发电厂及变电站电气设备介绍

合集下载

发电厂变电站电气设备

发电厂变电站电气设备

发电厂变电站电气设备引言发电厂变电站是一个重要的能源基础设施,主要用于将发电厂产生的电能变换为适合输送和分配的电能。

电气设备是发电厂变电站的核心组成部分,负责将电能进行各种电压等级的变换和保护。

本文将介绍发电厂变电站常见的电气设备及其功能。

主要电气设备发电变压器发电变压器是发电厂变电站中最重要的电气设备之一。

其主要功能是将发电机产生的低电压变换为高电压,以便输送到远距离的用户。

发电变压器一般由高压侧和低压侧组成,通过电磁感应的原理进行电能的变换。

高压断路器高压断路器是发电厂变电站中用于保护电力设备免受过电压和短路故障的电气设备。

当电力设备发生短路故障或过电压时,高压断路器会迅速切断电路,以防止更严重的设备损坏或事故发生。

低压断路器低压断路器是发电厂变电站中的另一种重要电气设备,用于保护低压电路和用户设备。

低压断路器一般是通过过载保护和短路保护来保护电力设备免受电流过载和短路故障的损害。

继电器继电器是发电厂变电站中一个重要的电气控制设备,用于控制和保护电力系统的运行。

继电器可以根据电力系统的工作状态,通过电磁吸合或释放的方式来控制电路的开关状态。

常见的继电器包括过流继电器、欠电压继电器和过温继电器等。

变压器保护装置变压器保护装置是用于对发电变压器进行保护的电气设备。

它可以监测变压器的电流、温度和油位等参数,并在发现异常情况时及时切断电路,以保护变压器免受损坏。

其他电气设备除了上述几种主要的电气设备外,发电厂变电站还包括其他一些辅助设备和辅助电气设备,如电流互感器、电压互感器、避雷器、接地装置等。

这些设备在保证电力系统的安全运行和电能的高效利用方面起到重要作用。

总结发电厂变电站电气设备是保证电力系统供电可靠性和安全性的关键设备。

发电变压器、高压断路器、低压断路器、继电器和变压器保护装置是发电厂变电站中常见的主要电气设备。

此外,还有一些辅助设备和辅助电气设备用于支持电力系统的正常运行和保护。

了解这些电气设备的功能和作用,有助于我们更好地理解和维护发电厂变电站。

发电厂及变电站电气设备

发电厂及变电站电气设备

发电厂及变电站电气设备1. 背景介绍发电厂和变电站是电力系统中重要的组成部分,负责将发电机产生的电能进行输送、分配和转换,以满足不同区域的用电需求。

其中,电气设备扮演着关键角色,包括发电机、变压器、开关设备等。

本文将介绍发电厂及变电站中常见的电气设备。

2. 发电机发电机是发电厂的核心部件,负责将机械能转化为电能。

根据不同的发电方式,发电机可以分为热力发电机、水力发电机、风力发电机等。

在热力发电厂中,发电机通常由蒸汽涡轮驱动,使发电机转子旋转,产生交流电能。

而在水力和风力发电厂中,利用水力或风力驱动发电机产生电能。

发电机主要由定子和转子两部分组成。

其中,定子为固定部分,包含电枢绕组,负责产生磁场。

转子则为旋转部分,包含永磁体或电磁绕组,在定子的磁场作用下产生感应电动势。

发电机的输出电压、电流和频率取决于转子的转速和定子的磁场。

3. 变压器变压器在发电厂及变电站中起到关键的电能转换和输送作用。

它能将高电压转换为低电压,或将低电压转换为高电压。

变压器主要由铁芯和绕组组成。

铁芯由硅钢片叠压而成,主要用于增加磁通密度和减少能量损耗。

绕组由导线缠绕而成,分为一次绕组和二次绕组。

一次绕组连接到输入电源,二次绕组则连接到输出负载。

变压器通过磁感应原理将输入电压的能量传递到输出电路中,保证电能的正常传输。

变压器可以根据功率级别分为干式变压器和油浸式变压器,根据使用场景可分为发电厂变压器和变电站变压器。

它们在电力系统中起到电压升降和电能输送的重要作用。

4. 开关设备开关设备用于控制、保护和隔离电力系统中的各个部分。

它们在发电厂及变电站中起到关键的安全性和可靠性保障作用。

常见的开关设备包括断路器、隔离开关和负荷开关。

断路器主要用于开关电路和保护电气设备,其内部配有电流保护和过压保护装置。

隔离开关用于隔离电气设备,确保设备的安全维护和修理。

负荷开关用于接通或切断负载电路,控制电气设备的供电状态。

开关设备的选型和设计要根据电力系统的需求及特点来确定。

设备管理--发电厂和变电站的主设备及主系统

设备管理--发电厂和变电站的主设备及主系统
据此,主接线的基本形式可以概括的分为两大类:有汇流母线的接线形 式和无汇流母线的接线形式。当然这两大类里面又可细分,分别进行介绍。
有汇流母线的接线:
4.8 电气主接线 ——电气主接线的基本接线形式
1) 单母线接线 (只有一台发电机或主变,出线回路数不多的中、小型发电厂或变电站)
接地开关
运行操作时的顺序(操作对 隔离开关K3 象为最右边的线路):
2)继电保护用:在系统发生故障时工作。准确级常用的有5P (对应1级)和10P(对应3级)
4.6 互感器——CT
电流互感器的额定容量:
额定容量:二次绕组在额定电流和额定阻抗时输出的容量。 CT使用在不同的准确级时,对应不同的额定容量。 为了保证CT的准确级,二次侧所接负荷应不大于 该准确级所规定的额定容量。
1) 将测量仪表、保护电器与高压电路隔离,保证二次设备 和工作人员的安全
2) 将一次回路的高电压和大电流转化成二次回路的低电压
和小电流,使测量仪表和保护装置标准化、小型化。电压互 感器二次侧额定电压为100V,或100/根3V;电流互感器二次 侧额定电流为5A或1A,以便选用监测设备。
电气设备—4.7 互感器
电流互感器的接线:
一次侧串联在被测电路中;二次侧接测量仪表、继电器及 各种自动装置的电流线圈。
电流互感器使用的注意事项:
4.6 互感器——CT
1)二次回路不准开路:当CT在运行中需拆除连接的仪表时,必 须先短接其二次绕组。
I1
U1
R1
X1
R'2
I0
R0
X0
X 2 ' I2 '
Z
开路危害:二次感应很高的电动势危及工作人员安全及设备的 绝缘;铁心损耗增大发热,导致互感器损坏;铁心 剩磁使以后的测量误差增大

发电厂及变电站电气二次设备资料

发电厂及变电站电气二次设备资料

第9章二次设备的选择及二次回路设计基础第一节二次设备的选择一、控制和信号回路的设备选择1.控制开关的选择控制开关应根据以下三个条件选择:(1)回路接线需要的触点数量及触点闭合图表。

(2)操作的频繁程度。

(3)回路的额定电压、额定电流和分断电流。

2.跳、合闸回路中的中间继电器的选择(1)跳、合闸位置继电器的选择。

音响或灯光监视的控制回路,跳、合闸回路中选择位置继电器的要求为:1)在正常情况下,通过跳、合闸回路的电流应小于其最小动作电流及长期热稳定电流。

2)当直流母线电压为85%额定电压时,加于继电器的电压不小于其额定电压的70%。

(2)跳、合闸继电器的选择。

跳闸或合闸继电器电流自保持线圈的额定电流,除因配电磁操作机构的断路器由于合闸电流大,合闸回路设有直流接触器,合闸继电器需按合闸接触器的额定电流选择外,其他跳、合闸继电器均按断路器的合闸或跳闸线圈的额定电流来选择,并保证动作的灵敏系数不小于1.5。

(3)自动重合闸继电器及其出口信号继电器的选择。

自动重合闸继电器及其出口信号继电器额定电流的选择应与其起动元件动作电流相配合,保证动作的灵敏度不小于1.5。

自动重合闸出口继电器及信号继电器,当其出口直接接至合闸线圈回路时,继电器的额定电流应按合闸接触器或断路器合闸线圈的额定电流来选择。

3.防跳继电器的选择(1)防跳继电器的选型。

电流起动电压自保持的防跳继电器,其动作时间应不大于断路器的固有跳闸时间。

DZK系列快速中间继电器的动作时间不大于15ms。

(2)防跳继电器的选择。

1)电流起动电压自保持的防跳继电器,其电流线圈的额定电流的选择应与断路器跳闸线圈的额定电流相配合,并保证动作的灵敏度不小于1.5。

自保持电压线圈按直流电源的额定电压选择。

2)电流起动线圈动作电流的整定可以根据1)所选用继电器线圈额定电流的80%整定。

这样整定能保证当直流母线电压降低到85%时继电器仍能可靠动作。

3)电压自保持线圈按80%额定电压整定为宜。

发电厂电气主系统设备介绍

发电厂电气主系统设备介绍
发电厂电气主系统的运行方式:电气主系统的运行方式分为正常运行和异常运行两种方式, 正常运行方式是指发电机正常运行,异常运行方式是指发电机出现故障时的运行方式。
电气主系统的设备配置
发电机:将机 械能转换为电 能的核心设备
变压器:升高 或降低电压, 实现电能传输
和分配
开关柜:控制 和保护电气系
统中的设备
要点。
互感器:阐述 互感器的作用、 运行条件及维
护要求。
电抗器:说明 电抗器的功能、 运行注意事项 及维护措施。
电气主系统的安全措施
继电保护:对电 气设备和线路进 行保护,防止故 障扩大
自动重合闸:在 断路器跳闸后自 动重新合闸,提 高供电可靠性
备用电源自动投 入:在主电源故 障时自动切换到 备用电源,保障 连续供电
单击添加标题 发电机组 开关设备
发电厂电气主系 统概述 变压器
其他设备
发电厂电气主系统的构成
发电机:将机械能转换为电能的 核心设备
开关柜:控制和保护电气回路, 确保安全运行
添加标题
添加标题
添加标题
添加标题
变压器:升高或降低电压,实现 电能传输和分配
电缆:传输电能,连接各设备, 保障电力输送
电气主系统在发电厂中的作用
变压器的类型和特点
变压器的类型: 油浸式变压器、 干式变压器、组 合式变压器等
变压器的主要特 点:电压转换、 电流转换、阻抗 变换等
变压器的应用场 景:电力系统、 工业自动化、轨 道交通等
变压器的性能指 标:额定容量、 额定电压、额定 电流等
变压器的运行和维护
变压器的维护要求:定期检 查、清扫、紧固、测量和试 验等
负荷开关
定义:用于接通或断开电路中的负荷电流,具有过载保护功能的开关设备。

发电厂和变电站电气设备概述课件

发电厂和变电站电气设备概述课件

THANKS
感谢观看
预防性试验
定期对电气设备进行预 防性试验,检测设备的
性能和绝缘状况。
故障处理
当设备发生故障时,及 时进行处理和修复,恢
复设备的正常运行。
维护保养
根据设备的运行状况和 使用情况,进行适当的 维护保养,延长设备的
使用寿命。
03
电气设备保护与控制
继电保护装置
01
继电保护装置的作用
当电力系统中的电力元件(如发电机、线路等)或电力系统本身发生故
故障诊断技术
针对发电厂和变电站电气设备的常见故障,采用多种故障诊断技术,如振动分析、红外检测、超声检 测等,快速定位故障部位。
处理措施
根据故障类型和程度,采取相应的处理措施,如更换故障部件、修复损坏结构、优化设备运行参数等 ,确保电气设备恢复正常运行。同时,还加强设备的日常维护和保养,预防故障的发生。
某500kV变电站二次设备配置与运行
二次设备配置
该变电站二次设备主要包括继电保护装置、测控装置、自动 化装置等,用于监测和控制一次设备的运行状态。
运行特点
该变电站二次设备配置先进,能够实现远程控制和监测,提 高了运行效率和可靠性。同时,该变电站还注重设备维护和 更新,确保设备的长期稳定运行。
电气设备故障诊断与处理
发电厂和变电站电气设 备概述课件
目 录
• 发电厂电气设备 • 变电站电气设备 • 电气设备保护与控制 • 发电厂和变电站电气设备的发展趋势 • 实际应用案例分析
01
发电厂电气设备
发电机的种类与工作原理
种类
水轮发电机、汽轮发电机、燃气 轮发电机等。
工作原理
基于电磁感应原理,将其他形式 的能量转换为电能。

发电厂变电站主要电气设备

发电厂变电站主要电气设备

变压器主要参数
变压器额定容量、额定电压、额定电流、空载损耗、 变压器额定容量、额定电压、额定电流、空载损耗、短路损耗和阻抗 电压各代表 什么意义 ? 变压器在厂家铭牌规定的额定电压、 额定容量 : 变压器在厂家铭牌规定的额定电压、额定电流时连续 运行所能输送的容量 ,额定容量是指变压器的视在功率 , 以 VA 、 额定容量是指变压器的视在功率 KVA 、 MVA 表示。 表示。 额定电压 : 变压器长时间运行所能承受的工作电压 , 以 V 、 KV 表示。 表示。 额定电流 : 变压器在额定容量下 , 允许长期通过的工作电流 , 以 A 、 kA 表示。 表示。 变压器在二次侧开路、 空载损耗 : 变压器在二次侧开路、一次侧施加额定电压时 , 变压器铁 表示。 芯所产生的有功损耗 , 以 W 、 KW 表示。 短路损耗 : 将变压器的二次绕组短路 , 流经一次绕组的电流为额 表示。 定电流时 , 变压器绕组导体所消耗的有功功率 , 以 W 、 KW 表示。 阻抗电压 : 将变压器的二次绕组短路 , 使一次绕组电压慢慢加大 , 当二次绕组的短路电 流达到额定电流时 , 一次绕组所施加的电压 ( 短 路电压 ) 与额定电压的比值百分数 , 就是阻 抗电压 o
电容式电压互感器的构成原理是什么 ?
电容式电压互感器又称电容分压器 , 是采用 电压分压原理构成 , 其简单原理接线图 所示。 如图 所示。其主要组成元件包括 : 电容式分 压器、 压器、电磁式电压互感器以及提高可靠性和 准确性的附属设备 。
CVT组件、作用
(1) 电容式分压器由电容元件 C1 、 C2 组 成 , 如图 所示。 所示。 并隔离高电压。 它是将高电压变成低电 压 , 并隔离高电压。为安全起见 , 二 次侧接地。 次侧接地。(2) 串联补偿电感 L 。补偿电容二次电压的 内阻 抗。减小 C2 土的电压随负载电流大小的变 化而变化 , 以保 证正常状态下电压变换的准确 度。其电感量的大小取决于分 压器的内阻。 压器的内阻。 (3) 电磁式电压互感器 TV 减小电容式分压器的输出电流 , 补 偿因负荷变化引起的误差 , 使二次电压标准化 , 以供继电保 护使用。 护使用。 (4) 间隙 P 。为防止二次短路而使电感、电容产生谐振过电 为防止二次短路而使电感、 损坏电容和电感元件。 压 , 引起绝缘击穿 , 损坏电容和电感元件。 (5) 并联电容 C 。提高测量的准确性 , 减小二次负荷变化引 起的二次测量电压的误差。 起的二次测量电压的误差。 (6)Lf 、 Cf 、 Rf 各元件用于抑制在短路切除后电压回升时 , 由电磁式互感器 W 铁芯因饱和而与电容器产生的铁磁谐振。 铁芯因饱和而与电容器产生的铁磁谐振。 (7) 阻压器 r 。防止因二次短路或突然断开时冲击瞬间产生 的大电流、 和工作人员安全。 的大电流、过电压危及设备 和工作人员安全。

发电厂及变电站电气设备——发电厂和变电所的自用电4.1

发电厂及变电站电气设备——发电厂和变电所的自用电4.1
1.安全可靠、运行灵活 2.投资少,接线简单、清晰,运行费用低 3.满足供电的对应性 4.满足系统的整体性 5.对于200MW及以上的大容量机组应设置具有足
够容量的交流事故保安电源和电能质量指标合 格的交流不间断供电装置。
4.2 厂用负荷分类及厂用电电压等级
一.厂用负荷分类 • Ⅰ类负荷:凡短时间(手动切换恢复供电所需的时间)内
是保证发电机正常运行的最基本电源。 厂用高压电源的引接方式
(1)当主接线具有发电机电压母线时,一般直 接由发电机电压母线上引接,供给接在该母线 段机组的厂用负荷, (2)当采用发电机——变压器组单元接线时, 从发电机至主变压器的封闭母线上引接。
厂用工作电源的引接方式
厂用低压工作电源的引接
1)从高压厂用母线段上引接; 2)无高压厂用母线段时,发电机电压
起动/备用电源的设置对保证大容量机组的快 速起动,提高电力系统运行的稳定性具有重要 作用。
对厂用备用或起动/备用电源的要求
引接应保证其独立性,避免与厂用工作电源由 同一电源处引接;
引接点处电源数量应有两个以上,并且具有足 够的电源容量。
最好能与电力系统紧密联系,在全厂停电情况 下仍能从电力系统获得厂用电源。
厂用系统电压等级的选择
• 低压厂用电电压等级:380/220 • 高压厂用电电压等级:一般采用3kV、6kV和
10kV。一般可按下列原则考虑: 1)60MW及以下机组,发电机电机压10.5kV时, 采用3kV; 2)100~300MW的机组宜采用6kV; 3)300MW以上的机组,当技术经济合理时, 也 可采用两种高压厂用电电压。
一.厂用负荷分类
Ⅲ类负荷:在较长时间内停止供电不致直接影 响生产的负荷,称为Ⅲ类厂用负荷。例如中央 修配厂、油处理室的电动机等。

电厂电气设备概述

电厂电气设备概述

3、交流事故保安电源
本工程对顶轴油泵、盘车电机及交流润滑油泵均应设置保安电源,以保证汽 轮发电机组事故时安全停机。按全厂设置一套低压柴油发电机组作为事故停 机电源。对应机组设置保安 MCC 段;柴油发电机组方案如下: 柴油发电机 容量按全厂机组顶轴油泵、盘车电机及事故油泵所需的保安负荷确定;根据 负荷情况,全厂设置 1 台380/220V,容量为 500kW 的箱式柴油发电机组作为全 厂的应急保安电源,设置段低压保安 PC 段,对应机组分别设置#1(2、3)机 保安 MCC;低压保安 MCC 段由两回电源引接,一回电源引自柴油发电机组保 安 PC 段,一回电源引自各机组低压厂用工作段。两回电源实现自动投切。
6、本工程电气接线方式
1)110kV升压站电气一次主接线 (1)本工程#1 机及#2 机 110kV GIS 采用单母线分段接线方式。设置 M1、M2 两段 110kV 母线,两段母 线间设分段开关。#1 机、#2 机经升压变升压后分别接入 110kV M1、M2 母线;两回 110kV 电缆线路分别 经 110kV M1母线、 (2)M2 母线接至 220kV 赤钢站。#3 机采用发电机-变压器-线路组接线形式,#3 机经升压变升压后送 至 220kV 赤钢站。 (3)二期工程建设时#4、#5 机均采用发电机-变压器-线路组接线形式送至220kV 赤钢站,本期在一期 110kV GIS 室内预留二期 2 台机间隔位置。
5.6一台半(3/2)断路器接线
示意图
1)接线特点分析 3个断路器构成1串,接在 两母线间,引出2条出线 可靠性:高 断路器检修: 母线检修: 灵活性:高 操作:避免用隔离开关进行大量倒闸操作 调度和扩建 经济性:大 一次投资:每串增加联络断路器。 2)进出线布置原则 电源和负荷配对成串 只有两串时,交叉布置 3)适用范围: 330~500KV配电装置

电气设备4类

电气设备4类

电气设备4类第一类:输变电设备输变电设备是电力系统中起着重要作用的设备,主要包括变压器、断路器、隔离开关等。

变压器是电力系统中用来改变电压水平的重要设备,主要用于变压、升压、降压等工作。

断路器是电力系统中用来切断和接通电路的设备,主要用于保护电力设备和人身安全。

隔离开关是电力系统中用来隔离和接通电路的设备,主要用于维护和检修电力设备。

第二类:发电设备发电设备是电力系统中用来将其他形式的能量转化为电能的设备,主要包括发电机、发电机组等。

发电机是将机械能转化为电能的设备,主要通过磁场与线圈的相互作用来实现能量的转换。

发电机组是由发电机、发动机和控制系统等组成的设备,主要用于发电。

第三类:配电设备配电设备是电力系统中用来将输变电设备产生的电能分配给用户的设备,主要包括开关柜、电缆、配电箱等。

开关柜是用来控制和保护配电系统的设备,主要用于电能的分配和控制。

电缆是将电能传输到用户端的设备,主要用于电能的输送。

配电箱是将电能从电缆引入用户用电设备的设备,主要用于电能的分配和保护。

第四类:用电设备用电设备是电力系统中用来将电能转化为其他形式能量的设备,主要包括电动机、电磁铁、电热水器等。

电动机是将电能转化为机械能的设备,主要用于驱动各种机械设备。

电磁铁是利用电磁力产生吸引力或排斥力的设备,主要用于控制和操作各种机械设备。

电热水器是利用电能将水加热的设备,主要用于供暖和热水供应。

总结:电气设备分为输变电设备、发电设备、配电设备和用电设备四类。

这些设备在电力系统中起着重要作用,使得电能能够从发电厂传输到用户端,并转化为其他形式的能量。

了解这些设备的基本原理和功能,对于维护和管理电力系统具有重要的意义。

只有保证这些设备的正常运行,才能确保电力系统的安全稳定运行,为人们的生活和生产提供可靠的电力供应。

因此,对于电气设备的研究和发展具有重要的意义。

第一章 发电厂、变电站概述

第一章  发电厂、变电站概述
百万美元/ 亿千瓦时76.7 70.4 56.9
80.2
78.9 81.5 78.9
76.88 73.38
75.4
1990 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
2004年我国单位发电量所支持的GDP与世 界主要发达国家比较
600 508.6 500 400 300 200 100 0 德国 日本 法国 美国 加拿大 436.6 366.5 294.9 172.6 75.4 中国
1998年到2005年我国用电增长与经 济增长的对比情况
GDP增长率 用电量增长率
15.4 11.6 9 8.3 9.1 10 10.1 9.9 14.9 14.26
16 14 12
11.4 7.8 7.6 6.6 8.4
(%)
10 8 6 4 2 0 1998 1999 2000 2.1
2001
521 69.5 53 16.2
597 75.0 58 18.1
635 76.0 63 19.2
单位发电量耗水量 (千克/千瓦时)
4.1
3.9
3.6
3.4
3.2
3.1
2000-2005年火电厂用水量和单位发 电量耗水量情况
用水量 单位发电量耗水量
700 650 600 550 500 450 400 350 300
4、电力资源节约
2000-2005年我国发电企业供电煤耗
年份
供电煤耗 (克千瓦时)
2000年
392
2001年
385
2002年
383
2003年
380
2004年
376
2005年

发电厂变电站电气部分pdf

发电厂变电站电气部分pdf

发电厂变电站电气部分pdf
发电厂变电站是电力系统中一个重要的环节,其电气部分涉及到
电能的转换、输送和分配。

本文将从变电站的角度来探讨其电气部分
的主要内容和注意事项。

首先,变电站的电气部分包括变电设备、开关设备、保护设备和
控制设备。

其中,变电设备主要包括变压器、电容器、电抗器等,用
于将电能从高电压转换为低电压或反之;开关设备则是用于控制电流
的通断和转换;保护设备是用来保护电力设备免受过电流和短路等故
障的损害;控制设备则是用来监控和控制变电站的运行状态。

其次,变电站的电气部分需要注意以下几点:
1. 安全性:电气设备需要有可靠的保护措施和安全措施,以防止
电气事故的发生。

2. 稳定性:变电站的电气部分需要具备良好的稳定性和可靠性,
以确保电力系统的正常运行。

3. 节能性:选用电气设备时,应考虑到其能效比并选择节能设备,以节约能源。

4. 可维护性:电气设备应易于检修和维护,以确保设备的正常运
行和延长其寿命。

5. 可扩展性:变电站的电气设备需要具有可扩展性,以适应未来
电力系统的发展和变化。

最后,需要注意的是,在变电站的电气部分设计中应充分考虑到变电站的环境因素、用电需求、电力负荷等实际情况,以满足变电站的实际运行需求。

总之,发电厂变电站的电气部分是电力系统中非常重要的一个环节,其关系到整个电力系统的稳定运行。

因此,在设计和维护变电站电气部分时应注意以上几点,以保障变电站和电力系统的正常运行。

《发电厂及变电站电气设备》配电装置解析

《发电厂及变电站电气设备》配电装置解析
②维修、操作和巡视都在户内进行,不受气候条 件的影响。
③电气设备不易受外界气候条件的影响,维护工 作量小。
④电气设备之间的距离小,通风散热条件差,且 不便于扩建。
⑤房屋建筑投资大,但可采用价格较低的屋内型 设备,能减小一些电气设备的投资。
4
10.1 配电装置概述
屋外配电装置即将电气设备装置在屋外,它的特 点是:
屋内低压成套配电装置(低压配电屏或低压配电 柜)适用于交流50HZ,额定电压在500V以下, 额定电流在3150A以下的三相配电系统中,作动 力、照明及配电设备的电能转换、分配与控制之 用。其每个柜中分别装有闸刀开关、自动空气开 关、接触器、熔断器、仪用互感器、母线以及测 量、信号装置等设备,由制造厂组成多种一次线 路方案并进行编号,供给用户选用。
(c)屋外A2、 B1、C值校验图
16Βιβλιοθήκη 10.2 屋内配电装置7.2 屋内配 电装置
17
10.2 屋内配电装置 10.2.1 屋内配电装置的结构型式 屋内配电装置的结构型式与电气主接线、电压等 级和采用的电气设备的型式、母线容量、有无出 线电抗器、出线回路数及出线方式等因素密切有 关。随着新技术和新设备的不断应用,屋内配电 装置的主要型式有装配式和成套式两种结构型式。
21
10.2 屋内配电装置器
图10.3 GGD型 交流低压配电
柜外形及 安装示意图
(a)外形尺寸; (b)安装示意图 1—电缆沟;2—槽钢
22
10.2 屋内配电装置 其优点是分断能力高,动、热稳定性好,电气方 案灵活,组合方便,实用性强,结构新颖,防护 等级高; 它的缺点是,当装置故障时,不像抽出式低压配 电装置那样可拉出检修并换上备用抽屉或手车迅 速恢复供电。

发电厂及变电站电气设备--电气主接线

发电厂及变电站电气设备--电气主接线

发电厂及变电站电气设备 - 电气主接线1. 引言发电厂及变电站是电力系统中重要的组成部分,其中电气设备的主接线起着至关重要的作用。

电气主接线是将发电厂或变电站的各种电气设备连接在一起的关键线路。

本文将介绍发电厂及变电站电气设备的主接线的定义、作用、要求以及一些常见的设计方法。

2. 电气主接线的定义电气主接线是指将发电厂或变电站内的各种电气设备连接在一起的导线或电缆。

它负责将电源与各种负载设备连接起来,使电能能够有效地传输到各个部分。

3. 电气主接线的作用电气主接线的作用主要有以下几个方面:3.1. 电能传输电气主接线是将电源与各种负载设备连接起来的桥梁,它可以将发电厂或变电站产生的电能传输到各个部分,满足不同负载设备的用电需求。

3.2. 电气设备保护电气主接线在电力系统中起着保护作用。

它通过合理的设计和安装,能够提供电气设备的过载保护、短路保护、接地保护等功能,保护电气设备免受电力系统故障的影响,提高电气设备的可靠性。

3.3. 电能质量控制电气主接线的设计和布置对于控制电能的质量具有重要的影响。

合理的电气主接线设计能够降低电气设备的电压波动、电流谐波等现象,提高电能的质量,确保电气设备正常运行。

3.4. 灾害事故应对电气主接线的合理设计和布置还能够对电力系统的灾害事故起到响应和应对的作用。

例如,在发生电气火灾或其他突发事件时,能够通过合理的主接线设计,实现对电气设备的快速隔离和切换,保证人身安全和电力系统的运行稳定。

4. 电气主接线的设计要求为保证电气主接线的安全、可靠、高效运行,设计时应满足以下要求:4.1. 电气设备的布置电气主接线的设计必须考虑电气设备的布置。

根据电气设备的类型、功率、用途等因素,合理选择电气主接线的走向和布线方式,确保各个设备之间的电气连接符合设计要求。

4.2. 电气主接线的导线尺寸电气主接线的导线尺寸必须根据电流大小、线路长度、电阻损耗等因素进行合理计算和选择。

确保导线的截面积足够大,能够传输所需的电流,同时减小电气主接线的电压降和损耗。

发电厂及变电站电气设备介绍

发电厂及变电站电气设备介绍

发电厂及变电站电气设备介绍1. 引言发电厂和变电站是电力系统中至关重要的组成部分,它们负责将能源转化为电能并进行传输和分配。

在电气设备中,发电厂和变电站的电气设备起到了至关重要的作用。

本文将介绍发电厂和变电站的电气设备的功能、类型以及其在电力系统中的作用。

2. 发电厂电气设备发电厂的电气设备主要包括发电机、变压器、开关设备和保护设备。

2.1 发电机发电机是发电厂的核心设备,它将机械能转化为电能。

发电机主要由转子、定子和励磁系统组成。

转子由电枢线圈和磁极组成,定子则包括定子线圈和定子铁芯。

励磁系统负责提供发电机所需的恒定磁场。

发电机的输出电压和频率取决于转速和励磁电流的大小。

2.2 变压器变压器是将发电机产生的电能进行升压或降压的设备。

它由主绕组、副绕组和铁芯构成。

发电厂的发电机产生的电能通常为低压,变压器将其升压以便传输更长距离。

在电力系统中,多级变压器也用于降压以适应不同负荷需求。

2.3 开关设备开关设备用于控制电力系统中电流的流动。

它们包括断路器、隔离开关、负荷开关等。

断路器用于打开或关闭电路,并在电流过载时自动切断电流。

隔离开关用于隔离电路以进行检修和维护。

负荷开关则用于控制负荷的连接和断开。

2.4 保护设备保护设备用于监测电力系统中的故障并保护设备和人员安全。

它们包括继电器、保护开关、电流互感器等。

继电器是用于检测电流、电压等参数的电气装置,当参数超过设定值时,继电器将触发保护开关切断电路。

电流互感器用于测量电流,以便进行保护和控制。

3. 变电站电气设备变电站的电气设备主要包括变压器、隔离开关、断路器等。

3.1 变压器变电站中的变压器与发电厂中的变压器类似,用于升压或降压输电。

变电站通常存在多级变压器,以便适应不同电压等级的要求。

3.2 隔离开关隔离开关用于在变电站中隔离和维护电缆或设备。

它们提供了安全的工作环境,并防止故障扩散到其他部分。

3.3 断路器变电站中的断路器用于切断电路。

与发电厂中的断路器类似,变电站断路器能够在电流过载或短路时快速切断电流,以防止设备损坏和人员受伤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章接地装置教学要求:掌握保护接地、保护接零的工作原理;了解影响接地电阻的因素及降低方法,了解接地系统。

接地是防止人身受到电击,保障电力系统正常运行,保护线路和设备免遭损坏,预防电气火灾,防止雷击和防止静电损害的基本措施。

电对人体的伤害是多方面的:电流通过人体会造成电击;电流的热效应会造成电灼伤;电流的化学效应会造成电烙印和皮肤金属化;电磁场能量对人体的辐射作用,会引起头晕、乏力、神经衰弱等症状;电火花会引起瓦斯及氢气爆炸,造成设备损坏和人身伤亡。

所以,必须研究电气安全技术,采取有效措施。

s8.1人体触电的概念及机理8.1.1 人体的触电8.1.1.1 触电发生的原因人体的不同部分,如手脚之间、两手之间或两脚之间受到电压的作用,在人体内产生电流造成伤害,甚至危及生命安全,叫做触电。

通常是人站在天然导电的地面上,手接触到带电体而发生触电。

统计表明,多数触电事故是由于直接接触或接近电路的裸带电部分而造成的。

另有约20%的事故则是由于电气设备的绝缘损坏致使金属外壳、基础构架等发生非正常带电而引发的。

前一类称为直接触电,防止的办法是采用电气隔离,并且正确地执行电气设备安全运行的组织措施和技术措施。

后一类称为间接触电,除了加强绝缘的定期监测和维修,便是采用接地保护的办法。

须知绝缘损坏并不都是由外部原因引发的偶然现象,任何绝缘的老化都是必然的,而老化的绝缘便随时可能出现绝缘故障。

8.1.1.2 电流对人体作用的机理电流通过人体内部,对人体的伤害程度与通过人体电流大小、电流通过人体的持续时间、电流通过人体的途径、电流的种类及人体的精神状态有关,而且各种因素之间有密切联系。

1.电流大小。

通过人体的电流越大,人体的生理反应越强烈,引起心室颤动所需的时间越短,致命的危险就越大。

对于工频电流,按照电流通过人体的大小不同,可以划分为以下三级:(1)感知电流。

引起人的感觉的最小电流称为感知电流。

实验资料表明,对于不同的人,感知电流也不同,成年男性的平均感知电流约为1.1mA,成年女性的平均感知电流约为0.7mA。

(2)摆脱电流。

人触电后能自动摆脱电源的最大电流称为摆脱电流。

实验资料表明,对于不同的人,摆脱电流也不同,成年男性的平均感知电流约为16 mA,成年女性的平均感知电流约为10.5mA。

(3)致命电流。

引起心室颤动的最小电流称为致命电流。

根据动物实验和统计分析得出的资料列入表8-1。

该资料考虑了通电时间的影响,表中,O是没有感觉的范围,A不引起心室颤动,B是容易产生严重后果的范围。

2.通电时间。

表8-1表明,通电时间愈长,愈容易引起心室的颤动,死亡的危险性增大。

这是因为,通电时间愈长,能量积累增加,引起心室颤动的电流减小。

3.电流途径电流通过心脏时会引起心室颤动,较大的电流还会使心脏停止跳动。

电流流过中枢神经,会引起中枢神经系统强烈失调而导致死亡。

电流通过头部会使人昏迷,若电流较大,会对脑产生严重伤害,使人昏迷而导致死亡。

因此,从左手到胸部是最危险的电流途径,从手到手、从手到脚也是很危险的电流途径。

4.电流种类直流电流、高频电流、冲击电流和静电电荷对人体都有伤害作用,其伤害程度一般较工频电流为轻。

电流的频率不同,对人体的伤害程度亦不同。

25~300HZ的交流电对人体的伤害程度最严重。

5.人体状况电流对人体的伤害程度与人体状况也有关系:电流对人体的作用,女性较男性敏感;小孩承受电击能力较成年人低;引起心室颤动的电流约与体重成正比。

6.人体电阻和安全电压人体电阻不是一个常数,它与电流途径、皮肤(干湿及破损)状况以及接触面大小有关,且随作用电压的大小而变。

在小电压时,皮肤具有绝缘保护作用,在电压升高时皮肤将逐渐发生击穿,并增加机体电解,使人体总电阻下降。

设电流途径为手一手或手一脚,皮肤具有一般的接触面积和平均干湿度。

当电压低于100V时,人体电阻平均值约为3000Ω,忽略站脚处地面电阻率的影响,则痉挛电压值约为3000×0。

02=60V。

即是说,在一般条件下,触电者不需别人帮助能自行脱开60V的触电电压,避免出现触电死亡事故。

若接触条件变坏(指皮肤潮湿、接触面加大),即使人体电阻降至1300Ω,也不致于达到50mA的使心室纤颤的危险限值。

故一般可认为根据国际电工学会的推荐,该电压值现宜降至50V。

在特殊环境中,例如地水中或特别潮湿处,或地金属的地面上;地湿皮肤和大面积接触的情况下,人体电阻只有几百欧姆。

此时必须使用更低的安全电压规定值,例如36V、24V甚至12V。

8.2 保护接地8.2.1. 接地的分类所谓接地,既将电气设备的某些部分用导线(接地线)与埋在土壤中或水中的金属导体(接地体)相连接。

按照接地的作用,电气设备的接地主要有三种形式:(1)工作接地工作接地是为了使电气装置正常工作而将电气回路中的某一特定点接地,使之与地基本保持同电位。

如变压器中性点、电压互感器中性点等的接地。

(2)保护接地保护接地是将主要电气设备可能带电的金属部分进行接地,防备由于绝缘损坏使外壳带危险电压,以保护人身的安全。

如电气设备的金属外壳,钢或钢筋混凝土构架、杆塔,停电检修的电路等的接地。

由于绝缘故障有可能窜入高电压的低压回路一点接地,也具有保护接地的性质。

如电流互感器二次回路的一点接地。

(3)冲击接地其作用是将雷电流安全地泄入地中,消除过电压的危险影响。

如避雷针、避雷器和线路杆塔等的接地。

按照接地电流的波形,工作接地和保护接地属于工频接地,在电站共用一个统一的接地装置。

冲击接地常设置独立的集中接地装置,构成过电压保护装置的一部分。

8.2.2 基本原理未作保护接地时,当电气设备主绝缘损坏致使金属外壳等与带电部分相连通时,人一接触设备,既与故障相的对地电压接触,这对人体是非常危险的,如图8-1所示。

处于相电压下的金属外壳对人体安全构成的威胁还与系统中性点的运行方式有关。

在中性点不接地系统或经消弧线圈接地的系统中,通过触电者的电流将是单相接地的电容性电流(或过补偿的感性电流),其数值以安培计,故对人体构成威胁。

在中性点直接接地系统中,加于触电者的电压将是相电压,在高压系统中将导致人体的迅速烧毁。

当金属外壳等有保护接地之后时,情况便大不相同。

当电气设备绝缘损坏时,设备外壳上的对地电压为U d=I d R d式中,I d——单相接地电流R d——接地装置的电阻当人触及设备外壳时,接地电流将沿着接地体和人体两条通路流过,如图8-1所示,而通过人体的电流为I r=I d R d/(R r+R d)式中,R r——人体的电阻以图8-2为例,与外壳同电位并与土壤紧密接触的接地体,在向地中散流时,因土壤的电阻率很大,在设备附近形成一个倒漏斗形的地电位分布曲线。

靠近接地体附近的土壤中电流密度大,电位分布陡峭。

距接地体越远,电流密度越小,电压降也越小。

约在15—20m处地电位接近于零.最高电位U jd与接地电流I jd之比值叫做接地电阻R jd,即R jd=U jd/I jd (8-1)8.2.3 接触电压与跨步电压在发生接地故障(如电气设备主绝缘损坏致使金属外壳等与带电部分相连通)时,位于分布电位场内的人体所受到的电压有接触电压和跨步电压。

所谓接触电压U j,即人站在距设备0.8m处,手触外壳等带电部分,手脚之间所受的电压值。

即 U j=U jd—U (8-2)式中:U为触电者站脚处的电位由该式可见,接触电压的大小与接地电阻的大小有关,接地电阻愈小,接触电压就愈小。

接地保护之所以有效,不仅在于降低了带电外壳等的电位U jd,而且还因抬高了站脚处的电位U。

设备的接地即使非常好,在故障电源未切断前,接触电压也是存在的。

所谓跨步电压U k,即人在接地故障区域内行走,跨出0.8m步距的两脚所受到的电位差值。

即U K=U1—U2 (8-3)式中:U1、U2为两脚落地点的地面电位。

当人处于电场内有麻电的感觉时,不能奔跑逃离电场,而应该单脚跳或细步离开电场。

8.2.4 接地电阻最大允许值接地电阻由R= U jd/I jd来决定,这时的接地电压U jd应是能保证人身安全的数值。

1.对小接地电流系统在中性点不接地或经消弧线圈接地的系统中,一相绝缘损坏时的接地电流一般控制在10~30A以下,可以带故障运行2h。

此时为了不致出现过高的接触电压和跨步电压,应适当限制接地电压值。

当接地装置仅用于高压系统时,规定接地电压不超过250V,故一般应符合R≤250/I jd,接地电阻值一般不应大于10Ω。

当接地装置用于低压系统或高压系统共用时,考虑到人与低压设备接触的机会较多,需要更加降低接触电压和跨步电压,规定接地电压不超过120V,故一般应符合R≤120/I jd,接地电阻一般不应该超过4Ω。

在发电机或变压器的容量小于100kVA时,可放宽至10Ω。

高土壤电阻率地区,接地电阻允许升高,但不应超过:发电厂、变电站15Ω,其余30Ω。

2.对大接地电流系统在中性点直接地系统中,一相绝缘损坏时的接地电流很大,此时巨大的短路电流流过接地点必伴随着高接地电压。

但保护将速动作切除故障电路,接地电压的出现只是短暂的,致使人体触电的机遇很少,而且作用时间短。

故允许采用较大的接地电压和跨步电压值,并综合考虑电力系统运行的多方面要求,规定接地电压不超过2000V,故一般应符合R≤2000/I jd,当系统的计算单相短路电流大于4000A时,可取R≤0.5Ω。

高土壤电阻率地区,接地电阻允许升高,但不应超过5Ω。

3.对低压系统低压系统(主要是380/220V系统)的中性点一般采用直接接地。

并联运行电气设备的总容量为100kVA以上时,接地电阻一般不应大于4Ω;并联运行电气设备的总容量为100kVA及以下时,接地电阻一般不应大于10Ω。

高土壤电阻率地区,接地电阻允许升高,但不应超过30Ω。

8.3 保护接零8.3.1保护接零原理在中性点直接地系统中,无论高低电压,要发生单相接地时,都使一相电压经接地中性点与故障接地点形成单相短路回路。

但由于低压系统电压低,中性点和设备处接地装置阻值较大,单相短路电流偏小,常达不到保护所需要的动作值;此外,对低压设备,接地电压也略显过大。

针对低压设备保护接地存在:接地电流偏小和接地电压偏高的两个主要缺点,一般在380/220V低压系统中设置工作零线,将电气设备的金属外壳等与工作零线相连,构成保护接零。

它用零线短接了保护接地回路中的电阻Ro和Rs,因故接零保护可增大接地电流和减小接地电压。

它是保护接地的进一步发展。

图8-3(a)为保护接零图。

当电气设备绝缘损坏而发生碰壳短路时,形成了一个闭合的金属性短路回路,由于这个回路不包括接地体的接地电阻,所以短路电流比较大,使继电保护装置能够可靠动作。

另外,假定零线阻抗与相线阻抗(包括变压器或发电机每相绕组阻抗)持平,则相电压220V在相线与零线上各降落110V左右。

相关文档
最新文档