人教版八年级数学上册 全册知识点归纳
人教版小学八年级上册数学知识点总结
人教版小学八年级上册数学知识点总结一、数与代数(一)二次根式1.二次根式的概念二次根式是指形如√a(a≥0)的数学表达式,其中a被称为被开方数。
当a>0时,二次根式有两个值,分别为正根和负根;当a=0时,二次根式的值为0。
2.二次根式的性质•非负性:对于任意实数a,√a的值总是非负的。
•乘方与开方互逆:对于任意非负实数a,有√(a^2) = a。
•运算性质:√(ab) = √a × √b(a≥0, b≥0);√(a/b) = √a / √b(a≥0, b>0)。
3.二次根式的化简与运算通过合并同类二次根式、利用二次根式的乘法法则进行化简和运算。
(二)一元二次方程1.一元二次方程的概念只含有一个未知数,且未知数的最高次数为2的方程称为一元二次方程。
一般形式为ax^2 + bx + c = 0(a≠0)。
2.一元二次方程的解法•直接开平方法:当一元二次方程可以化为x^2 = p或(x-m)^2 = p的形式时,可以直接开平方求解。
•配方法:通过配方将一元二次方程转化为完全平方的形式,然后开平方求解。
•公式法:对于一般形式的一元二次方程ax^2 + bx + c = 0,其解为x = [-b ± √(b^2 - 4ac)] / (2a)。
•因式分解法:将一元二次方程化为两个一次方程的乘积形式,然后分别求解。
3.一元二次方程的应用一元二次方程在实际问题中有广泛应用,如面积、体积、速度、时间等问题。
通过设立未知数,建立一元二次方程,然后求解未知数,可以得到实际问题的解。
(三)分式1.分式的概念一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子A / B 就叫做分式,其中A称为分子,B称为分母。
分式是不同于整式的一类代数式。
2.分式的性质•分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
•分式的约分与通分:通过约分可以化简分式,通过通分可以比较分式的大小或进行分式的加减运算。
人教版八年级数学上册知识点
人教版八年级数学上册知识点人教版八年级数学上册知识点概述一、实数1. 有理数和无理数的概念- 有理数:整数和分数统称为有理数,包括正有理数、0和负有理数。
- 无理数:无限不循环小数称为无理数,如圆周率π。
2. 实数的运算- 加法、减法、乘法和除法的运算规则。
- 正数和负数的运算。
- 绝对值的概念及运算。
3. 估算和有效数字- 近似数的估算方法。
- 有效数字的计算和应用。
4. 实数的性质和比较大小- 实数的性质。
- 实数大小的比较方法。
二、代数表达式1. 代数式的概念- 单项式和多项式的定义。
- 同类项和合并同类项。
2. 代数式的运算- 整式的加减法。
- 乘法公式,包括平方差公式、完全平方公式等。
- 多项式的乘除法。
3. 因式分解- 提公因式法。
- 公式法。
- 十字相乘法。
三、方程与不等式1. 一元一次方程- 方程的建立和解法。
- 方程的解的检验。
2. 一元一次不等式- 不等式的概念和性质。
- 不等式的解集表示。
- 不等式的解法。
3. 二元一次方程组- 方程组的建立。
- 代入法和消元法解方程组。
四、几何1. 平行线与角- 平行线的判定和性质。
- 角的概念,包括同位角、内错角、同旁内角。
2. 三角形- 三角形的基本性质。
- 等腰三角形和等边三角形的性质。
- 三角形的内角和外角性质。
3. 四边形- 四边形的定义和分类。
- 矩形、菱形、正方形的性质。
4. 圆的基本性质- 圆的定义和圆心、半径、直径的概念。
- 弦、弧、切线的概念和性质。
五、统计与概率1. 统计- 数据的收集和整理。
- 频数和频率的概念。
- 统计图表的绘制,包括条形图、折线图和饼图。
2. 概率- 随机事件的概念。
- 概率的计算方法。
- 等可能事件的概率。
以上是人教版八年级数学上册的主要知识点概述。
在学习过程中,学生应该掌握每个知识点的定义、性质、公式和解题方法,以便能够熟练地解决相关问题。
教师和家长应鼓励学生通过练习题和实际应用来巩固和深化这些概念。
人教版八年级数学上册知识点归纳
人教版八年级数学上册知识点归纳一、有理数1.有理数的含义有理数包括正、负整数和正、负分数,用于表示数量大小和大小比较。
2.有理数的比较大小有理数的大小比较需要转化为相同分母再进行比较,也可以通过数轴来比较。
3.有理数的加减乘除有理数的加减乘除运算需要注意符号和分数的约分。
二、代数式1.代数式的定义含有未知量和运算符号的式子称为代数式,通常用字母表示未知量。
2.代数式的化简代数式的化简需要运用因式分解、公因式提取等方法。
3.代数式的展开代数式的展开需要运用乘法公式、同底数幂规律等方法。
三、一次函数1.一次函数的定义一次函数是指函数的最高次数为1的函数,通常表示为y=kx+b。
2.一次函数图像的性质一次函数的图像是直线,可以通过截距和斜率来确定其位置和性质。
3.一次函数的应用利用一次函数可以解决很多线性方程和实际问题,如直线运动、比例关系等。
四、平方根1.平方根的定义对于正实数a,其平方根b满足b²=a,即b是a的正平方根。
2.平方根的性质平方根具有非负性、单调性、开方运算和分配律等性质。
3.平方根的应用平方根可以用于求解勾股定理、面积和体积等计算问题。
五、二次根式1.二次根式的定义含有形如a√b(a和b均为实数,且b>0)的式子称为二次根式。
2.二次根式的化简二次根式的化简需要运用有理化分母和分解质因数等方法。
3.二次根式的应用二次根式可以用于求解勾股定理、面积和体积等计算问题,也常见于三角函数的定义式中。
以上是人教版八年级数学上册的知识点归纳,涉及到有理数、代数式、一次函数、平方根和二次根式等内容,对学习和掌握初中数学知识有很大帮助。
人教版八年级上册数学知识点总结归纳
人教版八年级上册数学知识点总结归纳一、三角形1. 三角形的概念及分类-由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
-按角分类:锐角三角形、直角三角形、钝角三角形。
-按边分类:不等边三角形、等腰三角形(等边三角形是特殊的等腰三角形)。
2. 三角形的三边关系-三角形任意两边之和大于第三边,任意两边之差小于第三边。
3. 三角形的内角和与外角和-三角形内角和为180°。
-三角形的外角等于与它不相邻的两个内角之和。
三角形外角和为360°。
4. 三角形的高、中线、角平分线-从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。
-三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
-三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
二、全等三角形1. 全等三角形的概念及性质-能够完全重合的两个三角形叫做全等三角形。
-全等三角形的对应边相等、对应角相等。
2. 全等三角形的判定- “边边边”(SSS):三边对应相等的两个三角形全等。
- “边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。
- “角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。
- “角角边”(AAS):两角和其中一个角的对边对应相等的两个三角形全等。
- “斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。
三、轴对称1. 轴对称图形和轴对称-如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
-把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
2. 线段的垂直平分线-经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
-线段垂直平分线上的点与这条线段两个端点的距离相等。
数学八年级上册人教版知识点
第十一章:三角形一、三角形1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
组成三角形的线段叫做三角形的边相邻两边的公共端点叫做三角形的顶点相邻两边所组成的角叫做三角形的内角,简称三角形的角。
★2、三角形的特性与表示三角形有下面三个特性:(三角形是封闭图形)(1)三角形有三条线段(2)三条线段不在同一直线上(3)首尾顺次相接★3、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
★4、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
(平分三角形的面积)(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线。
(简称三角形的高)三角形的面积= 1/2×底×高注意:三角形的高不一定在三角形内部,其交点也不一定在三角形内部。
★5、三角形的分类三角形按边的关系分类如下:★三角形按角的关系分类如下:★把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。
它是两条直角边相等的直角三角形。
★6、三角形的稳定性(1)三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
(2)三角形稳定性的应用:三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。
(3)四边形不具有稳定性。
(4)三角形的表示:三角形用符号“Δ”表示,顶点是A、B、C的三角形记作“ΔABC”,读作“三角形ABC”。
★7、三角形的内角外角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
推论:①直角三角形的两个锐角互余。
(完整版)新人教版八年级上册数学各章节知识点总结
第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.n-·180°⑶多边形内角和公式:n边形的内角和等于(2)⑷多边形的外角和:多边形的外角和为360°.n-条对角线,⑸多边形对角线的条数:从n边形的一个顶点出发可以引(3)第十二章全等三角形第一节:全等三角形形状大小放在一起完全重合的图形,叫做全等形。
换句话说,全等形就是能够完全重合的图形。
能够完全重合的两个三角形叫做全等三角形。
两个全等的三角形重合放在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
两个三角形全等用符号“≌”表示。
人教版八年级上册数学课本知识点归纳
人教版八年级上册数学课本知识点归纳第十五章:整式的乘除与因式分解一、整式的乘法1.同底数幂的乘法规则是:am·an=am+n(m,n都是正整数)。
即同底数幂相乘,底数不变,指数相加。
2.幂的乘法规则是:(am)n=amn(m,n都是正整数)。
即幂的乘方,底数不变,指数相乘。
3.积的乘法规则是:(ab)n=an·bn(n为正整数)。
即乘方的积等于积的乘方。
4.单项式与单项式相乘的规则是:(1)系数与系数相乘;(2)同底数幂与同底数幂相乘;(3)其余字母及其指数不变作为积的因式。
5.单项式与多项式相乘的规则是:用单项式去乘多项式的每一项,再把所得的积相加。
6.多项式与多项式相乘的规则是:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
二、乘法公式1.平方差公式:(a+b)(a-b)=a2-b2.2.完全平方公式:(a±b)2=a2±2ab+b2.口诀:前平方,后平方,积的两倍中间放,中间符号看情况。
(这个情况就是前后两项同号得正,异号得负。
)3.添括号:添括号时,如果括号前面是正号,括到括号里面的各项都不变符号;如果括号前面是负号,括到括号里面的各项都改变符号。
三、整式的除法1.am÷an==am-n(a≠,m,n都是正整数,且m>n)。
即同底数幂相除,底数不变,指数相减。
2.a=1(a≠)。
任何不等于1的数的次幂都等于1.3.单项式除以单项式的规则是:(1)系数相除;(2)同底数幂相除;(3)只在被除式里的幂不变。
4.多项式除以单项式的规则是:先把这个多项式的每一项分别除以单项式,再把所得的商相加。
四、因式分解1.因式分解是把一个多项式化成几个整式乘积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
2.公因式是一个多项式中各项都含有的相同的因式。
3.分解因式的方法:1) 提公因式法:ma+mb+mc =m(a+b+c)。
人教版八年级上册数学知识点汇总
第一章勾股定理1.勾股定理o直角三角形两直角边的平方和等于斜边的平方,即a2+b2=c2(其中a、b为直角边,c为斜边)。
o应用:用于直角三角形中的边长计算、证明等。
2.一定是直角三角形吗o如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形一定是直角三角形。
3.勾股定理的应用o应用于解决实际问题中的直角三角形边长计算。
第二章实数1.认识无理数o有理数:可以表示为有限小数或无限循环小数的数。
o无理数:无限不循环小数,如2、π等。
2.平方根o算数平方根:一个正数x的平方等于a,则x是a的算数平方根。
o平方根:一个数x的平方等于a,则x是a的平方根,正数有两个平方根,互为相反数;0的平方根是0本身;负数没有平方根。
3.立方根o立方根:一个数x的立方等于a,则x是a的立方根。
o每个数都有一个立方根,正数的立方根是正数,0的立方根是0,负数的立方根是负数。
4.估算与开方o估算:对复杂小数进行近似计算。
o用计算机开平方或立方。
5.实数o实数是有理数和无理数的统称,可以在数轴上表示。
第三章位置与坐标1.确定位置o在平面内,确定一个物体的位置一般需要两个数据(横坐标和纵坐标)。
2.平面直角坐标系o由两条互相垂直且有公共原点的数轴组成。
o通常地,两条数轴分别置于水平位置(x轴)与竖直位置(y轴),取向右与向上的方向分别为正方向。
3.轴对称与坐标变化o关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。
第四章一次函数1.函数o如果在一个变化过程中有两个变量x和y,且对于x的每一个值,y都有唯一确定的值,则称y是x的函数。
2.一次函数o形式为y=kx+b(k、b为常数,k ≠ 0)的函数称为一次函数。
o当b = 0时,称为正比例函数y=kx。
3.一次函数的图像及性质o图像是一条直线,经过点(0, b)和(−kb,0)。
o当k > 0时,y随x的增大而增大;当k < 0时,y随x的增大而减小。
初二数学上册知识点总结人教版
初二数学上册知识点总结人教版篇1:初二数学上册知识点总结人教版初二上册数学知识点一.知识框架二.知识概念1.一次函数:若两个变量x,y间的关系式可以表示成y=kx+bk≠0的形式,则称y是x的一次函数x为自变量,y为因变量。
特别地,当b=0时,称y是x的正比例函数。
2.正比例函数一般式:y=kx(k≠0),其图象是经过原点0,0的一条直线。
3.正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
4.已知两点坐标求函数解析式:待定系数法线性函数是初中生学习函数的开始,也是以后学习其他函数的基石。
教师在学习本章内容时,要从实际问题出发,引入变量,从具体到抽象理解事物。
培养学生良好的变化感和对应感,体验数形结合的思想。
在教学过程中,要更加注重理解和应用,同时解决实际问题,让学生体会到数学的实用价值和乐趣。
初二数学知识点总结归纳运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:① 列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分数的加减规则是:同分母分数加减,同分母分子加减。
人教版八年级上册数学知识点汇总
八年级上册第十一章:三角形(1)三角形:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形. (2)三个角都是锐角的三角形叫做锐角三角形.有一个角是钝角的三角形叫做钝角三角形.有一个角是直角的三角形叫做直角三角形.(3)如图:线段,,AC BC AC 是三角形的边.点,,A B C 是三角形的顶点.,,A B C ∠∠∠是相邻两边组成的角,叫做三角形的内角,简称三角形的角. 顶点是,,A B C 的三角形,记作ABC ∆,读作“三角形ABC ”.ABC ∆的三边,有时也用,,a b c 来表示,顶点A 所对的边BC 用a 表示,顶点B 所对的边AC 用b 表示,顶点C 所对的边AB 用c 表示.(4)三边都相等的三角形叫做等边三角形,有两条边相等的三角形叫做等腰三角形. (5)如图在等腰三角形ABC 中,相等的两条边AB 和AC 叫做腰,另一边BC 叫做底边,两腰与底边的夹角B ∠和C ∠叫做底角,等腰三角形的两个底角相等两腰的夹角A ∠叫做顶角.(6)等边三角形是特殊的等腰三角形,即底边和腰相等的等腰三角形. (7)三角形的三边关系(构成三角形的条件):三角形的两边之和大于第三边,两边之差小于第三边.(8)如图1,从ABC ∆的顶点A 向它所对的边BC 所在直线画垂线,垂足为D ,所得线段AD 叫做ABC ∆的边BC 上的高.即:AD BC ⊥.(9)如图2,连接ABC ∆的顶点A 和它所对的边BC 的中点D ,所得线段AD 叫做ABC ∆的边BC 上的中线.即:12BD CD BC ==. (10)如图3,在ABC ∆中,画A ∠的平分线AD ,交A ∠所对的边BC 于点D ,所得线段AD 叫做ABC ∆的角平分线.即:12BAD CAD BAC ∠=∠=∠.ACBbac腰腰底边CB A(11)三角形有三条高.锐角三角形的三条高交于三角形的内部于一点,直角三角形的三条高交于直角顶点,钝角三角形的三条高交于三角形的外部于一点,叫做垂心.(12)三角形有三条中线.锐角三角形、直角三角形、钝角三角形的三条中线都交于三角形的内部于一点,叫做重心.(13)三角形有三条角平分线.锐角三角形、直角三角形、钝角三角形的三条角平分线都交于三角形的内部于一点,叫做内心.(14)三角形的高、中线、角平分线都是线段. (15)三角形具有稳定性,四边形具有不稳定性.(16)三角形的一条中线将大三角形分成两个面积相等的小三角形.(17)三角形的内角和定理:三角形的内角和等于180°,即:∠A+∠B+∠C=180°. (18)直角三角形的两个锐角互余.(19)直角三角形可以用符号“Rt ∆”表示,直角三角形ABC 可以写成Rt ABC ∆. (20)由三角形内角和定理可得:有两个角互余的三角形是直角三角形.(21)如图,把ABC ∆的一边BC 延长,得到ACD ∠.像这样,三角形的一边与另一边的延长线组成的角,叫做三角形的外角. 推论:三角形的外角等于与它不相邻的两个内角的和. (22)多边形:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.三角形是最简单的多边形.(23)如果一个多边形由n 条线段组成,那么这个多边形就叫做n 边形.(24)多边形相邻两边组成的角叫做它的内角.如图1的A ∠,B ∠,C ∠,D ∠,E ∠是五边形ABCDE 的5个内角.多边形的边与它的邻边的延长线组成的角叫做多边形的外角.如图2中的1∠是五边形ABCDE 的一个外角.(25)连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.如图,AC AD 是五边形ABCDE 的两条对角线.(26)正多边形:各个角都相等,各条边都相等的多边形叫做正多边形.(27)一般地,从n 边形的一个顶点出发,可以作(3)n -条对角线,它们将n 边形分为(2)n - 个三角形,n 边形的内角和等于(10)82n ︒⨯-.图3DD图2图1DABCA BCC BA DC B A 图2图1EDC B A ED C B A EDCBA(28)多边形的内角和公式:2180()n -⨯︒.多边形的对角线条数公式:()32n n -. (29)多边形的外角和等于360︒.第十二章:全等三角形(1)全等形:能够完全重合的两个图形叫做全等形.(2)全等三角形:能够完全重合的两个三角形叫做全等三角形.(3)一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.(4)把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.例如,如图ABC ∆和DEF ∆全等,记作ABC ∆≌DEF ∆.其中点A 和点D ,点B 和点E ,点C 和点F 是对应顶点;AB 和DE ,BC 和EF ,AC 和DF 是对应边;A ∠和D ∠,B ∠和E ∠,C ∠和F ∠是对应角.全等用符号“≌”表示,读作“全等于”.记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.(5)全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.全等三角形的周长相等,面积相等,对应角的角平分线相等,对应边上的中线相等,对应边上的高相等.(6)三角形全等的判定方法:①三边分别对应相等的两个三角形全等(简写成“边边边”或“SSS ”).②两边及其夹角分别对应相等的两个三角形全等(简写成“边角边”或“SAS ”). ③两角及其夹边分别对应相等的两个三角形全等(简写成“角边角”或“ASA ”). ④两角分别相等且其中一组对角的对边相等的两个三角形全等(简写成“角角边”或“AAS ”).⑤斜边和一条直角边分别对应相等的两个直角三角形全等(简写成“斜边、直角边”或“HL ”).(7)角平分线的性质:角平分线上的点到角两边的距离相等.(8)角平分线的判定:如果一个点到角两边的距离相等,那么这个点在角的平分线上.D E F C B A第十三章:轴对称(1)轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形, 这条直线就是它的对称轴.(2)把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.(3)垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线. (4)图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.(5)常见的轴对称图形:圆(无数条对称轴)、正方形(4条对称轴)、长方形(2条对称轴)、等腰三角形(1条对称轴)、等边三角形(3条对称轴)、菱形(2条对称轴). (6)线段的垂直平分线的性质:垂直平分线上的点到线段两端的距离相等.(7)垂直平分线的判定:如果一个点到线段两端的距离相等,那么这个点在线段的垂直平分线上.(8)点关于x 轴对称,x 不变,y 互为相反数.如:()2,3-和()2,3;()4,3--和()4,3-.点关于y 轴对称,y 不变,x 互为相反数.如:()2,3-和()2,3--;()4,3--和()4,3-.点关于原点对称,x ,y 都互为相反数.如:()2,3-和()2,3-;()4,3--和()4,3. (9)等腰三角形:有两边相等的三角形是等腰三角形.(10)等腰三角形的性质:①等腰三角形的两个底角相等,两条腰相等. ②等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.简称“三线合一”. (11)等边三角形:三边都相等的特殊的等腰三角形.(12)等边三角形的性质:等边三角形的三个内角都相等,并且每个角都是60︒. (13)等边三角形的判定:①三个角都相等的三角形是等边三角形.②有一个角是60︒的等腰三角形是等边三角形.(14)在直角三角形中,30︒所对的直角边等于斜边的一半.(15)路径最短问题:将军饮马问题:在直线l 上找一点C ,使得AC BC +最短.造桥选址问题:在河岸a 与河岸b 之间,造一道垂直于两河岸的桥,使得 AE DE DB ++路径最短.归纳:在解决最短路径问题时,我们通常利用轴对称、平移等变化把已知问题转化为容易解决的问题,从而作出最短路径的选择.作法:过直线l 作关于点A 的对称点A',连接A'B 交直线l 于点C ,所以点C 即为所求.即:AC+BC 路径最短.l作法:过点A 作AF ⊥河岸a ,截取AC 等于河宽,连接BC交河岸b 于点D ,过点D 作DE ⊥a ,垂足为点E ,连接AE ,所以DE 即为所求.即:AE+DE+DB 路径最短.b第十四章:整式的乘法与因式分解(1)同底数幂的乘法:同底数幂相乘,底数不变,指数相加.即:m n m na a a +⋅=(,m n 都是正整数).例:527x x x ⋅=; 2131n n n xx x ++⋅=; ()347x x x -⋅=-.特别地:()()2323;.x x x x -=-=-(2)幂的乘方:幂的乘方,底数不变,指数相乘.即:()nm mn a a =(,m n 都是正整数).例:()()()532215263610=10.x x x x -=---=-; ;(3)积的乘方:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘. 即:()nn n ab a b =(n 为正整数).例:()3333228;a a a =⋅= ()()()333226228;x x x -=-⋅=-()22232326224339ab a b a b ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭.(4)单项式乘单项式:单项式与单项式相乘,先把它们的系数、同底数幂相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. 例:()()()()()223535315a b a a a b a b --=-⨯-⋅⋅=⎡⎤⎣⎦ ;()()()()()32262627225858540x xy x xy x x yx y -=⋅-=⨯-⋅⋅=-⎡⎤⎣⎦ .(5)单项式乘多项式:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加. 例:()()()()()222324314341124x x x x x xx -+=-+-⨯=-- ;()22232221211122323223ab ab ab ab ab ab ab a b a b ⎛⎫-⋅=⋅+-⋅=-⎪⎝⎭ .(6)多项式乘多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.例:()()()()22312332112362372x x x x x x x x x x x ++=⋅+⨯+⋅+⨯=+++=++ ;()()222288898x y x y x xy xy y x xy y --=--+=-+ ; ()()2232222333x y x xy y x x y xy x y xy y x y +-+=-++-+=+ . 特别地:()()22a b b a -=- ;()()33a b b a -=--.(7)同底数幂的除法:同底数幂相除,底数不变,指数相减.即:mnm na a a-÷=(0a ≠,,m n 都是正整数,并且m n >).例:835x x x ÷= ;()83835x x x x x -÷=-÷=- .(8)规定:任何不等于0的数的0次幂都等于1.即:()010a a =≠ .例:02=1 ; (01=1- ;()03.14=1π- .(9)单项式除以单项式:单项式除以单项式,先把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式. 例:()()()32323223231231234a b x ab a a b b x a x ÷=÷⋅÷⋅÷⋅= ; ()42343212872874x y x y x y xy --÷=÷⋅⋅= ; ()5345431215155153a b c a b ab c ab c ---÷=-÷=-⎡⎤⎣⎦ .(10)多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.例:()32322126331236333421a a a a a a a a a a a a -+÷=÷-÷+÷=-+ ; ()()()()656565ab a a ab a a a b -÷-=÷--÷-=-+ .(11)平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.即:()()22a b a b a b +-=- .例:()()()22232323294x x x x +-=-=- ; ()()()()22222224x y x y x y x y -+--=--=- ;()()()()()22222221524544541y y y y y y y y y y y +---+=--+-=---+=-+.(12)完全平方公式:两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.即:()2222a b a ab b +=++ ;()2222a b a ab b -=-+ .例:()()()222224424168m n m m n n m mn n +=+⋅⋅+=++ ;2222111122224y y y y y ⎛⎫⎛⎫-=-⋅⋅+=-+ ⎪ ⎪⎝⎭⎝⎭ ;22222323322942434433169x y x x y y x xy y ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-⋅⋅+=-+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ .总结:平方差公式和完全平方公式的应用其实是多项式乘多项式的特殊应用.(13)添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.即:“正”变“负”,“负”变“正”. 例:()a b c a b c +-=+- ;()a b c a b c --=-+ ;()a b c a b c ++=--- ;总结:添括号法则和去括号法则有类似之处,上式从右往左的变形就是去括号.(13)因式分解:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式. ()()2111x x x -+-因式分解整式乘法.(14)提公因式法:一般地,如果多项式各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一因式的乘积的形式,这种分解因式的方法叫做提公因式法.例:()32322812423a b ab c ab a bc +=+; 2a ()b c +()3b c -+()b c =+()23a -.(15)平方差公式因式分解:两个数的平方差,等于这两个数的和与这两个数的差的积.即:()()22a b a b a b -=+-.例:()()()22249232323x x x x -=-=+-; ()()()()()()()224422222222x y x y x y x y x y x y x y -=-=+-=++-;()()()32111a b ab ab a ab a a -=-=+-.(16)完全平方式因式分解:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.即:()2222a ab b a b ++=+;()2222a ab b a b -+=-.例:()()2222162494243343x x x x x ++=+⨯⋅+=+;()()()222222244442222x xy y x xy yx x y y x y ⎡⎤-+-=--+=--⋅⋅+=--⎣⎦;()()22222363323ax axy ay a x xy y a x y ++=++=+;()()()()()222212362666a b a b a b a b a b +-++=+-⨯++=+-.(17)公式法:可以看出,如果把乘法公式的等号两边互换位置,就可以得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫做公式法. (18)十字相乘法:将式子()2x p q x pq +++化为()()x p x q ++的形式的因式分解叫做十字相乘法.例:()()271025x x x x ++=++;()()22842x x x x --=-+; 2712y y -+()3y =-()4y -;()()271892x x x x +-=+-.(19)注意:因式分解时,有公因式先提取公因式,再考虑公式法因式分解,再考虑十字相乘法进行因式分解,因式分解要做到彻底分解,直到不能分解为止.第十五章:分式(1)分式:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式.分式AB中,A 叫做分子,B 叫做分母. 特别地:22,x x x x都是分式,不能约分. (2)分式有意义的条件:分母不为0.(3)分式值为0的条件:①分子为0;②分母不为0.两个条件必须同时满足.在分式A B 中,若AB有意义,则0B ≠; 若0A B =,则0,0A B =≠;若0A B >,则00A B >⎧⎨>⎩或00A B <⎧⎨<⎩; 若0AB <,则00A B >⎧⎨<⎩或00A B <⎧⎨>⎩.(4)分式的基本性质:分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变.即:(),0A A C A A C C B B C B B C⋅÷==≠⋅÷,其中,,A B C 都是整式. 例:332x x x x xy xy x y ÷==÷ ; ()()2222333336632x xy x x xy x y x x x x+÷++==÷; ()2222222a b b a b ab b a a b a b-⋅--==⋅. (5)约分:把一个分式的分子与分母的公因式约去,叫做分式的约分.例:()()2222333336632x xy x x xy x yx x x x+÷++==÷.(6)最简分式:分式经过约分后,其分子与分母没有公因式.像这样分子与分母没有公因式的分式叫做最简分式.例:2x y ,2x y x+.例:2322255153a bc ac ab c b -=- ;()()()22233936933x x x x x x x x +---==++++ ;()()()222661262333x y x xy y x y x y x y --+==--- .(7)通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.例:232a b 和2a bab c -;2222333222bc bc a b a b bc a b c ⋅==⋅,()2222222222a b a a b a ab ab cab c a a b c -⋅--==⋅. 25x x -和35x x +;()()()2225221055525x x x x x x x x x ++==--+-,()()()2235331555525x x x x xx x x x --==++--.(8)最简公分母:在分式的通分中,取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母.例:232a b 和2a bab c -;2222333222bc bc a b a b bc a b c ⋅==⋅,()2222222222a b a a b a ab ab cab c a a b c -⋅--==⋅. 最简公分母为:222a b c .25x x -和35x x +;()()()2225221055525x x x x x x x x x ++==--+-,()()()2235331555525x x x x xx x x x --==++--. 最简公分母为:()()55x x +-.(9)分式的乘法法则:分式乘分式,用分式的积作为积的分子,分母的积作为积的分母. (10)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.即:a c a cb d b d ⋅⋅=⋅;ac ad a d b d b c b c⋅÷=⋅=⋅. 例:3324423263x y xy y x x y x ⋅==; 32233222222254422425105ab a b ab cd ab cd bd c cd c a b a b c ac -÷=⋅=-=--; ()()()()()()()2222222441121422121a a a a a a a a a a a a a a ---+--⋅=⋅=-+-+--+-;()()()221117497777mm m m m m m m m ÷=⋅-=---+-+ ; ()()222535323225922532595353353533533x x x x x x x x x x x x x x x x x +--÷⋅=⋅⋅=⋅⋅=--+-+-+(11)分式的乘方:分式的乘方把分子、分母分别乘方.即:nn n a a b b⎛⎫= ⎪⎝⎭.例:()()22224222224393a b a b a b c c c -⎛⎫-==⎪⎝⎭; 32263323333392622248a b a c a b d c a b cd d a c d a a cd ⎛⎫⎛⎫÷⋅=⋅⋅=- ⎪ ⎪--⎝⎭⎝⎭ . (12)分式的加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.即:ab a bc c c ±±=;a c ad bc ad bc b d bd bd bd±±=±=. 例:()()()222222223532532333x y x y x x y x x y x y x y x y x y x y x y x y+++-+-====----+-- ; ()()()()()()2211232323234232323232323232349p q p q p q p q p p q p q p q p q p q p q p q p q p q -+-+++=+==+-+-+-+--其中22449pp q -也可以写成()()42323p p q p q +-.(13)式与数有相同的混合运算顺序:先乘方,再乘除,后加减,有括号先算括号里面的. (14)整数指数幂的运算性质:①mnm na a a +⋅=(,m n 是整数);②()nmmn a a =(,m n 是整数); ③()nn nab a b =(n 是整数). (15)规定:()110nnn a a a a -⎛⎫==≠ ⎪⎝⎭.简称:底数互为倒数,指数互为相反数.例:1111222-⎛⎫== ⎪⎝⎭;()221242-⎛⎫-=-= ⎪⎝⎭;()1111222-⎛⎫-=-=- ⎪⎝⎭ . (16)小于1的正数可以用科学记数法表示为10na -⨯的形式,其中110a ≤<,n 是正整数.例:60.00000257 2.5710-=⨯;90.000000001023 1.02310-=⨯;9110nm m -=.观察0的个数,n 比0的个数多1.(17)分式方程:分母中含有未知数的方程叫做分式方程.例:90603030v v =+-;572x x =-.(18)解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边乘最简公分母.这也是解分式方程的一般方法.(19)一般地,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为0,因此应做如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.例:233x x =- ; ()()31112x x x x -=--+ . 解:()332x x -= 解:(法一)()()131112x x x x x x --=---+ 392x x -=()()13112x x x =--+ 329x x -= ()()()3112x x x -=-+9x = 23x += 检验:当9x =时,()3540x x -=≠. 1x =∴9x =是原分式方程的解. 检验:当1x =时,()()120x x -+=.∴原分式方程无解.()()31112x x x x -=--+解:(法二)()()()2123x x x x +--+= ()22223x x x x +-+-= 23x += 1x = 检验:当1x =时,()()120x x -+=.∴原分式方程无解.(20)分式的化简求值.例:先化简,再求值22244242x x x x x x -+-÷-+,其中12x =.解原式()()()()222222x x x x x x -+=⋅+--12x =- 当12x =时,原式121322==-- .(21)实际应用:=工作总量工作时间工作效率 ;sv t= ;在用分式方程解决实际问题时,一定要注意检验.。
人教版八年级数学上册知识点总结和复习要点
人教版八年级数学上册知识点总结和复习要点一、全等三角形1全等三角形的概念与性质概念:能够完全重合的两个三角形叫做全等三角形。
性质:全等三角形的对应边相等,对应角相等。
2全等三角形的判定条件SSS(边边边):三边对应相等的两个三角形全等。
SAS(边角边):两边及其夹角对应相等的两个三角形全等。
ASA(角边角):两角及其夹边对应相等的两个三角形全等。
AAS(角角边):两角及其一角的对边对应相等的两个三角形全等。
HL(直角、斜边):在一对直角三角形中,斜边及另一条直角边相等。
例子:若△ABC与△DEF中,AB = DE,AC = DF,∠A = ∠D,则根据SAS判定条件,△ABC ≌△DEF。
二、轴对称1轴对称的概念概念:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2轴对称的性质性质:轴对称图形上对应点到对称轴的距离相等;对应点的连线与对称轴垂直。
例子:等腰三角形是轴对称图形,其对称轴是底边上的高(中线或顶角平分线)。
三、实数1平方根与立方根的概念平方根:如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方根)。
立方根:如果一个数的立方等于a,那么这个数就叫做a的立方根(或三次方根)。
2实数的分类与性质实数可以分为有理数和无理数两大类。
有理数包括整数和分数,而无理数则是无限不循环小数。
实数具有封闭性、有序性和传递性等性质。
例子:√4 = 2,是4的平方根;∛8 = 2,是8的立方根。
四、一次函数1一次函数的概念概念:一般地,形如y = kx + b(k,b是常数,k ≠0)的函数,叫做一次函数。
2一次函数的性质性质:一次函数的图像是一条直线;当k > 0时,函数值y随x的增大而增大;当k < 0时,函数值y随x的增大而减小。
例子:函数y = 2x + 1是一次函数,其图像是一条斜率为2、截距为1的直线。
五、整式的乘法与因式分解1整式的乘法整式的乘法包括单项式乘单项式、单项式乘多项式、多项式乘多项式等。
人教版八年级数学上学期数学知识点归纳
人教版八年级数学上学期数学知识点归纳八年级数学上册知识点总结第十一章三角形一、知识框架:三角形的分类、三边关系、高、中线、角平分线、内角和、外角和、多边形的内角和。
二、知识清单:1.三角形:由不在同一直线上的三条线段首尾顺次连接所组成的图形叫做三角形。
三角形用符号“△”加顶点字母表示,如“△ABC”(读作“三角形ABC”)。
2.三角形(按边)分类:三边都不相等的三角形腰与底边不相等的等腰三角形等边三角形3.三角形三边关系(定理):三角形任意两边的和大于第三边;(推论)三角形任意两边的差小于第三边。
4.三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的连线段叫做三角形的高。
(三角形三条高或高所在直线相交于一点,交点称为三角形的垂心)5.三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
(三角形的三条中线交于一点,交点叫三角形的重心)6.三角形的角平分线:三角形一个内角的平分线与这个角的对边相交,顶点和交点之间的连线段叫做三角形的角平分线。
(三角形三条角平分线的交点称为三角形的内心)7.三角形的稳定性:三边长度固定的三角形的形状、大小固定不变,这个性质叫三角形的稳定性。
(在所有的多边形中,只有三角形具有稳定性)8.三角形的内角:三角形中,相邻两边组成的角称为三角形的内角,也称为三角形的角。
三角形内角和(定理):三角形的三个内角和为180°。
直角三角形的两个锐角互余。
9.三角形的外角:由三角形的一条边和相邻边的延长线组成的角称为三角形的外角。
三角形外角和(定理):三角形三个外角的和为360°。
三角形的一个外角等于与它不相邻的两内角的和。
三角形的一个外角大于任何一个与它不相邻的内角。
10.多边形:在平面内,由不在同一条直线上的n条线段首尾顺次连接组成的图形叫做n边形。
正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。
11.多边形的内角:多边形相邻两边组成的角叫做多边形的内角,简称多边形的角。
人教版八年级上册数学各单元知识点归纳总结
人教版八年级上册数学各单元知识点归纳总结
第一章:三角形的初步知识
1. 三角形的基本性质:稳定性、内角和定理(三角形内角和为180度)。
2. 三角形的分类:等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形。
3. 三角形的边与角的关系:边长与角度的关系,如a:b:c=sinA:sinB:sinC。
第二章:全等三角形
1. 全等三角形的定义及性质。
2. 全等三角形的判定方法:SSS(三边全等)、SAS(两边及夹角全等)、ASA(两角及夹边全等)、AAS(两角及非夹边全等)、HL(直角边斜边公理)。
3. 全等三角形的证明方法。
第三章:轴对称与中心对称
1. 轴对称与中心对称的基本性质。
2. 轴对称与中心对称图形的识别与证明。
3. 图形变换的基本方法。
第四章:四边形
1. 四边形的性质:平行四边形、矩形、菱形、正方形、梯形、等腰梯形等的基本性质。
2. 四边形的判定方法。
3. 四边形的面积计算。
第五章:一次函数
1. 函数的基本概念:自变量、因变量、常数。
2. 一次函数的定义及性质。
3. 一次函数的图象表示方法。
4. 一次函数的解析式及求法。
5. 一次函数的应用:求最值、求交点等。
第六章:一元一次不等式
1. 不等式的基本性质。
2. 一元一次不等式的解法:去分母、去括号、移项合并同类项等。
3. 一元一次不等式的应用:比较大小、求解最值等。
人教版八年级数学上册知识点归纳
精心整理第十一章全等三角形11.1全等三角形(1)形状、大小相同的图形能够完全重合;(2)全等形:能够完全重合的两个图形叫做全等形;(3)全等三角形:能够完全重合的两个三角形叫做全等三角形;(4)平移、翻折、旋转前后的图形全等;(5)对应顶点:全等三角形中相互重合的顶点叫做对应顶点;(6)对应角:全等三角形中相互重合的角叫做对应角;(7)对应边:全等三角形中相互重合的边叫做对应边;(8)全等表示方法:用“ ”表示,读作“全等于”(注意:记两个三角形全等时,把表示对应顶点的字母写在对应的位置上)(9)全等三角形的性质:①全等三角形的对应边相等;②全等三角形的对应角相等;11.2三角形全等的判定(1)若满足一个条件或两个条件均不能保证两个三角形一定全等;(2)三角形全等的判定:①三边对应相等的两个三角形全等;(“边边边”或“SS”S)②两边和它们的夹角对应相等的两个三角形全等;(“边角边”或“SAS”)③两角和它们的夹边对应相等的两个三角形全等;(“角边角”或“ASA”)④两角和其中一角的对边对应相等的两个三角形全等;(“角角边”或“AAS”)⑤斜边和一条直角边对应相等的两个直角三角形全等;(“斜边直角边”或“HL”)(3)证明三角形全等:判断两个三角形全等的推理过程;(4)经常利用证明三角形全等来证明三角形的边或角相等;(5)三角形的稳定性:三角形的三边确定了,则这个三角形的形状、大小就确定了;(用“SSS”解释)11.3角的平分线的性质(1)角的平分线的作法:课本第19页;(2)角的平分线的性质定理:角的平分线上的点到角的两边的距离相等;(3)证明一个几何中的命题,一般步骤:①明确命题中的已知和求证;②根据题意,画出图形,并用数学符号表示已知和求证;③经过分析,找出由已知推出求证的途径,写出证明过程;(4)性质定理的逆定理:角的内部到角两边的距离相等的点在角的平分线上;(利用三角形全等来解释)(5)三角形的三条角平分线相交于一点,该点为内心;第十二章轴对称12.1轴对称(1)轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,那么就称这个图形是轴对称图形;这条直线叫做它的对称轴;也称这个图形关于这条直线对称;(2)两个图形关于这条直线对称:一个图形沿一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点;(3)轴对称图形与两个图形成轴对称的区别:轴对称图形是指一个图形沿对称轴折叠后这个图形的两部分能完全重合;而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合;(4)轴对称图形与两个图形成轴对称的联系:把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称;把成轴对称的两个图形看成一个整体,它就是一个轴对称图形。
新人教版八年级上册数学各章节知识点总结(最新整理)
轴对称图形可以经过旋转得出。 用坐标轴表示轴对称:关于 x 轴对称(x,y)与(x,-y);关于 y 轴对称(x,y)与(-x,y)。 第三节等腰三角形 有两个边相等的三角形叫做等腰三角形。 等腰三角形的性质:1)等腰三角形的两个底角相等。简言之:等边对等角。
1 ap
(
a≠0,p是正
整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;当a<0时,a-p的值可能是正也可能是负的,如
(2)2
1 (2)2
1 4
, (2)3
1 (2)3
1 8
;
④运算要注意运算顺序。 2.整式的除法 1)单项式除法单项式 单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的 指数作为商的一个因式; 2)多项式除以单项式
一般地, (a)n
a n (当n为偶数时), a n (当n为奇数时).
底数有时形式不同,但可以化成相同。 要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。 3.积的乘方法则
一般地,对于任意底数a、b与任意正整数n,有 (ab)n an bn (n为正整数)。即积的乘方,等于把积
②相同字母相乘,运用同底数的乘法法则;
③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式; ④单项式乘法法则对于三个以上的单项式相乘同样适用; ⑤单项式乘以单项式,结果仍是一个单项式。
2)单项式与多项式相乘:就是用单项式去乘多项式的每一项,再把所得的积相加。即单项式乘以多项式, 是通过乘法对加法的分配律,把它转化为单项式乘以单项式。
(完整版)人教版八年级数学上册知识点总结
(完整版)人教版八年级数学上册知识点总
结
人教版八年级数学上册知识点总结
本文档总结了人教版八年级数学上册的知识点,旨在帮助学生复和掌握这一学期的数学内容。
1. 数与式
- 自然数、整数、有理数、无理数的概念和区别
- 分数与小数的相互转化及其应用
- 相反数和绝对值的概念和计算方法
- 科学记数法和约数、倍数的概念
2. 代数初步
- 代数式的概念和基本性质
- 代数式的运算:加减乘除、合并同类项、提取公因式等
- 一元一次方程的解法和实际应用
- 描述和解决问题中的代数问题
3. 几何初步
- 点、线、面及其相互关系的认识
- 基本图形的性质和计算
- 三角形的分类及其性质
- 直角三角形的勾股定理和应用
4. 相似和全等
- 图形的相似性质和判定方法
- 相似三角形的性质和计算
- 全等图形的性质和判定方法
5. 平面直角坐标系
- 平面直角坐标系的建立和使用
- 点的坐标及其运算
- 点在平面直角坐标系中的位置关系和性质
6. 数据与概率
- 统计图表的表示和读取
- 中心倾向与离散程度的度量
- 概率的基本概念和计算方法
- 利用概率解决问题
以上是人教版八年级数学上册的知识点总结,希望对同学们的学习有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年人教版八年级上册数学知识点总结归纳1 第十一章三角形第十二章全等三角形第十三章轴对称第十四章整式乘法和因式分解第十五章分式第十一章三角形1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。
4、三角形的特性与表示三角形有下面三个特性:(1)三角形有三条线段(2)三条线段不在同一直线上三角形是封闭图形(3)首尾顺次相接三角形用符号“∆”表示,顶点是A、B、C的三角形记作“∆ABC”,读作“三角形ABC”。
5、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。
它是两条直角边相等的直角三角形。
6、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
推论:①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角对等边;等边对等角;大角对大1×底×高边;大边对大角。
8、三角形的面积=2多边形知识要点梳理定义:由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。
凸多边形多边形分类1:凹多边形正多边形:各边相等,各角也相等的多边形分类2:叫做正多边形。
非正多边形:边形的内角和等于180°(n-2)。
360°。
边形的对角线条数等于1/2·n(n-3)只用一种正多边形:3、4、6/。
镶嵌拼成360度的角只用一种非正多边形(全等):3、4。
知识点一:多边形及有关概念1、多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.(1)多边形的一些要素:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角。
外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
(2)在定义中应注意:①一些线段(多边形的边数是大于等于3的正整数);②首尾顺次相连,二者缺一不可;③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间多边形.2、多边形的分类:(1)多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图1).本章所讲的多边形都是指凸多边形.凸多边形凹多边形图1(2)多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.知识点二:正多边形各个角都相等、各个边都相等的多边形叫做正多边形。
如正三角形、正方形、正五边形等。
正三角形正方形正五边形正六边形正十二边形要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形知识点三:多边形的对角线多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 如图2,BD为四边形ABCD的一条对角线。
要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。
(2)n边形共有条对角线。
证明:过一个顶点有n-3条对角线(n≥3的正整数),又∵共有n个顶点,∴共有n(n-3)条对角线,但过两个不相邻顶点的对角线重复了一次,∴凸n边形,共有条对角线。
知识点四:多边形的内角和公式1.公式:边形的内角和为.2.公式的证明:证法1:在边形内任取一点,并把这点与各个顶点连接起来,共构成个三角形,这个三角形的内角和为,再减去一个周角,即得到边形的内角和为.证法2:从边形一个顶点作对角线,可以作条对角线,并且边形被分成个三角形,这个三角形内角和恰好是边形的内角和,等于.证法3:在边形的一边上取一点与各个顶点相连,得个三角形,边形内角和等于这个三角形的内角和减去所取的一点处的一个平角的度数,即.要点诠释:(1)注意:以上各推导方法体现出将多边形问题转化为三角形问题来解决的基础思想。
(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数。
知识点五:多边形的外角和公式1.公式:多边形的外角和等于360°.2.多边形外角和公式的证明:多边形的每个内角和与它相邻的外角都是邻补角,所以边形的内角和加外角和为,外角和等于.注意:n边形的外角和恒等于360°,它与边数的多少无关。
要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°。
②多边形的外角和等于360°,与边数的多少无关。
知识点六:镶嵌的概念和特征1、定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌)。
这里的多边形可以形状相同,也可以形状不相同。
2、实现镶嵌的条件:拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边。
3、常见的一些正多边形的镶嵌问题:(1)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°。
(2)只用一种正多边形镶嵌地面对于给定的某种正多边形,怎样判断它能否拼成一个平面图形,且不留一点空隙?解决问题的关键在于正多边形的内角特点。
当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形。
事实上,正n边形的每一个内角为,要求k个正n 边形各有一个内角拼于一点,恰好覆盖地面,这样360°=,由此导出k==2+,而k是正整数,所以n只能取3,4,6。
因而,用相同的正多边形地砖铺地面,只有正三角形、正方形、正六边形的地砖可以用。
注意:任意四边形的内角和都等于360°。
所以用一批形状、大小完全相同但不规则的四边形地砖也可以铺成无空隙的地板,用任意相同的三角形也可以铺满地面。
(3)用两种或两种以上的正多边形镶嵌地面用两种或两种以上边长相等的正多边形组合成平面图形,关键是相关正多边形“交接处各角之和能否拼成一个周角”的问题。
例如,用正三角形与正方形、正三角形与正六边形、正三角形与正十二边形、正四边形与正八边形都可以作平面镶嵌,见下图:又如,用一个正三角形、两个正方形、一个正六边形结合在一起恰好能够铺满地面,因为它们的交接处各角之和恰好为一个周角360°。
规律方法指导1.内角和与边数成正比:边数增加,内角和增加;边数减少,内角和减少. 每增加一条边,内角的和就增加180°(反过来也成立),且多边形的内角和必须是180°的整数倍.2.多边形外角和等于360°,与边数的多少无关.3.多边形最多有三个内角为锐角,最少没有锐角(如矩形);多边形的外角中最多有三个钝角,最少没有钝角.4.在运用多边形的内角和公式与外角的性质求值时,常与方程思想相结合,运用方程思想是解决本节问题的常用方法.5.在解决多边形的内角和问题时,通常转化为与三角形相关的角来解决. 三角形是一种基本图形,是研究复杂图形的基础,同时注意转化思想在数学中的应用.经典例题透析类型一:多边形内角和及外角和定理应用1.一个多边形的内角和等于它的外角和的5倍,它是几边形?总结升华:本题是多边形的内角和定理和外角和定理的综合运用. 只要设出边数,根据条件列出关于的方程,求出的值即可,这是一种常用的解题思路.举一反三:【变式1】若一个多边形的内角和与外角和的总度数为1800°,求这个多边形的边数.【变式2】一个多边形除了一个内角外,其余各内角和为2750°,求这个多边形的内角和是多少?【答案】设这个多边形的边数为,这个内角为,.【变式3】一个多边形的内角和与某一个外角的度数总和为1350°,求这个多边形的边数。
类型二:多边形对角线公式的运用【变式1】一个多边形共有20条对角线,则多边形的边数是().A.6 B.7C.8 D.9【变式2】一个十二边形有几条对角线。
总结升华:对于一个n边形的对角线的条数,我们可以总结出规律条,牢记这个公式,以后只要用相应的n的值代入即可求出对角线的条数,要记住这个公式只有在理解的基础之上才能记得牢。
类型三:可转化为多边形内角和问题【变式1】如图所示,∠1+∠2+∠3+∠4+∠5+∠6=__________.【变式2】如图所示,求∠A+∠B+∠C+∠D+∠E+∠F的度数。
类型四:实际应用题4.如图,一辆小汽车从P市出发,先到B市,再到C市,再到A市,最后返回P市,这辆小汽车共转了多少度角?思路点拨:根据多边形的外角和定理解决.举一反三:【变式1】如图所示,小亮从A点出发前进10m,向右转15°,再前进10m,又向右转15°,…,这样一直走下去,当他第一次回到出发点时,一共走了__________m.【变式2】小华从点A出发向前走10米,向右转36°,然后继续向前走10米,再向右转36°,他以同样的方法继续走下去,他能回到点A吗?若能,当他走回点A时共走了多少米?若不能,写出理由。