩阵,找到最佳的乘法顺序,使得计算乘法的总次数最小。
最长递增子序列问题
最长递增子序列问题是指找到给定序列中最长的递增子序列的长度。
斐波那契数列问题
动态规划(Dynamic Programming)是一种用来解决复杂问题的算法思想。
什么是动态规划
动态规划是一种将问题拆分成子问题并进行最优解比较的算法,常用于求解最优化问题。
问题模型
状态
将问题抽象成能够描述当前情况的状态。
目标
定义问题的目标,通常是最小化或最大化某 个指标。
经典面试题:爬楼梯问题
爬楼梯问题是指给定楼梯的阶数,求解爬到楼顶的不同方式的数量。
经典面试题:硬币找零问题
硬币找零问题是指给定一定面值的硬币和一个金额,找到凑出该金额的最少 硬币数。
经典面试题:最长回文子串问题
最长回文子串问题是指找到给定字符串中最长的回文子串。
实用案例:机器人找出路
机器人找出路是指给定一个迷宫,找到从起点到终点的路径。
决策
根据状态作出选择或决策。
转移方程
根据子问题的最优解推导出整体问题的最优 解。
最优子结构和重叠子问题
1 最优子结构
问题的最优解包含了子问题的最优解。
2 重叠子问题
子问题之间存在重复的计算,可以利用记 忆化存储中间结果来优化。
动态规划三部曲
1
定义状态
明确问题的状导转移方程
国王游戏问题
国王游戏问题是指在一个棋盘上放置国王,使得它们无法互相攻击。
编辑距离问题
编辑距离问题是指计算两个字符串之间转换的最小操作次数,包括插入、删 除和替换操作。
矩阵连乘问题
矩阵连乘问题是指给定一系列矩阵,找到最佳的乘法顺序,使得计算乘法的总次数最小。
最长递增子序列问题
最长递增子序列问题是指找到给定序列中最长的递增子序列的长度。
斐波那契数列问题
随机动态规划ppt课件.ppt
8、随机动态方程:
fk(sk)= max {(2/3) fk+1( sk + uk )+(1/3) fk+1( sk - uk )}
uk =0,1,…,sk
k = 3,2,1
f4(s4)△= 0 1
s4 5
s4 ≥ 5
5
动态规划 Dynamic Programming(DP)
fk(sk)= max {(2/3) fk+1( sk + uk )+(1/3) fk+1( sk - uk )}
u*2
0
0
…
0
0
0
…
0
4/9 4/9
4/9
1,2
2/3 4/9 2/3 2/3
2/3
0,2,3
2/3 8/9 2/3 2/3 2/3 8/9
1
1
1
0, ≤ s3 - 57
动态规划 Dynamic Programming(DP)
u2 s2
0 1 2 3 4 ≥5
(2/3) f3( s2 + u2 )+(1/3) f3( s2 - u2 )
s3
0
1
2
3
4
f3(s3) 0
0
0
2/3
2/3
u*3 … … … 2,3 1,2,3,4
k = 2 s2 = 0,1,2,3,4,5,6
≥5 1 0,≤ s3 - 5
u2 s2
0 1 2 3 4 ≥5
(2/3) f3( s2 + u2 )+(1/3) f3( s2 - u2 )
0
1
2
3
4
《动态规划》课件
特点
动态规划具有最优子结构和重叠子问题的特点,能够通过保存已解决的子问题来避免重复计 算。
应用场景
动态规划广泛应用于路线规划、资源分配、序列匹配等问题,能够有效地解决复杂的优化和 决策问题。
动态规划的优缺点
1 优点
动态规划能够提供最优的解决方案,同时能够高效地解决问题,避免重复计算。
2 缺点
使用动态规划解决问题需要设计状态转移方程,对于复杂问题可能需要较高的思维和计 算复杂度。
《动态规划》PPT课件
欢迎来到《动态规划》PPT课件! 本课程将深入探讨动态规划的应用和技巧, 帮助你理解这一强大的问题求解方法。
什么是动态规划
动态规划是一种通过将问题拆分为更小的子问题,并根据子问题的解来求解 原问题的方法。它可以应用于许多领域,包括优化、组合数学和图论。动态规划的特点 Nhomakorabea应用场景
参考资料
• 经典教材 • 学术论文 • 网络资源
确定问题的初始状态和结束条件,作为动态规划的边界。
4
确定优化方向
选择最优的状态转移路径,以达到问题的最优解。
经典问题解析
斐波那契数列
通过动态规划求解斐波那契数列,可以有效 地避免重复计算,提高计算效率。
最长公共子序列
使用动态规划求解最长公共子序列,可以在 时间复杂度为O(n*m)的情况下找到最长公共 子序列。
最优子结构
定义
最优子结构表示一个问题的最优解可以通过子 问题的最优解来构建。
举例
在路径规划问题中,通过求解子问题的最短路 径,可以获得整个路径规划的最短路径。
重叠子问题
定义
重叠子问题表示一个问题的子问题会被重复计 算多次。
举例
在斐波那契数列中,计算每个数字需要依赖于 前两个数字,导致重复计算了相同的子问题。
动态规划具有最优子结构和重叠子问题的特点,能够通过保存已解决的子问题来避免重复计 算。
应用场景
动态规划广泛应用于路线规划、资源分配、序列匹配等问题,能够有效地解决复杂的优化和 决策问题。
动态规划的优缺点
1 优点
动态规划能够提供最优的解决方案,同时能够高效地解决问题,避免重复计算。
2 缺点
使用动态规划解决问题需要设计状态转移方程,对于复杂问题可能需要较高的思维和计 算复杂度。
《动态规划》PPT课件
欢迎来到《动态规划》PPT课件! 本课程将深入探讨动态规划的应用和技巧, 帮助你理解这一强大的问题求解方法。
什么是动态规划
动态规划是一种通过将问题拆分为更小的子问题,并根据子问题的解来求解 原问题的方法。它可以应用于许多领域,包括优化、组合数学和图论。动态规划的特点 Nhomakorabea应用场景
参考资料
• 经典教材 • 学术论文 • 网络资源
确定问题的初始状态和结束条件,作为动态规划的边界。
4
确定优化方向
选择最优的状态转移路径,以达到问题的最优解。
经典问题解析
斐波那契数列
通过动态规划求解斐波那契数列,可以有效 地避免重复计算,提高计算效率。
最长公共子序列
使用动态规划求解最长公共子序列,可以在 时间复杂度为O(n*m)的情况下找到最长公共 子序列。
最优子结构
定义
最优子结构表示一个问题的最优解可以通过子 问题的最优解来构建。
举例
在路径规划问题中,通过求解子问题的最短路 径,可以获得整个路径规划的最短路径。
重叠子问题
定义
重叠子问题表示一个问题的子问题会被重复计 算多次。
举例
在斐波那契数列中,计算每个数字需要依赖于 前两个数字,导致重复计算了相同的子问题。
《动态规划算法》课件
总结词
多阶段决策优化
详细描述
背包问题是一个经典的动态规划问题,通过将问题分解 为多个阶段,并为每个阶段定义状态和状态转移方程, 我们可以找到最优解。在背包问题中,我们使用一个二 维数组来存储每个状态的最优解,并逐步更新状态以找 到最终的最优解。
最长公共子序列求解
总结词
字符串匹配优化
详细描述
最长公共子序列问题是一个经典的动态规划问题,用 于找到两个序列的最长公共子序列。通过动态规划, 我们可以避免在寻找公共子序列时进行冗余比较,从 而提高算法效率。在动态规划中,我们使用一个二维 数组来存储子问题的最优解,并逐步构建最终的最长 公共子序列。
动态规划的基本思想
01
将问题分解为子问 题
将原始问题分解为若干个子问题 ,子问题的解可以构成原问题的 解。
02
保存已解决的子问 题
将已解决的子问题的解保存起来 ,以便在求解其他子问题时重复 使用。
03
递推求解
从子问题的解逐步推导出原问题 的解,通常采用自底向上的方式 求解。
02
动态规划算法的步骤
可并行化
动态规划算法可以并行化执行,以提高计算效率,这对于 大规模问题的求解非常有利。
缺点
• 空间复杂度高:动态规划算法需要存储大量的中间状态,因此其空间复杂度通常较高,有时甚至会超过问题规 模的一个指数倍。
• 问题规模限制:由于动态规划算法的空间复杂度较高,因此对于大规模问题的求解可能会遇到困难。 • 可能产生大量重复计算:在动态规划算法中,对于每个子问题,可能会被多次计算和存储,这会导致大量的重复计算和存储空间浪费。 • 不易发现:动态规划算法的应用范围有限,对于一些非最优子结构问题或没有重叠子问题的优化问题,动态规划算法可能不适用。因此,在解决问题时需要仔细分析问题特性,判断是
多阶段决策优化
详细描述
背包问题是一个经典的动态规划问题,通过将问题分解 为多个阶段,并为每个阶段定义状态和状态转移方程, 我们可以找到最优解。在背包问题中,我们使用一个二 维数组来存储每个状态的最优解,并逐步更新状态以找 到最终的最优解。
最长公共子序列求解
总结词
字符串匹配优化
详细描述
最长公共子序列问题是一个经典的动态规划问题,用 于找到两个序列的最长公共子序列。通过动态规划, 我们可以避免在寻找公共子序列时进行冗余比较,从 而提高算法效率。在动态规划中,我们使用一个二维 数组来存储子问题的最优解,并逐步构建最终的最长 公共子序列。
动态规划的基本思想
01
将问题分解为子问 题
将原始问题分解为若干个子问题 ,子问题的解可以构成原问题的 解。
02
保存已解决的子问 题
将已解决的子问题的解保存起来 ,以便在求解其他子问题时重复 使用。
03
递推求解
从子问题的解逐步推导出原问题 的解,通常采用自底向上的方式 求解。
02
动态规划算法的步骤
可并行化
动态规划算法可以并行化执行,以提高计算效率,这对于 大规模问题的求解非常有利。
缺点
• 空间复杂度高:动态规划算法需要存储大量的中间状态,因此其空间复杂度通常较高,有时甚至会超过问题规 模的一个指数倍。
• 问题规模限制:由于动态规划算法的空间复杂度较高,因此对于大规模问题的求解可能会遇到困难。 • 可能产生大量重复计算:在动态规划算法中,对于每个子问题,可能会被多次计算和存储,这会导致大量的重复计算和存储空间浪费。 • 不易发现:动态规划算法的应用范围有限,对于一些非最优子结构问题或没有重叠子问题的优化问题,动态规划算法可能不适用。因此,在解决问题时需要仔细分析问题特性,判断是
动态规划ppt
min{5 7, 8 5} 12.
这说明由 C1 到F 的最短距离为12,相应的决策为 u3* (C1) D1.
u3* (C1) D1.
2
f4 (D3 ) 5 4
A
5
f4 (D1) 7
B1 3
6
8 7
B2
7
C1
5
8
4
C2 5
3
C3 4
8
C4 4
u
* 4
(
D3
)
E1.
6
D2 2
1
E2
D3
3
u2* (B1) C2.
u5* (E2 ) F.
4
F
3
u4* (D1) E1.
u4* (D2 ) E2.
u
* 2
(
B2
)
C3.
(1)k=1 时,只有一个状态点A, 则
f1( A) min{ d1( A, B1) f2 (B1), d1( A, B2 ) f2 (B2 )}
min{1 4, 3 3} 5.
即 D3 到F 的最短距离为5,其路径为 D2 E2 F.
相应的决策为: u4* (D3 ) E1.
f4 (D1) 7
4
A
5
f4 (D2 ) 5
2
B1 3
6
8 7
B2
7
(3)k=3 时,状态
C1
5
8
4
C2 5
3
C3 4
8
C4 4
u
* 4
4
A
5
2
B1 3
6
8 7
这说明由 C1 到F 的最短距离为12,相应的决策为 u3* (C1) D1.
u3* (C1) D1.
2
f4 (D3 ) 5 4
A
5
f4 (D1) 7
B1 3
6
8 7
B2
7
C1
5
8
4
C2 5
3
C3 4
8
C4 4
u
* 4
(
D3
)
E1.
6
D2 2
1
E2
D3
3
u2* (B1) C2.
u5* (E2 ) F.
4
F
3
u4* (D1) E1.
u4* (D2 ) E2.
u
* 2
(
B2
)
C3.
(1)k=1 时,只有一个状态点A, 则
f1( A) min{ d1( A, B1) f2 (B1), d1( A, B2 ) f2 (B2 )}
min{1 4, 3 3} 5.
即 D3 到F 的最短距离为5,其路径为 D2 E2 F.
相应的决策为: u4* (D3 ) E1.
f4 (D1) 7
4
A
5
f4 (D2 ) 5
2
B1 3
6
8 7
B2
7
(3)k=3 时,状态
C1
5
8
4
C2 5
3
C3 4
8
C4 4
u
* 4
4
A
5
2
B1 3
6
8 7
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M ax(1,1)=max{M ax(2,1), M ax(2,2)} M ax(2,1)=max{M ax(3,1), M ax(3,2)} M ax(2,2)=max{M ax(3,2), M ax(3,3)} Nhomakorabea
Function Max(I,J : integer) : longint; {从当前位置开始的可得的最优值} Var s1,s2 : Longint; {记录从左右斜线向下走的可达的最优值} Begin If A[I,j]<>-1 Then Begin {函数I,J已求出,直接赋值即可} Max:=A[I,j]; Exit; End; If (I>n) Or (J>I) Then Max:=0 {当前位置不存在,最优值为0} Else Begin S1:=Max(I+1,j)+triangle[I,j]; {沿左斜线向下走} S2:=Max(I+1,j+1)+triangle[I,j]; {沿右斜线向下走} If s1>s2 then A[I,j]:=s1 Else A[I,j]:=s2; {选取最优走法} Max:=A[I,j]; {记录该函数值} End; End;
观察以上数据发现取 Min( 3 ) 的时候,动态规划 求出来的最优值为1,而正确的值应该为 0 ,由 此可知本题对应于一条最优路径,并不是这条路 径上的所有点的最优值都是从点1到该点可得的 最优值,对于每一个阶段都取最优值并不能保证 求出最优解,即不满足最优化原理,因此这种规 划方法在本题行不通。
矩阵分割问题(cuts)
给你一个矩阵,其边长均为整数。你想把矩阵 切割成总数最少的正方形,其边长也为整数。 切割工作由一台切割机器完成,它能沿平行于 矩形任一边的方向,从一边开始一直切割到另 一边。对得到的矩形再分别进行切割。
输入数据: 输入文件中包含两个正整数,代表矩形的边 长,每边长均在1—100之间。 输出数据: 输出文件包含一行,显示出你的程序得到的 最理想的正方形数目。
什么是动态规划?
(二)动态规划实际上就是一种排除重
复计算的算法,更具体的说,动态规划 就是用空间换取时间。
问题:给定一个具有 N 层的数字三角形如下图, 从顶至底有多条路径,每一步可沿左斜线向下 或沿右斜线向下,路径所经过的数字之和为路 径得分,请求出最大路径得分。
7 38 810 2744 45265
什么是动态规划?
(一)动态规划是解决多阶段决 策问题的一种方法。
多阶段决策问题
对于整个问题,可以根据其时间或 其他顺序分成若干个前后相关联的子问 题,问题的全局最优包含其子问题的局 部最优,即满足最优子结构性质,并且 无后效性,有边界条件,且一般划分为 很明显的阶段,存在一条或多条状态转 移方程。
最优性原理
“最优性原理”可陈述为:不论初始状态 和第一步决策是什么,余下的决策相对 于前一次决策所产生的新状态,构成一 个最优决策序列。 最优决策序列的子序列,一定是局部 最优决策子序列。 包含有非局部最优的决策子序列,一 定不是最优决策序列。
MOD 4余数最小问题
如图,已知一个有向图,求一条从最左边的点走到最右 边点的方案(只能从左往右走),使得所经过的权值 和除以4的余数最小。
由以上算法不难算出其时间复杂度为2^n,而本题N最大为100,显然当 N比较大时是无法在规定时间内出解的,但本题又很难找出理想的剪枝 方法。
通过以下搜索树可以看出在求Max(2,1),Max(2,2)的时候两次 调用函数Max(3,2),也就是说,函数Max(3,2)被重复计算了 两次,其实在这棵搜索树中有很多结点都被重复计算了多次, 程序时效显然就会大打折扣了,实际上这也是搜索之所以会 效率低下的一大原因。既然知道了上述搜索算法效率低的原 因。对于同一个函数值搜索多次是没有必要的,因此我们可 以每求出一个函数的值便可将其用数组保存下来,到了下次 要用的时候直接从数组里调出来用就可以了。这样时间复杂 度一下子降成了O(N*N){函数个数最多不超过N*N个。}
初看此题不难想到本题可以用递归算法来解决: Function Max(I,J : integer) : longint; {从当前位置开始的可得的最优值} Var s1,s2 : Longint; {记录从左右斜线向下走的可达的最优值} Begin If (I>n) Or (J>I) Then Max:=-1 {当前位置不存在,最优值为-1} Else Begin S1:=Max(I+1,j)+triangle[I,j]; {沿左斜线向下走} S2:=Max(I+1,j+1)+triangle[I,j]; {沿右斜线向下走} If s1>s2 then Max:=s1 Else max:=s2; {选取最优走法} End; End;
让我们来换一个思路思考本题,因为本题是要求总和除以4 余数最小的一条路径,我们先撇开最小余数不去管它,而是 将本题改为从点1到点4的所有路径中,求出每条路上权值和 除以4的不同余数的个数。 我们设一个数组can[I,j]表示从点1至点I可不可以求出一 条路径是该路径的权值总和除以4的余数为J,那么又可以 得出一个方程: can[I,j]:= can[I-1,k] and ((k+num[I,p]) mod 4=j) (0<=k<=3,1<=p<=2) can[1,0]=true can[1,1]=false can[1,2]=false can[1,3]=false 通过这个方程我们可以求出从点1至点I可以达到的所有 余数,我们只要从这些余数中选出一个值最小的输出就行。
2
1
1
3
3
2
分析
设所有点从左至右编号为1…4,MIN(i)表示前 I个点的最优值,很容易得出一个方程: Min(i)=min{(Min(I-1)+num[I-1,1]) mod 4, Min(I-1)+num[I-1,2]) mod 4} 通过这个方程可以求出一条路径为(2+3+1)MOD 4=2 但最优值实际上是 (2+1+1)MOD 4=0。 为什么会出错呢?
Function Max(I,J : integer) : longint; {从当前位置开始的可得的最优值} Var s1,s2 : Longint; {记录从左右斜线向下走的可达的最优值} Begin If A[I,j]<>-1 Then Begin {函数I,J已求出,直接赋值即可} Max:=A[I,j]; Exit; End; If (I>n) Or (J>I) Then Max:=0 {当前位置不存在,最优值为0} Else Begin S1:=Max(I+1,j)+triangle[I,j]; {沿左斜线向下走} S2:=Max(I+1,j+1)+triangle[I,j]; {沿右斜线向下走} If s1>s2 then A[I,j]:=s1 Else A[I,j]:=s2; {选取最优走法} Max:=A[I,j]; {记录该函数值} End; End;
观察以上数据发现取 Min( 3 ) 的时候,动态规划 求出来的最优值为1,而正确的值应该为 0 ,由 此可知本题对应于一条最优路径,并不是这条路 径上的所有点的最优值都是从点1到该点可得的 最优值,对于每一个阶段都取最优值并不能保证 求出最优解,即不满足最优化原理,因此这种规 划方法在本题行不通。
矩阵分割问题(cuts)
给你一个矩阵,其边长均为整数。你想把矩阵 切割成总数最少的正方形,其边长也为整数。 切割工作由一台切割机器完成,它能沿平行于 矩形任一边的方向,从一边开始一直切割到另 一边。对得到的矩形再分别进行切割。
输入数据: 输入文件中包含两个正整数,代表矩形的边 长,每边长均在1—100之间。 输出数据: 输出文件包含一行,显示出你的程序得到的 最理想的正方形数目。
什么是动态规划?
(二)动态规划实际上就是一种排除重
复计算的算法,更具体的说,动态规划 就是用空间换取时间。
问题:给定一个具有 N 层的数字三角形如下图, 从顶至底有多条路径,每一步可沿左斜线向下 或沿右斜线向下,路径所经过的数字之和为路 径得分,请求出最大路径得分。
7 38 810 2744 45265
什么是动态规划?
(一)动态规划是解决多阶段决 策问题的一种方法。
多阶段决策问题
对于整个问题,可以根据其时间或 其他顺序分成若干个前后相关联的子问 题,问题的全局最优包含其子问题的局 部最优,即满足最优子结构性质,并且 无后效性,有边界条件,且一般划分为 很明显的阶段,存在一条或多条状态转 移方程。
最优性原理
“最优性原理”可陈述为:不论初始状态 和第一步决策是什么,余下的决策相对 于前一次决策所产生的新状态,构成一 个最优决策序列。 最优决策序列的子序列,一定是局部 最优决策子序列。 包含有非局部最优的决策子序列,一 定不是最优决策序列。
MOD 4余数最小问题
如图,已知一个有向图,求一条从最左边的点走到最右 边点的方案(只能从左往右走),使得所经过的权值 和除以4的余数最小。
由以上算法不难算出其时间复杂度为2^n,而本题N最大为100,显然当 N比较大时是无法在规定时间内出解的,但本题又很难找出理想的剪枝 方法。
通过以下搜索树可以看出在求Max(2,1),Max(2,2)的时候两次 调用函数Max(3,2),也就是说,函数Max(3,2)被重复计算了 两次,其实在这棵搜索树中有很多结点都被重复计算了多次, 程序时效显然就会大打折扣了,实际上这也是搜索之所以会 效率低下的一大原因。既然知道了上述搜索算法效率低的原 因。对于同一个函数值搜索多次是没有必要的,因此我们可 以每求出一个函数的值便可将其用数组保存下来,到了下次 要用的时候直接从数组里调出来用就可以了。这样时间复杂 度一下子降成了O(N*N){函数个数最多不超过N*N个。}
初看此题不难想到本题可以用递归算法来解决: Function Max(I,J : integer) : longint; {从当前位置开始的可得的最优值} Var s1,s2 : Longint; {记录从左右斜线向下走的可达的最优值} Begin If (I>n) Or (J>I) Then Max:=-1 {当前位置不存在,最优值为-1} Else Begin S1:=Max(I+1,j)+triangle[I,j]; {沿左斜线向下走} S2:=Max(I+1,j+1)+triangle[I,j]; {沿右斜线向下走} If s1>s2 then Max:=s1 Else max:=s2; {选取最优走法} End; End;
让我们来换一个思路思考本题,因为本题是要求总和除以4 余数最小的一条路径,我们先撇开最小余数不去管它,而是 将本题改为从点1到点4的所有路径中,求出每条路上权值和 除以4的不同余数的个数。 我们设一个数组can[I,j]表示从点1至点I可不可以求出一 条路径是该路径的权值总和除以4的余数为J,那么又可以 得出一个方程: can[I,j]:= can[I-1,k] and ((k+num[I,p]) mod 4=j) (0<=k<=3,1<=p<=2) can[1,0]=true can[1,1]=false can[1,2]=false can[1,3]=false 通过这个方程我们可以求出从点1至点I可以达到的所有 余数,我们只要从这些余数中选出一个值最小的输出就行。
2
1
1
3
3
2
分析
设所有点从左至右编号为1…4,MIN(i)表示前 I个点的最优值,很容易得出一个方程: Min(i)=min{(Min(I-1)+num[I-1,1]) mod 4, Min(I-1)+num[I-1,2]) mod 4} 通过这个方程可以求出一条路径为(2+3+1)MOD 4=2 但最优值实际上是 (2+1+1)MOD 4=0。 为什么会出错呢?