理论力学达朗贝尔原理43页PPT
合集下载
理论力学第十四章 达朗贝尔原理与动静法 教学PPT
Fi Ni Qi 0
mO (Fi ) mO (Ni ) mO (Qi ) 0
质点系达朗贝尔原理
Fi Ni Qi 0 mO (Fi ) mO (Ni ) mO (Qi ) 0
上式表明,在任意瞬时,作用于质点系的主动力、约束力和该点 的惯性力所构成力系的主矢等于零,该力系对任一点O的主矩也等于 零。
达朗贝尔原理一方面广泛应用于刚体动力学求解 动约束力;另一方面又普遍应用于弹性杆件求解 动应力。
工程实例
工程实例
爆破时烟囱怎样倒塌
工程实例
爆破时烟囱怎样倒塌
达郎贝尔原理
质点达朗贝尔原理
设质量为m的非自由质点M,在主动 力F和约束力N作用下沿曲线运动,
该质点的动力学基本方程为
N B
ma F N
考虑到式上式中的求和可以对质点系中任何一部分进行,而不限于 对整个质点系,因此,该式并不表示仅有6个平衡方程,而是共有3n个 独立的平衡方程。同时注意,在求和过程中所有内力都将自动消去。
达朗贝尔原理提供了按静力学平衡方程的形式给出质点系动力学 方程的方法,这种方法称为动静法。这些方程也称为动态平衡方程。
这表明,在质点系运动的任一瞬时,作用于每一质 点上的主动力、约束力和该质点的惯性力在形式上构成一 平衡力系。
这就是质点系的达朗贝尔原理。
质点系达朗贝尔原理
Fi Ni Qi 0
对于所讨论的质点系,有n个形式如上式的平衡方程, 即有n个形式上的平衡力系。将其中任何几个平衡力系合在 一起,所构成的任意力系仍然是平衡力系。根据静力学中 空间任意力系的平衡条件,有
Mac Mrc Macn Mrc 2
显然,当质心C在转轴上时,刚 体的惯性力主矢必为零。
z
RQn
mO (Fi ) mO (Ni ) mO (Qi ) 0
质点系达朗贝尔原理
Fi Ni Qi 0 mO (Fi ) mO (Ni ) mO (Qi ) 0
上式表明,在任意瞬时,作用于质点系的主动力、约束力和该点 的惯性力所构成力系的主矢等于零,该力系对任一点O的主矩也等于 零。
达朗贝尔原理一方面广泛应用于刚体动力学求解 动约束力;另一方面又普遍应用于弹性杆件求解 动应力。
工程实例
工程实例
爆破时烟囱怎样倒塌
工程实例
爆破时烟囱怎样倒塌
达郎贝尔原理
质点达朗贝尔原理
设质量为m的非自由质点M,在主动 力F和约束力N作用下沿曲线运动,
该质点的动力学基本方程为
N B
ma F N
考虑到式上式中的求和可以对质点系中任何一部分进行,而不限于 对整个质点系,因此,该式并不表示仅有6个平衡方程,而是共有3n个 独立的平衡方程。同时注意,在求和过程中所有内力都将自动消去。
达朗贝尔原理提供了按静力学平衡方程的形式给出质点系动力学 方程的方法,这种方法称为动静法。这些方程也称为动态平衡方程。
这表明,在质点系运动的任一瞬时,作用于每一质 点上的主动力、约束力和该质点的惯性力在形式上构成一 平衡力系。
这就是质点系的达朗贝尔原理。
质点系达朗贝尔原理
Fi Ni Qi 0
对于所讨论的质点系,有n个形式如上式的平衡方程, 即有n个形式上的平衡力系。将其中任何几个平衡力系合在 一起,所构成的任意力系仍然是平衡力系。根据静力学中 空间任意力系的平衡条件,有
Mac Mrc Macn Mrc 2
显然,当质心C在转轴上时,刚 体的惯性力主矢必为零。
z
RQn
北京交通大学理论力学达朗贝尔原理课件
M gx
mi
zi
x i
2
mi yi zi
z
J yz J zy mi yi zi J zx J xz mi zi xi
刚体对z轴旳惯性积
ri
FIti
O
zi
yi
xi
x
FIin y
M gx J xz J yz 2 M gy J yz J xz 2
M gz miri2 J z
刚体作定轴转动时
FgR mac
M gc 0
(转轴与质量对称面垂直,向质量对称面与转轴交点简化)
FgR mac
M g0 M gz J z
刚体作平面运动时
(设运动平行于质量对称面、向质心C简化)
Fgc mac
M gc Jc
例1:
a
FgR maC
HC
M gc JC
a Hy
H
an HC
aA aC
均为均质物体,各重为P和Q,半径均为R,绳子不可伸长,其
质量不计,斜面倾角,如在鼓轮上作用一常力偶矩M,试求:
圆柱体A旳角加速度。
MI
FOy
FT
FOx
拓展:
M IA
FT
FIA
FN
已知:均质圆盘 m1, 纯R,滚动.均质杆 l 2R, m2.
求:F 多大,能使杆B 端刚好离开地面? 纯滚动旳条件?
FgO
FOY MgO O
FOX C1
MgC2 A
FgC2 C2 B
?拟定惯性力大小
mg
mg
例3长均为l,质量均为m旳均质杆OA、AB铰接于O,在图
示水平位置由静止释放,求初始瞬时OA、AB旳角加速度。
?列什么方程 aC1
第十四章达朗贝尔原理PPT课件
M
* C
m L2
/ 12
29
S
F*x mg
M
* C
FA
F*y
2021/2/13 .
Fx m aCx 3m L Fy m aCy m L / 2 MC* m L2 / 12
取两约束力的交点为矩心
mS 0:
M C *F x 3 L F y L /2m/g 2 L 0
FB
3g
20 L
30
C
FN
2021/2/13 34
.
运动分析
根据运动分析加惯性力、惯性力偶
F*y
O F*x
A
acy
M
* A
acx
2mg
B
Ff
C
FN
acxao r
acyaco r
2021/2/13 35
.
MC 0
M * AF x*rFy*r2mg 0r
F*y
O
A
M
* A
B
Ff
F*x C
2mg
MO0
FN
M * AFfrFy*r2mg 0r
.
1、平移刚体
F2 *
m2 F1* m1 a2
F * m aC
Fn * mn an
F maC
a1
M 0 0
刚体平移时,惯性力系简化为 通过刚体质心的合力。
2021/2/13 12
.
2、定轴转动刚体
MO *
O
C
F
0
F 0 - m a C = m (- a τ C a C n)
M 0 =M O (F iτ)=(- m iri2) =JO -
2021/2/13 16
《达朗贝尔原理》课件
达朗贝尔原理的微分方程形式为:dM/dt=∫F·d(dr/dt)dr,其中dM/dt表示动量 矩对时间的变化率,dr/dt表示速度矢量,∫F·d(dr/dt)dr表示力矩对时间的积分 。
该微分方程描述了刚体在力矩作用下的动态行为,是刚体动力学中的基本方程之 一。
达朗贝尔原理的积分方程形式
达朗贝尔原理的积分方程形式为:M(t2)-M(t1)=∫t1t2F·dr, 其中M(t2)和M(t1)分别表示刚体在时刻t2和t1的动量矩, ∫t1t2F·dr表示在时间t1到t2之间力矩的积分。
船舶工程
用于分析船舶的运动特性和稳定性。
02
达朗贝尔原理的数学表达
达朗贝尔原理的公式表达
达朗贝尔原理的公式表达为: M=∫F·dr,其中M表示刚体绕固定 点O转动的动量矩,F表示刚体上任 一点的速度矢量,dr表示矢径。
该公式描述了刚体在力矩作用下的运 动规律,是刚体动力学中的基本原理 之一。
达朗贝尔原理的微分方程形式
限制条件
达朗贝尔原理在处理复杂系统时,可能无法考虑所有 相互作用力和能量转换,导致预测精度下降。
与其他物理定律的互补性
与牛顿第三定律互补
达朗贝尔原理与牛顿第三定律互补,强调了 力和运动的相互关系。
与能量守恒定律的互补性
达朗贝尔原理在处理保守系统时,与能量守 恒定律相一致,但在非保守系统中存在差异
。
详细描述
在弹性力学中,达朗贝尔原理可以用来分析 各种复杂的力学问题,如梁的弯曲、板的变 形等。通过应用该原理,我们可以建立各种 弹性力学问题的数学模型,并进一步求解其 解析解或近似解。
05
达朗贝尔原理的局限性
适用范围和限制条件
适用范围
达朗贝尔原理主要适用于线性、保守的力学系统。对 于非线性、非保守系统,达朗贝尔原理可能不适用。
该微分方程描述了刚体在力矩作用下的动态行为,是刚体动力学中的基本方程之 一。
达朗贝尔原理的积分方程形式
达朗贝尔原理的积分方程形式为:M(t2)-M(t1)=∫t1t2F·dr, 其中M(t2)和M(t1)分别表示刚体在时刻t2和t1的动量矩, ∫t1t2F·dr表示在时间t1到t2之间力矩的积分。
船舶工程
用于分析船舶的运动特性和稳定性。
02
达朗贝尔原理的数学表达
达朗贝尔原理的公式表达
达朗贝尔原理的公式表达为: M=∫F·dr,其中M表示刚体绕固定 点O转动的动量矩,F表示刚体上任 一点的速度矢量,dr表示矢径。
该公式描述了刚体在力矩作用下的运 动规律,是刚体动力学中的基本原理 之一。
达朗贝尔原理的微分方程形式
限制条件
达朗贝尔原理在处理复杂系统时,可能无法考虑所有 相互作用力和能量转换,导致预测精度下降。
与其他物理定律的互补性
与牛顿第三定律互补
达朗贝尔原理与牛顿第三定律互补,强调了 力和运动的相互关系。
与能量守恒定律的互补性
达朗贝尔原理在处理保守系统时,与能量守 恒定律相一致,但在非保守系统中存在差异
。
详细描述
在弹性力学中,达朗贝尔原理可以用来分析 各种复杂的力学问题,如梁的弯曲、板的变 形等。通过应用该原理,我们可以建立各种 弹性力学问题的数学模型,并进一步求解其 解析解或近似解。
05
达朗贝尔原理的局限性
适用范围和限制条件
适用范围
达朗贝尔原理主要适用于线性、保守的力学系统。对 于非线性、非保守系统,达朗贝尔原理可能不适用。
理论力学PPT课件第7章 达郎贝尔原理
第7章 达朗贝尔原理
• 分析力学两个基本原理之一 • 提供研究约束动力系统的普遍方法—动静法
2020年5月19日
1
❖ 惯性力的概念 ❖ 达朗贝尔原理 ❖ 刚体惯性力系的简化 ❖ 达朗贝尔原理的应用
2020年5月19日
2
工程实例
问题:汽车底盘距路面的高度为什么不同?
2020年5月19日
3
底盘可升降的轿车
2 sin2
h
mg
B
FB
当角速度0时,情况怎样?
2020年5月19日
13
§7.3 惯性力系的简化
一、主矢与主矩
1.主矢: FIR maC 与质系运动形式无关
2.主矩:
e
QM OF Ii M OF i
故 同且 理 M M IIOC M O ddF ddiLO eC L ttdd L t,O 与质系运动形式相关
O
C
B
A
2020年5月19日
24
解:点C为系统的质心,且此瞬时角速度为零。
根据运动分析虚加惯性力、惯性力偶
FIy
I C
A
acxao r
acy
a CO
r
2020年5月19日
25
acxao r
acy
a CO
r
FIxmacxmr
FIy
a0 O
FIy macy mr
MICJC167mr2 Ff
FIx A
C
acy
acx M 2mg
IC
B
MA 0 M ICF IxrF Iyr2m grF N0
12g 29r
2020年5月19日
26
2020年5月19日
4
• 分析力学两个基本原理之一 • 提供研究约束动力系统的普遍方法—动静法
2020年5月19日
1
❖ 惯性力的概念 ❖ 达朗贝尔原理 ❖ 刚体惯性力系的简化 ❖ 达朗贝尔原理的应用
2020年5月19日
2
工程实例
问题:汽车底盘距路面的高度为什么不同?
2020年5月19日
3
底盘可升降的轿车
2 sin2
h
mg
B
FB
当角速度0时,情况怎样?
2020年5月19日
13
§7.3 惯性力系的简化
一、主矢与主矩
1.主矢: FIR maC 与质系运动形式无关
2.主矩:
e
QM OF Ii M OF i
故 同且 理 M M IIOC M O ddF ddiLO eC L ttdd L t,O 与质系运动形式相关
O
C
B
A
2020年5月19日
24
解:点C为系统的质心,且此瞬时角速度为零。
根据运动分析虚加惯性力、惯性力偶
FIy
I C
A
acxao r
acy
a CO
r
2020年5月19日
25
acxao r
acy
a CO
r
FIxmacxmr
FIy
a0 O
FIy macy mr
MICJC167mr2 Ff
FIx A
C
acy
acx M 2mg
IC
B
MA 0 M ICF IxrF Iyr2m grF N0
12g 29r
2020年5月19日
26
2020年5月19日
4
北大理论力学课件第十二章 达朗伯原理
sin
l
0
dF I r cos 0
dF I
方法二:直接法
q1
P a
2
g
l
q2
P ( a l sin )
2
q1
1 2 l
P l sin
2
B
a
g
FI2
l
g
l
x
q1
FI 1 q1 l
p g
l 2
2
sin
M
A
0,
P
l 2
sin F I 1
J O 1
l 2
M
I2
J C 2 2
a1 l 2
B
M
I2
a 2 l 1
2
O
1
C2 a2
FI 2
A
M
FI1
C1
I1
O F Ox
2
P
a1
P
1 F Oy
[整体]
3 2
M
0
( P FI2 )
l P
l 2
P 3g
l 1
2
P 12 g
e
FI
F B ( a b ) ( F I G )a 0
FA
b ab
a ab
( FI G )
b ab
a ab
(
e g
2
a
1 )G
b
FB
( FI G )
(
e g
2
1 )G
理论力学
本章结束
理论力学
理论力学第十四章达朗贝尔原理(动静法)课件
动静法的物理意义
物理背景
实际应用
达朗贝尔原理反映了牛顿第二定律在 静力学中的应用,通过引入惯性力, 将动力学因素考虑到平衡问题中。
在工程实际中,达朗贝尔原理广泛应 用于分析高速旋转的机械、振动系统 以及瞬态动力学问题。
意义阐述
通过动静法,我们可以分析在某一瞬 时,运动系统由于惯性作用而产生的 力,从而更准确地描述系统的平衡条 件。
03
在应用动静法时,要确 保惯性力与主动力相平 衡,避免出现误差。
04
在求解方程时,要注意 解的物理意义和实际情 况是否相符。
04
CATALOGUE
达朗贝尔原理的应用实例
简单实例解析
总结词
通过一个简单的实例,介绍达朗 贝尔原理的基本应用。
详细描述
以一个单摆为例,运用达朗贝尔 原理分析其运动状态,通过对比 理论计算和实验结果,验证达朗 贝尔原理的正确性。
具体推导过程
在受力分析的基础上,列出系统的平 衡方程。
解出未知数,得到系统的运动状态。
将动静法应用于平衡方程,将惯性力 与主动力相平衡。具体来说,就是在 平衡方程中加入惯性力项,使得该力 与主动力相平衡。
推导过程中的注意事项
01
确定研究对象和系统时 要明确,避免出现混淆 。
02
在建立平衡方程时,要 确保所有力的方向和大 小都正确。
理论力学第十四章 达朗贝尔原理(动静 法)课件
contents
目录
• 达朗贝尔原理概述 • 达朗贝尔原理的基本概念 • 达朗贝尔原理的推导过程 • 达朗贝尔原理的应用实例 • 达朗贝尔原理的扩展与深化
01
CATALOGUE
达朗贝尔原理概述
达朗贝尔原理的定义
理论力学--达朗贝尔原理及其应用 ppt课件
0tetftehtftegmmii2??????????????????????cossinsincoscos??????????0thftegmmi2????????????????coscos22i?emf?coscoscos22i2hgtemthftegmm??????????????????????31ppt课件?达朗贝尔原理应用示例例例题2长为l重为w的均质杆ab其a端闰接在铅垂轴z上并以匀角速绕此轴转动
FIti miait mi ri
FIni miain mi 2 ri
ppt课件
21
刚体作定轴转动时惯性力系的简化结果 再将平面惯性力系向点
O简化,得一力和一力偶。 因为所有质点的法向惯性力 都通过O点,所以所有质点 法向惯性力对O点之矩的和 等于零:
力偶的力偶矩等于惯性力系对转轴的主矩,其大小
为刚体对转轴的转动惯量与角加速度的乘积,方向与角
加速度的方向相反。
ppt课件
23
刚体作定轴转动时惯性力系的简化结果
讨论:
FIR
ma C
ma
t C
ma
n C
MI O MO ( FIti ) ( miri2 ) JO
电机所受真实力有m1g、 m2g 、 Fx 、Fy、M;惯性力如图所示。
惯性力的大小为 FI m2e 2
方向与质心加速度相反。因转子 匀速转动,只有法向加速度,故 惯性力方向沿O1O2向外。
应用动静法,由平衡方程
MA 0
M m2 g e cos t FI cos t(h e sin t) FI sin t(e cos t) 0
MIC MC (FIti ) ( miri2 ) JC
FIti miait mi ri
FIni miain mi 2 ri
ppt课件
21
刚体作定轴转动时惯性力系的简化结果 再将平面惯性力系向点
O简化,得一力和一力偶。 因为所有质点的法向惯性力 都通过O点,所以所有质点 法向惯性力对O点之矩的和 等于零:
力偶的力偶矩等于惯性力系对转轴的主矩,其大小
为刚体对转轴的转动惯量与角加速度的乘积,方向与角
加速度的方向相反。
ppt课件
23
刚体作定轴转动时惯性力系的简化结果
讨论:
FIR
ma C
ma
t C
ma
n C
MI O MO ( FIti ) ( miri2 ) JO
电机所受真实力有m1g、 m2g 、 Fx 、Fy、M;惯性力如图所示。
惯性力的大小为 FI m2e 2
方向与质心加速度相反。因转子 匀速转动,只有法向加速度,故 惯性力方向沿O1O2向外。
应用动静法,由平衡方程
MA 0
M m2 g e cos t FI cos t(h e sin t) FI sin t(e cos t) 0
MIC MC (FIti ) ( miri2 ) JC
【推荐】理论力学:ch12达朗贝尔原理.ppt
§12-2 质点系的达朗贝尔原理
设有一质点系由n个质点组成,对每一个质点,有
对整个质点系,其主动力系、约束力系、惯性力系 在形式上构成平衡力系。这就是质点系的达朗贝尔原理。 可用方程表示为:
11
动力学/动静法
若将质点系受力按内力、外力划分
因为
表明:对整个质点系来说,动静法给出的平衡方程, 只是质点系的惯性力系与其外力的平衡,而与内力无关。
由动静法,列方程: 代入上式得:
37
动力学/动静法
解法 2 用动量矩定理求解 取系统为研究对象
根据动量矩定理,有
38
动力学/动静法
解法 3 用动能定理求解 取系统为研究对象
两边求导得:
39
动力学/动静法
动静法的优点
①用动静法和普遍定理求解动反力的主要区别为力矩 方程;前者可对任意点取矩;后者矩心一定取定点或质心。
③ 刚体作匀速转动,且转轴过质心C 。
(惯性力主矢、主矩均为零)
18
动力学/动静法
例12-2 均质杆长l ,质量m,与水平面铰接, 杆由与
水平面成 0 角位置静止落下。求开始落下时杆AB的角
加速度及支座A的约束力。 解:选杆AB为研究对象
虚加惯性力系: (向铰链A简化)
19
动力学/动静法
根据动静法,有
与简化中心O的位置无关
与简化中心O的位置有关
无论刚体作什么运动,惯性力系主矢都等于刚体质 量与其质心加速度的乘积,方向与质心加速度方向相反。
14
动力学/动静法
一、刚体作平移 向质心C简化: 刚体平移时惯性力系合成为一过质心的合力。
15
动力学/动静法
二、定轴转动刚体 这里仅讨论具有垂直于转轴的
设有一质点系由n个质点组成,对每一个质点,有
对整个质点系,其主动力系、约束力系、惯性力系 在形式上构成平衡力系。这就是质点系的达朗贝尔原理。 可用方程表示为:
11
动力学/动静法
若将质点系受力按内力、外力划分
因为
表明:对整个质点系来说,动静法给出的平衡方程, 只是质点系的惯性力系与其外力的平衡,而与内力无关。
由动静法,列方程: 代入上式得:
37
动力学/动静法
解法 2 用动量矩定理求解 取系统为研究对象
根据动量矩定理,有
38
动力学/动静法
解法 3 用动能定理求解 取系统为研究对象
两边求导得:
39
动力学/动静法
动静法的优点
①用动静法和普遍定理求解动反力的主要区别为力矩 方程;前者可对任意点取矩;后者矩心一定取定点或质心。
③ 刚体作匀速转动,且转轴过质心C 。
(惯性力主矢、主矩均为零)
18
动力学/动静法
例12-2 均质杆长l ,质量m,与水平面铰接, 杆由与
水平面成 0 角位置静止落下。求开始落下时杆AB的角
加速度及支座A的约束力。 解:选杆AB为研究对象
虚加惯性力系: (向铰链A简化)
19
动力学/动静法
根据动静法,有
与简化中心O的位置无关
与简化中心O的位置有关
无论刚体作什么运动,惯性力系主矢都等于刚体质 量与其质心加速度的乘积,方向与质心加速度方向相反。
14
动力学/动静法
一、刚体作平移 向质心C简化: 刚体平移时惯性力系合成为一过质心的合力。
15
动力学/动静法
二、定轴转动刚体 这里仅讨论具有垂直于转轴的
理论力学经典课件达朗伯原理
02
该原理最初是为了解释物体运动 中的惯性力和主动力之间的关系 ,后来被广泛应用于理论力学和 工程学领域。
达朗伯原理的基本概念
达朗伯原理指出,在一个动力学系统 中,对于任何一个质点,其受到的合 外力等于零,即惯性力与主动力之和 为零。
这意味着在考虑物体运动时,只需要 考虑主动力,而惯性力则会自动平衡 掉。
02
达朗伯原理的数学表达
动力学方程的建立
牛顿第二定律
在经典力学中,物体的加速度与 作用力成正比,与物体的质量成 反比。
动力学方程
根据牛顿第二定律,可以建立物 体运动的动力学方程,描述物体 的速度、加速度和作用力之间的 关系。
惯性力和非惯性力的关系
惯性力
在非惯性参考系中,为了保持牛顿运 动定律的形式不变,引入了惯性力的 概念。
详细描述
达朗伯原理指出,在考虑重力、空气阻力和其他外力的情况 下,单摆的运动方程可以由牛顿第二定律和达朗伯原理推导 出来。通过分析,可以得出单摆的周期和振幅与外力之间的 关系。
刚体的平面运动分析
总结词
利用达朗伯原理,可以对刚体在平面内的运动进行动力学分析。
详细描述
在刚体平面运动的分析中,达朗伯原理可以帮助我们建立刚体的运动方程。通过 分析,可以得出刚体的速度、加速度以及作用在刚体上的力和力矩之间的关系。
达朗伯原理的应用范围
达朗伯原理在理论力学中有着广泛的应用,特别是在分析动力学系统和 振动问题时。
它可以帮助我们理解和分析物体的运动规律,例如在研究行星运动、机 械振动、弹性力学等领域中都有重要应用。
此外,达朗伯原理还可以应用于工程学领域,例如在结构设计、机械振 动控制等方面。通过应用达朗伯原理,我们可以更好地理解和预测物体 的运动行为,从而优化设计、提高系统的稳定性和可靠性。
该原理最初是为了解释物体运动 中的惯性力和主动力之间的关系 ,后来被广泛应用于理论力学和 工程学领域。
达朗伯原理的基本概念
达朗伯原理指出,在一个动力学系统 中,对于任何一个质点,其受到的合 外力等于零,即惯性力与主动力之和 为零。
这意味着在考虑物体运动时,只需要 考虑主动力,而惯性力则会自动平衡 掉。
02
达朗伯原理的数学表达
动力学方程的建立
牛顿第二定律
在经典力学中,物体的加速度与 作用力成正比,与物体的质量成 反比。
动力学方程
根据牛顿第二定律,可以建立物 体运动的动力学方程,描述物体 的速度、加速度和作用力之间的 关系。
惯性力和非惯性力的关系
惯性力
在非惯性参考系中,为了保持牛顿运 动定律的形式不变,引入了惯性力的 概念。
详细描述
达朗伯原理指出,在考虑重力、空气阻力和其他外力的情况 下,单摆的运动方程可以由牛顿第二定律和达朗伯原理推导 出来。通过分析,可以得出单摆的周期和振幅与外力之间的 关系。
刚体的平面运动分析
总结词
利用达朗伯原理,可以对刚体在平面内的运动进行动力学分析。
详细描述
在刚体平面运动的分析中,达朗伯原理可以帮助我们建立刚体的运动方程。通过 分析,可以得出刚体的速度、加速度以及作用在刚体上的力和力矩之间的关系。
达朗伯原理的应用范围
达朗伯原理在理论力学中有着广泛的应用,特别是在分析动力学系统和 振动问题时。
它可以帮助我们理解和分析物体的运动规律,例如在研究行星运动、机 械振动、弹性力学等领域中都有重要应用。
此外,达朗伯原理还可以应用于工程学领域,例如在结构设计、机械振 动控制等方面。通过应用达朗伯原理,我们可以更好地理解和预测物体 的运动行为,从而优化设计、提高系统的稳定性和可靠性。
《理论力学》第十三章 达朗贝尔原理.ppt
O
aCn C
A
Fix FOx-ma2lCn 2 mg sin 0
aCτ α
4.由动能定理计算2,T1-T2=∑Wi
1 2
J O 2
0
mg
l 2
sin
外力只有重力
例4: OB质量不计,AB长l、质量m。试求绳OA剪
HOHAI UNIVERSITY ENGINEERING MECHANICS
Fix FOx 0 (3)
4.补充方程
aC l / 2
FOx
0;
FOy
1 4
mg ;
3g
2l
HOHAI UNIVERSITY ENGINEERING MECHANICS
例3: 约束均质杆A端的绳索突然被剪断,试求杆转
到任一位置时的角加速度 、角速度及O处约束力
惯性系中:
0 FR ma FR FI
达朗贝尔原理将动力学加速度问题形 式上转换成静力学中的平衡问题,也 叫动静法
一、质点的达朗贝尔原理
ma FR F FN
FI
F
记
F N
ma
FI ma
0
称为质点的惯性力, 与加速度方向相反
则有 F FN FI 0
MIO MO (FIi ) MO FIi
MO miii miii
mi i2 JO
ω
MIO
FaOICFCρIii
i FIin
故定轴转动刚体惯性力系简化为:
作用在转轴上,且与质心加速 度方向相反的惯性力FI=maC 在对称平面内,转向与角加速度方 向相反的惯性力偶MIO=JOα
理论力学经典课件-第七章 达朗贝尔原理
aD
O
研究整体,由MA=0,经化简得:
aO
mg AD
A
FAx
FN ml AD 2 3mg
图(b)
FAy
(b)
7-3 动静法的应用
7-3-2 典型问题
再研究轮与BD杆,由MD=0,并注意到式(a),得
1 3 3 FN l AD mg (c) 3 2 F (b) – (c) 得
1. 质点达朗贝尔定理 由 F FN m a 即 F FN m a 0
FI ma
m
FN
引入惯性力 FI m a
F
ma
则 F FN FI 0 — 质点的达朗贝尔定理 即作用于质点的主动力,约束力与惯性力构成平衡力系。
2.关于惯性力: 1) 质点加速运动时,外部物质世界作用在质点上的
已知 G, ,求BC绳断瞬时,求AB绳张力。
A
C
FI
给小球加惯性力, 受力如图。 由 FT G FI 0
FT
B
a
FI
G
FT G cos
7-1 质点系的达朗贝尔原理
G FT
7-1-2 质点系的达朗贝尔原理 1. 一般形式 对 mi 有:
Fi e FNi FIi 0
FN
FBy
B
aD
aO
FBx
mg
图(b)
mg AD
A
FAx
FAy
图(c)
7-3-2 典型问题
运动至AEB水平时,速度如图(d),易知BD=AD。
vB 3lωAD
由T–T0=W,有
(d)
B
B
C
E
A
理论力学PPT课件第7章达郎贝尔原理
动力学方程的概念
总结词
动力学方程是描述系统运动状态变化的数学方程,包括牛顿第二定律、动量守恒定律、角动量守恒定律等。
详细描述
动力学方程是描述系统运动状态变化的数学模型,包括牛顿第二定律、动量守恒定律、角动量守恒定律等。这些 方程描述了系统在不同条件下运动状态的变化规律,是理论力学中的基本方程。通过求解动力学方程,可以预测 系统在不同条件下的运动状态。
冲量
在给定的时间间隔内,力对物体 的积累效应,等于物体动量的增 量。
达郎贝尔原理的重要性
揭示了力的作用效果
达郎贝尔原理揭示了力的作用效果与 冲量之间的关系,为研究动力学问题 提供了重要的理论基础。
简化问题
通过引入冲量,可以将复杂的动力学 问题简化为更易于处理的形式,有助 于理解和分析物体的运动规律。
等效约束反力在任意虚位移上所做的虚功等于原系统在相同 虚位移上所做的内力虚功。
达郎贝尔原理的证明方法
证明方法一
利用虚功原理和牛顿第二定律推 导达郎贝尔原理。
证明方法二
利用拉格朗日方程和约束反力推导 达郎贝尔原理。
证明方法三
利用哈密顿原理和变分法推导达郎 贝尔原理。
04
CATALOGUE
达郎贝尔原理的应用实例
广义达郎贝尔原理的意义
这个原理是经典力学和量子力学中的重要原理,对于理解 物理系统的动力学行为和演化规律具有重要意义。
非惯性系中的达郎贝尔原理
非惯性系中的达郎尔原理
在非惯性系中,由于存在额外的惯性力,达郎贝尔原理的形式会有所不同。此时,系统受 到的外力等于动量的时间变化率。
非惯性系中的达郎贝尔原理推导
理论力学ppt课件第 7章达郎贝尔原理
目 录
• 达郎贝尔原理的概述 • 达郎贝尔原理的基本概念 • 达郎贝尔原理的推导过程 • 达郎贝尔原理的应用实例 • 达郎贝尔原理的扩展与深化
相关主题