人教版数学七年级下册平行线的判定和性质练习题 非常经典的题型 值得给学生测试

合集下载

平行线的判定与性质 专项强化练习 2022-2023学年人教版七年级数学下册

平行线的判定与性质 专项强化练习 2022-2023学年人教版七年级数学下册

人教版七年级数学下册《平行线的判定与性质》专项强化练习一、选择题1.如图,AB∥CD,EF∥GH,且∠1=50°,下列结论错误的是( )A.∠2=130°B.∠3=50°C.∠4=130°D.∠5=50°2.如图,在下列条件中,不能判定直线a与b平行的是( )A.∠1=∠2B.∠2=∠3C.∠3=∠5D.∠3+∠4=180°3.如图,直线a,b被直线c所截,下列条件能判断a∥b的是( )A.∠1=∠2B.∠1=∠4C.∠3+∠4=180°D.∠2=30°,∠4=35°4.如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为( )A.135° B.125° C.115° D.105°5.一条公路两次转弯后又回到到原来的方向(即AB∥CD,如图),如果第一次转弯时的∠B=140°,那么∠C应是( )A.40°B.140°C.100°D.180°6.如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有( )A.4个B.3个C.2个D.1个7.如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F;三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0B.1C.2D.38.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°9.如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A和C两点分别落在直线a和b上.若∠1=20°,则∠2的度数为( )A.20° B.30° C.40° D.50°10.如图,直线AE∥CD,∠EBF=135°,∠BFD=60°,则∠D等于( )A.75°B.45°C.30°D.15°11.如图,l1∥l2,则下列式子成立的是( )A.∠α+∠β+∠γ=180°B.∠α+∠β-∠γ=180°C.∠β+∠γ-∠α=180°D.∠α-∠β+∠γ=180°12.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°. 则下列结论:①∠BOE=12(180-a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题13.如图,请你添加一个条件,使得AD∥BC,你添加的条件是__________.14.如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4=________.15.如图,a∥b,∠1=110°,∠3=40°,则∠2=.16.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;则一定能判定AB∥CD的条件有_____(填写所有正确的序号).17.已知一副三角板如图1摆放,其中两条斜边互相平行,则图2中∠1=________.18.如图,已知AB∥EF,∠C=90°,则α、β与γ的关系是.三、解答题19.如图,已知∠A=∠ADE,∠C=∠E.(1)若∠EDC=3∠C,求∠C的度数;(2)求证:BE∥CD.20.如图,已知∠1+∠2=180°,∠DEF=∠A,试判断∠ACB与∠DEB的大小关系,并证明.21.如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠3=80°.(1)试证明∠2=∠DCB;(2)试证明DG∥BC;(3)求∠BCA的度数.22.如图,已知AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.23.如图,已知∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.24.如图,已知直线l1∥l2,直线l3和直线l1,l2交于点C和D,直线l3上有一点P.(1)如图1,若P点在C,D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化,并说明理由;(2)若点P在C,D两点的外侧运动时(P点与点C,D不重合,如图2和3),试直接写出∠PAC,∠APB,∠PBD之间的关系,不必写理由.25.(1)读读做做:平行线是平面几何中最基本、也是非常重要的图形.在解决某些平面几何问题时,若能依据问题的需要,添加恰当的平行线,往往能使证明顺畅、简洁.请根据上述思想解决教材中的问题:如图①,AB∥CD,则∠B+∠D ∠E(用“>”、“=”或“<”填空);(2)倒过来想:写出(1)中命题的逆命题,判断逆命题的真假并说明理由.(3)灵活应用如图②,已知AB∥CD,在∠ACD的平分线上取两个点M、N,使得∠AMN=∠ANM.求证:∠CAM=∠BAN.答案1.C2.C.3.B.4.D.5.B6.A.7.D8.C9.C10.D11.B12.C13.答案为:本题答案不唯一,如∠1=∠B.14.答案为:63°30′15.答案为:70°.16.答案为:①③④17.答案为:15°.18.答案为:α+β﹣γ=90°.19.证明:(1)∵∠A=∠ADE,∴AC∥DE.∴∠EDC+∠C=180°.又∵∠EDC=3∠C,∴4∠C=180°.即∠C=45°.(2)证明:∵AC∥DE,∴∠E=∠ABE.又∵∠C=∠E,∴∠C=∠ABE.∴BE∥CD.20.解:∠ACB与∠DEB相等,理由如下:证明:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义),∴∠2=∠DFE(同角的补角相等),∴AB∥EF(内错角相等两直线平行),∴∠BDE=∠DEF(两直线平行,内错角相等),∵∠DEF=∠A(已知),∴∠BDE=∠A(等量代换),∴DE∥AC(同位角相等两直线平行),∴∠ACB=∠DEB(两直线平行,同位角相等).21.(1)证明:∵CD⊥AB于D,FE⊥AB,∴CD∥EF,∴∠2=∠DCB(2)证明:∵∠2=∠DCB,∠1=∠2,∴DG∥BC(3)解:∵DG∥BC,∠3=80°,∴∠BCA=∠3=80°22.解:(1)证明:∵AE⊥BC,FG⊥BC,∴AE∥GF.∴∠2=∠A.∵∠1=∠2,∴∠1=∠A.∴AB∥CD.(2)∵AB∥CD,∴∠D+∠CBD+∠3=180°.∵∠D=∠3+60°,∠CBD=70°,∴∠3=25°.∵AB∥CD,∴∠C=∠3=25°.23.证明:∵∠ABC+∠ECB=180°,∴AB∥DE,∴∠ABC=∠BCD,∵∠P=∠Q,∴PB∥CQ,∴∠PBC=∠BCQ,∵∠1=∠ABC﹣∠PBC,∠2=∠BCD﹣∠BCQ,∴∠1=∠2.24.解:(1)当P点在C,D之间运动时,∠APB=∠PAC+∠PBD. 理由:过点P作PE∥l1,∵l1∥l2,∴PE∥l2∥l1.∴∠PAC=∠APE,∠PBD=∠BPE.∴∠APB=∠APE+∠BPE=∠PAC+∠PBD.(2)当点P在C,D两点的外侧运动时,在l2下方时,则∠PAC=∠PBD+∠APB;在l1上方时,则∠PBD=∠PAC+∠APB.25.(1)解:过E作EF∥AB,如图①所示:则EF∥AB∥CD,∴∠B=∠BEF,∠D=∠DEF,∴∠B+∠D=∠BEF+∠DEF,即∠B+∠D=∠BED;故答案为:=;(2)解:逆命题为:若∠B+∠D=∠BED,则AB∥CD;该逆命题为真命题;理由如下:过E作EF∥AB,如图①所示:则∠B=∠BEF,∵∠B+∠D=∠BED,∠BEF+∠DEF=∠BED,∴∠D=∠BED﹣∠B,∠DEF=∠BED﹣∠BEF,∴∠D=∠DEF,∴EF∥CD,∵EF∥AB,∴AB∥CD;(3)证明:过点N作NG∥AB,交AM于点G,如图②所示:则NG∥AB∥CD,∴∠BAN=∠ANG,∠GNC=∠NCD,∵∠AMN是△ACM的一个外角,∴∠AMN=∠ACM+∠CAM,又∵∠AMN=∠ANM,∠ANM=∠ANG+∠GNC,∴∠ACM+∠CAM=∠ANG+∠GNC,∴∠ACM+∠CAM=∠BAN+∠NCD,∵CN平分∠ACD,∴∠ACM=∠NCD,∴∠CAM=∠BAN.。

2022—2023学年人教版数学七年级下册专题训练二——平行线的性质和判定的应用

2022—2023学年人教版数学七年级下册专题训练二——平行线的性质和判定的应用

专题训练二平行线的性质和判定的应用1.如图,∠MCN=45°,且AB∥CD,AC∥BD,BE⊥CN于点E.求∠DBE的度数.2.已知:如图,AD⊥BC,FG⊥BC,垂足分别为D,G,且∠ADE=∠CFG.求证:DE∥AC.3.【2022·南宁三中模拟】如图,AE∥CF,∠A=∠C.(1)若∠1=35°,求∠2的度数;(2)判断BC与AD的位置关系,并说明理由;(3)若DA平分∠BDF,求证:BC平分∠DBE.4.已知AB∥CD,点E为AB、CD之外任意一点.(1)如图①,探究∠BED与∠B、∠D的数量关系,并说明理由;(2)如图②,探究∠CDE与∠B、∠E的数量关系,并说明理由5.如图,已知l1∥l2,直线l3和直线l1、l2分别交于点C和点D,P为直线l3上一点,A、B分别是直线l1、l2上的定点.(1)若P点在线段CD(C、D两点除外)上运动时,问∠1、∠2、∠3之间的关系是什么?这种关系是否发生变化?(2)若P点在线段CD之外时,∠1、∠2、∠3之间的关系又怎样?说明理由.6.如图①所示,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过点P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为;(2)如图②所示,AB∥CD,点P在射线OM上运动,记作∠PAB=∠α,∠DCP=∠β.当点P在B、D两点之间运动时,∠APC与∠α、∠β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请你直接写出∠APC、∠α、∠β间的数量关系.7.如图,已知AB∥CD,点E是直线AB,CD之间的任意一点,锐角∠DCE和钝角∠ABE的平分线所在直线相交于点F,CD与FB交于点N.(1)当∠ECD=60°和∠ABE=100°时,求∠CFN的度数;(2)若BF∥CE,∠F=α,求∠ABE的度数(用含α的式子表示).参考答案1.如图,∠MCN =45°,且AB ∥CD ,AC ∥BD ,BE ⊥CN 于点E .求∠DBE 的度数.解:∵AB ∥CD ,∴∠MAB =∠MCN ,∠ABE =∠BEN .∵∠MCN =45°,BE ⊥CN ,∴∠MAB =45°,∠ABE =90°.∵AC ∥BD ,∴∠ABD =∠MAB .∴∠ABD =45°.∴∠DBE =∠ABE -∠ABD =45°.2.已知:如图,AD ⊥BC ,FG ⊥BC ,垂足分别为D ,G ,且∠ADE =∠CFG .求证:DE ∥AC .证明:∵AD ⊥BC ,FG ⊥BC ,∴∠C +∠CFG =90°,∠BDE +∠ADE =90°.∵∠ADE =∠CFG ,∴∠BDE =∠C .∴DE ∥AC .3.【2022·南宁三中模拟】如图,AE ∥CF ,∠A =∠C .(1)若∠1=35°,求∠2的度数;解:∵AE ∥CF ,∴∠CDB =∠1=35°.∴∠2=180°-∠CDB =145°.(2)判断BC 与AD 的位置关系,并说明理由;解:BC ∥AD .理由如下:∵AE ∥CF ,∴∠A +∠ADC =180°.又∵∠A =∠C ,∴∠C +∠ADC =180°.∴BC ∥AD .(3)若DA 平分∠BDF ,求证:BC 平分∠DBE .证明:∵AE ∥CF ,∴∠BDF =∠DBE .∵AD ∥BC ,∴∠ADB =∠DBC .∵DA 平分∠BDF ,∴∠ADB =12∠BDF . ∴∠DBC =12∠DBE .∴BC平分∠DBE.【点方法】几何推理的方法主要有两种:一种是综合法,即由“因”导“果”,由已知条件逐步推导出结论;另一种是分析法,即执“果”索“因”,根据要推出的结论,必须找到什么样的条件,一步一步反向找到条件.解答问题时一般用综合法,分析问题时一般用分析法,有时也可以两种方法综合应用.4.已知AB∥CD,点E为AB、CD之外任意一点.(1)如图①,探究∠BED与∠B、∠D的数量关系,并说明理由;(2)如图②,探究∠CDE与∠B、∠E的数量关系,并说明理由解:(1)∠B=∠BDE+∠D.理由如下:过点E作EF∥AB.又∵AB∥CD,∴EF∥AB∥CD.∴∠BEF=∠B,∠D=∠DEF.∵∠BEF=∠BED+∠DEF,∴∠B=∠BED+∠D;(2)∠CDE=∠B+∠BED.理由如下:过点E作EF∥AB. 又∵AB∥CD,∴EF∥AB∥CD.∴∠B+∠BEF =180°,∠CDE+∠DEF=180°.又∵∠DEF=∠BEF-∠BED,∴∠CDE+∠BEF-∠BED=∠B+∠BEF,即∠CDE=∠B+∠BED.5.如图,已知l1∥l2,直线l3和直线l1、l2分别交于点C和点D,P为直线l3上一点,A、B分别是直线l1、l2上的定点.(1)若P点在线段CD(C、D两点除外)上运动时,问∠1、∠2、∠3之间的关系是什么?这种关系是否发生变化?(2)若P点在线段CD之外时,∠1、∠2、∠3之间的关系又怎样?说明理由.解:(1)∠2=∠1+∠3.不变化;(2)当点P在线段DC的延长线上时,∠2=∠3-∠1.理由:过点P作PF∥l1,∠FPA=∠1.∵l1∥l2,∴PF∥l2,∴∠FPB=∠3,∴∠2=∠FPB-∠FPA=∠3-∠1;同理,当点P在线段CD的延长线上时,∠2=∠1-∠3.6.如图①所示,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过点P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为;(2)如图②所示,AB∥CD,点P在射线OM上运动,记作∠PAB=∠α,∠DCP=∠β.当点P在B、D两点之间运动时,∠APC与∠α、∠β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点不重合),请你直接写出∠APC 、∠α、∠β间的数量关系.解:(1)110°;(2)∠APC =∠α+∠β.理由如下:过P 作PE ∥AB 交AC 于E ,∵AB ∥CD ,∴AB ∥PE ∥CD ,∴∠α=∠APE ,∠β=∠CPE.∴∠APC =∠APE +∠CPE =∠α+∠β;(3)当P 在BD 延长线上时,∠CPA =∠α-∠β.当P 在DB 延长线上时,∠CPA =∠β-∠α.7.如图,已知AB ∥CD ,点E 是直线AB ,CD 之间的任意一点,锐角∠DCE 和钝角∠ABE 的平分线所在直线相交于点F ,CD 与FB 交于点N .(1)当∠ECD =60°和∠ABE =100°时,求∠CFN 的度数;解:(1)如图,过点F 作FH ∥CD .∵AB ∥CD ,∴FH ∥AB .∵CM 平分∠ECD ,∠ECD =60°,∴∠ECM =∠DCM =12∠ECD =30°. ∵BN 平分∠ABE ,∠ABE =100°,∴∠ABN =∠EBN =12∠ABE =50°. ∵FH ∥AB ,FH ∥CD ,∴∠HFB =∠ABN =50°,∠HFC =∠DCM =30°.∴∠CFN =∠HFB -∠HFC =20°.(2)若BF ∥CE ,∠F =α,求∠ABE 的度数(用含α的式子表示).∵BF ∥CE ,∴∠ECM =∠BFM =α.∵CM 平分∠ECD ,∴∠DCE =2∠ECM =2α.∵BF ∥CE ,∴∠BNC =∠ECD =2α.∵AB ∥CD ,∴∠ABN =∠BNC =2α.∵BN 平分∠ABE ,∴∠ABE =2∠ABN =4α.。

最新人教版七年级下册数学平行线的性质练习试题以及答案

最新人教版七年级下册数学平行线的性质练习试题以及答案

则∠ BDC=(

4
15、如图所示,工人师傅在加工零件时,发现 ∠ E=80°,小芳用学过的知识,得出∠ C=(
AB∥ CD,∠ A=40°, )
16 、 如 图 14 所示,若


AB ∥ CD, ∠ 1= ∠ 2 , ∠ 1=55 °,则∠ 3=
17、如图所示,已知直线 则∠ 2=____,∠ 3=
CE∥ AB,则∠ ACD=(
)。
10、如图所示,过△ ABC 的顶点 A 作 AD∥ BC.且 AB 平分∠ DAC,若
∠ B=50°,则∠ C=(

3
11、如图所示, 直线 AB 和 CD 被直线 EF所截. ∠ 1=∠2,∠3=130°,
则∠ 1=(

12、如果一个角的两边分别平行于另一个角的两边,并且这两个角的
10
31、如图所示,把一张长方形纸片 ABCD 沿 EF折叠后,点 C, D 分别 落在 C′, D′的位置上, EC′交 AD 于点 G,已知∠ EFG=58°,求∠ BEG度数。
11
32、( 1)如图①所示, AB∥ DE,∠ BAC=130°,∠ ACD=80°,试求∠ CDE的度数 .
( 2)通过上题的解决,你能否用多种方法解决下面的问题?试试看
AB∥CD,且被直线 EF 所截,若∠ 1=50°, 。
18、如图所示,AB∥ CD,AF 交 CD 于 E,若∠ CEF=60°,则∠ A=(

19、如图所示, 已知 AB∥CD,BC∥ DE,∠ 1=120°,则∠ 2=(

5
20、如图所示, AC 平分∠ BCD,且∠ BCA=∠CAD=1 ∠CAB,∠ ABC=75°,

人教版七年级数学下册 5.2.2平行线的判定 同步练习题含答案

人教版七年级数学下册 5.2.2平行线的判定 同步练习题含答案

平行线的判定一、单选题1.如图,能判定EB∥AC的条件是( )A.∠C=∠ABE B.∠A=∠EBDC.∠A=∠ABE D.∠C=∠ABC2.如图,可以判定AB∥CD的条件是()A.∠1=∠2B.∠3=∠4C.∠D=∠5D.∠BAD+∠B=180° 3.下列说法中,正确的个数是()①两点之间,直线最短.②三条直线两两相交,最少有三个交点.③射线CD 和射线DC 是同一条射线.④同角(或等角)的补角相等.⑤在同一平面内,垂直于同一条直线的两条直线互相平行.⑥绝对值等于它本身的数是非负数.A.3 个B.4 个C.5 个D.6 个4.如图,下列条件中不能使a∥b的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°5.如图,能判断AB∥CD 的条件是()A.∠1=∠4B.∠3=∠2C.∠3=∠1D.∠3=∠4 6.如图,下列能判定AB∥CD的条件有( )个.(1) ∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.47.如图所示,AE 平分∠BAC ,CE 平分∠ACD ,不能判定AB / /CD 的条件是()A.∠1 =∠2 B.∠1+∠2 = 90︒C.∠3 +∠4 = 90︒ D.∠2 +∠3 = 90︒8.如图,点D ,E,F 分别在AB,BC,AC 上,且EF∥AB,要使DF∥BC,只需添加条件( )A.∠1=∠2B.∠1=∠DFE C.∠1=∠AFD D.∠2=∠AFD二、填空题9.如图,当∠1=∠时,AB∥CD;当∠D+∠=180°时,AB∥CD;当∠B=∠时,AB∥CD.10.如图:请你添加一个条件可以得到DE / / AB11.如图,若满足条件,则有AB / /CD .(要求:不再添加辅助线,只需填一个答案即可)12.如图,∠1=∠2,∠2=∠C,则图中互相平行的直线有.13.如图,若∠1=∠2,则∥,依据是.三、解答题14.如图,∠CDA=∠CBA,DE 平分∠CDA,BF 平分∠CBA,且∠ADE=∠AED.试说明:DE∥FB.15.如图,已知∠1 =∠2 ,∠3 = 100 ,∠B = 80 ,判断CD 与EF 之间的位置关系,并说明理由.16.请将下列证明过程补充完整:已知:如图,AE平分∠B A C,C E平分∠A C D,且∠α+∠β=90°. 求证:A B∥C D.证明:∵C E平分∠A C D(已知),∴∠AC D=2∠α()∵A E平分∠B A C(已知),∴∠B A C=( )∵∠α+∠β=90°(已知),∴2∠α+2∠β=180°(等式的性质)∴∠A C D+∠B A C==( )∴AB∥C D.答案1.C2.B3.A4.C5.B6.C7.A8.B9.4 DAB 510.答案不唯一,当添加条件∠EDC=∠C或∠E=∠EBC或∠E+∠EBA=180°或∠A+∠ADE=180°时,都可以得到DE∥AB.11.∠A=∠3(答案不唯一).12.EF∥CG,AB∥CD13.AD BC 内错角相等,两直线平行14.∵D E 平分∠CDA,BF 平分∠CBA,1∴∠ADE=21∠CDA,∠ABF=2∠CBA,∵∠CDA =∠CBA,∴∠ADE=∠ABF,∵∠ADE=∠AED,∴∠AED=∠ABF,∴DE∥FB.15.解:EF / /CD ,理由如下:因为∠1 =∠2 ,所以AB / /CD ,又因为∠3 = 100 ,∠B = 80 ,所以∠3 +∠B = 180 ,所以AB / / EF ,所以EF / /CD .16.证明:∵CE平分∠ACD(已知),∴∠ACD=2∠α(角平分线的定义).∵AE平分∠BAC(已知),∴∠BAC=2∠β(角的平分线的定义).∴∠ACD+∠BAC=2∠α+2∠β(等式性质).即∠ACD+∠BAC=2(∠α+∠β).∵∠α+∠β=90°(已知),∴∠ACD+∠BAC=180°(等量代换).∴AB∥CD(同旁内角互补,两直线平行).故答案为:角平分线的定义,2∠β,等式性质,180°,等量代换,同旁内角互补,两直线平行。

人教版七年级数学下册第五章平行线的性质复习试题(含答案) (75)

人教版七年级数学下册第五章平行线的性质复习试题(含答案) (75)

人教版七年级数学下册第五章平行线的性质作业练习题(含答案)如图,DE BC DF BE ∥,、分别平分ADE ABC ∠、∠,求证:FDE DEB =∠∠.【答案】证明见解析.【解析】【分析】根据平行线的性质与判定,结合角平分线的定义作答.【详解】∵DE ∥BC ,∴∠ADE=∠ABC (两直线平行,同位角相等).又∵DF 、BE 分别平分∠ADE 和∠ABC , ∴1122ADF ADE ABE ABC ∠=∠∠=∠,, ∴ADF ABE =∠∠,∴DF ∥BE (同位角相等,两直线平行),∴∠FDE=∠DEB (两直线平行,内错角相等).【点睛】本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.42.如图,∠1+∠2=180°,EF ∥BC ,求证:∠3=∠B .【答案】见解析.【解析】【分析】依据∠1+∠2=180°,∠2=∠4,即可得出AB ∥FD ,进而得到∠3=∠AEF ,再根据EF ∥BC ,即可得到∠B=∠AEF ,即可得到∠3=∠B .【详解】∵∠1+∠2=180°,∠2=∠4,∴∠1+∠4=180°,∴AB ∥FD ,∴∠3=∠AEF ,∵EF ∥BC ,∴∠B =∠AEF ,∴∠3=∠B .【点睛】本题主要考查了平行线的判定与性质,能运用平行线的性质和判定进行推理是解此题的关键,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.43.(1)如图//AB CD ,试判断BEF ∠、EFG 、FGD ∠之间的关系.并说明理由.(2)如图//AB CD ,150AEF ∠=︒,60DGF ∠=︒.试判断EF 和GF 的位置关系,并说明理由.【答案】(1)EFG FGD BEF ∠=∠+∠,证明见解析;(2)EF FG ⊥,证明见解析.【解析】【分析】(1)过点F 作AB 的平行线FH ,由平行线的性质可得AB ∥FH ∥CD ,由两直线平行,内错角相等,得到∠BEF=∠EFH ,∠FGD=∠HFG ,所以∠BEF+∠FGD=∠EFH+∠HFG ,即∠EFG=∠FGD+∠BEF .(2)思路同(1)根据∠EFG=∠FGD+∠BEF ,求出∠EFG=90°从而得出EF ⊥FG .【详解】(1)解:EFG FGD BEF ∠=∠+∠证明:过点F 作AB 的平行线FH//AB CD ,//AB FH//CD FH ∴(平行于同一条直线的两条直线互相平行)AB FH(已作)//∴∠=∠(两直线平行,内错角相等)BEF EFHCD FH(已证)//∴∠=∠(两直线平行,内错角相等FGD HFG∴∠+∠=∠+∠(等量代换)BEF FGD EFH HFG∠+∠=∠即:BEF FGD EFG∴∠=∠+∠EFG FGD BEF⊥(2)EF FG证明:过点F作AB的平行线FHAB FHAB CD,////CD FH∴(平行于同一条直线的两条直线互相平行)//∠+∠=︒(平角的定义)AEF BEF180BEF AEF∴∠=︒-∠=︒-︒=︒180********AB FH(已作)//∴∠=∠(两直线平行,内错角相等)BEF EFHCD FH(已证)//FGD HFG∴∠=∠(两直线平行,内错角相等)∴∠+∠=∠+∠(等量代换)BEF FGD EFH HFG∠+∠=∠即:BEF FGD EFG∴∠=∠+∠=︒+︒=︒603090EFG FGD BEF∴⊥(垂直的定义)EF FG【点睛】本题主要考查的是平行线的性质:两直线平行,内错角相等.44.如图,已知BD⊥AC,EF⊥AC,垂足分别为D、F,∠1=∠2,请将证明∠ADG=∠C过程填写完整.证明:BD⊥AC,EF⊥AC(已知)∴∠BDC=∠EFC=90°∴BD∥∠2=∠3又∵∠1=∠2(已知)∴∠1=∠3(等量代换)∴DG∥∴∠ADG=∠C【答案】垂直的定义;EF;两直线平行,同位角相等;BC;两直线平行,同位角相等.【解析】【分析】根据垂直求出∠BDC=∠EFC=90°,根据平行线的判定得出BD∥EF,根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得出DG∥BC 即可.【详解】证明:∵BD⊥AC,EF⊥AC,∴∠BDC=∠EFC=90°,垂直的定义∴BD∥EF,∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知)∴∠1=∠3(等量代换)∴DG∥BC,∴∠ADG=∠C.两直线平行,同位角相等【点睛】本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.45.已知:如图,BE∥CF,且BE=CF,若BE、CF分别平分∠ABC和∠BCD.(1)请判断AB与CD是否平行?并说明你的理由.(2)CE、BF相等吗?为什么?【答案】(1)AB∥CD.理由见解析;(2)CE、BF相等.理由见解析.【解析】【分析】根据角平分线的定义,得出∠ABC=2∠1,∠BCD=2∠2,而由BE∥CF 得出∠1=∠2,再根据等量代换得出∠ABC=∠BCD,即可证明AB∥CD;求出∠1=∠2,根据平行线的判定推出即可.【详解】(1)AB∥CD.理由:∵BE、CF分别平分∠ABC和∠BCD,∴∠ABC=2∠1,∠BCD=2∠2,∵BE∥CF,∴∠1=∠2,∴∠ABC=∠BCD,∴AB∥CD;(2)CE、BF相等.理由:∵BE=CF,∠1=∠2,BC=CB,∴△BCE≌△CBF(SAS),∴CE=BF.【点睛】本题考查角平分线的定义,根据平分线的性质证明出∠1=∠2是解题关键.46.如图:∠1=∠2,∠3=108°.求∠4的度数【答案】72°.【解析】【分析】由∠1=∠2,根据同位角相等,两直线平行,即可求得AB∥CD,又由两直线平行,同旁内角互补,即可求得∠4的度数.【详解】解:∵∠1=∠2,∴AB∥CD.∴∠3+∠4=180°,∵∠3=108°,∴∠4=72°.【点睛】此题考查了平行线的判定与性质.注意同位角相等,两直线平行与两直线平行,同旁内角互补.47.如图,射线AB∥CD,P为一动点,∠BAP与∠DCP的平分线AE与CE交于点E.(1)当P在线段AC上运动时(如图1),即∠APC=180∘,则∠AEC=______;(2)当P运动到图2的位置时,猜想∠AEC与∠APC 的关系,并说明理由;(3)当P运动到图3的位置时,(2)中的结论还成立吗?(不要求说明理由)【答案】(1)90°;(2)∠AEC=12∠APC;(3)∠AEC=180°-12∠APC..【解析】【分析】(1)根据∠BAP与∠DCP的平分线AE与CE交于点E,即可得出∠BAE=∠EAC,∠DCE=∠ACE,再利用平行线的性质求出即可;(2)作EM∥BA,PN∥BA,根据平行的传递性,再根据两直线平行内错角相等的性质可求;(3)根据平行的传递性,再根据两直线平行内错角相等的性质以及平角性质即可求出.【详解】解:(1)过E作EF∥AB,∵AB∥CD,∴∠BAC+∠DCA=180°,∵∠BAP与∠DCP的平分线AE与CE交于点E,∴∠BAE=∠EAC,∠DCE=∠ACE,∴∠BAE+∠CEF=90°;∴∠AEC=180°,此时∠AEC为90度;(2)作EM∥BA,PN∥BA,∴∠BAE=∠AEM,∠MEC=∠ECD,∠APN=∠BAP,∠NPC=∠PCD,∵∠BAE=∠EAP,∠PCE=∠ECD,又∵∠AEC=∠AEM+∠MEC,∠APC=∠APN+∠NPC,∴∠AEC=12∠APC;(3)作EW∥AB,EP∥AB,同理即可得出:2∠AEC=360°-∠APC,∴∠AEC=180°-12∠APC.【点睛】此题主要考查了平行线的性质以及平行线的传递性等知识,解题的关键是正确作出辅助线,然后根据两直线平行内错角相等的性质解此类题.48.如图,已知∠BDG+∠EFG=180°,∠DEF=∠B,试判断∠AED与∠C的大小关系,并加以说明.解:∠AED=∠C.理由:∠∠EFD+∠EFG=180°( ),∠BDG+∠EFG=180°(已知)∠∠BDG =∠EFD ( ),∠BD∠EF( ),∠∠BDE+∠DEF =180°( ).又∠∠DEF=∠B( ),∠∠BDE+∠B =180°( ),∠DE∠BC( ),∠∠AED=∠C( ).【答案】见详解.【解析】【分析】做此题的关键是找出图中角与角的关系,即同位角,内错角,同旁内角等.利用平行线的性质和判定填空.【详解】】解:∠AED=∠C.理由如下:∵∠EFD+∠EFG=180°,(邻补角的定义)∠BDG+∠EFG=180°,(已知)∴∠BDG=∠EFD.(同角的补角相等)∴BD∥EF.(内错角相等,两直线平行)∴∠BDE+∠DEF=180°.(两直线平行,同旁内角互补)又∵∠DEF=∠B,(已知)∴∠BDE+∠B=180°.(等量代换)∴DE∥BC.(同旁内角互补,两直线平行)∴∠AED=∠C.(两直线平行,同位角相等)【点睛】本题主要考查了平行线的判定和性质,熟记定理是解题的关键.49.如图,直线CD与直线AB相交于C,根据下列语句画图,并填空.(1)过点P作PQ∥CD,交AB于点Q(尺规作图);(2)过点P作PR⊥CD,垂足为R.(3)在(1)(2)的条件下,若∠ACD=65°,则∠PQB=____度,∠RPQ=____度.【答案】(1)见详解;(2)见详解;(3)故答案为115,90.【解析】【分析】(1)平移CD使它经过点P即可得到PQ;(2)过点P作PR⊥DC于R;(3)先根据平行线的性质得∠PQA=∠ACD=65°,则利用邻补角计算∠PQB,根据垂直定义得∠PRC=90°,然后利用平行线的性质求∠RPQ=90°.【详解】解:(1)如图,PQ为所作;(2)如图,PR为所作;(3)在图中,∵PQ∥CD,∴∠PQA=∠ACD=65°,∴∠PQB=180°-65°=115°,∵PR⊥CD,∴∠PRC=90°,∵PQ∥CD,∴∠RPQ+∠PRC=180°,∴∠RPQ=90°.故答案为115,90.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.50.如图,已知12180∠+∠=︒,B DEF ∠=∠;那么DE 与BC 平行吗?试说明理由.请将下面的推理过程补充完整.解:DE BC ∥,理由如下:12180∠+∠=︒(已知)2180DHE ∠+∠=︒(平角的定义)1DHE ∴∠=∠( )∴ ( )B ∴∠= (两直线平行,同位角相等)B DEF ∠=∠(已知)DEF ∴∠= ( )DE BC ∴∥(内错角相等,两直线平行)【答案】见解析.【解析】【分析】由于∠1+∠2=180°,2180DHE ∠+∠=︒,则1DHE ∠=∠,根据内错角相等,∠,由于∠B=两直线平行得到AB∥EF,则利用平行线的性质得∠B=EFC∠,于是根据平行线的判定得到DE∥BC.∠DEF,所以∠DEF=EFC【详解】证明:12180∠+∠=︒(已知)2180∠+∠=︒(平角的定义)DHE∴∠=∠(同角的补角相等)1DHE∴AB EF (内错角相等,两直线平行)∠(两直线平行,同位角相等)∴∠=EFCB∠=∠(已知)B DEF∠( 等量代换)DEF∴∠=EFC∴∥(内错角相等,两直线平行)DE BC∠;故答案为:同角的补角相等;AB;EF;内错角相等,两直线平行;EFC ∠;等量代换.EFC【点睛】本题考查了平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,同位角相等.。

人教版七年级数学下册《5.2.2平行线的判定》同步练习(含答案)

人教版七年级数学下册《5.2.2平行线的判定》同步练习(含答案)

5.2.2平行线的判定关键问答①由平行线的定义来判定平行线,在什么地方不便操作?②平行线的判定方法有哪些?1.①图5-2-10是我们学过的用直尺和三角尺画平行线的方法示意图,画图原理是()图5-2-10A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.如果两条直线都和第三条直线平行,那么这两条直线平行2.②用两块相同的三角尺按如图5-2-11所示的方式作平行线AB和CD,能解释其中道理的依据是()图5-2-11A.内错角相等,两直线平行B.同位角相等,两直线平行C.同旁内角互补,两直线平行D.平行于同一直线的两直线平行3.如图5-2-12,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()图5-2-12A.AB∥BC B.BC∥CD C.AB∥CD D.AB与CD相交命题点1同位角相等,两直线平行[热度:94%]4.如图5-2-13,直线a与直线b相交于点A,与直线c相交于点B,∠1=120°,∠2=45°.若使直线b与直线c平行,则可将直线b绕点A逆时针旋转()图5-2-13A.15°B.30°C.45°D.60°5.③已知∠1=∠2,下列能判定AB∥CD的是()图5-2-14方法点拨③先判断∠1,∠2是由哪两条直线被哪条直线所截得到的,再确定两角位于被截直线之间还是同旁,在截线同侧还是异侧.6.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130°7.如图5-2-15,PE⊥MN,QF⊥MN,∠1=∠2,直线AB与CD平行吗?为什么?图5-2-15命题点2内错角相等,两直线平行[热度:94%]8.④如图5-2-16,已知∠1=∠2,那么()图5-2-16A.AB∥CD,根据内错角相等,两直线平行B.AD∥BC,根据内错角相等,两直线平行C.AB∥CD,根据同位角相等,两直线平行D.AD∥BC,根据同位角相等,两直线平行解题突破④分析∠1,∠2是由哪两条直线被哪条直线所截得到的,是一对什么位置关系的角.9.⑤如图5-2-17,点A在直线DE上,当∠BAC=________°时,DE∥BC.图5-2-17方法点拨⑤求角时,先看能否将其转化成已知角的和与差,这时的标志是其与已知角有公共顶点和公共边;再看所求角与已知角是不是同位角、内错角或同旁内角.10.如图5-2-18,已知AB⊥BC,DC⊥BC,∠1=∠2,直线BE,CF平行吗?为什么?图5-2-1811.如图5-2-19,∠1=60°,∠2=60°,∠3=100°.要使AB∥EF,∠4应为多少度?说明理由.图5-2-19命题点3同旁内角互补,两直线平行[热度:94%]12.⑥如图5-2-20,AE平分∠BAC,CE平分∠ACD,不能判定AB∥CD的条件是()图5-2-20A.∠1=∠2 B.∠1+∠2=90°C.∠3+∠4=90°D.∠2+∠3=90°方法点拨⑥对于复杂图形,可以采用去掉与条件无关的直线的方法,使图形变得简单,从而使问题难度减小.13.⑦如图5-2-21,∠ABD=90°,∠BDC=90°,∠1+∠2=180°,CD与EF平行吗?为什么?图5-2-21方法点拨⑦准确识别同位角、内错角、同旁内角是判断哪两条直线平行的关键.一般地,“F”形中有同位角,“Z”形中有内错角,“U”形中有同旁内角.每一对角的公共边所在的直线是截线,另外两边所在的直线是被截线,即需判定平行的两条直线.命题点4平行线判定方法的选用[热度:96%]14.如图5-2-22,已知AB⊥BC,∠1+∠2=90°,∠2=∠3,BE与DF平行吗?为什么?图5-2-2215.⑧小明到工厂进行社会实践活动时,发现工人师傅生产了一种如图5-2-23所示的零件,要求AB∥CD,∠BAE=35°,∠AED=90°.小明发现工人师傅只是量出∠BAE=35°,∠AED=90°后,又量了∠EDC=55°,就说AB与CD肯定是平行的.你知道原因吗?图5-2-23方法点拨⑧(1)判定两直线平行,通常找这两条直线被第三条直线所截得的同位角、内错角、同旁内角的数量关系;(2)若找到的“截线”是折线,通常过折线的拐点再作一条直线,把图形转化成多个两直线被第三条直线所截的图形,再用(1)解决.典题讲评与答案详析1.A 2.A 3.C4.A[解析]∵∠1=120°,∴∠1的邻补角为60°.当直线b与直线c平行时,∵∠2=45°,∴∠1的邻补角为45°,∴可将直线b绕点A逆时针旋转15°.故选A.5.D[解析] 在四个选项中,只有选项D满足“同位角相等,两直线平行”.6.A[解析] 此题可看作平行线性质的实际应用,解决该题单纯从文字方面去分析,很难判断出结果,但是结合题意画出各选项的示意图后,结果也就一目了然了.各选项的示意图如下:虽然有的图形符合了两直线平行,但行驶方向与原来的方向不相同.两次拐弯的方向与角度决定了行驶方向与原来的方向是否相同.对照上面示意图,发现A选项是正确的.7.解:AB∥CD.理由如下:∵PE⊥MN,QF⊥MN(已知),∴∠MEP=∠MFQ=90°(垂直的定义).又∵∠1=∠2(已知),∴∠MEP-∠1=∠MFQ-∠2(等式的性质),即∠MEB=∠MFD,∴AB∥CD(同位角相等,两直线平行).8.B[解析]∠1,∠2是直线AD,BC被直线AC所截得到的内错角,由内错角相等,两直线平行,可知AD∥BC.故选B.9.5710.解:BE∥CF.理由如下:因为AB⊥BC,DC⊥BC,所以∠ABC=∠BCD=90°.又因为∠1=∠2,所以∠ABC-∠1=∠BCD-∠2,即∠EBC=∠BCF,所以BE∥CF(内错角相等,两直线平行).11.解:∠4应为100°.理由如下:∵∠1=∠2,∴AB∥CD(内错角相等,两直线平行).∵∠4=∠3=100°,∴EF∥CD(内错角相等,两直线平行),∴AB∥EF(平行于同一直线的两条直线平行).12.A[解析]AE平分∠BAC,CE平分∠ACD,选项A中,由∠1=∠2,可得∠BAC=∠ACD,而∠BAC,∠ACD是一对同旁内角,显然不能判定AB∥CD.13.解:CD∥EF.理由如下:∵∠ABD=90°,∠BDC=90°,∴∠ABD+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行).又∵∠1+∠2=180°,∴AB∥EF(同旁内角互补,两直线平行),∴CD∥EF(平行于同一条直线的两直线平行).14.解:BE∥DF.理由如下:∵AB⊥BC,∴∠ABC=90°,即∠3+∠EBC=90°.又∵∠1+∠2=90°,且∠2=∠3,∴∠1=∠EBC,∴BE∥DF.15.解:以E为顶点,AE为一边,在∠AED的内部作∠AEM=∠BAE=35°,∴AB∥EM(内错角相等,两直线平行).又∵∠AED=90°,∴∠DEM=∠EDC=55°,∴CD∥EM(内错角相等,两直线平行),∴AB∥CD(平行于同一条直线的两直线平行).【关键问答】①要确定同一平面内两直线不相交,比较困难,因此不便操作.②方法1:同位角相等,两直线平行;方法2:内错角相等,两直线平行;方法3:同旁内角互补,两直线平行.。

2022-2023学年人教版七年级数学下册《5-2平行线及其判定》同步练习题(附答案)

2022-2023学年人教版七年级数学下册《5-2平行线及其判定》同步练习题(附答案)

2022-2023学年人教版七年级数学下册《5.2平行线及其判定》同步练习题(附答案)一.选择题1.在下列4个判断中:①在同一平面内,不相交也不重合的两条线段一定平行;②在同一平面内,不相交也不重合的两条直线一定平行;③在同一平面内,不平行也不重合的两条线段一定相交;④在同一平面内,不平行也不重合的两条直线一定相交.正确判断的个数是()A.4B.3C.2D.12.如图,∠1和∠2分别为直线l3与直线l1和l2相交所成角.如果∠1=62°,那么添加下列哪个条件后,可判定l1∥l2()A.∠2=118°B.∠4=128°C.∠3=28°D.∠5=28°3.若将一副三角板按如图所示的方式放置,则下列结论正确的是()A.∠1=∠2B.如果∠2=30°,则有AC∥DEC.如果∠2=45°,则有∠4=∠D D.如果∠2=50°,则有BC∥AE4.如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6=∠1+∠2;其中能判断直线l1∥l2的有()A.5个B.4个C.3个D.2个5.在同一个平面内,不相邻的两个直角,如果它们有一条边共线,那么另一边互相()A.平行B.垂直C.共线D.平行或共线6.如图1,A、B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小.如图2,连接AB,与l交于点C,则C点即为所求的码头的位置,这样做的理由是()A.垂线段最短B.两点确定一条直线C.两点之间,线段最短D.平行于同一条直线的两条直线平行7.如图,①∠B+∠BFE=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.能判定AB∥EF 的条件有()A.1个B.2个C.3个D.4个8.下列画出的直线a与b不一定平行的是()A.B.C.D.二.填空题9.在同一平面内,直线a、b、c中,若a⊥b,b∥c,则a、c的位置关系是.10.如图,用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是.11.如图,共有组平行线段.12.一副三角板按如图所示叠放在一起,其中点B、D重合,若固定三角形AOB,改变三角板ACD的位置(其中A点位置始终不变),当∠BAD=时,CD∥AB.13.下列四种说法:①过一点有且只有一条直线与已知直线平行;②在同一平面内,两条不相交的线段是平行线段;③相等的角是对顶角;④在同一平面内,若直线AB∥CD,直线AB与EF相交,则CD与EF相交.其中,错误的是(填序号).14.如图:PC∥AB,QC∥AB,则点P、C、Q在一条直线上.理由是:.三.解答题15.如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?16.如图,AD⊥BC于D,EF⊥BC于F,∠1=∠2,AB与DG平行吗?为什么?17.证明:两直线平行,同位角的角平分线互相平行.18.如图1,已知AC∥BD,点P是直线AC,BD间的一点,连接AB,AP,BP,过点P作直线MN∥AC.(1)MN与BD的位置关系是什么,请说明理由;(2)试说明∠APB=∠PBD+∠P AC;(3)如图2,当点P在直线AC上方时,(2)中的三个角的数量关系是否仍然成立?如果成立,试说明理由;如果不成立,试探索它们存在的关系,并说明理由.19.如图,如果CD∥AB,CE∥AB,那么C,D,E三点是否共线?你能说明理由吗?20.如图,已知∠1+∠2=180°,∠3=∠B,求证:DE∥BC.21.如图,已知∠A=∠AGE,∠D=∠DGC.(1)求证:AB∥CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C的度数.22.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):(1)若∠DCE=35°,求∠ACB的度数;(2)猜想∠ACB与∠DCE的数量关系,并说明理由;(3)请你动手操作,现将三角尺ACD固定,三角尺BCE的CE边与CA边重合,绕点C 顺时针方向旋转,当0°<∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(不必说明理由);若不存在,请说明理由.参考答案一.选择题1.解:在同一平面内,不相交也不重合的两条直线一定平行,故①错误,②正确;在同一平面内,不平行也不重合的两条直线一定相交故,③错误,④正确.故正确判断的个数是2.故选:C.2.解:∠1=62°,要使l1∥l2,则需∠3=62°(同位角相等,两直线平行),由图可知,∠2与∠3是邻补角,则只需∠2=180°﹣62°=118°,故选:A.3.解:∵∠CAB=∠DAE=90°,∴∠1=∠3,故A错误.∵∠2=30°,∴∠1=∠3=60°∴∠CAE=90°+60°=150°,∴∠E+∠CAE=180°,∴AC∥DE,故B正确,∵∠2=45°,∴∠1=∠2=∠3=45°,∵∠E+∠3=∠B+∠4,∴∠4=30°,∵∠D=60°,∴∠4≠∠D,故C错误,∵∠2=50°,∴∠3=40°,∴∠B≠∠3,∴BC不平行AE,故D错误.故选:B.4.解:①∵∠1=∠2不能得到l1∥l2,故本条件不合题意;②∵∠4=∠5,∴l1∥l2,故本条件符合题意;③∵∠2+∠5=180°不能得到l1∥l2,故本条件不合题意;④∵∠1=∠3,∴l1∥l2,故本条件符合题意;⑤∵∠6=∠2+∠3=∠1+∠2,∴∠1=∠3,∴l1∥l2,故本条件符合题意.故选:C.5.解:如图所示:不相邻的两个直角,如果它们有一条边共线,内错角相等,或同旁内角互补,那么另一边互相平行或共线.故选:D.6.解:由题意得,这样做的理由是:两点之间线段最短,故选:C.7.解:①当∠B+∠BFE=180°时,由同旁内角互补,两直线平行得AB∥EF,故①符合题意;②当∠1=∠2时,由内错角相等,两直线平行得DE∥BC,故②不符合题意;③当∠3=∠4时,由内错角相等,两直线平行得AB∥EF,故③符合题意;④当∠B=∠5时.由同位角相等,两直线平行得AB∥EF,故④符合题意;综上所述,能判定AB∥EF的有3个.故选:C.8.解:A.直线a与b不一定平行,故本选项符合题意;B.根据同旁内角互补,两直线平行可得a∥b,故本选项不符合题意;C.根据平行线的定义可得a∥b,故本选项不符合题意;D.根据同位角相等,两直线平行可得a∥b,故本选项不符合题意;故选:A.二.填空题9.解:∵c∥b,a⊥b,∴c⊥a.故答案为c⊥a10.解:用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是同位角相等,两直线平行;故答案为:同位角相等,两直线平行.11.解:图中的平行线段有AD∥EF;BD∥EF;DE∥FB;DE∥FC;DF∥AE;DF∥EC;DE∥BC;DF∥AC;EF∥AB.共有9对.故答案为:9.12.解:如图所示:当CD∥AB时,∠BAD=∠D=30°;如图所示,当AB∥CD时,∠C=∠BAC=60°,∴∠BAD=60°+90°=150°;故答案为:150°或30°.13.解:∵过直线外一点有且只有一条直线与已知直线平行,∴①错误;∵在同一平面内,两条不相交的线段可能在一条直线上,说两线段是平行线段不对,∴②错误;∵相等的角不一定是对顶角,∴③错误;∵在同一平面内,若直线AB∥CD,直线AB与EF相交,则CD与EF相交,正确,∴④正确;故答案为:①②③.14.解:∵PC∥AB,QC∥AB,∵PC和CQ都过点C,∴P、C、Q在一条直线上(过直线外一点有且只有一条直线与已知直线平行),故答案为:过直线外一点有且只有一条直线与已知直线平行.三.解答题15.解:(1)(2)如图所示,(3)l1与l2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.16.解:结论:AB∥DG.理由:∵AD⊥BC于D,EF⊥BC于F,∴AD∥EF,∴∠1=∠BAD,∵∠1=∠2,∴∠BAD=∠2,∴AB∥DG.17.解:已知:如图,AB∥CD,HI与AB,CD分别交于点M、N,EM,FN分别是∠AMH,∠CNH的平分线.求证:EM∥FN.证明:∵AB∥CD,∴∠AMH=∠CNH(两直线平行,同位角相等),∵EM,FN分别是∠AMH,∠CNH的平分线,∴∠1=∠AMH,∠2=∠CNH,∴∠1=∠2,∴EM∥FN(同位角相等,两直线平行).18.解:(1)平行;理由如下:∵AC∥BD,MN∥AC,∴MN∥BD;(2)∵AC∥BD,MN∥BD,∴∠PBD=∠1,∠P AC=∠2,∴∠APB=∠1+∠2=∠PBD+∠P AC.(3)答:不成立.它们的关系是∠APB=∠PBD﹣∠P AC.理由是:如图2,过点P作PQ∥AC,∵AC∥BD,∴PQ∥AC∥BD,∴∠P AC=∠APQ,∠PBD=∠BPQ,∴∠APB=∠BPQ﹣∠APQ=∠PBD﹣∠P AC.19.解:共线.因为过直线AB外一点C有且只有一条直线与AB平行,CD、DE都经过点C且与AB平行,所以点C、D、E三点共线.20.证明:∵∠1+∠2=180°(已知)∵∠1=∠4(对顶角相等)∴∠2+∠4=180°(等量代换)∴AB∥EF(同旁内角互补,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代换)∴DE∥BC(同位角相等,两直线平行)21.证明:(1)∵∠A=∠AGE,∠D=∠DGC,又∵∠AGE=∠DGC,∴∠A=∠D,∴AB∥CD;(2)∵∠1+∠2=180°,又∵∠CGD+∠2=180°,∴∠CGD=∠1,∴CE∥FB,∴∠C=∠BFD,∠CEB+∠B=180°.又∵∠BEC=2∠B+30°,∴2∠B+30°+∠B=180°,∴∠B=50°.又∵AB∥CD,∴∠B=∠BFD,∴∠C=∠BFD=∠B=50°.22.解:(1)∵∠ECB=90°,∠DCE=35°,∴∠DCB=90°﹣35°=55°,∴∠ACB=∠ACD+∠DCB=90°+55°=145°;(2)∠ACB+∠DCE=180°,理由:∵∠ACB=∠ACD+∠DCB=90°+∠DCB,∴∠ACB+∠DCE=90°+∠DCB+∠DCE=90°+90°=180°;(3)存在,当∠ACE=30°时,AD∥BC,当∠ACE=∠E=45°时,AC∥BE,当∠ACE=120°时,AD∥CE,当∠ACE=135°时,BE∥CD,当∠ACE=165°时,BE∥AD.。

人教版七年级下册数学平行线的判定及性质证明题训练(含答案)

人教版七年级下册数学平行线的判定及性质证明题训练(含答案)

人教版七年级下册数学平行线的判定及性质证明题训练(含答案)1.如图,三角形ABC 中,点D 在AB 上,点E 在BC 上,点F ,G 在AG 上,连接,,DG BG EF .己知12∠=∠,3180ABC ∠+∠=︒,求证:∥BG EF .将证明过程补充完整,并在括号内填写推理依据.证明:∵_____________(已知)∴∥DG BC (_______________________)∴.CBG ∠=________(____________________)∵12∠=∠(已知)∴2∠=________(等量代换)∴∥BG EF (___________________)2.如图,已知12∠=∠,A F ∠=∠,试说明C D ∠=∠的理由.解:把1∠的对顶角记作3∠,所以13∠=∠(对顶角相等).因为12∠=∠(已知),所以23∠∠=( ),所以 ∥ ( ).(请继续完成接下去的说理过程)3.如图,CD ∥AB ,点O 在直线AB 上,OE 平分∠BOD ,OF ⊥OE ,∠D =110°,求∠DOF 的度数.4.如图,DH 交BF 于点E ,CH 交BF 于点G ,12∠=∠,34∠=∠,5B ∠=∠.试判断CH 和DF 的位置关系并说明理由.5.已知:如图,直线DE//AB.求证:∠B+∠D=∠BCD.6.如图,已知AB CD∥,BE平分ABC∠,CE平分BCD∠,求证1290∠+∠=︒.证明:∵BE平分ABC∠(已知),∴2∠=(),同理1∠=,∴1122∠+∠=,又∵AB CD∥(已知)∴ABC BCD∠+∠=(),∴1290∠+∠=︒.7.请把下列证明过程及理由补充完整(填在横线上):已知:如图,BC,AF是直线,AD∥BC,∠1=∠2,∠3=∠4.求证:AB∥CD.证明:∵AD∥BC(已知),∴∠3=().∵∠3=∠4(已知),∴∠4=().∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF().即∠BAF=.∴∠4=∠BAF.().∴AB∥CD().8.如图,已知∠A=120°,∠FEC=120°,∠1=∠2,试说明∠FDG=∠EFD.请补全证明过程,即在下列括号内填上结论或理由.解:∵∠A=120°,∠FEC=120°(已知),∴∠A=().∴AB∥().又∵∠1=∠2(已知),∴EF ∥ ( ).∴∠FDG =∠EFD ( ).9.在三角形ABC 中,CD AB ⊥于D ,F 是BC 上一点,FH AB ⊥于H ,E 在AC 上,EDC BFH ∠=∠.(1)如图1,求证:∥DE BC ;(2)如图2,若90ACB ∠=︒,请直接写出图中与ECD ∠互余的角,不需要证明.10.已知:如图,直线MN HQ ∥,直线MN 交EF ,PO 于点A ,B ,直线HQ 交EF ,PO 于点D ,C ,DG 与OP 交于点G ,若1103∠=︒,277∠=︒,396∠=︒.(1)求证:EF OP ∥;(2)请直接写出CDG ∠的度数.11.如图直线a b ∥,直线EF 与,a b 分别和交于点,,A B AC AB AC ⊥、交直线b 于点C .(1)若160∠=︒,直接写出2∠= ;(2)若3,4,5AC AB BC ===,则点B 到直线AC 的距离是 ;(3)在图中直接画出并求出点A 到直线BC 的距离.12.如图,已知AB CD ,BE 平分∠ABC ,∠CDE = 150°,求∠C 的度数.13.如图,在ABC 中,CD 平分ACB ∠交AB 于D ,EF 平分AED ∠交AB 于F ,已知ADE B ∠=∠,求证:EF CD ∥.14.已知:如图,AB ∥CD ∥EF ,点G 、H 、M 分别在AB 、CD 、EF 上.求证:GHM AGH EMH ∠∠∠=+.15.如图所示,点B 、E 分别在AC 、DF 上,BD 、CE 均与AF 相交,A F ∠=∠,C D ∠=∠,求证:12∠=∠.16.如图,在ABC 中,DE ∥AC ,DF ∥AB .(1)判断∠A 与∠EDF 之间的大小关系,并说明理由.(2)求∠A +∠B +∠C 的度数.17.已知:如图,ABC 中,点D 、E 分别在AB 、AC 上,EF 交DC 于点F ,32180∠+∠=︒ ,1B ∠=∠.(1)求证:∥DE BC ;(2)若DE 平分ADC ∠,33B ∠=∠,求2∠的度数.18.如图,AB ∥DG ,∠1+∠2=180°.(1)试说明:AD ∥EF ;(2)若DG 是∠ADC 的平分线,∠2=142°,求∠B 的度数.19.问题情境:如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:如图2,过P 作PE AB ∥,通过平行线性质,可得APC ∠=______.问题迁移:如图3,AD BC ∥,点P 在射线OM 上运动,ADP α∠=∠,BCP β∠=∠.(1)当点P 在A 、B 两点之间运动时,CPD ∠、α∠、β∠之间有何数量关系?请说明理由.(2)如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出CPD ∠、α∠、β∠之间有何数量关系.20.直线AB CD∠.∥,直线EF分别交AB、CD于点M、N,NP平分MND(1)如图1,若MR平分EMB∠,则MR与NP的位置关系是.∠,则MR与NP有怎样的位置关系?请说明理由.(2)如图2,若MR平分AMN(3)如图3,若MR平分BMN∠,则MR与NP有怎样的位置关系?请说明理由.参考答案:1.解:证明:∵3180ABC ∠+∠=︒(已知)∴∥DG BC (同旁内角互补,两直线平行)∴.1CBG ∠=∠(两直线平行,内错角相等)∵12∠=∠(已知)∴2CBG ∠=∠(等量代换)∴∥BG EF (同位角相等,两直线平行)2.解:把1∠的对顶角记作3∠,所以13∠=∠(对顶角相等).因为12∠=∠(已知),所以23∠∠=(等量代换),所以//BD CE (同位角相等,两直线平行),所以4C ∠=∠(两直线平行,同位角相等),又因为A F ∠=∠,所以//DF AC (同位角相等,两直线平行),所以4D ∠=∠(两直线平行,内错角相等),所以C D ∠=∠(等量代换).故答案为:等量代换;BD ;CE ;同位角相等,两直线平行.3.解:∵CD AB ∥∴110DOB D ∠=∠=︒∵OE 平分∠BOD ∴1552DOE DOB ∠=∠=︒ 又∵OF ⊥OE∴90EOF ∠=︒∴905535DOF EOF DOE ∠=∠-∠=︒-︒=︒故答案为:35︒4.解:CH DF,理由如下:∵34∠=∠,∴CD BF,∴5180BED∠+∠=︒,∵5B∠=∠,∴180B BED∠+∠=︒,∴BC DH,∴2H∠=∠,∵12∠=∠,∴1H∠=∠,∴CH DF.5.证明:过点C作CF∥AB,∴∠B=∠BCF,∵DE//AB.CF∥AB,∴CF∥DE,∴∠D=∠DCF,∴∠BCD=∠BCF+∠DCF=∠B+∠D.6.证明:∵BE平分∠ABC(已知),∴∠2=12∠ABC(角平分线的定义),同理∠1=12∠BCD,∴∠1+∠2=12(∠ABC+∠BCD),又∵AB∥CD(已知)∴∠ABC +∠BCD =180°(两直线平行,同旁内角互补 ),∴∠1+∠2=90°. 故答案为:12∠ABC ;角平分线的定义;12∠BCD ;(∠ABC +∠BCD );180°;两直线平行,同旁内角互补.7.证明:∵AD ∥BC (已知),∴∠3=∠CAD (两直线平行,内错角相等).∵∠3=∠4(已知),∴∠4=∠CAD (等量代换).∵∠1=∠2(已知),∴∠1+∠CAF =∠2+∠CAF (等式的性质).即∠BAF =∠CAD .∴∠4=∠BAF .(等量代换).∴AB ∥CD (同位角相等,两直线平行).8.解:∵∠A =120°,∠FEC =120°(已知),∴∠A =∠FEC (等量代换),∴AB ∥EF (同位角相等,两直线平行),又∵∠1=∠2(已知),∴AB ∥CD (内错角相等,两直线平行),∴EF ∥CD (平行于同一条直线的两直线互相平行),∴∠FDG =∠EFD (两直线平行,内错角相等),故答案为:∠FEC ;等量代换;EF ;同位角相等,两直线平行;内错角相等,两直线平行;CD ;平行于同一条直线的两直线互相平行;两直线平行,内错角相等.9.证明:∵CD AB ⊥,FH AB ⊥,∴//CD FH ,∴BCD BFH ∠=∠.∵EDC BFH ∠=∠,∴BCD EDC ∠=∠,∴//ED BC .(2)与ECD ∠互余的角有:EDC BCD BFH A ∠∠∠∠,,,.证明:∵//ED BC ,∴90DEC ACB ∠=∠=︒,EDC BCD ∠=∠,∴90ECD EDC ∠+∠=︒,90ECD BCD ∠+∠=︒.∵//CD FH ,∴BCD BFH ∠=∠,∴90ECD BFH ∠+∠=︒.∵CD AB ⊥,∴90ACD A ∠+∠=︒,即90ECD A ∠+∠=︒.综上,可知与ECD ∠互余的角有:EDC BCD BFH A ∠∠∠∠,,,.10.解:(1)∵1103∠=︒,∴77∠=︒ABC ,∵277∠=︒,∴2ABC ∠=∠,∴EF OP ∥;(2)∵MN HQ ∥,EF OP ∥,∴1103∠=∠=∠=︒FDC FAB ,3180∠+∠=︒FDG ,∵396∠=︒,∴180********∠=︒-∠=︒-︒=︒FDG ,∴1038419∠=∠-∠=︒-︒=︒CDG FDC FDG .11.解:(1)∵a b ∥,∴12180BAC ∠+∠+∠=︒,∵AC AB ⊥,160∠=︒,∴230∠=︒,故答案为:30︒;(2)∵AC AB⊥,∴点B到直线AC的距离为线段4AB=,故答案为:4;(3)如图所示:过点A作AD BC⊥,点A到直线BC的距离为线段AD的长度,∵AC AB⊥,∴ABC∆为直角三角形,∴1122ABCS AC AB BC AD∆=⨯⨯=⨯⨯,即1134522AD ⨯⨯=⨯⨯,解得:125 AD=,∴点A到直线BC的距离为125.12.解:∵∠CDE=150°,∴∠CDB=180°-∠CDE=30°,又∵AB CD,∴∠ABD=∠CDB=30°,∵BE平分∠ABC,∴∠ABC=2∠ABD=60°,∵AB CD,∴∠C=180°-∠ABC=120°.13.证明:ADE B∠=∠(已知),DE//BC∴(同位角相等,两直线平行),ACB AED∴∠=∠(两直线平行,同位角相等),CD 平分ACB ∠,EF 平分AED ∠(已知),12ACD ACB ∴∠=∠,12AEF AED ∠=∠(角平分线的定义), ACD AEF ∴∠=∠(等量代换).EF //CD ∴(同位角相等,两直线平行).14.证明:∵AB ∥CD (已知)∴1AGH ∠=∠(两直线平行,内错角相等) 又 ∵CD ∥EF (已知)∴2EMH ∠=∠,(两直线平行,内错角相等) ∵12GHM ∠∠∠=+(已知)∴GHM AGH EMH ∠∠∠=+(等式性质)15.证明:∵A F ∠=∠,∴AC DF ∥,∴ABD D ∠=∠,又∵C D ∠=∠,∴ABD C ∠=∠,∴DB CE ∥,∴13∠=∠,∵23∠∠=,∴12∠=∠.16.(1)两角相等,理由如下:∵DE ∥AC ,∴∠A =∠BED (两直线平行,同位角相等).∵DF ∥AB ,∴∠EDF =∠BED (两直线平行,内错角相等), ∴∠A =∠EDF (等量代换).(2)∵DE ∥AC ,∴∠C =∠EDB (两直线平行,同位角相等).∵DF ∥AB ,∴∠B =∠FDC (两直线平行,同位角相等).∵∠EDB +∠EDF +∠FDC =180°,∴∠A +∠B +∠C =180°(等量代换).17.解:(1)∵32180∠+∠=︒,∠2+∠DFE =180°, ∴∠3=∠DFE ,∴EF //AB ,∴∠ADE =∠1,又∵1B ∠=∠,∴∠ADE =∠B ,∴DE //BC ,(2)∵DE 平分ADC ∠,∴∠ADE =∠EDC ,∵DE //BC ,∴∠ADE =∠B ,∵33B ∠=∠∴∠5+∠ADE +∠EDC =3B B B ∠+∠+∠=180°, 解得:36B ∠=︒,∴∠ADC =2∠B =72°,∵EF //AB ,∴∠2=∠ADC =180°-108°=72°,18.(1)∵AB ∥DG ,∴∠BAD =∠1,∵∠1+∠2=180°,∴∠BAD +∠2=180°.∵AD ∥EF .(2)∵∠1+∠2=180°且∠2=142°,∴∠1=38°,∵DG 是∠ADC 的平分线,∴∠CDG =∠1=38°,∵AB ∥DG ,∴∠B =∠CDG =38°.19.解:问题情境:∵AB ∥CD ,PE ∥AB ,∴PE ∥AB ∥CD ,∴∠A +∠APE =180°,∠C +∠CPE =180°,∵∠P AB =130°,∠PCD =120°,∴∠APE =50°,∠CPE =60°,∴∠APC =∠APE +∠CPE =50°+60°=110°;(1)CPD αβ∠=∠+∠;过点P 作PQ AD ∥,又因为AD BC ∥,所以PQ AD BC ∥∥,则ADP DPE ∠=∠,BCP CPE ∠=∠,所以CPD DPE CPE ADP BCP ∠=∠+∠=∠+∠;(2)情况1:如图所示,当点P 在B 、O 两点之间时,过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE =∠ADP =∠α,∠CPE =∠BCP =∠β, ∴∠CPD =∠DPE -∠CPE =∠α-∠β,情况2:如图所示,点P 在射线AM 上时,过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE =∠ADP =∠α,∠CPE =∠BCP =∠β, ∴∠CPD =∠CPE -∠DPE =∠β-∠α20.(1)如题图1,AB CD ∥EMB END ∴∠=∠MR 平分EMB ∠,NP 平分MND ∠.11,22EMR EMB ENP END ∴∠=∠∠=∠ EMR ENP ∴∠=∠∴MR ∥NP ;(2)如题图2,AB CD ∥AMN END ∴∠=∠MR 平分AMN ∠,NP 平分MND ∠.11,22RMN AMN ENP END ∴∠=∠∠=∠ RMN ENP ∴∠=∠∴MR ∥NP ;(3)如图,设,MR PN 交于点Q ,过点Q 作QG AB ∥AB CD ∥180BMN END ∴∠+∠=︒,QG CD ∥ ,MQG BMR GQN PND ∴∠=∠∠=∠ MR 平分BMN ∠,NP 平分MND ∠.11,22BMR BMN PND END ∴∠=∠∠=∠ 90BMR PND ∴∠+∠=︒90MQN MQG NQG ∴∠=∠+∠=︒ ∴MR ⊥NP ;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(第1页,共3页)
一、填空
1.如图1,若∠A=∠3,则 ∥ ; 若∠2=∠E ,则 ∥ ; 若∠ +∠ = 180°,则 ∥ .
2.若a⊥c,b⊥c,则a b .
3.如图2,写出一个能判定直线l 1∥l 2的条件: . 4.在四边形ABCD 中,∠A +∠B = 180°,则 ∥ ( ). 5.如图3,若∠1 +∠2 = 180°,则 ∥ 。

6.如图4,∠1、∠2、∠3、∠4、∠5中, 同位角有 ; 内错角有 ;同旁内角有 . 7.如图5,填空并在括号中填理由:
(1)由∠ABD =∠CDB 得 ∥ ( ); (2)由∠CAD =∠ACB 得 ∥ ( );
(3)由∠CBA +∠BAD = 180°得 ∥ ( )
8.如图6,尽可能多地写出直线l 1∥l 2的条件: .
9.如图7,尽可能地写出能判定AB∥CD 的条件来: . 10.如图8,推理填空:
(1)∵∠A =∠ (已知), ∴AC∥ED( );
(2)∵∠2 =∠ (已知), ∴AC∥ED( ); (3)∵∠A +∠ = 180°(已知), ∴AB∥FD( );
(4)∵∠2 +∠ = 180°(已知), ∴AC∥ED( ) 二、解答下列各题
11.如图9,∠D =∠A,∠B =∠FCB,求证:ED∥CF.
12.如图10,∠1∶∠2∶∠3 = 2∶3∶4, ∠AFE = 60°,∠BDE =120°,写出图中平行的直线,并
说明理由.
13.如图11,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME。

求证:AB∥CD,MP∥NQ.
[二]、平行线的性质 1.如图1,已知∠1 = 100°,AB∥CD,则∠2 = ,∠3 = ,∠4 = . 2.如图2,直线AB 、CD 被EF 所截,若∠1 =∠2,则∠AEF +∠CFE = .
3.如图3所示
(1)若EF∥AC,则∠A +∠ = 180°,∠F + ∠ = 180°( ). (2)若∠2 =∠ ,则AE∥BF.
(3)若∠A +∠ = 180°,则AE∥BF.
4.如图4,AB∥CD,∠2 = 2∠1,则∠2 = .
5.如图5,AB∥CD,EG⊥AB 于G ,∠1 = 50°,则∠E = .
6.如图6,直线l 1∥l 2,AB⊥l 1于O ,BC 与l 2交于E ,∠1 = 43°,则∠2 = . 7.如图7,AB∥CD,AC⊥BC,图中与∠CAB 互余的角有 . 8.如图8,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(不包括∠1)共有 个.
A C
B 4 1 2 3 5 图4 a b c d 1 2 3 图3 A B
C E
D 1 2 3 图1 图2 4 3 2 1 5 a b 1 2 3
A F C D
B E
图8
E B
A
F D C 图9
1 3
2 A E C
D B F
图10 F 2
A B C D Q E
1 P
M N 图11
A D C
B O 图5 图6 5 1 2
4 3 l 1 l 2 图7
5 4 3 2 1 A D C B 图1 2 4 3 1 A B C D E 1 2 A
B D
C E F 图2 1 2 3 4 5 A B C D
F E 图3 1 2 A B C D E F
图4 图5
1 A B C D
E F G H 图7 1 2 D A C B l 1
l 2 图8 1 A B F C D E G 图6 C D F E B A
(第2页,共3页)
二、解答下列各题
9.如图9,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G.
10.如图10,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB 的度数.
12.如图12,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1 +∠2 = 90°. 求证:(1)AB∥CD; (2)∠2 +∠3 = 90°. 二.填空题:
1.如图③ ∵∠1=∠2,∴_______∥________( )。

∵∠2=∠3,∴_______∥________( )。

2.如图④ ∵∠1=∠2,∴_______∥________( )。

∵∠3=∠4,∴_______∥________( )。

3.如图⑤ ∠B=∠D=∠E ,那么图形中的平行线有________________________________。

4.如图⑥ ∵ AB ⊥BD ,CD ⊥BD (已知)
∴ AB ∥CD ( ) 又∵ ∠1+∠2 =︒180(已知)
∴ AB ∥EF ( ) ∴ CD ∥EF ( )
三.选择题:
1.如图⑦,∠D=∠EFC ,那么( ) A .AD ∥BC B .AB ∥CD
C .EF ∥BC
D .AD ∥EF
2.如图⑧,判定AB ∥CE 的理由是( ) A .∠B=∠ACE B .∠A=∠ECD C .∠B=∠ACB D .∠A=∠ACE 3.如图⑨,下列推理正确的是( )
A .∵∠1=∠3,∴a ∥b
B .∵∠1=∠2,∴a ∥b
C .∵∠1=∠2,∴c ∥d
D .∵∠1=∠2,∴c ∥d 1.如图⑩
∵∠B=∠_______,∴ AB ∥CD ( ) ∵∠BGC=∠_______,∴ CD ∥EF ( ) ∵AB ∥CD ,CD ∥EF ,
∴ AB ∥_______( ) 2.如图⑾ 填空:
(1)∵∠2=∠B (已知)
∴ AB__________( ) (2)∵∠1=∠A (已知)
∴ __________ ( ) (3)∵∠1=∠D (已知)
∴ __________ ( ) (4)∵_______=∠F (已知)
∴ AC ∥DF ( ) 3.已知,如图∠1+∠2=180°,填空。

∵∠1+∠2=180°( )又∠2=∠3( )
∴∠1+∠3=180°
∴_________( )
五.证明题
1.已知:如图⑿,CE 平分∠ACD ,∠1=∠B ,
求证:AB ∥CE
2.如图:∠1=︒53,∠2=︒127,∠3=︒53,
试说明直线AB 与CD ,BC 与DE 的位置关系。

图9 1 2
A C
B F G
E
D 图10
2
1 B C
E
D C 图12
1
2
3 A
B D F。

相关文档
最新文档