高考数学高三模拟考试试卷压轴题1
新高考1卷数学压轴题
高考数学试卷一、单选题1.命题:00x ∃≤,20010x x -->的否定是( )A .0x ∀>,210x x --≤B .00x ∃>,20010x x -->C .00x ∃≤,20010x x --≤D .0x ∀≤,210x x --≤2.“1<x <2”是“x <2”成立的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.某学校党支部评选了5份优秀学习报告心得体会(其中教师2份,学生3份),现从中随机抽选2份参展,则参展的优秀学习报告心得体会中,学生、教师各一份的概率是( )A .120B .35C .310D .9104.袋中有2个白球,2个黑球,若从中任意摸出2个,则至少摸出1个黑球的概率是( )A .16B .13C .34D .565.已知集合{}3,1,0,2,3,4A =--,{|0R B x x =≤或3}x >,则A B =( )A.∅B.{}3,1,0,4--C.{}2,3D.{}0,2,36.若命题甲:10x -=,命题乙:2lg lg 0x x -=,则命题甲是命题乙的( )A .充分非必要条件B .必要非充分条件C .充要条件D .非充分也非必要条件7.函数2x y +=的定义域为( )A .{|21}x x x >-≠且B .{|21}x x x ≥-≠且C .)[(21,1,)-⋃+∞D .)((21,1,)-⋃+∞8.已知m 3=n 4,那么下列式子中一定成立的是( )A .4m =3nB .3m =4nC .m =4nD .mn =12 9.已知函数()11f x x x =-,在下列区间中,包含()f x 零点的区间是( )A .14 ,12⎛⎫ ⎪⎝⎭ B .12 ,1⎛⎫ ⎪⎝⎭ C .(1,2) D .(2,3) 10.已知函数()2,01ln ,0x x f x x x -⎧≤⎪=⎨>⎪⎩,()()g x f x x a =--.若()g x 有2个零点,则实数a 的取值范围是( )A.[)1,0-B.[)0,∞+C.[)1,-+∞D.[)1,+∞11.2020年,一场突如其来的“肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n 个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[9,11)的学生人数为25,则n 的值为( )A .40B .50C .80D .10012.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线3y x =上,则sin 4πα⎛⎫+= ⎪⎝⎭( ) A.25255 D.5二、填空题 13.25(0),()8(0).x x f x x x ⎧+≤⎪=⎨+>⎪⎩14.正方体的棱长扩大到原来的倍,其表面积扩大到原来的( )倍。
高考数学高三模拟试卷试题压轴押题1
高考数学高三模拟试卷试题压轴押题第Ⅰ卷一.选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数21zi=-(i为虚数单位)在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知集合{0,1,2}P=,2{|320}Q x x x=-+≤,则P Q⋂=()A.{1}B.{2}C.{0,1}D.{1,2}3. 等差数列{}n a的前n项和为n S,若532S=,则3a=()A.325B.2C.42D.5324.已知函数()12log030xx xf xx>⎧⎪=⎨⎪≤⎩,,,则((4))f f的值为()A.91-B.9-C.91D.95.如图,网格纸的各小格都是正方形,粗实线画出的是一个凸多面体的三视图(两个矩形,一个直角三角形),则这个几何体可能为()A.三棱台 B.三棱柱 C.四棱柱 D.四棱锥6.已知直线l过圆()2234x y+-=的圆心,且与直线10x y++=垂直,则直线l的方程为()A.20x y+-=B.20x y-+=C.30x y+-=D.30x y-+=7.执行如图所示的程序框图,如果输入1a=-,2b=-,则输出的a的值为()A.16B.8C.4D.28.从某小学随机抽取100名同学,现已将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为()A.2 B.3 C.4 D.59.若函数()log0,1ay x a a=>≠且的图象如图所示,则下列函数与其图象相符的是()10.已知正四面体ABCD的棱长为a,其外接球表面积为1S,内切球表面积为2S,则12:S S的值为()A.3B.33C.9D.49411.已知抛物线24y x=的焦点为F,A、B为抛物线上两点,若3AF FB=,O为坐标原点,则开始输入a,b输出a结束6a>是a ab=否△AOB 的面积为() A .33B .833C .433D .233 12.已知偶函数)(x f (0)x ≠的导函数为)(x f ',且满足(1)0f =,当0x >时,()2()xf x f x '<,则使得()0f x >成立的x 的取值范围是( )A .(,1)(0,1)-∞-B .(,1)(1,)-∞-+∞C .(1,0)(1,)-+∞D .(1,0)(0,1)-第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二. 填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上)13.设,x y 满足约束条件:,013x y x y x y ≥⎧⎪-≥-⎨⎪+≤⎩,若z x y =-,则z 的最大值为;14.已知正方形ABCD 的边长为2,E 为CD 的中点,则AC BE ⋅=;15.函数()2ln f x x x =-的单调递增区间是;16.已知双曲线2222: 1 (0,0)x y C a b a b-=>>的右焦点为F ,双曲线C 与过原点的直线相交于A 、B 两点,连接AF ,BF . 若||6AF =,||8BF =,3cos 5BAF ∠=,则该双曲线的离心率为. 三. 解答题:(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17. (本小题满分12分)已知函数2()2cos 32x f x x =. (Ⅰ)求函数()f x 的最大值,并写出取得最大值时相应的x 的取值集合;(Ⅱ)若1tan 22α=,求()f α的值. 18.(本小题满分12分)如图所示,三棱锥D ABC -中,AC ,BC ,CD 两两垂直,1AC CD ==,3BC =,点O 为AB 中点.(Ⅰ)若过点O 的平面α与平面ACD 平行,分别与棱DB ,CB 相交于,M N ,在图中画出该截面多边形,并说明点,M N 的位置(不要求证明); (Ⅱ)求点C 到平面ABD 的距离. 19. (本小题满分12分)为考查某种疫苗预防疾病的效果,进行动物实验,得到统计数据如下:现从所有试验动物中任取一只,取到“注射疫苗”动物的概率为25. (Ⅰ)求22 列联表中的数据x ,y ,A ,B 的值;(Ⅱ)绘制发病率的条形统计图,并判断疫苗是否有效?(Ⅲ)能够有多大把握认为疫苗有效?未发病 发病 合计 未注射疫苗20 x A 注射疫苗30 y B 合计50 50 100 0.80.70.60.50.40.30.20.1O 未注射 注射 BCADO附:22()()()()()n ad bc a b a c c d b d χ-=++++ 20()P X K ≤ 0.05 0.01 0.005 0.0010K3.841 6.635 7.879 10.82820. (本小题满分12分)已知椭圆22221x y a b+=(0)a b >>的左,右焦点分别为1F ,2F ,且126F F ||=,直线y kx =与椭圆交于A ,B 两点.(Ⅰ)若△12AF F 的周长为16,求椭圆的标准方程;(Ⅱ)若24k =,且A ,B ,1F ,2F 四点共圆,求椭圆离心率e 的值; (Ⅲ) 在(Ⅱ)的条件下,设00(,)P x y 为椭圆上一点,且直线PA 的斜率1(2,1)k ∈--,试求直线PB 的斜率2k 的取值范围.21. (本小题满分12分)已知函数21()ln (R)2f x x a x b a =-+∈. (Ⅰ)若曲线()y f x =在1x =处的切线的方程为330x y --=,求实数a ,b 的值;(Ⅱ)若1x =是函数()f x 的极值点,求实数a 的值;(Ⅲ)若20a -≤<,对任意12,(0,2]x x ∈,不等式121211|()()|||f x f x m x x -≤-恒成立,求m 的最小值. 请考生在22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分.做答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.22. (本小题满分10分)选修4-1:几何证明选讲如图所示,两个圆相内切于点T ,公切线为TN ,外圆的弦TC ,TD 分别交内圆于A 、B 两点,并且外圆的弦CD 恰切内圆于点M .(Ⅰ)证明://AB CD ;(Ⅱ)证明:AC MD BD CM ⋅=⋅.23. (本小题满分10分)选修4-4:坐标系与参数方程在以直角坐标原点O 为极点,x 的非负半轴为极轴的极坐标系下,曲线1C 的方程是1ρ=,将1C 向上平移1个单位得到曲线2C .(Ⅰ)求曲线2C 的极坐标方程;(Ⅱ)若曲线1C 的切线交曲线2C 于不同两点,M N ,切点为T .求TM TN ⋅的取值范围.24. (本小题满分10分)选修4-5:不等式选讲已知命题“a b c ∀>>,11t a b b c a c+≥---”是真命题,记t 的最大值为m , 命题“n R ∀∈,14sin cos n n m γγ+--<”是假命题,其中(0,)2πγ∈.(Ⅰ)求m 的值;(Ⅱ)求n 的取值范围.高考一轮复习微课视频手机观看地址:http://xkw.so/wksp高考理科数学普通高等学校招生全国统一考试(附答案)注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。
高考数学高三模拟考试试卷压轴题猜题押题试卷参考答案与试题解析1
高考数学高三模拟考试试卷压轴题猜题押题试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(•江苏)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为5.考点:并集及其运算.专题:集合.分析:求出A∪B,再明确元素个数解答:解:集合A={1,2,3},B={2,4,5},则A∪B={1,2,3,4,5};所以A∪B中元素的个数为5;故答案为:5点评:题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题2.(5分)(•江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为6.考点:众数、中位数、平均数.专题:概率与统计.分析:直接求解数据的平均数即可.解答:解:数据4,6,5,8,7,6,那么这组数据的平均数为:=6.故答案为:6.点评:本题考查数据的均值的求法,基本知识的考查.3.(5分)(•江苏)设复数z满足z2=3+4i(i是虚数单位),则z的模为.考点:复数求模.专题:数系的扩充和复数.分析:直接利用复数的模的求解法则,化简求解即可.解答:解:复数z满足z2=3+4i,可得|z||z|=|3+4i|==5,∴|z|=.故答案为:.点评:本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力.4.(5分)(•江苏)根据如图所示的伪代码,可知输出的结果S为7.考点:伪代码.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的I,S的值,当I=10时不满足条件I<8,退出循环,输出S的值为7.解答:解:模拟执行程序,可得S=1,I=1满足条件I<8,S=3,I=4满足条件I<8,S=5,I=7满足条件I<8,S=7,I=10不满足条件I<8,退出循环,输出S的值为7.故答案为:7.点评:本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题.5.(5分)(•江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.考点:古典概型及其概率计算公式.专题:概率与统计.分析:根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.解答:解:根据题意,记白球为A,红球为B,黄球为C1、C2,则一次取出2只球,基本事件为AB、AC1、AC2、BC1、BC2、C1C2共6种,其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种;所以所求的概率是P=.故答案为:.点评:本题考查了用列举法求古典概型的概率的应用问题,是基础题目.6.(5分)(•江苏)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为﹣3.考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:直接利用向量的坐标运算,求解即可.解答:解:向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)可得,解得m=2,n=5,∴m﹣n=﹣3.故答案为:﹣3.点评:本题考查向量的坐标运算,向量相等条件的应用,考查计算能力.7.(5分)(•江苏)不等式2<4的解集为(﹣1,2).考点:指、对数不等式的解法.专题:函数的性质及应用;不等式的解法及应用.分析:利用指数函数的单调性转化为x2﹣x<2,求解即可.解答:解;∵2<4,∴x2﹣x<2,即x2﹣x﹣2<0,解得:﹣1<x<2故答案为:(﹣1,2)点评:本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大.8.(5分)(•江苏)已知tanα=﹣2,tan(α+β)=,则tanβ的值为3.考点:两角和与差的正切函数.专题:三角函数的求值.分析:直接利用两角和的正切函数,求解即可.解答:解:tanα=﹣2,tan(α+β)=,可知tan(α+β)==,即=,解得tanβ=3.故答案为:3.点评:本题考查两角和的正切函数,基本知识的考查.9.(5分)(•江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.考点:棱柱、棱锥、棱台的体积.专题:计算题;空间位置关系与距离.分析:由题意求出原来圆柱和圆锥的体积,设出新的圆柱和圆锥的底面半径r,求出体积,由前后体积相等列式求得r.解答:解:由题意可知,原来圆锥和圆柱的体积和为:.设新圆锥和圆柱的底面半径为r,则新圆锥和圆柱的体积和为:.∴,解得:.故答案为:.点评:本题考查了圆柱与圆锥的体积公式,是基础的计算题.10.(5分)(•江苏)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x﹣1)2+y2=2.考点:圆的标准方程;圆的切线方程.专题:计算题;直线与圆.分析:求出圆心到直线的距离d的最大值,即可求出所求圆的标准方程.解答:解:圆心到直线的距离d==≤,∴m=1时,圆的半径最大为,∴所求圆的标准方程为(x﹣1)2+y2=2.故答案为:(x﹣1)2+y2=2.点评:本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础.11.(5分)(•江苏)设数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),则数列{}的前10项的和为.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),利用“累加求和”可得an=.再利用“裂项求和”即可得出.解答:解:∵数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),∴当n≥2时,an=(an﹣an﹣1)+…+(a2﹣a1)+a1=+n+…+2+1=.当n=1时,上式也成立,∴an=.∴=2.∴数列{}的前n项的和Sn===.∴数列{}的前10项的和为.故答案为:.点评:本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.12.(5分)(•江苏)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:双曲线x2﹣y2=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离.解答:解:由题意,双曲线x2﹣y2=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.点评:本题考查双曲线的性质,考查学生的计算能力,比较基础.13.(5分)(•江苏)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为4.考点:根的存在性及根的个数判断.专题:综合题;函数的性质及应用.分析::由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1,分别作出函数的图象,即可得出结论.解答:解:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1.g(x)与h(x)=﹣f(x)+1的图象如图所示,图象有两个交点;g(x)与φ(x)=﹣f(x)﹣1的图象如图所示,图象有两个交点;所以方程|f(x)+g(x)|=1实根的个数为4.故答案为:4.点评:本题考查求方程|f(x)+g(x)|=1实根的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.14.(5分)(•江苏)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(ak•ak+1)的值为.考点:数列的求和.专题:等差数列与等比数列;平面向量及应用.分析:利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出.解答:解:=+=+++=++=++,∴(ak•ak+1)=+++++++…++ =+0+0=.故答案为:9.点评:本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)(•江苏)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.考点:余弦定理的应用;二倍角的正弦.专题:解三角形.分析:(1)直接利用余弦定理求解即可.(2)利用正弦定理求出C的正弦函数值,然后利用二倍角公式求解即可.解答:解:(1)由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcosA=4+8﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===,∵AB<BC,∴C为锐角,则cosC===.因此sin2C=2sinCcosC=2×=.点评:本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解题的关键.16.(14分)(•江苏)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.考点:直线与平面平行的判定;直线与平面垂直的性质.专题:证明题;空间位置关系与距离.分析:(1)根据中位线定理得DE∥AC,即证DE∥平面AA1C1C;(2)先由直三棱柱得出CC1⊥平面ABC,即证AC⊥CC1;再证明AC⊥平面BCC1B1,即证BC1⊥AC;最后证明BC1⊥平面B1AC,即可证出BC1⊥AB1.解答:证明:(1)根据题意,得;E为B1C的中点,D为AB1的中点,所以DE∥AC;又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C;(2)因为棱柱ABC﹣A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为AC⊂平面ABC,所以AC⊥CC1;又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1;又因为BC1⊂平面平面BCC1B1,所以BC1⊥AC;因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1⊥平面B1AC;又因为AB1⊂平面B1AC,所以BC1⊥AB1.点本题考查了直线与直线,直线与平面以及平面与平面的位置关系,也考查了空间想评:象能力和推理论证能力的应用问题,是基础题目.17.(14分)(•江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.考点:函数与方程的综合运用.专题:综合题;导数的综合应用.分析:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,建立方程组,即可求a,b的值;(2)①求出切线l的方程,可得A,B的坐标,即可写出公路l长度的函数解析式f (t),并写出其定义域;②设g(t)=,利用导数,确定单调性,即可求出当t为何值时,公路l的长度最短,并求出最短长度.解答:解:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,得,解得,(2)①由(1)y=(5≤x≤20),P(t,),∴y′=﹣,∴切线l的方程为y﹣=﹣(x﹣t)设在点P处的切线l交x,y轴分别于A,B点,则A(,0),B(0,),∴f(t)==,t∈[5,20];②设g(t)=,则g′(t)=2t﹣=0,解得t=10,t∈(5,10)时,g′(t)<0,g(t)是减函数;t∈(10,20)时,g′(t)>0,g(t)是增函数,从而t=10时,函数g(t)有极小值也是最小值,∴g(t)min=300,∴f(t)min=15,答:t=10时,公路l的长度最短,最短长度为15千米.点评:本题考查利用数学知识解决实际问题,考查导数知识的综合运用,确定函数关系,正确求导是关键.18.(16分)(•江苏)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(1)运用离心率公式和准线方程,可得a,c的方程,解得a,c,再由a,b,c的关系,可得b,进而得到椭圆方程;(2)讨论直线AB的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.解答:解:(1)由题意可得,e==,且c+=3,解得c=1,a=,则b=1,即有椭圆方程为+y2=1;(2)当AB⊥x轴,AB=,CP=3,不合题意;当AB与x轴不垂直,设直线AB:y=k(x﹣1),A(x1,y1),B(x2,y2),将AB方程代入椭圆方程可得(1+2k2)x2﹣4k2x+2(k2﹣1)=0,则x1+x2=,x1x2=,则C(,),且|AB|=•=,若k=0,则AB的垂直平分线为y轴,与左准线平行,不合题意;则k≠0,故PC:y+=﹣(x﹣),P(﹣2,),从而|PC|=,由|PC|=2|AB|,可得=,解得k=±1,此时AB的方程为y=x﹣1或y=﹣x+1.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,同时考查两直线垂直和中点坐标公式的运用,属于中档题.19.(16分)(•江苏)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.考点:利用导数研究函数的单调性;函数零点的判定定理.专题:综合题;导数的综合应用.分析:(1)求导数,分类讨论,利用导数的正负,即可得出f(x)的单调性;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)f(﹣)=b(+b)<0,进一步转化为a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,利用条件即可求c的值.解答:解:(1)∵f(x)=x3+ax2+b,∴f′(x)=3x2+2ax,令f′(x)=0,可得x=0或﹣.a=0时,f′(x)>0,∴f(x)在(﹣∞,+∞)上单调递增;a>0时,x∈(﹣∞,﹣)∪(0,+∞)时,f′(x)>0,x∈(﹣,0)时,f′(x)<0,∴函数f(x)在(﹣∞,﹣),(0,+∞)上单调递增,在(﹣,0)上单调递减;a<0时,x∈(﹣∞,0)∪(﹣,+∞)时,f′(x)>0,x∈(0,﹣)时,f′(x)<0,∴函数f(x)在(﹣∞,0),(﹣,+∞)上单调递增,在(0,﹣)上单调递减;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)f(﹣)=b(+b)<0,∵b=c﹣a,∴a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,∵函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),∴在(﹣∞,﹣3)上,g(a)<0且在(1,)∪(,+∞)上g(a)>0均恒成立,∴g(﹣3)=c﹣1≤0,且g()=c﹣1≥0,∴c=1,此时f(x)=x3+ax2+1﹣a=(x+1)[x2+(a﹣1)x+1﹣a],∵函数有三个零点,∴x2+(a﹣1)x+1﹣a=0有两个异于﹣1的不等实根,∴△=(a﹣1)2﹣4(1﹣a)>0,且(﹣1)2﹣(a﹣1)+1﹣a≠0,解得a∈(﹣∞,﹣3)∪(1,)∪(,+∞),综上c=1.点评:本题考查导数知识的综合运用,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,难度大.20.(16分)(•江苏)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.考点:等比关系的确定;等比数列的性质.专题:等差数列与等比数列.分析:(1)根据等比数列和等差数列的定义即可证明;(2)利用反证法,假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,推出矛盾,否定假设,得到结论;(3)利用反证法,假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列,得到a1n(a1+2d)n+2k=(a1+2d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),利用等式以及对数的性质化简整理得到ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**),多次构造函数,多次求导,利用零点存在定理,推出假设不成立.解答:解:(1)证明:∵==2d,(n=1,2,3,)是同一个常数,∴2,2,2,2依次构成等比数列;(2)令a1+d=a,则a1,a2,a3,a4分别为a﹣d,a,a+d,a+2d(a>d,a>﹣2d,d≠0)假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,则a4=(a﹣d)(a+d)3,且(a+d)6=a2(a+2d)4,令t=,则1=(1﹣t)(1+t)3,且(1+t)6=(1+2t)4,(﹣<t<1,t≠0),化简得t3+2t2﹣2=0(*),且t2=t+1,将t2=t+1代入(*)式,t(t+1)+2(t+1)﹣2=t2+3t=t+1+3t=4t+1=0,则t=﹣,显然t=﹣不是上面方程的解,矛盾,所以假设不成立,因此不存在a1,d,使得a1,a22,a33,a44依次构成等比数列.(3)假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列,则a1n(a1+2d)n+2k=(a1+2d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),分别在两个等式的两边同除以=a12(n+k),a12(n+2k),并令t=,(t>,t≠0),则(1+2t)n+2k=(1+t)2(n+k),且(1+t)n+k(1+3t)n+3k=(1+2t)2(n+2k),将上述两个等式取对数,得(n+2k)ln(1+2t)=2(n+k)ln(1+t),且(n+k)ln(1+t)+(n+3k)ln(1+3t)=2(n+2k)ln(1+2t),化简得,2k[ln(1+2t)﹣ln(1+t)]=n[2ln(1+t)﹣ln(1+2t)],且3k[ln(1+3t)﹣ln(1+t)]=n[3ln(1+t)﹣ln(1+3t)],再将这两式相除,化简得,ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**)令g(t)=4ln(1+3t)ln(1+t)﹣ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t),则g′(t)=[(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t)],令φ(t)=(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t),则φ′(t)=6[(1+3t)ln(1+3t)﹣2(1+2t)ln(1+2t)+3(1+t)ln(1+t)],令φ1(t)=φ′(t),则φ1′(t)=6[3ln(1+3t)﹣4ln(1+2t)+ln(1+t)],令φ2(t)=φ1′(t),则φ2′(t)=>0,由g(0)=φ(0)=φ1(0)=φ2(0)=0,φ2′(t)>0,知g(t),φ(t),φ1(t),φ2(t)在(﹣,0)和(0,+∞)上均单调,故g(t)只有唯一的零点t=0,即方程(**)只有唯一解t=0,故假设不成立,所以不存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列.点评:本题主要考查等差数列、等比数列的定义和性质,函数与方程等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力,属于难题.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括2124题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修41:几何证明选讲】21.(10分)(•江苏)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.考点:相似三角形的判定.专题:推理和证明.分析:直接利用已知条件,推出两个三角形的三个角对应相等,即可证明三角形相似.解答:证明:∵AB=AC,∴∠ABD=∠C,又∵∠C=∠E,∴∠ABD=∠E,又∠BAE是公共角,可知:△ABD∽△AEB.点评:本题考查圆的基本性质与相似三角形等基础知识,考查逻辑推理能力.【选修42:矩阵与变换】22.(10分)(•江苏)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.考点:特征值与特征向量的计算.专题:矩阵和变换.分析:利用A=﹣2,可得A=,通过令矩阵A的特征多项式为0即得结论.解答:解:由已知,可得A=﹣2,即==,则,即,∴矩阵A=,从而矩阵A的特征多项式f(λ)=(λ+2)(λ﹣1),∴矩阵A的另一个特征值为1.点评:本题考查求矩阵及其特征值,注意解题方法的积累,属于中档题.【选修44:坐标系与参数方程】23.(•江苏)已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.考点:简单曲线的极坐标方程.专题:计算题;坐标系和参数方程.分析:先根据x=ρcosθ,y=ρsinθ,求出圆的直角坐标方程,求出半径.解答:解:圆的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,可得ρ2﹣2ρcosθ+2ρsinθ﹣4=0,化为直角坐标方程为x2+y2﹣2x+2y﹣4=0,化为标准方程为(x﹣1)2+(y+1)2=6,圆的半径r=.点评:本题主要考查把极坐标方程化为直角坐标方程的方法,以及求点的极坐标的方法,关键是利用公式x=ρcosθ,y=ρsinθ,比较基础,[选修45:不等式选讲】24.(•江苏)解不等式x+|2x+3|≥2.考点:绝对值不等式的解法.专题:不等式.分析:思路1(公式法):利用|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);思路2(零点分段法):对x的值分“x≥”“x<”进行讨论求解.解答:解法1:x+|2x+3|≥2变形为|2x+3|≥2﹣x,得2x+3≥2﹣x,或2x+3≥﹣(2﹣x),即x≥,或x≤﹣5,即原不等式的解集为{x|x≥,或x≤﹣5}.解法2:令|2x+3|=0,得x=.①当x≥时,原不等式化为x+(2x+3)≥2,即x≥,所以x≥;②x<时,原不等式化为x﹣(2x+3)≥2,即x≤﹣5,所以x≤﹣5.综上,原不等式的解集为{x|x≥,或x≤﹣5}.点评:本题考查了含绝对值不等式的解法.本解答给出的两种方法是常见的方法,不管用哪种方法,其目的是去绝对值符号.若含有一个绝对值符号,利用公式法要快捷一些,其套路为:|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);|f(x)|≤g (x)⇔﹣g(x)≤f(x)≤g(x).可简记为:大于号取两边,小于号取中间.使用零点分段法时,应注意:同一类中取交集,类与类之间取并集.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤26.(10分)(•江苏)已知集合X={1,2,3},Yn={1,2,3,…,n)(n∈N*),设Sn={(a,b)|a整除b或整除a,a∈X,B∈Yn},令f(n)表示集合Sn所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.考点:数学归纳法.专题:综合题;点列、递归数列与数学归纳法.分析:(1)f(6)=6+2++=13;(2)根据数学归纳法的证明步骤,分类讨论,即可证明结论.解答:解:(1)f(6)=6+2++=13;(2)当n≥6时,f(n)=.下面用数学归纳法证明:①n=6时,f(6)=6+2++=13,结论成立;②假设n=k(k≥6)时,结论成立,那么n=k+1时,Sk+1在Sk的基础上新增加的元素在(1,k+1),(2,k+1),(3,k+1)中产生,分以下情形讨论:1)若k+1=6t,则k=6(t﹣1)+5,此时有f(k+1)=f(k)+3=(k+1)+2++,结论成立;2)若k+1=6t+1,则k=6t+1,此时有f(k+1)=f(k)+1=k+2+++1=(k+1)+2++,结论成立;3)若k+1=6t+2,则k=6t+1,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;4)若k+1=6t+3,则k=6t+2,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;5)若k+1=6t+4,则k=6t+3,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;6)若k+1=6t+5,则k=6t+4,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立.综上所述,结论对满足n≥6的自然数n均成立.点评:本题考查数学归纳法,考查学生分析解决问题的能力,正确归纳是关键.25.(10分)(•江苏)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.考点:二面角的平面角及求法;点、线、面间的距离计算.专题:空间位置关系与距离;空间角.分析:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz.(1)所求值即为平面PAB的一个法向量与平面PCD的法向量的夹角的余弦值的绝对值,计算即可;(2)利用换元法可得cos2<,>≤,结合函数y=cosx在(0,)上的单调性,计算即得结论.解答:解:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz如图,由题可知B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).(1)∵AD⊥平面PAB,∴=(0,2,0),是平面PAB的一个法向量,∵=(1,1,﹣2),=(0,2,﹣2),设平面PCD的法向量为=(x,y,z),由,得,取y=1,得=(1,1,1),∴cos<,>==,∴平面PAB与平面PCD所成两面角的余弦值为;(2)∵=(﹣1,0,2),设=λ=(﹣λ,0,2λ)(0≤λ≤1),又=(0,﹣1,0),则=+=(﹣λ,﹣1,2λ),又=(0,﹣2,2),从而cos<,>==,设1+2λ=t,t∈[1,3],则cos2<,>==≤,当且仅当t=,即λ=时,|cos<,>|的最大值为,因为y=cosx在(0,)上是减函数,此时直线CQ与DP所成角取得最小值.又∵BP==,∴BQ=BP=.点评:本题考查求二面角的三角函数值,考查用空间向量解决问题的能力,注意解题方法的积累,属于中档题.高考理科数学试卷普通高等学校招生全国统一考试注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A=2,3,{|(1)(2)0,}B x x x x=+-<∈Z,则A B=(A){1}(B){12},(C){0123},,,(D){10123}-,,,,(2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C 3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 (A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s= (A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为(A B )32(C D )2 (12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m mx y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
高考数学高三模拟试卷试题压轴押题试卷1
高考数学高三模拟试卷试题压轴押题试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相印位置上.1.(5分)函数y=3sin(2x+)的最小正周期为.2.(5分)设z=(2﹣i)2(i为虚数单位),则复数z的模为.3.(5分)双曲线的两条渐近线方程为.4.(5分)集合{﹣1,0,1}共有个子集.5.(5分)如图是一个算法的流程图,则输出的n的值为.6.(5分)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:运动员第一次第二次第三次第四次第五次甲87 91 90 89 93乙89 90 91 88 92则成绩较为稳定(方差较小)的那位运动员成绩的方差为.7.(5分)现在某类病毒记作XmYn,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为.8.(5分)如图,在三棱柱A1B1C1﹣ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F﹣ADE的体积为V1,三棱柱A1B1C1﹣ABC的体积为V2,则V1:V2=.9.(5分)抛物线y=x2在x=1处的切线与两坐标轴围成三角形区域为D(包含三角形内部和边界).若点P(x,y)是区域D内的任意一点,则x+2y的取值范围是.10.(5分)设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=BC,若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为.11.(5分)已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f (x)>x 的解集用区间表示为.12.(5分)在平面直角坐标系xOy中,椭圆C的标准方程为(a>b>0),右焦点为F,右准线为l,短轴的一个端点为B,设原点到直线BF的距离为d1,F到l的距离为d2,若d2=,则椭圆C的离心率为.13.(5分)在平面直角坐标系xOy中,设定点A(a,a),P是函数y=(x>0)图象上一动点,若点P,A之间的最短距离为2,则满足条件的实数a的所有值为.14.(5分)在正项等比数列{an}中,,a6+a7=3,则满足a1+a2+…+an>a1a2…an的最大正整数n的值为.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知=(cosα,sinα),=(cosβ,sinβ),0<β<α<π.(1)若|﹣|=,求证:⊥;(2)设=(0,1),若+=,求α,β的值.16.(14分)如图,在三棱锥S﹣ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.17.(14分)在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4,设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x﹣3上,过点A作圆C的切线,求切线方程;(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标的取值范围.18.(16分)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=,cosC=(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?19.(16分)设{an}是首项为a,公差为d的等差数列(d≠0),Sn是其前n项和.记bn=,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:Snk=n2Sk(k,n∈N*);(2)若{bn}是等差数列,证明:c=0.20.(16分)设函数f(x)=lnx﹣ax,g(x)=ex﹣ax,其中a为实数.(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;(2)若g(x)在(﹣1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.[选做题]本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修41:几何证明选讲](本小题满分10分)21.(10分)如图,AB和BC分别与圆O相切于点D、C,AC经过圆心O,且BC=2OC.求证:AC=2AD.B.[选修42:矩阵与变换](本小题满分10分)22.(10分)已知矩阵A=,B=,求矩阵A﹣1B.C.[选修44:坐标系与参数方程](本小题满分0分)23.在平面直角坐标系xOy中,直线l的参数方程为(为参数),曲线C的参数方程为(t为参数).试求直线l和曲线C的普通方程,并求出它们的公共点的坐标.D.[选修45:不等式选讲](本小题满分0分)24.已知a≥b>0,求证:2a3﹣b3≥2ab2﹣a2b.第25题、第26题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.(10分)如图,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与ABA1所成二面角的正弦值.26.(10分)设数列{an}:1,﹣2,﹣2,3,3,3,﹣4,﹣4,﹣4,﹣4,…,,…,即当<n≤(k∈N*)时,.记Sn=a1+a2+…+an(n∈N∗).对于l∈N∗,定义集合Pl=﹛n|Sn为an的整数倍,n∈N∗,且1≤n≤l}(1)求P11中元素个数;(2)求集合P2000中元素个数.高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相印位置上.1.(5分)函数y=3sin(2x+)的最小正周期为π.【分析】将题中的函数表达式与函数y=Asin(ωx+φ)进行对照,可得ω=2,由此结合三角函数的周期公式加以计算,即可得到函数的最小正周期.【解答】解:∵函数表达式为y=3sin(2x+),∴ω=2,可得最小正周期T=||=||=π故答案为:π【点评】本题给出三角函数表达式,求函数的最小正周期,着重考查了函数y=Asin (ωx+φ)的周期公式的知识,属于基础题.2.(5分)设z=(2﹣i)2(i为虚数单位),则复数z的模为5.【分析】把给出的复数展开化为a+bi(a,b∈R)的形式,然后直接利用模的公式计算.【解答】解:z=(2﹣i)2=4﹣4i+i2=3﹣4i.所以,|z|==5.故答案为5.【点评】本题考查了复数代数形式的混合运算,考查了复数模的求法,是基础题.3.(5分)双曲线的两条渐近线方程为.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的a=4,b=3,焦点在x轴上而双曲线的渐近线方程为y=±x∴双曲线的渐近线方程为故答案为:【点评】本题考查了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想4.(5分)集合{﹣1,0,1}共有8个子集.【分析】集合P={1,2,3}的子集是指属于集合的部分或所有元素组成的集合,包括空集.【解答】解:因为集合{﹣1,0,1},所以集合{﹣1,0,1}的子集有:{﹣1},{0},{1},{﹣1,0},{﹣1,1},{0,1},{﹣1,0,1},∅,共8个.故答案为:8.【点评】本题考查集合的子集个数问题,对于集合M的子集问题一般来说,若M中有n 个元素,则集合M的子集共有2n个.5.(5分)如图是一个算法的流程图,则输出的n的值为5.【分析】由已知的程序框图可知,该程序的功能是利用循环计算a值,并输出满足a<16的最大n值,模拟程序的运行过程可得答案.【解答】解:当n=1,a=1时,满足进行循环的条件,执行循环后,a=5,n=3;满足进行循环的条件,执行循环后,a=17,n=5;满足进行循环的条件,退出循环故输出n值为5故答案为:5.【点评】本题考查的知识点是程序框图,由于循环的次数不多,故可采用模拟程序运行的方法进行.6.(5分)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:运动员第一次第二次第三次第四次第五次甲87 91 90 89 93乙89 90 91 88 92则成绩较为稳定(方差较小)的那位运动员成绩的方差为2.【分析】直接由图表得出两组数据,求出它们的平均数,求出方差,则答案可求.【解答】解:由图表得到甲乙两位射击运动员的数据分别为:甲:87,91,90,89,93;乙:89,90,91,88,92;,.方差=4.=2.所以乙运动员的成绩较稳定,方差为2.故答案为2.【点评】本题考查了方差与标准差,对于一组数据,在平均数相差不大的情况下,方差越小越稳定,考查最基本的知识点,是基础题.7.(5分)现在某类病毒记作XmYn,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为.【分析】求出m取小于等于7的正整数,n取小于等于9的正整数,m取到奇数,n取到奇数的方法种数,直接由古典概型的概率计算公式求解.【解答】解:m取小于等于7的正整数,n取小于等于9的正整数,共有7×9=63种取法.m取到奇数的有1,3,5,7共4种情况;n取到奇数的有1,3,5,7,9共5种情况,则m,n都取到奇数的方法种数为4×5=20种.所以m,n都取到奇数的概率为.故答案为.【点评】本题考查了古典概型及其概率计算公式,解答的关键是做到对取法种数计算的补充不漏,是基础的计算题.8.(5分)如图,在三棱柱A1B1C1﹣ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F﹣ADE的体积为V1,三棱柱A1B1C1﹣ABC的体积为V2,则V1:V2=1:24.【分析】由三角形的相似比等于面积比的平方得到棱锥和棱柱的底面积的比值,由题意棱柱的高是棱锥的高的2倍,然后直接由体积公式可得比值.【解答】解:因为D,E,分别是AB,AC的中点,所以S△ADE:S△ABC=1:4,又F是AA1的中点,所以A1到底面的距离H为F到底面距离h的2倍.即三棱柱A1B1C1﹣ABC的高是三棱锥F﹣ADE高的2倍.所以V1:V2==1:24.故答案为1:24.【点评】本题考查了棱柱和棱锥的体积公式,考查了相似多边形的面积的比等于相似比的平方,是基础的计算题.9.(5分)抛物线y=x2在x=1处的切线与两坐标轴围成三角形区域为D(包含三角形内部和边界).若点P(x,y)是区域D内的任意一点,则x+2y的取值范围是[﹣2,].【分析】利用导数求出抛物线在x=1处的切线方程,画出可行域,找出最优解,则x+2y的取值范围可求.【解答】解:由y=x2得,y′=2x,所以y′|x=1=2,则抛物线y=x2在x=1处的切线方程为y=2x﹣1.令z=x+2y,则.画出可行域如图,所以当直线过点(0,﹣1)时,zmin=﹣2.过点()时,.故答案为.【点评】本题考查了导数的运算,考查了简单的线性规划,解答的关键是把问题转化为线性规划知识解决,是基础题.10.(5分)设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=BC,若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为.【分析】由题意和向量的运算可得=,结合=λ1+λ2,可得λ1,λ2的值,求和即可.【解答】解:由题意结合向量的运算可得=====,又由题意可知若=λ1+λ2,故可得λ1=,λ2=,所以λ1+λ2=故答案为:【点评】本题考查平面向量基本定理及其意义,涉及向量的基本运算,属中档题.11.(5分)已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)>x 的解集用区间表示为(﹣5,0)∪(5,﹢∞).【分析】作出x大于0时,f(x)的图象,根据f(x)为定义在R上的奇函数,利用奇函数的图象关于原点对称作出x小于0的图象,所求不等式即为函数y=f(x)图象在y=x上方,利用图形即可求出解集.【解答】解:作出f(x)=x2﹣4x(x>0)的图象,如图所示,∵f(x)是定义在R上的奇函数,∴利用奇函数图象关于原点对称作出x<0的图象,不等式f(x)>x表示函数y=f(x)图象在y=x上方,∵f(x)图象与y=x图象交于P(5,5),Q(﹣5,﹣5),则由图象可得不等式f(x)>x的解集为(﹣5,0)∪(5,+∞).故答案为:(﹣5,0)∪(5,+∞)【点评】此题考查了一元二次不等式的解法,利用了数形结合的思想,灵活运用数形结合思想是解本题的关键.12.(5分)在平面直角坐标系xOy中,椭圆C的标准方程为(a>b>0),右焦点为F,右准线为l,短轴的一个端点为B,设原点到直线BF的距离为d1,F到l的距离为d2,若d2=,则椭圆C的离心率为.【分析】根据“d2=”结合椭圆的半焦距,短半轴,长半轴构成直角三角形,再由等面积法可得d1=,从而得到a与b的关系,可求得,从而求出离心率.【解答】解:如图,准线l:x=,d2=,由面积法得:d1=,若d2=,则,整理得a2﹣ab﹣=0,两边同除以a2,得+()﹣=0,解得.∴e==.故答案为:.【点评】本题主要考查椭圆的几何性质,即通过半焦距,短半轴,长半轴构成的直角三角形来考查其离心率,还涉及了等面积法.13.(5分)在平面直角坐标系xOy中,设定点A(a,a),P是函数y=(x>0)图象上一动点,若点P,A之间的最短距离为2,则满足条件的实数a的所有值为﹣1或.【分析】设点P,利用两点间的距离公式可得|PA|,利用基本不等式和二次函数的单调性即可得出a的值.【解答】解:设点P,则|PA|===,令,∵x>0,∴t≥2,令g(t)=t2﹣2at+2a2﹣2=(t﹣a)2+a2﹣2,①当a≤2时,t=2时g(t)取得最小值g(2)=2﹣4a+2a2=,解得a=﹣1;②当a>2时,g(t)在区间[2,a)上单调递减,在(a,+∞)单调递增,∴t=a,g(t)取得最小值g(a)=a2﹣2,∴a2﹣2=,解得a=.综上可知:a=﹣1或.故答案为﹣1或.【点评】本题综合考查了两点间的距离公式、基本不等式的性质、二次函数的单调性等基础知识和基本技能,考查了分类讨论的思想方法、推理能力和计算能力.14.(5分)在正项等比数列{an}中,,a6+a7=3,则满足a1+a2+…+an>a1a2…an的最大正整数n的值为12.【分析】设正项等比数列{an}首项为a1,公比为q,由题意可得关于这两个量的方程组,解之可得数列的通项公式和a1+a2+…+an及a1a2…an的表达式,化简可得关于n的不等式,解之可得n的范围,取上限的整数部分即可得答案.【解答】解:设正项等比数列{an}首项为a1,公比为q,由题意可得,解之可得:a1=,q=2,故其通项公式为an==2n﹣6.记Tn=a1+a2+…+an==,Sn=a1a2…an=2﹣5×2﹣4…×2n﹣6=2﹣5﹣4+…+n﹣6=.由题意可得Tn>Sn,即>,化简得:2n﹣1>,即2n﹣>1,因此只须n>,即n2﹣13n+10<0解得<n<,由于n为正整数,因此n最大为的整数部分,也就是12.故答案为:12【点评】本题考查等比数列的求和公式和一元二次不等式的解法,属中档题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知=(cosα,sinα),=(cosβ,sinβ),0<β<α<π.(1)若|﹣|=,求证:⊥;(2)设=(0,1),若+=,求α,β的值.【分析】(1)由给出的向量的坐标,求出的坐标,由模等于列式得到cosαcosβ+sinαsinβ=0,由此得到结论;(2)由向量坐标的加法运算求出+,由+=(0,1)列式整理得到,结合给出的角的范围即可求得α,β的值.【解答】解:(1)由=(cosα,sinα),=(cosβ,sinβ),则=(cosα﹣cosβ,sinα﹣sinβ),由=2﹣2(cosαcosβ+sinαsinβ)=2,得cosαcosβ+sinαsinβ=0.所以.即;(2)由得,①2+②2得:.因为0<β<α<π,所以0<α﹣β<π.所以,,代入②得:.因为.所以.所以,.【点评】本题考查了平面向量的数量积运算,考查了向量的模,考查了同角三角函数的基本关系式和两角和与差的三角函数,解答的关键是注意角的范围,是基础的运算题.16.(14分)如图,在三棱锥S﹣ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.【分析】(1)根据等腰三角形的“三线合一”,证出F为SB的中点.从而得到△SAB和△SAC中,EF∥AB且EG∥AC,利用线面平行的判定定理,证出EF∥平面ABC且EG∥平面ABC.因为EF、EG是平面EFG内的相交直线,所以平面EFG∥平面ABC;(2)由面面垂直的性质定理证出AF⊥平面SBC,从而得到AF⊥BC.结合AF、AB是平面SAB内的相交直线且AB⊥BC,可得BC⊥平面SAB,从而证出BC⊥SA.【解答】解:(1)∵△ASB中,SA=AB且AF⊥SB,∴F为SB的中点.∵E、G分别为SA、SC的中点,∴EF、EG分别是△SAB、△SAC的中位线,可得EF∥AB且EG∥AC.∵EF⊄平面ABC,AB⊂平面ABC,∴EF∥平面ABC,同理可得EG∥平面ABC又∵EF、EG是平面EFG内的相交直线,∴平面EFG∥平面ABC;(2)∵平面SAB⊥平面SBC,平面SAB∩平面SBC=SB,AF⊂平面ASB,AF⊥SB.∴AF⊥平面SBC.又∵BC⊂平面SBC,∴AF⊥BC.∵AB⊥BC,AF∩AB=A,∴BC⊥平面SAB.又∵SA⊂平面SAB,∴BC⊥SA.【点评】本题在三棱锥中证明面面平行和线线垂直,着重考查了直线与平面平行、平面与平面平行的判定定理,直线与平面垂直的判定与性质等知识,属于中档题.17.(14分)在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4,设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x﹣3上,过点A作圆C的切线,求切线方程;(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标的取值范围.【分析】(1)先求出圆心坐标,可得圆的方程,再设出切线方程,利用点到直线的距离公式,即可求得切线方程;(2)设出点C,M的坐标,利用|MA|=2|MO|,寻找坐标之间的关系,进一步将问题转化为圆与圆的位置关系,即可得出结论.【解答】解:(1)由题设,圆心C在y=x﹣3上,也在直线y=2x﹣4上,2a﹣4=a﹣3,∴a=1,∴C(1,﹣2).∴⊙C:(x﹣1)2+(y+2)2=1,由题,当斜率存在时,过A点切线方程可设为y=kx+3,即kx﹣y+3=0,则=1,解得:k=﹣,…(4分)又当斜率不存在时,也与圆相切,∴所求切线为x=0或y=﹣x+3,即x=0或12x+5y﹣15=0;(2)设点M(x,y),由|MA|=2|MO|,化简得:x2+(y+1)2=4,∴点M的轨迹为以(0,﹣1)为圆心,2为半径的圆,可记为圆D,又∵点M在圆C上,∴圆C与圆D的关系为相交或相切,∴1≤|CD|≤3,其中|CD|=,∴1≤≤3,解得:0≤a≤.【点评】此题考查了圆的切线方程,点到直线的距离公式,以及圆与圆的位置关系的判定,涉及的知识有:两直线的交点坐标,直线的点斜式方程,两点间的距离公式,圆的标准方程,是一道综合性较强的试题.18.(16分)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=,cosC=(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?【分析】(1)根据正弦定理即可确定出AB的长;(2)设乙出发t分钟后,甲、乙两游客距离为d,此时,甲行走了(100+50t)m,乙距离A处130t m,由余弦定理可得;(3)设乙步行的速度为 v m/min,从而求出v的取值范围.【解答】解:(1)在△ABC中,因为cosA=,cosC=,所以sinA=,sinC=,从而sinB=sin[π﹣(A+C)]=sin(A+C)=sinAcosC+cosAsinC==由正弦定理,得AB===1040m.所以索道AB的长为1040m.(2)假设乙出发t分钟后,甲、乙两游客距离为d,此时,甲行走了(100+50t)m,乙距离A处130t m,所以由余弦定理得d2=(100+50t)2+(130t)2﹣2×130t×(100+50t)×=200(37t2﹣70t+50)=200[37(t﹣)2+],因0≤t≤,即0≤t≤8,故当t=min时,甲、乙两游客距离最短.(3)由正弦定理,得BC===500m,乙从B出发时,甲已经走了50×(2+8+1)=550m,还需走710m才能到达C.设乙步行的速度为v m/min,由题意得﹣3≤≤3,解得,所以为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在[]范围内.【点评】此题考查了余弦定理,锐角三角函数定义,以及勾股定理,利用了分类讨论及数形结合的思想,属于解直角三角形题型.19.(16分)设{an}是首项为a,公差为d的等差数列(d≠0),Sn是其前n项和.记bn=,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:Snk=n2Sk(k,n∈N*);(2)若{bn}是等差数列,证明:c=0.【分析】(1)写出等差数列的通项公式,前n项和公式,由b1,b2,b4成等比数列得到首项和公差的关系,代入前n项和公式得到Sn,在前n项和公式中取n=nk可证结论;(2)把Sn代入中整理得到bn=,由等差数列的通项公式是an=An+B的形式,说明,由此可得到c=0.【解答】证明:(1)若c=0,则an=a1+(n﹣1)d,,.当b1,b2,b4成等比数列时,则,即:,得:d2=2ad,又d≠0,故d=2a.因此:,,.故:(k,n∈N*).(2)==.①若{bn}是等差数列,则{bn}的通项公式是bn=An+B型.观察①式后一项,分子幂低于分母幂,故有:,即,而,故c=0.经检验,当c=0时{bn}是等差数列.【点评】本题考查了等差数列和等比数列的性质,考查了等差数列的前n项和,考查了学生的运算能力,解答此题的关键是理解并掌握非常数等差数列的通项公式是关于n的一次函数,此题是中档题.20.(16分)设函数f(x)=lnx﹣ax,g(x)=ex﹣ax,其中a为实数.(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;(2)若g(x)在(﹣1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.【分析】(1)求导数,利用f(x)在(1,+∞)上是单调减函数,转化为﹣a≤0在(1,+∞)上恒成立,利用g(x)在(1,+∞)上有最小值,结合导数知识,即可求得结论;(2)先确定a的范围,再分类讨论,确定f(x)的单调性,从而可得f(x)的零点个数.【解答】解:(1)求导数可得f′(x)=﹣a∵f(x)在(1,+∞)上是单调减函数,∴﹣a≤0在(1,+∞)上恒成立,∴a≥,x∈(1,+∞).∴a≥1.令g′(x)=ex﹣a=0,得x=lna.当x<lna时,g′(x)<0;当x>lna时,g′(x)>0.又g(x)在(1,+∞)上有最小值,所以lna>1,即a>e.故a的取值范围为:a>e.(2)当a≤0时,g(x)必为单调函数;当a>0时,令g′(x)=ex﹣a>0,解得a<ex,即x>lna,因为g(x)在(﹣1,+∞)上是单调增函数,类似(1)有lna≤﹣1,即0<.结合上述两种情况,有.①当a=0时,由f(1)=0以及f′(x)=>0,得f(x)存在唯一的零点;②当a<0时,由于f(ea)=a﹣aea=a(1﹣ea)<0,f(1)=﹣a>0,且函数f(x)在[ea,1]上的图象不间断,所以f(x)在(ea,1)上存在零点.另外,当x>0时,f′(x)=﹣a>0,故f(x)在(0,+∞)上是单调增函数,所以f (x)只有一个零点.③当0<a≤时,令f′(x)=﹣a=0,解得x=.当0<x<时,f′(x)>0,当x>时,f′(x)<0,所以,x=是f(x)的最大值点,且最大值为f()=﹣lna﹣1.(i)当﹣lna﹣1=0,即a=时,f(x)有一个零点x=e;(ii)当﹣lna﹣1>0,即0<a<时,f(x)有两个零点;实际上,对于0<a<,由于f()=﹣1﹣<0,f()>0,且函数f(x)在[]上的图象不间断,所以f(x)在()上存在零点.另外,当0<x<时,f′(x)=﹣a>0,故f(x)在(0,)上时单调增函数,所以f(x)在(0,)上只有一个零点.下面考虑f(x)在(,+∞)上的情况,先证明f()=a()<0.为此,我们要证明:当x>e时,ex>x2.设h(x)=ex﹣x2,则h′(x)=ex﹣2x,再设l (x)=h′(x)=ex﹣2x,则l′(x)=ex﹣2.当x>1时,l′(x)=ex﹣2>e﹣2>0,所以l(x)=h′(x)在(1,+∞)上时单调增函数;故当x>2时,h′(x)=ex﹣2x>h′(2)=e2﹣4>0,从而h(x)在(2,+∞)上是单调增函数,进而当x>e时,h(x)=ex﹣x2>h(e)=ee﹣e2>0,即当x>e时,ex>x2当0<a<,即>e时,f()==a()<0,又f()>0,且函数f(x)在[,]上的图象不间断,所以f(x)在(,)上存在零点.又当x>时,f′(x)=﹣a<0,故f(x)在(,+∞)上是单调减函数,所以f(x)在(,+∞)上只有一个零点.综合(i)(ii)(iii),当a≤0或a=时,f(x)的零点个数为1,当0<a<时,f(x)的零点个数为2.【点评】此题考查的是可导函数的单调性与其导数的关系,考查分类讨论的数学思想,考查学生分析解决问题的能力,难度较大.[选做题]本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修41:几何证明选讲](本小题满分10分)21.(10分)如图,AB和BC分别与圆O相切于点D、C,AC经过圆心O,且BC=2OC.求证:AC=2AD.【分析】证明Rt△ADO∽Rt△ACB,可得,结合BC=2OC=2OD,即可证明结论.【解答】证明:连接OD.因为AB和BC分别与圆O相切于点D,C,所以ADO=∠ACB=90°又因为∠A=∠A,所以Rt△ADO∽Rt△ACB,所以,因为BC=2OC=2OD.所以AC=2AD.【点评】本题考查圆的切线,考查三角形相似的判定与性质,比较基础.B.[选修42:矩阵与变换](本小题满分10分)22.(10分)已知矩阵A=,B=,求矩阵A﹣1B.【分析】设矩阵A﹣1=,通过AA﹣1为单位矩阵可得A﹣1,进而可得结论.【解答】解:设矩阵A的逆矩阵为,则=,即=,故a=﹣1,b=0,c=0,d=,从而A﹣1=,∴A﹣1B==.【点评】本题考查逆矩阵、矩阵的乘法,考查运算求解能力,属于基础题.C.[选修44:坐标系与参数方程](本小题满分0分)23.在平面直角坐标系xOy中,直线l的参数方程为(为参数),曲线C的参数方程为(t为参数).试求直线l和曲线C的普通方程,并求出它们的公共点的坐标.【分析】运用代入法,可将直线l和曲线C的参数方程化为普通方程,联立直线方程和抛物线方程,解方程可得它们的交点坐标.【解答】解:直线l的参数方程为(为参数),由x=t+1可得t=x﹣1,代入y=2t,可得直线l的普通方程:2x﹣y﹣2=0.曲线C的参数方程为(t为参数),化为y2=2x,联立,解得,,于是交点为(2,2),.【点评】本题主要考查了参数方程与普通方程的互化、直线与抛物线的位置关系等基础知识,考查了转化能力,属于基础题.D.[选修45:不等式选讲](本小题满分0分)24.已知a≥b>0,求证:2a3﹣b3≥2ab2﹣a2b.【分析】直接利用作差法,然后分析证明即可.【解答】证明:2a3﹣b3﹣2ab2+a2b=2a(a2﹣b2)+b(a2﹣b2)=(a﹣b)(a+b)(2a+b),∵a≥b>0,∴a﹣b≥0,a+b>0,2a+b>0,从而:(a﹣b)(a+b)(2a+b)≥0,∴2a3﹣b3≥2ab2﹣a2b.【点评】本题考查不等式的证明,作差法的应用,考查逻辑推理能力.第25题、第26题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.(10分)如图,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与ABA1所成二面角的正弦值.【分析】(1)以{}为单位正交基底建立空间直角坐标系A﹣xyz,利用向量法能求出异面直线A1B与C1D所成角的余弦值.(2)分别求出平面ABA1的法向量和平面ADC1的法向量,利用向量法能求出平面ADC1与ABA1所成二面角的余弦值,再由三角函数知识能求出平面ADC1与ABA1所成二面角的正弦值.【解答】解:(1)以{}为单位正交基底建立空间直角坐标系A﹣xyz,则由题意知A(0,0,0),B(2,0,0),C(0,2,0),A1(0,0,4),D(1,1,0),C1(0,2,4),∴,=(1,﹣1,﹣4),∴cos<>===,∴异面直线A1B与C1D所成角的余弦值为.(2)是平面ABA1的一个法向量,设平面ADC1的法向量为,∵,∴,取z=1,得y=﹣2,x=2,∴平面ADC1的法向量为,设平面ADC1与ABA1所成二面角为θ,∴cosθ=|cos<>|=||=,∴sinθ==.∴平面ADC1与ABA1所成二面角的正弦值为.【点评】本题考查两条异面直线所成角的余弦值的求法,考查平面与平面所成角的正弦值的求法,解题时要注意向量法的合理运用.26.(10分)设数列{an}:1,﹣2,﹣2,3,3,3,﹣4,﹣4,﹣4,﹣4,…,,…,即当<n≤(k∈N*)时,.记Sn=a1+a2+…+an(n∈N∗).对于l∈N∗,定义集合Pl=﹛n|Sn为an的整数倍,n∈N∗,且1≤n≤l}(1)求P11中元素个数;(2)求集合P2000中元素个数.【分析】(1)由数列{an}的定义,可得前11项,进而得到前11项和,再由定义集合Pl,即可得到元素个数;(2)运用数学归纳法证明Si(2i+1)=﹣i(2i+1)(i∈N*).再结合定义,运用等差数列的求和公式,即可得到所求.【解答】解:(1)由数列{an}的定义得a1=1,a2=﹣2,a3=﹣2,a4=3,a5=3,a6=3,a7=﹣4,a8=﹣4,a9=﹣4,a10=﹣4,a11=5,所以S1=1,S2=﹣1,S3=﹣3,S4=0,S5=3,S6=6,S7=2,S8=﹣2,S9=﹣6,S10=﹣10,S11=﹣5,从而S1=a1,S4=0•a4,S5=a5,S6=2a6,S11=﹣a11,所以集合P11中元素的个数为5;(2)先证:Si(2i+1)=﹣i(2i+1)(i∈N*).事实上,①当i=1时,Si(2i+1)=S3=﹣3,﹣i(2i+1)=﹣3,故原等式成立;②假设i=m时成立,即Sm(2m+1)=﹣m(2m+1),则i=m+1时,S(m+1)(2m+3)=Sm(2m+1)+(2m+1)2﹣(2m+2)2=﹣m(2m+1)﹣4m﹣3=﹣(2m2+5m+3)=﹣(m+1)(2m+3).综合①②可得Si(2i+1)=﹣i(2i+1).于是S(i+1)(2i+1)=Si(2i+1)+(2i+1)2=﹣i(2i+1)+(2i+1)2=(2i+1)(i+1).由上可知Si(2i+1)是2i+1的倍数,而ai(2i+1)+j=2i+1(j=1,2,…,2i+1),所以Si(2i+1)+j=Si(2i+1)+j(2i+1)是ai(2i+1)+j(j=1,2,…,2i+1)的倍数.又S(i+1)(2i+1)=(i+1)•(2i+1)不是2i+2的倍数,而a(i+1)(2i+1)+j=﹣(2i+2)(j=1,2,…,2i+2),所以S(i+1)(2i+1)+j=S(i+1)(2i+1)﹣j(2i+2)=(2i+1)(i+1)﹣j(2i+2)不是a(i+1)(2i+1)+j(j=1,2,…,2i+2)的倍数,故当l=i(2i+1)时,集合Pl中元素的个数为1+3+…+(2i﹣1)=i2,于是,当l=i(2i+1)+j(1≤j≤2i+1)时,集合Pl中元素的个数为i2+j.又2000=31×(2×31+1)+47,故集合P2 000中元素的个数为312+47=1008.【点评】本题考查集合、数列的概念和运算、计数原理等基础知识,考查探究能力,以及运用数学归纳法的推理论证能力,有一定的难度.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(12)一、选择题(每小题5分,共50分)1.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅B.{2}C.{5}D.{2,5}3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm24.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位5.(5分)在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45B.60C.120D.2106.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>97.(5分)在同一直角坐标系中,函数f(x)=xa(x>0),g(x)=logax的图象可能是()。
2024年新高考数学选填压轴题汇编(一)(解析版)
2024年新高考数学选填压轴题汇编(一)一、多选题1(2023·广东深圳·高三红岭中学校考阶段练习)已知长方体的表面积为10,十二条棱长度之和为16,则该长方体()A.一定不是正方体B.外接球的表面积为6πC.长、宽、高的值均属于区间1,2D.体积的取值范围为5027,2【答案】ABD【解析】设长方体的长宽高分别为a ,b ,c ,则可得2ab +ac +bc =104a +b +c =16,即ab +ac +bc =5a +b +c =4 ,又因为a +b +c 2=a 2+b 2+c 2 +2ab +ac +bc =16,所以a 2+b 2+c 2=6,由不等式可得,a 2+b 2+c 2≥ab +ac +bc ,当且仅当a =b =c 时,等号成立,而a 2+b 2+c 2>ab +ac +bc ,取不到等号,所以得不到a =b =c ,即该长方体一定不是正方体,故A 正确;设长方体外接球的半径为R ,则2R =a 2+b 2+c 2=6,即R =62,则外接球的表面积为4π622=6π,故B 正确;由a +b +c =4可得,c =4-a +b ,代入ab +ac +bc =5可得,ab +4-a +b a +b =5,即ab =5-4-a +b a +b ,因为a ,b >0,由基本不等式可得ab ≤a +b24,即5-4-a +b a +b ≤a +b24,设a +b =t ,则t >0,则5-4-t t ≤t 24,化简可得3t 2-16t +20≤0,即3t -10 t -2 ≤0,所以2≤t ≤103,即2≤a +b ≤103,又因为a +b =4-c ,则23≤c ≤2,同理可得a ,b ∈23,2 ,故C 错误;设长方体的体积为V ,则V =abc =5-4-a +b a +b 4-a +b ,且a +b =t ,2≤t ≤103,即V =5-4-t t 4-t ,其中t ∈2,103,化简可得,V =4-t 5-4t +t 2 ,t ∈2,103,且V =-5-4t +t 2 +4-t -4+2t =-3t -7 t -3 ,t ∈2,103,令V =0,则t =73或3,当t ∈2,73时,V <0,即V 单调递减,当t ∈73,3时,V >0,即V 单调递增,当t ∈3,103时,V <0,即V 单调递减,所以,当t =73时,V 有极小值,且V 73 =4-73 5-4×73+499 =5027,当t =3时,V 有极大值,且V 3 =4-3 5-4×3+9 =2,又因为V 2 =4-2 5-4×2+4 =2,V 103 =4-103 5-4×103+1009 =5027,所以V ∈5027,2 ,故D 正确;故选:ABD2(2023·广东·高三校联考阶段练习)对于数列a n ,若存在正数M ,使得对一切正整数n ,都有a n ≤M ,则称数列a n 是有界的.若这样的正数M 不存在,则称数列a n 是无界的.记数列a n 的前n 项和为S n ,下列结论正确的是()A.若a n =1n,则数列a n 是无界的 B.若a n =12nsin n ,则数列S n 是有界的C.若a n =-1 n ,则数列S n 是有界的 D.若a n =2+1n2,则数列S n 是有界的【答案】BC【解析】对于A ,∵a n =1n=1n≤1恒成立,∴存在正数M =1,使得a n ≤M 恒成立,∴数列a n 是有界的,A 错误;对于B ,∵-1≤sin n ≤1,∴-12n≤a n =12n⋅sin n ≤12n,∴S n =a 1+a 2+⋯+a n <12+122+⋯+12n=121-12 n1-12=1-12n<1,S n =a 1+a 2+⋯+a n >-12+12 2+⋯+12 n=-1+12 n>-1,所以存在正数M =1,使得S n ≤M 恒成立,∴则数列S n 是有界的,B 正确;对于C ,因为a n =-1 n ,所以当n 为偶数时,S n =0;当n 为奇数时,S n =-1;∴S n ≤1,∴存在正数M =1,使得S n ≤M 恒成立,∴数列S n 是有界的,C 正确;对于D ,1n 2=44n 2<42n -1 2n +1=412n -1-12n +1 ,∴S n =2n +1+122+132+⋅⋅⋅1n2≤2n +41-13+13-15+⋅⋅⋅+12n -1-12n +1 =2n +41-12n +1 =2n +8n 2n +1=2n -22n +1+2 ;∵y =x -22x +1在0,+∞ 上单调递增,∴n -22n +1∈13,+∞,∴不存在正数M ,使得S n ≤M 恒成立,∴数列S n 是无界的,D 错误.故选:BC .3(2023·广东·高三校联考阶段练习)如图,正方体ABCD -A 1B 1C 1D 1中,E 为A 1B 1的中点,P 为棱BC 上的动点,则下列结论正确的是()A.存在点P ,使AC 1⊥平面D 1EPB.存在点P ,使PE =PD 1C.四面体EPC 1D 1的体积为定值D.二面角P -D 1E -C 1的余弦值取值范围是55,23【答案】BC【解析】(向量法)为简化运算,建立空间直角坐标系如图,设正方体棱长为2,CP =20≤a ≤2 ,则P a ,2,2 ,E 2,1,0 ,A 2,0,0 ,C 10,2,2 ,AC 1 =-2,2,-2 ,D 1E ⋅AC 1 =-2≠0,故AC 1与D 1E 不垂直,故A 错误.由PE =PD 1知a 2+22+22=a -2 2+12+22,a =14∈0,2 ,故B 正确.V E -PC 1D 1=V P -C 1D 1E =13⋅2⋅S △C 1D 1E =13⋅2⋅12⋅2⋅2=43,为定值.故C 正确.又D 1E =2,1,0 ,D 1P =a ,2,2 ,设平面D 1EP 的法向量n 1 =x ,y ,z ,由D 1E ⋅n 1=0D 1P ⋅n 1 =0,2x +y =0ax +2y +2z =0 ,令x =2则y =-4,z =4-a ,∴n 1=2,-4,4-a ,又平面D 1EC 1的法向量n 2=0,0,1 ,∴cos n 1 ,n 2 =4-a 22+-4 2+4-a 2=11+204-a2,又0≤a ≤2,∴4≤4-a 2≤16,∴cos n 1 ,n 2 ∈66,23.故D 错误.(几何法)记棱A 1D 1,D 1D ,DC ,CB ,BB 1中点分别为F ,G ,J ,I ,H ,易知AC 1⊥平面EFGJIH ,而EF ⊂平面EFGJIH则AC 1⊥EF ,若AC 1⊥平面D 1EP ,D 1E ⊂平面D 1EP ,则AC 1⊥D 1E ,由EF ∩D 1E =E ,EF ,D 1E ⊂平面D 1EF ,所以AC 1⊥平面D 1EF ,与已知矛盾,故AC 1不垂直于平面D 1EP .故A 错误.连接EB ,D 1C ,易知BC ⊥EB ,BC ⊥D 1C ,设正方体棱长为2,知EB =5,D 1C =22,记BP =m 0≤m ≤2 ,则EP =m 2+5,D 1P =2-m2+8,由m 2+5=2-m 2+8,得m =74∈0,2 .故B 正确.V E -PC 1D 1=V P -C 1D 1E =13⋅2⋅S △C 1D 1E =13⋅2⋅12⋅2⋅2=43,为定值.故C 正确.过点P 作PM ⊥B 1C 1于点M ,易知PM ⊥D 1E ,过点M 作MN ⊥D 1E 于点N ,知D 1E ⊥平面PMN ,所以PN ⊥D 1E ,则二面角P -D 1E -C 1的平面角为∠PNM ,现在△PNM 中求解cos ∠PNM .设正方体棱长为2,NM =x ,则NP =x 2+4,∴cos ∠PNM =NMNP=xx 2+4,只需求x 取值范围即可:记BP =m 0≤m ≤2 ,则B 1M =BP =m ,分析易知M 在C 1时x 取到最大值,此时x =C 1N 1,M 在B 1时x 取到最小值,此时x =B 1N 2,又C 1N 1C 1D 1=D 1A 1D 1E 即C 1N 1=2⋅25=455,B 1N 2D 1A 1=B 1E D 1E 即B 1N 2=2⋅15=255,所以255≤x ≤455即45≤x 2≤165,∴cos ∠PNM =x x 2+4=1-4x 2+4∈66,23 .故D 错误.故选:BC4(2023·广东·高三校联考阶段练习)已知f x =xe x ,g x =x ln x .若存在x 1∈R ,x 2∈0,+∞ ,使得f x 1 =g x 2 =t 成立,则下列结论中正确的是()A.当t >0时,x 1x 2=tB.当t >0时,e ln t ≤x 1x 2C.不存在t ,使得f x 1 =g x 2 成立D.f x >g x +mx 恒成立,则m ≤2【答案】AB【解析】选项A ,∵f x 1 =g x 2 =t ∴t =x 1e x 1=x 2ln x 2=ln x 2e ln x 2>0,则x 1>0,x 2>0,ln x 2>0,且t =f (x 1)=f (ln x 2)>0,由f x =xe x ,得f x =e x x +1 ,当x >0时,f x >0,则f x 在0,+∞ 上递增,所以当t >0时,f x =t 有唯一解,故x 1=ln x 2,∴x 1x 2=x 2ln x 2=t ,故A 正确;选项B ,由A 正确,得ln t x 1x 2=ln tt(t >0),设φt =ln t t ,则φ t =1-ln tt 2,令φ t =0,解得t =e易知φt 在0,e 上单调递增,在e ,+∞ 上单调递减,∴φt ≤φe =1e ,∴ln t x 1x 2≤1e ,∴e ln t ≤x 1x 2,故B 正确;选项C ,由f x =e x x +1 ,g x =ln x +1=0,得f -1 =g 1e=0,又验证知f -1 =g 1e =-1e ,故存在t =-1e ,使得f -1 =g 1e=0,C 错误;选项D ,由x >0,f x >g x +mx 恒成立,即e x -ln x >m 恒成立,令r x =e x -ln x ,则r x =e x -1x ,由r x 在0,+∞ 上递增,又r 12=e -2<0,r 1 =e -1>0,∴存在x 0∈12,1 ,使r x 0 =0,∴r x 在0,x 0 上递减,在x 0,+∞ 上递增(其中x 0满足e x 0=1x 0,即x 0=-ln x 0).∴r x ≥r x 0 =e x 0-ln x 0=1x 0+x 0>2,要使m <e x -ln x 恒成立,∴m <r (x 0),存在2<m <r (x 0)满足题意,故D 错误.故选:AB .5(2023·广东梅州·高三大埔县虎山中学校考开学考试)已知f x 是定义在R 上的偶函数,且对任意x ∈R ,有f 1+x =-f 1-x ,当x ∈0,1 时,f x =x 2+x -2,则()A.f x 是以4为周期的周期函数B.f 2021 +f 2022 =-2C.函数y =f x -log 2x +1 有3个零点D.当x ∈3,4 时,f x =x 2-9x +18【答案】ACD【解析】依题意,f x 为偶函数,且f 1+x =-f 1-x ⇒f x 关于1,0 对称,则f x +4 =f 1+x +3 =-f 1-x +3 =-f -2-x=-f -2+x =-f 2+x =-f 1+1+x =f 1-1+x =f -x =f x ,所以f x 是周期为4的周期函数,A 正确.因为f x 的周期为4,则f 2021 =f 1 =0,f 2022 =f 2 =-f 0 =2,所以f 2021 +f 2022 =2,B 错误;作函数y =log 2x +1 和y =f x 的图象如下图所示,由图可知,两个函数图象有3个交点,C 正确;当x ∈3,4 时,4-x ∈0,1 ,则f x =f -x =f 4-x =4-x 2+4-x -2=x 2-9x +18,D 正确.故选:ACD6(2023·广东梅州·高三大埔县虎山中学校考开学考试)如图,正方形ABCD 中,E 、F 分别是AB 、BC的中点将△ADE,ΔCDF,△BEF分别沿DE、DF、EF折起,使A、B、C重合于点P.则下列结论正确的是A.PD⊥EFB.平面PDE⊥平面PDFC.二面角P-EF-D的余弦值为13D.点P在平面DEF上的投影是ΔDEF的外心【答案】ABC【解析】对于A选项,作出图形,取EF中点H,连接PH,DH,又原图知ΔBEF和ΔDEF为等腰三角形,故PH⊥EF,DH⊥EF,所以EF⊥平面PDH,所以PD⊥EF,故A正确;根据折起前后,可知PE,PF,PD 三线两两垂直,于是可证平面PDE⊥平面PDF,故B正确;根据A选项可知∠PHD为二面角P-EF-D的平面角,设正方形边长为2,因此PE=PF=1,PH=22,DH=22-22=322,PD=DF2-PF2=2,由余弦定理得:cos∠PHD=PH2+HD2-PD22PH⋅HD =13,故C正确;由于PE=PF≠PD,故点P在平面DEF上的投影不是ΔDEF的外心,即D错误;故答案为ABC.7(2023·广东·高三校联考阶段练习)在正方体ABCD-A1B1C1D1中,E,F,G分别为BC,CC1,BB1的中点,则()A.直线D1D与EF所成的角为30°B.直线A1G与平面AEF平行C.若正方体棱长为1,三棱锥A1-AEF的体积是112D.点B 1和B 到平面AEF 的距离之比是3:1【答案】BCD【解析】对于选项A ,由图可知CC 1与DD 1显然平行,所以∠EFC =45°即为所求,故选项A 不正确;对于选项B ,取B 1C 1的中点M ,连接A 1M 、GM ,如图所示,易知A 1M ⎳AE ,且A 1M ⊄平面AEF ,AE ⊂平面AEF ,所以A 1M ⎳平面AEF .又易知GM ⎳EF ,GM ⊄平面AEF ,EF ⊂平面AEF ,所以GM ⎳平面AEF .又A 1M ∩GM =M ,A 1M 、GM ⊂面A 1MG ,所以平面A 1MG ⎳平面AEF .又A 1G ⊂平面A 1MG ,所以A 1G ⎳平面AEF ,故选项B 正确;对于选项C ,由选项B 知,A 1G ⎳平面AEF ,所以A 1和G 到平面AEF 的距离相等,所以V A 1-AEF =V G -AEF =V A -FEG =13×12×12×1×1=112.故选项C 正确;对于选项D ,平面AEF 过BC 的中点E ,即平面AEF 将线段BC 平分,所以C 与B 到平面AEF 的距离相等,连接B 1C 交EF 于点H ,如图所示,显然B 1H :HC =3:1,所以B 1与B 到平面AEF 的距离之比为3:1,故选项D 正确.故选:BCD .8(2023·广东·高三校联考阶段练习)已知数列a n 满足a 1=1,a 2=3,S n 是前n 项和,若n S n +1-S n -1=n +1 S n -S n -1 ,(n ∈N *且n ≥2),若不等式a n <n -2t 2-a +1 t +a 2-a +2 对于任意的n ∈N *,t ∈1,2 恒成立,则实数a 的值可能为()A.-4 B.0C.2D.5【答案】AD【解析】由n S n +1-S n -1=n +1 S n -S n -1 ,n ≥2,则na n +1-1=n +1 a n ,n ≥2,得a n +1-1n =n +1n a n ,n ≥2;a 2-11=2=21a 1,所以a n +1n +1-a n n =1n n +1=1n -1n +1,n ≥1,则a n n -a n -1n -1=1n -1-1n ,a n -1n -1-a n -2n -2=1n -2-1n -1,⋯,a 22-a 11=1-12,上述式子累加可得a n n -a 1=1-1n ,所以a n n =2-1n<2.所以-2t 2-a +1 t +a 2-a +2≥2对于任意的t ∈1,2 恒成立,整理得2t -a -1 t +a ≤0对于任意的t ∈1,2 恒成立.方法一:对选项A ,当a =-4时,不等式为2t +5 t -4 ≤0,其解集-52,4包含1,2 ,故选项A 正确;对选项B ,当a =0时,不等式为2t +1 t ≤0,其解集-12,0不包含1,2 ,故选项B 错误;对选项C ,当a =2时,不等式为2t -1 t +2 ≤0,其解集-2,12不包含1,2 ,故选项C 错误;对选项D ,当a =5时,不等式为2t -4 t +5 ≤0,其解集-5,2 包含1,2 ,故选项D 正确.方法二:令f t =2t -a -1 t +a ,若2t -a -1 t +a ≤0对于任意的t ∈1,2 恒成立,只需f 1 ≤0f 2 ≤0,即3-a 1+a ≤05-a 2+a ≤0 ,解得a ≥5或a ≤-2.故选:AD .9(2023·广东·高三统考阶段练习)已知函数f x =sin n x +cos n x x ∈N * ,则()A.对任意正奇数n ,f x 为奇函数B.对任意正整数n ,f x 的图像都关于直线x =π4对称C.当n =3时,f x 在0,π2上的最小值22D.当n =4时,f x 的单调递增区间是-π4+k π,k π k ∈Z 【答案】BC【解析】取n =1,则f x =sin x +cos x ,从而f 0 =1≠0,此时f x 不是奇函数,则A 错误;因为f π2-x =sin n π2-x +cos n π2-x =cos n x +sin n x =f x ,所以f x 的图象关于直线x =π4对称,则B 正确;当n =3时,f x =3sin 2x cos x -3cos 2x sin x =3sin x cos x sin x -cos x ,当x ∈0,π4时,fx <0;当x ∈π4,π2 时,f x >0.所以f x 在0,π4 上单调递减,在π4,π2 上单调递增,所以f x 的最小值为f π4 =22 3+22 3=22,故C 正确;当n =4时,f x =sin 4x +cos 4x =sin 2x +cos 2x 2-2sin 2x cos 2x =1-12sin 22x=1-1-cos4x 4=14cos4x +34,则f x 的递增区间为-π4+k π2,k π2k ∈Z ,则D 错误.故选:BC .10(2023·广东·高三统考阶段练习)若实数a ,b 满足2a +3a =3b +2b ,则下列关系式中可能成立的是()A.0<a<b<1B.b<a<0C.1<a<bD.a=b【答案】ABD【解析】设f(x)=2x+3x,g(x)=3x+2x,则f(x)=2x+3x,g(x)=3x+2x都为增函数,作出两函数的图象,两个函数图象有2个交点,分别为(0,1),(1,5),对于A,作直线y=m(1<m<5)分别与f(x),g(x)图象相交,交点横坐标为a,b,且0<a<b<1,此时f(a)=g(b)=m,即2a+3a=3b+2b能成立,故A正确;对于B,作直线y=n(n<0)分别与f(x),g(x)图象相交,交点横坐标为b,a,且b<a<0,此时f(a)=g(b) =n,即2a+3a=3b+2b能成立,故B正确;对于C,a=2,f(a)=f(2)=10,因为2=a<b,所以f(b)=3b+2b>32+4=13,所以此时2a+3a=3b+2b 不可能成立,故C不正确;对于D,a=b=0或a=b=1,2a+3a=3b+2b成立,所以D正确.故选:ABD.11(2023·广东·高三统考阶段练习)已知正方体ABCD -A 1B 1C 1D 1的棱长为4,M 为DD 1的中点,N 为ABCD 所在平面上一动点,N 1为A 1B 1C 1D 1所在平面上一动点,且NN 1⊥平面ABCD ,则下列命题正确的是()A.若MN 与平面ABCD 所成的角为π4,则点N 的轨迹为圆B.若三棱柱NAD -N 1A 1D 1的表面积为定值,则点N 的轨迹为椭圆C.若点N 到直线BB 1与直线DC 的距离相等,则点N 的轨迹为抛物线D.若D 1N 与AB 所成的角为π3,则点N 的轨迹为双曲线【答案】ACD【解析】A :连接DN ,因为MD ⊥平面ABCD ,所以∠MND 是MN 与平面ABCD 所成的角,即∠MND =π4,因为M 为DD 1的中点,所以MD =12DD 1=2,在直角三角形MND 中,tan ∠MND =MD DN ⇒1=2DN⇒DN =2,因此点N 的轨迹为以D 为圆心半径为2的圆,所以本选项命题是真命题;B :过N 做EN ⊥AD ,设三棱柱NAD -N 1A 1D 1的表面积为S ,所以S =2×12×4⋅NE +(AD +DN +AN )⋅4=4(4+DN +AN +NE )=定值,显然有N 到A 、D 、直线AD 的距离之和为定值,这与椭圆的定义不符合,故本选项命题是假命题;C :连接BN ,因为BB 1⊥平面ABCD ,BN ⊂平面ABCD ,所以BB 1⊥BN ,即点N 到直线BB 1与NB 相等,所以点N 的轨迹为点N 到点B 与直线DC 的距离相等的轨迹,即抛物线,所以本选项命题是真命题;D :以D 为空间坐标系的原点,DA 、DC 、DD 1所在的直线分别为x 、y 、z ,D (0,0,0)、A (4,0,0)、B (4,4,0)、N (x ,y ,0)、D 1(0,0,4),则有AB =(0,4,0)、D 1N =(x ,y ,-4),因为D 1N 与AB 所成的角为π3,所以cos π3=AB ⋅D 1N AB ⋅D 1N ⇒12=4y 4⋅x 2+y 2+16⇒3y 2-x 2=16,所以点N 的轨迹为双曲线,故本选项命题是真命题,故选:ACD12(2023·广东江门·高三台山市第一中学校考阶段练习)已知函数f (x )=e x -1+e 1-x +x 2-2x ,若不等式f (2-ax )<f x 2+3 对任意x ∈R 恒成立,则实数a 的取值可能是()A.-4B.-12C.2D.32【答案】BC【解析】由函数f (x )=e x -1+e 1-x +x 2-2x ,令t =x -1,则x =t +1,可得g (t )=e t +e -t +t 2-1,可得g (-t )=e -t +e t +(-t )2-1=e t +e -t +t 2-1=g (t ),所以g t 为偶函数,即函数f x 的图象关于x =1对称,又由g (t )=e t -e -t +2t ,令φ(t )=g (t )=e t -e -t +2t ,可得φ (t )=e t +e -t +2>0,所以φ(t )为单调递增函数,且φ(0)=0,当t >0时,g (t )>0,g t 单调递增,即x >1时,f x 单调递增;当t <0时,g (t )<0,g t 单调递减,即x <1时,f x 单调递减,由不等式f (2-ax )<f x 2+3 ,可得2-ax -1 <x 2+3-1 ,即1-ax <x 2+2所以不等式1-ax <x 2+2恒成立,即-x 2-2<ax -1<x 2+2恒成立,所以x 2+ax +1>0x 2-ax +3>0 的解集为R ,所以a 2-4<0且(-a )2-12<0,解得-2<a <2,结合选项,可得BC 适合.故选:BC .13(2023·广东·高三河源市河源中学校联考阶段练习)已知三次函数f x =x 3+bx 2+cx +d 有三个不同的零点x 1,x 2,x 3x 1<x 2<x 3 ,若函数g x =f x -1也有三个不同的零点t 1,t 2,t 3t 1<t 2<t 3 ,则下列等式或不等式一定成立的有()A.b 2<3cB.t 3>x 3C.x 1+x 2+x 3=t 1+t 2+t 3D.x 1x 2x 3-t 1t 2t 3=1【答案】BC【解析】f x =3x 2+2bx +c ,因为原函数有三个不同的零点,则f x =0有两个不同的实根,即3x 2+2bx +c =0,则Δ=4b 2-12c >0,即b 2>3c ,所以A 错误;因为三次函数f x =x 3+bx 2+cx +d 有三个不同的零点x 1,x 2,x 3x 1<x 2<x 3 ,所以x 3+bx 2+cx +d =x -x 1 x -x 2 x -x 3 =x 3-x 1+x 2+x 3 x 2+x 1x 2+x 2x 3+x 1x 3 x -x 1x 2x 3=0,所以x 1+x 2+x 3=-b ,x 1x 2x 3=-d ,同理t 1+t 2+t 3=-b ,t 1t 2t 3=1-d ,所以x 1+x 2+x 3=t 1+t 2+t 3,x 1x 2x 3-t 1t 2t 3=-1,故C 正确,D 错误;由f x 的图象与直线y =1的交点可知t 3>x 3,B 正确.故选:BC .14(2023·广东·高三河源市河源中学校联考阶段练习)已知直线l 过抛物线E :y 2=4x 的焦点F ,与抛物线相交于A x 1,y 1 、B x 2,y 2 两点,分别过A ,B 作抛物线的准线l 1的垂线,垂足分别为A 1,B 1,以线段A 1B 1为直径作圆M ,O 为坐标原点,下列正确的判断有()A.x 1+x 2≥2B.△AOB 为钝角三角形C.点F 在圆M 外部D.直线A 1F 平分∠OFA【答案】ABD 【解析】如图所示:对选项A ,由抛物线的焦半径公式可知AB =x 1+x 2+2≥2p =4,所以x 1+x 2≥2,故A 正确;对于选项B ,OA ⋅OB =x 1x 2+y 1y 2=y 1y 2216+y 1y 2,令直线l 的方程为x =my +1,代入y 2=4x 得y 2-4my -4=0,所以y 1y 2=-4,所以OA ⋅OB=-3<0,所以△AOB 是钝角三角形,故B 正确;对选项C ,D ,由AA 1 =AF 可知∠AA 1F =∠AFA 1,又AA 1∥OF ,所以∠AA 1F =∠OFA 1=∠AFA 1,所以直线FA 1平分角∠AFO ,同理可得FB 平分角∠BFO ,所以A 1F ⊥B 1F ,即∠A 1FB 1=90°,所以圆M 经过点F ,故C 错误,D 正确.故选:ABD15(2023·广东·高三河源市河源中学校联考阶段练习)已知圆O :x 2+y 2=4和圆C :(x -3)2+(y -3)2=4,P ,Q 分别是圆O ,圆C 上的动点,则下列说法错误的是()A.圆O 与圆C 相交B.PQ 的取值范围是32-4,32+4C.x -y =2是圆O 与圆C 的一条公切线D.过点Q 作圆O 的两条切线,切点分别为M ,N ,则存在点Q ,使得∠MQN =90°【答案】AC【解析】对于A 选项,由题意可得,圆O 的圆心为O 0,0 ,半径r 1=2,圆C 的圆心C 3,3 ,半径r 2=2,因为两圆圆心距OC =32>2+2=r 1+r 2,所以两圆外离,故A 错误;对于B 选项,PQ 的最大值等于OC +r 1+r 2=32+4,最小值为OC -r 1-r 2=32-4,故B 正确;对于C 选项,显然直线x -y =2与直线OC 平行,因为两圆的半径相等,则外公切线与圆心连线平行,由直线OC :y =x ,设外公切线为y =x +t ,则两平行线间的距离为2,即t2=2,故y =x ±22,故C 错误;对于D 选项,易知当∠MQN =90°时,四边形OMQN 为正方形,故当QO =22时,∠MQN =90°,故D 正确.故选:AC .16(2023·广东佛山·高三校考阶段练习)已知函数f x =3sin ωx +cos ωx (0<ω<3)满足f x +π2 =-f x ,其图象向右平移s s ∈N * 个单位后得到函数y =g x 的图象,且y =g x 在-π6,π6上单调递减,则()A.ω=1 B.函数f x 的图象关于5π12,0 对称C.s 可以等于5D.s 的最小值为2【答案】BCD【解析】对于A ,因为f x +π2 =-f x ,f x =3sin ωx +cos ωx =2sin ωx +π6,所以2sin ωx +π2ω+π6 =-2sin ωx +π6 ,π2ω=2k +1 π,k ∈Z ,则ω=4k +2,k ∈Z ,又0<ω<3,故ω=2,故A 错误;对于B ,由选项A 得f x =2sin 2x +π6,所以f 5π12=2sin 5π6+π6 =2sinπ=0,故5π12,0 是f x 的一个对称中心,故B 正确;对于C ,f x 的图象向右平移s s ∈N * 个单位后得到函数g x =2sin 2x -s +π6的图象,则g x =2sin 2x +π6-2s ,因为g x 在-π6,π6上单调递减,所以2×-π6 +π6-2s ≥2k π+π22×π6+π6-2s ≤2k π+3π2k ∈Z ,解得-k π-π2≤s ≤-k π-π3k ∈Z ,当k =-2时,3π2≤s ≤5π3,因为s ∈N *,所以s =5,故C 正确;对于D ,因为s ∈N *,所以-k π-π3>0,则k <-13,又k ∈Z ,故k ≤-1,当k =-1时,π2≤s ≤2π3,可知s min =2,故D 正确.故选:BCD .17(2023·广东佛山·高三校考阶段练习)已知函数f x 的定义域为0,+∞ ,其导函数为f x ,且f x +f x =x ln x ,f 1e =-1e,则()A.f 1e⋅e 1e-1>f 1B.f e ⋅e e -1>f 1C.f x 在0,+∞ 上是增函数D.f x 存在最小值【答案】ABC【解析】设F x =e x -1f x ,则F x =e x -1f x +f x =e x -1x ln x ,当x >1时,F x >0,当0<x <1时,F x <0,F x =e x -1f x 在1,+∞ 上单调递增,在0,1 上单调递减,A 选项,因为1e <1,所以F 1e >F 1 ,即e 1e-1f 1e>f 1 ,A 正确;B 选项,因为e >1,所以F e >F 1 ,即e e -1f e >f 1 ,B 正确;C 选项,f x =F x e x -1,则fx =F x -F x e x -1,令g x =F x -F x ,则g x =e x -1x ln x -e x -1x ln x =e x -11+ln x ,当x >1e 时,g x >0,当0<x <1e时,g x <0,故g x =F x -F x 在0,1e 上单调递减,在1e ,+∞ 单调递增,又g 1e =F 1e -F 1e =e 1e -1⋅1e ln 1e -e 1e -1f 1e =-e 1e -1⋅1e +e 1e-1⋅1e =0,故g x =F x -F x ≥0恒成立,所以fx =F x -F x ex -1≥0在0,+∞ 上恒成立,故f x 在0,+∞ 上是增函数,C 正确;D 选项,由C 选项可知,函数f x 在0,+∞ 上单调递增,故无最小值.故选:ABC18(2023·广东惠州·高三统考阶段练习)已知定义域为R 的函数f x 满足f -x -2 =-f x +2 ,f x 在0,+∞ 解析式为f x =3x 2-2x +1,0<x ≤1log 13x 2-718 ,x >1 ,则下列说法正确的是()A.函数f x 在-13,13上单调递减B.若函数f x 在0,p 内f x <1恒成立,则p ∈0,23C.对任意实数k ,y =f x 的图象与直线y =kx 最多有6个交点D.方程f x =m m >0 有4个解,分别为x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4>-143【答案】BD【解析】因为定义域为R 的函数f x 满足f -x -2 =-f x +2 ,即f -x -2 +f x +2 =0,所以函数为奇函数,因为f x 在0,+∞ 解析式为f x =3x 2-2x +1,0<x ≤1log 13x 2-718,x >1 ,故作出函数的图象,如图所示.选项A :由图可知,当x ∈-13,0 时,函数单调递减,当x ∈0,13时,函数单调递减,但当x ∈-13,13,并不是随着x 增加而减少,故选项A 错误;选项B :因为函数f x 在0,p 内f x <1恒成立,所以由图象可知,0<p <1由3x 2-2x +1=1解得,x 1=0,x 2=23,所以0<p ≤23,故选项B 正确;选项C :取k =74时,如图所示,1°当x ∈0,1 时,联立方程组y =74x y =3x 2-2x +1 ,化简得3x 2-154x +1=0,设函数h (x )=3x 2-154x +1,因为Δ>0h (0)=1>0h (1)=14>0且对称轴为x =58∈0,1 ,所以方程3x 2-154x +1=0在0,1 上有两个不相等的实数根,2°设m (x )=74x -log 13x 2-718 ,x ∈1,+∞ ,因为函数m (x )=74x -log 13x 2-718 在x ∈1,+∞ 上单调递增,且m (1)=74-2<0,m (2)=72-log 131118 >0,所以m (x )=74x -log 13x 2-718 在x ∈1,+∞ 在只有一个零点,所以直线y =74x 与函数y =f (x )图象在x ∈1,+∞ 有1个交点,所以当x ∈0,+∞ 时,直线y =74x 与函数y =f (x )图象有3个交点,因为函数y =74x 与函数y =f (x )均为奇函数,所以当x ∈-∞,0 时,直线y =74x 与函数y =f (x )图象有3个交点,又当x =0时,直线y =74x 与函数y =f (x )图象有1个交点,所以此时直线y =74x 与函数y =f (x )图象有7个交点,故选项C 错误;选项D :当m >0时,则根据图象可得f (x )=m 的4个解所在大致范围为x 1<0,0<x 2<13,13<x 3<1,x 4>1,因为f (x )=m 有4个解,所以23<m <1,所以23<log 13x 42-718 <1,解得139<x 4<21323+79,所以6<9x 4-7<181323,由二次函数的对称性可知,3x 2-2x +1=m 的解x 2、x 3满足x 2+x 3=23,因为函数y =f (x )为奇函数,且当x >1时解析式为y =log 13x 2-718,所以当x <-1时解析式为y =-log 13-x 2-718,所以log 13x 42-718=-log 13-x 12-718 ,所以有-x 12-718 x 42-718 =1,即x 1=-369x 4-7-79,所以x 1+x 4=x 4+-369x 4-7-79=9x 4-79-369x 4-7,设9x 4-7=t ,6<t <181323,又因为函数y =t 9-36t 在6,1813 23单调递增,所以x 1+x 4=t 9-36t >69-366=23-6=-163,所以x 1+x 2+x 3+x 4>-163+23=-143,所以选项D 正确,故选:BD .19(2023·广东揭阳·高三校考阶段练习)若定义在-1,1 上的函数f x 满足f x +f y =f x +y 1+xy,且当x >0时,f x <0,则下列结论正确的是( ).A.若x 1,x 2∈-1,1 ,x 2>x 1 ,则f x 1 +f x 2 >0B.若f 12 =-12,则f 4041 =-2C.若f 2-x +g x =4,则g x 的图像关于点2,4 对称D.若α∈0,π4,则f sin2α >2f sin α 【答案】BC【解析】令y =-x ,则f x +f -x =f 0 =0,∴f x 为奇函数,把y 用-y 代替,得到f x -f y =f x -y1-xy,设-1<y <x <1,1-x 1+y >0,∴0<x -y1-xy<1.又∵当x >0时,f x <0,∴f x <f y ,∴f x 在-1,1 上单调递减.∵x 1,x 2∈-1,1 ,x 2>x 1 ,当x >0时,f x <0,则当x 1>0时,则x 2>x 1>0,f x 1 +f x 2 <0,当x 1<0时,则x 2>-x 1>0,f x 1 +f x 2 =f x 2 -f -x 1 <0.综上,f x 1 +f x 2 <0,∴A 错误.令x =y =12,得2f 12 =f 45 ,∴f 45 =-1,令x =y =45,得2f 45 =f 4041 ,∴f 4041 =-2,∴B 正确.由f 2-x +g x =4,得f 2-x =4-g x ,得f x =4-g 2-x ,又∵f -x =4-g 2+x ,f x 为奇函数,∴f x +f -x =0,则g 2-x +g 2+x =8,则g x 的图像关于点2,4 对称,∴C 正确.f sin2α =f 2sin α⋅cos α =f2tan α1+tan 2α=2f tan α ,假设f sin2α >2f sin α ,可得f tan α >f sin α ,即tan α<sin α,当α∈0,π4时,不成立得出矛盾假设不成立,∴D 错误.故选:BC .20(2023·广东东莞·高三校联考阶段练习)已知函数f x =3sin2ωx +cos2ωx ω>0 的零点构成一个公差为π2的等差数列,把f x 的图象沿x 轴向右平移π3个单位得到函数g x 的图象,则()A.g x 在π4,π2上单调递增 B.π4,0 是g x 的一个对称中心C.g x 是奇函数 D.g x 在区间π6,2π3上的值域为0,2 【答案】AB【解析】因为f x =3sin2ωx +cos2ωx ω>0 ,所以f x =232sin2ωx +12cos2ωx =2sin 2ωx +π6 ,因为函数f x =3sin2ωx +cos2ωx ω>0 的零点依次构成一个公差为π2的等差数列,∴12⋅2π2ω=π2,∴ω=1,所以f (x )=2sin 2x +π6 ,把函数f (x )的图象沿x 轴向右平移π3个单位,得到g (x )=2sin 2x -π3 +π6 =2sin 2x -π2 =-2cos2x ,即g (x )=-2cos2x ,所以g (x )为偶函数,故C 错误;对于A :当x ∈π4,π2 时2x ∈π2,π ,因为y =cos x 在π2,π 上单调递减,所以g x 在π4,π2上单调递增,故A正确;对于B:gπ4=-2cos2×π4=-2cosπ2=0,故π4,0是g x 的一个对称中心,故B正确;对于D:因为x∈π6,2π3,所以2x∈π3,4π3,所以cos2x∈-1,12,所以g x ∈-1,2,故D错误;故选:AB21(2023·广东东莞·高三校联考阶段练习)对于函数f(x)=xln x,下列说法正确的是()A.f(x)在(1,e)上单调递增,在(e,+∞)上单调递减B.若方程f(|x|)=k有4个不等的实根,则k>eC.当0<x1<x2<1时,x1ln x2<x2ln x1D.设g(x)=x2+a,若对∀x1∈R,∃x2∈(1,+∞),使得g(x1)=f(x2)成立,则a≥e 【答案】BD【解析】函数f(x)=xln x的定义域为(0,1)∪(1,+∞),f(x)=ln x-1(ln x)2,当0<x<1或1<x<e时,f (x)<0,当x>e时,f (x)>0,f(x)在(0,1),(1,e)上都单调递减,在(e,+∞)上单调递增,A不正确;当x∈(1,+∞)时,f(x)的图象在x轴上方,且在x=e时,f(x)min=e,f(x)在(0,1)上的图象在x轴下方,显然f(|x|)是偶函数,在方程f(|x|)=k中,k<0或k=e时,方程有两个不等实根,0≤k<e时,方程无实根,k>e时,方程有4个不等的实根,B正确;因0<x1<x2<1,则有f(x2)<f(x1)<0,即x2ln x2<x1ln x1<0,于是得x2ln x1<x1ln x2,C不正确;当x∈R时,g(x)的值域为[a,+∞),当x∈(1,+∞)时,f(x)的值域为[e,+∞),因对∀x1∈R,∃x2∈(1,+∞),使得g(x1)=f(x2)成立,从而得[a,+∞)⊆[e,+∞),即得a≥e,D正确.故选:BD二、单选题22(2023·广东深圳·高三红岭中学校考阶段练习)过直线y=x上的一点作圆(x-5)2+(y-1)2=2的两条切线l1,l2,当直线l1,l2关于y=x对称时,它们之间的夹角为()A.30°B.45°C.60°D.90°【答案】C【解析】圆(x-5)2+(y-1)2=2的圆心(5,1),过(5,1)与y=x垂直的直线方程为x+y-6=0,它与y=x的交点N(3,3),N到(5,1)距离是22,圆的半径为2,两条切线l1,l2,它们之间的夹角为2×30°=60°.故选C.23(2023·广东·高三校联考阶段练习)如图,在边长为2的正方形ABCD中,E,F分别是AB,BC的中点,将△AED,△BEF,△DCF分别沿DE,EF,DF折起,使得A,B,C三点重合于点A ,若三棱锥A -EFD的所有顶点均在球O的球面上,则球O的表面积为()A.2πB.3πC.6πD.8π【答案】C【解析】根据题意可得A D ⊥A E ,A D ⊥A F ,A E ⊥A F ,且A E =1,A F =1,A D =2,所以三棱锥D -A EF 可补成一个长方体,则三棱锥D -A EF 的外接球即为长方体的外接球,如图所示,设长方体的外接球的半径为R ,可得2R =12+12+22=6,所以R =62,所以外接球的表面积为S =4πR 2=4π⋅622=6π,故选:C24(2023·广东·高三校联考阶段练习)已知f x =2sin ωx +π3+a -1 sin ωx (a >0,ω>0)在0,π 上存在唯一实数x 0使f x 0 =-3,又φx =f x -23,且有φx max =0,则实数ω的取值范围是()A.1<ω≤53B.1≤ω<53C.56<ω<32D.56<ω≤32【答案】A【解析】由题意可得f x =sin ωx +3cos ωx +a -1 sin ωx ,=a sin ωx +3cos ωx =a 2+3sin ωx +φ ,其中φ满足tan φ=3a,又φx max =0,即f x max =23,所以a 2+3=23,又a >0,解得a =3,所以f x =23sin ωx +π6,又0<x <π,所以π6<ωx +π6<ωπ+π6,因为f x 在上存在唯一实数x 0使f x 0 =-3,即sin ωx 0+π6 =-12,所以7π6<ωx +π6≤11π6,解得1<ω≤53,故选:A 25(2023·广东梅州·高三大埔县虎山中学校考开学考试)在△ABC 中,角B ,C 的边长分别为b ,c ,点O 为△ABC 的外心,若b 2+c 2=2b ,则BC ⋅AO的取值范围是()A.-14,0 B.0,2C.-14,+∞ D.-14,2【答案】D【解析】取BC 的中点D ,则OD ⊥BC ,所以BC ·AO =BC ·AD +DO =BC ·AD +BC ·DO =BC ·AD=AC -AB ⋅12AC +AB =12AC 2-AB 2=12b 2-c 2 =12b 2-2b -b 2 =b 2-b =b -122-14.因为c 2=2b -b 2>0,则b b -2 <0,即0<b <2.所以-14≤BC ⋅AO <2,故选:D .26(2023·广东·高三校联考阶段练习)已知等腰直角△ABC 中,∠C 为直角,边AC =6,P ,Q 分别为AC ,AB 上的动点(P 与C 不重合),将△APQ 沿PQ 折起,使点A 到达点A 的位置,且平面A PQ ⊥平面BCPQ .若点A ,B ,C ,P ,Q 均在球O 的球面上,则球O 体积的最小值为()A.8π3B.4π3C.82π3D.42π3【答案】C【解析】显然P 不与A 重合,由点A ,B ,C ,P ,Q 均在球D 的球面上,得B ,C ,P ,Q 共圆,则∠C +∠PQB =π,又△ABC 为等腰直角三角形,AB 为斜边,即有PQ ⊥AB ,将△APQ 翻折后,PQ ⊥A Q ,PQ ⊥BQ ,又平面A PQ ⊥平面BCPQ ,平面A PQ ∩平面BCPQ =PQ ,A Q ⊂平面A PQ ,BQ ⊂平面BCPQ ,于是A Q ⊥平面BCPQ ,BQ ⊥平面A PQ ,显然A P ,BP 的中点D ,E 分别为△A PQ ,四边形BCPQ 外接圆圆心,则DO ⊥平面A PQ ,EO ⊥平面BCPQ ,因此DO ⎳BQ ,EO ⎳A Q ,取PQ 的中点F ,连接DF ,EF ,则有EF ⎳BQ ⎳DO ,DF ⎳A Q ⎳EO ,四边形EFDO 为矩形,设A Q =x 且0<x <23,DO =EF =12BQ =23-x 2,A P =2x ,设球O 的半径R ,有R 2=DO 2+A P 2 2=34x 2-3x +3=34x -2332+2,当x =233时,R 3min=22,所以球O 体积的最小值为4πR 33=82π3.故选:C .27(2023·广东·高三校联考阶段练习)已知正项等比数列a n 的前n 项和为S n ,且满足a n S n =22n -1-2n -1,设b n =log 2S n +1 ,将数列b n 中的整数项组成新的数列c n ,则c 2023=()A.4048B.2023C.2022D.4046【答案】B【解析】令数列a n 的公比为q ,∵a n >0,∴a 1>0,q >0,因为a n S n =22n -1-2n -1,所以当n =1时,a 21=21-20=1,即a 1=1或a 1=-1(舍去),当n =2时,a 2S 2=23-21=6,即q 1+q =6,解得q =2或q =-3(舍去),所以a n =2n -1,S n =1×1-2n 1-2=2n -1,即b n =log 2S n +1 =n ,因为数列b n 中的整数项组成新的数列c n ,所以n =k 2,k ∈N *,此时b k 2=k 2=k ,即c n =n ,∴c 2023=2023.故选:B28(2023·广东·高三统考阶段练习)已知AB ⊥AC ,|AB |=t ,|AC |=1t.若点P 是△ABC 所在平面内一点,且AP =AB |AB |+2AC|AC |,则PB ⋅PC 的最大值为()A.13 B.5-22C.5-26D.10+22【答案】B【解析】以A 为坐标原点,建立如图所示的直角坐标系,设P (x ,y )则B (t ,0),C 0,1t (t >0),可得AB AB=(1,0),2AC |AC |=(0,2),所以AP =(1,2),即P (1,2),故PB =(t -1,-2),PC =-1,1t-2 ,所以PB ⋅PC =1-t +4-2t =5-t +2t ≤5-22,当且仅当t =2t即t =2时等号成立.故选:B .29(2023·广东·高三统考阶段练习)已知-π2<α-β<π2,sin α+2cos β=1,cos α-2sin β=2,则sin β+π3=A.33B.63C.36D.66【答案】A【解析】由sin α+2cos β=1,cos α-2sin β=2,将两个等式两边平方相加,得5+4sin α-β =3,sin α-β =-12,∵-π2<α-β<π2,∴α-β=-π6,即α=β-π6,代入sin α+2cos β=1,得3sin β+π3 =1,即sin β+π3 =33.故选A30(2023·广东江门·高三台山市第一中学校考阶段练习)设函数f (x )=log 2(1-x ),-1≤x <k ,x 3-3x +1,k ≤x ≤3 的值域为A ,若A ⊆[-1,1],则f (x )的零点个数最多是()A.1B.2C.3D.4【答案】C【解析】令g (x )=log 2(1-x ),则g (x )=log 2(1-x )在(-∞,1)上单调递减;令h (x )=x 3-3x +1,则h (x )=3x 2-3.由h (x )>0,得x >1或x <-1;由h (x )<0,得-1<x <1,所以h (x )在(-∞,-1)和(1,+∞)上单调递增,在(-1,1)上单调递减,于是,h (x )的极大值为h (-1)=3,极小值为h (1)=-1.在同一坐标系中作出函数g (x )和h (x )的图象,如下图:显然f (-1)=g (-1)=1;由g (x )=-1,得x =12;由f (x )的解析式,得-1<k ≤1.(1)若-1<k <0,当k ≤x <0时,f (x )>f (0)=1,不符合题意;(2)若12<k ≤1,当12<x <k 时,f (x )<f 12=-1,不符合题意;(3)若0≤k ≤12,①当-1≤x <k 时,-1<f (x )≤1;②当k ≤x ≤3时,f (1)≤f (x )≤max {f (k ),f (3)}≤1,即-1≤f (x )≤1.由①②,0≤k ≤12时符合题意.此时,结合图象可知,当k =0时,f (x )在[-1,k )上没有零点,在[k ,3]上有2个零点;当0<k ≤12时,f (x )在[-1,k )上有1个零点,在[k ,3]上有1个或2个零点,综上,f (x )最多有3个零点.故选:C .31(2023·广东江门·高三台山市第一中学校考阶段练习)设a =511,b =ln 2111,c =sin 511,则()A.c <a <bB.c <b <aC.a <b <cD.b <c <a【答案】A 【解析】当x ∈0,π2 时,记f x =x -sin x ,则f x =1-cos x ≥0,故f (x )在x ∈0,π2单调递增,故f (x )>f 0 =0,因此得当x ∈0,π2 时,x >sin x ,故511>sin 511,即a >c ;b -a =ln 2111-511=ln 1+2×511 -511,设g (x )=ln (1+2x )-x 0<x <12 ,则b -a =g 511,因为g (x )=21+2x -1=1-2x1+2x,当0<x <12时,g (x )>0.所以g (x )在0,12 上单调递增,所以g 511>g (0)=0,即b >a ,所以b >a>c .故选:A32(2023·广东·高三河源市河源中学校联考阶段练习)设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,P 是椭圆上一点,PF 1 =λPF 2 ,12≤λ≤2 ,∠F 1PF 2=π2,则椭圆离心率的取值范围为()A.0,22B.22,53C.23,53D.53,1 【答案】B【解析】设F 1(-c ,0),F 2(c ,0),运用椭圆的定义和勾股定理,求得e 2=λ2+1(λ+1)2,令m =λ+1,可得λ=m -1,即有λ2+1(λ+1)2=21m -12 2+12,运用二次函数的最值的求法,解不等式可得所求范围.设F 1(-c ,0),F 2(c ,0),由椭圆的定义可得,|PF 1|+|PF 2|=2a ,可设|PF 2|=t ,可得|PF 1|=λt ,即有(λ+1)t =2a ,①由∠F 1PF 2=π2,可得|PF 1|2+|PF 2|2=4c 2,即为(λ2+1)t 2=4c 2,②由②÷①2,可得e 2=λ2+1(λ+1)2,令m =λ+1,可得λ=m -1,即有λ2+1(λ+1)2=m 2-2m +2m 2=21m -12 2+12,由12≤λ≤2,可得32≤m ≤3,即13≤1m ≤23,则当m =2时,取得最小值12;当m =32或3时,取得最大值59,即有12≤e 2≤59,解得:22≤e ≤53,所以椭圆离心率的取值范围为22,53.故选:B .33(2023·广东·高三河源市河源中学校联考阶段练习)设a =ln1.1,b =e 0.1-1,c =tan0.1,则()A.a <b <cB.c <a <bC.a <c <bD.b <a <c【答案】C【解析】令f x =e x -x +1 ,所以f x =e x -1,当x >0时f x >0,当x <0时f x <0,即函数f x 在-∞,0 上单调递减,在0,+∞ 上单调递增,所以f x min =f 0 =0,即e x ≥x +1,当且仅当x =0时取等号,令x =0.1,可得b =e 0.1-1>0.1,令h (x )=tan x -x ,x ∈0,π2 ,则在x ∈0,π2 时,h (x )=1cos 2x -1>0,∴h (x )=tan x -x 在x ∈0,π2 上单调递增,∴h (x )>h (0)=0,∴x ∈0,π2时,tan x >x .∴c =tan0.1>0.1,令g x =ln x -x +1,则g x =1x -1=1-xx,所以当0<x <1时g x >0,当x >1时g x <0,即函数g x 在0,1 上单调递增,在1,+∞ 上单调递减,所以g x max =g 1 =0,即ln x ≤x -1,当且仅当x =1时取等号,所以当x =1.1,可得a =ln1.1<1.1-1=0.1,所以a 最小,设t x =e x -1-tan x x ∈0,0.1 ,则t (x )=e x -1cos 2x>0,∴t (x )在0,0.1 上单调递增,∴t (0)<t (0.1),∴t (0.1)=e 0.1-1-tan0.1>e 0-1-tan0=0,∴b =e 0.1-1>tan0.1=c ,综上可得b >c >a ;故选:C34(2023·广东佛山·高三校考阶段练习)符号x 表示不超过实数x 的最大整数,如 2.3 =2,-1.9 =-2.已知数列a n 满足a 1=1,a 2=5,a n +2+4a n =5a n +1.若b n =log 2a n +1 ,S n 为数列8100b n b n +1的前n 项和,则S 2025 =()A.2023B.2024C.2025D.2026【答案】B【解析】因为a n +2+4a n =5a n +1,则a n +2-a n +1=4a n +1-a n ,且a 2-a 1=4,所以,数列a n +1-a n 是首项为4,公比也为4的等比数列,所以,a n +1-a n =4×4n -1=4n ,①由a n +2+4a n =5a n +1可得a n +2-4a n +1=a n +1-4a n ,且a 2-4a 1=1,所以,数列a n +1-4a n 为常数列,且a n +1-4a n =1,②由①②可得a n =4n -13,因为4n +1-13-4n=4⋅4n -1-3⋅4n 3=4n -13>0,4n +1-13-2⋅4n =4⋅4n -1-6⋅4n 3=-2⋅4n +13<0,则4n <a n +1=4n +1-13<2⋅4n ,。
高考数学高三模拟考试试卷压轴题高考数学全真模拟试卷理科
高考数学高三模拟考试试卷压轴题高考数学全真模拟试卷(理科)第1卷一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(•衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A∩B=()A.∅B.(0,1)C.[0,1)D.[0,1]2.(5分)(•衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=0.2,则P(3<ξ≤4)=()A.0.8 B.0.4 C.0.3 D.0.23.(5分)(•衡中模拟)已知复数z=(i为虚数单位),则3=()A.1 B.﹣1 C.D.4.(5分)(•衡中模拟)过双曲线﹣=1(a>0,b>0)的一个焦点F作两渐近线的垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x5.(5分)(•衡中模拟)将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为()A.B.2 C. D.16.(5分)(•衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是()A.2 B.3 C.4 D.57.(5分)(•衡中模拟)等差数列{an}中,a3=7,a5=11,若bn=,则数列{bn}的前8项和为()A. B.C.D.8.(5分)(•衡中模拟)已知(x﹣3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a8=()A.45 B.180 C.﹣180 D.7209.(5分)(•衡中模拟)如图为三棱锥S﹣ABC的三视图,其表面积为()A.16 B.8+6C.16D.16+610.(5分)(•衡中模拟)已知椭圆E:+=1(a>b>0)的左焦点F(﹣3,0),P为椭圆上一动点,椭圆内部点M(﹣1,3)满足PF+PM的最大值为17,则椭圆的离心率为()A.B.C.D.11.(5分)(•衡中模拟)已知f(x)=,若函数y=f(x)﹣kx恒有一个零点,则k的取值范围为()A.k≤0 B.k≤0或k≥1 C.k≤0或k≥e D.k≤0或k≥12.(5分)(•衡中模拟)已知数列{an}的通项公式为an=﹣2n+p,数列{bn}的通项公式为bn=2n﹣4,设cn=,若在数列{cn}中c6<cn(n∈N*,n≠6),则p的取值范围()A.(11,25) B.(12,22) C.(12,17) D.(14,20)第2卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.(5分)(•衡中模拟)若平面向量、满足||=2||=2,|﹣|=,则在上的投影为.14.(5分)(•衡中模拟)若数列{an}满足a1=a2=1,an+2=,则数列{an}前2n项和S2n=.15.(5分)(•衡中模拟)若直线ax+(a﹣2)y+4﹣a=0把区域分成面积相等的两部分,则的最大值为.16.(5分)(•衡中模拟)已知函数f(x)=(a+1)lnx+x2(a<﹣1)对任意的x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,则a的取值范围为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(•衡中模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,满足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0(1)求C的大小;(2)求a2+b2的最大值,并求取得最大值时角A,B的值.18.(12分)(•衡中模拟)如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N是线段CD上一动点,且=λ,当直线MN与平面PAB所成的角最大时,求λ的值.19.(12分)(•衡中模拟)如图是两个独立的转盘(A)、(B),在两个图中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对的区域为x,转盘(B)指针所对的区域为y,x、y∈{1,2,3},设x+y的值为ξ.(Ⅰ)求x<2且y>1的概率;(Ⅱ)求随机变量ξ的分布列与数学期望.20.(12分)(•衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°的直线与椭圆相交于M、N两点,且线段MN的中点为(﹣1,).过椭圆E内一点P(1,)的两条直线分别与椭圆交于点A、C和B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应的λ=.(Ⅰ)求椭圆E的方程;(Ⅱ)当λ变化时,kAB是否为定值?若是,请求出此定值;若不是,请说明理由.21.(12分)(•衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e2处的切线与直线x﹣2y+e=0平行.(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若函数F(x)=f(x)﹣无零点,求k的取值范围.[选修41:几何证明选讲]22.(10分)(•衡中模拟)如图所示,AC为⊙O的直径,D为的中点,E为BC的中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:AC•BC=2AD•CD.[选修44:坐标系与参数方程]23.(•衡中模拟)在平面直角坐标系中,直线l的参数方程为(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=(1)求曲线C的直角坐标方程和直线l的普通方程;(2)若直线l与曲线C相交于A,B两点,求△AOB的面积.[选修45:不等式选讲]24.(•衡中模拟)已知函数f(x)=|x﹣l|+|x﹣3|.(I)解不等式f(x)≤6;(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,求实数a的取值范围.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(•衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A∩B=()A.∅B.(0,1)C.[0,1)D.[0,1]【解答】解:A={x|x2<1}={x|﹣1<x<1},B={y|y=|x|≥0},则A∩B=[0,1),故选:C.2.(5分)(•衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=0.2,则P(3<ξ≤4)=()A.0.8 B.0.4 C.0.3 D.0.2【解答】解:∵随机变量X服从正态分布N(3,σ2),∴μ=3,得对称轴是x=3.∵P(ξ>4)=0.2∴P(3<ξ≤4)=0.5﹣0.2=0.3.故选:C3.(5分)(•衡中模拟)已知复数z=(i为虚数单位),则3=()A.1 B.﹣1 C.D.【解答】解:复数z=,可得=﹣=cos+isin.则3=cos4π+isin4π=1.故选:A.4.(5分)(•衡中模拟)过双曲线﹣=1(a>0,b>0)的一个焦点F作两渐近线的垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x【解答】解:如图若∠PFQ=π,则由对称性得∠QFO=,则∠QOx=,即OQ的斜率k==tan=,则双曲线渐近线的方程为y=±x,故选:B5.(5分)(•衡中模拟)将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为()A.B.2 C. D.1【解答】解:∵2πr1=,∴r1=,同理,∴r1+r2+r3=1,故选:D.6.(5分)(•衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是()A.2 B.3 C.4 D.5【解答】解:第一次循环,sin>sin0,即1>0成立,a=1,T=1,k=2,k<6成立,第二次循环,sinπ>sin,即0>1不成立,a=0,T=1,k=3,k<6成立,第三次循环,sin>sinπ,即﹣1>0不成立,a=0,T=1,k=4,k<6成立,第四次循环,sin2π>sin,即0>﹣1成立,a=1,T=1+1=2,k=5,k<6成立,第五次循环,sin>sin2π,即1>0成立,a=1,T=2+1=3,k=6,k<6不成立,输出T=3,7.(5分)(•衡中模拟)等差数列{an}中,a3=7,a5=11,若bn=,则数列{bn}的前8项和为()A. B.C.D.【解答】解:设等差数列{an}的公差为d,a3=7,a5=11,∴,解得a1=3,d=2,∴an=3+2(n﹣1)=2n+1,∴,∴b8=(1﹣+﹣+…+﹣)=(1﹣)=故选B.8.(5分)(•衡中模拟)已知(x﹣3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a8=()A.45 B.180 C.﹣180 D.720【解答】解:(x﹣3)10=[(x+1)﹣4]10,∴,故选:D.9.(5分)(•衡中模拟)如图为三棱锥S﹣ABC的三视图,其表面积为()A.16 B.8+6C.16D.16+6【解答】解:由三视图可知该三棱锥为边长为2,4,4的长方体切去四个小棱锥得到的几何体.三棱锥的三条边长分别为,∴表面积为4×=16.10.(5分)(•衡中模拟)已知椭圆E:+=1(a>b>0)的左焦点F(﹣3,0),P为椭圆上一动点,椭圆内部点M(﹣1,3)满足PF+PM的最大值为17,则椭圆的离心率为()A.B.C.D.【解答】解:设右焦点为Q,由F(﹣3,0),可得Q(3,0),由椭圆的定义可得|PF|+|PQ|=2a,即|PF|=2a﹣|PQ|,则|PM|+|PF|=2a+(|PM|﹣|PQ|)≤2a+|MQ|,当P,M,Q共线时,取得等号,即最大值2a+|MQ|,由|MQ|==5,可得2a+5=17,所以a=6,则e===,故选:A.11.(5分)(•衡中模拟)已知f(x)=,若函数y=f(x)﹣kx恒有一个零点,则k的取值范围为()A.k≤0 B.k≤0或k≥1 C.k≤0或k≥e D.k≤0或k≥【解答】解:由y=f(x)﹣kx=0得f(x)=kx,作出函数f(x)和y=kx的图象如图,由图象知当k≤0时,函数f(x)和y=kx恒有一个交点,当x≥0时,函数f(x)=ln(x+1)的导数f′(x)=,则f′(0)=1,当x<0时,函数f(x)=ex﹣1的导数f′(x)=ex,则f′(0)=e0=1,即当k=1时,y=x是函数f(x)的切线,则当0<k<1时,函数f(x)和y=kx有3个交点,不满足条件.当k≥1时,函数f(x)和y=kx有1个交点,满足条件.综上k的取值范围为k≤0或k≥1,故选:B.12.(5分)(•衡中模拟)已知数列{an}的通项公式为an=﹣2n+p,数列{bn}的通项公式为bn=2n﹣4,设cn=,若在数列{cn}中c6<cn(n∈N*,n≠6),则p的取值范围()A.(11,25) B.(12,22) C.(12,17) D.(14,20)【解答】解:∵an﹣bn=﹣2n+p﹣2n﹣4,∴an﹣bn随着n变大而变小,又∵an=﹣2n+p随着n变大而变小,bn=2n﹣4随着n变大而变大,∴,(1)当(2)当,综上p∈(14,20),故选D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.(5分)(•衡中模拟)若平面向量、满足||=2||=2,|﹣|=,则在上的投影为﹣1.【解答】解:根据条件,==7;∴;∴在上的投影为.故答案为:﹣1.14.(5分)(•衡中模拟)若数列{an}满足a1=a2=1,an+2=,则数列{an}前2n项和S2n=2n+n2﹣1.【解答】解:∵数列{an}满足a1=a2=1,an+2=,∴n=2k﹣1时,a2k+1﹣a2k﹣1=2,为等差数列;n=2k时,a2k+2=2a2k,为等比数列.∴.故答案为:2n+n2﹣1.15.(5分)(•衡中模拟)若直线ax+(a﹣2)y+4﹣a=0把区域分成面积相等的两部分,则的最大值为2.【解答】解:由ax+(a﹣2)y+4﹣a=0得a(x+y﹣1)+4﹣2y=0,则得,即直线恒过C(﹣1,2),若将区域分成面积相等的两部分,则直线过AB的中点D,由得,即A(1,6),∵B(3,0),∴中点D(2,3),代入a(x+y﹣1)+4﹣2y=0,得4a﹣2=0,则,则的几何意义是区域内的点到点(﹣2,0)的斜率,由图象过AC的斜率最大,此时最大值为2.故答案为:2.16.(5分)(•衡中模拟)已知函数f(x)=(a+1)lnx+x2(a<﹣1)对任意的x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,则a的取值范围为(﹣∞,﹣2].【解答】解:由f′(x)=+x,得f′(1)=3a+1,所以f(x)=(a+1)lnx+ax2,(a<﹣1)在(0,+∞)单调递减,不妨设0<x1<x2,则f(x1)﹣f(x2)≥4x2﹣4x1,即f(x1)+4x1≥f(x2)+4x2,令F(x)=f(x)+4x,F′(x)=f′(x)+4=+2ax+4,等价于F(x)在(0,+∞)上单调递减,故F'(x)≤0恒成立,即+2ax+4≤0,所以恒成立,得a≤﹣2.故答案为:(﹣∞,﹣2].三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(•衡中模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,满足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0(1)求C的大小;(2)求a2+b2的最大值,并求取得最大值时角A,B的值.【解答】解:(1)cosBsinC+(a﹣sinB)cos(A+B)=0可得:cosBsinC﹣(a﹣sinB)cosC=0即:sinA﹣acosC=0.由正弦定理可知:,∴,c=1,∴asinC﹣acosC=0,sinC﹣cosC=0,可得sin(C﹣)=0,C是三角形内角,∴C=.(2)由余弦定理可知:c2=a2+b2﹣2abcosC,得1=a2+b2﹣ab又,∴,即:.当时,a2+b2取到最大值为2+.18.(12分)(•衡中模拟)如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N是线段CD上一动点,且=λ,当直线MN与平面PAB所成的角最大时,求λ的值.【解答】证明:(1)取PC的中点E,则连接DE,∵ME是△PBC的中位线,∴ME,又AD,∴ME AD,∴四边形AMED是平行四边形,∴AM∥DE.∵PA=AB,M是PB的中点,∴AM⊥PB,∵PA⊥平面ABCD,BC⊂平面ABCD,∴PA⊥BC,又BC⊥AB,PA∩AB=A,∴BC⊥平面PAB,∵AM⊂平面PAB,∴BC⊥AM,又PB⊂平面PBC,BC⊂平面PBC,PB∩BC=B,∴AM⊥平面PBC,∵AM∥DE,∴DE⊥平面PBC,又DE⊂平面PCD,∴平面PBC⊥平面PCD.(2)以A为原点,以AD,AB,AP为坐标轴建立空间直角坐标系,如图所示:则A(0,0,0),B(0,2,0),M(0,1,1),P(0,0,2),C(2,2,0),D (1,0,0).∴=(1,2,0),=(0,1,1),=(1,0,0),∴=λ=(λ,2λ,0),=(λ+1,2λ,0),==(λ+1,2λ﹣1,﹣1).∵AD⊥平面PAB,∴为平面PAB的一个法向量,∴cos<>=====设MN与平面PAB所成的角为θ,则sinθ=.∴当即时,sinθ取得最大值,∴MN与平面PAB所成的角最大时.19.(12分)(•衡中模拟)如图是两个独立的转盘(A)、(B),在两个图中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对的区域为x,转盘(B)指针所对的区域为y,x、y∈{1,2,3},设x+y的值为ξ.(Ⅰ)求x<2且y>1的概率;(Ⅱ)求随机变量ξ的分布列与数学期望.【解答】解:(1)记转盘A指针指向1,2,3区域的事件为A1,A2,A3,同理转盘B指针指向1,2,3区域的事件为B1,B2,B3,∴P(A1)=,P(A2)=,P(A3)=,P(B1)=,P(B2)=,P(B3)=,P=P(A1)P(1﹣P(B1))=×(1﹣)==.…(5分)(2)由已知得ξ的可能取值为2,3,4,5,6,P(ξ=2)=P(A1)P(B1)===,P(ξ=3)=P(A1)P(B2)+P(A2)P(B1)==,P(ξ=4)=P(A1)P(B3)+P(A2)P(B2)+P(A3)P(B1)==,P(ξ=5)=P(A2)P(B3)+P(A3)P(B2)=+=,P(ξ=6)=P(A3)P(B3)==,∴ξ的分布列为:ξ 2 3 4 5 6PEξ==.…(12分)20.(12分)(•衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°的直线与椭圆相交于M、N两点,且线段MN的中点为(﹣1,).过椭圆E内一点P(1,)的两条直线分别与椭圆交于点A、C和B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应的λ=.(Ⅰ)求椭圆E的方程;(Ⅱ)当λ变化时,kAB是否为定值?若是,请求出此定值;若不是,请说明理由.【解答】解:(Ⅰ)设M(m1,n1)、N(m2,n2),则,两式相减,故a2=3b2…(2分)当直线AP平行于x轴时,设|AC|=2d,∵,,则,解得,故点A(或C)的坐标为.代入椭圆方程,得…4分a2=3,b2=1,所以方程为…(6分)(Ⅱ)设A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4)由于,可得A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),…①同理可得…②…(8分)由①②得:…③将点A、B的坐标代入椭圆方程得,两式相减得(x1+x2)(x1﹣x2)+3(y1+y2)(y1﹣y2)=0,于是3(y1+y2)kAB=﹣(x1+x2)…④同理可得:3(y3+y4)kCD=﹣(x3+x4),…(10分)于是3(y3+y4)kAB=﹣(x3+x4)(∵AB∥CD,∴kAB=kCD)所以3λ(y3+y4)kAB=﹣λ(x3+x4)…⑤由④⑤两式相加得到:3[y1+y2+λ(y3+y4)]kAB=﹣[(x1+x2)+λ(x3+x4)]把③代入上式得3(1+λ)kAB=﹣2(1+λ),解得:,当λ变化时,kAB为定值,.…(12分)21.(12分)(•衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e2处的切线与直线x﹣2y+e=0平行.(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若函数F(x)=f(x)﹣无零点,求k的取值范围.【解答】解:(Ⅰ)由,得,解得m=2,故,则,函数g(x)的定义域为(0,1)∪(1,+∞),而,又函数g(x)在(1,+∞)上是减函数,∴在(1,+∞)上恒成立,∴当x∈(1,+∞)时,的最大值.而,即右边的最大值为,∴,故实数a的最小值;(Ⅱ)由题可得,且定义域为(0,1)∪(1,+∞),要使函数F(x)无零点,即在(0,1)∪(1,+∞)内无解,亦即在(0,1)∪(1,+∞)内无解.构造函数,则,(1)当k≤0时,h'(x)<0在(0,1)∪(1,+∞)内恒成立,∴函数h(x)在(0,1)内单调递减,在(1,+∞)内也单调递减.又h(1)=0,∴当x∈(0,1)时,h(x)>0,即函数h(x)在(0,1)内无零点,同理,当x∈(1,+∞)时,h(x)<0,即函数h(x)在(1,+∞)内无零点,故k≤0满足条件;(2)当k>0时,.①若0<k<2,则函数h(x)在(0,1)内单调递减,在内也单调递减,在内单调递增.又h(1)=0,∴h(x)在(0,1)内无零点;又,而,故在内有一个零点,∴0<k<2不满足条件;②若k=2,则函数h(x)在(0,1)内单调递减,在(1,+∞)内单调递增.又h(1)=0,∴当x∈(0,1)∪(1,+∞)时,h(x)>0恒成立,故无零点.∴k=2满足条件;③若k>2,则函数h(x)在内单调递减,在内单调递增,在(1,+∞)内也单调递增.又h(1)=0,∴在及(1,+∞)内均无零点.易知,又h(e﹣k)=k×(﹣k)﹣2+2ek=2ek﹣k2﹣2=ϕ(k),则ϕ'(k)=2(ek﹣k)>0,则ϕ(k)在k>2为增函数,∴ϕ(k)>ϕ(2)=2e2﹣6>0.故函数h(x)在内有一零点,k>2不满足.综上:k≤0或k=2.[选修41:几何证明选讲]22.(10分)(•衡中模拟)如图所示,AC为⊙O的直径,D为的中点,E为BC的中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:AC•BC=2AD•CD.【解答】证明:(Ⅰ)连接BD,因为D为的中点,所以BD=DC.因为E为BC的中点,所以DE⊥BC.因为AC为圆的直径,所以∠ABC=90°,所以AB∥DE.…(5分)(Ⅱ)因为D为的中点,所以∠BAD=∠DAC,又∠BAD=∠DCB,则∠DAC=∠DCB.又因为AD⊥DC,DE⊥CE,所以△DAC∽△ECD.所以=,AD•CD=AC•CE,2AD•CD=AC•2CE,因此2AD•CD=AC•BC.…(10分)[选修44:坐标系与参数方程][选修45:不等式选讲]24.(•衡中模拟)已知函数f(x)=|x﹣l|+|x﹣3|.(I)解不等式f(x)≤6;(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,求实数a的取值范围.【解答】解:函数f(x)=|x﹣l|+|x﹣3|=的图象如图所示,(I)不等式f(x)≤6,即①或②,或③.解①求得x∈∅,解②求得3<x≤5,解③求得﹣1≤x≤3.综上可得,原不等式的解集为[﹣1,5].(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,则函数f(x)的图象不能在y=ax﹣1的图象的下方.如图所示:由于图中两题射线的斜率分别为﹣2,2,点B(3,2),∴3a﹣1≤2,且 a≥﹣2,求得﹣2≤a≤1.23.(•衡中模拟)在平面直角坐标系中,直线l的参数方程为(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=(1)求曲线C的直角坐标方程和直线l的普通方程;(2)若直线l与曲线C相交于A,B两点,求△AOB的面积.【解答】解:(1)由曲线C的极坐标方程为ρ=得ρ2sin2θ=2ρcosθ.∴由曲线C的直角坐标方程是:y2=2x.由直线l的参数方程为(t为参数),得t=3+y代入x=1+t中消去t得:x﹣y﹣4=0,所以直线l的普通方程为:x﹣y﹣4=0…(5分)(2)将直线l的参数方程代入曲线C的普通方程y2=2x,得t2﹣8t+7=0,设A,B两点对应的参数分别为t1,t2,所以|AB|===,因为原点到直线x﹣y﹣4=0的距离d=,所以△AOB的面积是|AB|d==12.…(10分)高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--,(3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=(A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为(AB )32(CD )2 (12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
高考数学高三模拟考试试卷压轴题0011
高考数学高三模拟考试试卷压轴题阶段综合练习一、集合与命题逻辑、不等式1.设集合A ={x|-1<x≤2,x ∈N},集合B ={2,3},则A ∪B 等于()A .{1,2,3}B .{0,1,2,3}C .{2}D .{-1,0,1,2,3}2.(北江中学)已知集合22{|log (2),}A x y x x x R ==-++∈,{|}B x y x R ==∈则A B ⋂=A.(1,1)-B. (1,1]-()C.(1,2)-D.[1,2]-3.(武汉市教科院高三第一次调考)“p 或q 是假命题”是“非p 为真命题”的() A .充分不必要条件B .必要不充分条件 C .充要条件D .既不充分又不必要条件4.(恩城中学高三上学期模拟考试)已知命题p :1|32|>-x ,命题q :0)5(log 221<-+x x ,则q p ⌝⌝是的__条件(填充分不必要条件、必要不充分条件、充要条件).5.已知,x y 满足不等式组0,40y y xx y ≥⎧⎪≤⎨⎪+-≤⎩则2x y -的最大值是. 6.命题”x ∃∈R ,使得sin 10x x -≤”的否定是___________________. 二、复数与算法、选做题7.若复数z 满足i 31i +-=z (i 是虚数单位),则z =___________. 8.右图是一个算法的流程图,则最后输出W 的值是_________.9.下图是求函数值的程序框图,当输入值为2时,则输出值为___________.10.(佛山市三水中学高三上学期期中考试)AB 是圆O 的直径,EF 切圆O 于C2AD =,6AB =,则AC 长为.11.在极坐标系中,圆2cos ρθ=的圆心的极坐标是,它与方程(0)4πθρ=>坐标是.三、三角函数与平面向量 12.已知2παπ<<,3sin 22cos αα=,则cos()απ-=__________.13.函数)sin(ϕω+=x y (πϕω<<>0,0)的周期为π,且函数图象关于点)0,3(π-对称,则函数解析式为.14.方程2cos 3sin =-x x ,()ππ,-∈x 的解集是.15.若向量)4,3(=AB ,)1,1(-=d ,且5d AC ⋅=,那么d BC ⋅=( ) A .0B .4-C .4D .4或4-16.已知向量p ()2,3=-,q (),6x =,且//p q ,则+p q 的值为( ) A .5 B. 13 C. 5 D .1317.已知),2(ππα∈,53sin =α,则)4tan(πα+等于( )A .71B .7C .71- D .718.下列函数中,最小正周期为π,且图象关于直线3π=x 对称的是( )A.)62sin(π+=x yB.)62sin(π-=x y C.)32sin(π-=x y D.)62sin(π+=x y 19.已知()3sin()cos 3f x x x π=+-.(I )求()f x 在[0,]π上的最小值;(II )已知,,a b c 分别为△ABC 内角A 、B 、C 的对边,353,cos 5b A ==,且()1f B =,求边a 的长.20.已知)sin ,(sin βα=a ,)1),(cos(--=βαb ,)2),(cos(βα+=c ,)(2,Z k k ∈+≠ππβα.(1)若c b //,求βαtan tan •的值; (2)求c b a •+2的值. 四、概率与统计21.某大型超市销售的乳类商品有四种:液态奶、酸奶、婴幼儿奶粉、成人奶粉,且液态奶、酸奶、婴幼儿奶粉、成人奶粉分别有40种、10种、30种、20种不同的品牌,现从中抽取一个容量为20的样本进行三聚氰胺安全检测.若采用分层抽样的方法抽取样本,则抽取的酸奶与成人奶粉品牌数之和是. 22.某公司~的年利润x(单位:百万元)与年广告支出y(单位:百万元)的统计资料如下表所示:年份 利润x 12.2 14.6 16 18 20.4 22.3 支出y0.620.740.810.8911.11根据统计资料,则( )A.利润中位数是16,x 与y 有正线性相关关系B.利润中位数是17,x 与y 有正线性相关关系C.利润中位数是17,x 与y 有负线性相关关系D.利润中位数是18,x 与y 有负线性相关关系 23.一个容量为20的样本,数据的分组及各组的频数如下表:(其中*N y x ∈、)分组 [10,20) [20,30) [30,40) [40,50) [50,60) [60,70)频数2x3y24则样本在区间 [10,50) 上的频率为.24.设[][]0,3,0,4∈∈x y ,则点M 落在不等式组:23000+-≤⎧⎪≥⎨⎪≥⎩x y x y 所表示的平面区域内的概率等于 .25.有人收集了春节期间平均气温x 与某取暖商品销售额y 的有关数据如下:根据以上数据,用线性回归的方法,求得销售额均气温x 之间线性回归方程a x b y ˆˆ+=的系数y 与平4.2ˆ-=b.则预测平均气温为8-℃时该商品销售额为( )万元 26.为预防11H N 病毒暴发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如下表:A 组B 组C 组 疫苗有效 673 x y疫苗无效7790z已知在全体样本中随机抽取1个,抽到B 组疫苗有效的概率是0.33. (1)求x 的值;(2)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C 组抽取多少个? (3)已知y ≥465,z ≥25,求不能通过测试的概率. 五、空间几何体、立体几何27.已知下列命题(其中b a ,为直线,α为平面):① 若一条直线垂直于一个平面内无数条直线,则这条直线与这个平面垂直; ② 若一条直线平行于一个平面,则垂直于这条直线的直线必垂直于这个平面; ③若α//a ,α⊥b ,则b a ⊥;④ 若b a ⊥,则过b 有唯一一个平面α与a 垂直. 上述四个命题中,真命题是 ( )A .①②B .②③C .②④D .③④28.已知、m 是不同的两条直线,α、β是不重合的两个平面,则下列命题中为真命题的是( ) A .若,⊥⊥l ααβ,则//l β B .若//,⊥l ααβ,则//l βC .若,//,⊥⊂l m m αββ,则⊥l αD .若,//,⊥⊂l m ααββ,则⊥l m 29.已知某几何体的三视图如右图所示,其中,正(主)视图,侧(左) 视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图 中的数据可得此几何体的体积为( )平均气温(℃) 2- 3- 5- 6-销售额(万元)20 23 27 3011正(主)视图 ••侧(左)视图A .2132π+ B .4136π+C .216π+ D .2132π+30.如图,四棱锥P —ABCD 的底面为矩形,且2,1AB BC ==,E ,F 分别为AB ,PC 中点.(1)求证:EF//平面PAD ;(2)若平面PAC ⊥平面ABCD ,求证:平面PAC ⊥平面PDE . 六、数列31.已知等差数列{}n a 中, 315,a a 是方程2610x x --=的两根, 则7891011a a a a a ++++等于()A . 18B . 18-C . 15D . 1232.已知等差数列}{n a 的首项为24,公差为2-,则当n=时,该数列的前n 项和n S 取得最大值. 33.已知等比数列{}n a 中,公比1q >,且14239,8a a a a +==,则2011201220092010a a a a +=+.34.设n S 是等比数列{}n a 的前n 项和,3S ,9S ,6S 成等差数列,且m a a a 252=+,则=m .35.已知{}n a 是公差为正数的等差数列,首项13a =,前n 项和为n S ,数列{}n b 是等比数列,首项11b =且223212,20.a b S b =+=(1)求{}{}n n a b 和的通项公式; (2)令1231(1)(2)2(1,2,3,)n n n T nb n b n b b b n -=+-+-+++=,求.n T七、直线与圆、圆锥曲线36.直线062=++y ax 与直线0)1()1(2=-+-+a y a x 平行,则=a ___________.37.已知圆16)4()7(22=++-y x 与圆16)6()5(22=-++y x 关于直线l 对称,则直线l 的方程是. 38.设椭圆1C 的离心率为513,焦点在x 轴上且长轴长为26.若曲线2C 上的点到椭圆1C 的两个焦点的距离的差的绝对值等于8,则曲线2C 的标准方程为()A .2222143x y -=B .22221135x y -=C .2222134x y -=D .222211312x y -=39.(天津卷)设直线03=+-y ax 与圆4)2()1(22=-+-y x 相交于A 、B 两点,且弦AB 的长为32,则=a .40.(上海市张堰中学高第一学期期中考试)椭圆C :12222=+by a x ()0>>b a 的两个焦点为1F 、2F ,点P 在椭圆C 上,且211F F PF ⊥,且341=PF ,3142=PF . (1)求椭圆C 的方程.(2)若直线l 过圆02422=-++y x y x 的圆心M ,交椭圆C 于A 、B 两点,且A 、B 关于点M 对称,求直线l 的方程. 八、导数与函数41.已知函数bx ax x x f ++=23)(在1=x 处取极值10,则a=,b=. 42.曲线x x y C In :=在点)e e,(M 处的切线方程为. 43.函数2()(1)xf x x x e =++()x R ∈的单调减区间为. 44.函数12ln y x x=+的单调减区间为______________. 45.已知命题1p :函数)1(In 2x x y ++=是奇函数,2p :函数21x y =为偶函数,则在下列四个命题①21p p ∨;②21p p ∧;③21)(p p ∨⌝;④)(21p p ⌝∧中,真命题的序号是___________. 46.如图是函数()y f x =的导函数'()y f x =的图象,给出下列命题: ①2是函数()y f x =的极值点;②1是函数()y f x =的最小值点; ③()y f x =在0x =处切线的斜率小于零;④()y f x =在区间(2,2)上单调递增.则正确命题的序号是.47.函数2()ln(1)f x x x=+-的零点所在的大致区间是( ) A .(0,1)B .(1,2)C .(2,)eD .(3,4)48.(潜山县三环中学高三上学期第三次联考)已知a 为实数,函数23()()()2f x x x a =++.(1)若函数()f x 的图象上有与x 轴平行的切线,求a 的取值范围; (2)若(1)0f '-=, 求函数()f x 的单调区间. 参考答案:1.答案:B2.答案:B 3.答案:A 4.答案:充分不必要条件5.86.7.13+ 8.14 9. 310.答案:AC =2311.答案:(1,0),(2,)4π12.13.14.答案:{-11π12,7π12} 15.C 16.B 17.A 18.B19.(Ⅰ)sin 3()3cos cos 22x f x x x ⎛⎫=+- ⎪⎪⎝⎭31sin cos sin 226x x x π⎛⎫=+=+ ⎪⎝⎭4分6766πππ≤+≤x∴当π=x 时min 1()2f x =-;7分(Ⅱ)∵2,62x k k Z πππ+=+∈时()f x 有最大值,B 是三角形内角∴3B π=10分∵3cos 5A =∴4sin 5A =∵正弦定理sin sin a b A B=∴8a =.14分20.21.6 22.B 23.0.7 24.3/1625.A 26.解:(1)在全体样本中随机抽取1个,抽到B 组疫苗有效的概率约为其频率…… (1分)即0.332000x=∴660x =………………(4分) (2)C 组样本个数为y +z =2000-(673+77+660+90)=500,…………………(5分) 现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C 组抽取个数为360500902000⨯=个………(8分) (3)设测试不能通过事件为A ,C 组疫苗有效与无效的可能的情况记为(y ,z )……(9分) 由(2)知500y z +=,且,y z N ∈,基本事件空间包含的基本事件有:(465,35)、(466,34)、(467,33)、……(475,25)共11个……………… (10分) 若测试不能通过,则77+90+z>200,即z>33事件A 包含的基本事件有:((465,35)、(466,34)共2个∴2()11P A =…………………(11分) 故不能通过测试的概率为211…………(12分)27.D 28.D 29.C 30.证明:(1)(2)31.C 32.n=12或13 33.4 34.835.36. 1 37.0156=--y x 38.A39.0 40.解:(1)20221=F F 525221=⇒==∴c c F F又36221=⇒=+=a PF PF a 149:22=+∴y x C 椭圆 (2)()()()02736361836941491222222=-+++++⇒⎪⎩⎪⎨⎧=+++=k k k k x k y x x k y()1298:++=∴x y l 即02598=+-y x 41.答案:12,21 42.y=2xe 43.(2,1)--(或闭区间) 44.45.①,④46.①④ 47.B48.解:(1)∵3233()22f x x ax x a =+++, ∴23()322f x x ax '=++.∵函数()f x 的图象上有与x 轴平行的切线, ∴()0f x '=有实数解. ∴2344302a =-⨯⨯≥, ∴292a ≥.所求a 的取值范围是3232(,(,)-∞+∞. (2)∵(1)0f '-=,∴33202a -+=即94a =.∴231()323()(1)22f x x ax x x '=++=++.由()0f x '>,得1x <-或12x >-; 由()0f x '<,得112x -<<-.因此,函数()f x 的单调增区间为(,1]-∞-,1[,)2-+∞;单调减区间为1[1,]2--.高考理科数学试卷普通高等学校招生全国统一考试注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C 3D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 (A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s= (A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为 (A 2(B )32(C 3(D )2(12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
高考数学高三模拟考试试卷压轴题猜题押题高考数学试卷文科
高考数学高三模拟考试试卷压轴题猜题押题高考数学试卷(文科)一、选择题(每小题5分,共40分)1.若集合{}52A x x =-<<,{}33B x x =-<<,则A∩B=( ) A .{}32x x -<<B .{}52x x -<< C .{}33x x -<<D .{}53x x -<<2.圆心为()1,1且过原点的圆的方程是( )A .()()22111x y -+-=B .()()22111x y +++= C .()()22112x y +++=D .()()22112x y -+-= 3.下列函数中为偶函数的是( )A .2sin y x x =B .2cos y x x =C .ln y x =D .2x y -=4.某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为( )A .90B .100C .180D .3005.执行如图所示的程序框图,输出的k 值为( ) A .3B .4C .5D .66.设,a b 是非零向量,“a b a b ⋅=”是“a b //”的( ) A .充分而不必要条件B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件7.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A .1BCD .28.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况加油时间加油量(升) 加油时的累计里程(千米)2015年5月1日 12 35000 2015年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为( )A .6升B .8升C .10升D .12升 二、填空题9.复数()1i i +的实部为.10.13222,3,log 5-三个数中最大数的是.11.在ABC 中,23,3a b A π==∠=,则B ∠=. 12.已知()2,0是双曲线()22210y x b b-=>的一个焦点,则b =.13.如图,ABC 及其内部的点组成的集合记为D ,(,)P x y 为D 中任意一点,则23z x y =+的最大值为.14.高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生. 从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是; ②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是. 三、解答题(共80分)15.已知函数()2sin 2x f x x =-. (1)求()f x 的最小正周期; (2)求()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的最小值.16.已知等差数列{}n a 满足124310,2a a a a +=-=. (1)求{}n a 的通项公式;(2)设等比数列{}n b 满足2337,b a b a ==,问:6b 与数列{}n a 的第几项相等? 17.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.甲 乙 丙 丁 100 √ × √ √ 217 × √ × √ 200 √ √ √ × 300 √ × √ × 85 √ × × × 98×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 18.如图,在三棱锥V ABC -中,平面VAB ⊥平面ABC ,VAB 为等边三角形,AC ⊥BC 且AC BC ==,O ,M 分别为AB ,VA 的中点.(1)求证:VB ∥平面MOC ; (2)求证:平面MOC ⊥平面VAB (3)求三棱锥V ABC -的体积.19.设函数()2ln (0)2x f x k x k =->. (1)求()f x 的单调区间和极值;(2)证明:若()f x 存在零点,则()f x 在区间(上仅有一个零点.20.已知椭圆C :2233x y +=,过点(1,0)D 且不过点(2,1)E 的直线与椭圆C 交于,A B两点,直线AE 与直线3x =交于点M . (1)求椭圆C 的离心率;(2)若AB 垂直于x 轴,求直线BM 的斜率;(3)试判断直线BM 与直线DE 的位置关系,并说明理由.北京市高考数学试卷(文科)参考答案与试题解析一、选择题(每小题5分,共40分)1.(•北京)若集合A={x|﹣5<x <2},B={x|﹣3<x <3},则A∩B=( ) A .{x|﹣3<x <2}B .{x|﹣5<x <2}C .{x|﹣3<x <3}D .{x|﹣5<x <3}【分析】直接利用集合的交集的运算法则求解即可. 【解答】解:集合A={x|﹣5<x <2},B={x|﹣3<x <3}, 则A∩B={x|﹣3<x <2}. 故选:A .2.(•北京)圆心为(1,1)且过原点的圆的方程是( ) A .(x ﹣1)^^^2+(y ﹣1)^^^2=1 B .(x+1)^^^2+(y+1)^^^2=1C .(x+1)^^^2+(y+1)^^^2=2D .(x ﹣1)^^^2+(y ﹣1)^^^2=2【分析】利用两点间距离公式求出半径,由此能求出圆的方程. 【解答】解:由题意知圆半径r=,∴圆的方程为(x ﹣1)^^^2+(y ﹣1)^^^2=2. 故选:D .3.(•北京)下列函数中为偶函数的是( ) A .y=x^^^2sinx B .y=x^^^2cosx C .y=|lnx|D .y=2﹣^^^x【分析】首先从定义域上排除选项C ,然后在其他选项中判断﹣x 与x 的函数值关系,相等的就是偶函数.【解答】解:对于A ,(﹣x )^^^2sin (﹣x )=﹣x^^^2sinx ;是奇函数; 对于B ,(﹣x )^^^2cos (﹣x )=x^^^2cosx ;是偶函数; 对于C ,定义域为(0,+∞),是非奇非偶的函数;对于D,定义域为R,但是2﹣(﹣^^^x)=2^^^x≠2﹣^^^x,2^^^x≠﹣2﹣^^^x;是非奇非偶的函数;故选B4.(•北京)某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()类别人数老年教师900中年教师1800青年教师1600合计4300A.90 B.100 C.180 D.300【分析】由题意,老年和青年教师的人数比为900:1600=9:16,即可得出结论.【解答】解:由题意,老年和青年教师的人数比为900:1600=9:16,因为青年教师有320人,所以老年教师有180人,故选:C.5.(•北京)执行如图所示的程序框图,输出的k值为()A.3 B.4 C.5 D.6【分析】模拟执行程序框图,依次写出每次循环得到的a,k的值,当a=时满足条件a <,退出循环,输出k的值为4.【解答】解:模拟执行程序框图,可得k=0,a=3,q=a=,k=1不满足条件a<,a=,k=2不满足条件a<,a=,k=3不满足条件a<,a=,k=4满足条件a<,退出循环,输出k的值为4.故选:B.6.(•北京)设,是非零向量,“=||||”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】由便可得到夹角为0,从而得到∥,而∥并不能得到夹角为0,从而得不到,这样根据充分条件、必要条件的概念即可找出正确选项.【解答】解:(1);∴时,cos=1;∴;∴∥;∴“”是“∥”的充分条件;(2)∥时,的夹角为0或π;∴,或﹣;即∥得不到;∴“”不是“∥”的必要条件;∴总上可得“”是“∥”的充分不必要条件.故选A.7.(•北京)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B.C.D.2【分析】几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,结合直观图求相关几何量的数据,可得答案【解答】解:由三视图知:几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,底面为正方形如图:其中PB⊥平面ABCD,底面ABCD为正方形∴PB=1,AB=1,AD=1,∴BD=,PD==.PC==该几何体最长棱的棱长为:故选:C.8.(•北京)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况加油时间加油量(升)加油时的累计里程(千米)5月1日12 350005月15日48 35600注:“累计里程”指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为()A.6升B.8升 C.10升D.12升【分析】由表格信息,得到该车加了48升的汽油,跑了600千米,由此得到该车每100千米平均耗油量.【解答】解:由表格信息,得到该车加了48升的汽油,跑了600千米,所以该车每100千米平均耗油量48÷6=8;故选:B.二、填空题9.(•北京)复数i(1+i)的实部为﹣1.【分析】直接利用复数的乘法运算法则,求解即可.【解答】解:复数i(1+i)=﹣1+i,所求复数的实部为:﹣1.故答案为:﹣1.10.(•北京)2﹣^^^3,,log_____25三个数中最大数的是log_____25.【分析】运用指数函数和对数函数的单调性,可得0<2﹣^^^3<1,1<<2,log_____25>log24=2,即可得到最大数.【解答】解:由于0<2﹣^^^3<1,1<<2,log_____25>log24=2,则三个数中最大的数为log_____25.故答案为:log_____25.11.(•北京)在△ABC中,a=3,b=,∠A=,则∠B=.【分析】由正弦定理可得sinB,再由三角形的边角关系,即可得到角B.【解答】解:由正弦定理可得,=,即有sinB===,由b<a,则B<A,可得B=.故答案为:.12.(•北京)已知(2,0)是双曲线x^^^2﹣=1(b>0)的一个焦点,则b=.【分析】求得双曲线x^^^2﹣=1(b>0)的焦点为(,0),(﹣,0),可得b的方程,即可得到b的值.【解答】解:双曲线x^^^2﹣=1(b>0)的焦点为(,0),(﹣,0),由题意可得=2,解得b=.故答案为:.13.(•北京)如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为7.【分析】利用线性规划的知识,通过平移即可求z的最大值.【解答】解:由z=2x+3y,得y=,平移直线y=,由图象可知当直线y=经过点A时,直线y=的截距最大,此时z最大.即A(2,1).此时z的最大值为z=2×2+3×1=7,故答案为:7.14.(•北京)高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是乙;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是数学.【分析】(1)根据散点图1分析甲乙两人所在的位置的纵坐标确定总成绩名次;(2)根据散点图2,观察丙的对应的坐标,如果横坐标大于纵坐标,说明总成绩名次大于数学成绩名次,反之小于.【解答】解:由高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况的散点图可知①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是乙;②观察散点图,作出对角线y=x,发现丙的坐标横坐标大于纵坐标,说明数学成绩的名次小于总成绩名次,所以在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是数学;故答案为:乙;数学.三、解答题(共80分)15.(•北京)已知函数f(x)=sinx﹣2sin^^^2.(1)求f(x)的最小正周期;(2)求f(x)在区间[0,]上的最小值.【分析】(1)由三角函数恒等变换化简函数解析式可得f(x)=2sin(x+)﹣,由三角函数的周期性及其求法即可得解;(2)由x∈[0,],可求范围x+∈[,π],即可求得f(x)的取值范围,即可得解.【解答】解:(1)∵f(x)=sinx﹣2sin^^^2=sinx﹣2×=sinx+cosx﹣=2sin(x+)﹣∴f(x)的最小正周期T==2π;(2)∵x∈[0,],∴x+∈[,π],∴sin(x+)∈[0,1],即有:f(x)=2sin(x+)﹣∈[﹣,2﹣],∴可解得f(x)在区间[0,]上的最小值为:﹣.16.(•北京)已知等差数列{an}满足a_____1+a_____2=10,a_____4﹣a_____3=2(1)求{an}的通项公式;(2)设等比数列{bn}满足b_____2=a_____3,b_____3=a7,问:b6与数列{an}的第几项相等?【分析】(I)由a_____4﹣a_____3=2,可求公差d,然后由a_____1+a_____2=10,可求a_____1,结合等差数列的通项公式可求(II)由b_____2=a_____3=8,b_____3=a7=16,可求等比数列的首项及公比,代入等比数列的通项公式可求b6,结合(I)可求【解答】解:(I)设等差数列{an}的公差为d.∵a_____4﹣a_____3=2,所以d=2∵a_____1+a_____2=10,所以2a_____1+d=10∴a_____1=4,∴an=4+2(n﹣1)=2n+2(n=1,2,…)(II)设等比数列{bn}的公比为q,∵b_____2=a_____3=8,b_____3=a7=16,∴∴q=2,b_____1=4∴=128,而128=2n+2∴n=63∴b6与数列{an}中的第63项相等17.(•北京)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.甲乙丙丁100 √× √√217 × √× √200 √√√×300 √× √×85 √× × ×98 × √× ×(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?【分析】(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,从而求得顾客同时购买乙和丙的概率.(2)根据在甲、乙、丙、丁中同时购买3种商品的有300人,求得顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率.(3)在这1000名顾客中,求出同时购买甲和乙的概率、同时购买甲和丙的概率、同时购买甲和丁的概率,从而得出结论.【解答】解:(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,故顾客同时购买乙和丙的概率为=0.2.(2)在这1000名顾客中,在甲、乙、丙、丁中同时购买3种商品的有100+200=300(人),故顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率为=0.3.(3)在这1000名顾客中,同时购买甲和乙的概率为=0.2,同时购买甲和丙的概率为=0.6,同时购买甲和丁的概率为=0.1,故同时购买甲和丙的概率最大.18.(•北京)如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB(3)求三棱锥V﹣ABC的体积.【分析】(1)利用三角形的中位线得出OM∥VB,利用线面平行的判定定理证明VB∥平面MOC;(2)证明:OC⊥平面VAB,即可证明平面MOC⊥平面VAB(3)利用等体积法求三棱锥V﹣ABC的体积.【解答】(1)证明:∵O,M分别为AB,VA的中点,∴OM∥VB,∵VB⊄平面MOC,OM⊂平面MOC,∴VB∥平面MOC;(2)∵AC=BC,O为AB的中点,∴OC⊥AB,∵平面VAB⊥平面ABC,OC⊂平面ABC,∴OC⊥平面VAB,∵OC⊂平面MOC,∴平面MOC⊥平面VAB(3)在等腰直角三角形ACB中,AC=BC=,∴AB=2,OC=1,∴S△VAB=,∵OC⊥平面VAB,∴VC﹣VAB=•S△VAB=,∴VV﹣ABC=VC﹣VAB=.20.(•北京)已知椭圆C:x^^^2+3y^^^2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.【分析】(1)通过将椭圆C的方程化成标准方程,利用离心率计算公式即得结论;(2)通过令直线AE的方程中x=3,得点M坐标,即得直线BM的斜率;(3)分直线AB的斜率不存在与存在两种情况讨论,利用韦达定理,计算即可.【解答】解:(1)∵椭圆C:x^^^2+3y^^^2=3,∴椭圆C的标准方程为:+y^^^2=1,∴a=,b=1,c=,∴椭圆C的离心率e==;(2)∵AB过点D(1,0)且垂直于x轴,∴可设A(1,y_____1),B(1,﹣y_____1),∵E(2,1),∴直线AE的方程为:y﹣1=(1﹣y_____1)(x﹣2),令x=3,得M(3,2﹣y_____1),∴直线BM的斜率kBM==1;(3)结论:直线BM与直线DE平行.证明如下:当直线AB的斜率不存在时,由(2)知kBM=1,又∵直线DE的斜率kDE==1,∴BM∥DE;当直线AB的斜率存在时,设其方程为y=k(x﹣1)(k≠1),设A(x_____1,y_____1),B(x_____2,y_____2),则直线AE的方程为y﹣1=(x﹣2),令x=3,则点M(3,),∴直线BM的斜率kBM=,联立,得(1+3k^^^2)x^^^2﹣6k2x+3k^^^2﹣3=0,由韦达定理,得x_____1+x_____2=,x_____1x_____2=,∵kBM﹣1====0,∴kBM=1=kDE,即BM∥DE;综上所述,直线BM与直线DE平行.19.(•北京)设函数f(x)=﹣klnx,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.【分析】(1)利用f'(x)≥0或f'(x)≤0求得函数的单调区间并能求出极值;(2)利用函数的导数的极值求出最值,利用最值讨论存在零点的情况.【解答】解:(1)由f(x)=f'(x)=x﹣由f'(x)=0解得x=f(x)与f'(x)在区间(0,+∞)上的情况如下:X (0,)() f'(x)﹣ 0 +f (x ) ↓↑所以,f (x )的单调递增区间为(),单调递减区间为(0,);f (x )在x=处的极小值为f ()=,无极大值.(2)证明:由(1)知,f (x )在区间(0,+∞)上的最小值为f ()=.因为f (x )存在零点,所以,从而k≥e当k=e 时,f (x )在区间(1,)上单调递减,且f ()=0所以x=是f (x )在区间(1,)上唯一零点. 当k >e 时,f (x )在区间(0,)上单调递减,且,所以f (x )在区间(1,)上仅有一个零点.综上所述,若f (x )存在零点,则f (x )在区间(1,]上仅有一个零点.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
高考数学高三模拟考试试卷压轴题高考数学模拟试卷
高考数学高三模拟考试试卷压轴题高考数学模拟试卷一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为.2.(5分)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为.3.(5分)设复数z满足z2=3+4i(i是虚数单位),则z的模为.4.(5分)根据如图所示的伪代码,可知输出的结果S为.5.(5分)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.6.(5分)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为.7.(5分)不等式2<4的解集为.8.(5分)已知tanα=﹣2,tan(α+β)=,则tanβ的值为.9.(5分)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.10.(5分)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为.11.(5分)设数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),则数列{}的前10项的和为.12.(5分)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.13.(5分)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为.14.(5分)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(ak•ak+1)的值为.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.17.(14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.18.(16分)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.19.(16分)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.20.(16分)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括2124题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修41:几何证明选讲】21.(10分)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.【选修42:矩阵与变换】22.(10分)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.【选修44:坐标系与参数方程】23.已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.[选修45:不等式选讲】24.解不等式x+|2x+3|≥2.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.26.(10分)已知集合X={1,2,3},Yn={1,2,3,…,n)(n∈N*),设Sn={(a,b)|a 整除b或b整除a,a∈X,B∈Yn},令f(n)表示集合Sn所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.高考数学模拟试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为 6 .【分析】直接求解数据的平均数即可.【解答】解:数据4,6,5,8,7,6,那么这组数据的平均数为:=6.故答案为:6.【点评】本题考查数据的均值的求法,基本知识的考查.2.(5分)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为 5 .【分析】求出A∪B,再明确元素个数【解答】解:集合A={1,2,3},B={2,4,5},则A∪B={1,2,3,4,5};所以A∪B中元素的个数为5;故答案为:5【点评】题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题3.(5分)设复数z满足z2=3+4i(i是虚数单位),则z的模为.【分析】直接利用复数的模的求解法则,化简求解即可.【解答】解:复数z满足z2=3+4i,可得|z||z|=|3+4i|==5,∴|z|=.故答案为:.【点评】本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力.4.(5分)根据如图所示的伪代码,可知输出的结果S为 7 .【分析】模拟执行程序框图,依次写出每次循环得到的I,S的值,当I=10时不满足条件I <8,退出循环,输出S的值为7.【解答】解:模拟执行程序,可得S=1,I=1满足条件I<8,S=3,I=4满足条件I<8,S=5,I=7满足条件I<8,S=7,I=10不满足条件I<8,退出循环,输出S的值为7.故答案为:7.【点评】本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题.5.(5分)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.【分析】根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.【解答】解:根据题意,记白球为A,红球为B,黄球为C1、C2,则一次取出2只球,基本事件为AB、AC1、AC2、BC1、BC2、C1C2共6种,其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种;所以所求的概率是P=,故答案为:.【点评】本题考查了用列举法求古典概型的概率的应用问题,是基础题目.6.(5分)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为﹣3 .【分析】直接利用向量的坐标运算,求解即可.【解答】解:向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)可得,解得m=2,n=5,∴m﹣n=﹣3.故答案为:﹣3.【点评】本题考查向量的坐标运算,向量相等条件的应用,考查计算能力.7.(5分)不等式2<4的解集为(﹣1,2) .【分析】利用指数函数的单调性转化为x2﹣x<2,求解即可.【解答】解;∵2<4,∴x2﹣x<2,即x2﹣x﹣2<0,解得:﹣1<x<2故答案为:(﹣1,2)【点评】本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大.8.(5分)已知tanα=﹣2,tan(α+β)=,则tanβ的值为 3 .【分析】直接利用两角和的正切函数,求解即可.【解答】解:tanα=﹣2,tan(α+β)=,可知tan(α+β)==,即=,解得tanβ=3.故答案为:3.【点评】本题考查两角和的正切函数,基本知识的考查.9.(5分)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.【分析】由题意求出原来圆柱和圆锥的体积,设出新的圆柱和圆锥的底面半径r,求出体积,由前后体积相等列式求得r.【解答】解:由题意可知,原来圆锥和圆柱的体积和为:. 设新圆锥和圆柱的底面半径为r,则新圆锥和圆柱的体积和为:.∴,解得:.故答案为:.【点评】本题考查了圆柱与圆锥的体积公式,是基础的计算题.10.(5分)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x﹣1)2+y2=2 .【分析】求出圆心到直线的距离d的最大值,即可求出所求圆的标准方程.【解答】解:圆心到直线的距离d==≤,∴m=1时,圆的半径最大为,∴所求圆的标准方程为(x﹣1)2+y2=2.故答案为:(x﹣1)2+y2=2.【点评】本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础.11.(5分)设数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),则数列{}的前10项的和为.【分析】数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),利用“累加求和”可得an=.再利用“裂项求和”即可得出.【解答】解:∵数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),∴当n≥2时,an=(an﹣an﹣1)+…+(a2﹣a1)+a1=n+…+2+1=.当n=1时,上式也成立,∴an=.∴=2.∴数列{}的前n项的和Sn===.∴数列{}的前10项的和为.故答案为:.【点评】本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.12.(5分)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.【分析】双曲线x2﹣y2=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离.【解答】解:由题意,双曲线x2﹣y2=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.【点评】本题考查双曲线的性质,考查学生的计算能力,比较基础.13.(5分)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为 4 .【分析】:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1,分别作出函数的图象,即可得出结论.【解答】解:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1.g(x)与h(x)=﹣f(x)+1的图象如图所示,图象有2个交点g(x)与φ(x)=﹣f(x)﹣1的图象如图所示,图象有两个交点;所以方程|f(x)+g(x)|=1实根的个数为4.故答案为:4.【点评】本题考查求方程|f(x)+g(x)|=1实根的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.14.(5分)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(ak•ak+1)的值为.【分析】利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出.【解答】解:=+=++++=++=++,∴(ak•ak+1)=+++++++…+ ++++++…+=+0+0=.故答案为:9.【点评】本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能力与计算能力,属于中档题.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.【分析】(1)直接利用余弦定理求解即可.(2)利用正弦定理求出C的正弦函数值,然后利用二倍角公式求解即可.【解答】解:(1)由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcosA=4+9﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===,∵AB<BC,BC=,AB=2,角A=60°,在三角形ABC中,大角对大边,大边对大角,>2,∴角C<角A,角C为锐角.sinC>0,cosC>0则cosC===.因此sin2C=2sinCcosC=2×=.【点评】本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解题的关键.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.【分析】(1)根据中位线定理得DE∥AC,即证DE∥平面AA1C1C;(2)【方法一】先由直三棱柱得出CC1⊥平面ABC,即证AC⊥CC1;再证明AC⊥平面BCC1B1,即证BC1⊥AC;最后证明BC1⊥平面B1AC,即可证出BC1⊥AB1.【方法二】建立空间直角坐标系,利用向量数量积证明异面直线垂直.【解答】证明:(1)如图所示,由据题意得,E为B1C的中点,D为AB1的中点,所以DE∥AC;又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C;(2)【方法一】因为棱柱ABC﹣A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为AC⊂平面ABC,所以AC⊥CC1;又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1;又因为BC1⊂平面BCC1B1,所以BC1⊥AC;因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1⊥平面B1AC;又因为AB1⊂平面B1AC,所以BC1⊥AB1.【方法二】根据题意,A1C1⊥B1C1,CC1⊥平面A1B1C1,以C1为原点建立空间直角座标系,C1A1为x轴,C1B1为y轴,C1C为z轴,如图所示;设BC=CC1=a,AC=b,则A(b,0,a),B1(0,a,0),B(0,a,a),C1(0,0,0);∴=(﹣b,a,﹣a),=(0,﹣a,﹣a),∴•=﹣b×0+a×(﹣a)﹣a×(﹣a)=0,∴⊥,即AB1⊥BC1.【点评】本题考查了直线与直线,直线与平面以及平面与平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题.17.(14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.【分析】(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,建立方程组,即可求a,b的值;(2)①求出切线l的方程,可得A,B的坐标,即可写出公路l长度的函数解析式f (t),并写出其定义域;②设g(t)=,利用导数,确定单调性,即可求出当t为何值时,公路l的长度最短,并求出最短长度.【解答】解:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,得,解得,(2)①由(1)y=(5≤x≤20),P(t,),∴y′=﹣,∴切线l的方程为y﹣=﹣(x﹣t)设在点P处的切线l交x,y轴分别于A,B点,则A(,0),B(0,),∴f(t)==,t∈[5,20];②设g(t)=,则g′(t)=2t﹣=0,解得t=10,t∈(5,10)时,g′(t)<0,g(t)是减函数;t∈(10,20)时,g′(t)>0,g (t)是增函数,从而t=10时,函数g(t)有极小值也是最小值,∴g(t)min=300,∴f(t)min=15,答:t=10时,公路l的长度最短,最短长度为15千米.【点评】本题考查利用数学知识解决实际问题,考查导数知识的综合运用,确定函数关系,正确求导是关键.18.(16分)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.【分析】(1)运用离心率公式和准线方程,可得a,c的方程,解得a,c,再由a,b,c 的关系,可得b,进而得到椭圆方程;(2)讨论直线AB的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.【解答】解:(1)由题意可得,e==,且c+=3,解得c=1,a=,则b=1,即有椭圆方程为+y2=1;(2)当AB⊥x轴,AB=,CP=3,不合题意;当AB与x轴不垂直,设直线AB:y=k(x﹣1),A(x1,y1),B(x2,y2),将AB方程代入椭圆方程可得(1+2k2)x2﹣4k2x+2(k2﹣1)=0,则x1+x2=,x1x2=,则C(,),且|AB|=•=,若k=0,则AB的垂直平分线为y轴,与左准线平行,不合题意;则k≠0,故PC:y+=﹣(x﹣),P(﹣2,),从而|PC|=,由|PC|=2|AB|,可得=,解得k=±1,此时AB的方程为y=x﹣1或y=﹣x+1.【点评】本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,同时考查两直线垂直和中点坐标公式的运用,属于中档题.19.(16分)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.【分析】(1)求导数,分类讨论,利用导数的正负,即可得出f(x)的单调性;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f (x)有三个不同的零点等价于f(0)f(﹣)=b(+b)<0,进一步转化为a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,利用条件即可求c的值.【解答】解:(1)∵f(x)=x3+ax2+b,∴f′(x)=3x2+2ax,令f′(x)=0,可得x=0或﹣.a=0时,f′(x)>0,∴f(x)在(﹣∞,+∞)上单调递增;a>0时,x∈(﹣∞,﹣)∪(0,+∞)时,f′(x)>0,x∈(﹣,0)时,f′(x)<0,∴函数f(x)在(﹣∞,﹣),(0,+∞)上单调递增,在(﹣,0)上单调递减;a<0时,x∈(﹣∞,0)∪(﹣,+∞)时,f′(x)>0,x∈(0,﹣)时,f′(x)<0,∴函数f(x)在(﹣∞,0),(﹣,+∞)上单调递增,在(0,﹣)上单调递减;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)>0,且f(﹣)<0,∴b>0且+b<0,∵b=c﹣a,∴a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,∵函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),∴在(﹣∞,﹣3)上,g(a)<0且在(1,)∪(,+∞)上g(a)>0均恒成立,∴g(﹣3)=c﹣1≤0,且g()=c﹣1≥0,∴c=1,此时f(x)=x3+ax2+1﹣a=(x+1)[x2+(a﹣1)x+1﹣a],∵函数有三个零点,∴x2+(a﹣1)x+1﹣a=0有两个异于﹣1的不等实根,∴△=(a﹣1)2﹣4(1﹣a)>0,且(﹣1)2﹣(a﹣1)+1﹣a≠0,解得a∈(﹣∞,﹣3)∪(1,)∪(,+∞),综上c=1.【点评】本题考查导数知识的综合运用,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,难度大.20.(16分)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.【分析】(1)根据等比数列和等差数列的定义即可证明;(2)利用反证法,假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,推出矛盾,否定假设,得到结论;(3)利用反证法,假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列,得到a1n(a1+2d)n+2k=(a1+d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),利用等式以及对数的性质化简整理得到ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**),多次构造函数,多次求导,利用零点存在定理,推出假设不成立.【解答】解:(1)证明:∵==2d,(n=1,2,3,)是同一个常数,∴2,2,2,2依次构成等比数列;(2)令a1+d=a,则a1,a2,a3,a4分别为a﹣d,a,a+d,a+2d(a>d,a>﹣2d,d≠0)假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,则a4=(a﹣d)(a+d)3,且(a+d)6=a2(a+2d)4,令t=,则1=(1﹣t)(1+t)3,且(1+t)6=(1+2t)4,(﹣<t<1,t≠0),化简得t3+2t2﹣2=0(*),且t2=t+1,将t2=t+1代入(*)式,t(t+1)+2(t+1)﹣2=t2+3t=t+1+3t=4t+1=0,则t=﹣,显然t=﹣不是上面方程的解,矛盾,所以假设不成立,因此不存在a1,d,使得a1,a22,a33,a44依次构成等比数列.(3)假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列,则a1n(a1+2d)n+2k=(a1+d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),分别在两个等式的两边同除以a12(n+k),a12(n+2k),并令t=,(t>,t≠0),则(1+2t)n+2k=(1+t)2(n+k),且(1+t)n+k(1+3t)n+3k=(1+2t)2(n+2k),将上述两个等式取对数,得(n+2k)ln(1+2t)=2(n+k)ln(1+t),且(n+k)ln(1+t)+(n+3k)ln(1+3t)=2(n+2k)ln(1+2t),化简得,2k[ln(1+2t)﹣ln(1+t)]=n[2ln(1+t)﹣ln(1+2t)],且3k[ln(1+3t)﹣ln(1+t)]=n[3ln(1+t)﹣ln(1+3t)],再将这两式相除,化简得,ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**)令g(t)=4ln(1+3t)ln(1+t)﹣ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t),则g′(t)=[(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t)],令φ(t)=(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t),则φ′(t)=6[(1+3t)ln(1+3t)﹣2(1+2t)ln(1+2t)+3(1+t)ln(1+t)],令φ1(t)=φ′(t),则φ1′(t)=6[3ln(1+3t)﹣4ln(1+2t)+ln(1+t)],令φ2(t)=φ1′(t),则φ2′(t)=>0,由g(0)=φ(0)=φ1(0)=φ2(0)=0,φ2′(t)>0,知g(t),φ(t),φ1(t),φ2(t)在(﹣,0)和(0,+∞)上均单调,故g(t)只有唯一的零点t=0,即方程(**)只有唯一解t=0,故假设不成立,所以不存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列. 【点评】本题主要考查等差数列、等比数列的定义和性质,函数与方程等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力,属于难题.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括2124题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修41:几何证明选讲】21.(10分)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.【分析】直接利用已知条件,推出两个三角形的三个角对应相等,即可证明三角形相似. 【解答】证明:∵AB=AC,∴∠ABD=∠C,又∵∠C=∠E,∴∠ABD=∠E,又∠BAE是公共角,可知:△ABD∽△AEB.【点评】本题考查圆的基本性质与相似三角形等基础知识,考查逻辑推理能力.【选修42:矩阵与变换】22.(10分)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.【分析】利用A=﹣2,可得A=,通过令矩阵A的特征多项式为0即得结论. 【解答】解:由已知,可得A=﹣2,即==,则,即,∴矩阵A=,从而矩阵A的特征多项式f(λ)=(λ+2)(λ﹣1),∴矩阵A的另一个特征值为1.【点评】本题考查求矩阵及其特征值,注意解题方法的积累,属于中档题.【选修44:坐标系与参数方程】23.已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.【分析】先根据x=ρcosθ,y=ρsinθ,求出圆的直角坐标方程,求出半径.【解答】解:圆的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,可得ρ2﹣2ρcosθ+2ρsinθ﹣4=0,化为直角坐标方程为x2+y2﹣2x+2y﹣4=0,化为标准方程为(x﹣1)2+(y+1)2=6,圆的半径r=.【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,以及求点的极坐标的方法,关键是利用公式x=ρcosθ,y=ρsinθ,比较基础,[选修45:不等式选讲】24.解不等式x+|2x+3|≥2.【分析】思路1(公式法):利用|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);思路2(零点分段法):对x的值分“x≥”“x<”进行讨论求解.【解答】解法1:x+|2x+3|≥2变形为|2x+3|≥2﹣x,得2x+3≥2﹣x,或2x+3≤﹣(2﹣x),即x≥,或x≤﹣5,即原不等式的解集为{x|x≥,或x≤﹣5}.解法2:令|2x+3|=0,得x=.①当x≥时,原不等式化为x+(2x+3)≥2,即x≥,所以x≥;②x<时,原不等式化为x﹣(2x+3)≥2,即x≤﹣5,所以x≤﹣5.综上,原不等式的解集为{x|x≥,或x≤﹣5}.【点评】本题考查了含绝对值不等式的解法.本解答给出的两种方法是常见的方法,不管用哪种方法,其目的是去绝对值符号.若含有一个绝对值符号,利用公式法要快捷一些,其套路为:|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);|f(x)|≤g(x)⇔﹣g(x)≤f (x)≤g(x).可简记为:大于号取两边,小于号取中间.使用零点分段法时,应注意:同一类中取交集,类与类之间取并集.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.【分析】以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz.(1)所求值即为平面PAB的一个法向量与平面PCD的法向量的夹角的余弦值的绝对值,计算即可;(2)利用换元法可得cos2<,>≤,结合函数y=cosx在(0,)上的单调性,计算即得结论.【解答】解:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz如图,由题可知B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).(1)∵AD⊥平面PAB,∴=(0,2,0),是平面PAB的一个法向量,∵=(1,1,﹣2),=(0,2,﹣2),设平面PCD的法向量为=(x,y,z),由,得,取y=1,得=(1,1,1),∴cos<,>==,∴平面PAB与平面PCD所成两面角的余弦值为;(2)∵=(﹣1,0,2),设=λ=(﹣λ,0,2λ)(0≤λ≤1),又=(0,﹣1,0),则=+=(﹣λ,﹣1,2λ),又=(0,﹣2,2),从而cos<,>==,设1+2λ=t,t∈[1,3],则cos2<,>==≤,当且仅当t=,即λ=时,|cos<,>|的最大值为,因为y=cosx在(0,)上是减函数,此时直线CQ与DP所成角取得最小值.又∵BP==,∴BQ=BP=.【点评】本题考查求二面角的三角函数值,考查用空间向量解决问题的能力,注意解题方法的积累,属于中档题.26.(10分)已知集合X={1,2,3},Yn={1,2,3,…,n)(n∈N*),设Sn={(a,b)|a 整除b或b整除a,a∈X,B∈Yn},令f(n)表示集合Sn所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.【分析】(1)f(6)=6+2++=13;(2)根据数学归纳法的证明步骤,分类讨论,即可证明结论.【解答】解:(1)f(6)=6+2++=13;(2)当n≥6时,f(n)=.下面用数学归纳法证明:①n=6时,f(6)=6+2++=13,结论成立;②假设n=k(k≥6)时,结论成立,那么n=k+1时,Sk+1在Sk的基础上新增加的元素在(1,k+1),(2,k+1),(3,k+1)中产生,分以下情形讨论:1)若k+1=6t,则k=6(t﹣1)+5,此时有f(k+1)=f(k)+3=(k+1)+2++,结论成立;2)若k+1=6t+1,则k=6t,此时有f(k+1)=f(k)+1=k+2+++1=(k+1)+2++,结论成立;3)若k+1=6t+2,则k=6t+1,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;4)若k+1=6t+3,则k=6t+2,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;5)若k+1=6t+4,则k=6t+3,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;6)若k+1=6t+5,则k=6t+4,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立.综上所述,结论f(n)=n+[]+[]+2,对满足n≥6的自然数n均成立.【点评】本题考查数学归纳法,考查学生分析解决问题的能力,正确归纳是关键.高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--,(3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=(A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为(AB )32(CD )2 (12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
高考数学高三模拟考试试卷压轴题高考数学试卷理科001
高考数学高三模拟考试试卷压轴题高考数学试卷(理科)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知i是虚数单位,则(﹣1+i)(2﹣i)=()A.﹣3+i B.﹣1+3i C.﹣3+3i D.﹣1+i2.(5分)设集合S={x|x>﹣2},T={x|x2+3x﹣4≤0},则(∁RS)∪T=()A.(﹣2,1] B.(﹣∞,﹣4] C.(﹣∞,1] D.[1,+∞)3.(5分)已知x,y为正实数,则()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx•2lgyC.2lgx•lgy=2lgx+2lgy D.2lg(xy)=2lgx•2lgy4.(5分)已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)某程序框图如图所示,若该程序运行后输出的值是,则()A.a=4 B.a=5 C.a=6 D.a=76.(5分)已知,则tan2α=()A.B.C. D.7.(5分)设△ABC,P0是边AB上一定点,满足,且对于边AB上任一点P,恒有则()A.∠ABC=90°B.∠BAC=90°C.AB=AC D.AC=BC8.(5分)已知e为自然对数的底数,设函数f(x)=(ex﹣1)(x﹣1)k(k=1,2),则()A.当k=1时,f(x)在x=1处取得极小值B.当k=1时,f(x)在x=1处取得极大值C.当k=2时,f(x)在x=1处取得极小值D.当k=2时,f(x)在x=1处取得极大值9.(5分)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.10.(5分)在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则()A.平面α与平面β垂直B.平面α与平面β所成的(锐)二面角为45°C.平面α与平面β平行D.平面α与平面β所成的(锐)二面角为60°二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)设二项式的展开式中常数项为A,则A=.12.(4分)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于 cm3.13.(4分)设z=kx+y,其中实数x,y满足,若z的最大值为12,则实数k=.14.(4分)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有种(用数字作答)15.(4分)设F为抛物线C:y2=4x的焦点,过点P(﹣1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于.16.(4分)△ABC中,∠C=90°,M是BC的中点,若,则sin∠BAC=.17.(4分)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(Ⅰ)求d,an;(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|an|.19.(14分)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和.求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若,求a:b:c.20.(15分)如图,在四面体A﹣BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2.M 是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.(1)证明:PQ∥平面BCD;(2)若二面角C﹣BM﹣D的大小为60°,求∠BDC的大小.21.(15分)如图,点P(0,﹣1)是椭圆C1:+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积的最大值时直线l1的方程.22.(14分)已知a∈R,函数f(x)=x3﹣3x2+3ax﹣3a+3.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当x∈[0,2]时,求|f(x)|的最大值.高考数学试卷(理科)参考答案与试题解析一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知i是虚数单位,则(﹣1+i)(2﹣i)=()A.﹣3+i B.﹣1+3i C.﹣3+3i D.﹣1+i【分析】直接利用两个复数代数形式的乘法法则,以及虚数单位i的幂运算性质,运算求得结果.【解答】解:(﹣1+i)(2﹣i)=﹣2+i+2i+1=﹣1+3i,故选:B.【点评】本题主要考查两个复数代数形式的乘法,虚数单位i的幂运算性质,属于基础题.2.(5分)设集合S={x|x>﹣2},T={x|x2+3x﹣4≤0},则(∁RS)∪T=()A.(﹣2,1] B.(﹣∞,﹣4] C.(﹣∞,1] D.[1,+∞)【分析】先根据一元二次不等式求出集合T,然后求得∁RS,再利用并集的定义求出结果.【解答】解:∵集合S={x|x>﹣2},∴∁RS={x|x≤﹣2},T={x|x2+3x﹣4≤0}={x|﹣4≤x≤1},故(∁RS)∪T={x|x≤1}故选:C.【点评】此题属于以一元二次不等式的解法为平台,考查了补集及并集的运算,是高考中常考的题型.在求补集时注意全集的范围.3.(5分)已知x,y为正实数,则()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx•2lgyC.2lgx•lgy=2lgx+2lgy D.2lg(xy)=2lgx•2lgy【分析】直接利用指数与对数的运算性质,判断选项即可.【解答】解:因为as+t=as•at,lg(xy)=lgx+lgy(x,y为正实数),所以2lg(xy)=2lgx+lgy=2lgx•2lgy,满足上述两个公式,故选:D.【点评】本题考查指数与对数的运算性质,基本知识的考查.4.(5分)已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】φ=⇒f(x)=Acos(ωx+)⇒f(x)=﹣Asin(ωx)(A>0,ω>0,x∈R)是奇函数.f(x)为奇函数⇒f(0)=0⇒φ=kπ+,k∈Z.所以“f(x)是奇函数”是“φ=”必要不充分条件.【解答】解:若φ=,则f(x)=Acos(ωx+)⇒f(x)=﹣Asin(ωx)(A>0,ω>0,x∈R)是奇函数;若f(x)是奇函数,⇒f(0)=0,∴f(0)=Acos(ω×0+φ)=Acosφ=0.∴φ=kπ+,k∈Z,不一定有φ=“f(x)是奇函数”是“φ=”必要不充分条件.故选:B.【点评】本题考查充分条件、必要条件和充要条件的判断,解题时要认真审题,仔细解答,注意三角函数性质的灵活运用.5.(5分)某程序框图如图所示,若该程序运行后输出的值是,则()A.a=4 B.a=5 C.a=6 D.a=7【分析】根据已知流程图可得程序的功能是计算S=1++…+的值,利用裂项相消法易得答案.【解答】解:由已知可得该程序的功能是计算并输出S=1++…+=1+1﹣=2﹣.若该程序运行后输出的值是,则 2﹣=.∴a=4,故选:A.【点评】本题考查的知识点是程序框图,其中分析出程序的功能是解答的关键.6.(5分)已知,则tan2α=()A.B.C. D.【分析】由题意结合sin2α+cos2α=1可解得sinα,和cosα,进而可得tanα,再代入二倍角的正切公式可得答案.【解答】解:∵,又sin2α+cos2α=1,联立解得,或故tanα==,或tanα=3,代入可得tan2α===﹣,或tan2α===故选:C.【点评】本题考查二倍角的正切公式,涉及同角三角函数的基本关系,属中档题.7.(5分)设△ABC,P0是边AB上一定点,满足,且对于边AB上任一点P,恒有则()A.∠ABC=90°B.∠BAC=90°C.AB=AC D.AC=BC【分析】设||=4,则||=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,则由数量积的几何意义可得||2﹣(a+1)||+a≥0恒成立,只需△=(a+1)2﹣4a=(a﹣1)2≤0即可,由此能求出△ABC是等腰三角形,AC=BC.【解答】解:设||=4,则||=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,则由数量积的几何意义可得,=||•||=||2﹣(a+1)||,•=﹣a,于是•≥••恒成立,整理得||2﹣(a+1)||+a≥0恒成立,只需△=(a+1)2﹣4a=(a﹣1)2≤0即可,于是a=1,因此我们得到HB=2,即H是AB的中点,故△ABC是等腰三角形,所以AC=BC.故选:D.【点评】本题主要考查了平面向量的运算,向量的模及向量的数量积的概念,向量运算的几何意义的应用,还考查了利用向量解决简单的几何问题的能力8.(5分)已知e为自然对数的底数,设函数f(x)=(ex﹣1)(x﹣1)k(k=1,2),则()A.当k=1时,f(x)在x=1处取得极小值B.当k=1时,f(x)在x=1处取得极大值C.当k=2时,f(x)在x=1处取得极小值D.当k=2时,f(x)在x=1处取得极大值【分析】通过对函数f(x)求导,根据选项知函数在x=1处有极值,验证f'(1)=0,再验证f(x)在x=1处取得极小值还是极大值即可得结论.【解答】解:当k=1时,函数f(x)=(ex﹣1)(x﹣1).求导函数可得f'(x)=ex(x﹣1)+(ex﹣1)=(xex﹣1),f'(1)=e﹣1≠0,f'(2)=2e2﹣1≠0,则f(x)在在x=1处与在x=2处均取不到极值,当k=2时,函数f(x)=(ex﹣1)(x﹣1)2.求导函数可得f'(x)=ex(x﹣1)2+2(ex﹣1)(x﹣1)=(x﹣1)(xex+ex﹣2),∴当x=1,f'(x)=0,且当x>1时,f'(x)>0,当x0<x<1时(x0为极大值点),f'(x)<0,故函数f(x)在(1,+∞)上是增函数;在(x0,1)上是减函数,从而函数f(x)在x=1取得极小值.对照选项.故选:C.【点评】本题考查了函数的极值问题,考查学生的计算能力,正确理解极值是关键.9.(5分)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.【分析】不妨设|AF1|=x,|AF2|=y,依题意,解此方程组可求得x,y的值,利用双曲线的定义及性质即可求得C2的离心率.【解答】解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=(2c)2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2m,焦距为2n,则2m=|AF2|﹣|AF1|=y﹣x=2,2n=2c=2,∴双曲线C2的离心率e===.故选:D.【点评】本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.10.(5分)在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则()A.平面α与平面β垂直B.平面α与平面β所成的(锐)二面角为45°C.平面α与平面β平行D.平面α与平面β所成的(锐)二面角为60°【分析】设P1是点P在α内的射影,点P2是点P在β内的射影.根据题意点P1在β内的射影与P2在α内的射影重合于一点,由此可得四边形PP1Q1P2为矩形,且∠P1Q1P2是二面角α﹣l﹣β的平面角,根据面面垂直的定义可得平面α与平面β垂直,得到本题答案.【解答】解:设P1=fα(P),则根据题意,得点P1是过点P作平面α垂线的垂足∵Q1=fβ[fα(P)]=fβ(P1),∴点Q1是过点P1作平面β垂线的垂足同理,若P2=fβ(P),得点P2是过点P作平面β垂线的垂足因此Q2=fα[fβ(P)]表示点Q2是过点P2作平面α垂线的垂足∵对任意的点P,恒有PQ1=PQ2,∴点Q1与Q2重合于同一点由此可得,四边形PP1Q1P2为矩形,且∠P1Q1P2是二面角α﹣l﹣β的平面角∵∠P1Q1P2是直角,∴平面α与平面β垂直故选:A.【点评】本题给出新定义,要求我们判定平面α与平面β所成角大小,着重考查了线面垂直性质、二面角的平面角和面面垂直的定义等知识,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)设二项式的展开式中常数项为A,则A=﹣10.【分析】先求出二项式展开式的通项公式,再令x的系数等于0,求得r的值,即可求得展开式中的常数项的值.【解答】解:二项式的展开式的通项公式为Tr+1=••(﹣1)r•=(﹣1)r••.令=0,解得r=3,故展开式的常数项为﹣=﹣10,故答案为﹣10.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.12.(4分)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于24 cm3.【分析】先根据三视图判断几何体的形状,再利用体积公式计算即可.【解答】解:几何体为三棱柱去掉一个三棱锥后的几何体,底面是直角三角形,直角边分别为3,4,侧面的高为5,被截取的棱锥的高为3.如图:V=V棱柱﹣V棱锥==24(cm3)故答案为:24.【点评】本题考查几何体的三视图及几何体的体积计算.V椎体=Sh,V柱体=Sh.考查空间想象能力.13.(4分)设z=kx+y,其中实数x,y满足,若z的最大值为12,则实数k=2.【分析】先画出可行域,得到角点坐标.再对k进行分类讨论,通过平移直线z=kx+y得到最大值点A,即可得到答案.【解答】解:可行域如图:由得:A(4,4),同样地,得B(0,2),z=kx+y,即y=﹣kx+z,分k>0,k<0两种情况.当k>0时,目标函数z=kx+y在A点取最大值,即直线z=kx+y在y轴上的截距z最大,即12=4k+4,得k=2;当k<0时,①当k>﹣时,目标函数z=kx+y在A点(4,4)时取最大值,即直线z=kx+y在y轴上的截距z最大,此时,12=4k+4,故k=2.②当k时,目标函数z=kx+y在B点(0,2)时取最大值,即直线z=kx+y在y轴上的截距z最大,此时,12=0×k+2,故k不存在.综上,k=2.故答案为:2.【点评】本题主要考查简单线性规划.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义.14.(4分)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有480种(用数字作答)【分析】按C的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可.【解答】解:按C的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可.当C在左边第1个位置时,有A,当C在左边第2个位置时,A和B有C右边的4个位置可以选,有A A,当C在左边第3个位置时,有A A+A A,共为240种,乘以2,得480.则不同的排法共有480种.故答案为:480.【点评】本题考查排列、组合的应用,关键在于明确事件之间的关系,同时要掌握分类讨论的处理方法.15.(4分)设F为抛物线C:y2=4x的焦点,过点P(﹣1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于不存在.【分析】由题意设直线l的方程为my=x+1,联立得到y2﹣4my+4=0,△=16m2﹣16=16(m2﹣1)>0.设A(x1,y1),B(x2,y2),Q(x0,y0).利用根与系数的关系可得y1+y2=4m,利用中点坐标公式可得=2m,x0=my0﹣1=2m2﹣1.Q (2m2﹣1,2m),由抛物线C:y2=4x得焦点F(1,0).再利用两点间的距离公式即可得出m及k,再代入△判断是否成立即可.【解答】解:由题意设直线l的方程为my=x+1,联立得到y2﹣4my+4=0,△=16m2﹣16=16(m2﹣1)>0.设A(x1,y1),B(x2,y2),Q(x0,y0).∴y1+y2=4m,∴=2m,∴x0=my0﹣1=2m2﹣1.∴Q(2m2﹣1,2m),由抛物线C:y2=4x得焦点F(1,0).∵|QF|=2,∴,化为m2=1,解得m=±1,不满足△>0.故满足条件的直线l不存在.故答案为不存在.【点评】本题综合考查了直线与抛物线的位置关系与△的关系、根与系数的关系、中点坐标关系、两点间的距离公式等基础知识,考查了推理能力和计算能力.16.(4分)△ABC中,∠C=90°,M是BC的中点,若,则sin∠BAC=.【分析】作出图象,设出未知量,在△ABM中,由正弦定理可得sin∠AMB=,进而可得cosβ=,在RT△ACM中,还可得cosβ=,建立等式后可得a=b,再由勾股定理可得c=,而sin∠BAC═=,代入化简可得答案.【解答】解:如图设AC=b,AB=c,CM=MB=,∠MAC=β,在△ABM中,由正弦定理可得=,代入数据可得=,解得sin∠AMB=,故cosβ=cos(﹣∠AMC)=sin∠AMC=sin(π﹣∠AMB)=sin∠AMB=,而在RT△ACM中,cosβ==,故可得=,化简可得a4﹣4a2b2+4b4=(a2﹣2b2)2=0,解之可得a=b,再由勾股定理可得a2+b2=c2,联立可得c=,故在RT△ABC中,sin∠BAC====,另解:设∠BAM为α,∠MAC为β,正弦定理得BM:sinα=AM:sin∠BBM:sinβ=AM又有sinβ=cos∠AMC=cos(α+∠B),联立消去BM,AM得sin∠Bcos(α+∠B)=sinα,拆开,将1化成sin2∠B+cos2∠B,构造二次齐次式,同除cos2∠B,可得tanα=,若,则cos∠BAM=,tan∠BAM=,解得tan∠B=,cosB=易得sin∠BAC=.另解:作MD⊥AB交于D,设MD=1,AM=3,AD=2,DB=x,BM=CM=,用△DMB和△CAB相似解得x=,则cosB=,易得sin∠BAC=.故答案为:【点评】本题考查正弦定理的应用,涉及三角函数的诱导公式以及勾股定理的应用,属难题.17.(4分)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于2.【分析】由题意求得=,||==,从而可得===,再利用二次函数的性质求得的最大值.【解答】解:∵、为单位向量,和的夹角等于30°,∴=1×1×cos30°=.∵非零向量=x+y,∴||===,∴====,故当=﹣时,取得最大值为2,故答案为 2.【点评】本题主要考查两个向量的数量积的运算,求向量的模,利用二次函数的性质求函数的最大值,属于中档题.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(Ⅰ)求d,an;(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|an|.【分析】(Ⅰ)直接由已知条件a1=10,且a1,2a2+2,5a3成等比数列列式求出公差,则通项公式an可求;(Ⅱ)利用(Ⅰ)中的结论,得到等差数列{an}的前11项大于等于0,后面的项小于0,所以分类讨论求d<0时|a1|+|a2|+|a3|+…+|an|的和.【解答】解:(Ⅰ)由题意得,即,整理得d2﹣3d﹣4=0.解得d=﹣1或d=4.当d=﹣1时,an=a1+(n﹣1)d=10﹣(n﹣1)=﹣n+11.当d=4时,an=a1+(n﹣1)d=10+4(n﹣1)=4n+6.所以an=﹣n+11或an=4n+6;(Ⅱ)设数列{an}的前n项和为Sn,因为d<0,由(Ⅰ)得d=﹣1,an=﹣n+11.则当n≤11时,.当n≥12时,|a1|+|a2|+|a3|+…+|an|=﹣Sn+2S11=.综上所述,|a1|+|a2|+|a3|+…+|an|=.【点评】本题考查了等差数列、等比数列的基本概念,考查了等差数列的通项公式,求和公式,考查了分类讨论的数学思想方法和学生的运算能力,是中档题.19.(14分)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和.求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若,求a:b:c.【分析】(1)ξ的可能取值有:2,3,4,5,6,求出相应的概率可得所求ξ的分布列;(2)先列出η的分布列,再利用η的数学期望和方差公式,即可得到结论.【解答】解:(1)由题意得ξ=2,3,4,5,6,P(ξ=2)==;P(ξ=3)==;P(ξ=4)==;P(ξ=5)==;P(ξ=6)==.故所求ξ的分布列为ξ 2 3 4 5 6P(2)由题意知η的分布列为η 1 2 3PEη==Dη=(1﹣)2+(2﹣)2+(3﹣)2=.得,解得a=3c,b=2c,故a:b:c=3:2:1.【点评】本题主要考查随机事件的概率和随机变量的分布列、数学期望等概念,同时考查抽象概括、运算能力,属于中档题.20.(15分)如图,在四面体A﹣BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2.M 是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.(1)证明:PQ∥平面BCD;(2)若二面角C﹣BM﹣D的大小为60°,求∠BDC的大小.【分析】(1)取BD的中点O,在线段CD上取点F,使得DF=3CF,连接OP、OF、FQ.根据平行线分线段成比例定理结合三角形的中位线定理证出四边形OPQF是平行四边形,从而PQ∥OF,再由线面平行判定定理,证出PQ∥平面BCD;(2)过点C作CG⊥BD,垂足为G,过G作GH⊥BM于H,连接CH.根据线面垂直的判定与性质证出BM⊥CH,因此∠CHG是二面角C﹣BM﹣D的平面角,可得∠CHG=60°.设∠BDC=θ,用解直角三角形的方法算出HG和CG关于θ的表达式,最后在Rt△CHG中,根据正切的定义得出tan∠CHG==,从而得到tanθ=,由此可得∠BDC.【解答】(1)取BD的中点O,在线段CD上取点F,使得DF=3CF,连接OP、OF、FQ∵△ACD中,AQ=3QC且DF=3CF,∴QF∥AD且QF=AD∵△BDM中,O、P分别为BD、BM的中点∴OP∥DM,且OP=DM,结合M为AD中点得:OP∥AD且OP=AD∴OP∥QF且OP=QF,可得四边形OPQF是平行四边形∴PQ∥OF∵PQ⊄平面BCD且OF⊂平面BCD,∴PQ∥平面BCD;(2)过点C作CG⊥BD,垂足为G,过G作GH⊥BM于H,连接CH∵AD⊥平面BCD,CG⊂平面BCD,∴AD⊥CG又∵CG⊥BD,AD、BD是平面ABD内的相交直线∴CG⊥平面ABD,结合BM⊂平面ABD,得CG⊥BM∵GH⊥BM,CG、GH是平面CGH内的相交直线∴BM⊥平面CGH,可得BM⊥CH因此,∠CHG是二面角C﹣BM﹣D的平面角,可得∠CHG=60°设∠B DC=θ,可得Rt△BCD中,CD=BDcosθ=2cosθ,CG=CDsinθ=sinθcosθ,BG=BCsinθ=2sin2θRt△BMD中,HG==;Rt△CHG中,tan∠CHG==∴tanθ=,可得θ=60°,即∠BDC=60°【点评】本题在底面为直角三角形且过锐角顶点的侧棱与底面垂直的三棱锥中求证线面平行,并且在已知二面角大小的情况下求线线角.着重考查了线面平行、线面垂直的判定与性质,解直角三角形和平面与平面所成角求法等知识,属于中档题.21.(15分)如图,点P(0,﹣1)是椭圆C1:+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积的最大值时直线l1的方程.【分析】(1)由题意可得b=1,2a=4,即可得到椭圆的方程;(2)设A(x1,y1),B(x2,y2),D(x0,y0).由题意可知:直线l1的斜率存在,设为k,则直线l1的方程为y=kx﹣1.利用点到直线的距离公式和弦长公式即可得出圆心O 到直线l1的距离和弦长|AB|,又l2⊥l1,可得直线l2的方程为x+kx+k=0,与椭圆的方程联立即可得到点D的横坐标,即可得出|PD|,即可得到三角形ABD的面积,利用基本不等式的性质即可得出其最大值,即得到k的值.【解答】解:(1)由题意可得b=1,2a=4,即a=2.∴椭圆C1的方程为;(2)设A(x1,y1),B(x2,y2),D(x0,y0).由题意可知:直线l1的斜率存在,设为k,则直线l1的方程为y=kx﹣1.又圆的圆心O(0,0)到直线l1的距离d=.∴|AB|==.又l2⊥l1,故直线l2的方程为x+ky+k=0,联立,消去y得到(4+k2)x2+8kx=0,解得,∴|PD|=.∴三角形ABD的面积S△==,令4+k2=t>4,则k2=t﹣4,f(t)===,∴S△=,当且仅,即,当时取等号,故所求直线l1的方程为.【点评】本题主要考查了椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,同时考查了推理能力和计算能力及分析问题和解决问题的能力.22.(14分)已知a∈R,函数f(x)=x3﹣3x2+3ax﹣3a+3.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当x∈[0,2]时,求|f(x)|的最大值.【分析】(1)求出原函数的导函数,求出函数取x=1时的导数值及f(1),由直线方程的点斜式写出切线方程;(2)求出原函数的导函数,分a≤0,0<a<1,a≥1三种情况求|f(x)|的最大值.特别当0<a<1时,仍需要利用导数求函数在区间(0,2)上的极值,然后在根据a的范围分析区间端点值与极值绝对值的大小.【解答】解:(1)因为f(x)=x3﹣3x2+3ax﹣3a+3,所以f′(x)=3x2﹣6x+3a,故f′(1)=3a﹣3,又f(1)=1,所以所求的切线方程为y=(3a﹣3)x﹣3a+4;(2)由于f′(x)=3(x﹣1)2+3(a﹣1),0≤x≤2.故当a≤0时,有f′(x)≤0,此时f(x)在[0,2]上单调递减,故|f(x)|max=max{|f(0)|,|f(2)|}=3﹣3a.当a≥1时,有f′(x)≥0,此时f(x)在[0,2]上单调递增,故|f(x)|max=max{|f(0)|,|f(2)|}=3a﹣1.当0<a<1时,由3(x﹣1)2+3(a﹣1)=0,得,.所以,当x∈(0,x1)时,f′(x)>0,函数f(x)单调递增;当x∈(x1,x2)时,f′(x)<0,函数f(x)单调递减;当x∈(x2,2)时,f′(x)>0,函数f(x)单调递增.所以函数f(x)的极大值,极小值.故f(x1)+f(x2)=2>0,.从而f(x1)>|f(x2)|.所以|f(x)|max=max{f(0),|f(2)|,f(x1)}.当0<a<时,f(0)>|f(2)|.又=故.当时,|f(2)|=f(2),且f(2)≥f(0).又=.所以当时,f(x1)>|f(2)|.故.当时,f(x1)≤|f(2)|.故f(x)max=|f(2)|=3a﹣1.综上所述|f(x)|max=.【点评】本题考查了利用导数研究曲线上某点处的切线方程,考查了利用导数求闭区间上的最值,考查了分类讨论的数学思想方法,正确的分类是解答(2)的关键,此题属于难题.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
高考数学高三模拟考试试卷压轴题猜题押题高考数学试卷 理科
高考数学高三模拟考试试卷压轴题猜题押题高考数学试卷 (理科)一、选择题1、设i 为虚数单位,z 表示复数z 的共轭复数,若1z i =+,则zi z i+⋅=( ) A 、2- B 、2i - C 、2 D 、2i 2、“0x <”是“()ln 10x +<的 ( )A 、充分不必要条件B 、必要不充分条件C 、充分必要条件D 、既不充分又不必要条件 3、如图所示,程序框图(算法流程图)的输出结果是( )A 、34B 、55C 、78D 、894、以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的单位长度。
已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为( ) A、、5、,x y 满足约束条件20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩,若z y ax =-取得最大值的最优解不唯一,则实数a 的值为( ) A 、12或-1 B 、12或2 C 、2或1 D 、2或-1 6、设函数()f x 满足()()sin f x f x x π+=+,当0x π≤<时,()0f x =,则236f π⎛⎫=⎪⎝⎭( ) A 、12BC 、0D 、12-7、一个多面体的三视图如图所示,则该多面体的表面积为( ) A、21 B、18、21 D 、188、从正方体六个面的对角线中任取两条作为一对,其中所成的角为60o 的共有( )A 、24对B 、30对C 、48对D 、60对9、若函数()12f x x x a =+++的最小值为3,则实数a 的值为( )A 、5或8 B 、1-或5 C 、4-或-1 D 、8或-410、在平面直角坐标系xOy 中,已知向量,a b ,1,0a b a b ==⋅=,点Q 满足()2OQ a b =+,曲1 1 1 1 1 1线{}cos sin ,02C P OP a b θθθπ==+≤<,区域{}0,P r PQ R r R Ω=<≤≤<,若C ⋂Ω为两段分离的曲线,则( )A 、13r R <<<B 、13r R <<≤C 、13r R ≤<<D 、13r R <<< 二、填空题11、若将函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭的图像向右平移ϕ个单位,所得的图像关于y 轴对称,则ϕ的最小正值为 。
2023年高考数学理科模拟卷01(原卷版)--2023年高考数学压轴题专项训练(全国通用)
2023年高考模拟卷(一)理科数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}2|230A x x x =∈--≤N ,2023{R |log 0}B x x =∈≤,则A B = ()A .](0,1B .[0,1]C .{1}D .∅2.a b >的一个充要条件是()A .11a b <B .22ac bc >C .22log log a b>D .1.7 1.7a b>3.已知向量()1,a m =,()1,0b =- ,且6-=⋅+ a b a b ,则a =r ()A B .CD .4.将顶点在原点,始边为x 轴非负半轴的锐角α的终边绕原点逆时针转过π4后,交单位圆于点3,5P y ⎛⎫- ⎪⎝⎭,那么cos α的值为()A .210B .25C .7210D .92105.中国古代数学著作《九章算术》是人类科学史上应用数学的最早巅峰.书里记载了这样一个问题“今有女子善织,日自倍,五日织五尺.问日织几何?”译文是“今有一女子很会织布,每日加倍增长,5天共织5尺,问每日各织布多少尺?”,则该女子第二天织布()A .531尺B .1031尺C .1516尺D .516尺6.立德学校于三月份开展学雷锋主题活动,某班级5名女生和2名男生,分成两个小组去两地参加志愿者活动,每小组均要求既要有女生又要有男生,则不同的分配方案有()种.A .20B .4C .60D .807.法国数学家加斯帕尔·蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆.我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆()2222:10x y C a b a b +=>>的蒙日圆方程为2222x y a b +=+,现有椭圆222:116x y C a +=的蒙日圆上一个动点M ,过点M 作椭圆C 的两条切线,与该蒙日圆分别交于P ,Q 两点,若MPQ 面积的最大值为41,则椭圆C 的长轴长为()A .5B .10C .6D .128.已知函数()sin()(0)f x x ωϕω=+>是在区间π5π,1836⎛⎫⎪⎝⎭上的单调减函数,其图象关于直线π36x =-对称,且f (x )的一个零点是7π72x =,则ω的最小值为()A .2B .12C .4D .89.在“2,3,5,7,11,13,17,19”这8个素数中,任取2个不同的数,则这两个数之和仍为素数的概率是()A .328B .528C .17D .31410.已知函数()()31bx f x a x x =-++的图象过点()0,1与93,4⎛⎫⎪⎝⎭,则函数()f x 在区间[]1,4上的最大值为()A .32B .73C .54D .8511.已知三棱锥-P ABC 的所有顶点都在球O 的表面上,ABC 是边长为若三棱锥-P ABC 体积的最大值是O 的表面积是()A .100πB .160πC .200πD .320π12.若存在[)1,x ∞∈+,使得关于x 的不等式11e x ax +⎛⎫+≥ ⎪⎝⎭成立,则实数a 的最小值为()A .2B .1ln2C .ln21-D .11ln2-第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.()22051001i 1i 12i i 1i 2⎡⎤-+⎛⎫⎛⎫+⋅+-=⎢⎥ ⎪ ⎪+⎝⎭⎝⎭⎢⎥⎣⎦____________14.已知,x y 都是正数,且2x y +=,则4121x y +++的最小值为__________.15.()()321x x +-展开式中2x 的系数为___________.16.已知圆224x y +=上有且仅有四个点到直线1250x y c -+=的距离为1,则实数c 的取值范围是__________三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.已知正项数列{}n a 的前n 项和为n S ,11a =,数列{}n S 是公差为1的等差数列.(1)求数列{}n a 的通项公式;(2)记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若存在*N n ∈,使得223n T λλ<-成立,求λ的取值范围.18.如图,在三棱台111ABC A B C -中,面11AAC C ABC ⊥面,145ACA ACB ∠=∠=,124AC BC ==(1)证明:111B C A B ⊥;(2)792,72AC =1AC ,求二面角11A BC B --的余弦值.19.安全教育越来越受到社会的关注和重视.为了普及安全教育,学校组织了一次学生安全知识竞赛,学校设置项目A “地震逃生知识问答”和项目B “火灾逃生知识问答”.甲、乙两班每班分成两组,每组参加一个项目,进行班级对抗赛.每一个比赛项目均采取五局三胜制(即有一方先胜3局即获胜,比赛结束),假设在项目A 中甲班每一局获胜的概率为23,在项目B 中甲班每一局获胜的概率为12,且每一局之间没有影响.(1)求乙班在项目A 中获胜的概率;(2)设乙班获胜的项目个数为X .求X 的分布列及数学期望.20.已知对称轴都在坐标轴上的椭圆C 过点12A ⎛ ⎝⎭与点()2,0B ,过点()1,0的直线l 与椭圆C 交于P ,Q 两点,直线BP ,BQ 分别交直线3x =于E ,F 两点.(1)求椭圆C 的标准方程;(2)PE QF ⋅是否存在最小值?若存在,求出最小值;若不存在,请说明理由.21.已知函数2()2(1)2ln f x x m x m x =-++-,()0,x ∈+∞.(1)讨论()f x 的单调区间;(2)当0m ≥时,试判断函数()f x 的零点个数解:请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.在平面直角坐标系xOy 中,曲线C 的参数方程为cos sin cos sin x y αααα=-⎧⎨=+⎩(α为参数),以O为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为πcos 6ρθ⎛⎫+= ⎪⎝⎭.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)P 为l 上一点,过P 作曲线C 的两条切线,切点分别为A ,B ,若3APB π∠≥,求点P 横坐标的取值范围.23.已知()3f x x a x =-+-()R a ∈.(1)若1a =,解不等式()9f x ≥;(2)当()0a t t =>时,()f x的最小值为3,若正数m ,n 满足m n t +=,证明:6≤.。
高考数学高三模拟试卷试题压轴押题期末数学试卷参考答案与试题解析001
高考数学高三模拟试卷试题压轴押题期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)cos(π)=()A.B.﹣1C.D.0考点:诱导公式的作用.专题:计算题;三角函数的求值.分析:由于π=1006×2π+π,直接由诱导公式化简即可得出正确选项解答:解:∵π=1006×2π+π∴cos(π)=cosπ=﹣1故选B点评:题考查利用诱导公式求值,解答的关键是熟练记忆诱导公式2.(5分)已知角a的终边经过点P(4,3),则sina+cosa的值是()A.B.C.D.考点:任意角的三角函数的定义.专题:计算题;三角函数的求值.分析:由三角函数的定义可求得sina与cosa,从而可得sina+cosa的值.解答:解:∵知角a的终边经过点P(4,3),∴sina==,cosa=,∴sina+cosa=.故选C.点评:本题考查任意角的三角函数的定义,属于基础题.3.(5分)(•广东)若函数,则f(x)是()A.最小正周期为的奇函数B.最小正周期为y=x的奇函数C.最小正周期为2π的偶函数D.最小正周期为π的偶函数考点:二倍角的余弦;余弦函数的奇偶性.分析:本题主要考查三角函数的最小正周期和奇偶性,也涉及到对简单三角变换能力的考查.见到三角函数平方形式,要用二倍角公式降幂,变为可以研究三角函数性质的形式y=Asin(ωx+φ)的形式.解答:解:∵f(x)=,∴y=f(x)最小周期为π的偶函数,故选D点评:研究三角函数的性质,一般需要先利用“降次”、“化一”等技巧进行三角变换.本题解答过程中,先活用倍角公式进行降次,然后化为一个三角函数进行研究,涉及到对三角函数的周期性、奇偶性的考查.考查知识与能力的综合性较强,需要我们具有扎实的基础知识,具备一定的代数变形能力4.(5分)化简=()A.B.0C.D.考点:向量加减混合运算及其几何意义;零向量.专题:计算题.分析:根据向量加法的三角形法则,我们对几个向量进行运算后,即可得到答案.解答:解:∵.故选B点评:本题考查的知识点是向量加减混合运算及其几何意义,及零向量的定义,其中根据三角形法则对已知向量进行处理,是解答本题的关键.5.(5分)(•重庆)=()A.B.C.D.考点:二倍角的余弦.分析:看清本题的结构特点符合平方差公式,化简以后就可以看出是二倍角公式的逆用,最后结果为cos,用特殊角的三角函数得出结果.解答:解:原式==cos=,故选D点评:要深刻理解二倍角公式和两角和差的正弦和余弦公式,从形式和意义上来认识,对公式做到正用、逆用、变形用,本题就是逆用余弦的二倍角公式.6.(5分)(•辽宁)在等差数列{an}中,已知a4+a8=16,则a2+a10=()A.12B.16C.20D.24考点:等差数列的性质.专题:计算题.分析:利用等差数列的性质可得,a2+a10=a4+a8,可求结果解答:解:由等差数列的性质可得,则a2+a10=a4+a8=16,故选B点评:本题主要考查了等差数列的性质的应用,属于基础试题7.(5分)将函数y=sin2x的图象向左平移个单位,再向上平移1个单位,所得图象的函数解析式是()A.y=cos2x B.y=2cos2x C.D.y=2sin2x考点:函数y=Asin(ωx+φ)的图象变换;由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题;三角函数的图像与性质.分析:利用函数y=Asin(ωx+φ)的图象变换规律及三角函数间的关系式即可得到答案.解答:解:令y=f(x)=sin2x,则f(x+)=sin2(x+)=cos2x,再将f(x+)的图象向上平移1个单位,所得图象的函数解析式是y=cos2x+1=2cos2x,故选B.点评:本题考查函数y=Asin(ωx+φ)的图象变换,考查升幂公式的应用,属于中档题.8.(5分)在△ABC中,tanA是以﹣4为第三项、4为第七项的等差数列的公差,tanB是以为第三项、9为第六项的等比数列的公比,则这个三角形是()A.钝角三角形B.等腰直角三角形C.锐角三角形D.等腰三角形考点:三角形的形状判断.专题:计算题.分析:利用等差及等比数列的性质求出tanA与tanB的值,再利用两角和与差的正切函数公式求出tanC的值,利用正切函数的性质得出A,B及C的范围,即可确定出三角形的形状.解解:根据题意得:tanA=2,tanB=3,答:∴tanC=﹣tan(A+B)=﹣=﹣=,则A,B及C都为锐角,即△ABC为锐角三角形.故选C点评:此题考查了三角形的形状判断,涉及的知识有:诱导公式,两角和与差的正切函数公式,以及正切函数的图象与性质,熟练掌握公式是解本题的关键.9.(5分)(•海南)函数在区间的简图是()A.B.C.D.考点:函数y=Asin(ωx+φ)的图象变换.专题:作图题.分析:将x=π代入到函数解析式中求出函数值,可排除B,D,然后将x=代入到函数解析式中求出函数值,可排除C,进而可得答案.解答:解:,排除B、D,,排除C.故选A.点评:本题主要考查三角函数的图象.对于正弦、余弦函数的图象和性质要熟练掌握,这是高考的必考点.10.(5分)在△ABC中,点P在BC 上,且,点Q 为中点,若=(4,3),=(1,5),则=()A.( 2,7)B.(6,21)C.(2,﹣7)D.(﹣6,21)考点:平面向量的坐标运算.专题:平面向量及应用.分析:由题意可得=,设=(x,y),则==(,).再由=(),把、的坐标代入可得(1,5)=(4+,3+),求得x、y的值,即可求得的坐标.解答:解:由于在△ABC中,点P在BC 上,且,∴=.设=(x,y),则==(,).再由Q为中点,可得=().再由=(4,3),=(1,5),可得(1,5)=(4+,3+),即+2=1,+=5.解得 x=﹣6,y=21,故=(﹣6,21),故选D.点评:本题主要考查两个向量坐标形式的运算,属于基础题.二、填空题:本大题共4小题,每小题5分,满分20分.11.(5分)已知a,b,c三个正数成等比数列,其中,,则b= 1.考点:等比数列的通项公式.专题:等差数列与等比数列.分析:直接由等比中项的概念列式求解b的值.解答:解:由a,b,c三个正数成等比数列,且,,则.故答案为1.点评:本题考查等比数列的基本量之间的关系,若已知等比数列的两项,则等比数列的所有量都可以求出,只要简单数字运算时不出错,问题可解.12.(5分)若x+2y=1,则2x+4y的最小值是2;考点:基本不等式.专题:计算题.分析:由题意知2x+4y=.由此可知2x+4y的最小值是.解答:解:由题意知2x+4y=.∴2x+4y的最小值是2.点评:本题考查不等式的性质和应用,解题时要认真审题,仔细解答.13.(5分)在边长为的正三角形ABC中,设,则a•b+b•c+c•a=﹣3.考平面向量数量积的运算.点:专题:平面向量及应用.分析:错误:a•b+b•c+c•a,应该是由题意可得与的夹角等于,且||=||=,由此求得=﹣1,同理求得==﹣1,从而得到要求式子的值.解答:解:由题意可得与的夹角等于,且||=||=,故有==﹣1.同理求得==﹣1,故=﹣3,故答案为﹣3.点评:本题主要考查两个向量的数量积的定义,注意两个向量的夹角为,而不是,属于中档题.14.(5分)给出下列命题:①存在实数α,使sinα•cosα=1②函数是偶函数③是函数的一条对称轴方程④若α、β是第一象限的角,且α>β,则sinα>sinβ其中正确命题的序号是②③.考点:命题的真假判断与应用.专题:阅读型.分析:对于①,利用二倍角的正弦公式变形,可得sinα•cosα的最大值为;对于②,利用诱导公式化简为y=﹣cosx,该函数是偶函数;对于③,把代入,看y能否取得最值,若能取得最值,命题正确,否则,命题不正确;对于④举反例加以说明.通过以上分析即可得到正确答案.解答:解:由,∴sinα•cosα的最大值为,∴命题①错误;由,而y=﹣cosx是偶函数,∴命题②正确;∵,∴是函数的一条对称轴方程,∴命题③正确;取,,α、β是第一象限的角,且α>β,但sinα<sinβ,∴命题④错误.所以正确的命题是②③.故答案为②③.点评:本题考查了命题的真假判断与应用,考查了三角函数的被角公式、诱导公式及三角函数的性质,考查了举反例法在判断命题真假中的应用,此题是基础题.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程和演算步骤. 15.(12分)已知向量=(1,0),=(2,1).(1)求|+3|;(2)当k为何实数时,k﹣与+3平行,平行时它们是同向还是反向?考点:平行向量与共线向量;向量的模.专题:平面向量及应用.分析:(1)先求出的坐标,再根据向量的模的定义求得|+3|的值.(2)求得 k﹣的坐标,再根据两个向量共线的性质设k﹣=λ(+3),则有(k﹣2,﹣1)=λ(7,3),即,由此求得k的值.解答:解:(1)由于=(1,0)+3(2,1)=(7,3),…..(2分)∴|+3|==.…..(4分)(2)由于k﹣=k(1,0)﹣(2,1)=(k﹣2,﹣1),…..(6分)设k﹣=λ(+3),则(k﹣2,﹣1)=λ(7,3),….(8分)∴,…(10分)解得.….(11分)故时,k﹣与+3反向或平行.…(12分)点评:本小题主要考查两个向量共线的性质,球向量的模,考查向量的坐标运算的能力等,属于基础题.16.(12分)在假期社会实践活动中,小明参观了某博物馆.该博物馆大厅有一幅壁画,刚进入大厅时,他在点A处看这幅壁画顶端点C的仰角为45°,往正前方走4m后,在点B 处看壁画顶端点C的仰角为75°(如图所示).(1)求BC的长;(2)若小明身高为1.70m,求这幅壁画顶端点C离地面的高度.(精确到0.01m,其中≈1.732).考点:正弦定理;两角和与差的正弦函数.专题:解三角形.分析:(1)在△ABC中,由条件求得∠ACB=75°﹣45°=30°.由正弦定理得,将AB=4代入上式,求得BC的值.(2)在△CBD中,先求得,再利用两角和的正弦公式求得sin75°=,可得 DC=2+2,从而求得CE=CD+DE的值.解答:解:(1)在△ABC中,∵∠CAB=45°,∠DBC=75°,∴∠ACB=75°﹣45°=30°…(2分)由正弦定理,得,…(4分)将AB=4代入上式,得(m…(6分)(2)在△CBD中,∵,∴…(8分)因为 sin75°=sin(45°+30°)=sin45°cos30°+cos45°sin30°=+=,…(9分)则 DC=2+2.…(10分)所以(m)….(11分)答:BC的长为;壁画顶端点C离地面的高度为7.16m.…(12分)点评:本题主要考查正弦定理和余弦定理的应用,两角和的正弦公式,属于中档题.17.(14分)设等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,已知a1=b1=1,b4=8,S10=55.(1)求数列{an}与{bn}的通项公式;(2)求Sn与Tn.考点:数列的求和;等差数列的通项公式;等比数列的通项公式.专题:计算题;等差数列与等比数列.分析:(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q,依题意可求得公差为d 与公比为q,从而可求数列{an}与{bn}的通项公式;(2)利用等差数列的求和公式与等比数列的求和公式即可求得Sn与Tn.解答:解:(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q.由S10=55,得 10a1+45d=55,….(2分)又a1=1,所以10+45d=55,d=1…(3分)∴an=a1+(n﹣1)d=1+(n﹣1)=n.…(5分)由b4=8,得b1•q3=8,…(6分)又b1=1,所以q3=8,q=2.…(8分)∴bn=b1•2n﹣1=2n﹣1….(10分)(2)Sn===n2+n.…(12分)Tn===2n﹣1.…(14分)点评:本题分别考查等差数列与等比数列的通项公式,考查等差数列的求和公式与等比数列的求和公式,属于中档题.18.(14分)已知函数.(1)求f(x)的最小正周期;(2)求f(x)的单调递增区间;(3)求f(x)在上的最值及取最值时x的值.考点:二倍角的余弦;两角和与差的正弦函数;二倍角的正弦;三角函数的周期性及其求法;正弦函数的单调性.专题:三角函数的图像与性质.分析:(1)利用三角函数的恒等变换化简函数f(x)的解析式为,由此求得它的周期.(2)根据函数f(x)的解析式为,由,求得x的范围,可得函数的增区间.(3)根据x的范围,以及正弦函数的定义域和值域求得函数的最值.解答:解:(1)因为=…(1分)==,…(3分)所以f(x)的最小正周期.…..(4分)(2)因为,由,…(6分)得,…..(7分)所以f(x)的单调增区间是.…(8分)(3)因为,所以.…..…(9分)所以.…..…..….(10分)所以.…..…(12分)当,即x=0时,f(x)取得最小值1.…..…(13分)当,即时,f(x)取得最大值4.…..…(14分)点评:本题主要考查三角函数的恒等变换及化简求值,三角函数的周期性和求法,正弦函数的单调性、定义域和值域,属于中档题.19.(14分)在平面直角坐标系中,点P(x,y)满足约束条件:.(1)在给定的坐标系中画出满足约束条件的可行域(用阴影表示,并注明边界的交点);(2)设,求u的取值范围;(3)已知两点M(2,1),O(0,0),求的最大值.考点:简单线性规划;二元一次不等式(组)与平面区域.专题:不等式的解法及应用.分析:(1)先根据直线定出区域的边界,不等式确定区域,由约束条件画出可行域;(2),利用u的几何意义求最值,只需求出何时可行域内的点与点(﹣4,﹣7)连线的斜率的最值,从而得到 u的取值范围.(3)先根据向量的数量积公式得出=2x+y,设z=2x+y,再利用z的几何意义求最值,只需求出直线z=2x+y经过点A时,z取到最大值,从而得到答案即可.解答:解:(1)由得,∴A(4,1)…(1分)由得,∴B(﹣1,﹣6)…(2分)由得,∴C(﹣3,2)…(3分)画出可行域N,如右下图所示…(4分)(2).…(5分)当直线DP与直线DB重合时,倾斜角最小且为锐角,此时;…(6分)当直线DP与直线DC重合时,倾斜角最大且为锐角,此时kDC=9;…..(7分)所以的取值范围为.…(8分)(3),…..(10分)设z=2x+y,则y=﹣2x+z,…..…(11分)z表示直线y=﹣2x+z在y轴上的截距,…(12分)当直线y=﹣2x+z经过点A时,z取到最大值,…(13分)这时z的最大值为zmax=2×4+1=9.….(14分)点评:本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.20.(14分)已知数列{an}中,a1=2,a2=3,其前n项和Sn满足Sn+1+Sn﹣1=2Sn+1(n≥2,n∈N*).(Ⅰ)求证:数列{an}为等差数列,并求{an}的通项公式;(Ⅱ)设,求数列{bn}的前n项和Tn;(Ⅲ)设(λ为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,有cn+1>cn恒成立.考点:数列与不等式的综合;等差数列的通项公式;数列的求和.专题:等差数列与等比数列.分析:(Ⅰ)利用数列递推式,变形可得(Sn+1﹣Sn)﹣(Sn﹣Sn﹣1)=1,由此可得结论;(Ⅱ)利用错位相减法,可求数列{bn}的前n项和Tn;(Ⅲ)要使cn+1>cn恒成立,则恒成立,分类讨论,分离参数,可得结论.解答:(Ⅰ)证明:由已知,(Sn+1﹣Sn)﹣(Sn﹣Sn﹣1)=1(n≥2,n∈N*),即an+1﹣an=1(n≥2,n∈N*),且a2﹣a1=1.∴数列{an}是以a1=2为首项,公差为1的等差数列,∴an=n+1.…(4分)(Ⅱ)解:由(Ⅰ)知,设它的前n项和为Tn∴Tn=2×21+3×22+…+n×2n﹣1+(n+1)×2n①∴2Tn=2×23+3×23+…+(n+1)×2n+1②①﹣②可得:﹣Tn=2×21+22+…+2n﹣(n+1)×2n+1=﹣n×2n+1∴Tn=n×2n+1;…(8分)(Ⅲ)解:∵an=n+1,∴,要使cn+1>cn恒成立,则恒成立∴3•4n﹣3λ•(﹣1)n﹣12n+1>0恒成立,∴(﹣1)n﹣1λ<2n﹣1恒成立.(ⅰ)当n为奇数时,即λ<2n﹣1恒成立,当且仅当n=1时,2n﹣1有最小值为1,∴λ<1.(ⅱ)当n为偶数时,即λ>﹣2n﹣1恒成立,当且仅当n=2时,﹣2n﹣1有最大值﹣2,∴λ>﹣2.即﹣2<λ<1,又λ为非零整数,则λ=﹣1.综上所述,存在λ=﹣1,使得对任意n∈N*,都有cn+1>cn.…(14分)点评:本题考查数列递推式,考查数列的通项与求和,考查恒成立问题,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(10)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.1.(5分)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.102.(5分)已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}3.(5分)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度4.(5分)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<5.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.36.(5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种7.(5分)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2B.﹣1C.1D.28.(5分)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1]9.(5分)已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).现有下列命题:①f(﹣x)=﹣f(x);②f()=2f(x)③|f(x)|≥2|x|其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②10.(5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)复数=.12.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()=.13.(5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)14.(5分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是.15.(5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)co s2α,求cosα﹣sinα的值.17.(12分)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.18.(12分)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.19.(12分)设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和Tn.20.(13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.21.(14分)已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(10)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.1.(5分)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.10【分析】利用二项展开式的通项公式求出(1+x)6的第r+1项,令x的指数为2求出展开式中x2的系数.然后求解即可.【解答】解:(1+x)6展开式中通项Tr+1=C6rxr,令r=2可得,T3=C62x2=15x2,∴(1+x)6展开式中x2项的系数为15,在x(1+x)6的展开式中,含x3项的系数为:15.故选:C.【点评】本题考查二项展开式的通项的简单直接应用.牢记公式是基础,计算准确是关键.2.(5分)已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}【分析】计算集合A中x的取值范围,再由交集的概念,计算可得.【解答】解:A={x|﹣1≤x≤2},B=Z,∴A∩B={﹣1,0,1,2}.故选:A.【点评】本题属于容易题,集合知识是高中部分的基础知识,也是基础工具,高考中涉及到对集合的基本考查题,一般都比较容易,且会在选择题的前几题,考生只要够细心,一般都能拿到分.3.(5分)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度【分析】根据 y=sin(2x+1)=sin2(x+),利用函数y=Asin(ωx+φ)的图象变换规律,得【解答】解:∵y=sin(2x+1)=sin2(x+),∴把y=sin2x的图象上所有的点向左平行移动个单位长度,即可得到函数y=sin(2x+1)的图象,故选:A.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.4.(5分)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<【分析】利用特例法,判断选项即可.【解答】解:不妨令a=3,b=1,c=﹣3,d=﹣1,则,,∴A、B不正确;,=﹣,∴C不正确,D正确.解法二:∵c<d<0,∴﹣c>﹣d>0,∵a>b>0,∴﹣ac>﹣bd,∴,∴.故选:D.【点评】本题考查不等式比较大小,特值法有效,导数计算正确.5.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为A.0B.1C.2D.3【分析】算法的功能是求可行域内,目标函数S=2x+y的最大值,画出可行域,求得取得最大值的点的坐标,得出最大值.【解答】解:由程序框图知:算法的功能是求可行域内,目标还是S=2x+y的最大值,画出可行域如图:当时,S=2x+y的值最大,且最大值为2.故选:C.【点评】本题借助选择结构的程序框图考查了线性规划问题的解法,根据框图的流程判断算法的功能是解题的关键.6.(5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种【分析】分类讨论,最左端排甲;最左端只排乙,最右端不能排甲,根据加法原理可得结论.【解答】解:最左端排甲,共有=120种,最左端只排乙,最右端不能排甲,有=96种,根据加法原理可得,共有120+96=216种.故选:B.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.7.(5分)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2B.﹣1C.1D.2【分析】由已知求出向量的坐标,再根据与的夹角等于与的夹角,代入夹角公式,构造关于m的方程,解方程可得答案.【解答】解:∵向量=(1,2),=(4,2),∴=m+=(m+4,2m+2),又∵与的夹角等于与的夹角,∴=,∴=,∴=,解得m=2,故选:D.【点评】本题考查的知识点是数量积表示两个向量的夹角,难度中档.8.(5分)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1]【分析】由题意可得:直线OP于平面A1BD所成的角α的取值范围是∪.再利用正方体的性质和直角三角形的边角关系即可得出.【解答】解:由题意可得:直线OP于平面A1BD所成的角α的取值范围是∪.不妨取AB=2.在Rt△AOA1中,==.sin∠C1OA1=sin(π﹣2∠AOA1)=sin2∠AOA1=2sin∠AOA1cos∠AOA1=,=1.∴sinα的取值范围是.故选:B.【点评】本题考查了正方体的性质和直角三角形的边角关系、线面角的求法,考查了推理能力,属于中档题.9.(5分)已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).现有下列命题:①f(﹣x)=﹣f(x);②f()=2f(x)③|f(x)|≥2|x|其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②【分析】根据已知中函数的解析式,结合对数的运算性质,分别判断三个结论的真假,最后综合判断结果,可得答案.【解答】解:∵f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1),∴f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣f(x),即①正确;f()=ln(1+)﹣ln(1﹣)=ln()﹣ln()=ln ()=ln[()2]=2ln()=2[ln(1+x)﹣ln(1﹣x)]=2f(x),故②正确;当x∈[0,1)时,|f(x)|≥2|x|⇔f(x)﹣2x≥0,令g(x)=f(x)﹣2x=ln(1+x)﹣ln(1﹣x)﹣2x(x∈[0,1))∵g′(x)=+﹣2=≥0,∴g(x)在[0,1)单调递增,g(x)=f(x)﹣2x≥g (0)=0,又f(x)≥2x,又f(x)与y=2x为奇函数,所以|f(x)|≥2|x|成立,故③正确;故正确的命题有①②③,故选:A.【点评】本题以命题的真假判断为载体,考查了对数的运算性质,代入法求函数的解析式等知识点,难度中档.10.(5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.【分析】可先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理及•=2消元,最后将面积之和表示出来,探求最值问题.【解答】解:设直线AB的方程为:x=ty+m,点A(x1,y1),B(x2,y2),直线AB与x轴的交点为M(m,0),由⇒y2﹣ty﹣m=0,根据韦达定理有y1•y2=﹣m,∵•=2,∴x1•x2+y1•y2=2,结合及,得,∵点A,B位于x轴的两侧,∴y1•y2=﹣2,故m=2.不妨令点A在x轴上方,则y1>0,又,∴S△ABO+S△AFO═×2×(y1﹣y2)+×y1,=.当且仅当,即时,取“=”号,∴△ABO与△AFO面积之和的最小值是3,故选B.【点评】求解本题时,应考虑以下几个要点:1、联立直线与抛物线的方程,消x或y后建立一元二次方程,利用韦达定理与已知条件消元,这是处理此类问题的常见模式.2、求三角形面积时,为使面积的表达式简单,常根据图形的特征选择适当的底与高.3、利用基本不等式时,应注意“一正,二定,三相等”.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)复数= ﹣2i .【分析】利用两个复数代数形式的乘除法法则化简所给的复数,可得结果.【解答】解:复数===﹣2i,故答案为:﹣2i.【点评】本题主要考查两个复数代数形式的乘除法法则的应用,属于基础题.12.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()= 1 .【分析】由函数的周期性f(x+2)=f(x),将求f()的值转化成求f()的值.【解答】解:∵f(x)是定义在R上的周期为2的函数,∴=1.故答案为:1.【点评】本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”.13.(5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于 60 m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)【分析】过A点作AD垂直于CB的延长线,垂足为D,分别在Rt△ACD、Rt△ABD中利用三角函数的定义,算出CD、BD的长,从而可得BC,即为河流在B、C两地的宽度.【解答】解:过A点作AD垂直于CB的延长线,垂足为D,则Rt△ACD中,∠C=30°,AD=46m,AB=,根据正弦定理,,得BC===60m.故答案为:60m.【点评】本题给出实际应用问题,求河流在B、C两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.14.(5分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是 5 .【分析】先计算出两条动直线经过的定点,即A和B,注意到两条动直线相互垂直的特点,则有PA⊥PB;再利用基本不等式放缩即可得出|PA|•|PB|的最大值.【解答】解:由题意可知,动直线x+my=0经过定点A(0,0),动直线mx﹣y﹣m+3=0即 m(x﹣1)﹣y+3=0,经过点定点B(1,3),注意到动直线x+my=0和动直线mx﹣y﹣m+3=0始终垂直,P又是两条直线的交点,则有PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.故|PA|•|PB|≤=5(当且仅当时取“=”)故答案为:5【点评】本题是直线和不等式的综合考查,特别是“两条直线相互垂直”这一特征是本题解答的突破口,从而有|PA|2+|PB|2是个定值,再由基本不等式求解得出.直线位置关系和不等式相结合,不容易想到,是个灵活的好题.15.(5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:。
高考数学高三模拟考试试卷压轴题猜题押题高考数学试卷参考答案与试题解析1
高考数学高三模拟考试试卷压轴题猜题押题高考数学试卷参考答案与试题解析一、填空题:本大题共14小题.每小题5分.共计70分.请把答案填写在答题卡相应位置上.1.(5分)(•江苏)已知集合A={1.2.4}.B={2.4.6}.则 A∪B={1.2.4.6}.考点:并集及其运算.专题:集合.分析:由题意.A.B两个集合的元素已经给出.故由并集的运算规则直接得到两个集合的并集即可解答:解:∵A={1.2.4}.B={2.4.6}.∴A∪B={1.2.4.6}故答案为{1.2.4.6}点评:本题考查并集运算.属于集合中的简单计算题.解题的关键是理解并的运算定义2.(5分)(•江苏)某学校高一、高二、高三年级的学生人数之比为3:3:4.现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本.则应从高二年级抽取15名学生.考点:分层抽样方法.专题:概率与统计.分析:根据三个年级的人数比.做出高二所占的比例.用要抽取得样本容量乘以高二所占的比例.得到要抽取的高二的人数.解答:解:∵高一、高二、高三年级的学生人数之比为3:3:4.∴高二在总体中所占的比例是=.∵用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本.∴要从高二抽取.故答案为:15点评:本题考查分层抽样方法.本题解题的关键是看出三个年级中各个年级所占的比例.这就是在抽样过程中被抽到的概率.本题是一个基础题.3.(5分)(•江苏)设a.b∈R.a+bi=(i为虚数单位).则a+b的值为8.考点:复数代数形式的乘除运算;复数相等的充要条件.专题:数系的扩充和复数.分析:由题意.可对复数代数式分子与分母都乘以1+2i.再由进行计算即可得到a+bi=5+3i.再由复数相等的充分条件即可得到a.b的值.从而得到所求的答案解答:解:由题.a.b∈R.a+bi=所以a=5.b=3.故a+b=8故答案为8点本题考查复数代数形式的乘除运算.解题的关键是分子分母都乘以分母的共轭.复数的评:四则运算是复数考查的重要内容.要熟练掌握.复数相等的充分条件是将复数运算转化为实数运算的桥梁.解题时要注意运用它进行转化.4.(5分)(•江苏)图是一个算法流程图.则输出的k的值是5.考点:循环结构.专题:算法和程序框图.分析:利用程序框图计算表达式的值.判断是否循环.达到满足题目的条件.结束循环.得到结果即可.解答:解:1﹣5+4=0>0.不满足判断框.则k=2.22﹣10+4=﹣2>0.不满足判断框的条件.则k=3.32﹣15+4=﹣2>0.不成立.则k=4.42﹣20+4=0>0.不成立.则k=5.52﹣25+4=4>0.成立.所以结束循环.输出k=5.故答案为:5.点评:本题考查循环框图的作用.考查计算能力.注意循环条件的判断.5.(5分)(•江苏)函数f(x)=的定义域为(0.].考点:对数函数的定义域.专题:函数的性质及应用.分析:根据开偶次方被开方数要大于等于0.真数要大于0.得到不等式组.根据对数的单调性解出不等式的解集.得到结果.解答:解:函数f(x)=要满足1﹣2≥0.且x>0∴.x>0∴.x>0.∴.x>0.∴0.故答案为:(0.]点评:本题考查对数的定义域和一般函数的定义域问题.在解题时一般遇到.开偶次方时.被开方数要不小于0.;真数要大于0;分母不等于0;0次方的底数不等于0.这种题目的运算量不大.是基础题.6.(5分)(•江苏)现有10个数.它们能构成一个以1为首项.﹣3为公比的等比数列.若从这10个数中随机抽取一个数.则它小于8的概率是.考点:等比数列的性质;古典概型及其概率计算公式.专题:等差数列与等比数列;概率与统计.分析:先由题意写出成等比数列的10个数为.然后找出小于8的项的个数.代入古典概论的计算公式即可求解解答:解:由题意成等比数列的10个数为:1.﹣3.(﹣3)2.(﹣3)3…(﹣3)9其中小于8的项有:1.﹣3.(﹣3)3.(﹣3)5.(﹣3)7.(﹣3)9共6个数这10个数中随机抽取一个数.则它小于8的概率是P=故答案为:点评:本题主要考查了等比数列的通项公式及古典概率的计算公式的应用.属于基础试题7.(5分)(•江苏)如图.在长方体ABCD﹣A1B1C1D1中.AB=AD=3cm.AA1=2cm.则四棱锥A﹣BB1D1D的体积为6cm3.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离;立体几何.分析:过A作AO⊥BD于O.求出AO.然后求出几何体的体积即可.解答:解:过A作AO⊥BD于O.AO是棱锥的高.所以AO==.所以四棱锥A﹣BB1D1D的体积为V==6.故答案为:6.点评:本题考查几何体的体积的求法.考查空间想象能力与计算能力.8.(5分)(•江苏)在平面直角坐标系xOy中.若双曲线的离心率为.则m的值为2.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由双曲线方程得y2的分母m2+4>0.所以双曲线的焦点必在x轴上.因此a2=m>0.可得c2=m2+m+4.最后根据双曲线的离心率为.可得c2=5a2.建立关于m的方程:m2+m+4=5m.解之得m=2.解答:解:∵m2+4>0∴双曲线的焦点必在x轴上因此a2=m>0.b2=m2+4∴c2=m+m2+4=m2+m+4∵双曲线的离心率为.∴.可得c2=5a2.所以m2+m+4=5m.解之得m=2故答案为:2点评:本题给出含有字母参数的双曲线方程.在已知离心率的情况下求参数的值.着重考查了双曲线的概念与性质.属于基础题.9.(5分)(•江苏)如图.在矩形ABCD中.AB=.BC=2.点E为BC的中点.点F在边CD 上.若=.则的值是.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据所给的图形.把已知向量用矩形的边所在的向量来表示.做出要用的向量的模长.表示出要求得向量的数量积.注意应用垂直的向量数量积等于0.得到结果.解答:解:∵.====||=.∴||=1.||=﹣1.∴=()()==﹣=﹣2++2=.故答案为:点评:本题考查平面向量的数量积的运算.本题解题的关键是把要用的向量表示成已知向量的和的形式.本题是一个中档题目.10.(5分)(•江苏)设f(x)是定义在R上且周期为2的函数.在区间[﹣1.1]上.f(x)=其中a.b∈R.若=.则a+3b的值为﹣10.考点:函数的周期性;分段函数的解析式求法及其图象的作法.专题:函数的性质及应用.分析:由于f(x)是定义在R上且周期为2的函数.由f(x)的表达式可得f()=f(﹣)=1﹣a=f()=;再由f(﹣1)=f(1)得2a+b=0.解关于a.b的方程组可得到a.b的值.从而得到答案.解答:解:∵f(x)是定义在R上且周期为2的函数.f(x)=.∴f()=f(﹣)=1﹣ a.f()=;又=.∴1﹣a=①又f(﹣1)=f(1).∴2a+b=0.②由①②解得a=2.b=﹣4;∴a+3b=﹣10.故答案为:﹣10.点评:本题考查函数的周期性.考查分段函数的解析式的求法.着重考查方程组思想.得到a.b 的方程组并求得a.b的值是关键.属于中档题.11.(5分)(•江苏)设α为锐角.若cos(α+)=.则sin(2α+)的值为.考点:三角函数中的恒等变换应用;两角和与差的余弦函数;两角和与差的正弦函数;二倍角的正弦.专题:三角函数的求值;三角函数的图像与性质.分析:先设β=α+.根据cosβ求出sinβ.进而求出sin2β和cos2β.最后用两角和的正弦公式得到sin(2α+)的值.解答:解:设β=α+.∴sinβ=.sin2β=2sinβcosβ=.cos2β=2cos2β﹣1=.∴sin(2α+)=sin(2α+﹣)=sin(2β﹣)=sin2βcos﹣cos2βsin=.故答案为:.点评:本题要我们在已知锐角α+的余弦值的情况下.求2α+的正弦值.着重考查了两角和与差的正弦、余弦公式和二倍角的正弦、余弦等公式.考查了三角函数中的恒等变换应用.属于中档题.12.(5分)(•江苏)在平面直角坐标系xOy中.圆C的方程为x2+y2﹣8x+15=0.若直线y=kx﹣2上至少存在一点.使得以该点为圆心.1为半径的圆与圆C有公共点.则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆C的方程为(x﹣4)2+y2=1.由题意可知.只需(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0.整理得:(x﹣4)2+y2=1.即圆C是以(4.0)为圆心.1为半径的圆;又直线y=kx﹣2上至少存在一点.使得以该点为圆心.1为半径的圆与圆C有公共点.∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.设圆心C(4.0)到直线y=kx﹣2的距离为d.则d=≤2.即3k2﹣4k≤0.∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系.将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键.考查学生灵活解决问题的能力.属于中档题.13.(5分)(•江苏)已知函数f(x)=x2+ax+b(a.b∈R)的值域为[0.+∞).若关于x的不等式f(x)<c的解集为(m.m+6).则实数c的值为9.考点:一元二次不等式的应用.专题:函数的性质及应用;不等式的解法及应用.分析:根据函数的值域求出a与b的关系.然后根据不等式的解集可得f(x)=c的两个根为m.m+6.最后利用根与系数的关系建立等式.解之即可.解解:∵函数f(x)=x2+ax+b(a.b∈R)的值域为[0.+∞).答:∴f(x)=x2+ax+b=0只有一个根.即△=a2﹣4b=0则b=不等式f(x)<c的解集为(m.m+6).即为x2+ax+<c解集为(m.m+6).则x2+ax+﹣c=0的两个根为m.m+6∴|m+6﹣m|==6解得c=9故答案为:9点评:本题主要考查了一元二次不等式的应用.以及根与系数的关系.同时考查了分析求解的能力和计算能力.属于中档题.14.(5分)(•江苏)已知正数a.b.c满足:5c﹣3a≤b≤4c﹣a.clnb≥a+clnc.则的取值范围是[e.7].考点:导数在最大值、最小值问题中的应用;不等式的综合.专题:导数的综合应用;不等式的解法及应用.分析:由题意可求得≤≤2.而5×﹣3≤≤4×﹣1.于是可得≤7;由c ln b≥a+c ln c可得0<a≤cln.从而≥.设函数f(x)=(x>1).利用其导数可求得f(x)的极小值.也就是的最小值.于是问题解决.解答:解:∵4c﹣a≥b>0∴>.∵5c﹣3a≤4c﹣a.∴≤2.从而≤2×4﹣1=7.特别当=7时.第二个不等式成立.等号成立当且仅当a:b:c=1:7:2.又clnb≥a+clnc.∴0<a≤cln.从而≥.设函数f(x)=(x>1).∵f′(x)=.当0<x<e时.f′(x)<0.当x>e时.f′(x)>0.当x=e时.f′(x)=0.∴当x=e时.f(x)取到极小值.也是最小值.∴f(x)min=f(e)==e.等号当且仅当=e.=e成立.代入第一个不等式知:2≤=e≤3.不等式成立.从而e可以取得.等号成立当且仅当a:b:c=1:e:1.从而的取值范围是[e.7]双闭区间.点评:本题考查不等式的综合应用.得到≥.通过构造函数求的最小值是关键.也是难点.考查分析与转化、构造函数解决问题的能力.属于难题.二、解答题:本大题共6小题.共计90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(14分)(•江苏)在△ABC中.已知.(1)求证:tanB=3tanA;(2)若cosC=.求A的值.考点:解三角形;平面向量数量积的运算;三角函数中的恒等变换应用.专题:三角函数的求值;解三角形;平面向量及应用.分析:(1)利用平面向量的数量积运算法则化简已知的等式左右两边.然后两边同时除以c 化简后.再利用正弦定理变形.根据cosAcosB≠0.利用同角三角函数间的基本关系弦化切即可得到tanB=3tanA;(2)由C为三角形的内角.及cosC的值.利用同角三角函数间的基本关系求出sinC 的值.进而再利用同角三角函数间的基本关系弦化切求出tanC的值.由tanC的值.及三角形的内角和定理.利用诱导公式求出tan(A+B)的值.利用两角和与差的正切函数公式化简后.将tanB=3tanA代入.得到关于tanA的方程.求出方程的解得到tanA的值.再由A为三角形的内角.利用特殊角的三角函数值即可求出A的度数.解答:解:(1)∵•=3•.∴cbcosA=3cacosB.即bcosA=3acosB.由正弦定理=得:sinBcosA=3sinAcosB.又0<A+B<π.∴cosA>0.cosB>0.在等式两边同时除以cosAcosB.可得tanB=3tanA;(2)∵cosC=.0<C<π.sinC==.∴tanC=2.则tan[π﹣(A+B)]=2.即tan(A+B)=﹣2.∴=﹣2.将tanB=3tanA代入得:=﹣2.整理得:3tan2A﹣2tanA﹣1=0.即(tanA﹣1)(3tanA+1)=0.解得:tanA=1或tanA=﹣.又cosA>0.∴tanA=1.又A为三角形的内角.则A=.点评:此题属于解三角形的题型.涉及的知识有:平面向量的数量积运算法则.正弦定理.同角三角函数间的基本关系.诱导公式.两角和与差的正切函数公式.以及特殊角的三角函数值.熟练掌握定理及公式是解本题的关键.16.(14分)(•江苏)如图.在直三棱柱ABC﹣A1B1C1中.A1B1=A1C1.D.E分别是棱1上的点(点D 不同于点C).且AD⊥DE.F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离;立体几何.分析:(1)根据三棱柱ABC﹣A1B1C1是直三棱柱.得到CC1⊥平面ABC.从而AD⊥CC1.结合已知条件AD⊥DE.DE、CC1是平面BCC1B1内的相交直线.得到AD⊥平面BCC1B1.从而平面ADE⊥平面BCC1B1;(2)先证出等腰三角形△A1B1C1中.A1F⊥B1C1.再用类似(1)的方法.证出A1F⊥平面BCC1B1.结合AD⊥平面BCC1B1.得到A1F∥AD.最后根据线面平行的判定定理.得到直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱.∴CC1⊥平面ABC.∵AD⊂平面ABC.∴AD⊥CC1又∵AD⊥DE.DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1.∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中.A1B1=A1C1.F为B1C1的中点∴A1F⊥B1C1.∵CC1⊥平面A1B1C1.A1F⊂平面A1B1C1.∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1.∴A1F∥AD∵A1F⊄平面ADE.AD⊂平面ADE.∴直线A1F∥平面ADE.点评:本题以一个特殊的直三棱柱为载体.考查了直线与平面平行的判定和平面与平面垂直的判定等知识点.属于中档题.17.(14分)(•江苏)如图.建立平面直角坐标系xOy.x轴在地平面上.y轴垂直于地平面.单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx﹣(1+k2)x2(k>0)表示的曲线上.其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小).其飞行高度为3.2千米.试问它的横坐标a 不超过多少时.炮弹可以击中它?请说明理由.考点:函数模型的选择与应用.专题:函数的性质及应用.分析:(1)求炮的最大射程即求 y=kx﹣(1+k2)x2(k>0)与x轴的横坐标.求出后应用基本不等式求解.(2)求炮弹击中目标时的横坐标的最大值.由一元二次方程根的判别式求解.解答:解:(1)在 y=kx﹣(1+k2)x2(k>0)中.令y=0.得 kx﹣(1+k2)x2=0.由实际意义和题设条件知x>0.k>0.∴.当且仅当k=1时取等号.∴炮的最大射程是10千米.(2)∵a>0.∴炮弹可以击中目标等价于存在 k>0.使ka﹣(1+k2)a2=3.2成立.即关于k的方程a2k2﹣20ak+a2+64=0有正根.由韦达定理满足两根之和大于0.两根之积大于0.故只需△=400a2﹣4a2(a2+64)≥0得a≤6.此时.k=>0.∴当a不超过6千米时.炮弹可以击中目标.点评:本题考查函数模型的运用.考查基本不等式的运用.考查学生分析解决问题的能力.属于中档题.18.(16分)(•江苏)若函数y=f(x)在x=x0处取得极大值或极小值.则称x0为函数y=f(x)的极值点.已知a.b是实数.1和﹣1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2.求g(x)的极值点;(3)设h(x)=f(f(x))﹣c.其中c∈[﹣2.2].求函数y=h(x)的零点个数.考点:函数在某点取得极值的条件;函数的零点.专题:导数的综合应用.分析:(1)求出导函数.根据1和﹣1是函数的两个极值点代入列方程组求解即可.(2)由(1)得f(x)=x3﹣3x.求出g′(x).令g′(x)=0.求解讨论即可.(3)先分|d|=2和|d|<2讨论关于的方程f(x)=d的情况;再考虑函数y=h(x)的零点.解答:解:(1)由 f(x)=x3+ax2+bx.得 f′(x)=3x2+2ax+b.∵1和﹣1是函数f(x)的两个极值点.∴f′(1)=3﹣2a+b=0.f′(﹣1)=3+2a+b=0.解得a=0.b=﹣3.(2)由(1)得.f(x)=x3﹣3x.∴g′(x)=f(x)+2=x3﹣3x+2=(x﹣1)2(x+2)=0.解得x1=x2=1.x3=﹣2.∵当x<﹣2时.g′(x)<0;当﹣2<x<1时.g′(x)>0.∴﹣2是g(x)的极值点.∵当﹣2<x<1或x>1时.g′(x)>0.∴1不是g(x)的极值点.∴g(x)的极值点是﹣2.(3)令f(x)=t.则h(x)=f(t)﹣c.先讨论关于x的方程f(x)=d根的情况.d∈[﹣2.2]当|d|=2时.由(2 )可知.f(x)=﹣2的两个不同的根为1和一2.注意到f(x)是奇函数.∴f(x)=2的两个不同的根为﹣1和2.当|d|<2时.∵f(﹣1)﹣d=f(2)﹣d=2﹣d>0.f(1)﹣d=f(﹣2)﹣d=﹣2﹣d<0.∴一2.﹣1.1.2 都不是f(x)=d 的根.由(1)知.f′(x)=3(x+1)(x﹣1).①当x∈(2.+∞)时.f′(x)>0.于是f(x)是单调增函数.从而f(x)>f(2)=2.此时f(x)=d在(2.+∞)无实根.②当x∈(1.2)时.f′(x)>0.于是f(x)是单调增函数.又∵f(1)﹣d<0.f(2)﹣d>0.y=f(x)﹣d的图象不间断.∴f(x)=d在(1.2 )内有唯一实根.同理.在(一2.一1)内有唯一实根.③当x∈(﹣1.1)时.f′(x)<0.于是f(x)是单调减函数.又∵f(﹣1)﹣d>0.f(1)﹣d<0.y=f(x)﹣d的图象不间断.∴f(x)=d在(一1.1 )内有唯一实根.因此.当|d|=2 时.f(x)=d 有两个不同的根 x1.x2.满足|x1|=1.|x2|=2;当|d|<2时.f(x)=d 有三个不同的根x3.x4.x5.满足|xi|<2.i=3.4.5.现考虑函数y=h(x)的零点:( i )当|c|=2时.f(t)=c有两个根t1.t2.满足|t1|=1.|t2|=2.而f(x)=t1有三个不同的根.f(x)=t2有两个不同的根.故y=h(x)有5 个零点.( i i )当|c|<2时.f(t)=c有三个不同的根t3.t4.t5.满足|ti|<2.i=3.4.5.而f(x)=ti有三个不同的根.故y=h(x)有9个零点.综上所述.当|c|=2时.函数y=h(x)有5个零点;当|c|<2时.函数y=h(x)有9 个零点.点评:本题考查导数知识的运用.考查函数的极值.考查函数的单调性.考查函数的零点.考查分类讨论的数学思想.综合性强.难度大.19.(16分)(•江苏)如图.在平面直角坐标系xOy中.椭圆(a>b>0)的左、右焦点分别为F1(﹣c.0).F2(c.0).已知(1.e)和(e.)都在椭圆上.其中e为椭圆的离心率.(1)求椭圆的方程;(2)设A.B是椭圆上位于x轴上方的两点.且直线AF1与直线BF2平行.AF2与BF1交于点P.(i)若AF1﹣BF2=.求直线AF1的斜率;(ii)求证:PF1+PF2是定值.考点:直线与圆锥曲线的综合问题;直线的斜率;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)根据椭圆的性质和已知(1.e)和(e.).都在椭圆上列式求解.(2)(i)设AF1与BF2的方程分别为x+1=my.x﹣1=my.与椭圆方程联立.求出|AF1|、|BF2|.根据已知条件AF1﹣BF2=.用待定系数法求解;(ii)利用直线AF1与直线BF2平行.点B在椭圆上知.可得..由此可求得PF1+PF2是定值.解答:(1)解:由题设知a2=b2+c2.e=.由点(1.e)在椭圆上.得.∴b=1.c2=a2﹣1.由点(e.)在椭圆上.得∴.∴a2=2∴椭圆的方程为.(2)解:由(1)得F1(﹣1.0).F2(1.0).又∵直线AF1与直线BF2平行.∴设AF1与BF2的方程分别为x+1=my.x﹣1=my.设A(x1.y1).B(x2.y2).y1>0.y2>0.∴由.可得(m2+2)﹣2my1﹣1=0.∴.(舍).∴|AF1|=×|0﹣y1|=①同理|BF2|=②(i)由①②得|AF1|﹣|BF2|=.∴.解得m2=2.∵注意到m>0.∴m=.∴直线AF1的斜率为.(ii)证明:∵直线AF1与直线BF2平行.∴.即.由点B在椭圆上知..∴.同理.∴PF1+PF2==由①②得...∴PF1+PF2=.∴PF1+PF2是定值.点本题考查椭圆的标准方程.考查直线与椭圆的位置关系.考查学生的计算能力.属于中档题.评:20.(16分)(•江苏)已知各项均为正数的两个数列{an}和{bn}满足:an+1=.n∈N*.(1)设bn+1=1+.n∈N*.求证:数列是等差数列;(2)设bn+1=•.n∈N*.且{an}是等比数列.求a1和b1的值.考数列递推式;等差关系的确定;等比数列的性质.点:等差数列与等比数列.专题:分析:(1)由题意可得.an+1===.从而可得.可证(2)由基本不等式可得..由{an}是等比数列利用反证法可证明q==1.进而可求a1.b1解答:解:(1)由题意可知.an+1===∴从而数列{}是以1为公差的等差数列(2)∵an>0.bn>0∴从而(*)设等比数列{an}的公比为q.由an>0可知q>0下证q=1若q>1.则.故当时.与(*)矛盾0<q<1.则.故当时.与(*)矛盾综上可得q=1.an=a1.所以.∵∴数列{bn}是公比的等比数列若.则.于是b1<b2<b3又由可得∴b1.b2.b3至少有两项相同.矛盾∴.从而=∴点评:本题主要考查了利用构造法证明等差数列及等比数列的通项公式的应用.解题的关键是反证法的应用.三、附加题(21选做题:任选2小题作答.22、23必做题)(共3小题.满分40分)21.(20分)(•江苏)A.[选修4﹣1:几何证明选讲]如图.AB是圆O的直径.D.E为圆上位于AB异侧的两点.连接BD并延长至点C.使BD=DC.连接AC.AE.DE.求证:∠E=∠C.B.[选修4﹣2:矩阵与变换]已知矩阵A的逆矩阵.求矩阵A的特征值.C.[选修4﹣4:坐标系与参数方程]在极坐标中.已知圆C经过点P(.).圆心为直线ρsin(θ﹣)=﹣与极轴的交点.求圆C的极坐标方程.D.[选修4﹣5:不等式选讲]已知实数x.y满足:|x+y|<.|2x﹣y|<.求证:|y|<.考点:特征值与特征向量的计算;简单曲线的极坐标方程;不等式的证明;综合法与分析法(选修).专题:不等式的解法及应用;直线与圆;矩阵和变换;坐标系和参数方程.分A.要证∠E=∠C.就得找一个中间量代换.一方面考虑到∠B.∠E是同弧所对圆周角.析:相等;另一方面根据线段中垂线上的点到线段两端的距离相等和等腰三角形等边对等角的性质得到.从而得证.B.由矩阵A的逆矩阵.根据定义可求出矩阵A.从而求出矩阵A的特征值.C.根据圆心为直线ρsin(θ﹣)=﹣与极轴的交点求出的圆心坐标;根据圆经过点P(.).求出圆的半径.从而得到圆的极坐标方程.D.根据绝对值不等式的性质求证.解答:A.证明:连接 AD.∵AB是圆O的直径.∴∠ADB=90°(直径所对的圆周角是直角).∴AD⊥BD(垂直的定义).又∵BD=DC.∴AD是线段BC 的中垂线(线段的中垂线定义).∴AB=AC(线段中垂线上的点到线段两端的距离相等).∴∠B=∠C(等腰三角形等边对等角的性质).又∵D.E 为圆上位于AB异侧的两点.∴∠B=∠E(同弧所对圆周角相等).∴∠E=∠C(等量代换).B、解:∵矩阵A的逆矩阵.∴A=∴f(λ)==λ2﹣3λ﹣4=0∴λ1=﹣1.λ2=4C、解:∵圆心为直线ρsin(θ﹣)=﹣与极轴的交点.∴在ρsin(θ﹣)=﹣中令θ=0.得ρ=1.∴圆C的圆心坐标为(1.0).∵圆C 经过点P(.).∴圆C的半径为PC=1.∴圆的极坐标方程为ρ=2cosθ.D、证明:∵3|y|=|3y|=|2(x+y)﹣(2x﹣y)|≤2|x+y|+|2x﹣y|.|x+y|<.|2x﹣y|<.∴3|y|<.∴点评:本题是选作题.综合考查选修知识.考查几何证明选讲、矩阵与变换、坐标系与参数方程、不等式证明.综合性强23.(10分)(•江苏)设集合Pn={1.2.….n}.n∈N*.记f(n)为同时满足下列条件的集合A的个数:①A⊆Pn;②若x∈A.则2x∉A;③若x∈ A.则2x∉A.(1)求f(4);(2)求f(n)的解析式(用n表示).考点:函数解析式的求解及常用方法;元素与集合关系的判断;集合的包含关系判断及应用.专题:集合.分析:(1)由题意可得P4={1.2.3.4}.符合条件的集合A为:{2}.{1.4}.{2.3}.{1.3.4}.故可求f(4)(2)任取偶数x∈pn.将x除以2.若商仍为偶数.再除以2….经过k次后.商必为奇数.此时记商为m.可知.若m∈A.则x∈A.⇔k为偶数;若m∉A.则x∈A⇔k为奇数.可求解答:解(1)当n=4时.P4={1.2.3.4}.符合条件的集合A为:{2}.{1.4}.{2.3}.{1.3.4}故f(4)=4(2)任取偶数x∈pn.将x除以2.若商仍为偶数.再除以2….经过k次后.商必为奇数.此时记商为m.于是x=m•2k.其中m为奇数.k∈N*由条件可知.若m∈A.则x∈A.⇔k为偶数若m∉A.则x∈A⇔k为奇数于是x是否属于A由m是否属于A确定.设Qn是Pn中所有的奇数的集合因此f(n)等于Qn的子集个数.当n为偶数时(或奇数时).Pn中奇数的个数是(或)∴点评:本题主要考查了集合之间包含关系的应用.解题的关键是准确应用题目中的定义22.(10分)(•江苏)设ξ为随机变量.从棱长为1的正方体的12条棱中任取两条.当两条棱相交时.ξ=0;当两条棱平行时.ξ的值为两条棱之间的距离;当两条棱异面时.ξ=1.(1)求概率P(ξ=0);(2)求ξ的分布列.并求其数学期望E(ξ).考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(1)求出两条棱相交时相交棱的对数.即可由概率公式求得概率.(2)求出两条棱平行且距离为的共有6对.即可求出相应的概率.从而求出随机变量的分布列与数学期望.解答:解:(1)若两条棱相交.则交点必为正方体8个顶点中的一个.过任意1个顶点恰有3条棱.∴共有8对相交棱.∴P(ξ=0)=.(2)若两条棱平行.则它们的距离为1或.其中距离为的共有6对.∴P (ξ=)=.P (ξ=1)=1﹣P (ξ=0)﹣P (ξ=)=.∴随机变量ξ的分布列是: ξ 0 1 P∴其数学期望E (ξ)=1×+=.点评:本题考查概率的计算.考查离散型随机变量的分布列与期望.求概率是关键. 高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a=(A )43-(B )34-(C 3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 (A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s= (A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为 (A 2B )32(C 3D )2(12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m mx y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
数学高考压轴题含答案
数学高考压轴题学校:___________姓名:___________班级:___________考号:___________评卷人得分一、解答题1.已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.2.已知点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.3.已知函数()e e ax x f x x =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设n *∈Nln(1)n ++>+ .4.已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为(2,0)F ,渐近线方程为y =.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为Q M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ AB ∥;③||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.5.已知函数()e ln(1)x f x x =+.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性;(3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.6.如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q ⎛⎫ ⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =-+于C ,D两点.(1)求点P 到椭圆上点的距离的最大值;(2)求||CD 的最小值.7.设函数e()ln (0)2f x x x x=+>.(1)求()f x 的单调区间;(2)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭;(ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea ax x a --+<+<-.(注:e 2.71828= 是自然对数的底数)参考答案:1.(1)1a =(2)见解析【解析】【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当1b >时,e x x b -=的解的个数、ln x x b -=的解的个数均为2,构建新函数()e ln 2x h x x x =+-,利用导数可得该函数只有一个零点且可得()(),f x g x 的大小关系,根据存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点可得b 的取值,再根据两类方程的根的关系可证明三根成等差数列.(1)()e x f x ax =-的定义域为R ,而()e '=-x f x a ,若0a ≤,则()0f x '>,此时()f x 无最小值,故0a >.()ln g x ax x =-的定义域为()0,∞+,而11()ax g x a x x'-=-=.当ln x a <时,()0f x '<,故()f x 在(),ln a -∞上为减函数,当ln x a >时,()0f x '>,故()f x 在()ln ,a +∞上为增函数,故()min ()ln ln f x f a a a a ==-.当10x a <<时,()0g x '<,故()g x 在10,a ⎛⎫⎪⎝⎭上为减函数,当1x a >时,()0g x '>,故()g x 在1,a ⎛⎫+∞ ⎪⎝⎭上为增函数,故min 11()1ln g x g a a ⎛⎫==- ⎪⎝⎭.因为()e x f x ax =-和()ln g x ax x =-有相同的最小值,故11lnln a a a a-=-,整理得到1ln 1a a a -=+,其中0a >,设()1ln ,01a g a a a a -=->+,则()()()222211011a g a a a a a --'=-=≤++,故()g a 为()0,∞+上的减函数,而()10g =,故()0g a =的唯一解为1a =,故1ln 1aa a-=+的解为1a =.综上,1a =.(2)由(1)可得e ()x x f x =-和()ln g x x x =-的最小值为11ln11ln 11-=-=.当1b >时,考虑e x x b -=的解的个数、ln x x b -=的解的个数.设()e xS x x b =--,()e 1x S x '=-,当0x <时,()0S x '<,当0x >时,()0S x '>,故()S x 在(),0∞-上为减函数,在()0,∞+上为增函数,所以()()min 010S x S b ==-<,而()e0bS b --=>,()e 2b S b b =-,设()e 2b u b b =-,其中1b >,则()e 20bu b '=->,故()u b 在()1,+∞上为增函数,故()()1e 20u b u >=->,故()0S b >,故()e xS x x b =--有两个不同的零点,即e x x b -=的解的个数为2.设()ln T x x x b =--,()1x T x x-'=,当01x <<时,()0T x '<,当1x >时,()0T x '>,故()T x 在()0,1上为减函数,在()1,+∞上为增函数,所以()()min 110T x T b ==-<,而()ee0bbT --=>,()e e 20b b T b =->,()ln T x x x b =--有两个不同的零点即ln x x b -=的解的个数为2.当1b =,由(1)讨论可得ln x x b -=、e x x b -=仅有一个零点,当1b <时,由(1)讨论可得ln x x b -=、e x x b -=均无零点,故若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,则1b >.设()e ln 2x h x x x =+-,其中0x >,故1()e 2xh x x'=+-,设()e 1x s x x =--,0x >,则()e 10xs x '=->,故()s x 在()0,∞+上为增函数,故()()00s x s >=即e 1x x >+,所以1()1210h x x x'>+-≥->,所以()h x 在()0,∞+上为增函数,而(1)e 20h =->,31e 333122(e 3e 30e e eh =--<--<,故()h x 在()0,∞+上有且只有一个零点0x ,0311ex <<且:当00x x <<时,()0h x <即e ln x x x x -<-即()()f x g x <,当0x x >时,()0h x >即e ln x x x x ->-即()()f x g x >,因此若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,故()()001b f x g x ==>,此时e x x b -=有两个不同的零点1010,(0)x x x x <<,此时ln x x b -=有两个不同的零点0404,(01)x x x x <<<,故11e xx b -=,00e x x b -=,44ln 0x x b --=,00ln 0x x b --=所以44ln x b x -=即44ex bx -=即()44e0x bx b b ----=,故4x b -为方程e x x b -=的解,同理0x b -也为方程e x x b -=的解又11e x x b -=可化为11e xx b =+即()11ln 0x x b -+=即()()11ln 0x b x b b +-+-=,故1x b +为方程ln x x b -=的解,同理0x b +也为方程ln x x b -=的解,所以{}{}1004,,x x x b x b =--,而1b >,故0410x x b x x b =-⎧⎨=-⎩即1402x x x +=.【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.2.(1)1-;(2)9.【解析】【分析】(1)由点(2,1)A 在双曲线上可求出a ,易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,再根据0AP BP k k +=,即可解出l 的斜率;(2)根据直线,AP AQ 的斜率之和为0可知直线,AP AQ的倾斜角互补,再根据tan PAQ ∠=,AP AQ 的斜率,再分别联立直线,AP AQ 与双曲线方程求出点,P Q 的坐标,即可得到直线PQ 的方程以及PQ 的长,由点到直线的距离公式求出点A 到直线PQ 的距离,即可得出PAQ △的面积.(1)因为点(2,1)A 在双曲线2222:1(1)1x yC a a a -=>-上,所以224111a a -=-,解得22a =,即双曲线22:12x C y -=易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,联立2212y kx m x y =+⎧⎪⎨-=⎪⎩可得,()222124220k x mkx m ----=,所以,2121222422,2121mk m x x x x k k ++=-=--,()()22222216422210120m k m k m k ∆=++->⇒-+>.所以由0AP BP k k +=可得,212111022y y x x --+=--,即()()()()122121210x kx m x kx m -+-+-+-=,即()()()1212212410kx x m k x x m +--+--=,所以()()2222242124102121m mk k m k m k k +⎛⎫⨯+-----= ⎪--⎝⎭,化简得,()2844410k k m k +-++=,即()()1210k k m +-+=,所以1k =-或12m k =-,当12m k =-时,直线():21l y kx m k x =+=-+过点()2,1A ,与题意不符,舍去,故1k =-.(2)不妨设直线,PA PB 的倾斜角为(),αβαβ<,因为0AP BP k k +=,所以παβ+=,因为tan PAQ ∠=,所以()tan βα-=,即tan 2α=-,2tan 0αα-=,解得tan α,于是,直线):21PA y x =-+,直线):21PB y x =-+,联立)222112y x x y ⎧=-+⎪⎨-=⎪⎩可得,(23211002x x +-+-=,因为方程有一个根为2,所以103P x -=,P y=53,同理可得,103Q x +=,Q y=53-.所以5:03PQ x y +-=,163PQ =,点A 到直线PQ的距离3d =,故PAQ △的面积为11623⨯=3.(1)()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)12a ≤(3)见解析【解析】【分析】(1)求出()f x ¢,讨论其符号后可得()f x 的单调性.(2)设()e e 1ax xh x x =-+,求出()h x '',先讨论12a >时题设中的不等式不成立,再就102a <≤结合放缩法讨论()h x '符号,最后就0a ≤结合放缩法讨论()h x 的范围后可得参数的取值范围.(3)由(2)可得12ln t t t<-对任意的1t >恒成立,从而可得()ln 1ln n n +-的*n N ∈恒成立,结合裂项相消法可证题设中的不等式.(1)当1a =时,()()1e x f x x =-,则()e xf x x '=,当0x <时,()0f x ¢<,当0x >时,()0f x ¢>,故()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)设()e e 1ax xh x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-,则()()22e e ax xg x a a x '=+-,若12a >,则()0210g a '=->,因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有()0g x ¢>,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <≤,则()()()ln 11e e ee ax ax ax xx h x ax ++'=+-=-,下证:对任意0x >,总有()ln 1x x +<成立,证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++,故()S x 在()0,+∞上为减函数,故()()00S x S <=即()ln 1x x +<成立.由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤,故()0h x '≤总成立,即()h x 在()0,+∞上为减函数,所以()()01h x h <=-.当0a ≤时,有()e e e 1100ax x axh x ax '=-+<-+=,所以()h x 在()0,+∞上为减函数,所以()()01h x h <=-.综上,12a ≤.(3)取12a =,则0x ∀>,总有12e e 10x x x -+<成立,令12e x t =,则21,e ,2ln x t t x t >==,故22ln 1t t t <-即12ln t t t<-对任意的1t >恒成立.所以对任意的*n N ∈,有<整理得到:()ln 1ln n n +-()ln 2ln1ln 3ln 2ln 1ln n n +-+-+++- ()ln 1n =+,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.4.(1)2213y x -=(2)见解析【解析】【分析】(1)利用焦点坐标求得c 的值,利用渐近线方程求得,a b 的关系,进而利用,,a b c 的平方关系求得,a b 的值,得到双曲线的方程;(2)先分析得到直线AB 的斜率存在且不为零,设直线AB 的斜率为k ,M (x 0,y 0),由③|AM |=|BM |等价分析得到200283k x ky k +=-;由直线PM 和QM 的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ 的斜率03x m y =,由②//PQ AB 等价转化为003ky x =,由①M在直线AB 上等价于()2002ky k x =-,然后选择两个作为已知条件一个作为结论,进行证明即可.(1)右焦点为(2,0)F ,∴2c =,∵渐近线方程为y =,∴ba=b ,∴222244c a b a =+==,∴1a =,∴b =∴C 的方程为:2213y x -=;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而12x x =,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为()2y k x =-,则条件①M 在AB 上,等价于()()2000022y k x ky k x =-⇔=-;两渐近线的方程合并为2230x y -=,联立消去y 并化简整理得:()22223440k x k x k --+=设()()3334,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===-=--,设()00,M x y ,则条件③AM BM =等价于()()()()222203030404x x y y x x y y -+-=-+-,移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y ⎡⎤⎡⎤--++--+=⎣⎦⎣⎦,()()3403403434220y y x x x y y y x x -⎡⎤⎡⎤-++-+=⎣⎦⎣⎦-,即()000N N x x k y y -+-=,即200283k x ky k +=-;由题意知直线PM 的斜率为直线QM ,∴由))10102020,y y x x y y x x -=--=-,∴)121202y y x x x -=+-,所以直线PQ的斜率)1201212122x x x y y m x x x x +--==--,直线)00:PM y x x y =-+,即00y y =,代入双曲线的方程22330x y --=,即)3yy +-=中,得:()()00003y y ⎡⎤-=⎣⎦,解得P的横坐标:100x y ⎛⎫=+⎪⎪⎭,同理:200x y ⎛⎫=⎪⎪⎭,∴0012012002222000033,2,33y x x x y x x x x y x y x ⎛⎫-=++-=--⎪--⎭∴03x m y =,∴条件②//PQ AB 等价于003m k ky x =⇔=,综上所述:条件①M 在AB 上,等价于()2002ky k x =-;条件②//PQ AB 等价于003ky x =;条件③AM BM =等价于200283kx ky k +=-;选①②推③:由①②解得:2200002228,433k k x x ky x k k =∴+==--,∴③成立;选①③推②:由①③解得:20223k x k =-,20263k ky k =-,∴003ky x =,∴②成立;选②③推①:由②③解得:20223k x k =-,20263k ky k =-,∴02623x k -=-,∴()2002ky k x =-,∴①成立.5.(1)y x=(2)()g x 在[0,)+∞上单调递增.(3)证明见解析【解析】【分析】(1)先求出切点坐标,在由导数求得切线斜率,即得切线方程;(2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;(3)令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,由第二问结论可知()m x 在[0,+∞)上单调递增,即得证.(1)解:因为()e ln(1)x f x x =+,所以()00f =,即切点坐标为()0,0,又1()e (ln(1))1xf x x x=+++',∴切线斜率(0)1k f '==∴切线方程为:y x =(2)解:因为1()()e (ln(1))1xg x f x x x=++'=+,所以221()e (ln(1))1(1)xg x x x x =++++',令221()ln(1)1(1)h x x x x =++-++,则22331221()01(1)(1)(1)x h x x x x x +=-+=>++++',∴()h x 在[0,)+∞上单调递增,∴()(0)10h x h ≥=>∴()0g x '>在[0,)+∞上恒成立,∴()g x 在[0,)+∞上单调递增.(3)解:原不等式等价于()()()(0)f s t f s f t f +->-,令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,∵()()()e ln(1)e ln(1)x t x m x f x t f x x t x +=+-=++-+,e e ()e ln(1)e ln(1)()()11x t x x tx m x x t x g x t g x x t x++=++++-=+-++'+,由(2)知1()()e (ln(1))1xg x f x x x=++'=+在[)0,∞+上单调递增,∴()()g x t g x +>,∴()0m x '>∴()m x 在()0,∞+上单调递增,又因为,0x t >,∴()(0)m x m >,所以命题得证.6.(1)11;(2)5.【解析】【分析】(1)设,sin )Q θθ是椭圆上任意一点,再根据两点间的距离公式求出2||PQ ,再根据二次函数的性质即可求出;(2)设直线1:2AB y kx =+与椭圆方程联立可得1212,x x x x +,再将直线132y x =-+方程与PA PB 、的方程分别联立,可解得点,C D 的坐标,再根据两点间的距离公式求出CD ,最后代入化简可得231CD k =⋅+,由柯西不等式即可求出最小值.(1)设,sin )Q θθ是椭圆上任意一点,(0,1)P ,则222221144144||12cos (1sin )1311sin 2sin 11sin 111111PQ θθθθθ⎛⎫=+-=--=-+≤⎭+⎪⎝,当且仅当1sin 11θ=-时取等号,故||PQ (2)设直线1:2AB y kx =+,直线AB 方程与椭圆22112x y +=联立,可得22130124k x kx ⎛⎫++-= ⎪⎝⎭,设()()1122,,,A x y B x y ,所以12212211231412k x x k x x k ⎧+=-⎪+⎪⎪⎨⎪=-⎛⎫⎪+ ⎪⎪⎝⎭⎩,因为直线111:1y PA y x x -=+与直线132y x =-+交于C ,则111114422(21)1C x x x x y k x ==+-+-,同理可得,222224422(21)1D x x x x y k x ==+-+-.则224||(21)1C D x CD x k x =-=+-2=35161656565231555k =⋅=≥=+,当且仅当316k =时取等号,故CD 的最小值为5.【点睛】本题主要考查最值的计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.7.(1)()f x 的减区间为e 02⎛⎫⎪⎝⎭,,增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)见解析;(ⅱ)见解析.【解析】【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)(ⅰ)由题设构造关于切点横坐标的方程,根据方程有3个不同的解可证明不等式成立,(ⅱ)31x k x =,1e a m =<,则题设不等式可转化为()()()2131313122236m m m t t m m t t --++--<+,结合零点满足的方程进一步转化为()()()()211312ln 0721m m m m m m ---++<+,利用导数可证该不等式成立.(1)()22e 12e 22xf x x x x -'=-+=,当e02x <<,()0f x ¢<;当e 2x >,()0f x ¢>,故()f x 的减区间为e 02⎛⎫⎪⎝⎭,,()f x 的增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)因为过(),a b 有三条不同的切线,设切点为()(),,1,2,3i i x f x i =,故()()()i i i f x b f x x a '-=-,故方程()()()f x b f x x a '-=-有3个不同的根,该方程可整理为()21e e ln 022x a x b x x x ⎛⎫----+= ⎪⎝⎭,设()()21e e ln 22g x x a x b x x x ⎛⎫=---+ ⎪⎝⎭,则()()22321e 1e 1e22g x x a x x x x x x⎛⎫'=-+-+--+ ⎪⎝⎭()()31e x x a x =---,当0e x <<或x a >时,()0g x ¢<;当e x a <<时,()0g x ¢>,故()g x 在()()0,e ,,a +∞上为减函数,在()e,a 上为增函数,因为()g x 有3个不同的零点,故()e 0g <且()0>g a ,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+< ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+> ⎪⎝⎭,整理得到:12e a b <+且()e ln 2b a f a a >+=,此时()1e 13e11ln ln 2e 2e 22e 222a a a b f a a a a a ⎛⎫⎛⎫---<-+-+=-- ⎪ ⎪⎝⎭⎝⎭,设()3e ln 22u a a a =--,则()2e-202au a a '=<,故()u a 为()e,+∞上的减函数,故()3eln e 022eu a <--=,故()1012e a b f a ⎛⎫<-<- ⎪⎝⎭.(ⅱ)当0e a <<时,同(ⅰ)中讨论可得:故()g x 在()()0,,e,a +∞上为减函数,在(),e a 上为增函数,不妨设123x x x <<,则1230e x a x x <<<<<,因为()g x 有3个不同的零点,故()0g a <且()e 0g >,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+> ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+< ⎪⎝⎭,整理得到:1ln 2e 2ea ab a +<<+,因为123x x x <<,故1230e x a x x <<<<<,又()2e e 1ln 2a ag x x b x x+=-+-+,设e t x =,()0,1e a m =∈,则方程2e e 1ln 02a ax b x x+-+-+=即为:2e ln 0e 2ea at t t b +-+++=即为()21ln 02m m t t t b -++++=,记123123e e e ,,,t t t x x x ===则113,,t t t 为()21ln 02m m t t t b -++++=有三个不同的根,设3131e 1x t k t x a ==>>,1eam =<,要证:22122e 112e e 6e 6e a a x x a --+<+<-,即证13e 2e e 26e 6ea at t a --+<+<-,即证:13132166m mt t m --<+<-,即证:131********m m t t t t m --⎛⎫⎛⎫+-+-+< ⎪⎝⎭⎝⎭,即证:()()()2131313122236m m m t t m m t t --++--<+,而()21111ln 02m m t t t b -++++=且()23331ln 02mm t t t b -++++=,故()()()22131313ln ln 102m t t t t m t t -+--+-=,故131313ln ln 222t t t t m m t t -+--=-⨯-,故即证:()()()21313131312ln ln 236m m m t t m t t m t t --+--⨯<-+,即证:()()()1213313ln1312072t t t m m m t t t +--++>-即证:()()()213121ln 0172m m m k k k --+++>-,记()()1ln ,11k k k k k ϕ+=>-,则()()2112ln 01k k k kk ϕ⎛⎫'=--> ⎪⎝⎭-,设()12ln u k k k k =--,则()2122210u k k k k k'=+->-=即()0k ϕ'>,故()k ϕ在()1,+∞上为增函数,故()()k m ϕϕ>,所以()()()()()()22131213121ln 1ln 172172m m m m m m k k m m k m --+--++++>+--,记()()()()()211312ln ,01721m m m m m m m m ω---+=+<<+,则()()()()()()()2232322132049721330721721m mm m m mm m m m m ω---+-+'=>>++,所以()m ω在()0,1为增函数,故()()10m ωω<=,故()()()()211312ln 0721m m m m m m ---++<+即()()()213121ln 0172m m m m m m --+++>-,故原不等式得证:【点睛】思路点睛:导数背景下的切线条数问题,一般转化为关于切点方程的解的个数问题,而复杂方程的零点性质的讨论,应该根据零点的性质合理转化需求证的不等式,常用的方法有比值代换等.。
2023高考数学新高考1卷压轴题
2023高考数学新高考1卷压轴题2023年的高考数学试卷中,出现了一道备受关注的压轴题。
这道题目不仅考察了学生对数学知识的掌握,还要求学生具备一定的逻辑思维和解决问题的能力。
下面我们一起来看看这道题目的内容和解答过程。
题目如下:已知函数f(x)满足f(x+1)=2f(x)-1,且f(0)=1,求f(2023)的值。
解答过程:首先,我们根据题目中给出的条件,可以得到f(1)=2f(0)-1=2-1=1。
接着,我们可以继续计算f(2)、f(3)、f(4)等等。
通过观察我们可以发现,f(x)的值似乎与x的值没有直接的关系。
但是,我们可以尝试将f(x)的表达式进行变换,以便更好地理解和计算。
我们将f(x)的表达式进行变换,令g(x)=f(x)-1,那么原来的等式可以变为g(x+1)=2g(x)。
接下来,我们来计算g(0)、g(1)、g(2)等等。
根据题目中给出的条件,我们可以得到g(0)=f(0)-1=1-1=0。
接着,我们可以继续计算g(1)、g(2)、g(3)等等。
通过观察我们可以发现,g(x)的值似乎与x的值有一定的关系。
我们可以猜测g(x)的表达式可能是一个等比数列。
我们来验证一下我们的猜测。
假设g(x)=a*r^x,其中a为首项,r为公比。
根据题目中给出的条件,我们可以得到g(0)=a*r^0=0,即a=0。
所以,g(x)=0*r^x=0。
因此,我们可以得出结论,f(x)=g(x)+1=0+1=1。
所以,f(2023)=1。
通过以上的解答过程,我们可以看出这道题目考察了学生对函数的理解和运用,以及对等比数列的掌握。
同时,这道题目也要求学生具备一定的逻辑思维和解决问题的能力。
在解答这道题目的过程中,我们可以看到数学知识的灵活运用和逻辑推理的重要性。
通过对题目的分析和变换,我们可以找到解题的突破口,从而得出正确的答案。
这道题目的出现,不仅考察了学生的数学能力,也对学生的思维能力和解决问题的能力提出了更高的要求。
高考数学高三模拟考试试卷压轴题0101
高考数学高三模拟考试试卷压轴题第I 卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集R U =,{|21}x A x y ==-,则U C A =A .[0,)+∞B .(,0)-∞C .(0,)+∞D .(,0]-∞2. 有如下命题:命题p :设集合{}30≤<=x x M ,{}20≤<=x x N ,则""M a ∈是""N a ∈ 的充分而不必要条件;命题q :“2000,10x R x x ∃∈-->”的否定是 “2,10x R x x ∀∈--≤”,则下列命题中为真命题的是 A .q p ∧B .)(q p ⌝∧C .q p ∨D .)(q p ⌝∨3. 设数列{}n a 是等差数列,若12543=++a a a ,则7321...a a a a ++++等于 A. 14B. 21C. 28D. 354. 已知点),(y x M 的坐标满足⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,)3,1(-N ,点O 为坐标原点,则OM ON ⋅的最小值是 A. 21B. 12C. 6D. 55. 若4tan 1tan =+θθ,则=θ2sin A .15 B.14C.13D.126.某几何体的三视图如图所示,则该几何体的表面积为 A .π2 B .π22C .π)122(+D .π)222(+7.设n m l ,,表示不同的直线,γβα,,表示不同的平面,给出下列四个命题:①若m ∥l ,且α⊥m ,则α⊥l ; ②若m ∥l ,且m ∥α,则l ∥α; ③若α∩,l =ββ∩,m =γγ∩n =α,则l ∥m ∥n ;④若α∩,m =ββ∩,l =γγ∩n =α,且n ∥β,则l ∥m .其中正确命题的个数是A .1B .2C .3D .4 8.将函数)64sin(3)(π+=x x f 图象上所有点的横坐标伸长到原来的2倍,再向右平移6π个单 位长度,得到函数)(x g y =的图象.则)(x g y =图象的一条对称轴是A .x =12πB .x =6πC .x =3πD .x =23π 9. 若c b a,,均为单位向量,21-=⋅b a ,b y a x c +=,),(R y x ∈,则y x +的最大值是A. 2B. 3C. 2D. 110.四棱锥ABCD S -的底面是边长为2的正方形,点D C B A S ,,,,均在半径为3的同一半球面上,则当四棱锥ABCD S -的体积最大时,底面ABCD 的中心与顶点S 之间的距离为( ) A .2-3B.2C.2+12D.3-111. 现有四个函数:①sin y x x =⋅;②cos y x x =⋅;③|cos |y x x =⋅;④2xy x =⋅的图象(部分)如下:则按照从左到右图象对应的函数序号安排正确的一组是A .①④②③B .①④③②C .④①②③D .③④②①12.设()f x 是定义R 上的偶函数,x R ∀∈,都有(2)(2)f x f x -=+,且当[0,2]x ∈时,()22x f x =-,若函数()()log (1)a g x f x x =-+()0,1a a >≠在区间(1,9]-内恰有三个不同零点,则实数a 的取值范围是 A .1(0,)(7,)9+∞ B. 1(,1)(1,3)9C. 11(,)(3,7)95 D. 11(,)(5,3)73第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.oX x x y yy x y二、填空题:本大题共4小题,每小题5分. 13.在ABC ∆中,3=AB ,1=AC ,︒=∠30B ,则ABC ∆的面积等于.14. 已知点O 为ABC ∆的外心,且24==AB AC ,,则=⋅BC AO . 15. 某少数民族的刺绣有着悠久的历史,如图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正 方形的摆放规律相同),设第n 个图形包含()f n 个小正方形.则(6)f =. 16. 已知函数⎩⎨⎧≤≤+-<≤-+-=ax k x x k x x x f ,231,1)1(log )(32,若存在k 使得函数)(x f 的值域是[0,2],则实数a 的取值范围是.三、解答题:解答应写出文字说明.证明过程或演算步骤 17.(本题满分12分)已知函数).672sin(cos 2)(2π--=x x x f (1)求函数)(x f 在]2,4[ππ-上的最大值和最小值,并求出对应的x 值. (2)已知ABC ∆中,角C B A ,,的对边分别为c b a ,,.若23)(=A f ,2=+c b ,求实数a 的最小值.18. (本题满分12分)如图所示,在四棱锥ABCD P -中,平面⊥PAD 平面ABCD ,AB ∥DC ,PAD ∆是等边三角形,已知82==AD BD ,542==DC AB .(1)设M 是PC 上的一点,求证:平面⊥MBD 平面PAD ; (2)求四棱锥ABCD P -的体积. 19. (本题满分12分)已知数列{}n a 的前n 项和2221+-=+n n n a S (n 为正整数).(1)证明:数列⎭⎬⎫⎩⎨⎧n n a 2是等差数列,并求{}n a 的通项公式; (2)令n a a a b n n 22212log ...2log log +++=,设数列⎭⎬⎫⎩⎨⎧n b 1的前n 项和为n T ,是否存在实数M ,使得n T M ≤对一切正整数都成立?若存在,求出M 的最小值;若不存在,请说明理由. 20. (本题满分12分)如图,在四棱锥ABCD P -中,底面ABCD 为直角梯形,AD //BC ,︒=∠90ADC ,平面PAD ⊥平面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,2==PD PA ,121==AD BC ,3=CD .(1)若点M 是棱PC 的中点,求证:PA ∥平面BMQ ; (2)若二面角M QB C --为30︒,试确定点M 的位置.21.(本大题满分12分)已知函数.)()(,ln )(ax x g x f xxx g -==(1)求函数()x g 的单调区间;(2)若函数)(x f 在),1(+∞上是减函数,求实数a 的最小值;(3)若],[,221e e x x ∈∃,使)0()()(21>+'≤a a x f x f 成立,求实数a 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分)选修4—1:几何证明选讲如图,直线AB 经过⊙O 上的点C ,并且,,CB CA OB OA ==⊙O 交直线OB 于E ,D ,连接CD EC ,.(1)求证:直线AB 是⊙O 的切线; (2)若,21tan =∠CED ⊙O 的半径为3,求OA 的长. 23.(本小题满分10分)选修4—4: 坐标系与参数方程.在直角坐标系xoy 中,以原点O 为极点,以x 轴正半轴为极轴,与直角坐标系xoy 取相同的长度单位,建立极坐标系.已知点P 的极坐标为)2,4(π,直线l 的极坐标方程为a =-)4cos(πθρ且点P 在直线l 上.(1)求a 的值及直线l 的直角坐标方程; (2)设曲线C 的参数方程为⎩⎨⎧==θθsin cos 3y x (θ为参数),求曲线C 上的点到直线l 的最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学高三模拟考试试卷压轴题试卷满分:150分 考试时间:120分钟注意事项:1.请考生将姓名、班级、考号与座位号填写在答题纸指定的位置上; 2.客观题的作答:将正确答案填涂在答题纸指定的位置上;3.主观题的作答:必须在答题纸上对应题目的答题区域内作答,在此区域外书写的答案无效;在草稿纸、试卷上答题无效。
第Ⅰ卷(客观题60分) 一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若已知{01234}{1357}M N ==,,,,,,,,,P M N =,则集合P 的子集个数为 (A )2 (B )3(C )4 (D )5解析:C(2)下列函数中能用二分法求零点的是解析:(C ) (3)下列函数中,既是偶函数,又在区间(0)+∞,上单调递减的是(A )1y x= (B )x y e -= (C )21y x =-+ (D )lg ||y x =解析:C(4)圆222430x x y y ++-+=与直线0x y b ++=相切,则正实数b 的值为(B )(A )12(B )1 (C )221- (D )3(5)已知12,e e 是夹角为23π的两个单位向量,122=-a e e ,12k =+b e e ,若0⋅=a b ,则实数k 的值为(D )(A )12 (B )34 (C )1 (D )54(6)已知数列{}n a 满足331log 1log n n a a ++=*()n ∈N ,且2469a a a ++=,则15793log ()a a a ++=(C )(A )15- (B )5 (C )-5 (D )15(7)以下四个命题中,正确的是(A )命题“若()f x 是周期函数,则()f x 是三角函数”的否命题是“若()f x 是周期函数,则()f x 不是三角函数”(B )命题“0x ∃∈R ,使得不等式210x +<成立”的否定是“x ∀∉R ,使得不等式(A ) (B ) (C ) (D )210x +≥成立”(C )在ABC △,“sin sin A B >”是“A B >”的充要条件 (D )以上皆不对 解析:C(8)(理科)在ABC △中,a b c ,,分别是角A B C ,,所对的边长,a =,tan tan 422A B C ++=,2sin sin cos 2AB C =. 则b =B(A (B )2(C )(D )(8)(文科)在ABC △中,a b c ,,分别是角A B C ,,所对的边长,a =,30C =︒,2sin sin cos 2AB C =. 则b =B(A (B )2 (C )(D )(9)已知12F F ,分别是双曲线22221x y a b-=(00a b >>,)的两个焦点,A 和B 是以O(O 是平面直角坐标系的原点)为圆心,以1||OF 为半径的圆与该双曲线的左支的两个交点,且2F AB △是等边三角形,则双曲线的离心率为 D(A (B(C (D )1(10)(理科)设2()e (1)x f x ax x =++,且曲线()y f x =在1x =处的切线与x 轴平行,且对∀[0]2πθ∈,,|(cos )(sin )|f f b θθ-≤恒成立,则b 的最小值为 A(A )1e - (B )e (C )1 (D )2解析:2()(121)e x f x ax x ax '=++++因为曲线()y f x =在1x =处的切线与x 轴平行, ∴(1)0f '=,即11210a a ++++=,解得1a =- 当1a =-时,有()(2)(1)e x f x x x '=-+-∴当(2)-∞-,和(1)+∞,上,()0f x '<,在(21)-,上,()0f x '>,所以()f x 在(2)-∞-,和(1)+∞,上单调递减,在(21)-,单调递增.所以,()f x 在[01],上是增函数.所以当[01]x ∈,时,max (1)e f f ==,min (0)1f f == 对于任意的12[01]x x ∈,,,有12|()()|e 1f x f x --≤恒成立, 因为[0]2πθ∈,,所以cos sin [01]θθ∈,,,且0θ=时cos 1sin 0θθ==,,所以当e 1a -≥(10)(文科)设2()e (1)x f x x x =-++,且对∀[0]2πθ∈,,|(cos )(sin )|f f b θθ-≤恒成立,则b 的最小值为 A (A )1e - (B )e (C )1 (D )2(11)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,则该零件的表面积为(单位:cm 2)A(A)9(B)+ (C)27 (D)36+解析:如图所示,三棱锥A BCD -即为所求 所以=S表1(6636392⨯⨯⨯+⨯= (12)(理科)已知抛物线22y px =,倾斜角为4π的直线AB 过抛物线的焦点F 且与抛物线交于A B ,两点(||||AF BF >).过A 点作抛物线的切线与抛物线的准线交于C 点,直线CF 交抛物线于D E ,两点(||||DF FE <). 直线AD BE ,相交于G .则ABCGABS S =△△ C(A(B(C )2(D )4易知1))A p ,()2pC p -, 而CF l :()2py x =--,易知直线CF 与AB 关于x 轴对称所以AD 与BE 关于x 轴对称,所以D B x x =,且G 点在x 轴上所以D x =1)D y p = 所以AD l:1)y p x -=与0y =联立解得2px =-所以点G 到直线直线AB的距离1d 点C 到直线AB的距离2||d CF ==所以2ABC GABS S =△△(12)(文科)已知抛物线22y px =,倾斜角为4π的直线AB 过抛物线的焦点F 且与抛物线交于A B ,两点(||||AF BF >).过A 点作抛物线的切线与抛物线的准线交于C 点,直线CF 交抛物线于D E ,两点(||||DF FE <). 直线AD BE ,相交于G .则G 点的横坐标为 B(A)4-(B )2p -(C)(D )p -易知1))A p ,()2pC p -, 而CF l :()2py x =--,易知直线CF 与AB 关于x 轴对称所以AD 与BE 关于x 轴对称,所以D B x x =,且G 点在x 轴上所以D x =1)D y p = 所以AD l:1)y p x -=与0y =联立解得2px =-.事实上圆锥曲线的过同一焦点的不同的焦点弦的交点必在准线上.第Ⅱ卷(非选择题,共90分)二.填空题:本大题共4个小题,每小题5分.(13)函数1ln(1)y x=+__________. (0,1](14)已知直线1:3(2)10l mx m y +++=,直线2:(2)(2)20l m x m y -+++=,且12l l ∥,则m 的值为.-1或-2(15)(理科)设不等式组1230x x y y x ⎧⎪+⎨⎪⎩≥≥≥-所表示的平面区域是1Ω,平面区域2Ω与1Ω关于直线3490x y --=对称.对于1Ω中的任意点A 与2Ω中的任意点B ,||AB 的最小值为____________4(15)(文科)已不等式||||x y +表示的平面区域的面积为.4(16)(理科)已知三次函数()f x 满足()()f x f x a =-+其中a 为实数,()f x 的导函数为()y f x '=,以下6 种说法①函数()y f x =是中心对称图形;②对于任意的非零实数m n p ,,,关于x 的方程2[()]()0m f x nf x p ''++=的解集都不可能是{141664},,,③对于任意的非零实数m n p ,,,关于x 的方程2[()]()0m f x nf x p ''++=的解集有可能是{14},④对于任意的非零实数m n p ,,,关于x 的方程2[|()|]|()|0m f x n f x p ++=的解集都不可能是{1235},,,⑤对于任意的非零实数m n p ,,,关于x 的方程2[|()|]|()|0m f x n f x p ++=的解集有可能是{12481632},,,,,正确的是________________.(写出所有正确的代号) ①函数()y f x =是中心对称图形;②对于任意的非零实数m n p ,,,关于x 的方程2[()]()0m f x nf x p ''++=的解集都不可能是{141664},,,③对于任意的非零实数m n p ,,,关于x 的方程2[()]()0m f x nf x p ''++=的解集有可能是{14},④对于任意的非零实数m n p ,,,关于x 的方程2[|()|]|()|0m f x n f x p ++=的解集都不可能是{1235},,,⑤对于任意的非零实数m n p ,,,关于x 的方程2[|()|]|()|0m f x n f x p ++=的解集有可能是{12481632},,,,,正确的是________________.(写出所有正确的代号) 解析:①②③④ ①显然对对于②,由于()f x '有对称轴,所以解集应关于对称轴对称,所以②③同理,④⑤中由于()f x 有对称中心,且在对称中心处的函数值为0,所以④⑤方程的解集也应对称出现,所以④对⑤错(16)(文科)已知函数()f x 是二次函数,以下4种说法①对于任意的非零实数m n p ,,,关于x 的方程2[()]()0m f x nf x p ++=的解集都不可能是{12},②对于任意的非零实数m n p ,,,关于x 的方程2[()]()0m f x nf x p ++=的解集都不可能是{14},③对于任意的非零实数m n p ,,,关于x 的方程2|()||()|0m f x n f x p ++=的解集都不可能是{1234},,,④对于任意的非零实数m n p ,,,关于x 的方程2|()||()|0m f x n f x p ++=的解集都不可能是{141664},,,正确的是________________.(写出所有正确的代号) ④三.解答题:本大题共6个小题,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)设函数2()sin 2sin ()f x a x b x c x =-+∈R 的图象过点(01)P ,,且()f x 的最大值是2,最小值为2-,其中0a >. (Ⅰ)求()f x 表达式;(Ⅱ)若射线2(0)y x =≥与()f x 图象交点的横坐标,由小到大依次为 123n x x x x ,,,,,, 求22||n x x +-的值,并求1210S x x x =++⋅⋅⋅+的值.解析:(Ⅰ)(0)1f =,所以1c =,所以()sin 2(1cos 2)1)122b bf x a x x x ϕ=--+=++-,122b -=,且122b -=-,而0a >.所以2a b ==,所以()2cos22sin(2)6f x x x x π=+=+.(Ⅱ)由题意,知()2()n f x n +=∈N ,即22(0)62n x k k k πππ+=+∈Z ≥,,所以(012)6n x k k ππ=+=,,,所以22(1)66n x x n ππππ+=+=++,,于是22||n x x n π+-=,(18)(本小题满分12分)已知数列{}n a 的前n 项和为n S ,若32n n S n a +=.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 满足(2)n n n b a λ=+⋅-,且数列{}n b 是递增数列,求λ的取值范围.解析:(Ⅰ)32n n S n a +=,113(1)(2)2n n S n a n --+-=≥,作差得133122n n n a a a -+=-,即132n n a a -=+,………………………………2分113(1)n n a a -+=+,……………………………………3分又11312S a +=,12a =,………………………………4分111(1)3n n a a -+=+=3n ,31n n a =-.………………………………………………5分(Ⅱ)31(2)n n n b λ=-+-,11131(2)n n n b λ+++=-+-, 数列{}n b 是递增数列,10n n b b +->,233(2)n n λ⋅>⋅-.…………………………………………6分①当*21n k k =-∈N ,时,33()22n λ>-恒成立,3322λ>-,1λ>-.…………………………………………7分 ②当*2n k k =∈N ,时,39()24k λ<恒成立,3924λ<,32λ<.…………………………………………8分 综上,λ的取值范围312λ-<<.…………………………………………9分(19)(本小题满分12分)(文科)如图,四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设AP =1,AD =3,三棱锥P -ABD 的体积V =34,求A 到平面PBC 的距离.解:(1)证明:设BD 与AC 的交点为O ,连接EO.因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB. EO ⊂平面AEC ,PB ⊄平面AEC , 所以PB ∥平面AEC.(2)V =13×12×PA ×AB ×AD =36AB ,由V =34,可得AB =32.作AH ⊥PB 交PB 于点H.由题设知BC ⊥平面PAB ,所以BC ⊥AH , 因为PB ∩BC =B ,所以AH ⊥平面PBC.又AH =PA ·AB PB =31313,所以点A 到平面PBC 的距离为31313.(19)(本小题满分12分)(理科)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是等腰梯形,AD BC AC BD ⊥∥,. (Ⅰ)证明:BD PC ⊥;(Ⅱ)若42AD BC ==,,直线PD 与平面PAC 所成的角为30︒,求四棱锥P ABCD -的体积.解:(Ⅰ)证明:因为PA ⊥平面ABCD BD ⊂,平面ABCD ,所以PA BD ⊥.又AC BD PA AC ⊥,,是平面PAC 内的两条相交直线,所以BD ⊥平面PAC ,而PC ⊂平面PAC ,所以BD PC ⊥.(Ⅱ)设AC 和BD 相交于点O ,连结PO ,由(Ⅰ)知,BD ⊥平面PAC , 所以∠DPO 是直线PD 和平面PAC 所成的角,从而30DPO ∠︒=. 由BD ⊥平面PAC ,PO ⊂平面PAC 知,BD PO ⊥. 在Rt △POD 中,由∠30DPO ︒=得2PD OD =. 因为四边形ABCD 为等腰梯形,AC ⊥BD , 所以△AOD ,△BOC 均为等腰直角三角形,从而梯形ABCD 的高为111(42)3222AD BC ⨯+=+=,于是梯形ABCD 的面积1(42)392S ⨯+⨯==.在等腰直角三角形AOD 中,4OD AD ==,所以2PD OD =4PA =. 故四棱锥P ABCD -的体积为119412.33V S PA ⨯⨯⨯⨯===(20)(本小题满分12分)在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =圆C 上的点到点(0,2)Q 的距离的最大值为3. (Ⅰ)求椭圆C 的方程;(Ⅱ)在椭圆C 上,是否存在点(,)M m n ,使得直线:1l mx ny +=与圆O :221x y +=相交于不同的两点,A B ,且OAB △的面积最大?若存在,求出点M 的坐标及对应的OAB △的面积;若不存在,请说明理由. (Ⅰ)由c e a ,∴223a b =,即椭圆C 的方程可写为2222=13x y b b+.设(,)P x y 为椭圆C 上任意给定的一点,由题设存在点1P 满足1||3PQ =|,则2219||63,1PQ b b =+∴≤≥. 当1b ≥时,由于1[,]y b b =-∈-,此时||PQ 取得最大值263b +.∴2226391,3b b a +=⇒==. 故所求椭圆C 的方程为22+=13x y .(2)存在点M 满足要求,使△OAB 的面积最大.假设直线l :mx +ny =1与圆O :x2+y2=1相交于不同的两点A 、B ,则圆心O 到l 的距离d .因为点M(m ,n)∈C ,所以222213m n m n +=<+,于是203m <≤.∵|AB|=|AB ,∴S △OAB =12·|AB|·d21213m +. 上式等号成立当且仅当1=2m2⇒m2=3(0,3]2∈,因此当=2m ±,=2n±时等号成立.所以满足要求的点恰有四个,其坐标分别为(),(-),()和(),此时对应的诸三角形的面积均达到最大值12. (21)(本小题满分12分)(文科)已知函数()e 1(0e x f x ax a =-->,为自然对数的底数). (Ⅰ)求函数()f x 的最小值;(Ⅱ)若()0f x ≥对任意的x ∈R 恒成立,求实数a 的值;解析:(Ⅰ)()e x f x a '=-令()0f x '>,有ln x a >,即()f x 在(ln )a +∞,上单调递增; 令()0f x '<,有ln x a <,即()f x 在(ln )a -∞,上单调递减. 所以函数()f x 的最小值为(ln )ln 1f a a a a =--.(Ⅱ)由(Ⅰ)有(ln )ln 10f a a a a =--≥即可. 令()ln 1h a a a a =--,()ln h a a '=-,当1a >时,()0h a '<;当01a <<时,()0h a '>,∴()h a 在(01),上增,在(1)+∞,上减,∴()h a 在(0)+∞,上的最大值为(1)0h =, 若()0h a ≥,只能是()0h a =,注意到(1)0h =,∴只能是1a =. (21)(本小题满分12分)(理科) 已知函数x ax x x f 221ln )(2--=(0<a ). (Ⅰ)若函数)(x f 在定义域内单调递增,求实数a 的取值范围;(Ⅱ)若21-=a ,且关于x 的方程b x x f +-=21)(在[14],上恰有两个不等的实根,求实数b 的取值范围;(Ⅲ)设各项为正数的数列{}n a 满足11=a ,2ln 1++=+n n n a a a (n *∈N ),求证:21n na -.解:(Ⅰ)函数的定义域为(0)+∞,,)0(12)(2>-+-='x xx ax x f ,依题意()0f x '在0>x 时恒成立,则22121(1)1x ax x-=--在0>x 时恒成立,即2min 1[(1)1](0)a x x-->, 当1=x 时,1)11(2--x 取最小值1,所以a 的取值范围是(1]-∞-,⋅⋅⋅⋅⋅⋅4分 (Ⅱ)21-=a ,由b x x f +-=21)(得0ln 23412=-+-b x x x 在[14],上有两个不同的实根, 设213()ln [14]42g x x x x x =-+∈,, xx x x g 2)1)(2()(--=',[12)x ∈,时,0)(<'x g ,(24]x ∈,时,0)(>'x g22ln )2()(min -==g x g ,22ln 2)4(,45)1(-=-=g g ,0)4ln 43(412ln 243)4()1(<-=-=-g g ,得)4()1(g g <则5(ln 22]4b ∈--,⋅⋅⋅⋅⋅⋅8分 (Ⅲ)易证当0>x 且1≠x 时,1ln -<x x .由已知条件10ln 21221n n n n n n n a a a a a a a +>=++-++=+,, 故112(1)n n a a +++,所以当2n时,11021n n a a -+<+,121021n n a a --+<+,⋅⋅⋅,211021a a +<+,相乘得111021n n a a -+<+,又11a =,故12n n a +,即21n na -⋅⋅⋅⋅⋅⋅12分(22)(本小题满分10分)选修4—1;几何证明选讲如图,PA 是圆O 的切线,PE 过圆心O ,PE 与圆O 相交于D E ,两点,AC 为圆O 的直径,PC 与圆O 相交于B C ,两点,连结AB CD ,.(Ⅰ)求证:PAD CDE ∠=∠;(Ⅱ)求证:2PA BDPC PE AD =⋅. 解析:(Ⅰ)由PA 是圆O 的切线,因此PAD ACD ∠=∠,在OCD △中,OD OC =,可得ACD CDE ∠=∠,所以PAD CDE ∠=∠.(Ⅱ)由切割线定理可知,2PA PB PC =⋅,得2PA PB PC =,故只需证PB BD PE AD =,又由ACD CDE ∠=∠得EC AD =,则EC AD =,故只需证PB BDPE CE=. 而由A D C E ,,,四点共圆可得PBD PEC ∠=∠,PDB PCE ∠=∠,故PBD △与PEC △相似,于是PB BDPE CE=,因此2PA BDPC PE AD=⋅. (23)选修4—4:极坐标和参数方程已知在平面直角坐标系xOy 内,点()P x y , 在曲线C :1cos (sin x y θθθ=+⎧⎨=⎩,,为参数,θ∈R )上运动.以Ox 为极轴建立极坐标系,直线l 的极坐标方程为cos()04πρθ+=.(Ⅰ)写出曲线C 的标准方程和直线l 的直角坐标方程;(Ⅱ)若直线l 与曲线C 相交于A B 、两点,点M 在曲线C 上移动,试求ABM △面积的最大值.解:(Ⅰ)消去参数θ,得曲线C 的标准方程:22(1) 1.x y -+=由cos()04πρθ+=得:cos sin 0ρθρθ-=,即直线l 的直角坐标方程为:0x y -=.(Ⅱ)圆心(10),到直线l的距离为d ==,则圆上的点M 到直线的最大距离为1d r +=+(其中r 为曲线C的半径),||AB =M 点的坐标为()x y ,,则过M 且与直线l 垂直的直线l '方程为:10x y +-=,则联立方程22(1)110x y x y ⎧-+=⎨+-=⎩,解得1x y ⎧=⎪⎪⎨⎪=⎪⎩,或1x y ⎧=+⎪⎪⎨⎪=⎪⎩,经检验1x y ⎧=⎪⎪⎨⎪=⎪⎩舍去.故当点M为1,时,ABM △面积的最大值为max ()ABM S ∆=11)2=. (24)(本小题满分10分)选修4—5;不等式选讲已知00a b >>,,且2292a b +=,若a b m +恒成立,(Ⅰ)求m 的最小值;(Ⅱ)若2|1|||x x a b -++对任意的a b ,恒成立,求实数x 的取值范围. 解:(Ⅰ)因为00a b >>,,且2292a b +=,若a b m +恒成立,只要求解a b +的最大值即可,因为22222()(11)()a b a b +++,所以3a b+.(当且仅当11a b =,即3232a b ⎧=⎪⎪⎨⎪=⎪⎩时取等号).又a b m +≤恒成立,所以3m .故m 的最小值为3.(Ⅱ)由于要使2|1|||x x a b -++恒成立,须且只须2|1|||3x x -+,所以0223x x x⎧⎨-+-⎩或01223x x x<⎧⎨-++⎩或1223x x x>⎧⎨-+⎩.所13x-或53x . 高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--,(3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C 3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 (A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s= (A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为 (A 2B )32(C 3D )2(12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m mx y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。