小升初数学常考十大内容比和比例

合集下载

202X年小升初数学常考十大内容比和比例

202X年小升初数学常考十大内容比和比例

千里之行,始于足下。

202X年小升初数学常考十大内容比和比例202X年小升初数学常考十大内容比和比例:一、比的含义与性质比的含义:比较两个数(多个数)的大小关系。

比的性质:等比例关系、比例的乘方性质、比例的倒数性质等。

二、比的运算与化简比的四则运算:加法、减法、乘法、除法。

比的化简:将比化为最简比及最简形式。

三、比例的表示与运算比例的表示:用冒号(:)、分数、百分数等形式表示比例关系。

比例的运算:分项、交叉、调整等运算。

四、比例问题解决比例问题的解决:根据已知条件设置等比关系,利用比例的性质解决问题。

五、整数的倍数与约数整数的倍数:一个整数能被另一个整数整除,则这个整数是另一个数的倍数。

整数的约数:能整除该整数的正整数。

六、公约数与公倍数公约数:两个或多个整数的约数中,除了1以外还有其他公因数。

公倍数:两个或多个整数的倍数中,除了0以外还有其他公倍数。

第1页/共2页锲而不舍,金石可镂。

七、最大公约数与最小公倍数最大公约数:两个或多个数的公约数中最大的一个。

最小公倍数:两个或多个数的公倍数中最小的一个。

八、比例与图形比例与图形的关系:包括长度比、面积比、容积比等比例的关系。

九、加减换位运算法加减换位运算法:在求解带有等比关系的计算过程中的一种方法。

十、实际问题解决实际问题解决:将实际问题转化为数学问题,利用比例的知识解决实际问题。

以上是202X年小升初数学常考的十大内容比和比例。

掌握好这些内容,对于小升初数学考试会起到很大的帮助。

希望你能够认真学习和复习这些知识,取得好成绩!。

小升初数学上册知识点:比和比例

小升初数学上册知识点:比和比例

小升初数学上册知识点:比和比率对小升初数学上册知识点:比和比率你认识多少呢,看看下文吧,希望您读后能够有所收获 ! 两个数相除又叫做两个数的比 .一、比和比率的性质性质 1:若 a: b=c: d,则 (a + c): (b + d)= a : b=c: d;性质 2:若 a: b=c: d,则 (a - c):(b - d)= a : b=c: d;性质 3:若 a: b=c: d,则 (a +x c) : (b +x d)=a : b=c: d;(x 为常数 )性质 4:若 a: b=c: d,则 ad = b(即外项积等于内项积)正比率:假如 ab=k(k 为常数 ),则称 a、 b 成正比 ;反比率:假如 ab=k(k 为常数 ),则称 a、 b 成反比 .二、比和比率内行程问题中的表此刻行程问题中,由于有速度 =,因此:当一组物体行走速度相等,那么行走的行程比等于对应时间的反比 ;当一组物体行走行程相等,那么行走的速度比等于对应时间的反比 ;其实 ,任何一门学科都离不开照本宣科,重点是记忆有技巧, “死记”以后会“活用”。

不记着那些基础知识 ,怎么会向高层次进军 ?特别是语文学科涉猎的范围很广 ,要真实提升学生的写作水平 ,单靠剖析文章的写作技巧是远远不够的,一定从基础知识抓起 ,每日挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新奇的资料等。

这样,就会在有限的时间、空间里给学生的脑海里注入无穷的内容。

与日俱增,积少成多 ,进而收到磨铁成针,绳锯木断的功能。

当一组物体行走时间相等,那么行走的速度比等于对应行程的正比.1.A 和 B 两个数的比是8: 5,每一数都减少34 后, A 是 B 的 2 倍,试求这两个数.家庭是少儿语言活动的重要环境,为了与家长配合做好少儿阅读训练工作,孩子一入园就召开家长会,给家长提出初期抓好少儿阅读的要求。

我把少儿在园里的阅读活动及阅读状况实时传达给家长,要求孩子回家向家长朗读儿歌,表演故事。

小升初数学总复习精讲精练5:比和比例及比例的应用(含答案解析)

小升初数学总复习精讲精练5:比和比例及比例的应用(含答案解析)

小升初数学总复习专题汇编精讲精练专题13 比和比例(一)1、比的意义和性质⑴比的意义两个数相除又叫做两个数的比。

“:”是比号,读作“比”。

比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

比值通常用分数表示,也可以用小数表示,有时也可能是整数。

比的后项不能是零。

根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

⑵比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

⑶求比值和化简比求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。

它的结果必须是一个最简比,即前、后项是互质的数。

⑷比例尺图上距离:实际距离=比例尺要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。

线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。

⑸按比例分配在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。

这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

2、比例的意义和性质⑴比例的意义表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

⑵比例的性质在比例里,两个外项的积等于两个两个内向的积。

这叫做比例的基本性质。

⑶解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

3、正比例和反比例⑴成正比例的量两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示y/x=k(一定)⑵成反比例的量两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

小升初专题:比与比例

小升初专题:比与比例

小升初专题:比与比例对于即将面临小升初的同学们来说,“比与比例”是数学学习中一个重要的知识点。

这部分内容不仅在小学阶段的数学考试中经常出现,也为今后初中数学的学习打下了基础。

接下来,让我们一起深入了解比与比例的奥秘。

首先,我们来聊聊“比”。

什么是比呢?简单来说,两个数相除就叫做这两个数的比。

比如说,6÷3 可以写成 6:3 的形式,“:”就是比号。

在比中,有前项和后项之分,6 是前项,3 是后项。

比是反映两个量之间的关系。

比有一些重要的性质。

比如,比的前项和后项同时乘或除以相同的数(0 除外),比值不变。

这就好比把一个蛋糕平均分成几份,不管是分成 2 份还是 4 份,每一份所占的比例是不变的。

再来说说比例。

比例是表示两个比相等的式子。

例如,2:3 = 4:6,这就是一个比例。

在比例中,有内项和外项。

在 2:3 = 4:6 中,2 和 6是外项,3 和 4 是内项。

而且,内项之积等于外项之积,这是判断两个比能否组成比例的重要依据。

比和比例在生活中有很多实际的应用。

比如说,我们在调配饮料时,如果要按照一定的比例来混合不同的成分,就需要用到比例的知识。

再比如,在地图上,会标明比例尺,通过比例尺,我们可以知道实际距离和图上距离的关系,从而计算出实际的距离。

在做比与比例相关的题目时,有一些常见的题型和解题方法。

一种常见的题型是化简比。

化简比就是把一个比化成最简整数比。

比如 12:18,我们可以找出 12 和 18 的最大公因数 6,然后同时除以 6,得到 2:3,这就是最简整数比。

另一种题型是解比例。

比如,已知 3:5 = x:15,我们可以根据比例的性质,得到 5x = 3×15,然后解方程求出 x 的值。

还有一种题型是根据已知条件求出比或者比例。

比如,小明有 10个苹果,小红有 15 个苹果,那么小明和小红拥有苹果数的比就是10:15,化简后为 2:3。

为了更好地掌握比与比例,同学们在学习的过程中要多做练习题,加深对概念的理解和运用。

小升初数学备考比和比例知识点总结

小升初数学备考比和比例知识点总结

小升初数学备考比和比例知识点总结小升初数学考试中,学生常常因为基础知识的不牢固而失分,甚至阻碍到自己升入理想的初中,下面为大伙儿分享小升初数学备考比和比例知识点,期望对大伙儿有关心!比和比例一、比和比例的联系与区别:二、比同分数、除法的联系与区别:三、求比值与化简比的区别:四、化简比:①整数比的化简方法是:用比的前项和后项同时除以它们的最大公约数。

②小数比的化简方法是:先把小数比化成整数比,再按整数比化简方法化简。

③分数比的化简方法是:用比的前项和后项同时乘以分母的最小公倍数。

五、比例尺:我们把图上距离和实际距离的比叫做这幅图的比例尺。

六、比例尺=图上距离︰实际距离比例尺=图上距离/实际距离正比例、反比例一样说来,“教师”概念之形成经历了十分漫长的历史。

杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。

这儿的“师资”,事实上确实是先秦而后历代对教师的别称之一。

《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”因此也指教师。

这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副事实上的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。

一、正比例:两种相关联的量,一种量变化,另一种量也随着变化,假如这两种量中相对应的两个数的比值(也确实是商)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。

让学生把一周看到或听到的新奇事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积存的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。

如此,即巩固了所学的材料,又锤炼了学生的写作能力,同时还培养了学生的观看能力、思维能力等等,达到“一石多鸟”的成效。

二、反比例:两种相关联的量,一种量变化,另一种量也随着变化,假如这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。

六年级【小升初】小学数学专题课程《比和比例问题》(含答案)

六年级【小升初】小学数学专题课程《比和比例问题》(含答案)

16、比和比例问题知识要点梳理一、比例尺应用题在比例尺应用题中,图上距离、实际距离和比例尺三者之间的关系式是:图上距离∶实际距离=比例尺,三个相关的量中,知道任意两个量,就可以根据关系式,求出另一个量。

在计算中,要注意各种量的单位要统一。

二、按比例分配的应用题把一个数量按照一定的比分配成几部分。

按比例分配应用题是在比的意义、比与分数的关系的基础上解决的。

关键是要根据各部分之比,确定各部分量与总量之间的关系,即各部分占总量的几分之几,然后按照“求一个数的几分之几是多少”的问题。

三、正、反比例应用题正比例应用题中的各种相关联的数量有正比例关系,关系式是:yx=k(一定);反比例应用题中的各种相关联的数量有反比例关系,关系式是:x·y=k(一定)。

四、解答正、反比例应用题的一般方法与步骤1.找出题目中两种相关联的量,并分析判断是成正比例,还是成反比例。

2.设未知数为x,并注明单位名称。

3.根据比值(一定)或积(一定)建立比例式,并解比例。

4.检验,写答语。

考点精讲分析典例精讲考点1 按比例分配的应用题【例1】希望小学要种一批树共390棵,按照三个班的人数来分配。

一班有42人,二班有45人,三班有43人,三个班各应植树多少棵?【精析】这是一道把390棵植树任务按三个班人数之比42:45:43进行分配的问题。

要分的总数是390,总份数是42+45+43=130。

其中一班占总数的42130,二班占总数的45130,三班占总数的43130,要求各班应植树的棵数,实际上是分别求390的42130,45130,43130各是多少。

【答案】解法一:按比例分配法42+45+43=130390×42130=126(棵)390×45130=135(棵)390×43130=129(棵)解法二:份数解法390÷(42+45+43)=3(棵)3×42=126(棵)3×45=135(棵)3×43=129(棵)答:一班应植树126棵,二班应植树135棵,三班应植树129棵。

小升初数学知识考点

小升初数学知识考点

小升初数学知识考点小升初数学必考知识点1:比和比例1.比的意义:两个数相除又叫做两个数的比。

比例的意义:表示两个比相等的式子叫做比例。

2.求比值:比的前项除以比的后项所得的商叫做比值。

3.比的基本性质:比的前项和后项都乘或除以相同的数(0除外),比值不变。

比例的基本性质:在比例里,两个外项的积等于两个内项的积。

4.应用比的基本性质可以化简比;应用比例的基本性质可以判断两个比是否能组成比例,也可以求比例里的未知项,也就是解比例。

5.用字母表示比与除法和分数的关系。

a:b=a÷b=(b≠0)6.比例尺:我们把图上距离和实际距离的比,叫做这幅图的比例尺。

7.图上距离:实际距离=比例尺或=比例尺实际距离=图上距离÷比例尺图上距离=实际距离×比例尺8.求比值的方法:根据比值的意义,用前项除以后项,结果是一个数。

化简比的方法:根据比的基本性质,把比的前项和后项都乘或除以相同的数(零除外),结果是一个最简整数比。

9.正比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。

用式子表示:=k(一定),用图表示正比例关系是一条直线。

10.反比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。

用式子表示:x×y=k(一定),用图表示反比例关系是一条曲线。

小升初数学必考知识点2:1.长度单位有:千米、米、分米、厘米、毫米,写出它们之间的进率面积单位有:平方千米、公顷、平方米、平方分米、平方厘米,写出它们之间的进率。

体积(容积)单位有:立方米、立方分米(升)、立方厘米(毫升),写出它们之间的进率。

质量单位有:吨、千克、克,写出它们之间的进率。

时间单位有:世纪、年、月、日、时、分、秒,写出它们之间的进率。

小升初数学比和比例知识点

小升初数学比和比例知识点

小升初数学比和比例知识点
以下是小升初数学中关于比和比例的知识点:
1. 比的概念:比是两个数或物体之间的大小关系的表示,用冒号(:)或分数形式表示,比的两个数或物体叫做比的两个项。

2. 比的运算:加法、减法、乘法、除法和幂运算都可以用在比的运算中,比的运算必
须保持两个项之间的比值不变。

3. 比的性质:如果两个比相等,那么它们的对应项相等;如果两个比的两个项都乘以
同一个非零数,那么它们的比值不变。

4. 比例的概念:若两个比相等,就叫做比例。

比例通常用等号(=)表示。

5. 比例的性质:如果一个比例中的三个比中有一个是未知数,我们可以通过已知项求
出未知项。

6. 等比例的概念:如果两个比中的两个项分别相等,那么这两个比叫做等比例。

7. 等比例的性质:如果一个比例中的两个比都是未知数,并且这两个比相等,那么这
个比例是等比例。

8. 比例的运算:比例的运算与比的运算相似,同样需要保持比例中各个项的比值不变。

以上是小升初数学中关于比和比例的主要知识点,理解并掌握这些知识将有助于解决
与比和比例相关的问题。

小升初小学数学(比和比例)知识点汇总(七)

小升初小学数学(比和比例)知识点汇总(七)

小升初小学数学(比和比例)知识点汇总239.“比”和“比值”这两个概念有什么联系和区别?在除法中,两个数相除时,就叫做两个数的比。

一般分为两种情况:(1)比较同类量的倍数关系,表示其中一个数是另一个数的几倍或几分之几。

例如:红光小学有女教师 40 人,男教师 12 人。

表示女教师与男教师人数的比是40∶12(或化简为10∶3),这也表示女教师人数是男教师人数(2)两个不同类量相比,是表示一个新的量。

例如:总价∶数量,表示单价。

路程∶时间,表示速度。

总产量∶亩数,表示亩产量。

“比”是由前项∶后项组成的,而“比值”是前项除以后项所得的商。

如:由此可以看出:“比”和“比值”这两个概念是有区别的。

但两者之间也是有联系的,因为没有前面的“比”,就不会有后面的“比值”。

就一般而言,“比”和“比值”都是一个完整比的组成部分。

除此之外,还要看到“比”和“比值”也有着一致性。

从广义上解释,两个数的比是两个数的商,这个商也是比值。

如:由于比中的比号相当于分数中的分数线,所以用比的形式表示,就是7∶240.比、除法、分数这三者之间,有什么联系和区别?在小学数学教材中,从除法到分数,又到比,这不仅是一个发展过程,三者之间也存在着内在的必然联系。

在比的教与学中,揭示它们之间的联系,是极其必要的。

比的前项相当于除法中的被除数,分数中的他子;后项相当于除法中的除数,分数中的分母;比号柑当于除法中的除号,分数中的分数线;比值相当于除法中的商,分数的分数值。

例如:在比中,前项÷后项=比值a∶b=c在除法中,被除数÷除数=商a÷b=c如上所述,比、除法、分数三者之间有着如此密切的联系,目的在于:有关比的运算,可以转化为除法运算或分数形式,而又需要重新建立比的运算法则。

它们之间的区别,从意义上区分有:“比”是表示两个数的倍数;“除法”表示的是一种运算;“分数”则是一个数。

241.“求比值”和“化简比”有区别吗?在比和比例中,求比值是常用的,但也需要把较复杂的整数比(不包括含有分数、小数的比),化成简单的整数比,这两者是有区别的。

小升初数学专项备考高频考点一轮复习系列之:比和比例——比例尺和按比例分配(原卷版)

小升初数学专项备考高频考点一轮复习系列之:比和比例——比例尺和按比例分配(原卷版)

小升初数学专项备考高频考点一轮复习系列之:比和比例——比例尺和按比例分配(原卷版)姓名:__________ 班级:__________考号:__________一、填空题1.一幅地图上距离4cm表示的实际距离为6000m,这地图的比例尺是.2.—个机械零件长7毫米,画在图纸上是28厘米,这个图的比例尺是,这个机械的另一个零件画在同一份图纸上是36厘米,这个零件的实际长度是毫米。

3.甲、乙两地的实际距离是400千米,画在比例尺是1:8000000的地图上,应画厘米。

4.设计一座厂房,在一个用10厘米的距离表示地面上10米的距离,这幅图的比例尺为5.一个精密零件的长度是5mm,画在比例尺是20∶1的图纸上,应画cm。

6.在一幅地图上,用3cm代表150km,这幅图的比例尺是。

在这幅地图上量得甲、乙两地间的距离是9cm,则实际距离是km。

7.在比例尺是1:400000的地图上,量得A、B两地的距离是3.5厘米,A、B两地的实际距离是千米.8.比例尺是1:30000表示,也表示.9.如图,这是一幅平面图上的比例尺,在这幅图上,量得A、B两地的图上距离是5厘米,A、B两地的实际距离是千米。

10.一个长方形按1:2000画在地图上长5厘米,宽3厘米,这个长方形的实际面积是平方米.11.花园小学校园长120米,宽50米,在平面图上用10厘米长的线段表示校园的宽,该图的比例尺是,平面图上的长应画厘米。

12.在一张精密零件图纸上,若2cm表示实际长度1mm,则这张精密零件图纸的比例尺是;小美在图纸上量得两点间的距离是8cm,它们的实际距离是mm。

13.在比例尺为1:300的设计图上量得一个长方形花坛的长是8厘米,宽是5厘米,这个花坛的实际占地面积是平方米.14.一种微型零件长3毫米,画在图纸上的长是6厘米,这幅图纸的比例尺是。

15.改写成数值比例尺是.16.比例尺是1∶60000的地图上,图上1厘米表示实际距离是.17.在比例尺是1:3000000的地图上,量得A、B两地的距离是5厘米,A、B两地相距千米。

2024年小升初分班考试数学专题复习:《比和比例》附答案解析

2024年小升初分班考试数学专题复习:《比和比例》附答案解析

2024年小升初分班考试数学专题复习:《比和比例》
一.选择题(共6小题)
1.某人造地球卫星在太空中绕地球运行的周数和所用时间的关系如图所示,所用的时间和运行的周数()
A.成正比例B.成反比例C.不成比例D.不能判断2.住房面积一定,居住人口数和人均住房面积()
A.成正比例B.成反比例C.不成比例
3.下面不成正比例的是()
A.速度一定,李叔叔跑步的时间和路程
B.一个圆的半径与它的周长
C.一个圆的半径和它的面积
4.王小亮在弹簧秤上挂了3千克的物体,弹簧伸长约1.5厘米,在这个弹簧秤上挂2.5千克物体时,弹簧大约伸长()厘米。

A.1.25B.1.5C.1
5.一个三角形的三个内角的度数比是4:5:9,那么这个三角形是()
A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形6.一个三角形,三个内角度数的比是1:2:1,下列不符合对这个三角形的描述是() A.直角三角形B.等腰三角形
C.直角等腰三角形D.锐角三角形
二.填空题(共6小题)
7.在横线里填上“每时生产零件个数”“生产时间”或“生产零件总数”。

一定,和成反比例;
一定,和成正比例。

8.一个因数一定,另一个因数和积比例.(在横线里写上“正”“反”“不成”)
第1页(共13页)。

小升初数学知识点复习:比和比例

小升初数学知识点复习:比和比例

小升初数学知识点复习:比和比例同学们,小学六年级上册的学习就要接近尾声了,这意味着小升初离我们也不远了。

在小学期间学的数学知识点还记得吗?小编整理了部分小升初数学知识点供大家复习。

今天在这里我们先复习一下比和比例的意义和性质。

1.比的意义和性质(1) 比的意义两个数相除又叫做两个数的比。

:是比号,读作比。

比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

比值通常用分数表示,也可以用小数表示,有时也可能是整数。

比的后项不能是零。

根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

(2)比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

(3) 求比值和化简比求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。

它的结果必须是一个最简比,即前、后项是互质的数。

(4)比例尺图上距离:实际距离=比例尺要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。

线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。

(5)按比例分配在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。

这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

2 比例的意义和性质(1) 比例的意义表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

(2)比例的性质在比例里,两个外项的积等于两个两个内向的积。

这叫做比例的基本性质。

(3)解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

小升初必考比例知识点总结

小升初必考比例知识点总结

小升初必考比例知识点总结一、比例的定义比例是指两个相同性质的量之间的对应关系。

在比例中,被比较的两个量称为成比例的量,记作a:b。

比例具有以下特点:1. 两个成比例的量之间有对应关系,即a和b是对应的;2. 在比例中,a称为比例中的第一项,b称为比例中的第二项;3. 比例中第一项和第二项相乘的乘积称为比例的扩大或者放大;4. 在比例中,a:b可以简写成a÷b,即比例可以简写成分数形式;5. 成比例的两个量相除的结果是相同的,即a÷b=c÷d;6. 两个比例相等时,它们是对应相等的,即a:b=c:d。

二、比例的性质:1. 在比例中,两个成比例的量相乘的乘积是相等的,即a×b = c×d。

2. 如果比例中的第一项和第二项都乘以同一个非零实数k,得到的新的比例和原来的比例相等,即ka:kb=a:b。

3. 如果比例中的第一项和第二项互换位置得到的新的比例和原来的比例相互倒数,即a:b=b:a。

三、比例的应用:1. 比例的画法:当一个实际问题已知两个成比例的量之一的值时,可以根据已知条件画出比例图,从而解决问题。

2. 比例的简化:当一个比例不是最简形式时,可以根据最大公约数的性质,把一个比例化简为最简形式。

求法是分子和分母同时除以它们的最大公约数。

3. 比例的倒数:当一个比例的两个比例中的两项互换位置时,得到的新比例叫原比例的倒数。

四、比例的四则运算:1. 比例的加法:如果有两个比例a:b和c:d,它们的和为(a+c):(b+d)。

2. 比例的减法:如果有两个比例a:b和c:d,它们的差为(a-c):(b-d)。

3. 比例的乘法:如果有两个比例a:b和c:d,它们的积为(ac):(bd)。

4. 比例的除法:如果有两个比例a:b和c:d,它们的除法为(ad):(bc)。

以上就是小升初必考的比例知识点总结,希望对大家有所帮助。

六年级【小升初】小学数学专题课程比和比例(含答案)

六年级【小升初】小学数学专题课程比和比例(含答案)

10.比和比例知识要点梳理一、比的意义和性质1.比的意义两个数相除又叫做两个数的比。

“:”是比号,比的写法和读法:表示数a与数b(b不能为零)的比,写作a:b,也可以写作ab读作“比”,所以a:b读作a比b。

比的前项和后项:比号前面的数叫做比的前项,比号后面的数叫做比的后项。

前项除以后项所得的商是比的结果,叫做比值。

例如:4 : 5=4÷5=0.8↓↓↓↓前项比号后项比值2.比的基本性质比的前项和后项同时乘以或除以相同的数(0除外),比值不变。

二、比、分数和除法比与分数相比,比的前项相当于分子,比的后项相当于分母,比值相当于分数值,比号相当于分数线。

比可以写成分数形式,如7:4可读作:七比四。

比与除法比较,比的前项相当于除法中的被除数,比的后项相当于除法中的除数,比值相当于商,比号相当于除号。

比、分数和除法之间的联系与区别如下表所示:三、求比值与化简比1.求比值前项除以后项所得的商是比的结果,叫比值。

同类量的比,其比值没有单位名称;不同类量的比,其比值有单位名称。

例如:100千米:5时=20千米/时2.化简比比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

把两个数的比化成最简整数比的,称为化简比或比的化简。

四、比例的意义和性质1.比例的意义表示两个比相等的式子叫做比例。

组成比便的四个数,叫做比例的项,两端的两项叫做比例配外项,中间的两项叫做比例的内项。

例如:2.比例的基本性质在比例单,两个外项的积等于两个内项的积,这叫做比例的基本性质。

例如:15:60=12:48可得:60×12=15×48如果把比例写成分数形式,等号两边的分子和分母分别交叉相乘,所得的积相等。

五、比和比例的区别六、解比例根据比例的基本性质,如果已经知道比例中的任何三项,就可求出这个比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

解比例时,先根据比例的基本性质把原比例改写成两个外项乘积与两个内项乘积相等形式的方程,再用已知的两项的乘积除以另一个已知项求出未知项。

小升初-比和比例

小升初-比和比例

比和比例知识集结知识精讲比和比例知识讲解一、比的读法、写法及各部分名称1.读法:几比几,如15:10读作15比10.2.写法:把“比”字用比号代替.如15比10 记作15:10或1510.3.各部分名称:比的前项:在两个数的比中,比号前面的数叫做比的前项.比的后项:在两个数的比中,比号后面的数叫做比的后项.比值:比的前项除以后项所得的商.二、比与分数、除法的关系1.联系:比的前项相当于分数的分子、除法中的被除数;比号相当于分数的分数线、除法中的除号;比的后项相当于分数的分母、除法中的除数;比值相当于分数的分数值、除法中的商.2.区别:比是一种关系,分数是一种数,除法是一种运算.三、比的性质比的前项和后项同时乘或除以相同的数(0除外),比值不变.这叫做比的基本性质.四、求比值和化简比1.求两个数的比值,就是用比的前项除以比的后项,它的结果是一个数值,这个数值可以是整数,也可以是小数或分数.2.求比值和化简比的方法:把两个数的比化成最简单的整数比.(1)整数比化简方法:把比的前项和后项同时除以它们的最大公因数.(2)分数比化简方法:把比的前项和后项同时乘它们的分母的最小公倍数,变成整数比,再进行化简;利用求比值的方法也可化简分数比,但结果必须写成比的形式.(3)小数比化简方法:先把比的前项和后项的小数点同时向右移动相同位数,完成整数比,再进行化简.五、比例的意义及基本性质比例的意义:表示两个比相等的式子,叫做比例.组成比例的四个数,叫做比例的项.组成比例两端的两项叫做外项,中间的两项叫做内项.比例的性质:在比例中,两个外项的积等于两个内项的积,这叫做比例的基本性质.如:4:5=16:20⇔4×20=5×16六、正比例和反比例的意义1.正比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系.如果用字母x和y表示这两种相关联的量,用k表示它们的比值(一定),正比例关系可以用式子表示为:yx=k(一定).2.反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系.如果用字母x和y表示这两种相关联的量,用k表示它们的乘积(一定),反比例的关系可以表示为:xy=k(一定).七、解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项.求比例中的未知项,叫做解比例.一般来说,求比例的未知项有以下两种情况:八、比的应用1.按比例分配问题的解题方法:(1)把比看作分得的份数,用先求出每一份的方法来解答.解题步骤:a.求出总份数;b.求出每一份是多少;c.求出各部分相应的具体数量.(2)转化成份数乘法来解答.解题步骤:a.先根据比求出总份数;b.再求出各部分量占总量的几分之几;c.求出各部分的数量.2.按比例分配问题常用解题方法的应用:(1)已知一个数量的各部分的比和其中某一部分的量,求另外几个部分量;(2)已知两个量或几个量的比和其中两个量的差,求总量.九、辨识成正比例的量和成反比例的量1.成正比例的量:(1)“变化方向”相同,一种量扩大或缩小,另一种量也扩大或缩小.(2)相对应的两个数的比值(商)一定.(3)关系式:yx=k(一定).2.成反比例的量:(1)“变化方向”相反,一种量扩大或缩小,另一种量反而缩小或扩大.(2)相对应的两个数的乘积一定.(3)关系式:xy=k(一定).3.判断方法:关键是看着两种相关量中相对应的两个数是商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例.例题精讲比和比例例1.甲数是乙数的3倍,甲与甲、乙两数和的比是()A.1:3 B.3:1 C.3:4 D.4:1例2.如图,空白部分与阴影部分面积的比是()A.1:2 B.1:4 C.1:3 D.无法确定例3.下面两个比不能组成比例的是()A.10:12=35:42 B.20:10=60:20C.:12:8 D.0.6:0.2:例4.两个变量X和Y,当X∙Y=45时,X和Y是()A.成正比例量B.成反比例量C.不成比例量例5.某班女生人数与男生人数的比是4:5,最近又转进1名女生,这时女生人数是男生人数的,现在全班有学生()A.30人B.25人C.45人D.55人例6.下面4个关系式中,x和y成反比例关系的是()A.(x+1)y=6 B.x 3C.3x=5y(x、y均不为零)D.x-y=0例7.20:________÷40=____%=___折。

【小升初】小学数学《比和比例问题专题课程》含答案

【小升初】小学数学《比和比例问题专题课程》含答案

16、比和比例问题知识要点梳理一、比例尺应用题在比例尺应用题中,图上距离、实际距离和比例尺三者之间的关系式是:图上距离∶实际距离=比例尺,三个相关的量中,知道任意两个量,就可以根据关系式,求出另一个量。

在计算中,要注意各种量的单位要统一。

二、按比例分配的应用题把一个数量按照一定的比分配成几部分。

按比例分配应用题是在比的意义、比与分数的关系的基础上解决的。

关键是要根据各部分之比,确定各部分量与总量之间的关系,即各部分占总量的几分之几,然后按照“求一个数的几分之几是多少”的问题。

三、正、反比例应用题正比例应用题中的各种相关联的数量有正比例关系,关系式是:=k(一定);反比例应用题中的各种相关联的数量有反比例关系,关系式是:x·y=k(一定)。

四、解答正、反比例应用题的一般方法与步骤1.找出题目中两种相关联的量,并分析判断是成正比例,还是成反比例。

2.设未知数为x,并注明单位名称。

3.根据比值(一定)或积(一定)建立比例式,并解比例。

4.检验,写答语。

考点精讲分析典例精讲考点1 按比例分配的应用题【例1】希望小学要种一批树共390棵,按照三个班的人数来分配。

一班有42人,二班有45人,三班有43人,三个班各应植树多少棵?【精析】这是一道把390棵植树任务按三个班人数之比42:45:43进行分配的问题。

要分的总数是390,总份数是42+45+43=130。

其中一班占总数的,二班占总数的,三班占总数的,要求各班应植树的棵数,实际上是分别求390的,,各是多少。

【答案】解法一:按比例分配法42+45+43=130390×=126(棵)390×=135(棵)390×=129(棵)解法二:份数解法390÷(42+45+43)=3(棵)3×42=126(棵)3×45=135(棵)3×43=129(棵)答:一班应植树126棵,二班应植树135棵,三班应植树129棵。

六年级【小升初】小学数学专题课程比和比例(含答案)

六年级【小升初】小学数学专题课程比和比例(含答案)

10.比和比例知识要点梳理一、比的意义和性质1.比的意义两个数相除又叫做两个数的比。

比的写法和读法:表示数a与数b(b不能为零)的比,写作a:b,也可以写作。

“:”是比号,读作“比”,所以a:b读作a比b。

比的前项和后项:比号前面的数叫做比的前项,比号后面的数叫做比的后项。

前项除以后项所得的商是比的结果,叫做比值。

例如:4 : 5=4÷5=0.8↓↓↓↓前项比号后项比值2.比的基本性质比的前项和后项同时乘以或除以相同的数(0除外),比值不变。

二、比、分数和除法比与分数相比,比的前项相当于分子,比的后项相当于分母,比值相当于分数值,比号相当于分数线。

比可以写成分数形式,如7:4可读作:七比四。

比与除法比较,比的前项相当于除法中的被除数,比的后项相当于除法中的除数,比值相当于商,比号相当于除号。

比、分数和除法之间的联系与区别如下表所示:三、求比值与化简比1.求比值前项除以后项所得的商是比的结果,叫比值。

同类量的比,其比值没有单位名称;不同类量的比,其比值有单位名称。

例如:100千米:5时=20千米/时2.化简比比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

把两个数的比化成最简整数比的,称为化简比或比的化简。

四、比例的意义和性质1.比例的意义表示两个比相等的式子叫做比例。

组成比便的四个数,叫做比例的项,两端的两项叫做比例配外项,中间的两项叫做比例的内项。

例如:2.比例的基本性质在比例单,两个外项的积等于两个内项的积,这叫做比例的基本性质。

例如:15:60=12:48可得:60×12=15×48如果把比例写成分数形式,等号两边的分子和分母分别交叉相乘,所得的积相等。

五、比和比例的区别六、解比例根据比例的基本性质,如果已经知道比例中的任何三项,就可求出这个比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

解比例时,先根据比例的基本性质把原比例改写成两个外项乘积与两个内项乘积相等形式的方程,再用已知的两项的乘积除以另一个已知项求出未知项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初数学常考十大内容比和比例
1 、比和比例的意义
比的意义是:两个数相除又叫做两个数的比,
比例的意义是:表示两个比相等的式子叫做比例。

比例是比的结果,比是比例的基础。

他们都是衡量数量关系的一种工具。

比和比例,是小学数学中的一个重要内容,也是学习更多数学知识的重要基础.有了“比”和“比例”这两个概念和表达方式,对于处理倍数、分数等问题,要方便灵活得多. 比和比例的相关知识在生活中用非常广泛,我们在以后还要进行更广泛更深入的学习。

因此,要为以后的学习打下坚实的基础。

2、比和比例的基本类型及解法
(一)比和比例的分配
最基本的比例问题是求比或比值,从已知一些比或者其他数量关系,求出新的比.
例1、甲、乙、丙三人同去商场购物,甲花钱数的乙花钱数的,乙花钱数的等于丙花钱数的,结果丙比甲多花93元,问他们三人共花了多少钱
解、根据比例与乘法的关系
甲数×=乙数×
即:甲数:乙数=:=2:3
乙数×=丙数×
即:乙数:丙数=:=16:21
连比后是
甲∶乙∶丙=(2×16)∶(3×16)∶(3×21 )=32∶48∶63.
三人共花了93÷(63-32)×(32+48+63)=429(元)
答:甲、乙、丙三人共花了429元.
下面我们转向求比的另一问题,即“比的分配”问题,当一个数量被分成若干个数量,如果知道这些数量之比,我们就能求出这些数量.
例2一个分数,分子与分母之和是100.如果分子加23,分母加32,新的分数约分后是,原来的分数是多少
解:新的分数,分子与分母之和是(10+23+32),而分子与分母之比2∶3.因此
分子=(100+23+32)×=62
?分母=(100+23+32)×=93
原来分数是=
答:原来分数是
例3加工一个零件,甲需3分钟,乙需分钟,丙需4分钟,现有1825个零件要加工,为尽早完成任务,甲、乙、丙应各加工多少个所需时间是多少
解:三人同时加工,并且同一时间完成任务,所用时间最少,要同时完成,应根据工作效率之比,按比例分配工作量.
三人工作效率之比是
::=28:24:21?
他们分别需要完成的工作量是
甲完成1825×=700(个)
乙完成1825×=600(个)
丙完成1825×=525(个)
所需时间是700×3=2100分钟)=35小时 .
答:甲、乙、丙分别完成700个,600个,525个零件,需要35小时.?
(二)比的变化
已知两个数量的比,当这两个数量发生增减变化后,当然比也发生变化.通过变化的描述,如何求出原来的两个数量呢.
例4、有一些球,其中红球占,当再放入8个红球后,红球占总球数的,问现在共有多少球
解:其他球的数量没有改变.
增加8个红球后,红球与其他球数量之比是
5∶(14-5)=5∶9.
在没有球增加时,红球与其他球数量之比是
1∶(3-1)=1∶2=∶9.
因此8个红球是=(份).
现在总球数是8÷×(5+9)=224(个)
答:现在共有球224个.
本题的特点是两个数量中,有一个数量没有变.把1∶2写成∶9,就是充分利用这一特点.本题也可以列出如下方程求解:
(x+8)∶2x=5∶9.
例5 张家与李家的收入钱数之比是8∶5,开支的钱数之比是8∶3,结果张家结余240元,李家结余270元.问每家各收入多少元解一:我们采用“假设”方法求解.
如果他们开支的钱数之比也是8∶5,那么结余的钱数之比也应是8∶5.张家结余240元,李家应结余x元.有
240∶x=8∶5,x=150(元).
实际上李家结余270元,比150元多120元.这就是8∶5中5份与8∶3中3份的差,每份是120÷(5-3)=60.(元).因此可求出张家:开支60×8=480(元),收入480+240=720(元)
李家:开支60×3=180(元),收入180+270=450(元)?
答:张家收入720元,李家收入450元.
解二:设张家收入是8份,李家收入是5份.张家开支的3倍与李家开支的8倍的钱一样多.
我们画出一个示意图:
?
张家开支的3倍是(8份-240)×3.
李家开支的8倍是(5份-270)×8.
从图上可以看出5×8-8×3=16份,相当于
270×8-240×3=1440(元).
因此每份是1440÷16=90(元).
张家收入是90×8=720(元),李家收入是90×5=450(元).
本题也可以列出比例式:
(8x-240)∶(5x-270)=8∶3.
例6小明和小强原有的图画纸之比是4∶3,小明又买来15张.小强用掉了8张,现有的图画纸之比是5∶2.问原来两人各有多少张图画纸
解一:充分利用已知数据的特殊性.
4+3=7,5+2=7,15-8=7.原来总数分成7份,变化后总数仍分成7份,总数多了7张,因此,
新的1份=原来1份+1
原来4份,新的5份,5-4=1,因此
新的1份有15-1×4=11(张).
小明原有图画纸11×5-15=40(张),
小强原有图画纸11×2+8=30(张).
答:原来小明有40张,小强有30张图画纸.
解二:我们也可采用“假设”方法.先要将两个比中的前项化成同一个数(实际上就是通分)
4∶3=20∶15
5∶2=20∶8.
假设小强也买来15×=(张),那么变化后的比仍是20:15但现在是20∶8,因此这个比的每一份是
?()÷(15-8)=
小明现有20×=55(张),原有55-15=40(张)
小强现有8×=22(张),原有22+8=30(张)
“假设”这一思路是很有用的,希望大家能很好掌握,灵活运用.从课外的角度,我们更应启发小同学善于思考,去找灵巧的解法,这就要充分利用数据的特殊性.因此我们总是先讲述灵巧的解法,利于心算,促进思维.
(三)比例的其他问题
比例关系可以用比表示,也可以用分数表示,例如,甲比乙的多7,这里必须用分数来说,而不能用比.实际上它还是隐含着比例关系:(甲-7)∶乙= 2∶3.
因此,有些分数问题,就是比例问题. .
例7、有两堆棋子, A堆有黑子 350个和白子500个, B堆有黑子400个和白子100个,为了使A堆中黑子占A堆的,B堆中黑子占,要从B堆中拿到 A堆黑子、白子各多少个
解:要B堆中黑子占,即黑子与白子之比是3:1,先从B堆中拿出黑子100个,使余下黑子与白子之比是(40-100)∶100=3∶1.再要从 B堆拿出黑子与白子到A堆,拿出的黑子与白子数目也要保持3∶1的比.
现在 A堆已有黑子 350+ 100= 450个),与已有白子500个,相差50个黑子,占就是两种棋子一样多,从B堆再拿出黑子与白子,要相差50个,又要符合3∶1这个比,要拿出白子数是
50÷(3-1)=25(个).
再要拿出黑子数是 25×3= 75(个).
答:从B堆拿出黑子 175个,白子25个.?
例8 张、王、李三人共有108元,张用了自己钱数的,王用了自己钱数的,李用了自己钱数的,各买了一支相同的钢笔,问张和李剩下的钱共有多少元
解:设钢笔的价格是1.
张有的钱数是1÷=
王有的钱数是1÷=
李有的钱数是1÷=
这样就可以求出,钢笔价格是
108÷(++)
=108÷
=24(元)?
张剩下的钱数是24×(-1)=16(元)?
李剩下的钱数24×(-1)=12(元)
16+12=28(元)
答:张、李两人剩下的钱共28元.。

相关文档
最新文档