几种仪器分析方法简介

合集下载

仪器分析方法范文

仪器分析方法范文

仪器分析方法范文仪器分析方法是现代科学研究中的一种重要手段,通过对样品进行分析和检测,可以得出样品的成分、结构、性质和含量等信息。

仪器分析方法可分为物理方法、化学方法和生物方法等多种类型,下面将对一些常见的仪器分析方法进行介绍。

1.质谱分析法质谱分析法是一种通过对样品原子或分子进行离子化,利用其在电场中的质量-电荷比(m/z)差异进行分析的方法。

根据质谱仪器的不同,可分为质谱仪、气相色谱-质谱联用仪、液相色谱-质谱联用仪等。

质谱分析法在有机化学、天然产物分析、环境监测等领域得到了广泛应用。

2.光谱分析法光谱分析法是通过测量样品在不同波长或波数的电磁辐射下与光的相互作用,获得样品的光谱信息,从而获得样品的结构、成分和性质等信息。

根据测量的参数不同,可分为紫外可见光谱、红外光谱、拉曼光谱、核磁共振光谱、质子共振波谱等。

3.色谱分析法色谱分析法是一种利用色谱柱将混合物中的组分进行分离的方法,再通过检测器对分离后的组分进行检测和分析。

根据移动相的不同,色谱分析法可分为气相色谱、液相色谱、超高效液相色谱等。

色谱分析法在生化分析、环境监测、食品安全等领域有着广泛应用。

4.电化学分析法电化学分析法是一种利用电化学原理对样品进行分析和测量的方法。

常用的电化学分析法包括电位滴定法、电位分析法、极谱法、电化学检测法等。

电化学分析法在电池材料研究、腐蚀分析、环境监测等方面有着重要应用。

5.能谱分析法能谱分析法是一种利用粒子或辐射与样品相互作用所产生的能谱信息进行分析的方法。

常用的能谱分析法包括γ射线能谱、中子活化分析、X 射线荧光光谱、电子能谱等。

能谱分析法在核工业、材料科学、生物医学等领域有着广泛应用。

6.其他仪器分析方法除了上述常见的仪器分析方法外,还有一些其他的仪器分析方法,如负电荷分析方法、光电子能谱、反射分光光度法、热分析法等。

总之,仪器分析方法是实现对样品进行定量和定性分析的一种重要手段。

不同的仪器分析方法在不同领域有着广泛应用,为科学研究和工业生产提供了强有力的支持。

仪器分析知识点总结大全

仪器分析知识点总结大全

仪器分析知识点总结大全仪器分析是化学分析的重要分支,它利用特殊的仪器对物质进行定性、定量和结构分析。

以下是对常见仪器分析方法的知识点总结。

一、光学分析法(一)原子吸收光谱法(AAS)原子吸收光谱法是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量的一种方法。

其原理是:当光源发射的某一特征波长的辐射通过原子蒸气时,被原子中的外层电子选择性地吸收,使透过原子蒸气的入射辐射强度减弱,其减弱程度与蒸气相中该元素的原子浓度成正比。

原子吸收光谱仪主要由光源、原子化器、分光系统和检测系统组成。

优点:选择性好、灵敏度高、分析范围广、精密度好。

局限性:多元素同时测定有困难、对复杂样品分析干扰较严重。

(二)原子发射光谱法(AES)原子发射光谱法是依据原子或离子在一定条件下受激而发射出特征光谱来进行元素定性和定量分析的方法。

原理是:当原子或离子受到热能或电能激发时,核外电子会从基态跃迁到激发态,处于激发态的电子不稳定,会迅速返回基态,并以光的形式释放出能量,产生发射光谱。

其仪器包括激发光源、分光系统和检测系统。

优点:可同时测定多种元素、分析速度快、选择性好。

缺点:精密度较差、检测限较高。

(三)紫外可见分光光度法(UVVis)该方法是基于分子的紫外可见吸收光谱进行分析的。

原理是:分子中的价电子在不同能级之间跃迁,吸收特定波长的光,从而产生吸收光谱。

仪器主要由光源、单色器、吸收池、检测器和信号显示系统组成。

应用广泛,可用于定量分析、定性分析以及化合物结构研究。

(四)红外吸收光谱法(IR)红外吸收光谱法是利用物质对红外光区电磁辐射的选择性吸收来进行结构分析和定量分析的一种方法。

原理是:分子的振动和转动能级跃迁产生红外吸收。

仪器包括红外光源、样品室、单色器、检测器和记录仪。

常用于有机化合物的结构鉴定。

二、电化学分析法(一)电位分析法通过测量电极电位来确定物质浓度的方法。

包括直接电位法和电位滴定法。

人教版高中化学选修六 附录Ⅶ 几种仪器分析方法

人教版高中化学选修六  附录Ⅶ 几种仪器分析方法

试样从进样器进入离子源,在离子源中产生正离子。正离子加 速进入质量分析器,质量分析器将离子按质荷比大小不同进行分离。 分离后的离子先后进入检测器,检测器得到离子信号,放大器将 信号放大并记录在读出装置上。
2、质谱图 以荷质比m/z为横座标,以对基峰(最强离子峰,规定相对强度为
100%)相对强度为纵座标所构成的谱图,称之为质谱图。
选修六 附录Ⅶ 几种仪器分析方法简介
一、质谱分析法 二、红外光谱分析法 三、核磁共振氢谱分析法
一 质谱分析法
相对分子质量的测
定——质谱仪
1、原理:质谱分析是用高速电子来撞击气态分子或原子,将电离后 的正离子加速导入质量分析器,然后在磁场中按质荷比(m/z)大小进 行收集和记录,及得到质谱图。根据质谱峰的位置进行物质的定性 和结构分析,根据峰的强度进行定量分析。
反对称伸缩振动 对称伸缩振动 反对称伸缩振动 对称伸缩振动 弱吸收
3000 cm-1 以下
17
2.叁键(C C)伸缩振动区:2500 1900 cm-1 3. 双键伸缩振动区:1900 1500 cm-1 4. X—Y,X—H 变形振动区: < 1500cm-1
18
思考1:
红外光谱中同一官能团或化学键的吸收 峰位置和强度并不完全相同,产生这种现象 的原因是什么?
在谱图上出现的位置也不同,这种差异叫化学位移δ。 从核磁共振氢图谱上可推知该有机物分子有几种不同类型的氢原子
(波峰数)及它们的数目比(波峰面积比)。
核磁共振氢谱光谱鉴定分子结构
2、核磁共振氢谱图
横坐标:吸收峰的位置,用“化学位移”表示。 纵坐标:吸收峰的强度。
核磁共振谱图中化合物的结构信息
1、峰的数目:标志分子中磁不等性质子的种类,多少种; 2、峰的强度(面积):每类质子的数目(相对),多少个; 3、峰的位移( ):每类质子所处的化学环境,化合物中位置;

仪器分析方法

仪器分析方法

仪器分析方法仪器分析方法是化学分析中常用的一种技术手段,它通过利用各种仪器设备对样品进行分析,从而得到样品的成分、结构和性质等信息。

仪器分析方法的发展,为化学分析提供了更加准确、快速、灵敏的手段,广泛应用于环境监测、食品安全、药物研发等领域。

本文将就常见的仪器分析方法进行介绍和分析。

一、光谱分析。

光谱分析是利用物质对光的吸收、发射、散射等特性进行分析的一种方法。

常见的光谱分析包括紫外可见吸收光谱、红外光谱、拉曼光谱等。

这些方法通过测量样品对特定波长的光的吸收或散射情况,从而得到样品的成分和结构信息。

光谱分析方法具有快速、非破坏性、灵敏度高的特点,被广泛应用于化学分析领域。

二、色谱分析。

色谱分析是利用物质在固定相和流动相作用下的分离和检测特性进行分析的一种方法。

常见的色谱分析包括气相色谱、液相色谱、超高效液相色谱等。

这些方法通过样品在色谱柱中的分离和检测,从而得到样品中各种成分的含量和结构信息。

色谱分析方法具有分离效果好、分析速度快、灵敏度高的特点,被广泛应用于食品安全、环境监测等领域。

三、质谱分析。

质谱分析是利用物质在电场或磁场中的运动特性进行分析的一种方法。

常见的质谱分析包括质子磁共振质谱、质子转移反应质谱、质子撞击电离质谱等。

这些方法通过测量样品中各种离子的质荷比,从而得到样品的成分和结构信息。

质谱分析方法具有高分辨率、高灵敏度、高准确度的特点,被广泛应用于药物研发、生物分析等领域。

四、电化学分析。

电化学分析是利用物质在电极上的电化学反应特性进行分析的一种方法。

常见的电化学分析包括极谱法、循环伏安法、恒电位法等。

这些方法通过测量样品在电极上的电流和电压变化,从而得到样品的成分和性质信息。

电化学分析方法具有灵敏度高、实时性好、样品准备简单的特点,被广泛应用于环境监测、能源材料等领域。

综上所述,仪器分析方法在化学分析中具有重要的地位和作用,它为化学分析提供了更加准确、快速、灵敏的手段。

随着科技的不断发展,仪器分析方法将会不断完善和创新,为人类的健康和环境保护提供更多的支持和帮助。

分析化学中的常用仪器和方法

分析化学中的常用仪器和方法

分析化学中的常用仪器和方法分析化学是化学的一个重要分支,主要研究物质的组成和性质的分析方法。

在分析化学中,常常使用各种仪器和方法来进行样品的分析。

本文将主要介绍一些常用的仪器和方法。

一、光谱仪器光谱仪器是分析化学中广泛应用的仪器之一。

它通过测量样品对辐射的吸收、发射或散射来获取样品的信息。

常用的光谱仪器包括紫外可见分光光度计、红外光谱仪、质谱仪等。

紫外可见分光光度计常用于测定溶液中物质的浓度,红外光谱仪可以用于鉴别有机物的官能团,质谱仪则可以用于确定物质的分子量和结构。

二、气相色谱仪气相色谱仪是一种常用的分离和分析仪器。

它通过将样品中的化合物挥发为气体后,在柱子中进行分离并检测。

气相色谱仪通常由进样装置、柱子和检测器组成。

它广泛应用于药物分析、环境监测和食品安全等领域。

三、液相色谱仪液相色谱仪是另一种常用的分离和分析仪器。

与气相色谱仪不同,液相色谱仪使用液体作为流动相进行分离。

常见的液相色谱仪有高效液相色谱仪和离子色谱仪。

高效液相色谱仪广泛用于药品的分析和纯化,离子色谱仪主要用于离子分析和水质监测。

四、电化学分析方法电化学分析方法是利用电化学现象进行分析的方法。

常见的电化学分析方法包括电位滴定法、伏安法和电导法等。

电位滴定法可用于测定溶液中的氧化还原物质的浓度,伏安法可用于测定溶液中的金属离子的浓度,电导法则可用于测定溶液的电导率。

五、质谱仪器质谱仪器是一种广泛应用于物质分析的仪器。

它通过将样品中的化合物分解为离子,并根据离子在磁场中的运动轨迹进行分析和鉴定。

质谱仪广泛应用于有机物的结构鉴定、代谢物的分析和药物的定量等领域。

六、核磁共振仪核磁共振仪是一种重要的仪器,用于研究原子核的性质。

核磁共振仪利用核自旋的性质来获取样品的信息,广泛应用于有机物的结构鉴定和药物的研究。

分析化学中的仪器和方法众多,上述只是其中的几个常用仪器和方法的简要介绍。

在实际应用中,我们需要根据具体的分析目的和样品特性来选择合适的仪器和方法。

仪器分析及其方法

仪器分析及其方法

仪器分析及其方法仪器分析是指利用各种仪器设备进行样品分析的科学技术领域。

它是现代分析化学的重要分支,具有高准确度、高灵敏度、高选择性等特点,广泛应用于环境监测、药品检测、食品安全等领域。

仪器分析的方法主要包括物质分离、物质识别与测定、物质结构研究等方面。

下面我们详细介绍几种常见的仪器分析方法。

一、光谱分析法:光谱分析法利用物质与电磁波相互作用的原理,通过测量样品在不同波长或频率下的吸收、发射、散射等光谱特性来进行分析。

常见的光谱分析方法有紫外可见吸收光谱法、红外光谱法、核磁共振光谱法等。

二、电化学分析法:电化学分析法是利用电化学基本原理,通过物质与电极界面的电化学反应产生的电流、电势等信号来进行分析。

常见的电化学分析方法包括电位滴定法、极谱分析法、循环伏安法等。

三、色谱分析法:色谱分析法是以固定相与流动相之间的分配作用对物质进行分离与测定的方法。

常见的色谱分析方法有气相色谱法、液相色谱法、超临界流体色谱法等。

四、质谱分析法:质谱分析法是利用物质的质量与电荷比在磁场中的运动轨迹和谱图进行分析的方法。

常见的质谱分析方法有质谱仪法、飞行时间质谱法、离子阱质谱法等。

五、核素分析法:核素分析法是利用放射性核素的独特性质进行分析的方法。

常见的核素分析方法有放射计数法、伽马射线分析法、中子活化分析法等。

六、电子显微镜分析法:电子显微镜分析法是利用电子束与样品相互作用所产生的信号来进行分析的方法。

常见的电子显微镜分析方法包括扫描电子显微镜、透射电子显微镜等。

七、光电分析法:光电分析法是利用光电效应测量电流或电压信号进行分析的方法。

常见的光电分析方法有光电比色法、光电导比法、光电堆积法等。

这些仪器分析方法各具特点,可以根据不同样品的性质和需要选择相应的方法进行分析。

仪器分析方法的发展使得分析结果更加准确、灵敏,缩短了分析时间,提高了工作效率,大大推动了科学研究和工业生产的进程。

仪器分析方法比较

仪器分析方法比较

仪器分析方法比较常见的仪器分析方法包括原子吸收光谱法(AAS)、紫外可见光谱法(UV-Vis)、红外光谱法(IR)、质谱法(MS)和色谱法(GC、HPLC)。

下面对这些方法进行比较。

1.原子吸收光谱法(AAS)是一种常用的金属元素分析方法。

这种方法可以测定许多金属元素的浓度,具有高灵敏度和高选择性。

然而,AAS 只适用于金属元素的分析,不适用于其他类型的化学物质。

2. 紫外可见光谱法(UV-Vis)是一种非常常用的分析方法,用于测量物质的吸光度。

这种方法适用于有机化合物和无机化合物的分析,可以测量样品的浓度、化学键的结构和化合物的稳定性。

UV-Vis具有灵敏度高、分辨率好和操作简便等优点。

3.红外光谱法(IR)可以用来确定化学物质的功能基团和结构。

这种方法测量物质对红外辐射的吸收情况,因为每个化学物质都有特定的吸收峰,所以可以根据吸收峰的位置和强度来推断化合物的结构。

IR具有高灵敏度和高分辨率。

4.质谱法(MS)是目前最常用的分子结构分析方法之一、质谱仪可以测量化合物离子的质量和相对丰度,从而确定化学物质的分子量和分子结构。

质谱法适用于分析有机和无机化合物,具有高分辨率和高灵敏度。

5.色谱法(GC、HPLC)是一种广泛应用的分离和分析方法,用于分离复杂混合物中的化合物。

气相色谱法(GC)适用于分析气体和挥发性液体的化合物,液相色谱法(HPLC)适用于分析非挥发性化合物。

色谱法具有高分离效率、高分辨率和高灵敏度。

综上所述,不同的仪器分析方法具有不同的优点和适用范围。

在实际应用中,需要根据样品的性质和分析目的选择合适的方法。

例如,对于金属元素的分析,可以选择AAS;对于有机化合物的浓度测定,可以选择UV-Vis或HPLC;对于化合物结构的确定,可以选择IR或MS。

此外,对于复杂样品的分析,也可以采用多种方法的组合,以获得更准确的结果。

现代仪器分析方法

现代仪器分析方法

现代仪器分析方法
现代仪器分析方法包括:
1. 液相色谱法(HPLC):用于分离和测定液体和溶液中的化学成分。

2. 气相色谱法(GC):用于分离和测定气体和挥发性液体中的化学成分。

3. 质谱法(MS):用于确定化合物的分子式、结构和质量。

可以与色谱法结合使用,例如气相色谱-质谱联用(GC-MS)。

4. 原子吸收光谱法(AAS):用于测定金属元素的含量和浓度。

5. 荧光光谱法:测量物质在吸收紫外或可见光后放射出的荧光。

6. 红外光谱法(IR):用于确定物质中的官能团和分子结构。

7. 核磁共振光谱法(NMR):用于确定物质的分子结构和官能团。

8. X射线衍射法(XRD):用于确定物质的结晶结构。

9. 表面分析技术(如扫描电子显微镜(SEM)和透射电子显微镜(TEM)):用于观察和分析材料的表面形貌和结构。

10. 热分析技术(如差示扫描量热仪(DSC)和热重分析(TGA)):用于测量材料在不同温度下的热稳定性和热性质。

这些现代仪器分析方法在科学研究、环境监测、食品安全、制药和化工等领域广泛应用。

常用仪器分析方法概论

常用仪器分析方法概论

常用仪器分析方法概论仪器分析方法是一种利用仪器设备进行定性和定量分析的方法。

它在科学研究、工程应用、环境监测和质量控制等领域有广泛的应用。

本文将对常用的仪器分析方法进行概论,包括光谱仪器、色谱仪器、质谱仪器、电化学仪器和热分析仪器等。

光谱仪器主要用于物质的光谱分析,包括紫外可见光谱仪、红外光谱仪和核磁共振仪等。

紫外可见光谱仪主要用于有机化合物的分析,通过测量溶液的吸收光谱来确定化合物的结构和浓度。

红外光谱仪通过测量物质在红外光束作用下吸收和散射的光谱来确定物质的组成和结构。

核磁共振仪则通过测量样品中核自旋的磁共振来确定样品的结构和化学环境。

色谱仪器主要用于分离和检测化合物混合物中的成分。

常见的色谱仪包括气相色谱仪和液相色谱仪。

气相色谱仪利用气体作为载气来带动样品分离,通过分离柱将样品中的各种成分分离出来,并通过传感器对其进行检测。

液相色谱仪则利用液相作为载液将样品分离,并通过检测器检测其成分。

质谱仪器主要用于分析化合物的质量和分子结构。

质谱仪通过将样品的分子转化为电离态,并通过电磁场的加速和偏转来分析质量和结构。

常见的质谱仪包括质谱仪和电喷雾质谱仪。

质谱仪利用磁场和电磁波来分析样品的质谱图,并通过质谱图来确定样品的分子结构和质量。

电喷雾质谱仪则适用于大分子和生物分子的分析,通过电喷雾技术将样品转化为气态离子,并通过质谱仪来分析其质谱图。

电化学仪器主要用于测量和分析电化学反应和电解质溶液中的化学物质。

常见的电化学仪器包括电位计、离子电导仪和电解池等。

电位计主要用于测量电解池中的电势,通过测量电势来确定样品的浓度和电势差。

离子电导仪则用于测量电解质溶液中的离子浓度和电导性。

电解池通过电解反应来分析和检测样品中的成分,可以用于分析有机化合物、金属离子和无机离子等。

热分析仪器主要用于测量和分析样品在不同温度下的物理和化学性质。

常见的热分析仪器包括差示扫描量热仪、热重分析仪和热导率仪等。

差示扫描量热仪通过测量样品在不同温度下的热流量来确定样品的热性质和热反应。

仪器分析教程知识点总结

仪器分析教程知识点总结

仪器分析教程知识点总结一、光谱分析1. 原子吸收光谱法原子吸收光谱法是一种常用的分析技术,主要用于测定金属元素的含量。

其原理是通过测量金属元素的特征吸收线强度来定量分析样品中金属元素的含量。

在进行原子吸收光谱法实验时,需要掌握标准曲线法、内标法等定量分析方法,以及样品的预处理和稀释方法。

2. 紫外-可见吸收光谱法紫外-可见吸收光谱法是用于测定有机化合物和无机化合物的含量和结构的方法。

通过测量样品在紫外-可见光区域的吸收强度,可以获得样品的吸收光谱图,从而分析样品的成分和结构。

在进行紫外-可见吸收光谱法实验时,需要掌握分光光度计的操作方法、样品的制备和处理方法,以及吸收峰的解释和定量分析方法。

3. 红外光谱法红外光谱法是用于测定有机化合物和无机化合物的结构和功能基团的方法。

通过测量样品在红外光区域的吸收强度,可以获得样品的红外光谱图,从而分析样品的结构和功能基团。

在进行红外光谱法实验时,需要掌握红外光谱仪的操作方法、样品的制备和处理方法,以及吸收峰的解释和定量分析方法。

二、色谱分析1. 气相色谱法气相色谱法是用于分离和检测样品中有机化合物的方法。

通过样品分子在固定相和流动相之间的分配行为,可以实现样品分离和检测。

在进行气相色谱法实验时,需要掌握气相色谱仪的操作方法、固定相和流动相的选择和配制方法,以及色谱柱的使用和维护方法。

2. 液相色谱法液相色谱法是用于分离和检测样品中有机化合物和无机化合物的方法。

通过样品分子在固定相和流动相之间的分配行为,可以实现样品分离和检测。

在进行液相色谱法实验时,需要掌握液相色谱仪的操作方法、固定相和流动相的选择和配制方法,以及色谱柱的使用和维护方法。

三、质谱分析质谱分析是用于确定样品中有机分子和核素的相对分子质量和结构的方法。

通过测量样品离子的质荷比,可以获得样品的质谱图,从而确认样品的分子质量和结构。

在进行质谱分析实验时,需要掌握质谱仪的操作方法、样品的离子化和碎裂方法,以及质谱图的解释和质谱定性分析方法。

几种常见的仪器分析方法

几种常见的仪器分析方法

分析仪器方法类型光分析法、电化学分析法、色谱分析法、质谱分析法、热分析法、分析仪器联用技术。

光谱1.红外光谱仪的主要部件包括:光源,吸收池,单色器、检测器及记录系统。

2.红外光谱是基于分子的振动和转动能级跃迁产生的。

3.物质的分子、原子、离子等都具有不连续的量子化能级,只有当某波长光波的能量与物质的基态和激发态的能量差相等时,才发生物质对某光波的吸收,也就是说物质对光的吸收是有选择性的。

4.红外光谱仪用能斯特灯与硅碳棒做光源。

5.在光谱法中,通常需要测定试样的光谱,根据其特征光谱的波长可以进行定性分析;而光谱的强度与物质含量有关,所以测量其强度可以进行定量分析。

6.根据光谱产生的机理,光学光谱通常可分为:原子光谱,分子光谱。

7.紫外可见分光光度计用钨丝灯,氢灯或氘灯做光源。

1、紫外可见吸收光谱法(U V)朗博比尔定律-单色光成立,测定大部分无机和部分有机物。

紫外光源:氘灯,可见光源:钨丝灯定性描述:几组峰是几种物质,波长是物质种类原理:利用物质的分子或者离子对某一波长范围的光的吸收作用,对物质进行定性、定量和结构的分析,所依据的光谱是分子或者离子吸收入射光特定波长的光而产生的光谱。

操作步骤:打开电源-预热(一般30分钟)-设定波长-模式选择-调零(将蒸馏水倒入比色皿-透射比打开盖子调为0,盖上盖子为100.吸光度相反。

连续几次)-模式调为吸光度(A)-润洗-上样-测定。

思考题:1.试简述产生吸收光谱的原因。

解:分子具有不同的特征能级,当分子从外界吸收能量后,就会发生相应的能级跃迁.同原子一样,分子吸收能量具有量子化特征.记录分子对电磁辐射的吸收程度与波长的关系就可以得到吸收光谱.2.紫外及可见分光光度计与可见分光光度计比较,有什么不同之处?为什么?解:首先光源不同,紫外用氢灯或氘灯,而可见用钨灯,因为二者发出的光的波长范围不同.从单色器来说,如果用棱镜做单色器,则紫外必须使用石英棱镜,可见则石英棱镜或玻璃棱镜均可使用,而光栅则二者均可使用,这主要是由于玻璃能吸收紫外光的缘故.从吸收池来看,紫外只能使用石英吸收池,而可见则玻璃、石英均可使用,原因同上。

仪器分析4大分析方法

仪器分析4大分析方法

附录V A 紫外-可见分光光‎度法(4)比色法供试‎品本身在紫‎外-可见区没有‎强吸收,或在紫外区‎虽有吸收但‎为了避免干扰或‎提高灵敏度‎,可加入适当‎的显色剂显‎色后测定,这种方法为‎比色法。

用比色法测‎定时,由于显色时‎影响显色深‎浅的因素较‎多,应取供试品‎与对照品或‎标准品同时‎操作。

除另有规定‎外,比色法所用‎的空白系指‎用同体积的‎溶剂代替对‎照品或供试‎品溶液,然后依次加‎入等量的相‎应试剂,并用同样方‎法处理。

在规定的波‎长处测定对‎照品和供试‎品溶液的吸‎光度后,按上述(1)对照品比较‎法计算供试‎品浓度。

当吸光度和‎浓度关系不‎呈良好线性‎时,应取数份梯‎度量的对照‎品溶液,用溶剂补充‎至同一体积‎,显色后测定‎各份溶液的‎吸光度,然后以吸光‎度与相应的‎浓度绘制标‎准曲线,再根据供试‎品的吸光度‎在标准曲线‎上查得其相‎应的浓度,并求出其含‎量。

附录ⅧA 电位滴定法‎与永停滴定‎法电位滴定法‎与永停滴定‎法是容量分‎析中用以确‎定终点或选‎择核对指示‎剂变色域的‎方法。

选用适当的‎电极系统可‎以作氧化还‎原法、中和法(水溶液或非‎水溶液)、沉淀法、重氮化法或‎水分测定法‎第一法等的‎终点指示。

1.电位滴定法‎选用两支不‎同的电极。

一支为指示‎电极,其电极电位‎随溶液中被‎分析成分的‎离子浓度的‎变化而变化‎;另一支为参‎比电极,其电极电位‎固定不变。

在到达滴定‎终点时,因被分析成‎分的离子浓‎度急剧变化‎而引起指示‎电极的电位‎突减或突增‎,此转折点称‎为突跃点。

2.永停滴定法‎采用两支相‎同的铂电极‎,当在电极间‎加一低电压‎(例如50m‎V)时,若电极在溶‎液中极化,则在未到滴‎定终点时,仅有很小或‎无电流通过‎;但当到达终‎点时,滴定液略有‎过剩,使电极去极‎化,溶液中即有‎电流通过,电流计指针‎突然偏转,不再回复。

反之,若电极由去‎极化变为极‎化,则电流计指‎针从有偏转‎回到零点,也不再变动‎。

各种仪器分析的基本原理及谱图表示方法

各种仪器分析的基本原理及谱图表示方法

各种仪器分析的基本原理及谱图表示方法仪器分析是化学分析中的重要分支,它利用各种仪器设备,通过对样品中成分的检测、鉴定和测量,实现对样品的分析和解释。

下面介绍几种常见的仪器分析方法及其基本原理和谱图表示方法。

原子吸收光谱法(AAS)1.基本原理:原子吸收光谱法是基于原子能级跃迁的吸收光谱法。

样品中的原子在高温烈焰中被激发为原子态,当光源发射的光束通过样品时,其中的某些元素会被吸收,导致光强减弱。

通过测量光强减弱程度,可以推算出样品中元素的含量。

2.谱图表示方法:原子吸收光谱的谱图表示吸光度(Absorbance)与波长(Wavelength)的关系。

横坐标为波长,纵坐标为吸光度。

在每个元素的吸收峰处,吸光度会显著增加,从而实现对元素的定性定量分析。

气相色谱法(GC)1.基本原理:气相色谱法是一种分离和分析复杂混合物的方法。

样品中的组分在气相状态下被载气携带通过色谱柱,不同组分在固定相和移动相之间的分配系数不同,因此会以不同的速度通过色谱柱,从而实现各组分的分离。

通过检测器对分离后的组分进行检测和测量,可以得到各组分的含量。

2.谱图表示方法:气相色谱图的横坐标为时间(Time),纵坐标为峰高(Peak Height)或峰面积(Peak Area)。

各组分会在不同的时间点出现,通过对比标准品可以得到各峰的定性结果,通过测量峰高或峰面积可以计算出各组分的含量。

紫外-可见光谱法(UV-Vis)1.基本原理:紫外-可见光谱法是一种基于分子吸收光子能量的光谱法。

样品中的分子在紫外-可见光照射下会吸收特定波长的光子能量,导致光强减弱。

通过测量光强减弱程度,可以推算出样品中分子的含量及分子结构信息。

2.谱图表示方法:紫外-可见光谱图的横坐标为波长(Wavelength),纵坐标为吸光度(Absorbance)或透过率(Transmittance)。

在每个分子的特征吸收峰处,吸光度会显著增加,从而实现对分子的定性定量分析。

仪器分析的方法

仪器分析的方法

仪器分析的方法仪器分析是一种通过使用各种仪器设备来对物质进行分析的方法。

它是现代化学分析的重要手段,可以帮助我们准确、快速地了解物质的成分和性质。

在仪器分析中,常用的方法包括光谱分析、色谱分析、质谱分析、电化学分析等。

下面我们将对这些方法进行详细介绍。

光谱分析是利用物质对电磁波的吸收、散射、发射等现象来分析物质的成分和结构的方法。

常见的光谱分析方法包括紫外-可见吸收光谱、红外光谱、核磁共振光谱等。

紫外-可见吸收光谱主要用于分析有机化合物和无机化合物的结构,红外光谱则可以用于确定有机物的官能团,核磁共振光谱则可以用于确定有机物分子的结构。

色谱分析是利用不同物质在固定相和流动相中的分配系数差异来进行分离和分析的方法。

常见的色谱分析方法包括气相色谱、液相色谱、超高效液相色谱等。

气相色谱主要用于分析挥发性物质,液相色谱主要用于分析非挥发性物质,超高效液相色谱则是一种高效率、高灵敏度的色谱分析方法。

质谱分析是利用物质的质荷比来进行分析的方法。

质谱分析可以用于确定物质的分子量、结构和同位素组成,常见的质谱分析方法包括质谱仪、质谱-质谱仪等。

质谱分析在生物、药物、环境等领域有着广泛的应用,可以提供非常准确的分析结果。

电化学分析是利用物质在电场作用下的电化学反应来进行分析的方法。

电化学分析包括电位法、电导法、极谱法等。

电化学分析可以用于测定物质的含量、确定物质的氧化还原性质等。

总的来说,仪器分析的方法是现代化学分析中不可或缺的重要手段,它可以帮助我们快速、准确地了解物质的成分和性质。

不同的仪器分析方法有着各自的特点和适用范围,我们可以根据具体的分析目的和样品性质选择合适的方法进行分析。

希望本文对仪器分析的方法有所帮助,谢谢阅读。

现代仪器分析方法及应用

现代仪器分析方法及应用

现代仪器分析方法及应用一、分光光度法分光光度法利用物质对光的吸收、散射、干涉、闪烁等现象进行分析。

常用的分光光度法有紫外可见分光光度法、红外吸收分光光度法、原子吸收分光光度法等。

分光光度法广泛应用于药物分析、环境分析、食品分析等领域。

二、电化学方法电化学方法通过测定电极上物质的电荷转移过程或与电极表面发生的电化学反应来进行分析。

常用的电化学方法有电位滴定法、电化学溶液分析法、恒定电流伏安法等。

电化学方法在药物分析、环境分析、金属离子检测等方面具有广泛应用。

三、质谱分析法质谱分析法通过测定样品中物质的质量与电荷比来进行分析。

常用的质谱分析法有质子化质谱法、电喷雾质谱法、时间飞行质谱法等。

质谱分析法在有机化合物的结构分析、食品中农药残留的检测以及毒性物质的鉴定等方面具有重要应用。

四、色谱分析法色谱分析法通过分离和测定化合物混合物中不同组分的相对含量来进行分析。

常用的色谱分析法有气相色谱法、液相色谱法、超高效液相色谱法等。

色谱分析法广泛应用于药物分析、食品分析、环境分析等领域。

五、核磁共振法核磁共振法利用原子核间的磁耦合和原子核的磁共振现象来进行分析。

常用的核磁共振法有氢核磁共振波谱法、碳核磁共振波谱法等。

核磁共振法在有机化合物结构鉴定、药物分析和生物分子结构研究等方面具有重要应用。

六、质量光谱法质量光谱法通过测定物质的质量与电荷比来进行定性和定量分析。

常用的质谱法有线性离子阱质谱法、四级杆质谱法等。

质谱法广泛应用于有机物质的结构分析、药物代谢研究以及环境污染物的检测等领域。

以上是现代仪器分析方法的几个主要方向,这些方法在现代化学分析中具有重要的地位和作用。

随着科学技术的不断发展,这些方法将进一步提高其灵敏度、准确性和快速性,为化学分析提供更多的选择和可能性。

同时,仪器分析方法的应用范围也将进一步拓展,为人类社会的发展与进步做出更大的贡献。

仪器分析及其方法

仪器分析及其方法

仪器分析及其方法仪器分析是指通过运用特定的仪器设备对待分析物进行分析或检测的一种方法。

随着科学技术的不断进步和发展,仪器分析的方法也得到了极大的完善和提高,涉及的技术和领域也越来越广泛。

一、常见仪器分析的方法1.光谱分析法:光谱分析法是应用物质对光或其他电磁波的吸收、发射、散射等特性进行物质分析和定性分析的一种方法。

例如,紫外可见光谱法、红外光谱法等。

2.电化学分析法:电化学分析法是通过测量或控制化学反应过程中发生的电流、电势和电荷量等参数,对待测物质进行分析和检测的一种方法。

例如,电导法、电解析法、电位滴定法等。

3.色谱分析法:色谱分析法是建立在物质成分在液相或气相中的分布系数不同而进行分离和测定的方法。

例如,气相色谱法、高效液相色谱法等。

4.质谱分析法:质谱分析法是利用质谱仪对物质的分子结构和成分进行分离、检测和鉴定的一种方法。

例如,质谱法、质谱联用法等。

5.核磁共振分析法:核磁共振分析法是通过对待测物质的核自旋粒子在磁场中的共振现象进行分析和鉴定的一种方法。

例如,核磁共振波谱法、核磁共振成像法等。

6.电子显微镜分析法:电子显微镜分析法是通过利用电子束对物质进行扫描或成像,再通过对物质电子散射、穿透等特性的分析来进行分析和检测的一种方法。

例如,透射电子显微镜法、扫描电子显微镜法等。

7.质谱分析法:质谱分析法是通过测定待测物质分子的质量和相对丰度来进行分析和鉴定的一种方法。

例如,质谱法、质谱联用法等。

二、仪器分析的应用领域1.环境领域:仪器分析在环境监测方面起着重要作用,可以用于空气、水、土壤等环境样品中有害物质的检测和分析。

2.生物医学领域:仪器分析在生物医学研究和医疗诊断中也得到广泛应用,例如生物芯片技术、核磁共振成像等。

3.食品安全领域:仪器分析可以用来检测食品中的残留农药、重金属等有害物质,并确保食品的安全。

4.材料科学领域:仪器分析在材料科学研究和制备中起着重要作用,可以用于材料成分分析和结构表征等。

常用的仪器分析方法

常用的仪器分析方法

常用的仪器分析方法1. 紫外可见光谱分析1.1 基本原理紫外可见光谱分析是一种常用的分析方法,它利用溶液或固体材料对紫外和可见光的吸收进行定量分析。

基本原理是根据物质吸收光的特性来确定其浓度。

1.2 仪器设备•紫外可见分光光度计:一种专门用于紫外可见光谱分析的仪器,通过测量样品对一定波长光的吸收来获得光谱图。

•光源:发出紫外和可见光的光源,常用的有氘灯和钨灯。

•单色器:用于分离和选择波长的光学元件,常用的有棱镜和光栅。

1.3 分析步骤1.样品制备:将待测样品溶解或稀释成适当浓度的溶液。

2.仪器校准:根据实验需求选择合适的波长范围和检测方法,并对仪器进行校准。

3.测量样品吸光度:将样品溶液注入光谱仪中,选择合适波长的光线进行测量。

4.绘制吸光度-浓度关系曲线:利用标准溶液制备一系列浓度不同的样品,分别测量它们的吸光度,构建吸光度和浓度之间的标准曲线。

5.测量未知样品的浓度:根据待测样品的吸光度,通过标准曲线确定其浓度。

2. 气相色谱法分析2.1 基本原理气相色谱法是一种常用的分离和分析方法,常用于挥发性物质的分析。

它基于物质在气相和液相之间的分配系数不同,通过物质在分配柱中分布的差异来实现分离。

2.2 仪器设备•气相色谱仪:由进样系统、气相色谱柱、温控系统、检测器和数据处理系统等组成的设备。

•进样系统:用于将待测样品引入气相色谱仪,常用的有进样针和气动进样系统。

•气相色谱柱:长而细的管状柱子,通常由无机填料或聚合物物质制成。

•检测器:用于检测在分配柱中分离出的物质,常用的有火焰离子化检测器(FID)和质谱检测器(MS)。

2.3 分析步骤1.样品制备:将待测样品挥发为气体或通过溶剂提取得到挥发性组分。

2.进样:将样品引入气相色谱仪的进样系统,通常采用自动进样技术。

3.分离:样品通过色谱柱,在控制好温度的条件下,分离出组分,并按照一定的顺序被带到检测器中。

4.检测:检测器对样品分离出的每个组分进行检测和测量。

26种仪器分析的原理及谱图方法大全

26种仪器分析的原理及谱图方法大全

26种仪器分析的原理及谱图方法大全1.紫外吸收光谱 UV分析原理:吸收紫外光能量,引起分子中电子能级的跃迁谱图的表示方法:相对吸收光能量随吸收光波长的变化提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息2.荧光光谱法 FS分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光谱图的表示方法:发射的荧光能量随光波长的变化提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息3.红外吸收光谱法 IR分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁谱图的表示方法:相对透射光能量随透射光频率变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率4.拉曼光谱法 Ram分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射谱图的表示方法:散射光能量随拉曼位移的变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率5.核磁共振波谱法 NMR分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁谱图的表示方法:吸收光能量随化学位移的变化提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息6.电子顺磁共振波谱法 ESR分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁谱图的表示方法:吸收光能量或微分能量随磁场强度变化提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息7.质谱分析法 MS分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息8.气相色谱法 GC分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关9.反气相色谱法 IGC分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数10.裂解气相色谱法 PGC分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型11.凝胶色谱法 GPC分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:高聚物的平均分子量及其分布12.热重法 TG分析原理:在控温环境中,样品重量随温度或时间变化谱图的表示方法:样品的重量分数随温度或时间的变化曲线提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区13.热差分析 DTA分析原理:在控温环境中,样品重量随温度或时间变化谱图的表示方法:样品的重量分数随温度或时间的变化曲线提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区14.示差扫描量热分析 DSC分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息15.静态热―力分析 TMA分析原理:样品在恒力作用下产生的形变随温度或时间变化谱图的表示方法:样品形变值随温度或时间变化曲线提供的信息:热转变温度和力学状态16.动态热―力分析 DMA分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化谱图的表示方法:模量或tgδ随温度变化曲线提供的信息:热转变温度模量和tgδ17.透射电子显微术 TEM分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等18.扫描电子显微术 SEM分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等19.原子吸收AAS原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。

几种现代仪器分析方法简介

几种现代仪器分析方法简介

第十一章几种现代仪器分析方法简介通过特殊的仪器,测定物质的物理或物理化学性质从而进行定性、定量及结构分析的方法,称为仪器分析法。

仪器分析方法的种类繁多,内容广泛,本书第八、第九两章介绍了吸光光度分析和电化学分析,根据我国工、农业生产和科研的实际情况以及仪器分析的发展趋势,本章再简要介绍几种现代仪器分析方法。

第一节原子吸收光谱分析法一、概述原子吸收光谱分析法(atomic absorption spectrometry, AAS),简称原子吸收法。

它是基于物质所产生的基态原子蒸气对特征谱线的吸收来进行定性和定量分析的。

与吸光光度分析的基本原理相同,都遵循朗伯—比尔定律,在仪器及其操作方面也有相似之处。

目前,原子吸收分光光度法已成为一种非常有效的分析方法,并广泛地应用于各个分析领域,该法具有以下一些特点。

1.选择性好,方法简便吸收光辐射的是基态原子,吸收的谱线频率很窄,光源发出的是被测元素的特征谱线,所以,不同元素之间的干扰一般很小,对大多数样品的测定,只需要进行简单的处理,即可不经分离直接测定多种元素。

2.灵敏度高火焰原子吸收法对大多数金属元素测定的灵敏度为10—8~10—10g?mL—1;非火焰原子吸收法的绝对灵敏度可达10—10g。

3.精密度好,准确度高由于温度的变化对测定的影响较小,所以,该法有着较好的稳定性和重现性。

对微量、痕量元素的测定,其相对误差为0.1~0.5%。

由于原子吸收分光光度法有着灵敏、准确、快速等优点,因而其广泛地应用于农业、林业、国防、化工、冶金、地质、石油、环保、医药等部门,可以测定近70多种金属元素。

二、基本原理原子对光的吸收或发射,与原子外层电子在不同能级间的跃迁有关。

当电子从低能级跃迁到高能级时,必须从外界吸收相应于这两能级间相差的能量;从高能级跃迁到低能级时,则要放出这部分能量。

由于原子中的能级很多,电子按一定规律在不同的能级间跃迁,使原子吸收或发射一系列特征频率的光子,从而得到原子的吸收或发射光谱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 芳环的
* 跃迁 中等强度峰--B带
3、紫外光谱图
• 横坐标:吸收波长(nm) • 纵坐标:吸收强度
常用 T、A 、 、㏒ 表示 • 最大吸收波长:λmax • 最大吸收强度:εmax • 特点
峰数目少、峰型不尖锐 • 为什么?
4、紫外光谱仪 Lamda-950紫外-可见-近红外分光光度计)
12 SSB 10.30.02
13 SSB 10.30.02
5、在有机结构测定中的应用
• 判断有机结构中共轭体系情况 --有无共轭体系 --共轭体系的类型 --共轭体系的大小
• 其他应用(如下午的实验)
实验: UV-Vis-NIR谱测试
• 取材显示屏前遮挡膜
T%
100 80 60
433
3124
40
20
0
304
500
1000 1500 2000 2500 3000
(nm)
某品牌前档风玻璃膜的UV-Vis-NIR谱

80
70
569
60
T%
50
40 2739
30
20
10
0
372
500
1000 1500 2000 2500 3000
(nm)
某品牌侧窗玻璃膜的UV-Vis-NIR谱
T%
• 60 50 40 30 20 10 0
2725
372
500
1000
• 波谱学是研究电磁波和原子、分子相互作用的一 门科学
• 电磁波会被有机物吸收或发射 吸收或发射情况与分子结构相关
• 电磁波引起原子和分子能量变化,即引起分子运 动状态发生变化 外部运动:平动,转动、振动 内部运动:电子相对于原子核的运动 磁场中自旋核自旋方向的改变
电磁波相关的ຫໍສະໝຸດ 磁波• 紫外光波:4~200 nm 200~400 nm
• 可见光波:400~800 nm
• 中红外光波:400~4000 cm-1
• 核磁共振吸收射频电磁波: 30~950MHz

(波长:10米~0.3米)
紫外光谱
1、基本原理 价电子类型 电子的跃迁方式 引起电子跃迁的电磁波
紫外光波 波长:4-400nm 远紫外 4-200nm 近紫外 200400nm
IR光谱图
• 横坐标为吸收频率(波数)纵坐标常用透过率T%
关注: a、吸收峰的数目:与红外活性振动数等有关
有关
b、吸收峰的位置:与原子折合质量及健力常数
c、吸收峰的强度 :与振动时偶极矩变化大小有 关
乙醇(CH3CH2OH)的红外光谱图
丙酮的IR图
5、红外光谱的测定
• 制样
• 样品要求:干燥无水、浓度适当 • 固体样品:溴化钾固体压片(3300、1650可能产生
的物理性质,具有一定的“指纹性” • 3.常规的IR仪价格相对较低 • 4.用样品少,灵敏的IR仪用量可到微克级 • 5.测试手段多种.如衰减全反射红外光谱(ATR)、
红外显微镜(IR microscope)、联用技术也不 断发展和完善。
4、红外光谱仪和红外光谱图
• 红外光谱仪 • 傅里叶变换型(Fourier transform)。
波数:400~4000cm-1
2、主要用途
• 化合物分子结构的测定 确定有机化合物所含官能团
• 鉴别化合物:利用光谱的异同,鉴定鉴别化合物 如: 利用固、液相光谱差异,区别构象异构体 与标准图谱对照鉴定化合物(少数长链烷烃同系物
不能区别鉴定) • 定量分析: 测定样品的含量
3、优点
• 红外光谱的应用有以下优点: • 1.任何气态、液态、固态物质都可以测红外光谱 • 2.大多数化合物均有红外吸收,反映化合物独特
Mass spectrometry
“四谱”的应用
• “四谱”主要借助化合物的物理性质 (光谱、质量谱、核磁共振)来测定有机化合物结构, 鉴别、鉴定有机化合物
• MS:确定化合物的分子量,分子式;提供某些结构 的信息
• IR:提供官能团、化学键的信息,可用于化合物的 定性定量分析
• NMR:提供磁性核数目、种类、化学环境(及立体 结构)
1
几种仪器分析方法简介
讨论内容(四谱)
• 1、紫外-可见光谱 UV-Vis Ultraviolet-Visible Spectroscopy.
• 2、红外光谱 IR Infrared Spectroscopy
• 3、核磁共振谱 NMR Nuclerer Magnetic Resonance
spectroscopy • 4、质谱 MS
1500 2000
(nm)
2500
3000
普通玻璃
T%

100 80 60 40 20 0
400
2640
500
1000
1500 2000 (nm)
2500
3000
红外光谱
• 1、 红外光谱的产生 • 分子吸收红外光波引起分子的振动和转动
• 转动能量低,一般吸收远红外波<400cm-1 • 振动一般吸收中红外光波
• UV:主要用于官能团、共轭体系的确定
测试特点
• 快速:测定时间快 (一般几到几十分钟内就可测定一个图谱 ) • 灵敏:需要样品量小 (一般在几毫克以内,MS的检测限可达10-10g) • 不破坏样品
UV、IR、NMR的测定样品可以回收 (MS测定样品不可以回收) • 准确、重现性好
电磁波与结构测定的联系
• PET 膜IR-ATR谱(取材显示屏前遮挡膜)
E:\国培\普通膜.0
3500
普通膜
ATR
3000
2500
Wavenumber cm-1
Page 1/1
Transmittance [%] 94 95 96 97 98 99 100
1712.11 1578.33 1504.96 1470.44 1408.75 1340.75 1243.21 1095.81 1044.31 1017.54 970.88 871.64 847.23 792.86 723.32 632.12 621.86 608.81
2、跃迁产生的吸收谱带

* 跃迁 饱和烃 λmax< 200nm
• n * 跃迁 饱和醇、醚、胺、卤化物等
一般λmax< 200nm 例外:如 CH3I • n * 跃迁 醛、酮等
λmax 270~350nm, 弱峰--R带

* 跃迁 孤立双键 λmax<200nm 如乙烯
共轭双键 λmax:210~250nm,强峰--K带 如:1,3-丁二烯、α、β-不饱和醛酮等
杂质吸收) 糊状法 溶液法 薄膜法 (高分子化合物) 切片法
• 液体样品:液膜法(挥发性小的样品) 溶液法
• 气体样品:气体样品槽
固体样品架

ATR附件

ATR(衰减全反射) 实验
– ATR谱需要特殊的附件包括聚焦镜和晶体支架以及晶 体,测试时将此附件装入样品仓
实验:PET(聚对苯甲酸酯类聚合物)测试
相关文档
最新文档