大学物理量子物理复习资料

合集下载

大学物理15 量子物理基础1

大学物理15 量子物理基础1

m
o
0.1A
(2) 若使其质量为m=0.1g的小球以与粒子相同的 速率运动,求其波长
若 m=0.1g 的小球速率 vm v
vm
v
q BR m
则 :m
h m vm
h m
1 v
h m
m q BR
h q BR
m m
6.64 10 27 0.1 10 3
6.641034
m
px x h
考虑到在两个一级极小值之外还有电子出现,
运动,则其波长为多少? (粒子质量为ma =6.64ⅹ10-27kg)(05.08…)
解:
(1)
求粒子德布罗意波长 h h
p m v
先求:m v ?
而:q vB
m
v2 R
m v q BR
h m v
h q BR
6.63 10 34 1.601019 0.025 0.083102
1.001011
( x,t ) 0 区别于经典波动
(
x,
t)
e i 2
0
(t x
)
自由粒子沿x方向运动时对应的单色平面波波函数
设运动的实物粒子的能量为E、动量为 p,与之相 关联的频率为 、波长为,将德布罗意关系式代入:
考虑到自由粒子沿三维方向的传播
式中的 、E 和 p 体现了微观粒子的波粒二象性
2、概率密度——波函数的统计解释 根据玻恩对德布罗意波的统计解释,物质波波
p mv h
德布罗意公式(或假设)
与实物粒子相联系的波称为德布罗意波(或物质波)
h h h
p mv m0v
1
v2 c2
如果v c,则 h
m0v

大学物理 第16章量子力学基本原理-例题及练习题

大学物理 第16章量子力学基本原理-例题及练习题
2( 2k + 1) ( k = 0,1,2......)
∴ n = 2,6,10...... 时概率密度最大
nhπ 6 × 10 = =1时 (3) n=1时: E = =1 2mL L
2 2 2 2 2 −38
A 例题3 例题3 设粒子沿 x 方向运动,其波函数为 ψ ( x ) = 方向运动, 1 + ix
( n = 1,2,3,...)
E n=4
p2 E = 2m p= nπh nh 2 mE = = a 2a
n=3 n=2 n=1
h 2a λ= = p n
二者是一致的。 二者是一致的。
( n = 1, 2, 3,...)
o a
x
例题2 粒子质量为m, 在宽度为L的一维无限 的一维无限深势 例题2 P516例1:粒子质量为m, 在宽度为 的一维无限深势 中运动,试求( 粒子在0 阱中运动,试求(1)粒子在0≤x≤L/4区间出现的概率。并 ≤ / 区间出现的概率。 求粒子处于n=1 状态的概率。 在哪些量子态上, 求粒子处于 1和n=∞状态的概率。(2)在哪些量子态上, 状态的概率 (2)在哪些量子态上 L/4处的概率密度最大?(3)求n=1时粒子的能量 补充 。 /4处的概率密度最大 (3)求 =1时粒子的能量(补充 处的概率密度最大? =1时粒子的能量 补充)。 2 nπ x 由题得: 解:(1) 由题得: 概率密度 |ψ | = sin
2 2 2 2 0
2
2
2
2
0
0
k
0
2
2
2 k
0
k
k
k
0
h ∴λ = = p
hc 2E m c + E
2 k 0

大学物理题库量子2

大学物理题库量子2

一 选择题 (共48分)1. (本题 3分)(0507) 已知用光照的办法将氢原子基态的电子电离,可用的最长波长的光是 913 Å的紫外光,那么氢原子从各受激态跃迁至基态的赖曼系光谱的波长可表示为:(A) 11913+−=n n λ Å. (B) 11913−+=n n λ Å. (C) 1191322−+=n n λ Å. (D) 191322−=n n λ Å. [ ]2. (本题 3分)(4190) 要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是(A) 1.5 eV . (B) 3.4 eV .(C) 10.2 eV . (D) 13.6 eV . [ ]3. (本题 3分)(4194) 根据玻尔的理论,氢原子在n =5轨道上的动量矩与在第一激发态的轨道动量矩之比为(A) 5/4. (B) 5/3.(C) 5/2. (D) 5. [ ]4. (本题 3分)(4195) 氢原子光谱的巴耳末线系中谱线最小波长与最大波长之比为(A) 7/9. (B) 5/9.(C) 4/9. (D) 2/9. [ ]5. (本题 3分)(4195) 氢原子光谱的巴耳末线系中谱线最小波长与最大波长之比为(A) 7/9. (B) 5/9.(C) 4/9. (D) 2/9. [ ]6. (本题 3分)(4197) 由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出:(A) 一种波长的光. (B) 两种波长的光.(C) 三种波长的光. (D) 连续光谱. [ ]7. (本题 3分)(4198) 根据玻尔理论,氢原子中的电子在n =4的轨道上运动的动能与在基态的轨道上运动的动能之比为(A) 1/4. (B) 1/8.(C) 1/16. (D) 1/32. [ ]8. (本题 3分)(4199) 根据玻尔氢原子理论,氢原子中的电子在第一和第三轨道上运动时速度大小之比v 1/ v 3是(A) 1/9. (B) 1/3.(C) 3. (D) 9. [ ]9. (本题 3分)(4239)假定氢原子原是静止的,则氢原子从n = 3 的激发状态直接通过辐射跃迁到基态时的反冲速度大约是(A) 4 m/s.(B) 10 m/s .(C) 100 m/s . (D) 400 m/s .[](氢原子的质量m =1.67×10-27 kg)10. (本题 3分)(4411)氢原子光谱的巴耳末系中波长最大的谱线用λ1表示,其次波长用λ2表示,则它们的比值λ1/λ2为:(A) 20/27.(B) 9/8.(C) 27/20.(D) 16/9.[]11. (本题 3分)(4619)按照玻尔理论,电子绕核作圆周运动时,电子的动量矩L的可能值为(A) 任意值.(B) nh,n = 1,2,3,…(C) 2π nh,n = 1,2,3,…(D) nh/(2π),n = 1,2,3,…[]12. (本题 3分)(4622)具有下列哪一能量的光子,能被处在n = 2的能级的氢原子吸收?(A) 1.51 eV.(B) 1.89 eV.(C) 2.16 eV.(D) 2.40 eV.[]13. (本题 3分)(4747)若用里德伯常量R表示氢原子光谱的最短波长,则可写成(A) λmin =1 / R.(B) λmin =2 / R.(C) λmin =3 / R.(D) λmin =4 / R.[]14. (本题 3分)(4748)已知氢原子从基态激发到某一定态所需能量为 10.19 eV,当氢原子从能量为-0.85 eV的状态跃迁到上述定态时,所发射的光子的能量为(A) 2.56 eV.(B) 3.41 eV.(C) 4.25 eV.(D) 9.95 eV.[]15. (本题 3分)(4749)要使处于基态的氢原子受激后可辐射出可见光谱线,最少应供给氢原子的能量为(A) 12.09 eV. (B) 10.20 eV.(C) 1.89 eV.(D) 1.51 eV.[]16. (本题 3分)(4750)在气体放电管中,用能量为12.1 eV的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是(A) 12.1 eV. (B) 10.2 eV.(C) 12.1 eV,10.2 eV和 1.9 eV. (D) 12.1 eV,10.2 eV和 3.4 eV.[ ]二 填空题 (共101分)17. (本题 4分)(0514) 在玻尔氢原子理论中势能为负值,而且数值比动能大,所以总能量为________值,并且只能取____________值.18. (本题 4分)(4191) 在氢原子发射光谱的巴耳末线系中有一频率为6.15×1014 Hz 的谱线,它是氢原子从能级E n =__________eV 跃迁到能级E k =__________eV 而发出的. (普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C)19. (本题 4分)(4192) 在氢原子光谱中,赖曼系(由各激发态跃迁到基态所发射的各谱线组成的谱线系)的最短波长的谱线所对应的光子能量为_______________eV ;巴耳末系的最短波长的谱线所对应的光子的能量为___________________eV .(里德伯常量 R =1.097×107 m -1 ,普朗克常量h =6.63×10-34 J ·s ,1 eV =1.60×10-19 J ,真空中光速 c =3×108 m ·s -1 )20. (本题 4分)(4196) 氢原子基态的电离能是 _______________eV .电离能为+0.544 eV 的激发态氢原子,其电子处在n =_________________ 的轨道上运动.21. (本题 4分)(4200) 设大量氢原子处于n =4的激发态,它们跃迁时发射出一簇光谱线.这簇光谱线最多可能有 ________________ 条,其中最短的波长是 _______ Å(普朗克常量h =6.63×10-34 J ·s)22. (本题 4分)(4201) 图示被激发的氢原子跃迁到低能级时(图中E 1不是基态能级),可发出波长为λ1、λ2、λ3的辐射,其频率ν1、ν2和ν3满足关系式______________________;三个波长满足关系式__________________.λ1λ2λ3E 1E 2E 3玻尔的氢原子理论中提出的关于__________________________________和____________________________________的假设在现代的量子力学理论中仍然是两个重要的基本概念.24. (本题 3分)(4424)欲使氢原子发射赖曼系(由各激发态跃迁到基态所发射的谱线构成)中波长为1216 Å的谱线,应传给基态氢原子的最小能量是_____________________eV.(普朗克常量h = 6.63×10-34 J·s,基本电荷e =1.60×10-19 C)25. (本题 5分)(4513)玻尔的氢原子理论的三个基本假设是:(1)____________________________________,(2)____________________________________,(3)____________________________________.26. (本题 3分)(4517)欲使氢原子能发射巴耳末系中波长为4861.3 Å的谱线,最少要给基态氢原子提供_______________eV的能量.(里德伯常量R =1.097×107 m-1 )27. (本题 3分)(4518)欲使氢原子能发射巴耳末系中波长为6562.8 Å的谱线,最少要给基态氢原子提供_________________eV的能量.(里德伯常量R =1.097×107 m-1 )28. (本题 3分)(4620)按照玻尔理论,移去处于基态的He+中的电子所需能量为_____________eV.29. (本题 3分)(4623)氢原子中电子从n = 3的激发态被电离出去,需要的能量为_________eV.30. (本题 3分)(4624)氢原子由定态l跃迁到定态k可发射一个光子.已知定态l的电离能为0.85 eV,又知从基态使氢原子激发到定态k所需能量为10.2 eV,则在上述跃迁中氢原子所发射的光子的能量为__________eV.玻尔氢原子理论中的定态假设的内容是:______________________________ ______________________________________________________________________ _____________________________________________________________________.32. (本题 3分)(4752)玻尔氢原子理论的基本假设之一是定态跃迁的频率条件,其内容表述如下:______________________________________________________________________ ____________________________________________________.33. (本题 3分)(4753)玻尔氢原子理论的基本假设之一是电子轨道动量矩的量子化条件,其内容可表述如下:____________________________________________________________ ______________________________________________________________________ ________________________________________________________________.34. (本题 4分)(4754)氢原子的部分能级跃迁示意如图.在这些能级跃迁中,(1) 从n =______的能级跃迁到n =_____的能级时所发射的光子的波长最短;(2) 从n =______的能级跃迁到n =______的能级时所发射的光子的频率最小.n = 1 n = 2 n = 3 n = 435. (本题 4分)(4755)被激发到n =3的状态的氢原子气体发出的辐射中,有______条可见光谱线和_________条非可见光谱线.36. (本题 4分)(4756)氢原子从能量为-0.85 eV的状态跃迁到能量为-3.4 eV的状态时,所发射的光子能量是_________eV,这是电子从n =_______的能级到n = 2的能级的跃迁.当氢原子从某初始状态跃迁到激发能(从基态到激发态所需的能量)为10.19eV 的激发态上时,发出一个波长为4860 Å的光子,则初始状态氢原子的能量是________eV .38. (本题 3分)(4758) 要使处于基态的氢原子受激发后能辐射氢原子光谱中波长最短的光谱线,最少需向氢原子提供______________eV 的能量.39. (本题 3分)(4759) 已知基态氢原子的能量为-13.6 eV ,当基态氢原子被 12.09 eV 的光子激发后,其电子的轨道半径将增加到玻尔半径的______倍.40. (本题 3分)(4760) 当一个质子俘获一个动能E K =13.6 eV 的自由电子组成一个基态氢原子时,所发出的单色光频率是______________________________.(基态氢原子的能量为-13.6 eV ,普朗克常量h =6.63×10-34 J ·s)41. (本题 3分)(4761) 使氢原子中电子从n =3的状态电离,至少需要供给的能量为_________eV(已知基态氢原子的电离能为13.6 eV).42. (本题 3分)(4762) 在氢原子光谱的巴耳末系中,波长最长的谱线和波长最短的谱线的波长比值是______________.43. (本题 3分)(4763) 在氢原子光谱的巴耳末系中,波长最长的谱线H α和相邻的谱线H β的波长比值是______________.44. (本题 4分)(4765) 处于基态的氢原子吸收了13.06 eV 的能量后,可激发到n =________的能级,当它跃迁回到基态时,可能辐射的光谱线有________条.45. (本题 4分)(5369) 根据氢原子理论,若大量氢原子处于主量子数n = 5的激发态,则跃迁辐射的谱线可以有________条,其中属于巴耳末系的谱线有______条.三计算题 (共113分)46. (本题 8分)(0316)组成某双原子气体分子的两个原子的质量均为m,间隔为一固定值d,并绕通过d的中点而垂直于d的轴旋转,假设角动量是量子化的,并符合玻尔量子化条件.试求:(1) 可能的角速度;(2) 可能的量子化的转动动能.47. (本题 5分)(0521)实验发现基态氢原子可吸收能量为 12.75 eV的光子.(1) 试问氢原子吸收该光子后将被激发到哪个能级?(2) 受激发的氢原子向低能级跃迁时,可能发出哪几条谱线?请画出能级图(定性),并将这些跃迁画在能级图上.48. (本题10分)(0532)已知氢光谱的某一线系的极限波长为3647 Å,其中有一谱线波长为6565 Å.试由玻尔氢原子理论,求与该波长相应的始态与终态能级的能量.(R =1.097×107 m-1 )49. (本题 5分)(0537)在氢原子中,电子从某能级跃迁到量子数为n的能级,这时轨道半径改变q 倍,求发射的光子的频率.50. (本题10分)(0538)根据玻尔理论(1) 计算氢原子中电子在量子数为n的轨道上作圆周运动的频率;(2) 计算当该电子跃迁到(n-1)的轨道上时所发出的光子的频率;(3) 证明当n很大时,上述(1)和(2)结果近似相等.51. (本题10分)(0570)氢原子激发态的平均寿命约为10-8s,假设氢原子处于激发态时,电子作圆轨道运动,试求出处于量子数n =5状态的电子在它跃迁到基态之前绕核转了多少圈.( me= 9.11×10-31 kg,e =1.60×10-19 C,h =6.63×10-34 J·s,ε=8.85×10-12 C2·N-1·m-2 )52. (本题12分)(4202)氢原子光谱的巴耳末线系中,有一光谱线的波长为4340 Å,试求:(1) 与这一谱线相应的光子能量为多少电子伏特?(2) 该谱线是氢原子由能级En 跃迁到能级Ek产生的,n和k各为多少?(3) 最高能级为E5的大量氢原子,最多可以发射几个线系,共几条谱线?请在氢原子能级图中表示出来,并说明波长最短的是哪一条谱线.53. (本题 5分)(4412)处于基态的氢原子被外来单色光激发后发出的光仅有三条谱线,问此外来光的频率为多少?(里德伯常量R =1.097×107 m-1)54. (本题 5分)(4413)试求氢原子线系极限的波数表达式及赖曼系(由各激发态跃迁到基态所发射的谱线构成)、巴耳末系、帕邢系(由各高能激发态跃迁到n =3的定态所发射的谱线构成)的线系极限的波数.(里德伯常量R =1.097×107 m-1 )处于第一激发态的氢原子被外来单色光激发后,发射的光谱中,仅观察到三条巴耳末系光谱线.试求这三条光谱线中波长最长的那条谱线的波长以及外来光的频率. (里德伯常量R =1.097×107 m -1)56. (本题 5分)(4519) 已知氢原子中电子的最小轨道半径为 5.3×10-11 m ,求它绕核运动的速度是多少? (普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31 kg)57. (本题 5分)(4520) 试估计处于基态的氢原子被能量为 12.09 eV 的光子激发时,其电子的轨道半径增加多少倍?58. (本题 5分)(4547) 已知电子在垂直于均匀磁场B K 的平面内运动,设电子的运动满足玻尔量子化条件,求电子轨道的半径r n =?59. (本题 8分)(4767) 当氢原子从某初始状态跃迁到激发能(从基态到激发态所需的能量)为ΔE =10.19 eV 的状态时,发射出光子的波长是λ=4860 Å,试求该初始状态的能量和主量子数.(普朗克常量h =6.63×10-34 J ·s ,1 eV =1.60×10-19 J)60. (本题 5分)(4768) 用某频率的单色光照射基态氢原子气体,使气体发射出三种频率的谱线,试求原照射单色光的频率.(普朗克常量h =6.63×10-34 J ·s ,1 eV =1.60×10-19 J)61. (本题 5分)(5238) 已知氢原子光谱中有一条谱线的波长是λ=1025.7 Å,氢原子的里德伯常量R=109677 cm -1.问:跃迁发生在哪两个能级之间?62. (本题 5分)(5370) 若处于基态的氢原子吸收了一个能量为h ν =15 eV 的光子后其电子成为自由电子(电子的质量m e =9.11×10-31 kg),求该自由电子的速度v .四 理论推导与证明题 (共35分)63. (本题10分)(4193) 设氢原子光谱的巴耳末系中第一条谱线(H α)的波长为λα,第二条谱线(H β)的波长为λβ,试证明:帕邢系(由各高能态跃迁到主量子数为3的定态所发射的各谱线组成的谱线系)中的第一条谱线的波长为βαβαλλλλλ−=64. (本题 5分)(4417) 测得氢原子光谱中的某一谱线系的极限波长为λk =364.7 nm .(1 nm = 10-9m)试推证此谱线系为巴耳末系. (里德伯常量R =1.097×107 m -1 )试用玻尔理论推导氢原子在稳定态中的轨道半径.66. (本题 5分)(4427) 试根据玻尔关于氢原子结构的基本假说, 推导里德伯常量的理论表达式.(氢原子能级公式: 2204281he m n E e n ε⋅−=)67. (本题10分)(4444) 质量为m 的卫星,在半径为r 的轨道上环绕地球运动,线速度为v .(1) 假定玻尔氢原子理论中关于轨道角动量的条件对于地球卫星同样成立.证明地球卫星的轨道半径与量子数的平方成正比,即r = kn 2 (k 是比例常数).(2) 应用(1)的结果求卫星轨道和它的下一个“容许”轨道间的距离.由此进一步说明在宏观问题中轨道半径实际上可认为是连续变化的(利用以下数据作估算:普朗克常量s J 106.634⋅×=−h ,地球质量kg 10624×=M ,地球半径km 104.66×=R ,万有引力常数2211/kg Nm 107.6−×=G ).五 回答问题 (共15分)68. (本题 5分)(4220) 解释玻尔原子理论中的下列概念:定态;基态;激发态;量子化条件.69. (本题 5分)(4418) 氢原子发射一条波长为λ =4340 Å的光谱线.试问该谱线属于哪一谱线系?氢原子是从哪个能级跃迁到哪个能级辐射出该光谱线的?(里德伯常量R =1.097×107 m -1 )70. (本题 5分)(4769) 玻尔氢原子理论的成功和局限性是什么?。

大学物理 量子物理基础知识点总结

大学物理  量子物理基础知识点总结

大学物理 量子物理基础知识点1.黑体辐射(1)黑体:在任何温度下都能把照射在其上所有频率的辐射全部吸收的物体。

(2)斯特藩—玻尔兹曼定律:4o M T T σ()= (3)维恩位移定律:m T b λ= 2.普朗克能量量子化假设(1)普朗克能量子假设:电磁辐射的能量是由一份一份组成的,每一份的能量是:h εν= 其中h 为普朗克常数,其值为346.6310h J s -=⨯⋅ (2)普朗克黑体辐射公式:2521M T ()1hckthc eλπλλ=-(,)3.光电效应和光的波粒二象性(1)遏止电压a U 和光电子最大初动能的关系为:212a mu eU = (2)光电效应方程: 212h mu A ν=+ (3)红限频率:恰能产生光电效应的入射光频率: 00V A K hν== (4)光的波粒二象性(爱因斯坦光子理论):2mc hεν==;hp mc λ==;00m =其中0m 为光子的静止质量,m 为光子的动质量。

4.康普顿效应: 00(1cos )hm cλλλθ∆=-=- 其中θ为散射角,0m 为光子的静止质量,1200 2.42610hm m cλ-==⨯,0λ为康普顿波长。

5.氢原子光谱和玻尔的量子论: (1)里德伯公式: ()22111T T HR m n n m m nνλ==-=->()()(), (2)频率条件: k nkn E E hν-=(3) 角动量量子化条件:,1,2,3...e L m vr n n ===其中2hπ=,称为约化普朗克常量,n 为主量子数。

(4)氢原子能量量子化公式: 12213.6n E eVE n n=-=- 6.实物粒子的波粒二象性和不确定关系(1)德布罗意关系式: h h p u λμ== (2)不确定关系: 2x p ∆∆≥; 2E t ∆∆≥7.波函数和薛定谔方程(1)波函数ψ应满足的标准化条件:单值、有限、连续。

(2)波函数的归一化条件: (,)(,)1Vr t r t d ψψτ*=⎰(3)波函数的态叠加原理: 1122(,)(,)(,)...(,)iiir t c r t c r t c r t ψψψψ=++=∑(4)薛定谔方程: 22(,)()(,)2i r t U r r t t ψψμ⎡⎤∂=-∇+⎢⎥∂⎣⎦8.电子自旋和原子的壳层结构(1)电子自旋: 11),2S s ==;1,2z s s S m m ==±注:自旋是一切微观粒子的基本属性. (2)原子中电子的壳层结构①原子核外电子可用四个量子数(,,,l s n l m m )描述:主量子数:0,1,2,3,...n = 它主要决定原子中电子的能量。

大学物理-量子物理第十二章波尔的原子量子理论

大学物理-量子物理第十二章波尔的原子量子理论

对后世的影响
促进了量子力学的发展
对现代科技的影响
波尔的理论为量子力学的发展奠定了 基础,提供了重要的启示和指导。
波尔的理论为现代科技的和磁共振成像等。
对化学和材料科学的影响
波尔的理论解释了原子结构和化学键 的本质,对化学和材料科学的发展产 生了深远的影响。
原子中的电子在固定的轨道上 运动,且不发生辐射。
波尔的原子模型
原子中的电子在固定的轨道上运动,且不发生辐 射。
当电子从高能级轨道向低能级轨道跃迁时,会释 放出一定频率的光子。
电子只能在一些特定的轨道上运动,在这些轨道 上运动的电子不辐射能量。
原子吸收光子时,电子从低能级轨道向高能级轨 道跃迁。
波尔的量子化条件
THANK YOU
感谢聆听
波尔引入了量子化的概念,将电子在原子中的运动描述为 不连续的轨道,解决了经典物理无法解释的原子结构和光 谱问题。
对量子力学的推动
波尔的理论为后续的量子力学发展奠定了基础,提供了重 要的启示和方向。
对化学和材料科学的贡献
波尔模型对于理解化学键的本质和材料性质有深远影响, 推动了化学和材料科学的进步。
对未来研究的启示
05
波尔原子理论的局限性
定性解释的局限性
波尔理论主要依赖于定性的解释和假设,缺乏严格的数学基础和 理论推导。
定性解释的局限性导致波尔理论在描述原子结构和行为时存在一 定的模糊性和不确定性。
与现代物理理论的兼容性问题
01
波尔理论虽然在一定程度上解释 了原子的某些行为,但与现代量 子力学理论存在不兼容的矛盾。
电子在稳定的轨道上运动时不 辐射能量,即稳定的轨道满足
量子化条件。
电子在不同轨道之间跃迁时, 释放或吸收光子的频率满足量

大学物理 上册(第五版)重点总结归纳及试题详解第十六章 从经典物理到量子物理

大学物理 上册(第五版)重点总结归纳及试题详解第十六章 从经典物理到量子物理

第十六章 从经典物理到量子物理一、基本要求1. 了解描述热辐射的几个物理量及绝对黑体辐射的两条实验规律。

2. 理解普朗克的“能量子”假设的内容,了解普朗克公式。

3. 理解光电效应和康普顿效应的实验规律,以及爱因斯坦的光子理论对这两个效应的解释。

4. 理解爱因斯坦光电效应方程;红限概念和康普顿散射公式。

5. 理解光的波粒二象性以及光子的能量,质量和动量的计算。

6. 掌握氢原子光谱的实验规律,理解玻尔氢原子理论的三条基本假设的内容;并由三条假设出发,推导出氢原子的光谱规律。

二、基本内容1. 黑体辐射(1)绝对黑体在任何温度下都能全部吸收照射在其上的任何波长的电磁波的物体,称为绝对黑体。

绝对黑体是一种理想模型,其在任何温度下对任何波长入射辐射能的吸收比均为1。

(2)黑体辐射的实验规律斯特藩-玻尔兹曼定律40)(T T M σ=式中)(0T M 为绝对黑体在一定温度下的辐射出射度,σ=5.67×10-8W ·m -2·K -1为斯特藩常量。

维恩位移定律b T m =λ式中m λ为相应于)(0T M λ曲线极大值的波长,31089.2-⨯=b m ·K(3)普朗克的能量子假说辐射黑体是由原子分子组成的。

这些原子和分子的振动可看作线性谐振子,这些谐振子的能量只能是某一最小能量ε的整数倍,即ε,2ε,3ε...,n ε,物体发射或吸收的能量必须是这个最小单元的整数倍。

ε称为能量子,n 为正整数,叫量子数。

在黑体辐射理论中,能量子ε=hv ,其中h 是普朗克常量,v 是特定波长的辐射所对应的频率。

(4)普朗克黑体辐射公式)(0T M λ=11252-⋅T k hce hc λλπ 式中h 为普朗克常量,k 为玻尔兹曼常量,c 为真空中光速。

由此公式可推导出斯特藩-玻尔兹曼定律和维恩位移定律,而且在低频和高频情况下可分别化为瑞利-金斯公式和维恩公式。

2. 光电效应金属及其化合物在电磁辐射下发射电子的现象称为光电效应。

大学物理理论:量子力学基础

大学物理理论:量子力学基础

大学物理理论:量子力学基础1. 介绍量子力学是现代物理学的重要分支,它描述了微观粒子的行为和性质。

本文将介绍一些关于量子力学的基本概念和原理。

2. 原子结构和波粒二象性2.1 光电效应光电效应实验证明了光具有粒子性。

解释光电效应需要引入光量子(光子)概念,并讨论能量、动量和波长之间的关系。

2.2 德布罗意假设德布罗意假设认为微观粒子也具有波动性。

通过计算微观粒子的德布罗意波长,可以得出与经典物理不同的结果。

3. 波函数和不确定性原理3.1 波函数及其统计解释波函数描述了一个系统的状态,并包含了关于该状态各个可观测量的信息。

通过波函数,可以计算出一系列平均值,用来描述系统的特征。

3.2 不确定性原理不确定性原理指出,在某些情况下,无法同时准确地确定一个粒子的位置和动量。

这涉及到测量的本质和粒子与波的性质之间的关系。

4. 玻尔模型和量子力学4.1 玻尔模型玻尔模型是描述氢原子中电子运动的经典物理学模型。

它通过量子化角动量来解释氢原子光谱,并提供了首个对原子结构和能级分布的定性解释。

4.2 泡利不相容原理泡利不相容原理说明电子在同一能级上必须具有不同的状态。

这为填充多电子原子如何达到稳态提供了解释。

5. 薛定谔方程及其解析方法5.1 薛定谔方程薛定谔方程是量子力学中最基本的方程。

它描述了波函数随时间演化的规律,以及如何通过波函数求得可观测量的平均值。

5.2 解析方法介绍几种求解薛定谔方程的解析方法,如分离变量法、变换法等,并通过示例问题演示其使用过程和计算结果。

6. 哈密顿算符与算符方法6.1 哈密顿算符哈密顿算符是用于描述系统总能量的数量。

介绍哈密顿算符的概念和性质,并讨论如何通过其本征值和本征函数求解问题。

6.2 算符方法算符是量子力学中描述可观测量的数学工具,介绍常见的一些算符,如位置算符、动量算符等,并讨论它们之间的对易关系。

结论量子力学作为现代物理学的基石,为我们理解微观世界提供了全新的视角。

量子力学主要知识点复习资料

量子力学主要知识点复习资料

大学量子力学主要知识点复习资料,填空及问答部分1能量量子化辐射黑体中分子和原子的振动可视为线性谐振子,这些线性谐振子可以发射和吸收辐射能。

这些谐振子只能处于某些分立的状态,在这些状态下,谐振子的能量不能取任意值,只能是某一最小能量ε 的整数倍εεεεεn ,,4,3,2,⋅⋅⋅ 对频率为ν 的谐振子, 最小能量ε为: νh =ε2.波粒二象性波粒二象性(wave-particle duality )是指某物质同时具备波的特质及粒子的特质。

波粒二象性是量子力学中的一个重要概念。

在经典力学中,研究对象总是被明确区分为两类:波和粒子。

前者的典型例子是光,后者则组成了我们常说的“物质”。

1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。

1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。

根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。

德布罗意公式h νmc E ==2λhm p ==v3.波函数及其物理意义在量子力学中,引入一个物理量:波函数 ,来描述粒子所具有的波粒二象性。

波函数满足薛定格波动方程0),()](2[),(22=-∇+∂∂t r r V mt r t i ρρηρηψψ 粒子的波动性可以用波函数来表示,其中,振幅表示波动在空间一点(x ,y,z )上的强弱。

所以,应该表示 粒子出现在点(x,y,z )附件的概率大小的一个量。

从这个意义出发,可将粒子的波函数称为概率波。

自由粒子的波函数)](exp[Et r p i A k -⋅=ψ=ψρρη波函数的性质:可积性,归一化,单值性,连续性 4. 波函数的归一化及其物理意义常数因子不确定性设C 是一个常数,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。

相位不定性如果常数 ,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。

大学物理量子力学初步01黑体辐射和普朗克假设共30页文档

大学物理量子力学初步01黑体辐射和普朗克假设共30页文档

卢瑟福散射实验 是现代核物理学 的基石
黑体辐射与普朗克的量子假说
描述热辐射的物理量 黑体和黑体辐射的基本规律 经典物理学所遇到的困难 普朗克的能量子假说和黑体热辐射公式 量子假说的含义及其与宏观现象的关系
黑体辐射
分子(含有带电粒子)的热运动使物体辐射电磁波。这 种与温度有关的辐射称为热辐射 (heat radiation)。 热辐射的电磁波能量对频率有一个分布。频率分布 跟温度有关
例。若视太阳为黑体,测得 m51n0m
可得 T表面570K0
斯特藩—玻耳兹曼定律和维恩位移律是测量高温、 遥感和红外追踪等技术的物理基础。 维恩 因热辐射定律的发现
1911年获诺贝尔物理学奖。
5、黑体辐射的应用
(1).测量黑体温度
在实验室或工厂的高温炉子上开一小孔,小孔可看 作黑体,由小孔的热辐射特性,就可以确定炉内的温
而黑体的热辐射正好与空腔的形状、材料及 ‘表面状态’ 都无关,是最好的研究对象。
黑体的吸收本领最大,辐射本领也最大。
2. 研究黑体辐射的实验装置示意图
T
光栅光谱仪 (或棱镜光谱仪)
热电偶(测 M(T ))
3.斯特藩—玻耳兹曼定律(实验定律)
总辐出度M(T)与黑体温度
的四次方成正比
M
M(T ) T 4
当时许多著名的物理学家都认为物理学的基本规 律都已被发现.
当时赫赫有名权威人物开耳文勋爵在一篇于1900 年发表的瞻望二十世纪物理学发展的文章中也说: “在已经基本建成的科学大厦中,后辈物理学家只需 要做一些零星的修补工作就行了”,不过他还不愧为 一名确有远见卓识的物理学家,因为他接着又指出: “但是在物理晴朗天空的远处,还有两朵小小的令人 不安的乌云”,即运用当时的物理学理论所无法正确 解释的两个实验现象,

大学物理题库量子3

大学物理题库量子3
令 λc = h /(mec) (称为电子的康普顿波长,其中 me 为电子静止质量,c 为真空
中光速,h 为普朗克常量).当电子的动能等于它的静止能量时,它的德布罗意
波长是λ
=_______
_________λ

c
第 1页
8. (本题 3分)(4429)
在戴维孙——革末电子衍射实 验装置中,自热 阴极 K 发射出的电子束经 U = 500 V 的电势差加速 K 后投射到晶体上. 这电子束的德布罗意波长
21. (本题12分)(4542)
求出实物粒子德布罗意波长与粒子动能 EK 和静止质量 m0 的关系,并得出:
EK << m0c2 时,
λ ≈ h / 2m0 EK ;
EK >> m0c2 时,
λ ≈ hc / EK .
22. (本题 5分)(4631)
假如电子运动速度与光速可以比拟,则当电子的动能等于它静止能量的 2 倍 时,其德布罗意波长为多少?
11. (本题 3分)(4771)
为使电子的德布罗意波长为 1 Å,需要的加速电压为_______________. (普朗克常量 h =6.63×10-34 J·s,基本电荷 e =1.60×10-19 C, 电子质量 me=9.11×10-31 kg)
12. (本题 3分)(4772)
若中子的德布罗意波长为 2 Å,则它的动能为________________. (普朗克常量 h =6.63×10-34 J·s,中子质量 m =1.67×10-27 kg)
第 2页
15. (本题10分)(4431)
α粒子在磁感应强度为 B = 0.025 T 的均匀磁场中沿半径为 R =0.83 cm 的圆 形轨道运动.

量子力学主要知识点复习资料

量子力学主要知识点复习资料

大学量子力学主要知识点复习1能量量子化辐射黑体中分子和原子的振动可视为线性谐振子,这些线性谐振子可以发射和吸收辐射能。

这些谐振子只能处于某些分立的状态,在这些状态下,谐振子的能量不能取任意值,只能是某一最小能量ε 的整数倍 对频率为ν 的谐振子, 最小能量ε为: 2.波粒二象性波粒二象性(wave-particle duality )是指某物质同时具备波的特质及粒子的特质。

波粒二象性是量子力学中的一个重要概念。

在经典力学中,研究对象总是被明确区分为两类:波和粒子。

前者的典型例子是光,后者则组成了我们常说的“物质”。

1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。

1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。

根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。

德布罗意公式3.波函数及其物理意义在量子力学中,引入一个物理量:波函数 ,来描述粒子所具εεεεεn ,,4,3,2,⋅⋅⋅νh =εh νmc E ==2λh m p ==v有的波粒二象性。

波函数满足薛定格波动方程粒子的波动性可以用波函数来表示,其中,振幅表示波动在空间一点(x ,y,z )上的强弱。

所以,应该表示 粒子出现在点(x,y,z )附件的概率大小的一个量。

从这个意义出发,可将粒子的波函数称为概率波。

自由粒子的波函数波函数的性质:可积性,归一化,单值性,连续性 4. 波函数的归一化及其物理意义常数因子不确定性设C 是一个常数,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。

相位不定性如果常数 ,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。

表示粒子出现在点(x,y,z )附近的概率。

表示点(x,y,z )处的体积元中找到粒子的概率。

这就是波函数的统计诠释。

自然要求该粒子在空间各点概率之总和为1 必然有以下归一化条件 5. 力学量的平均值既然 表示 粒子出现在点 0),()](2[),(22=-∇+∂∂t r r V mt r t i ψψ)](exp[Et r p i A k -⋅=ψ=ψ2|(,,)|x y z ψ2|(,,)|x y z x y z ψ∆∆∆x y zτ∆=∆∆∆2|(,,)|1x y z dxdydz ψ∞=⎰(,,)x y z ψ(,,)c x y z ψαi e C =(,,)i e x y z αψ(,,)x y z ψ22|()||(,,)|r x y z ψψ=),,(z y x r =23*3|()|()(),x r xd r r x r d r ψψψ+∞+∞-∞-∞==⎰⎰附件的概率,那么粒子坐标的平均值,例如x 的平均值x __,由概率论,有 又如,势能V是 的函数:,其平均值由概率论,可表示为 再如,动量 的平均值为: 为什么不能写成因为x 完全确定时p 完全不确定,x 点处的动量没有意义。

大学物理学(下册)第15章 量子物理基础

大学物理学(下册)第15章 量子物理基础
2020/12/10
5、爱因斯坦的光子假说和光电效应方程
1).爱因斯坦光子假设 ①.光是一束以光速c运动的粒子流,这些粒子称为光子;
②.光子的能量: h
③.光的强度: SNh
2).爱因斯坦光电效应方程
爱因斯坦认为:在光电效应中,金属中的电子吸收
一个光子的能量h,一部分消耗在使金属中电子挣脱原子
2020/12/10
2. 普朗克理论与经典理论不同
经典理论的基本观点
普朗克能量子假设
(1)电磁波辐射来源于 带电粒子的振动,电磁波 频率与带电粒子振动频率 相同。 (2)振子辐射电磁波含 各种波长,是连续的,辐 射能量也是连续的。
对于频率为的振子,
振子辐射的能量不是 连续的,而是分立的, 它的取值是某一最小 能量 的整数倍
出的、在波长 附近单位波长间隔内的能量。称为单色辐
射出射度或单色辐出度。
M(T)
dM(T)
d
单位: W / m 3
2020/12/10
温度为 T 的物体,在单位时间内,从单位面积上所辐射
出的各种波长的电磁波的能量总和。称为辐射出射度或辐
出度。
M(T) 0M(T)d
单位: W / m 2
太阳和钨丝的单色 辐出度曲线
即:光电子的最大初动能与入射光的强度成正比关系,而 与光的频率无关。与实验结果不符。
2020/12/10
红限问题
按上述理论,无论何种频率的入射光,只要其强 度足够大,就能使电子具有足够的能量逸出金属,不 存在红限问题。与实验结果不符。
驰豫时间
按上述理论,如果入射光强很弱,则电子逸出金 属所需的能量,需要有一定的时间来积累。与实验结 果不符。
光的波动性用光波的波长 和频率 描述,光

大学物理_量子力学导论

大学物理_量子力学导论
密能 度量

5

(104
cm)
10
Planck 1900年
•1900年12月14日Planck 提出: 如果空腔内的黑体辐射和腔壁原子 处于平衡,那么辐射的能量分布与腔 壁原子的能量分布就应有一种对应。 作为辐射原子的模型,Planck 假定: (1)原子的性能和谐振子一样,以 给定的频率 v 振荡;
p = E/C = hv/C = h/λ
提出了光子动量 p 与辐射波长λ(=C/v)的关系。
光电效应理论
用光子的概念,Einstein 成功地解释了光电效应的规律。
当光照射到金属表面时,能量为 hν的光子被电子所吸 收,电子把这份能量的一部分用来克服金属表面对它的 吸引,另一部分用来提供电子离开金属表面时的动能。 其能量关系可写为:
“ 总而言之,我们可以说,在近代物理学结 出硕果的那些重大问题中,很难找到一个问题是爱 因斯坦没有做过重要贡献的,在他的各种推测中, 他有时可能也曾经没有射中标的,例如,他的光量 子假设就是如此,但是这确实并不能成为过分责怪 他的理由,因为即使在最精密的科学中,也不可能 不偶尔冒点风险去引进一个基本上全新的概念 ”
(2)以 E = hv 为能量单位不连续 的发射和吸收辐射能量
•Planck辐射定律
能 量 密 度
Planck 线
8h 3 1 d 3 exp(h / kT ) 1 d C
0 5
(104 cm)
10
讨论:
8h 3 1 d 3 exp(h / kT ) 1 d C
相对论量子力学
E>V E<V 前进? 后退? 后退? 前进?
量子力学:死还是活?

大学物理第17章.量子力学基础

大学物理第17章.量子力学基础
第17章 量子力学
§17.1 物质的波粒二象性 §17.2 不确定关系 §17.3 薛定谔方程 §17.4 一维无限深势阱 §17.5 势垒贯穿 §17.6 氢原子的量子力学处理 §17. 7 多电子原子 §17. 8 量子力学的理论假设
§17.1 物质的波粒二象性
一、德布罗意物质波假设 1.光的二象性
p2 eU , p 2meU
2m h 1.225 nm =0.167nm
pU
2. 汤姆逊(G.P.Thomson)实验(1927) 电子通过金薄膜的衍射实验
实验原理 3. 约恩逊(Jonsson)实验(1961)
电子的单缝、双缝、三缝和四缝衍射实验 基本数据
a 0.3μm d 1μm
V 50kV 0.5nm
微粒的波动性的应用 -----电子束代替光波来实现成像(电子显微镜)
电子与物质相互作用会产生透射电子,弹性散射电子,能量 损失电子,二次电子,背反射电子,吸收电子,X射线,俄 歇电子,阴极发光等等。电子显微镜就是利用这些信息来对 试样进行形貌观察、成分分析和结构测定。
由于微观粒子具有波粒二象性,这就要求在描述 微观粒子的运动时,要有创新的概念和思想来统一波 和粒子这样两个在经典物理中截然不同的物理图像。 波函数就是作为量子力学基本假设之一引入的一个新 的概念。
量子力学认为:微观粒子的运动状态可用一个复
函数(x,y,z,t)来描述,函数(x,y,z,t) —称为波函数。
2.波函数的统计解释
波动观点
粒子观点
明纹处: 电子波强(x,y,z,t)2大, 电子出现的概率大;
暗纹处: 电子波强(x,y,z,t)2小, 电子出现的概率小 。
可见,波函数模的平方(x,y,z,t)2与粒子在该处

大学物理量子力学总结(范本)

大学物理量子力学总结(范本)

大学物理量子力学总结‎大学物理量子力学总‎结‎篇一:‎大学物理下必考15‎量子物理知识点总结‎15.1 量子‎物理学的诞生—普朗克‎量子假设一、‎黑体辐射物体由其温‎度所决定的电磁辐射称‎为热辐射。

物体辐射的‎本领越大,吸收的本领‎也越大,反之亦然。

能‎够全部吸收各种波长的‎辐射能而完全不发生反‎射和透射的物体称为黑‎体。

二、普朗‎克的量子假设:‎1. 组成腔壁的原‎子、分子可视为带电的‎一维线性谐振子,谐振‎子能够与周围的电磁场‎交换能量。

‎2. 每个谐振子的能‎量不是任意的数值, ‎频率为ν的谐振子,其‎能量只能为hν, 2‎hν, …分立值,‎其中n = 1,2‎,3…,h =‎6.626×10 ‎–。

3. ‎当谐振子从一个能量状‎态变化到另一个状态时‎,辐射和吸收的能量‎是hν的整数倍。

1‎5.2 光电效‎应爱因斯坦光量子理‎论一、光电效‎应的实验规律金属及‎其化合物在光照射下发‎射电子的现象称为光电‎效应。

逸出的电子为光‎电子,所测电流为光电‎流。

截止频率:‎对一定金属,只有‎入射光的频率大于某一‎频率ν0时, 电子才‎能从该金属表面逸出,‎这个频率叫红限。

遏‎制电压:当外‎加电压为零时,光电‎流不为零。

因为从阴‎极发出的光电子具有一‎定的初动能,它可以克‎服减速电场而到达阳极‎。

当外加电压反向并达‎到一定值时,光电流为‎零,此时电压称为遏制‎电压。

1 mvm2‎?eU2二‎、爱因斯坦光子假说和‎光电效应方程‎1. 光子假说一束‎光是一束以光速运动的‎粒子流,这些粒子称为‎光子;频率为v 的‎每一个光子所具有的能‎量为??h?, 它不‎能再分割,只能整个地‎被吸收或产生出来。

‎2. 光电效‎应方程根据能量守恒‎定律, 当金属中一个‎电子从入射光中吸收一‎个光子后,获得能量h‎v,如果hv 大于‎该金属的电子逸出功A‎,这个电子就能从金‎属中逸出,并且有 1‎上式为爱因斯坦光电‎效应方程,式中mvm‎2为光电子的最大初动‎能。

大学物理_量子物理基础_课件

大学物理_量子物理基础_课件

单色吸收比 α(λ,T ) :物体 2.辐出度和吸收比 2.辐出度和吸收比 在温度T 对于波长在 波长在λ 在温度T时,对于波长在λ附 近单位波长间隔内吸收的能 近单位波长间隔内吸收的能 单色辐出度: 单色辐出度: 量与辐射的能量的比值 比值. 量与辐射的能量的比值. Mλ (T) = dMλ dλ 若用 ρ(λ,T ) 表示对应的 单色反射比, 单色反射比,对于不透明 单位时间内从物体单位表面 的物体有 发出的波长在 波长在λ 发出的波长在λ附近单位波 α(λ,T ) + ρ(λ,T ) =1 长间隔内的电磁波的能量 长间隔内的电磁波的能量 的电磁波的能量. ∞ 3.基尔霍夫定律 基尔霍夫定律(1859) 3.基尔霍夫定律(1859) 辐出度 : M(T) = ∫ Mλ (T)dλ Mλ (T) 0 = f (λ,T) 单位:W·m-2 单位 α(λ,T) 单位时间从物体表面单位 推论I:在热平衡态下, I:在热平衡态下 推论I:在热平衡态下,凡强 面积辐射的总能量. 面积辐射的总能量 吸收体必然是强辐射体. 吸收体必然是强辐射体.
理论物理学家寻找 MBλ (T ) 3. 斯特藩 玻耳兹曼定律 斯特藩-玻耳兹曼定律 黑体的辐出度与黑体 的温度的四次方成正 由热力学得出) 比.(由热力学得出 由热力学得出
MBλ (T) = αλ e
−5 −β λT
公式只在短波(高频) 公式只在短波(高频) 0 低温时才和实验相符, 区,低温时才和实验相符, σ = 5.67×10-8 W/m2K4 × 在长波范围内与实验不符. 在长波范围内与实验不符. 显然, ——斯特藩-玻耳兹曼常数 显然,维恩未找出 f (λ,T) 斯特藩斯特藩 dMBλ (T) 但令 定律只适用于黑体 黑体. =0 定律只适用于黑体 dλ 显然,斯特藩 斯特藩显然 斯特藩-玻耳兹 可得 维恩位移定律 曼未找出 f (λ,T ) λm T = b 4.维恩定律 b = 2.897756×10-3 m·K × 假设腔内谐振子的能量 当黑体的温度升高时,与单 当黑体的温度升高时 与单 按玻耳兹曼分布,可得出: 按玻耳兹曼分布,可得出: 色辐出度Mλ的峰值对应的 色辐出度 −5 −β λT 波长λ 向短波方向移动. 波长λm向短波方向移动 MBλ (T) = e 这与实验一致. 这与实验一致

大学物理,量子物理基础21-01 黑体辐射 普朗克能量子假设..

大学物理,量子物理基础21-01  黑体辐射 普朗克能量子假设..

3
这两条定律是黑体辐射的基本定律,它们在 现代科学技术中有广泛的应用,是测量高温以及 遥感和红外跟踪等技术的物理基础。恒星的有效 温度也是通过这种方法测量的。
17
21.1 黑体辐射 普朗克能量子假设
第21章 量子物理基础
例:1)温度为室温(20°C)的黑体,其单色辐出度 的峰值所对应的波长是多少?2)辐出度是多少? 解:1)由维恩位移定律
任何物体在任何温度下都不断地向四周发 射着不同波长的电磁波,这种现象称为辐射, 其原因是分子中包含的带电粒子的热运动会使 物体辐射电磁波。 物体以电磁波的形式向外辐射出去的能量, 称为辐射能。
物体辐射能量的大小及辐射能量按波长的 分布都与温度有关。
这种由于物质中的分子、原子受到热激发 而发射电磁波的现象称为热辐射。
Tm b
3
b 2.898 10 m T 293
9890 nm
2)由斯特藩-玻耳兹曼定律
M (T ) T
4
4
M (T ) T 4
5.67 10 (293)
8
4.17 10 W/m
2
2
18
21.1 黑体辐射 普朗克能量子假设
第21章 量子物理基础
例:实验测得太阳的单色辐出度的峰值波长为: m = 0.483 m,若将太阳当作黑体, 请估算:太阳表面的温度和太阳的辐出度。 解:由维恩位移定律:
是 h 的整数倍。 nh ,
(n 1,2,3)
普朗克常量 h 6.6260755 1034 J s
23
21.1 黑体辐射 普朗克能量子假设
• 能量是分立的,不是连续的。 存在着能量的最小单元: 能量子 0 = h ;
• 振子只能一份一份地按不 连续方式辐射或吸收能量。

大学物理知识总结习题答案(第十章)量子物理基础

大学物理知识总结习题答案(第十章)量子物理基础
·定态薛定谔方程的非相对论形式为
其中,m为粒子的质量,U为粒子在外力场中的势能函数,E是粒子的总能量。
·在无限深方势阱中的粒子能量为
整数n称为量子数。每一个可能的能量值称为一个能级。
·在势垒有限的情况下,粒子可以穿过势垒到达另一侧,这种现象叫做势垒贯穿。
7.电子运动状态
·量子力学给出的原子中电子的运动状态由以下四个量子数决定
·在不同的热力学温度T下,单色辐射本领的实验曲线存在一个峰值波长 ,维恩从热力学理论导出T和 满足如下关系
其中b是维恩常量。
3.斯忒藩—玻尔兹曼定律
·斯忒藩—玻尔兹曼定律表明黑体的辐射出射度 与温T的关系
其中 为斯忒藩—玻尔兹曼常量。对于一般的物体
称发射率。
4.黑体辐射
·黑体辐射不是连续地辐射能量,而是一份份地辐射能量,并且每一份能量与电磁波的频率 成正比,这种能量分立的现象被称为能量的量子化,每一份最小能量 被称为一个量子。黑体辐射的能量为 ,其中n=1,2,3,…,等正整数,h为普朗克常数。
解:每个光子能量为 ,其中 为普朗克常量且
则,100个波长为550nm的光子的光功率为
10-5(1)广播天线以频率1MHz、功率1kW发射无线电波,试求它每秒发射的光子数;(2)利用太阳常量I0=1.3kW/m2,计算每秒人眼接收到的来自太阳的光子数(人的瞳孔面积约为 ,光波波长约为550nm)。
解:(1)每个光子能量为 ,由
10-7“光的强度越大,光子的能量就越大”,对吗?
答:不对,光的强度是单位时间内照射在单位面积上的光的总能量。一定频率的光强度越大,表明光子数量越多,但每个光子的能量是一定的,只与频率有关,与光子数目无关。
10-8什么是康普顿效应?
答:考察X射线通过物质时向各个方向的散射现象发现,在散射的X射线中,除了存在波长与原有射线相同的成分外,还有波长较长的成分,这种波长改变的散射称为康普顿散射,也称康普顿效应。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

121量子物理基础基本内容一.量子假说和光的量子性1. 普朗克量子假说频率为ν的带电谐振子只能处于能量为一最小能量ε的整数倍的状态,ε=h ν,h 称为普朗克常数。

在辐射或吸收能量时振子从这些状态之一跃迁到其它状态。

2. 光电效应、光子假说(1)光电效应:光照射到金属表面,立刻有电子称为光子逸出金属的现象。

(2)爱因斯坦光子假说光是粒子流,这种粒子称为光子,光子运动速度为c ,对频率为ν的单色光的光子能量h εν=,光的能流密度S 决定于单位时间通过单位面积的光子数N ,即S Nh ν=。

(3)光电子的产生和爱因斯坦光电效应方程光照射到金属表面,一个光子被金属中的电子吸收,电子获得光子全部能量,一部分用以克服金属逸出功而离开金属表面形成光电子,因此爱因斯坦光电效应方程: 212h mv W ν=+ 式中212mv 是光电子的最大初动能,W 是金属逸出功,W eU =,U 是该金属的逸出电位。

单位时间产生的光电子数应随能流密度S 的增加而增加,光电子最大初动122 能与入射单色光的频率成线性关系,即212mv h W ν=-,当入射频率00e U hνν<=(红限频率)时不发生光电效应。

(4)光电效应实验——鉴定爱因斯坦理论的正确性测定饱和光电流强度I α随入射光强度的变化。

结论:入射光频率不变时I α与入射光强成正比。

测定遏止电势差U α与入射单色光强度、频率的关系。

结论:U α与入射光强度无关,与入射光频率呈线性关系。

爱因斯坦光电效应方程是正确的。

3. 康普顿效应(1)伦琴射线经物质散射,散射伦琴射线中既有与入射伦琴射线波长0λ相同的成分也有比入射伦琴射线波长0λ大的成分,这种现象称为康普顿效应。

其中散射波长λ比入射波长0λ大的散射称康普顿散射。

(2)康普顿散射的规律波长增长量(∆λ=λ-0λ)随散射角的增大而增大,与散射物质种类无关;康普顿散射的强度随散射物质原子量的增加而减少。

(3)康普顿散射产生的原因康普顿散射是X 射线光子与物质中的原子、“自由”电子碰撞而改变动量合能量的结果。

碰撞是弹性碰撞,X 射线光子、原子(或“自由”电子)的系统动量守恒、能量守恒。

与内层电子、原子核的碰撞可看作与整个原子的碰撞,原子的质量远大于X 射线光子的质量,碰撞后原子几乎不反冲,X 射线光子能量不变波长不变。

与原子结合很弱的外层电子在与X 射线光子碰撞时可看作“自由”123电子,由于“自由”电子质量较小,所以碰撞时它会产生较大的反冲,获得能量,使散射X 射线光子能量减少波长增加而形成康普顿散射。

散射角越大,电子获得反冲能量越大,散射X 射线波长增长越多。

22/0/m c h mc h h h n p n ννλλ⎫+=+⎪⎬=+⎪⎭4. 光的波粒二象性光能产生干涉、衍射和偏振等现象表明光具有波动特性,用波长λ、频率ν作为表征其波动特性的物理量;而光电效应、康普顿效应表明光具有粒子特性。

一定量的能量、动量作为一个整体被一个光子具有,用能量ε、动量p 作为表征其粒子特性的物理量。

表征波动、粒子的物理量间有νεh =、h p λ=的关系,光子具有不变的速率c ,具有质量2h m c ν=,但静质量为零。

因此,光这一物质具有波粒二相性。

二、波尔氢原子理论1. 氢原子光谱的实验规律 氢原子光谱可以分成不同的谱系,以波数1νλ=表征波长为λ的谱线,则各个谱线可写成简单的公式−里德伯公式:2211()R k nν=-,式中:k 为正整数;n 为大于k 的整数;R 称为里德伯恒量。

k 取一个值,n 取不同值的各谱线构成一个谱系。

赖曼系各谱线均为紫外光,1=k ;可见光的各谱线均属于巴尔末谱系,2=k ;帕邢系各谱线均为红外光,3=k ;各谱系的最长波长对应1+=k n ,各谱系的最短波长(极限波长)对应∞=n 。

1242. 原子的核型结构卢瑟福α粒子散射实验表明原子有一重而小的核,核带正电荷Ze ,直径10-13-10-15米,核外有Z 个电子。

氢原子由带电量为e 的原子核和一个核外电子组成,是最简单的原子。

3. 玻尔氢原子假设(1)定态假设:氢原子只能处于一系列不连续的能量状态,1E ,2E n E 。

处于这些状态的原子中电子绕核做圆周运动而不辐射能量,这些状态称定态。

(2)频率定则:氢原子从一个定态k E 跃迁到另一个定态n E 时,发射(n k >)或吸收(n k <)一个光子,其频率为 1kn k n E E hν=- (3)量子化条件:氢原子中电子绕核做圆周运动的角动量L 必须等于2hπ的整数倍 2h L n n π== ,3,2,1=n n 称为量子数 4. 玻尔理论氢原子及类氢离子能级、轨道半径等各物理量的确定(1)定态类氢原子中电子做圆周运动,向心力为静电力22204n n nv Ze m r r πε=(氢原子Z=1,类氢粒子Z=Z ) (2)量子化条件 2n n h mv r nπ= 有以上两式可解得 211,/n n r n r v v n ==原子具有电势能204nZe r πε-,动能212n mv ,求得能级125221201124n n n Ze E mv E r nπε=-= 基态能级对应于1=n ,第k 能级k n =,第k 激发态能级1+=k n 。

5. 氢原子光谱的产生一个处于激发态的氢原子会向任一比该能级低的能级跃迁发射一个光子,经过一次或几次跃迁最终到达基态。

在光照射下处于任一能级的氢原子都可以吸收一个特定频率的光子向更高能级跃迁。

根据频率定则12211()kn E v h k n =- 1222211111()()E R ch k n k nνλ==-=- 大量的处于同一高能级k E 的氢原子气体发射的光谱有νk,k-1;νk,k-2;νk-1,k-2;νk,k-3;νk-1,k-3;νk-2,k-3;⋯νk,1;νk-1,1;νk-2,1⋯;分别属于1-k 个谱系,其中属赖曼系的有1-k 条,属巴尔末系的有2-k 条光谱。

三、实物粒子的波粒二象性1. 德布罗意物质波假设质量为m 并以一定速度v 运动的粒子伴有一定的波长λ和频率ν的波与之对应hp mv E h νλ===,该波称为物质波或德布罗意波。

2. 德布罗意波的实验证实−电子衍射实验经电场加速的电子束射到晶体上出现衍射现象。

1263. 德布罗意波的统计解释粒子在空间各点出现的几率分布表现为具有连续特征的波动特征,故物质波也称几率波。

4. 不确定关系(测不准关系)由于粒子具有波动性表现出粒子位置、动量都具有不确定性。

位置的不确定量与相应动量的不确定量具有一定的关系−不确定关系: 2x h x p π∆∆≥= 四、波函数、薛定谔方程1. 波函数描述粒子在任意时刻t 任意位置r 处几率分布(即几率波)的函数(,)(,,,)r t x y z t ψ=ψ=ψ波函数是复函数。

在某一时刻(t )某点(z y x ,,)处单位体积内粒子出现几率称为几率密度,它与波函数的关系为 2(,)(,)(,,,)r t r t t x y z **ψψ=ψ⋅ψ=ψ 波函数是单值、有限、连续的函数,并且满足归一化条件 1dxdydz *∞ψψ=⎰⎰⎰ 自由粒子的波函数形式如下: (,,,)(,,)i Et x y z t x y z e-ψ=ψ 2. 定态薛定谔方程 222()0m E V ∇ψ+-ψ= 其中, 2222222x y z∂∂∂∇=++∂∂∂ ,2∇称拉普拉斯算符,对一维情况222x ∂∇=∂127 一维线性谐振子212V kx =;对氢原子204e V rπε=-。

3. 薛定谔方程的解已知势能函数V, 列出薛定谔方程,用数学方法解出满足该方程的一般解。

利用单值、有限、连续的条件从一般解中筛选出其中合适的解,从而得出粒子能量E 只能具有不连续的值−分立能级。

利用归一化条件最后得出定态波函数的具体形式。

4. 一维无限深势阱 0V ⎧=⎨∞⎩ 00,x a x x a <<≤≥ 解得 21n E n E = 121E ma ∝(0)()0(0,)n n x x a x a x x a π<<ψ=≤≥⎩128思 考 题1.4432说明德布罗意波长公式的意义;德布罗意的假设是在物理学的什么发展背景下提出的?又最先被什么实验所证实?答:德布罗意波长的公式是:===)/(/v m h p h λvv 02)/(1m c h - 其意义:一切以速度v 运动的实物粒子(其静止质量为m 0)都具有波动特性,其对应的波长由上式决定,此波称为德布罗意波. 2分由于光的干涉、衍射及偏振现象说明了光具有波动特性.而光电效应、热辐射现象又说明了光具有粒子特性.故光具有波粒二象性.德布罗意在光具有波粒二象性启发下,把光子和粒子(电子等)相类比,在1924年大胆地提出实物粒子也具有波粒二象性,并且认为物质波与光波一样具有νh E =和λ/h p =的关系.从而提出上述物质波波长公式. 2分实物粒子的波动性最先在1927年被戴维孙-革末所做的电子在晶体上的衍射实验所证实.2. 4780用经典力学的物理量(例如坐标、动量等)描述微观粒子的运动时,存在什么问题?原因何在?答:用经典力学的物理量例如坐标、动量等只能在一定程度内近似地描述微观粒子的运动,坐标x 和动量p x 存在不确定量∆x 和∆ p x ,它们之间必须满足不确定关系式 x p x ∆∆≥h 3分 这是由于微观粒子具有波粒二象性的缘故. 2分3.4781粒子(a)、(b)的波函数分别如图所示,若用位置和动量描述它们的运动状态,两者中哪一粒子位置的不确定量较大?哪一粒子的动量的不确定量较大?为什么?答:由图可知,(a)粒子位置的不确定量较大. 2分 又据不确定关系式 x p x ∆∆≥π2h 可知,由于(b)粒子位置的不确定量较小,故(b)粒子动量的不确定量较大. 3分 x(a)x (b)129典型题1.0576一共轴系统的横截面如图所示,外面为石英圆筒,内壁敷上半透明的铝薄膜,内径r 2 =1 cm ,长为20 cm ,中间为一圆柱形钠棒,半径r 1 = 0.6 cm ,长亦为20 cm ,整个系统置于真空中.今用波长λ =3000 Å的单色光照射系统.忽略边缘效应,求平衡时钠棒所带的电荷.已知钠的红限波长为m λ=5400Å,铝的红限波长为mλ'=2960Å.(基本电荷e = 1.60×10-19 C ,普朗克常量 h = 6.63×10-34 J ·s ,真空电容率ε0=8.85×10-12 C 2·N -1·m -2) 解:铝不产生光电效应.钠在光照下,发射光电子,它们的最大初动能为 m hc hc m λλ//212-=v ① 2分 这些光电子聚集在铝膜上,使钠棒和铝膜分别带上正、负电荷Q ,当它们间的电势差∆U 达到 e ∆U =221v m ② 2分时,系统达到平衡. 由高斯定理,忽略边缘效应情况下,可求出钠棒与铝膜间电场 )2/(0lr Q E επ= ③ 1分∆U 21r 201r r Q E d r ln 2l r ==πε⎰ ④ 2分 由式①、②、④得 e ∆U 120ln 2r r l Q eεπ=m hc hc m λλ//212-==v ∴ )11()/ln(2120m r r e lhc Q λλε-π= 2分 = 4.01×10-11 C 1分 2.0504证明在康普顿散射实验中,波长为λ0的一个光子与质量为m 0的静止电子碰撞后,电子的反冲角θ与光子散射角φ之间的关系为:λ130 100)]2tg()1[(tg -+=φλθc m h 证:将动量守恒关系式写成分量形式:0s i n )/(s i n =-φλθh m v 3分 0/c o s )/(c o s λφλθh h m =+v 3分则 φλλφθcos )/(sin tg 0-=上式分子: )2c o s ()2s i n (2s i n φφφ=上式分母:φλλλλφλλcos )(cos 0000--+=-00)cos 1(λλλϕ-+-= 2分 由康普顿效应的结论已知: )2(sin 2200φλλc m h=-3分 ∴)2(sin 2)2(sin 2cos 20020φλφφλλ⋅+=-c m h]1)[2(sin 2002λφc m h += ∴ 100)]2tg()1[(tg -+=φλθc m h1分 3.0538根据玻尔理论(1) 计算氢原子中电子在量子数为n 的轨道上作圆周运动的频率;(2) 计算当该电子跃迁到(n -1)的轨道上时所发出的光子的频率;(3) 证明当n 很大时,上述(1)和(2)结果近似相等.解:(1) r m r e 22024v =πε ①1分 2hmvr n =π . ②1分 r n v=ω ③1分131①、②、③联立解出 3320412n h me n ⋅π=εω 33204142n h me nn ⋅=π=εων 2分 (2) 电子从n 态跃迁到( n -1 )态所发出光子的频率为2222)1(12]1)1(1[--=--=='n n n cR n n cR cλν223204)1(128--⋅=n n n h me ε 2分(3) 当n 很大时,上式变为23204)1()/1(28--⋅='n n n h me εν4233028n me h n ≈⋅=νε 3分 4.5241已知某电子的德布罗意波长和光子的波长相同.(1) 它们的动量大小是否相同?为什么?(2) 它们的(总)能量是否相同?为什么?答:(1) 电子和光子的动量大小相同.因为 p = h / λ 对两者都成立,而λ相同, 故p 相同. 2分(2) 电子的能量 E e = mc 2 其中 20)/(1/c m m v -= 2分根据 λ/h m p ==v 可解出:20)/(1/h c m c λ+=v所以 2202)/1/c c m mc E e (v -== )//()/(102020h c m h c m c m λλ+= λλ/)/(120h c m hc +=2分光子的能量 e E hc h E <==λνλ/ 可见电子和光子的能量不相 2分5.5371一粒子被限制在相距为l 的两个不可穿透的壁之间,如图所示.描写粒子状态的波函数为)(x l cx -=ψ,其中c 为待定常量.求在0~l 31 区间发现该粒子的概率.132解:由波函数的性质得1d 02=⎰x lψ, 即 1d )(0222=-⎰x x l x c l , 由此解得 52/30l c =,2//30l l c = 3分设在0 - l /3区间内发现该粒子的概率为P ,则=P 8117d ]/)[(30d 3/05223/02=-=⎰⎰l l x l x l x x ψ 5分 6.4202氢原子光谱的巴耳末线系中,有一光谱线的波长为4340 Å,试求:(1) 与这一谱线相应的光子能量为多少电子伏特?(2) 该谱线是氢原子由能级E n 跃迁到能级E k 产生的,n 和k 各为多少?(3) 最高能级为E 5的大量氢原子,最多可以发射几个线系,共几条谱线?请在氢原子能级图中表示出来,并说明波长最短的是哪一条谱线.解:(1) ==λν/hc h 2.86 eV . 2分(2) 由于此谱线是巴耳末线系,其 k =2 2分 4.32/21-==E E K eV (E 1 =-13.6 eV)νh E n E E K n +==21/51=+=νh E E n K . 4分 (3) 可发射四个线系,共有10条谱线. 2分波长最短的是由n =5跃迁到n =1的谱线. 2分133习 题一、选择题1. 4385设用频率为ν 1 和ν 2 两种单色光,先后照射同一种金属均能产生光电效应。

相关文档
最新文档