12米及9米灯杆基础计算书
常用灯杆数据参考与板材规格的核算
常用灯杆参数及材料计算
普通灯杆的数据参考,客户来图没有详细的尺寸可参考以下数据,按照锥度比11来核算,
圆锥灯杆尺寸叁考
序号规格上下口直径材料厚度法兰及孔距基础植筋锥比度板材/裁剪数量15-6米Φ60/Φ126 2.75250*250*10-1804*Φ12111260/4 27米Φ60/Φ1373300*300*12-2104*Φ16111260/4 38米Φ60/Φ1483300*300*14*2104*Φ16111260/4 49-10米Φ70/Φ180 3.75350*350*16-2504*Φ18111510/4 511-12米Φ70/Φ202 3.75400*400*18-3004*Φ1811870/2 6米灯杆:
已知灯杆上口=60,下口=126厚度=2.75,长度=6000,经计算可采用
1260板材裁剪4块
计算如下:上口:60-2.75*3.14=179.765mm,
下口:126-2.75*3.14=387mm
板材的选用:
1、上口周长179.765+下口周长387=566.765mm,市场上没有这个规格
的板材,566.765*2=1133.53mm,根据市场上的1020板材料不够,
选用1260板材,可以一切四张,
2、四根灯杆的实际重量为:1133.53*2.75*7.85*6000=146.8KG
3、板材的实际重量为:1260*2.75*7.85*6000=163.2KG
4、浪费材料的重量:163.2-146.8=16.4KG边脚料的重量,每根上的边
脚料为:4.1KG,
所以选用参数对报价有很大的影响,尽量选择市场上现有的规格,可
以节省成本,提高生产效益。
大家对照上面的表格计算一下。
12m路灯灯杆抗风、抗挠强度计算
12m 路灯灯杆抗风、抗挠技术1、已知条件1.1 最大风速 Vm=35m/s (P 风压:ω0=0.81KN/m 2)1.2 材料 材质符合Q235(A3)/Q3451.3 许用应力[σ]=210Mpa(《钢结构设计规范》)(Q235) 许用应力[σ]=345Mpa(《钢结构设计规范》)(Q345)1.4 弹性模量:E=2.06×1011N/M 2(《机械设计手册》)1.5 灯管外形为选用Q235钢管焊接,100*200,壁厚分别为4mm.1.6 灯体自重10kg ,杆重 500 kg2、迎风面积2.1 S 灯体= 0.1m 22.2 S 灯杆= 6m 23、结构自振周期I=⨯64π (0.174-0.1724)=8.5×10-6m 4 A=⨯4π(0.172-0.1722)=0.0022m 2T1=3.63×)236.0(3AH m EIH ρ+ =0.56sT1>0.25s 采用风振系数来考虑,风压脉动的影响。
4、风振系数βz4.1 基本风压 ω0T 12= 0.81×0.562 =0.254kN/ m 2∴脉动增大系数 ξ =2.104.2 风压脉动和风压高度变化的影响系数ε1 =0.754.3 振型、结构外形影响系数 ε2=0.76∴β =1+ξ ·ε1•ε2=2.205、顶端灯具大风时的风荷载: (u τ 取1.3)F1=βzUsUzU τ灯体S ⋅0ω=2.20×0.9×1.3×1.0×0.81×0.15=0.31KN6、灯杆大风的风荷载:F2=βzUsUzU τ杆S ⋅0ω=2.20×0.7×1.0×1.1×0.81×1=1.40KN7、灯杆距底法兰处所受的最大弯矩:M 总=0.31×8+1.40×4=8.08KN ·m8 、灯杆底端(危险截面即筋板上部开孔处的截面) 风压弯曲应力 σb σb = S M 总 =34417.0)162.017.0(098.004.8mm KN -⨯⋅ =87MPaσb <[ σb ]=210Mpa结论:结构设计是满足国家相关设计规程的要求是安全的。
高杆灯基础设计计算书
室外照明——高杆灯设计计算书1.荷载统计1.1风荷载根据《高耸结构设计规范》—GBJ135-90知:ω=βzμsμzμrω0ω0:其中北京地区n=50的ω0=0.45KN/m2μr:重现期调整系数。
一般结构取1.1,重要结构取1.2。
这里取μr =1.1μz:地面粗糙度为B类,高杆灯总高度为21.5m,从下到上根据截面面积变化分为三段:5m、10m、6.5m分别对应的μz为0.8、1.14、1.28 μs:高灯杆为光滑圆形,H/d=41>25,取μs =0.55βz:βz=1+ξε1ε2,因为地面粗糙度为B类,脉动增大系数ξ=2.27;总高度为21.5m,ε1=0.624;结构顶部和底部宽度比约为1,取ε2=1 d:高灯杆从下至上,杆的外边缘直径d分别为520mm、500mm、484mm,厚度t分别为10mm、8mm、6mm综上所述:5m 段ω1=0.53 KN/m2;10m 段ω2=0.75 KN/m2;6.5m段ω3=0.84 KN/m2;三处集中风荷载为:F1=1.4x0.53x0.520x2.50+1.4x0.75x0.500x5.00KN=3.590KNF2=1.4x0.75x0.500x5.00+1.4x0.84x0.484x3.25KN=4.474KNF3=1.4x0.84x0.484x3.25KN=1.849KN则风荷载引起的高灯杆底端部弯矩M风=F1 x 5+F2x15+F3x21.5=3.590x5+4.474x15+1.849x21.5KN•m=125 KN•m1.2地震荷载根据荷载规范及现场资料知,结构抗震烈度为8度第一组(基本加速度为0.20g),抗震等级为三级,场地类别为二类。
则T g=0.35s,αmax=0.16。
高耸钢结构的自振周期T1=0.013H=0.013x21.5s=0.28s。
∵T1<T g∴α1=αmax=0.16用底部剪力法:高灯杆最上面为灯具、灯杆分为三段,中间插接深度取1m,则有四个质点G1、G2、G3、G4则:G1= 3.14x0.52x5x0.01x78KN=6.368KN; H1=2.5mG2=3.14x0.5x11x0.008x78KN=10.777KN; H2=9.5mG3=3.14x0.484x7.5x0.006x78KN=5.33KN; H3=17.75mG4=3.14x(1.62-0.242)x0.01x78KN=6.129KN;H4=21.5m 则:∵T1=0.28s<1.4T g=0.49s,不考虑δn∴F EK=α1Geq=0.16x0.85x(6.368+10.777+5.33+6.129)KN=3.89KN∑GH=6.368x2.5+10.777x9.5+5.33x17.75+6.129x21.5=344.683KN•mF1=6.368x2.5÷344.683x3.89=0.18KNF2=10.777x9.5÷344.683x3.89=1.16KNF3=5.33x17.75÷344.683x3.89=1.07KNF4=6.129x21.5÷344.683x3.89=1.49KN则地震荷载引起的高灯杆底端部弯矩M震=0.18x2.5+1.16x9.5+1.07x17.75+1.49x21.5=62.5 KN•m∴M端= M风+M震=125+62.5=187.5 KN•m2基础验算基础埋深3m,基底为圆形D=3.9m2.1基础及土的自重应力基础埋深d=3m,由于地下水位及土的重度不明,保守假设3m内没有地下水,取γG=20KN/m3P G=20x3=60 KN/m22.2中心荷载作用F=G1+G2+G3+G4=28.6KNP中=F/A=28.6÷(3.14x1.952)=2.4KN/m22.3弯矩作用Mˊ=M v+M=(3.590+4.474+1.849)x3+187.5=217.24 KN•mP M=Mˊ/W=217.24÷(3.14x3.93÷32)=37.32 KN/m2综上所述:地基反力P max=P G+P中+P M=99.72 KN/m2P min= P G+P中-P M=25.08 KN/m2基础底面离边沿1.15m处控制截面的应力为σ= M/W= [77.71x1.15x(1.15/2)+11x1.15x(1.15x2/3)]/0.08=763.75 KN/m2。
高杆灯基础计算书
中杆灯支架基础计算一、设计参数钢筋混凝土容重:γ砼=25 kN/m3,钢容重:γ钢=78.5 kN/m3;地下水位按地面以下0.5m考虑;50年一遇风压:0.60 kN/m2;灯具总重:3.8 吨二、计算简图三、荷载计算1 恒载灯具共设8个投光灯,均布在灯杆顶部圆盘上G1=3.8*10=38 kN2 活载灯杆风荷载灯杆半高处截面外径d=(250+560)/2=405mm风压高度变化系数:地面粗糙类别B 类,灯杆高度H=30m ,μz =1.39 风荷载体形系数:μzw 0d 2=1.39*0.60*0.405*0.405=0.137≥0.015, 且⊿≈0,H/d =30/0.405=74>25,故μs =0.6 H 2/d=30*30/0.405=2222>700 T=0.25+0.99*10-3*H 2/d=2.45s >0.25s根据规范应考虑风压脉动对结构产生顺风向风振的影响。
脉动分风荷载的空间相关系数确定:根据规范,对迎风面宽度较小的高耸结构,水平方向相关系数可取ρx=1 竖直方向的相关系数z ρ==0.8427脉动风荷载的背景分量因子1a z Bz kH x zzφρρμ= 对于迎风面和侧风面的宽度沿高度按直线变化的高耸结构,应乘以修正系数B v θθ、 ()(0)B H B =0.447,v θ=1.928,()(0)B B z B θ=,按下表确定: 表1 修正系数B θ表2脉动风荷载的背景分量因子Bz脉动风荷载的共振分量因子115R x x ==>R=2.876z 高度处的风振系数z β取值见下表:表3 风振系数z β取值灯具风荷载表4 灯具风荷载总水平力F=F1+F2=13.68 KN总弯矩M=M1+M2 =257.73 KN*m总竖向力G=G1 =38 KN“圆钢管柱外露刚接”节点计算书一. 节点基本资料采用设计方法为:常用设计节点类型为:圆钢管柱外露刚接柱截面:PIPE-560*10,材料:Q235柱与底板全截面采用对接焊缝,焊缝等级为:二级,采用引弧板;底板尺寸:L*B= 850 mm×850 mm,厚:T= 40 mm锚栓信息:个数:12采用锚栓:双螺母焊板锚栓库_Q235-M42锚栓垫板尺寸(mm):B*T=90×20底板下混凝土采用C40节点前视图如下:节点下视图如下:二. 验算结果一览验算项数值限值结果最大压应力(MPa) 9.13 最大19.1 满足受拉承载力(kN) 136 最大157 满足混凝土要求底板厚(mm) 24.6 最大40.0 满足锚栓要求底板厚(mm) 17.4 最大40.0 满足底板厚度40.0 最小24.6 满足等强全截面 1 满足板件宽厚比16.1 最大18.0 满足板件剪应力(MPa) 37.1 最大125 满足焊缝剪应力(MPa) 46.4 最大160 满足板件厚度(mm) 16.0 最小16.0 满足焊脚高度(mm) 10.0 最小9.49 满足焊脚高度(mm) 10.0 最大19.2 满足板件厚度(mm) 16.0 最小16.0 满足焊脚高度(mm) 10.0 最小9.49 满足焊脚高度(mm) 10.0 最大19.2 满足基底最大剪力(kN) 11.8 最大165 满足三. 混凝土承载力验算控制工况:1.2D+1.4LN=-45.6 kN;M x=0 kN·m;M y=364 kN·m;偏心受压底板计算:这里偏心距e为:e= M/N =364000000/45600=7982.456mm > 119.749mm所以按部分截面混凝土受压,部分锚栓受拉来计算(通过对混凝土应力积分): δmax=9.127N/mm2中性轴的坐标: x = 128.949最大锚栓的拉力:NTa = 136439.829N锚栓总拉力:Ta = 620441.082 N轴力N大小为:N = 45600 N混凝土的总合压力:F = 666041.082N外力对中性轴的弯矩:M外= 358119947.929N.mm 按(fN(e-x)方式求出)锚栓的合弯矩:Ma = 243227678.915N.mm混凝土的合弯矩:Mc = 114892231.881N.mm混凝土抗压强度设计值:f c=19.1N/mm2底板下混凝土最大受压应力:σc=9.127N/mm2≤19.1,满足四. 锚栓承载力验算控制工况:1.2D+1.4LN=-45.6 kN;锚栓最大拉力:N ta=136.44 kN(参混凝土承载力验算)锚栓的拉力限值为:N t=156.927kN锚栓承受的最大拉力为:N ta=136.44kN≤156.927,满足五. 底板验算1 构造要求最小底板厚度验算一般要求最小板厚:t n=20 mm柱截面要求最小板厚:t z=10 mm构造要求最小板厚:t min=max(t n,t z)=20 mm≤40,满足2 混凝土反力作用下的最小底板厚度计算非抗震工况底板下最大压应力:σcm=9.127 N/mm2底板厚度验算控制应力:σc=9.127 N/mm2沿圆周布置的加劲肋之间按三边支承板简化计算:折算跨度:a2=3.142×850/12=222.529 mm悬挑长度:b2=0.5×(850-560)=145 mm分布弯矩:M1=0.08119×9.127×222.529×222.529 ×10-3=0.0367 kN·m 得到底板最大弯矩区域的弯矩值为:M max=0.0367 kN·m混凝土反力要求最小板厚:T min=(6*M max/f)0.5=(6×36.698/205×103)0.5=32.773 mm≤40,满足3 锚栓拉力作用下的最小底板厚度计算非抗震工况锚栓最大拉力:T am=136.44 kN底板厚度验算控制拉力:T a=136439.829 kN锚栓中心到柱底截面圆边缘距离:l a1=1202.082-560-50=240 mml a1对应的受力长度:l l1=2×240=480 mm锚栓中心到左侧加劲肋距离:l a2=(0.5×560+240)×0.2588=134.586 mml a2对应的受力长度:l l2=134.586+min(50,134.586+0.5×42)=184.586 mm锚栓中心到右侧加劲肋边距离:l a3=134.586 mml a3对应的受力长度:l l3=l l2=134.586+min(50,134.586+0.5×42)=184.586 mm弯矩分布系数:ζ1=240×134.586×134.586/(240×184.586×184.586+480×134.586×184.586+480×184.586×13 4.586)=0.1357得最大弯矩分布系数为:ζ=0.1357锚栓拉力要求的最小板厚:t min=(6×136.44×0.1357/205×103)0.5=23.278 mm≤40,满足六. 对接焊缝验算柱截面与底板采用全对接焊缝,强度满足要求七. X向加劲肋验算非抗震工况下锚栓最大拉力:T am=136.44 kN加劲肋承担柱底反力区域面积:S r=0.01 cm2非抗震工况下加劲肋承担柱底反力:V rc=σcm*S r=9.127×0.01×100=0.009127 kN板件控制剪力:1.2D+1.4L下锚栓拉力,V r=136.44 kN计算宽度取为上切边到角点距离:b r=167.797 mm板件宽厚比:b r/t r=167.797/16=10.487≤18,满足扣除切角加劲肋高度:h r=250-20=230 mm板件剪应力:τr=V b/h r/t r=136.44×103/(230×16)=37.076 Mpa≤125,满足焊缝控制剪力:1.2D+1.4L下锚栓拉力,V r=136.44 kN角焊缝剪应力:τw=V r/[2*0.7*h f*(h r-2*h f)]=136.44/[2×0.7×10×(230-2×10)]=46.408 MPa≤160,满足八. 柱脚抗剪验算控制工况:1.35D+0.84LN=-51.3 kN;V x=11.76 kN;V y=0 kN;锚栓所承受的拉力为:T a=360.206 kN柱脚底板的摩擦力:V fb=0.4*(-N+T a)=0.4×(51.3+360.206)=164.602 kN柱脚所承受的剪力:V=(V x2+V y2)0.5=(11.762+02)0.5=11.76 kN≤164.602,满足独立桩承台设计(ZCT-4)项目名称构件编号日期设计校对审核执行规范:《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》《建筑地基基础设计规范》(GB 50007-2002), 本文简称《地基规范》《建筑结构荷载规范》(GB 50009-2001), 本文简称《荷载规范》《建筑桩基技术规范》(JGJ 94-2008), 本文简称《桩基规范》-----------------------------------------------------------------------1 设计资料1.1 已知条件承台参数(3 桩承台第 1 种)承台底标高: -2.000(m)承台的混凝土强度等级: C25承台钢筋级别: HRB335配筋计算a s: 35(mm)桩参数桩基重要性系数: 1.0桩类型: 泥浆护壁钻(冲)孔桩承载力性状: 摩擦桩桩长: 25.000(m)是否方桩: 否桩直径: 600(mm)桩的混凝土强度等级: C25单桩极限承载力标准值: 558.000(kN)桩端阻力比: 0.400均匀分布侧阻力比: 0.400是否按复合桩基计算: 否桩基沉降计算经验系数: 1.000压缩层深度应力比: 20.00%柱参数柱宽: 1050(mm)柱高: 1050(mm)柱子转角: 0.000(度)柱的混凝土强度等级: C25柱上荷载设计值弯矩M x: 333.000(kN.m)弯矩M y: 0.000(kN.m)轴力N : 45.600(kN)剪力V x: 0.000(kN)剪力V y: -17.000(kN)是否为地震荷载组合: 否基础与覆土的平均容重: 20.000(kN/m3)荷载综合分项系数: 1.20土层信息地面标高: 0.000(m)1.2 计算内容(1) 桩基竖向承载力计算(2) 承台计算(受弯、冲切、剪计算及局部受压计算)(3) 软弱下卧层验算(4) 桩基沉降计算2. 计算过程及计算结果2.1 桩基竖向承载力验算(1) 桩基竖向承载力特征值R计算5.2.2及5.2.3R a——单桩竖向承载力特征值;Q uk——单桩竖向极限承载力标准值;K ——安全系数,取K=2。
高杆灯地基的基础设计计算书
高杆灯地基的基础设计草图见图1。
图1 地基设计的总体草图高杆灯的重力2G=56.36kN,风荷载总弯矩2M4=555.66kNm(1)基础的总重量GJGJ=[(5×5×1-1.22×3.14×2.6)×2.4+(5×5×1-1.22×3.14×2.6)×1.8]×9.8=1240.7kN式中:2.4—钢筋结构后C20砼浇的密度;1.8—掩埋土层的密度;×9.8—重量kg化为kN(2)基础地面处C20砼浇层的抵抗矩WW=(2/12)õB3=(2/12)×4.53=10.74m3式中:B—边长,取4.5m.(3)标准地基的承载值90kN/m的设计值按f=1.1fk计算f=1.1×90=99kN/m2(4)基础的平均压强按P=2G+GJA计算,A—基础底面积∴P=56.36+1022.44.52=53.27kN/m2<90kN/m2(标准承载)(5)基础边缘有可能产生的最大压强PmaxPmax=P+2M4W4(原公式:Pmax=P+Me+2M4W)其中:Me—高杆灯杆体部分重心不在基础中心的偏心弯矩,然此设计中重心皆在同一铅直线上,所以偏心弯矩Me=0,即Pmax=P+2M4W=53.27+555.6610.74=105kN/m2(6)根据GBJ7—89第5.1.1各建筑地基基础设计规范,应按基础平均压强P≤f,Pmax≤1.2f验算。
∵P=53.27kN/m2<f(99kN/m2)又:Pmax=105kN/m2<1.2×99所以上述35m高杆灯的基础设计是完全符合规范的。
高杆灯地基承载力的验算。
灯杆基础规格计算
、标准灯杆尺寸参数表二、利用率1、公司常用规格材料:常规灯杆宽为0.85米、1.25米、1.5米,厚度为2.75mm、3.0mm、3.5mm、3.75mm。
2、6-12米利用率计算如下:6米灯杆:(1)已知灯杆上口=φ60锥度=11‰δ=2.75L=6000 选用宽为1.25米钢板料;得到:开料尺寸:上口开料尺寸=174 下口开料尺寸=387,根据下料尺寸,可开4张。
4张钢板的重量=7.85×0.275×112.2×600=145.33Kg(2)1.25米钢板全部利用完的重量=7.85×0.275×125×600=161.9Kg(3)材料的利用率=145.33/161.9×100%=89.77%7米灯杆:(1)已知灯杆上口=φ60锥度=11‰δ=3.0L=7000 选用宽为1.25米钢板料;得到:开料尺寸:上口开料尺寸=179 下口开料尺寸=421,根据下料尺寸,可开4张。
4张钢板的重量=7.85×0.3×120×700=197.82Kg(2)1.25米钢板全部利用完的重量=7.85×0.3×125×700=206.06Kg(3)材料的利用率=197.82/206.06×100%=96%8米灯杆:(1)已知灯杆上口=φ60锥度=11‰δ=3.0L=8000 选用宽为1.25米钢板料;得到:开料尺寸:上口开料尺寸=179 下口开料尺寸=456,根据下料尺寸,可开4张。
4张钢板的重量=7.85×0.3×127×800=239.27Kg(2)1.25米钢板全部利用完的重量=7.85×0.3×125×800=235.5Kg(3) 材料的利用率=239.27/235.5×100%=101%10米灯杆:(1)已知灯杆上口=φ70锥度=11‰δ=3.75L=10000 选用宽为1.5米钢板料;得到:开料尺寸:上口开料尺寸=208 下口开料尺寸=553,根据下料尺寸,可开4张。
路灯结构计算书
路灯结构计算书工程号:编制人:专业负责人:审核人:1概况本计算书对XX地区杆高为8m的双叉路灯进行结构验算。
2设计依据2.1路灯数据LED灯距离地面高为8m,灯杆采用稍径为100mm,根径为180mm,壁厚为5mm的锥形钢杆;单盏灯具迎风面积为0.30m2,重200N;单侧灯臂迎风总面积为0.164m2,重为78.2N;砼基础尺寸为1.10×1.10×1.10m,地脚螺栓型号为M24,数量n=4,分布直径Dr为400mm。
2.2自然条件XX基本风压W0=800N/m2,地基土为硬塑土,地基承载力fa0=120KPa,地面粗糙度考虑近海海面和海岛、海岸、湖岸地区为A类,地下水埋深大于2m,地基土容重为γs=18KN/m3。
2.3计算依据《建筑结构荷载规范》(GB50009-2012)《高耸结构设计规范》(GB50135-2006)《钢结构设计规范》(GB50017-2015)《架空输电线路基础设计技术规程》(DLT 5219-2014)《钢结构单管通信塔技术规程》(CECS 236-2008)3荷载计算3.1永久荷载1)灯杆重量计算公式:G灯杆=π(d+D-2t)tHγ/2=1331.7N式中:灯杆稍部直径d=100mm灯杆根部直径D=180mm灯杆壁厚t=5mm灯杆高度H=8000mm材料容重γ=7.85E-05N/mm32)基础顶面竖向荷载计算公式:GK1=ΣG灯臂+ΣG灯具+G灯杆+G法兰盘+G钢板=2771.3N式中:灯臂重量G灯臂=78.2N灯具重量G灯具=200N法兰盘重量G法兰盘=392.5N预埋钢板重量G钢板=490.6N 3.2风荷载1)风荷载标准值计算公式;Wk =βgμzμsw=614.4N/m2式中:Wk风荷载标准值W基本风压βg风振系数,对高度小于30m的构筑物取1.0μz风荷载体型系数,取0.60μs风压高度变化系数,取1.282)灯具、灯臂、立柱风荷载计算公式:FWi =γγqWkAi式中:结构重要性系数γ=1.00可变荷载分项系数γq=1.40单盏灯具迎风面积A灯具=0.30m2单侧灯臂迎风面积A灯臂=0.164m2立柱迎风面积A立柱=1.120m2单盏灯具Fw1=1.0×1.4×614.4×0.30=258.0N单侧灯臂Fw2=1.0×1.4×614.4×0.164=141.1N灯杆Fw3=1.0×1.4×614.4×1.120=963.4N3)立柱底部水平力及弯矩计算公式M=ΣFwi ×hi=9872.3N.mF=ΣFwi=1761.6N式中:Fwi灯具、灯臂、立柱的所受的风荷载hi灯具、灯臂、立柱受风荷载集中点到立柱底的距离灯具、灯臂受风荷载高度hi=8m灯杆重心到根部高度hi=(2d+D)H/(3d+3D)=3.619m4灯杆强度验算4.1根部截面验算1)截面数据截面积A=π(D2-(D-2t)2)/4=2.75E+03mm2截面抗弯模量W=π(D4-(D-2t)4)/32D=1.17E+05mm22)正应力验算计算公式σmax=M/W=84.38MPa<[σ]= 215.0MPa,满足设计要求3)剪应力验算计算公式τmax=2F/A=1.28MPa<[τ] =125.00MPa,满足设计要求4.2开孔截面验算危险截面为灯杆底端筋板上部开孔处的截面,取距法兰盘底向上0.4m处的截面,偏安全考虑,弯矩剪力采用灯杆根部数据。
路灯基础计算书
Ö = 1 + 2 ´ 2.5 ´ 0.23 ´ 0.26 ´
2
1 + 1.41
= 1.51
根据《荷载规范》公式8.1.1-1
wk=β zμ sμ zw0=1.51×0.80×0.65×0.55=0.43kN/m2
2、路灯基础承载力计算: 2.1已知条件
基础宽度 基础长度 基础埋深 结构类型 2.2计算过程和计算结果 2.21基础底面受力
p
x1
2
p
133.87
R=
6 z1
=
4/3 2
1 +x 1
´ 6 ´ 0.01
4/3 = 1.41
2
1 + 133.87
1.2.4风振系数
根据《荷载规范》公式8.4.3
峰值因子g取2.5
10m高度名义湍流强度I10取0.23
风振系数
Ö b z = 1 + 2g I 10 B z
2
1+R
1.2.5风荷载标准值
0.65
1.2.3脉动风荷载的共振分量因子
结构第1阶自振频率f1=1/T1=1/0.41=2.43Hz
根据《荷载规范》公式8.4.4
地面粗糙度修正系数kw=0.54
30 f 1 30 ´ 2.432
Ö x1 = kw w0 =Ö 0.54 ´ 0.55 = 133.87
脉动风荷载的共振分量因子
Ö ( ) Ö ( ) 2
简称《抗震规范》
5、《钢结构设计规范》(GB50017-2003),
简称《钢规范》
6、《高耸结构设计规范》(GB50135-2006)
简称《高耸规范》
二、设 计 资 料
路灯各部位尺寸见图1
12m路灯灯杆抗风、抗挠强度计算
12m 路灯灯杆抗风、抗挠技术1、已知条件1.1 最大风速 Vm=35m/s (P 风压:ω0=0.81KN/m 2)1.2 材料 材质符合Q235(A3)/Q3451.3 许用应力[σ]=210Mpa(《钢结构设计规范》)(Q235) 许用应力[σ]=345Mpa(《钢结构设计规范》)(Q345)1.4 弹性模量:E=2.06×1011N/M 2(《机械设计手册》)1.5 灯管外形为选用Q235钢管焊接,100*200,壁厚分别为4mm.1.6 灯体自重10kg ,杆重 500 kg2、迎风面积2.1 S 灯体= 0.1m 22.2 S 灯杆= 6m 23、结构自振周期I=⨯64π (0.174-0.1724)=8.5×10-6m 4 A=⨯4π(0.172-0.1722)=0.0022m 2T1=3.63×)236.0(3AH m EIH ρ+ =0.56sT1>0.25s 采用风振系数来考虑,风压脉动的影响。
4、风振系数βz4.1 基本风压 ω0T 12= 0.81×0.562 =0.254kN/ m 2∴脉动增大系数 ξ =2.104.2 风压脉动和风压高度变化的影响系数ε1 =0.754.3 振型、结构外形影响系数 ε2=0.76∴β =1+ξ ·ε1•ε2=2.205、顶端灯具大风时的风荷载: (u τ 取1.3)F1=βzUsUzU τ灯体S ⋅0ω=2.20×0.9×1.3×1.0×0.81×0.15=0.31KN6、灯杆大风的风荷载:F2=βzUsUzU τ杆S ⋅0ω=2.20×0.7×1.0×1.1×0.81×1=1.40KN7、灯杆距底法兰处所受的最大弯矩:M 总=0.31×8+1.40×4=8.08KN ·m8 、灯杆底端(危险截面即筋板上部开孔处的截面) 风压弯曲应力 σb σb = S M 总 =34417.0)162.017.0(098.004.8mm KN -⨯⋅ =87MPaσb <[ σb ]=210Mpa结论:结构设计是满足国家相关设计规程的要求是安全的。
灯杆基础计算书
10米高灯杆基础计算书1.荷载计算1.1 风荷载计算基本风压:w0=0.45kN/m2(50年风压); w0=0.3kN/m2(10年风压)设计风压:w=2x0.65x1.3x0.45=0.76 kN/m2(50年风压); w=0.51 kN/m2(10年风压)灯杆风载:0.15x10x0.76x5=5.7kN.m灯臂风载:0.08x1.5x0.76x10=0.912kN.m灯具风载:0.85x0.2x0.76x10=1.292kN.m连接板风载:0.25x0.25x0.76x10=0.475kN.m合计:M=8.4 kN.m(50年); M=5.6kN.m(10年);1.2 恒载计算杆自重:0.15x4x0.004x10x78.50=1.9kN灯臂自重:0.08x0.003x4x1.5x78.5=0.113kN灯具自重:0.184kN合计:F=2.2kN,M=0.4kN.m1.3 荷载设计值M=0.4+8.4=8.8kN.m(50年);M=0.4+5.6=6kN.m(10年)F=2.2kN2.倾覆稳定计算《架空送电线路基础设计技术规定》DL/T 5219-2016式8.1.4-42.1埋深h=1.5米,宽取b=0.8米h/b=1.875,查表8.1.3-1,k0=1.22;b=1.22x0.8=0.98m 杆高H=10米,H/h=6.67,查表u=11.4土压力参数m取48kN/m3,则M j-抗=13.93kN.m安全系数:13.93/6=2.32>1.5或13.93/8.8=1.58>1.5宽取b=0.7米h/b=2.14,查表8.1.3-1,k0=1.24;b=1.24x0.7=0.87m 杆高H=10米,H/h=6.67,查表u=11.4土压力参数m取48kN/m3,则M j-抗=12.36kN.m安全系数:12.36/6=2.06>1.5或12.36/8.8=1.4<1.5 2.2埋深h=1.8米,宽取b=0.8米h/b=2.25,查表8.1.3-1,k0=1.26;b=1.26x0.8=1.01m 杆高H=10米,H/h=5.56,查表u=11.7土压力参数m取48kN/m3,则M j-抗=24.17kN.m安全系数:24.17/8.8=2.75>1.5宽取b=0.6米h/b=3,查表8.1.3-1,k0=1.35;b=1.35x0.6=0.81m杆高H=10米,H/h=5.56,查表u=11.7土压力参数m取48kN/m3,则M j-抗=19.38kN.m安全系数:19.38/8.8=2.2>1.53.结论10年风载:倾覆稳定控制:1.5m埋深,0.6mx0.6m;1.8m埋深,0.6mx0.6m;50年风载:倾覆稳定控制:1.5m埋深,0.8mx0.8m;1.8m埋深,0.6mx0.6m;8米高灯杆基础计算书1.荷载计算1.1 风荷载计算基本风压:w0=0.45kN/m2(50年风压); w0=0.3kN/m2(10年风压)设计风压:w=2x0.65x1.3x0.45=0.76 kN/m2(50年风压); w=0.51 kN/m2(10年风压)灯杆风载:0.15x8x0.76x4=3.65kN.m灯臂风载:0.08x1.5x0.76x8+0.08x1.2x0.76x6=1.17kN.m灯具风载:0.85x0.2x0.76x(8+6)=1.81kN.m连接板风载:0.25x0.1x0.76x8=0.15kN.m合计:M=6.8 kN.m(50年); M=4.55kN.m(10年);1.2 恒载计算杆自重:0.15x4x0.0035x8x78.50=1.32kN灯臂自重:0.08x0.003x4x1.5x78.5x2=0.23kN灯具自重:0.293kN合计:F=1.8kN1.3 荷载设计值M=6.8kN.m(50年);M=4.55kN.m(10年)F=1.8kN2.倾覆稳定计算《架空送电线路基础设计技术规定》DL/T 5219-2016式8.1.4-4埋深h=1.5米,宽取b=0.8米h/b=1.875,查表8.1.3-1,k0=1.22;b=1.22x0.8=0.98m 杆高H=8米,H/h=5.33,查表u=11.75土压力参数m取48kN/m3,则M j-抗=13.51kN.m安全系数:13.51/4.55=3>1.5或13.51/6.8=2>1.5宽取b=0.7米h/b=2.14,查表8.1.3-1,k0=1.24;b=1.24x0.7=0.87m 杆高H=8米,H/h=5.33,查表u=11.75土压力参数m取48kN/m3,则M j-抗=12kN.m安全系数:12/4.55=2.64>1.5或12/6.8=1.76>1.5 3.结论10年风载:倾覆稳定控制:1.5m埋深,0.6mx0.6m;50年风载:倾覆稳定控制:1.5m埋深,0.7mx0.7m6米高灯杆基础计算书1.荷载计算1.1 风荷载计算基本风压:w0=0.45kN/m2(50年风压); w0=0.3kN/m2(10年风压)设计风压:w=2x0.65x1.3x0.45=0.76 kN/m2(50年风压); w=0.51 kN/m2(10年风压)灯杆风载:0.15x6x0.76x3=2.05kN.m灯臂风载:0.07x1.0x0.76x6=0.32kN.m灯具风载:0.85x0.2x0.76x6=0.78kN.m连接板风载:0.25x0.1x0.76x6=0.11kN.m合计:M=3.3 kN.m(50年); M=2.2kN.m(10年);1.2 恒载计算杆自重:0.15x4x0.00325x6x78.50=0.92kN灯臂自重:0.07x0.003x4x1.0x78.5=0.066kN灯具自重:0.184kN合计:F=1.2kN;M=0.184x1.5=0.3kN.m1.3 荷载设计值M=3.6kN.m(50年);M=2.5kN.m(10年)F=1.2kN2.倾覆稳定计算《架空送电线路基础设计技术规定》DL/T 5219-2016式8.1.4-4埋深h=1.2米,宽取b=0.8米h/b=1.5,查表8.1.3-1,k0=1.175;b=1.175x0.8=0.94m 杆高H=6米,H/h=5,查表u=11.8土压力参数m取48kN/m3,则M j-抗=6.61kN.m安全系数:6.61/2.5=2.64>1.5或6.61/3.6=1.84>1.5宽取b=0.7米h/b=1.71,查表8.1.3-1,k0=1.2;b=1.2x0.7=0.84m杆高H=6米,H/h=5,查表u=11.8土压力参数m取48kN/m3,则M j-抗=5.9kN.m安全系数:5.9/2.5=2.36>1.5或5.9/3.6=1.64>1.5宽取b=0.6米h/b=2,查表8.1.3-1,k0=1.23;b=1.23x0.6=0.74m杆高H=6米,H/h=5,查表u=11.8土压力参数m取48kN/m3,则M j-抗=5.2kN.m安全系数:5.2/2.5=2.08>1.5或5.2/3.6=1.44>1.5 3.结论10年风载:倾覆稳定控制:1.2m埋深,0.5mx0.5m;50年风载:倾覆稳定控制:1.2m埋深,0.7mx0.7m。
12米路灯计算书
2
Rh Rha =
0.75 3 EI
x
0a
(5.7.2-2) ρg=0.0065
b0=0.7-0.04×2=0.62m αE=(2.0×105)/(2.8×104)=7.14 b W0= [b2+2(αE-1) ρgb02] 6 0.7 = [0.72+2×(7.14-1)×0.0065×0.622] 6 =0.117[0.49+0.031] =0.061m3 I0=W0b0/2=0.061×0.62/2=0.0189m4 EI=0.85EcI0=0.85×2.8×1010×0.0189=0.045×1010N·m2
0.75 0.43 0.045 1010 Rha = 0.006 36.75 103 N 36.75kN 3.526
Hk=Vk=0.887kN≤Rh 满足要求!
路灯顶部(灯盘处)水平位移计算
计算过程详后续理正工具箱生成的计算书,由计算书中算得结果可得: 桩顶转角 θ=0.887×3.619×10-4+7.37×2.375×10-4=2.07×10-3rad 路灯顶部位移=桩顶位移+由桩顶转角带来的位移 V=△+θ·H =3.3+2.07×10-3×12000=28.4mm。
基础埋深:h=2.3m; 基础边长(正方形) :a=0.7m; 基本风压:ω0=0.5kN/m2 ,假定为广州地区。
四、荷载计算
由挑臂和灯盘产生的弯矩: M1=0.2×2.5/2+0.38×2.5 =1.2kN·m 由安装偏心误差产生的弯矩(偏心假设 0.2m) : M2=2.02×0.2/2+(0.20+0.38)×0.2=0.318kN·m 风荷载计算(以建筑结构荷载规范 GB50009-2001 为计算依据) : ωk=βzμsμzω0 (荷载规范 7.1.1-1 式) 查附表 D4,得ω0=0.5kN/m2; 地面粗糙度属 C 类,查表 7.2.1 得 μz=0.74;
高杆灯基础计算书(DOC)
中杆灯支架基础计算一、设计参数钢筋混凝土容重:γ砼=25 kN/m3,钢容重:γ钢=78.5 kN/m3;地下水位按地面以下0.5m考虑;50年一遇风压:0.60 kN/m2;灯具总重:3.8 吨二、计算简图三、荷载计算1 恒载灯具共设8个投光灯,均布在灯杆顶部圆盘上G1=3.8*10=38 kN2 活载灯杆风荷载灯杆半高处截面外径d=(250+560)/2=405mm风压高度变化系数:地面粗糙类别B 类,灯杆高度H=30m ,μz =1.39 风荷载体形系数:μzw 0d 2=1.39*0.60*0.405*0.405=0.137≥0.015, 且⊿≈0,H/d =30/0.405=74>25,故μs =0.6 H 2/d=30*30/0.405=2222>700 T=0.25+0.99*10-3*H 2/d=2.45s >0.25s根据规应考虑风压脉动对结构产生顺风向风振的影响。
脉动分风荷载的空间相关系数确定:根据规,对迎风面宽度较小的高耸结构,水平方向相关系数可取ρx=1 竖直方向的相关系数z ρ==0.8427脉动风荷载的背景分量因子1a z Bz kH x zzφρρμ= 对于迎风面和侧风面的宽度沿高度按直线变化的高耸结构,应乘以修正系数B v θθ、 ()(0)B H B =0.447,v θ=1.928,()(0)B B z B θ=,按下表确定: 表1 修正系数B θ表2脉动风荷载的背景分量因子Bz脉动风荷载的共振分量因子115R x x ==>R=2.876z 高度处的风振系数z β取值见下表:表3 风振系数z β取值灯具风荷载表4 灯具风荷载总水平力F=F1+F2=13.68 KN总弯矩M=M1+M2 =257.73 KN*m总竖向力G=G1 =38 KN“圆钢管柱外露刚接”节点计算书一. 节点基本资料采用设计方法为:常用设计节点类型为:圆钢管柱外露刚接柱截面:PIPE-560*10,材料:Q235柱与底板全截面采用对接焊缝,焊缝等级为:二级,采用引弧板;底板尺寸:L*B= 850 mm×850 mm,厚:T= 40 mm锚栓信息:个数:12采用锚栓:双螺母焊板锚栓库_Q235-M42锚栓垫板尺寸(mm):B*T=90×20底板下混凝土采用C40节点前视图如下:节点下视图如下:二. 验算结果一览验算项数值限值结果最大压应力(MPa) 9.13 最大19.1 满足受拉承载力(kN) 136 最大157 满足混凝土要求底板厚(mm) 24.6 最大40.0 满足锚栓要求底板厚(mm) 17.4 最大40.0 满足底板厚度40.0 最小24.6 满足等强全截面 1 满足板件宽厚比16.1 最大18.0 满足板件剪应力(MPa) 37.1 最大125 满足焊缝剪应力(MPa) 46.4 最大160 满足板件厚度(mm) 16.0 最小16.0 满足焊脚高度(mm) 10.0 最小9.49 满足焊脚高度(mm) 10.0 最大19.2 满足板件厚度(mm) 16.0 最小16.0 满足焊脚高度(mm) 10.0 最小9.49 满足焊脚高度(mm) 10.0 最大19.2 满足基底最大剪力(kN) 11.8 最大165 满足三. 混凝土承载力验算控制工况:1.2D+1.4LN=-45.6 kN;M x=0 kN·m;M y=364 kN·m;偏心受压底板计算:这里偏心距e为:e= M/N =364000000/45600=7982.456mm > 119.749mm所以按部分截面混凝土受压,部分锚栓受拉来计算(通过对混凝土应力积分): δmax=9.127N/mm2中性轴的坐标: x = 128.949最大锚栓的拉力:NTa = 136439.829N锚栓总拉力:Ta = 620441.082 N轴力N大小为:N = 45600 N混凝土的总合压力:F = 666041.082N外力对中性轴的弯矩:M外= 358119947.929N.mm 按(fN(e-x)方式求出)锚栓的合弯矩:Ma = 243227678.915N.mm混凝土的合弯矩:Mc = 114892231.881N.mm混凝土抗压强度设计值:f c=19.1N/mm2底板下混凝土最大受压应力:σc=9.127N/mm2≤19.1,满足四. 锚栓承载力验算控制工况:1.2D+1.4LN=-45.6 kN;锚栓最大拉力:N ta=136.44 kN(参混凝土承载力验算)锚栓的拉力限值为:N t=156.927kN锚栓承受的最大拉力为:N ta=136.44kN≤156.927,满足五. 底板验算1 构造要求最小底板厚度验算一般要求最小板厚:t n=20 mm柱截面要求最小板厚:t z=10 mm构造要求最小板厚:t min=max(t n,t z)=20 mm≤40,满足2 混凝土反力作用下的最小底板厚度计算非抗震工况底板下最大压应力:σcm=9.127 N/mm2底板厚度验算控制应力:σc=9.127 N/mm2沿圆周布置的加劲肋之间按三边支承板简化计算:折算跨度:a2=3.142×850/12=222.529 mm悬挑长度:b2=0.5×(850-560)=145 mm分布弯矩:M1=0.08119×9.127×222.529×222.529 ×10-3=0.0367 kN·m 得到底板最大弯矩区域的弯矩值为:M max=0.0367 kN·m混凝土反力要求最小板厚:T min=(6*M max/f)0.5=(6×36.698/205×103)0.5=32.773 mm≤40,满足3 锚栓拉力作用下的最小底板厚度计算非抗震工况锚栓最大拉力:T am=136.44 kN底板厚度验算控制拉力:T a=136439.829 kN锚栓中心到柱底截面圆边缘距离:l a1=1202.082-560-50=240 mml a1对应的受力长度:l l1=2×240=480 mm锚栓中心到左侧加劲肋距离:l a2=(0.5×560+240)×0.2588=134.586 mml a2对应的受力长度:l l2=134.586+min(50,134.586+0.5×42)=184.586 mm锚栓中心到右侧加劲肋边距离:l a3=134.586 mml a3对应的受力长度:l l3=l l2=134.586+min(50,134.586+0.5×42)=184.586 mm弯矩分布系数:ζ1=240×134.586×134.586/(240×184.586×184.586+480×134.586×184.586+480×184.586×13 4.586)=0.1357得最大弯矩分布系数为:ζ=0.1357锚栓拉力要求的最小板厚:t min=(6×136.44×0.1357/205×103)0.5=23.278 mm≤40,满足六. 对接焊缝验算柱截面与底板采用全对接焊缝,强度满足要求七. X向加劲肋验算非抗震工况下锚栓最大拉力:T am=136.44 kN加劲肋承担柱底反力区域面积:S r=0.01 cm2非抗震工况下加劲肋承担柱底反力:V rc=σcm*S r=9.127×0.01×100=0.009127 kN板件控制剪力:1.2D+1.4L下锚栓拉力,V r=136.44 kN计算宽度取为上切边到角点距离:b r=167.797 mm板件宽厚比:b r/t r=167.797/16=10.487≤18,满足扣除切角加劲肋高度:h r=250-20=230 mm板件剪应力:τr=V b/h r/t r=136.44×103/(230×16)=37.076 Mpa≤125,满足焊缝控制剪力:1.2D+1.4L下锚栓拉力,V r=136.44 kN角焊缝剪应力:τw=V r/[2*0.7*h f*(h r-2*h f)]=136.44/[2×0.7×10×(230-2×10)]=46.408 MPa≤160,满足八. 柱脚抗剪验算控制工况:1.35D+0.84LN=-51.3 kN;V x=11.76 kN;V y=0 kN;锚栓所承受的拉力为:T a=360.206 kN柱脚底板的摩擦力:V fb=0.4*(-N+T a)=0.4×(51.3+360.206)=164.602 kN柱脚所承受的剪力:V=(V x2+V y2)0.5=(11.762+02)0.5=11.76 kN≤164.602,满足独立桩承台设计(ZCT-4)项目名称构件编号日期设计校对审核执行规:《混凝土结构设计规》(GB 50010-2010), 本文简称《混凝土规》《建筑地基基础设计规》(GB 50007-2002), 本文简称《地基规》《建筑结构荷载规》(GB 50009-2001), 本文简称《荷载规》《建筑桩基技术规》(JGJ 94-2008), 本文简称《桩基规》-----------------------------------------------------------------------1 设计资料1.1 已知条件承台参数(3 桩承台第 1 种)承台底标高: -2.000(m)承台的混凝土强度等级: C25承台钢筋级别: HRB335配筋计算a s: 35(mm)桩参数桩基重要性系数: 1.0桩类型: 泥浆护壁钻(冲)孔桩承载力性状: 摩擦桩桩长: 25.000(m)是否方桩: 否桩直径: 600(mm)桩的混凝土强度等级: C25单桩极限承载力标准值: 558.000(kN)桩端阻力比: 0.400均匀分布侧阻力比: 0.400是否按复合桩基计算: 否桩基沉降计算经验系数: 1.000压缩层深度应力比: 20.00%柱参数柱宽: 1050(mm)柱高: 1050(mm)柱子转角: 0.000(度)柱的混凝土强度等级: C25柱上荷载设计值弯矩M x: 333.000(kN.m)弯矩M y: 0.000(kN.m)轴力N : 45.600(kN)剪力V x: 0.000(kN)剪力V y: -17.000(kN)是否为地震荷载组合: 否基础与覆土的平均容重: 20.000(kN/m3)荷载综合分项系数: 1.20土层信息地面标高: 0.000(m)1.2 计算容(1) 桩基竖向承载力计算(2) 承台计算(受弯、冲切、剪计算及局部受压计算)(3) 软弱下卧层验算(4) 桩基沉降计算2. 计算过程及计算结果2.1 桩基竖向承载力验算(1) 桩基竖向承载力特征值R计算根据《桩基规》5.2.2及5.2.3式中:R a——单桩竖向承载力特征值;Q uk——单桩竖向极限承载力标准值;K ——安全系数,取K=2。
路灯杆强度计算
9米路灯杆强度计算本计算数据根据GB50135-2006《高耸结构设计规范》确定。
已知条件:1.计算按最大风速V=28m/s(10级台风风速为24.5~28.4 m/s)。
2.灯杆材料Q235,许用应力[σ]=225000KN/㎡。
实际强度要求大于理论强度不少于3倍。
3.灯杆外形尺寸:9m灯杆高度H=9m,壁厚δ6.0㎜;上口直径D上=180㎜,下口直径D下=310㎜;灯杆上部挑臂长度尺寸为左L1=3.4m;右L2=2.2m;灯底板法兰直径500㎜×25㎜。
4.基础尺寸:基础外形:高度1.5m,埋深2m地脚螺栓孔距:直径420mm地脚螺栓直径:M30六根。
灯杆强度计算:1.标准风压计算由风速28m/s知基本风压为W0=0.622KN/㎡则标准风压W= W0·K t=0.8×1.1=0.68KN/㎡。
(式中风压调整系数Kt:取1.1)2.灯杆灯头的风力计算风荷载体行系数μs:圆锥形杆体取0.7风压高速变化系数μz:取0.9灯杆迎风面积:S杆=2.205㎡灯头及灯箱迎风面积:S灯=8㎡灯杆受风力F杆=W·μs·μz· S杆=0.946KN灯头受风力F灯= W·μs·μz· S灯=3.420KN3.灯杆受的总弯矩计算灯杆弯矩M杆=F杆·H/2=4.267KN·m灯头对灯杆的弯矩:M灯=F灯·H·0.75=23.09KN·m总弯矩:ΣM=M杆+ M灯=27.36 KN·m4.灯杆抗弯模量计算Wz=π(D下4—D4)/32/ D下=3.14×(0.3104-0.2984)/32/0.31=0.0004271m3 5.灯杆弯曲应力计算灯杆的弯曲应力Σσ=ΣM/ W0=64075KN/㎡Σσ<[σ]=225000KN/㎡满足3倍安全系数要求从以上的计算中看出,灯杆的强度足够。
12米及9米灯杆基础计算书
12米灯杆基础计算书基础砼:长0.7米,宽0.7米,深1.8米螺栓:4-M27×18001、基本数据和风荷载计算(1)、基本数据:杆根外径D1= 0.219m,预埋螺栓N=4根,其分布直径D2= 0.42m 按风速33.5米/秒计算,风压为Wk = 362 / 1600 = 0.7 kPa①、灯具迎风面积:0.2*0.8 = 0.16平米,2只为0.32平米②、灯臂迎风面积: 5*0.08 = 0.40 平米③、灯杆迎风面积:长12米,梢径0.114米,根径0.219米,平均0.17米,面积:12*0.17= 2.04平米(2)、风荷载灯具:0.32*0.7*12米 = 2.69 kN.m灯臂:0.40*0.7*12米 =3.36 kN.m灯杆:2.04*0.7*12/2米 =8.57 kN.m合计:MΣ=14.62 kN.m2、预埋螺栓验算灯杆预埋螺栓应用砼包封填实,验算时不考虑安装过程中,杆根砝兰仅靠螺栓支撑的状态。
即取旋转轴为杆根外接圆的切线。
杆根外接圆半径r1=D1÷2=0.219÷2=0.11m;螺栓分布半径r2=D2÷2=0.42.÷2=0.21m螺栓的间隔θ=360÷4=90度第1个螺栓在旋转轴的另一侧。
第1对螺栓到旋转轴的距离为:Y(1)=0.11m最后一个螺栓到旋转轴的距离为Ymax=Y(2)=0.21+0.11=0.32mΣ{[Y(i)]2 }=2×0.112+0.322=0.13平米N max=MΣ×Ymax÷Σ{[Y(i)]2 }=14.62×0.32÷0.13=36KN螺栓的最大拉力Nmax=36KNQ235钢在不控制预紧力时,M27最大允许拉力为40KN,因此采用M27螺栓。
3、基础稳定按深埋理论计算(1)、计算式(2)、基础埋深 h = 1.8米,宽 b0 =0.7米,长 b0 = 0.7米;h / b0 = 1.8/0.7=2.6,查表4-8 取k0 =1.10,根据公式4-5:b = k0×b0 = 1.10×0.7=0.77,杆高H0 =12米,H 0 / h = 12/ 1.8= 6.67查表4-9得:μ= 11.4如取可塑土,则m = 48 kN.m3,代入计算得:安全系数k=18.9/ 14.62 =1.3如为硬塑土则安全系数k=1.3×63/48=1.7>1.5,因此基础尺寸符合要求。
10米灯杆基础M22计算
10米灯杆基础计算基础砼:长0.6米,宽0.6米,深1.6米螺栓:4-M22×12001、基本数据和风荷载计算(1)、基本数据杆根外径D1=0.2m,预埋螺栓N=4根,其分布直径D2=0.30m按风速40米/秒计算,风压为Wk = 402 / 1200 = 1.3 kPa①、灯具迎风面积面积:0.2*0.8 = 0.16平米,2只为0.32平米②、灯臂迎风面积面积:4*0.08 = 0.32 平米③、灯杆迎风面积长10米,梢径0.07米,根径0.2米,平均0.13米面积:10*0.13= 1.3平米(2)、风荷载灯具:0.32*0.7*10米= 2.24 kN.m灯臂:0.32*0.7*10米=2.24 kN.m灯杆:1.3*0.7*10/2米=4.55 kN.m合计:MΣ=9.03kN.m2、预埋螺栓验算灯杆预埋螺栓应用砼包封填实,验算时不考虑安装过程中,杆根砝兰仅靠螺栓支撑的状态。
即取旋转轴为杆根外接圆的切线。
杆根外接圆半径r1=D1÷2=0.2÷2=0.1m螺栓分布半径r2=D2÷2=0.3.÷2=0.15m螺栓的间隔θ=360÷4=90度第1个螺栓在旋转轴的另一侧。
第1对螺栓到旋转轴的距离为:Y(1)=0.09m最后一个螺栓到旋转轴的距离为Ymax=Y(2)=0.15+0.1=0.25mΣ{[Y(i)]2 }=2×0.12+0.252=0.08平米N max=MΣ×Ymax÷Σ{[Y(i)]2 }=9.03×0.25÷0.08=28.22KN螺栓的最大拉力Nmax=28.22KNQ235钢在不控制预紧力时,M22最大允许拉力为29.6KN,因此采用M22螺栓。
3、基础稳定按深埋理论计算(1)、计算式(2)、基础埋深h = 1.6米,宽b0 =0.6米,长b0 = 0.6米;h / b0 = 1.6/0.6=2.7,查表4-8 取k0 =1.12,根据公式4-5:b = k0×b0 = 1.12×0.6=0.67,杆高H0 =10米,H 0 / h = 10/ 1.6= 6.25查表4-9得:μ= 11.5如取可塑土,则m = 48 kN.m3,代入计算得:安全系数k=11.5/ 9.03 =1.27如为硬塑土则安全系数k=1.27×63/48=1.67这个计算偏保守,参考杆长的八分之一的经验,埋深即为1.4米。
灯杆基础规格计算
、标准灯杆尺寸参数表二、利用率1、公司常用规格材料:常规灯杆宽为0.85米、1.25米、1.5米,厚度为2.75mm、3.0mm、3.5mm、3.75mm。
2、6-12米利用率计算如下:6米灯杆:(1)已知灯杆上口=φ60锥度=11‰δ=2.75L=6000 选用宽为1.25米钢板料;得到:开料尺寸:上口开料尺寸=174 下口开料尺寸=387,根据下料尺寸,可开4张。
4张钢板的重量=7.85×0.275×112.2×600=145.33Kg(2)1.25米钢板全部利用完的重量=7.85×0.275×125×600=161.9Kg(3)材料的利用率=145.33/161.9×100%=89.77%.7米灯杆:(1)已知灯杆上口=φ60锥度=11‰δ=3.0L=7000 选用宽为1.25米钢板料;得到:开料尺寸:上口开料尺寸=179 下口开料尺寸=421,根据下料尺寸,可开4张。
4张钢板的重量=7.85×0.3×120×700=197.82Kg(2)1.25米钢板全部利用完的重量=7.85×0.3×125×700=206.06Kg(3)材料的利用率=197.82/206.06×100%=96%8米灯杆:(1)已知灯杆上口=φ60锥度=11‰δ=3.0L=8000 选用宽为1.25米钢板料;得到:开料尺寸:上口开料尺寸=179 下口开料尺寸=456,根据下料尺寸,可开4张。
4张钢板的重量=7.85×0.3×127×800=239.27Kg(2)1.25米钢板全部利用完的重量=7.85×0.3×125×800=235.5Kg(3) 材料的利用率=239.27/235.5×100%=101%10米灯杆:(1)已知灯杆上口=φ70锥度=11‰δ=3.75L=10000 选用宽为1.5米钢板料;得到:开料尺寸:上口开料尺寸=208 下口开料尺寸=553,根据下料尺寸,可开4张。
路灯杆独立基础计算书1
路灯杆独立基础计算书1若采用1.5mx1.5m,则埋深需要近4米。
厂商提供内力为N=9KN,弯矩设计值为62KN.M,剪力为6KN。
如果按1.5mx1.5m计算的话,埋深要去到4m。
大放脚为1.5mx1.5m厚0.5m,基础柱为800x800的墩柱,自重为25x(1.5x1.5x0.5+0.8x0.8x3.5)=84.13KN.基础回填土自重为18x(1.5x1.5-0.8x0.8)=101.43KN。
共计185.6KN路灯塔自重为9KN作用于基底的标准值为194.6KN现浇独立柱基础设计: DJ-1===================================================================1 已知条件及计算要求:(1)已知条件:类型:阶梯形柱数:单柱阶数:1基础尺寸(单位mm):b1=1500, b11=750, a1=1500, a11=750, h1=500 柱:方柱, A=800mm, B=800mm设计值:N=272.44kN, Mx=62.00kN.m, Vx=6.00kN,My=0.00kN.m, Vy=0.00kN标准值:Nk=194.60kN, Mxk=44.29kN.m, Vxk=4.29kN, Myk=0.00kN.m, Vyk=0.00kN混凝土强度等级:C25, fc=11.90N/mm2钢筋级别:HRB335, fy=300N/mm2基础混凝土保护层厚度:40mm基础与覆土的平均容重:20.00kN/m3地基承载力设计值:210kPa基础埋深:4.00m作用力位置标高:-4.000m剪力作用附加弯矩M'=V*h(力臂h=0.000m):My'=0.00kN.mMyk'=0.00kN.m(2)计算要求:1.基础抗弯计算2.基础抗剪验算3.基础抗冲切验算4.地基承载力验算-------------------------------------------------------------------2 基底反力计算:(1)承载力验算时,底板总反力标准值(kPa): [相应于荷载效应标准组合]pk = (Nk+Gk)/A = 166.49pkmax = (Nk+Gk)/A + Mkx/Wx + Mky/Wy = 245.22pkmin = (Nk+Gk)/A - Mkx/Wx - Mky/Wy = 87.76各角点反力 p1=245.22, p2=245.22, p3=87.76, p4=87.76(2)强度计算时,底板净反力设计值(kPa): [相应于荷载效应基本组合]p = N/A = 121.08pmax = N/A + Mx/Wx + My/Wy = 231.31pmin = N/A - Mx/Wx - My/Wy = 10.86各角点反力 p1=231.31, p2=231.31, p3=10.86, p4=10.86-------------------------------------------------------------------3 地基承载力验算:pk=166.49 < fa=210.00kPa, 满足pkmax=245.22 < 1.2*fa=252.00kPa, 满足-------------------------------------------------------------------4 基础抗剪验算:抗剪验算公式 V<=0.7*βh*ft*Ac [GB50010-2002第7.5.3条](剪力V根据最大净反力pmax计算)第1阶(kN): V下=121.44, V右=121.44, V上=121.44, V左=121.44砼抗剪面积(m2): Ac下=0.68, Ac右=0.68, Ac上=0.68, Ac左=0.68抗剪满足.-------------------------------------------------------------------5 基础抗冲切验算:抗冲切验算公式 F l<=0.7*βhp*ft*Aq [GB50007-2002第8.2.7条] (冲切力F l根据最大净反力pmax计算)第1阶(kN): F l下=0.00, F l右=0.00, F l上=0.00, F l左=0.00砼抗冲面积(m2): Aq下=0.00, Aq右=0.00, Aq上=0.00, Aq左=0.00抗冲切满足.-------------------------------------------------------------------6 基础受弯计算:弯矩计算公式 M=1/6*l a2*(2b+b')*pmax [l a=计算截面处底板悬挑长度]配筋计算公式 As=M/(0.9*fy*h0)第1阶(kN.m): M下=17.95, M右=17.95, M上=17.95, M左=17.95计算As(mm2/m): As下=97, As右=97, As上=97, As左=97基础板底构造配筋(构造配筋D12@200).-------------------------------------------------------------------7 底板配筋:X向实配 D12@200(565mm2/m) >= As=565mm2/mY向实配 D12@200(565mm2/m) >= As=565mm2/m--------------------------------------------------------------------------------------------------------------------------------------。
10计算
845 mm
KN K= 1.2
m㎡ KN
螺杆
4
尺寸
为:
M= 20
基础底部C25混 凝土洗层的抵 抗矩:
W混凝土= B*H2/6
= 0.24
㎡
6 基础边缘产生
、 的最大压强:
Pman= P+M总/W混凝土
= 86.56
KN/㎡
根据GBJ7-89各
建筑设计基础
规范第5.1.1条
规定,基础的
平均压强P≤
F,且Pman≤
1.2F的要求进
行核算
7 结论:
Pman<1.2F
H= 10000
d= 80
D= 190
T= 4
7、挑臂参数 (mm):
D挑臂= 60
H挑臂= 1500
N挑臂= 2.5
8、灯具参数 (mm):
D灯具= 310
L灯具= 991
N灯具= 2
B 风压:
P= U²/1.6
= 810.00
N/㎡
C 迎风面积:
S灯杆= (d+D)*H/2
= 1.350
㎡
S挑臂= D挑臂*H挑臂*N挑臂
…=
2 地脚螺杆上的
、 拉力为:
Fman= M总/L总
= 15.80
螺杆材质为:
3 Q235,屈服强
、 度为:
[σ]=235MP
安全系数:
基础螺杆横截
面积:
S= 339.79
4 基础螺杆理论
、 的许用应为:
N= [σ]*S/K
= 66.54
5 结论:
Fman<N
基础螺栓时安
全的
350 mm
螺杆 数量 为:
6-12米灯杆标准参数与11~12米灯杆基础计算书
4张钢板的重量=7.85×0.3×120×700=197.82Kg (2)1.25米钢板全部利用完的重量=7.85×0.3×125×700=206.06Kg (3)材料的利用率=197.82/206.06×100%=96% 8米灯杆: (1)已知灯杆上口=φ60 锥度=11‰ δ=3.0 L=8000 选用宽为 1.25米钢板料;
2 7米灯杆
3.0 1250/4
96 % 1200/4
3 8米灯杆 3.0 1250/4
100% 1270/4
4 10米灯杆 3.75 1500/4
100% 1522/4
5 12米灯杆 3.75 850/2
97.88% 832/2
2、6-12米利用率计算如下: 6米灯杆: (1)已知灯杆上口=φ60 锥度=11‰ δ=2.75 L=6000 选用宽 为1.25米钢板料;
得到:开料尺寸:上口开料尺寸=174 下口开料尺寸=387,根据下 料尺寸,可开4张。
4张钢板的重量=7.85×0.275×112.2×600=145.33Kg (2)1.25米钢板全部利用完的重量=7.85×0.275×125×600=161.9Kg (3)材料的利用率=145.33/161.9×100%=89.77% 7米灯杆: (1)已知灯杆上口=φ60 锥度=11‰ δ=3.0 L=7000 选用宽 为1.25米钢板料;
12米灯杆基础计算书
基础砼:长0.7米,宽0.7米,深1.8米 螺栓:4-M27×1800 1、基本数据和风荷载计算 (1)、基本数据:杆根外径D1= 0.219m,预埋螺栓N=4根,其分布直 径D2= 0.42m 按风速33.5米/秒计算,风压为Wk = 362 / 1600 = 0.7 kPa ①、灯具迎风面积:0.2*0.8 = 0.16平米,2只为0.32平米
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12米灯杆基础计算书
基础砼:长0.7米,宽0.7米,深1.8米
螺栓:4-M27×1800
1、基本数据和风荷载计算
(1)、基本数据:杆根外径D1= 0.219m,预埋螺栓N=4根,其分布直径D2= 0.42m
按风速33.5米/秒计算,风压为Wk = 362 / 1600 = 0.7 kPa
①、灯具迎风面积:0.2*0.8 = 0.16平米,2只为0.32平米
②、灯臂迎风面积: 5*0.08 = 0.40 平米
③、灯杆迎风面积:长12米,梢径0.114米,根径0.219米,平均
0.17米,面积:12*0.17= 2.04平米
(2)、风荷载
灯具:0.32*0.7*12米 = 2.69 kN.m
灯臂:0.40*0.7*12米 =3.36 kN.m
灯杆:2.04*0.7*12/2米 =8.57 kN.m
合计:MΣ=14.62 kN.m
2、预埋螺栓验算
灯杆预埋螺栓应用砼包封填实,验算时不考虑安装过程中,杆根砝兰仅靠螺栓支撑的状态。
即取旋转轴为杆根外接圆的切线。
杆根外接圆半径r1=D1÷2=0.219÷2=0.11m;
螺栓分布半径r2=D2÷2=0.42.÷2=0.21m
螺栓的间隔θ=360÷4=90度
第1个螺栓在旋转轴的另一侧。
第1对螺栓到旋转轴的距离为:Y(1)=0.11m
最后一个螺栓到旋转轴的距离为Ymax=Y(2)=0.21+0.11=0.32m
Σ{[Y(i)]2 }=2×0.112+0.322=0.13平米
N max=MΣ×Ymax÷Σ{[Y(i)]2 }=14.62×0.32÷0.13=36KN 螺栓的最大拉力Nmax=36KN
Q235钢在不控制预紧力时,M27最大允许拉力为40KN,因此采用M27螺栓。
3、基础稳定按深埋理论计算
(1)、计算式
(2)、基础埋深 h = 1.8米,宽 b0 =0.7米,长 b0 = 0.7米;
h / b0 = 1.8/0.7=2.6,查表4-8 取k0 =1.10,根据公式4-5:
b = k0×b0 = 1.10×0.7=0.77,杆高H 0 =12米,H 0 / h = 12/
1.8= 6.67
查表4-9得:μ= 11.4
如取可塑土,则m = 48 kN.m 3,代入计算得:
m kN M J .9.184
.1138.177.048=⨯⨯=-抗 安全系数k=18.9/ 14.62 =1.3
如为硬塑土则安全系数k=1.3×63/48=1.7>1.5,因此基础尺
寸符合要求。
风压计算公式:
风压就是垂直于气流方向的平面所受到的风的压力。
根据伯努利方程得出的风-压关系,风的动压为:wp=0.5·ρ·v2 (1) 其中wp 为风压[kN/m2],ρ为空气密度[kg/m3],v 为风速[m/s]。
由于空气密度(ρ)和重度(r)的关系为 r=ρ·g, 因此有 ρ=r/g。
在(1)中使用这一关系,得到 wp=0.5·r·v2/g (2) 此式为标准风压公式。
在标准状态下(气压为1013 hPa, 温度为15℃), 空气重度 r=0.01225 [kN/m3]。
纬度为45°处的重力加速度g=9.8[m/s2], 我们得到 wp=v2/1600 (3) 此式为用风速估计风压的通用公式。
应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。
一般来说,ρ在高原上要比在平原地区小,也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。
9米灯杆基础计算书
基础砼:长0.6米,宽0.6米,深1.5米
螺栓:4-M24×800
1、基本数据和风荷载计算
(1)、基本数据:杆根外径D1= 0.200m,预埋螺栓N=4根,其分布直径D2=0.42m
按风速33.5米/秒计算,风压为Wk = 362 / 1600 = 0.7 kPa
①、灯具迎风面积:0.2*0.8 = 0.16平米,2只为0.32平米
②、灯臂迎风面积: 5*0.08 = 0.40 平米
③、灯杆迎风面积: 长9米,梢径0.114米,根径0.200米,平均
0.157米,面积:9*0.157= 1.413平米
(2)、风荷载
灯具:0.32*0.7*9米 = 2.016kN.m
灯臂:0.40*0.7*9米 =2.52kN.m
灯杆:1.413*0.7*9/2米 =4.46kN.m
合计:MΣ=9kN.m
2、预埋螺栓验算
灯杆预埋螺栓应用砼包封填实,验算时不考虑安装过程中,杆根砝兰仅靠螺栓支撑的状态。
即取旋转轴为杆根外接圆的切线。
杆根外接圆半径r1=D1÷2=0.200÷2=0.1m;
螺栓分布半径r2=D2÷2=0.42.÷2=0.21m
螺栓的间隔θ=360÷4=90度
第1个螺栓在旋转轴的另一侧。
第1对螺栓到旋转轴的距离为:Y(1)=0.10m
最后一个螺栓到旋转轴的距离为Ymax=Y(2)=0.21+0.10=0.31m
Σ{[Y(i)]2 }=2×0.102+0.312=0.12平米
N max=MΣ×Ymax÷Σ{[Y(i)]2 }=9×0.31÷0.12=24KN
螺栓的最大拉力Nmax=24KN
Q235钢在不控制预紧力时,M24最大允许拉力为50.77KN,因此采用M24螺栓。
3、基础稳定按深埋理论计算
(1)、计算式
(2)、基础埋深 h = 1.5米,宽 b0 =0.6米,长 b0 = 0.6米;
h / b0 = 1.5/0.6=2.5,
查表4-2 取k0 =1.35,
根据公式4-5: b = k0×b0 = 1.35×0.6=0.81,杆高H0=9米,H 0 / h = 9/ 1.5= 6
查表4-3得:μ= 11.6
如取可塑土,则m = 48 kN.m3,代入计算得:
Mj=【48x0.81x(1.5x1.5x1.5)】/11.6=13.1kN.m
安全系数k=13.1/ 9 =1.46
如为硬塑土则安全系数k=1.46×63/48=1.9>1.5,因此基础尺寸符合要求。
* SDGJ62-84《送电线路基础设计技术规定》已更新为DLT_5219-2005 《架空送电线路基础设计_技术规定》。
SDGJ62-84中计算公式表格等,详见DLT_5219-2005第八章。