小学几何面积求解

合集下载

四年级奥数几何知识(面积的计算)

四年级奥数几何知识(面积的计算)

四年级奥数几何知识(面积的计算)小升初奥数:四年级奥数几何知识(面积的计算)1、人民路小学操场长90米,宽45米,改造后,长增加10米,宽增加5米。

现在操场面积比原来增加多少平方米?(思路导航)用操场现在的面积减去操场原来的面积,就得到增加的面积,操场现在的面积是:〔90+10〕&215;〔45+5〕=5000〔平方米〕,操场原来的面积是:90&215;45=4050〔平方米〕。

所以现在比原来增加5000-4050=950平方米。

〔90+10〕&215;〔45+5〕-〔90&215;45〕=950〔平方米〕练习〔1〕有一块长方形的木板,长22分米,宽8分米,如果长和宽分别减少10分米,3分米,面积比原来减少多少平方分米?练习〔2〕一块长方形地,长是80米,宽是45米,如果把宽增加5米,要使面积不变,长应减少多少米?2、一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米,如果长不变,宽减少3米,那么它的面积减少36平方米,这个长方形原来的面积是多少平方米?(思路导航)由:“宽不变,长增加6米,那么它的面积增加54平方米〞可知它的宽是54&247;6=9〔米〕;又由“长不变,宽减少3米,那么它的面积减少了36平方米〞,可知它的长为:36&247;3=12〔米〕,所以,这个长方形的面积是12&215;9=108〔平方米〕。

〔36&247;3〕&215;〔54&247;9〕=108〔平方米〕练习〔1〕一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米,如果长不变,宽增加4米,那么它的面积增加60平方米,这个长方形原来的面积是多少平方米?练习〔2〕一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米,如果长不变,宽增加3米,那么它的面积增加48平方米,这个长方形的面积原来是多少平方米?练习〔3〕一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积都减少36平方米,求这个长方形原来的面积。

小学五年级数学解析:几何图形的面积计算

小学五年级数学解析:几何图形的面积计算

小学五年级数学解析:几何图形的面积计算一、常见几何图形的面积公式1. 长方形的面积公式:长方形的面积 = 长×宽。

例题解析:例题1:一个长方形的长为8米,宽为5米,求其面积。

解答:面积 = 8米× 5米 = 40平方米。

2. 正方形的面积公式:正方形的面积 = 边长×边长。

例题解析:例题2:一个正方形的边长为6厘米,求其面积。

解答:面积 = 6厘米× 6厘米 = 36平方厘米。

3. 三角形的面积公式:三角形的面积 = 底×高÷ 2。

例题解析:例题3:一个三角形的底为10米,高为4米,求其面积。

解答:面积 = 10米× 4米÷ 2 = 20平方米。

4. 平行四边形的面积公式:平行四边形的面积 = 底×高。

例题解析:例题4:一个平行四边形的底为9米,高为5米,求其面积。

解答:面积 = 9米× 5米 = 45平方米。

5. 梯形的面积公式:梯形的面积 = (上底 + 下底)×高÷ 2。

例题解析:例题5:一个梯形的上底为6米,下底为10米,高为4米,求其面积。

解答:面积 = (6米 + 10米)× 4米÷ 2 = 32平方米。

6. 圆的面积公式:圆的面积 = π×半径²。

例题解析:例题6:一个圆的半径为3厘米,求其面积。

解答:面积 = π× 3²厘米²≈ 3.14 × 9厘米² = 28.26平方厘米。

二、复合图形的分割与面积计算1. 复合图形的定义与分割方法定义:复合图形是由多个简单图形组合而成的图形。

要计算复合图形的面积,可以将其分割成多个简单图形,然后分别计算面积,再将这些面积相加。

例题解析:例题1:计算一个由两个长方形组合而成的L形图形的面积。

解答:将L形图形分割为两个长方形,分别计算面积,再将两部分面积相加。

小学数学几何形体周长面积体积计算公式

小学数学几何形体周长面积体积计算公式

一、小学数学几何形体周长面积体积计算公式长方形的周长=(长+宽)×2 C=(a+b)×2正方形的周长=边长×4 C=4a长方形的面积=长×宽S=ab正方形的面积=边长×边长S=a.a= a三角形的面积=底×高÷2 S=ah÷2平行四边形的面积=底×高S=ah梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2直径=半径×2 d=2r半径=直径÷2 r= d÷2圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr圆的面积=圆周率×半径×半径三角形的面积=底×高÷2.公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。

长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高.公式:S=ch=πdh =2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积.公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高.公式:V=Sh圆锥的体积=1/3底面×积高。

小学数学公式大全(打印版)

小学数学公式大全(打印版)

小学数学公式大全一、小学数学几何形体周长面积体积计算公式:长方形的周长=〔长+宽〕×2 C=<a+b>×2正方形的周长=边长×4 C=4a长方形的面积=长×宽S=ab正方形的面积=边长×边长S=a.a= a三角形的面积=底×高÷2 S=ah÷2平行四边形的面积=底×高S=ah梯形的面积=〔上底+下底〕×高÷2 S=〔a+b〕h÷2直径=半径×2 d=2r 半径=直径÷2 r= d÷2圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr圆的面积=圆周率×半径×半径三角形的面积=底×高÷2. 公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=〔上底+下底〕×高÷2 公式S=<a+b>h÷2内角和:三角形的内角和=180度.长方体的体积=长×宽×高公式:V=abh长方体〔或正方体〕的体积=底面积×高公式:V=abh 正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π 公式:L=πd=2πr圆的面积=半径×半径×π 公式:S=πr2圆柱的表〔侧〕面积:圆柱的表〔侧〕面积等于底面的周长乘高.公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积. 公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高.公式:V=Sh圆锥的体积=1/3底面×积高.公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.分数的乘法则:用分子的积做分子,用分母的积做分母.分数的除法则:除以一个数等于乘以这个数的倒数.二、单位换算〔1〕1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米〔2〕1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米〔3〕1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米〔4〕1吨=1000千克1千克= 1000克= 1公斤= 2市斤〔5〕1公顷=10000平方米1亩=666.666平方米〔6〕1升=1立方分米=1000毫升1毫升=1立方厘米〔7〕1元=10角1角=10分1元=100分〔8〕1世纪=100年1年=12月大月<31天>有:1\3\5\7\8\10\12月小月<30天>的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒三、数量关系计算公式方面1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数四、算术方面1.加法交换律:两数相加交换加数的位置,和不变.2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变.3.乘法交换律:两数相乘,交换因数的位置,积不变.4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变.5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.如:〔2+4〕×5=2×5+4×5.6.除法的性质:在除法里,被除数和除数同时扩大〔或缩小〕相同的倍数,商不变.0除以任何不是0的数都得0.7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式.等式的基本性质:等式两边同时乘以〔或除以〕一个相同的数,等式仍然成立. 8.方程式:含有未知数的等式叫方程式.9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式.学会一元一次方程式的例法与计算.即例出代有χ的算式并计算.10.分数:把单位"1”平均分成若干份,表示这样的一份或几分的数,叫做分数.11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小.异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小.13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母.15.分数除以整数〔0除外〕,等于分数乘以这个整数的倒数.16.真分数:分子比分母小的分数叫做真分数.17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数.假分数大于或等于 1.18.带分数:把假分数写成整数和真分数的形式,叫做带分数.19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数〔0除外〕,分数的大小不变.20.一个数除以分数,等于这个数乘以分数的倒数.21.甲数除以乙数〔0除外〕,等于甲数乘以乙数的倒数.五、特殊问题和差问题的公式<和+差>÷2=大数<和-差>÷2=小数和倍问题和÷<倍数-1>=小数小数×倍数=大数<或者和-小数=大数>差倍问题差÷<倍数-1>=小数小数×倍数=大数<或小数+差=大数>植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:〔1〕如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×<株数-1>株距=全长÷<株数-1>〔2〕如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数〔3〕如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×<株数+1>株距=全长÷<株数+1>2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题<盈+亏>÷两次分配量之差=参加分配的份数<大盈-小盈>÷两次分配量之差=参加分配的份数<大亏-小亏>÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追与问题追与距离=速度差×追与时间追与时间=追与距离÷速度差速度差=追与距离÷追与时间流水问题〔1〕一般公式:顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=<顺流速度+逆流速度>÷2水流速度=<顺流速度-逆流速度>÷2〔2〕两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度〔3〕两船同向航行的公式:后〔前〕船静水速度-前〔后〕船静水速度=两船距离缩小〔拉大〕速度浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=<售出价÷成本-1>×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%<折扣<1>利息=本金×利率×时间税后利息=本金×利率×时间×<1-5%>工程问题〔1〕一般公式:工作效率×工作时间=工作总量工作总量÷工作时间=工作效率工作总量÷工作效率=工作时间〔2〕用假设工作总量为"1"的方法解工程问题的公式:1÷工作时间=单位时间内完成工作总量的几分之几1÷单位时间能完成的几分之几=工作时间。

小学数学几何 直线型面积的计算 完整版题型训练+详细答案

小学数学几何 直线型面积的计算 完整版题型训练+详细答案

直线形面积的计算例题讲解:板块一:基础题型:1.如图,四边形ABCD是直角梯形,其中AD=12(厘米),AB=8(厘米),BC= 15(厘米),且三角形ADE、四边形DEBF、三角形CDF的面积相等,阴影三角形DEF的面积是多少平方厘米?解析:四边形ABCD的面积是(12+15)×8÷2=108(平方厘米),108÷3=36(平方厘米)。

CF=36×2÷8=9(厘米),FB=15-9=6(厘米),AE=36×2÷12=6(厘米),EB=8-6=2(厘米)。

阴影三角形DEF的面积是36-2×6÷2=30(平方厘米)2.一块长方形的土地被分割成4个小长方形,其中三块的面积如图所示(单位:平方米),剩下一块的面积应该是多少平方米?解析:40×15÷30=20(平方米)3.如图,在三角形ABC中,BC是DC的3倍,AC是EC的3倍,三角形DEC的面积是3平方厘米.请问:三角形ABC的面积是多少平方厘米?解析:三角形ADC的面积是3×3=9(平方厘米),三角形ABC的面积是3×9=27(平方厘米)4.如图,E是BC上靠近C的三等分点,且ED是AD的2倍,三角形ABC的面积为36平方厘水.三角形BDE的面积是多少平方厘米?解析:三角形BAE的面积是36÷3×2=24(平方厘米),三角形BDE的面积24÷3×2=16(平方厘米)5.如图所示,已知三角形BEC的面积等于20平方厘米,E是AB边上靠近日点的四等分点,三角形AED的面积是多少平方厘米?平行四边形DECF的面积是多少平方厘米?解析:(1)三角形AED的面积是20×3=60(平方厘米)(2)三角形DEC的面积是20+60=80(平方厘米),三角形DEC的面积是平行四边形DECF 的面积的一半,也是平行四边形ABCD的面积的一半,所以平行四边形DECF的面积是80×2=160(平方厘米)6.如图,已知平行四边形ABCD的面积为36,三角形AOD的面积为8.三角形BOC的面积为多少?解析:根据一半模型可知,三角形AOD的面积和三角形BOC的面积是平行四边形ABCD 的面积的一半,所以三角形BOC的面积是36÷2-8=107.如图,长方形ABCD的面积是96平方厘米,E是AD边上靠近D点的三等分点,F是CD上靠近C点的四等分点.阴影部分的面积是多少平方厘米?解析:链接BD ,可知三角形ABD 的面积和三角形BDC 都是96÷2=48(平方厘米),三角形ABE 的面积是48×32=32(平方厘米)。

小学数学几何 直线型面积的计算 完整版题型训练+详细答案

小学数学几何 直线型面积的计算 完整版题型训练+详细答案

直线形面积的计算例题讲解:板块一:基础题型:1.如图,四边形ABCD是直角梯形,其中AD=12(厘米),AB=8(厘米),BC= 15(厘米),且三角形ADE、四边形DEBF、三角形CDF的面积相等,阴影三角形DEF的面积是多少平方厘米?解析:四边形ABCD的面积是(12+15)×8÷2=108(平方厘米),108÷3=36(平方厘米)。

CF=36×2÷8=9(厘米),FB=15-9=6(厘米),AE=36×2÷12=6(厘米),EB=8-6=2(厘米)。

阴影三角形DEF的面积是36-2×6÷2=30(平方厘米)2.一块长方形的土地被分割成4个小长方形,其中三块的面积如图所示(单位:平方米),剩下一块的面积应该是多少平方米?解析:40×15÷30=20(平方米)3.如图,在三角形ABC中,BC是DC的3倍,AC是EC的3倍,三角形DEC的面积是3平方厘米.请问:三角形ABC的面积是多少平方厘米?解析:三角形ADC的面积是3×3=9(平方厘米),三角形ABC的面积是3×9=27(平方厘米)4.如图,E是BC上靠近C的三等分点,且ED是AD的2倍,三角形ABC的面积为36平方厘水.三角形BDE的面积是多少平方厘米?解析:三角形BAE的面积是36÷3×2=24(平方厘米),三角形BDE的面积24÷3×2=16(平方厘米)5.如图所示,已知三角形BEC的面积等于20平方厘米,E是AB边上靠近日点的四等分点,三角形AED的面积是多少平方厘米?平行四边形DECF的面积是多少平方厘米?解析:(1)三角形AED的面积是20×3=60(平方厘米)(2)三角形DEC的面积是20+60=80(平方厘米),三角形DEC的面积是平行四边形DECF 的面积的一半,也是平行四边形ABCD的面积的一半,所以平行四边形DECF的面积是80×2=160(平方厘米)6.如图,已知平行四边形ABCD的面积为36,三角形AOD的面积为8.三角形BOC的面积为多少?解析:根据一半模型可知,三角形AOD的面积和三角形BOC的面积是平行四边形ABCD 的面积的一半,所以三角形BOC的面积是36÷2-8=107.如图,长方形ABCD的面积是96平方厘米,E是AD边上靠近D点的三等分点,F是CD上靠近C点的四等分点.阴影部分的面积是多少平方厘米?解析:链接BD ,可知三角形ABD 的面积和三角形BDC 都是96÷2=48(平方厘米),三角形ABE 的面积是48×32=32(平方厘米)。

小学常用几何公式

小学常用几何公式

小学常用几何公式
一、平面几何公式:
1.长方形面积公式:
长方形的面积=长×宽
2.正方形面积公式:
正方形的面积=边长×边长
3.三角形面积公式:
三角形的面积=底×高÷2
4.梯形面积公式:
梯形的面积=上底×下底×高÷2
5.圆面积公式:
圆的面积=π×半径×半径(其中,π为一个常数,约等于3.14)6.圆的周长公式:
圆的周长=2×π×半径
7.平行四边形面积公式:
平行四边形的面积=底×高
二、立体几何公式:
1.立方体体积公式:
立方体的体积=边长×边长×边长
2.长方体体积公式:
长方体的体积=长×宽×高
3.圆柱体体积公式:
圆柱体的体积=π×半径×半径×高
4.圆锥体体积公式:
圆锥体的体积=π×半径×半径×高÷3
5.球体积公式:
球的体积=4/3×π×半径×半径×半径
以上是小学常用的几何公式,它们可以帮助学生计算各种平面和立体图形的面积和体积。

在学习过程中,学生可以通过实例的练习巩固这些公式的应用,提高计算能力和解决问题的能力。

除了掌握这些公式,培养空间想象力也是很重要的,学生可以通过观察现实生活中的事物、建模、动手制作等方式来提升自己的空间想象力。

小学生图形面积计算题几何乐趣

小学生图形面积计算题几何乐趣

小学生图形面积计算题几何乐趣小学生图形面积计算题:几何乐趣在小学数学学科中,几何是一个重要的内容。

几何学让学生了解形状、大小和空间关系,培养他们的空间观察力和逻辑思维能力。

在几何学的学习中,图形面积计算题是一个既有挑战性又有趣味性的部分,对小学生来说,这不仅是一种学习,更是一种乐趣。

一、矩形的面积计算矩形是最基本的图形之一,它有四个边,其中相邻的两条边相等,且所有角度都是直角。

计算矩形的面积是基本的几何题型之一,它的公式为:面积等于长乘以宽。

例如,一个长为5厘米,宽为3厘米的矩形的面积是15平方厘米。

应用题例子:小明有一个长为8米,宽为4米的田地,他想计算这块田地的面积,用来规划农作物的种植。

根据矩形的面积公式,小明可以进行以下计算:面积 = 长 ×宽面积 = 8米 × 4米面积 = 32平方米所以,小明的田地面积为32平方米。

二、三角形的面积计算三角形是另一个常见的图形,它有三条边,且任意两边之和大于第三边。

计算三角形的面积也是小学生学习的重点之一,它的公式为:面积等于底乘以高的一半。

例如,一个底长为6厘米,高为4厘米的三角形的面积是12平方厘米。

应用题例子:小红做了一个用彩纸制作的三角形,它的底长为9厘米,高为5厘米。

她想知道这个三角形的面积是多少。

小红可以按以下步骤计算:面积 =(底 ×高)÷ 2面积 =(9厘米 × 5厘米)÷ 2面积 = 45平方厘米 ÷ 2面积 = 22.5 平方厘米所以,小红制作的三角形的面积为22.5平方厘米。

三、圆的面积计算除了矩形和三角形,圆也是常见的几何图形之一。

圆是一个闭合的曲线,由一条固定点(圆心)到平面上所有其他点的等距离线段组成。

计算圆的面积需要使用圆周率π,公式为:面积等于圆周率乘以半径的平方。

例如,一个半径为5厘米的圆的面积是78.5平方厘米(取π约等于3.14)。

应用题例子:小李想知道一块直径为12厘米的圆形饼干的面积。

(完整版)小学几何面积求解

(完整版)小学几何面积求解

小学几何面积求解一.选择题(共3小题)1.如图,长方形的面积与圆的面积相等,已知阴影部分的面积是84.78cm2,圆的周长是()cm.A.18.84 B.75.36 C.37.682.以下是四位同学运用转化的策略将左边的图形转化成右边的图形解决问题,其中做对的有()位.A.1 B.2 C.3 D.43.如果图中每个小方格代表1cm2,那么大长方形的面积是()cm2.A.56 B.60 C.58 D.66二.填空题(共16小题)4.如图梯形中两个阴影的三角形面积一定相等.(判断对错)5.如图所示,把底面直径4厘米、高10厘米的圆柱切成若干等份,拼成一个近似的长方体.这个长方体的体积是立方厘米,表面积是平方厘米.6.有一种饮料瓶的容积是50立方厘米,瓶身呈圆柱形(不包括瓶颈).现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米.瓶内现有饮料立方厘米.7.如图,ABCDEF为正六边形,P为其内部任意一点,若△PBC、△PEF的面积分别为3和12,则正六边形ABCDEF的面积是.8.每块砖0.6元,修补好下图中的墙体上的漏洞需要砖钱元.9.如图,四边形ABFE和四边形CDEF都是矩形,AB的长是4厘米,BC的长是3厘米,那么图中阴影部分的面积是平方厘米.10.图中阴影部分的面积是.(图中的三角形是等腰直角三角形,π=3.14)11.在如图的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)的面积为.12.如图所示,用一张斜边长为17厘米的红色直角三角形纸片,一张斜边长为29厘米的黄色直角三角形纸片,一张蓝色的正方形纸片,拼成一个直角三角形.红、黄两张三角形纸片面积之和是多少?13.如图,E,F,G,H是边长为2的正方形ABCD各边的中点,则图中阴影部分的面积等于.14.如图,外侧大正方形的边长是10厘米,图中阴影部分的面积是27.5平方厘米,那么圆内的大正方形面积是小正方形面积的倍.15.如图,三个大小相同的正方形重叠地放在一个大的正方形ABCD内,已知能看见的部分Ⅰ、Ⅱ、Ⅲ的面积分别是64平方厘米、38平方厘米、34平方厘米.那么正方形ABCD的边长是厘米.16.如图中E、F、G、H分别是边AB、BC、CD、DA上的三等分点,如果阴影部分面积为10平方厘米,则四边形ABCD的面积等于平方厘米.17.下图是一个正方体木块.M是AB的中点,N是AD的中点.用一把锋利的锯,过M、N、G三个点将木块锯成两块,使截面是平的,这个截面是边形.18.一个三角形全涂上黑色,每次进行一次操作,即把全黑三角形分成四个全等的小三角形,中间的小正三角形涂上白色,经过5次操作后,黑色部分是整个三角形的.19.长方形的广告牌长为15米,宽为10米,A、B、C、D分别在四条边上,并且C比A低4米,D在B的右边7米,则四边形ABCD的面积是平方米.三.解答题(共19小题)20.如图所示的多边形是由一个三角形和三个长方形组成的.已知三个长方形的面积分别是12平方厘米、4平方厘米和6平方厘米.三角形面积是多少平方厘米?21.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为多少平方厘米?22.给一个直角楼梯铺地毯,如图所示(图中阴影处不铺),至少需要多少平方米的地毯?(单位:米)23.求如图的体积.(π取3.14)24.A和B都是高度为12厘米的圆柱形容器,底面半径分别是1厘米和2厘米,一水龙头单独向A注水,一分钟可注满.现将两容器在它们的高度的一半出用一根细管连通(连通管的容积忽略不计),仍用该水龙头向A注水,求(1)2分钟容器A中的水有多高?(2)3分钟时容器A中的水有多高.25.求小路的占地面积.如图所示:一块长方形草坪,长20米,宽14米,中间有一条宽2米的曲折小路.26.用20个大小相同的小正方可以组成一个十字图形.把这个十字图形分割为4个部分,是的它们的形状和大小都一样(分割线须沿着图内的虚线),方法有很多,如图例所示,请你再画出与范例不同的两种分割方法.27.如图,O是半圆的圆心,AC=BC,CD=DB,AB=12厘米,求阴影部分的面积.28.计算如图的面积,你能相出不同的解法吗?请你给出三种不同的解法.(单位:米)29.如图,有三个正方形ABCD,BEFG和CHIJ,其中正方形ABCD的边长是10,正方形BEFG 的边长是6,那么三角形DFI的面积是.30.如图,正方形ABCD的边长为10厘米,E,F,G,H分别为正方形四边上的中点,求阴影部分的面积是多少平方厘米.31.如图,已知大圆半径为6cm,四个小圆的面积相等.阴影部分面积是多少平方厘米?(分合割补法)32.如图,有边长分别是15分米和20分米的两个正方形,一条直线把这两个相连的正方形分成甲、乙、丙、丁四部分.甲三角形的面积比丙三角形的面积大多少平方分米?33.如图是直角三角形中有一个内接正方形,求图中阴影部分的面积.单位:厘米.提示:分拆图形时常用“分割、填补、组合、旋转”等方法.34.看图求阴影部分的面积.(1)求出图(1)中阴影部分的面积.(2)分析上面各图形之间的关系,看一看、想一想、找一找图(4)中阴影部分的面积是.35.图形计算(1)求下图阴影部分的周长和面积.(单位:厘米)(2)三条边长分别是6厘米、8厘米、10厘米的直角三角形.将它的最短边对折到斜边相重合,(如图)图中阴影部分面积是平方厘米.36.公园里有一块长方形的草坪,为方便游客,在草坪中间开辟了两条小路(如图).现在草坪的面积是多少?(单位:m)37.边长分别为8cm和6cm的两个正方形ABCD与BEFG如图并排放在一起.连接DE交BG 于P,则图中阴影部分APEG的面积是多少?38.如图,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形面积是多少平方厘米.小学几何面积求解参考答案与试题解析一.选择题(共3小题)1.如图,长方形的面积与圆的面积相等,已知阴影部分的面积是84.78cm2,圆的周长是()cm.A.18.84 B.75.36 C.37.68【解答】解:84.78÷÷3.14,=113.04÷3.14,=36(cm2);6×6=36(cm2),3.14×6×2=37.68(cm).答:圆的周长是37.68cm.故选:C.2.以下是四位同学运用转化的策略将左边的图形转化成右边的图形解决问题,其中做对的有()位.A.1 B.2 C.3 D.4【解答】解:(1)如图,,因为阴影部分A的面积等于空白部分B的面积,所以涂色部分的面积可以转化为圆的面积,所以涂色部分的面积占整个图形面积的,所以(1)正确.(2)如图,,因为△ABC的面积可以转化为△CDE的面积,△AFG的面积可以转化为△EFH的面积,所以涂色部分的面积可以转化为10个小方格的面积,所以涂色部分的面积占整个图形面积的,即,所以(2)不正确.(3)如图,,因为阴影部分A的面积等于空白部分B的面积,所以涂色部分的面积转化为一个正方形的面积,所以涂色部分的面积占整个图形面积的,所以(3)正确.(4)因为该图形的周长转化为直径是4cm的半圆的周长和直径是4cm的圆的周长的和,而不是转化为直径是4cm的半圆的周长和一条8cm的直径的长度之和,所以(4)不正确.综上,可得做对的有2位:(1)(3).故选:B.3.如果图中每个小方格代表1cm 2,那么大长方形的面积是( )cm 2.A .56B .60C .58D .66【解答】解:1×(6×11),=1×66,=66(平方厘米);答:大长方形的面积是66平方厘米.故选:D .二.填空题(共16小题)4.如图梯形中两个阴影的三角形面积一定相等. 正确 (判断对错)【解答】解:把各顶点加上字母如下图:由于△ABD 和△ADC 是等底等高的,所以S △ABD =S △ADC ,又由于S △ABD =S △ABO +S △AOD ,S △ADC =S △DCO +S △AOD ,所以S △ABO =S △DCO ;故答案为:正确.5.如图所示,把底面直径4厘米、高10厘米的圆柱切成若干等份,拼成一个近似的长方体.这个长方体的体积是 125.6 立方厘米,表面积是 190.72 平方厘米.【解答】解:长方体的长:3.14×4÷2=6.28(厘米);长方体的宽:4÷2=2(厘米);体积:6.28×2×10=12.56×10=125.6(立方厘米);表面积是:(6.28×2+6.28×10+2×10)×2=(12.56+62.8+20)×2=190.72(平方厘米).答:这个近似长方体的体积是125.6立方厘米,表面积是190.72平方厘米.故答案为:125.6,190.72.6.有一种饮料瓶的容积是50立方厘米,瓶身呈圆柱形(不包括瓶颈).现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米.瓶内现有饮料40立方厘米.【解答】解:50×[20÷(20+5)]=50×=40(立方厘米)故答案为:40立方厘米.7.如图,ABCDEF为正六边形,P为其内部任意一点,若△PBC、△PEF的面积分别为3和12,则正六边形ABCDEF的面积是45.【解答】解:假设P到BC 的距离为h1,P到EF 的距离为h2,BC到EF的距离为h,则h1+h2=h.再假设正六边形边长为a,中心到各边的距离为d,则h=2d;△PBC的面积+△PEF的面积=a×h1÷2+a×h2÷2=a×(h1+h2)÷2=a×h÷2=a×2d÷2=ad,正六边形的面积=(a×d÷2)×6=3ad,所以正六边形的面积=3(△PBC的面积+△PEF的面积)=3×(3+12)=3×15=45;答:正六边形ABCDEF的面积是45,故答案为:45.8.每块砖0.6元,修补好下图中的墙体上的漏洞需要砖钱12.6元.【解答】解:修补好下图中的墙体上的漏洞需要的砖:(2+6)×5÷2+1=8×5÷2+1=21(块),0.6×21=12.6(元),答:修补好下图中的墙体上的漏洞需要砖钱12.6元,故答案为:12.6.9.如图,四边形ABFE和四边形CDEF都是矩形,AB的长是4厘米,BC的长是3厘米,那么图中阴影部分的面积是6平方厘米.【解答】解:上面4个三角形面积之和等于长方形ABFE面积的一半,下面3个三角形面积之和等于长方形EFCD面积的一半;阴影部分面积:4×3÷2=6(平方厘米);故答案为:6.10.图中阴影部分的面积是107平方厘米.(图中的三角形是等腰直角三角形,π=3.14)【解答】解:阴影部分的面积为:(20÷2)×(20÷2)×3.14÷2﹣(20÷2)×(20÷2)÷2,=10×10×3.14÷2﹣10×10÷2,=157﹣50,=107(cm2).答:阴影部分的面积是107平方厘米.故答案为:107平方厘米.11.在如图的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)的面积为36.【解答】解:长方形的宽,是“一”与“二”两个正方形的边长之和,长方形的长,是“一”、“三”与“二”三个正方形的边长之和,则长﹣宽=30﹣22=8,是“三”正方形的边长;宽又是两个“三”正方形与中间小正方形的边长之和,因此中间小正方形边长=22﹣8×2=6.所以中间小正方形面积=6×6=36.答:中间这个小正方形(阴影部分)的面积为36.故答案为:36.12.如图所示,用一张斜边长为17厘米的红色直角三角形纸片,一张斜边长为29厘米的黄色直角三角形纸片,一张蓝色的正方形纸片,拼成一个直角三角形.红、黄两张三角形纸片面积之和是多少?【解答】解:根据题干分析可得:29×17÷2=246.5(平方厘米),答:这两个直角三角形的面积和是246.5平方厘米.故答案为:246.5平方厘米.13.如图,E,F,G,H是边长为2的正方形ABCD各边的中点,则图中阴影部分的面积等于2.【解答】解:根据题干分析可得:2×2×=2,答:阴影部分的面积是2.故答案为:2.14.如图,外侧大正方形的边长是10厘米,图中阴影部分的面积是27.5平方厘米,那么圆内的大正方形面积是小正方形面积的5倍.【解答】解:由分析可知:总阴影部分的面积=大正方形的面积四分之一+圆内小正方形的面积四分之一=27.5(平方厘米),大正方形的面积四分之一:10×10×=25(平方厘米),所以圆内小正方形的面积四分之一:27.5﹣25=2.5(平方厘米),则圆内小正方形的面积=2.5×4=10(平方厘米),圆内大正方形的面积:(10÷2)×(10÷2)÷2×4=5×5×2=50(平方厘米),圆内的大正方形面积是小正方形面积的:50÷10=5(倍);故答案为:5.15.如图,三个大小相同的正方形重叠地放在一个大的正方形ABCD内,已知能看见的部分Ⅰ、Ⅱ、Ⅲ的面积分别是64平方厘米、38平方厘米、34平方厘米.那么正方形ABCD的边长是12.5厘米.【解答】解:如上图图所示:设出其中两条边分别为a,b:则将图Ⅱ所在的小正方形向左移动到最左边,图Ⅱ减少的面积等于图Ⅲ增加的面积,图Ⅱ面积+图Ⅲ面积=38+34=72(平方厘米),因为大正方形ABCD的边长=小正方形的边长+a=小正方形的边长+b,所以a=b,所以将图Ⅱ所在的小正方形向左移动到最左边后,图Ⅱ的面积等于图Ⅲ的面积,即8a=8b=72÷2=36(平方厘米),则a=b=36÷8=4.5(厘米),则大正方形ABCD的边长为:8+4.5=12.5(厘米).答:正方形ABCD的边长是12.5厘米.故答案为:12.5.16.如图中E、F、G、H分别是边AB、BC、CD、DA上的三等分点,如果阴影部分面积为10平方厘米,则四边形ABCD的面积等于18平方厘米.【解答】解:如图,连接BD、BH,根据面积的关系:S△AEH=×S△ABH,而S△ABH=S△ABD,所以S△AEH=S△ABD=S△ABD;同理S△CFG=S△BCD,则S△AEH+S△CFG=S四边形ABCD;同理,S△DHG+S△BEF=S四边形ABCD,所以阴影部分是四边形面积的1﹣×2,=1﹣,=,四边形的面积是10÷=18(平方厘米).答:四边形的面积是18平方厘米.故答案为:18.17.下图是一个正方体木块.M是AB的中点,N是AD的中点.用一把锋利的锯,过M、N、G三个点将木块锯成两块,使截面是平的,这个截面是五边形.【解答】解:如图过M、N、G三个点将木块锯成两块,经过三点的平面与木块的上、左、右、前、后五个面相交,所以得到的截面是五边形;故答案为:五边形.18.一个三角形全涂上黑色,每次进行一次操作,即把全黑三角形分成四个全等的小三角形,中间的小正三角形涂上白色,经过5次操作后,黑色部分是整个三角形的.【解答】解:因为每一次黑三角形个数为整个的,所以5次变换为××=.故答案为:.19.长方形的广告牌长为15米,宽为10米,A、B、C、D分别在四条边上,并且C比A低4米,D在B的右边7米,则四边形ABCD的面积是89平方米.【解答】解:如下图,中间长方形的面积是:7×4=28(平方米);三角形5、6、7、8的面积之和是:(15×10﹣28)÷2,=122÷2,=61(平方米);四边形ABCD的面积:61+28=89(平方米);答:四边形ABCD的面积是89平方米.故答案为:89.三.解答题(共19小题)20.如图所示的多边形是由一个三角形和三个长方形组成的.已知三个长方形的面积分别是12平方厘米、4平方厘米和6平方厘米.三角形面积是多少平方厘米?【解答】解:如图,设三角形面积为x平方厘米,则2x:12=6:44×2x=12×68x=728x÷8=72÷8x=9答:三角形面积是9平方厘米.21.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为多少平方厘米?【解答】解:如图,,阴影部分A的面积等于空白部分B的面积,阴影部分C的面积等于空白部分D的面积,所以阴影部分的面积和等于正方形面积的一半,4×4÷2=8(平方厘米)答:图中阴影部分的面积为8平方厘米.22.给一个直角楼梯铺地毯,如图所示(图中阴影处不铺),至少需要多少平方米的地毯?(单位:米)【解答】解:(2.5+3.2)×2=5.7×2=11.4(平方米),答:至少需要11.4平方米的地毯.23.求如图的体积.(π取3.14)【解答】解:3.14×(4÷2)2×(15+20)×,=3.14×4×35×,=219.8;答:体积是219.8;故答案为:219.8.24.A和B都是高度为12厘米的圆柱形容器,底面半径分别是1厘米和2厘米,一水龙头单独向A注水,一分钟可注满.现将两容器在它们的高度的一半出用一根细管连通(连通管的容积忽略不计),仍用该水龙头向A注水,求(1)2分钟容器A中的水有多高?(2)3分钟时容器A中的水有多高.【解答】解:(1)A容器的容积是:3.14×12=3.14×1=3.14(立方厘米),B容器的容积是:3.14×22=3.14×4=12.56(立方厘米),12.56÷3.14=4,即B容器的容积是A容器容积的4倍,因为一水龙头单独向A注水,一分钟可注满,所以要注满B容器需要4分钟,因此注满A、B两个容器需要1+4=5(分钟),已知现在两个容器在它们高度一半处用一个细管连通,2分钟后A中的水位是容器高的一半,即12÷2=6(厘米);(2)因为注满A、B两个容器需要1+4=5(分钟),所以5÷2=2.5(分钟)时,A、B容器中的水位都是容器高的一半,即6厘米,2.5分钟后两容器中的水位是同时上升的,3分钟后,实际上3﹣2.5=0.5(分钟)水位是同时上升的,0.5÷5=,12×=1.2(厘米),6+1.2=7.2(厘米);答:2分钟时,容器A中的高度是6厘米,3分钟时,容器A中水的高度是7.2厘米.25.求小路的占地面积.如图所示:一块长方形草坪,长20米,宽14米,中间有一条宽2米的曲折小路.【解答】解:小路面积为:(20+14)×2﹣2×2=64(平方米),答:小路的占地面积64平方米.26.用20个大小相同的小正方可以组成一个十字图形.把这个十字图形分割为4个部分,是的它们的形状和大小都一样(分割线须沿着图内的虚线),方法有很多,如图例所示,请你再画出与范例不同的两种分割方法.【解答】解:根据题干分析可将这个图形分割如下:27.如图,O是半圆的圆心,AC=BC,CD=DB,AB=12厘米,求阴影部分的面积.【解答】解:S阴=S扇形COB=×3.14×,=3.14×9,=28.26(平方厘米);答:阴影部分的面积是28.26平方厘米.28.计算如图的面积,你能相出不同的解法吗?请你给出三种不同的解法.(单位:米)【解答】解:方法一:(12﹣5)×(10﹣4)÷2+12×4,=7×6÷2+48,=42÷2+48,=21+48,=69(平方米);方法二:(4+10)×(12﹣5)÷2+5×4,=14×7÷2+20,=49+20,=69(平方米);方法三:10×(12﹣5)÷2+(5+12)×4÷2,=10×7÷2+17×4÷2,=35+34,=69(平方米);答:图形的面积是69平方米.29.如图,有三个正方形ABCD,BEFG和CHIJ,其中正方形ABCD的边长是10,正方形BEFG 的边长是6,那么三角形DFI的面积是20.【解答】解:连接IC,FC,∠FDC=∠ICD由正方形的对角线易知IC∥DF;等积变换得到:三角形DFI的面积=三角形DFC的面积=10×4×=20,故答案为:20.30.如图,正方形ABCD的边长为10厘米,E,F,G,H分别为正方形四边上的中点,求阴影部分的面积是多少平方厘米.【解答】解:将原图割补为下图:.;答:阴影部分的面积是20平方厘米.31.如图,已知大圆半径为6cm,四个小圆的面积相等.阴影部分面积是多少平方厘米?(分合割补法)【解答】解:阴影部分的面积:(6×2)×(6×2)÷2,=12×12÷2,=144÷2,=72(cm2).答:阴影部分的面积是72平方厘米.32.如图,有边长分别是15分米和20分米的两个正方形,一条直线把这两个相连的正方形分成甲、乙、丙、丁四部分.甲三角形的面积比丙三角形的面积大多少平方分米?【解答】解:如图,甲三角形的面积是:×20×=114(平方分米),丙三角形的面积是:×15×=64(平方分类),114﹣64=50(平方分米);故答案为:50平方分米.33.如图是直角三角形中有一个内接正方形,求图中阴影部分的面积.单位:厘米.提示:分拆图形时常用“分割、填补、组合、旋转”等方法.【解答】解:根据题干分析可得:18×12÷2=108(平方厘米),答:图中阴影部分的面积是108平方厘米.故答案为:108平方厘米.34.看图求阴影部分的面积.(1)求出图(1)中阴影部分的面积.(2)分析上面各图形之间的关系,看一看、想一想、找一找图(4)中阴影部分的面积是3.44cm2.【解答】解:(1)正方形边长:2×2=4(cm);阴影部分的面积:4×4﹣3.14×22,=16﹣12.56,=3.44(cm2);(2)把第一幅图横竖分割成4等份,可组拼成后3个图形,其阴影部分的面积是不变的,所以第四幅图中阴影部分的面积仍是3.44cm2;故答案为:3.44cm2.35.图形计算(1)求下图阴影部分的周长和面积.(单位:厘米)(2)三条边长分别是6厘米、8厘米、10厘米的直角三角形.将它的最短边对折到斜边相重合,(如图)图中阴影部分面积是6平方厘米.【解答】解:(1)如图,阴影部分的周长:3.14×10÷2×2+3.14×10×2×=31.4+15.7=47.1(厘米);两个直角等腰三角形的面积:(直角边2+直角边2)÷2=102(斜边2)÷2=100÷2=50(平方厘米);阴影部分的面积:3.14×102×﹣=78.5﹣50=28.5(平方厘米).答:阴影部分的周长是47.1厘米,面积是28.5平方厘米.(2)阴影部分大直角边长:10﹣6=4(厘米);阴影部分小直角边长:6÷2=3(厘米);阴影部分面积:4×3÷2=6(平方厘米).答:图中阴影部分面积是6平方厘米.故答案为:(1)47.1厘米,28.5平方厘米;(2)636.公园里有一块长方形的草坪,为方便游客,在草坪中间开辟了两条小路(如图).现在草坪的面积是多少?(单位:m)【解答】解:20×12﹣(2×12+2×20)+2×2,=240﹣(24+40)+4,=240﹣64+4,=180(平方米);答:现在草坪的面积是180平方米.37.边长分别为8cm和6cm的两个正方形ABCD与BEFG如图并排放在一起.连接DE交BG 于P,则图中阴影部分APEG的面积是多少?【解答】解:如图,连结DG三角形DGC的面积:8×(8﹣6)÷2=8×2÷2=8(cm2)四边形ABGD的面积:8×8﹣8=64﹣8=56(cm2)三角形AED的面积:(8+6)×8÷2=14×8÷2=56(cm2)所以三角形DPG的面积等于三角形BEP的面积所以阴影部分面积:6×6÷2=36÷2=18(cm2)答:阴影部分面积是18cm2.38.如图,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形面积是多少平方厘米.【解答】解:如下图所示,涂阴影部分小正六角星形可等分成12个小三角形,且都与外围的6个空白小三角形面积相等,所以正六边形ABCDEF的面积:16÷12×(12+6)=24(平方厘米);又由于正六边形ABCDEF又可等分成6个小正三角形,且它们与外围六个大角的面积相等,所以大正六角星形面积:24×2=48(平方厘米);答:大正六角星形面积是48平方厘米.第31页(共31页)。

五年级几何直线型面积(二)教师版

五年级几何直线型面积(二)教师版

知识要点在小学的学习中几何是一个很重要的部分,每一个几何图形都非常美妙,几何图形的美妙不仅来源于它的外形,更重要的是在几何模型上出现的那些美妙的规律,下面我们就一起来看看几个美妙的几何模型:模型一:任意四边形中的比例关系(“蝴蝶定理”):②1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系. 模型二:梯形中比例关系(“梯形蝴蝶定理”):①2213::S S a b =;②221324::::::S S S S a b ab ab =;③ABCD S 的对应份数为()2a b +.梯形蝴蝶定理给我们提供了解决梯形面积与上、下底之间关系互相转换的渠道,通过构造模型,直接应用结论,往往在题目中有事半功倍的效果.直线型面积(二)S 4S 3S 2S 1O D C B A _ A _ B_ C_ D_ O _b_a_S _3 _S _2 _S _1 _S _4蝴蝶定理求面积【例1】 (小学奥林匹克)如图,已知梯形ABCD 的面积是45平方米,高6米,底边BC 长10米,三角形AED 的面积是5平方米。

求阴影部分的面积。

B CDE【分析】 根据梯形的面积公式,4526105AD =⨯÷-=(米)。

根据梯形蝴蝶定理,:1:4AED BEC S S =V V ,所以5420S =⨯=阴影(平方米)。

【例2】 如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:(1)三角形BGC的面积;(2):AG GC =?A BDG321【分析】 ⑴根据蝴蝶定理,123BGC S ⨯=⨯V ,那么6BGC S =V ;⑵根据蝴蝶定理,()():12:361:3AG GC =++=.【例3】图中的四边形土地的总面积是52公顷,两条对角线把它分成了4个小三角形,其中2个小三角形的面积分别是6公顷和7公顷。

小学数学图形求阴影部分面积方法总结

小学数学图形求阴影部分面积方法总结

小学数学图形求阴影部分面积方法总结我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形。

我们的面积及周长都有相应的公式直接计算。

如下表:1、几何图形计算公式:1) 正方形:周长=边长×4 C=4a面积=边长×边长S=a×a2) 正方体:表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3) 长方形:周长=(长+宽)×2 C=2(a+b) 面积=长×宽S=ab4)长方体:表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) 体积=长×宽×高V=abh5)三角形:面积=底×高÷2 s=ah÷26)平行四边形:面积=底×高s=ah7)梯形:面积=(上底+下底)×高÷2 s=(a+b)×h÷28)圆形:周长=直径×Π=2×Π×半径C=πd=2πr面积=半径×半径×π9)圆柱体:侧面积=底面周长×高表面积=侧面积+底面积×2体积=底面积×高10)圆锥体:体积=底面积×高÷32、面积求解大致分为以下几类:从整体图形中减去局部;割补法:将不规则图形通过割补,转化成规则图形。

实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。

那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。

小学数学图形与几何:复杂图形面积的计算

小学数学图形与几何:复杂图形面积的计算

小学数学图形与几何:复杂图形面积的计算常用的基本方法有:一、相加法这种方法是将不规则图形分解成几个基本规则图形,分别计算它们的面积,相加求出整个图形的面积.一句话:半圆的面积+正方形的面积=总面积二、相减法这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.三、直接求法这种方法是根据已知条件,从整体出发直接求出不规则图形面积.四、重新组合法这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如:下图,求阴影部分的面积。

一句话:拆开图形,使阴影部分分布在正方形的4个角处,如下图。

五、辅助线法这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形成若干个基本规则图形,再采用相加、相减法解决即可例如:下图,求两个正方形中阴影部分的面积。

一句话:此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便(如下图)根据梯形两侧三角形面积相等原理(蝴蝶定理)可用三角形丁的面积替换丙的面积,组成一个大三角ABE,这样整个阴影部分面积恰是大正方形面积的一半.六、割补法这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如:下图,若求阴影部分的面积。

一句话:把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.七、平移法这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如:下图,求阴影部分的面积。

一句话:可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。

八、旋转法这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如:下图(1)求阴影部分的面积。

一句话:左半图形绕B点逆时针方向旋转180°,使A与C重合,从而构成右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.九、对称添补法这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如:下图,求阴影部分的面积。

小学数学面积公式的推导

小学数学面积公式的推导

小学数学面积公式的推导小学数学中,面积公式的推导通常是通过直观和几何的方法来进行的。

以下是一些常见图形面积公式的推导过程:1.正方形的面积公式推导:正方形是一个四边等长且相邻边互相垂直的四边形。

假设正方形的边长为a,那么它的面积可以通过数方格的方法得到,即a个长度为a的线段组成的面积。

因此,正方形的面积公式为:面积= a × a = a^2。

2.长方形的面积公式推导:长方形是一个对边相等且平行的四边形。

假设长方形的长为l,宽为w,那么它的面积可以通过数方格的方法得到,即l个长度为w的线段组成的面积。

因此,长方形的面积公式为:面积= l × w。

3.平行四边形的面积公式推导:平行四边形是一个对边相等且平行的四边形。

它的面积可以通过将平行四边形转化为长方形来推导。

假设平行四边形的底为b,高为h,那么它的面积等于底乘以高,即面积= b × h。

4.三角形的面积公式推导:三角形是一个有三个边和三个角的图形。

它的面积可以通过将两个完全一样的三角形拼成一个平行四边形来推导。

假设三角形的底为b,高为h,那么它的面积等于平行四边形面积的一半,即面积= (b × h) / 2。

5.圆的面积公式推导:圆是一个所有点到中心距离相等的图形。

它的面积公式可以通过将圆分割成无数个小的扇形,然后近似为矩形求和来推导。

假设圆的半径为r,那么它的面积公式为:面积= π × r^2。

这些推导过程通常在小学阶段通过直观和几何的方法来进行,帮助学生建立对面积概念的直观理解,并培养他们的空间想象能力。

随着学习的深入,学生还会学习到更复杂的图形面积计算,如梯形、菱形等,但这些通常都是在基本图形面积计算的基础上进行的。

小学数学几何形体周长、面积、体积计算公式及常见单位换算

小学数学几何形体周长、面积、体积计算公式及常见单位换算

小学数学几何形体周长、面积、体积计算公式小学数学几何形体周长、面积、体积计算公式小测常用单位换算1、长度单位换算:1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米2、面积单位换算:1平方千米=100公顷 1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米3、体(容)积单位换算:1立方米=1000立方分米 1立方分米=1000立方厘米1立方分米=1升 1立方厘米=1毫升 1立方米=1000升4、重量单位换算: 1吨=1000 千克 1千克=1000克 1千克=1公斤5、人民币单位换算:1元=10角 1角=10分 1元=100分6、时间单位换算:1世纪=100年 1年=12月大月(31天)有:1、3、5、7、8、10、12月小月(30天)的有:4、6、9、11月平年2月28天, 闰年2月29天平年全年365天,闰年全年366天1日=24小时 1时=60分 1分=60秒 1时=3600秒小学数学常见单位换算小测4、长度单位换算:1千米=()米 1米=()分米 1分米=()厘米 1厘米=()毫米1米=()分米=()厘米=( )毫米5、面积单位换算:1平方千米=( )公顷1公顷=()平方米1平方米=( )平方分米1平方分米=( )平方厘米1平方厘米=( )平方毫米1平方米=()平方分米=( )平方厘米=( )平方毫米6、体(容)积单位换算:1立方分米=( )升 1立方厘米=( )毫升 1立方米=( )升1立方米=()立方分米 1立方分米=()立方厘米 1立方厘米=( )立方毫米1立方米=( )立方分米=()立方厘米=( )立方毫米4、重量单位换算:1吨=( )千克 1千克=( )克 1千克=()公斤1吨=( )千克=( )克5、人民币单位换算:1元=( )角 1角=( )分 1元=( )分1元=( )角=()分6、时间单位换算:1世纪=( )年 1年=( )月大月(31天)有: ( )月小月(30天)的有: ( )月平年2月有( )天,闰年2月有()天平年全年有)天,闰年全年有)天1日=( )小时 1时=()分 1分=( )秒1时=( )分=( )秒。

小学数学几何形体周长、面积、体积计算公式及常见单位换算

小学数学几何形体周长、面积、体积计算公式及常见单位换算

小学数学几何形体周长、面积、体积计算公式小学数学几何形体周长、面积、体积计算公式小测常用单位换算1、长度单位换算:1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米2、面积单位换算:1平方千米=100公顷 1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米3、体(容)积单位换算:1立方米=1000立方分米 1立方分米=1000立方厘米1立方分米=1升 1立方厘米=1毫升 1立方米=1000升4、重量单位换算:1吨=1000 千克 1千克=1000克 1千克=1公斤5、人民币单位换算:1元=10角 1角=10分 1元=100分6、时间单位换算:1世纪=100年 1年=12月大月(31天)有:1、3、5、7、8、10、12月小月(30天)的有:4、6、9、11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时 1时=60分 1分=60秒 1时=3600秒小学数学常见单位换算小测4、长度单位换算:1千米=()米 1米=()分米 1分米=()厘米 1厘米=()毫米1米=()分米=()厘米=()毫米5、面积单位换算:1平方千米=( )公顷1公顷=( )平方米1平方米=( )平方分米1平方分米=( )平方厘米1平方厘米=( )平方毫米1平方米=( )平方分米=( )平方厘米=( )平方毫米6、体(容)积单位换算:1立方分米=( )升 1立方厘米=( )毫升1立方米=( )升1立方米=( )立方分米1立方分米=( )立方厘米1立方厘米=( )立方毫米1立方米=( )立方分米=( )立方厘米=( )立方毫米4、重量单位换算:)千克1千克=1吨=(( )克1千克=( )公斤( )克1吨=( )千克=5、人民币单位换算:( ) 1元=( )角 1角=分 1元=( )分( )分1元=( )角=6、时间单位换算:)年1年=1世纪=(( )月大月(31天)有: ( )月小月(30天)的有: ( )月)天, 闰年2月有平年2月有(( )天)平年全年有 )天, 闰年全年有天( ) 1日=( )小时 1时=分 1分=( )秒( )秒1时=( )分=。

小学综合算式专项测题几何形的面积计算

小学综合算式专项测题几何形的面积计算

小学综合算式专项测题几何形的面积计算小学综合算式专项测题:几何形的面积计算几何形的面积计算是小学数学中重要的内容之一。

通过计算几何形的面积,孩子们可以培养对空间的感知和判断能力,进一步巩固和拓展他们在数学上的基础知识。

下面是几个常见几何形的面积计算题目,帮助孩子们加深对该知识点的理解。

1. 长方形面积计算问题描述:一个长方形的长为5厘米,宽为3厘米,请计算其面积。

解答:根据长方形的定义,长方形的面积可以通过长乘以宽来计算。

因此,该长方形的面积为5厘米乘以3厘米,即15平方厘米。

2. 正方形面积计算问题描述:一块土地的形状是一个正方形,其中一边长为6米,请计算该土地的面积。

解答:正方形的面积计算公式为边长的平方。

因此,该正方形的面积等于6米乘以6米,即36平方米。

3. 三角形面积计算问题描述:一个三角形的底边长为4米,高为3米。

请计算这个三角形的面积。

解答:三角形的面积计算公式为底边乘以高的一半。

根据题目给出的数据,该三角形的面积等于4米乘以3米再除以2,即6平方米。

4. 平行四边形面积计算问题描述:一个平行四边形的底为5厘米,高为2厘米。

请计算该平行四边形的面积。

解答:平行四边形的面积计算公式为底乘以高。

根据题目给出的数据,该平行四边形的面积等于5厘米乘以2厘米,即10平方厘米。

5. 梯形面积计算问题描述:一个梯形的上底为3厘米,下底为7厘米,高为4厘米。

请计算该梯形的面积。

解答:梯形的面积计算公式为上底加下底乘以高的一半。

根据题目给出的数据,该梯形的面积等于(3厘米+7厘米)乘以4厘米再除以2,即20平方厘米。

通过以上几个题目的解答,我们可以发现计算几何形的面积并不复杂,只需要根据相应的面积计算公式进行简单的计算即可。

孩子们可以通过多做几道类似的题目来熟练掌握这个知识点,并且在实际生活中应用到解决实际问题中。

总结:在小学综合算式中,几何形的面积计算是一个重要的知识点。

通过计算不同几何形的面积,可以帮助孩子们培养对空间的感知和判断能力,巩固和拓展他们在数学上的基础知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学几何面积求解一.选择题(共3小题)1.如图,长方形的面积与圆的面积相等,已知阴影部分的面积是84.78cm2,圆的周长是()cm.A.18.84 B.75.36 C.37.682.以下是四位同学运用转化的策略将左边的图形转化成右边的图形解决问题,其中做对的有()位.A.1 B.2 C.3 D.43.如果图中每个小方格代表1cm2,那么大长方形的面积是()cm2.A.56 B.60 C.58 D.66二.填空题(共16小题)4.如图梯形中两个阴影的三角形面积一定相等.(判断对错)5.如图所示,把底面直径4厘米、高10厘米的圆柱切成若干等份,拼成一个近似的长方体.这个长方体的体积是立方厘米,表面积是平方厘米.6.有一种饮料瓶的容积是50立方厘米,瓶身呈圆柱形(不包括瓶颈).现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米.瓶内现有饮料立方厘米.7.如图,ABCDEF为正六边形,P为其内部任意一点,若△PBC、△PEF的面积分别为3和12,则正六边形ABCDEF的面积是.8.每块砖0.6元,修补好下图中的墙体上的漏洞需要砖钱元.9.如图,四边形ABFE和四边形CDEF都是矩形,AB的长是4厘米,BC的长是3厘米,那么图中阴影部分的面积是平方厘米.10.图中阴影部分的面积是.(图中的三角形是等腰直角三角形,π=3.14)11.在如图的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)的面积为.12.如图所示,用一张斜边长为17厘米的红色直角三角形纸片,一张斜边长为29厘米的黄色直角三角形纸片,一张蓝色的正方形纸片,拼成一个直角三角形.红、黄两张三角形纸片面积之和是多少?13.如图,E,F,G,H是边长为2的正方形ABCD各边的中点,则图中阴影部分的面积等于.14.如图,外侧大正方形的边长是10厘米,图中阴影部分的面积是27.5平方厘米,那么圆内的大正方形面积是小正方形面积的倍.15.如图,三个大小相同的正方形重叠地放在一个大的正方形ABCD内,已知能看见的部分Ⅰ、Ⅱ、Ⅲ的面积分别是64平方厘米、38平方厘米、34平方厘米.那么正方形ABCD的边长是厘米.16.如图中E、F、G、H分别是边AB、BC、CD、DA上的三等分点,如果阴影部分面积为10平方厘米,则四边形ABCD的面积等于平方厘米.17.下图是一个正方体木块.M是AB的中点,N是AD的中点.用一把锋利的锯,过M、N、G三个点将木块锯成两块,使截面是平的,这个截面是边形.18.一个三角形全涂上黑色,每次进行一次操作,即把全黑三角形分成四个全等的小三角形,中间的小正三角形涂上白色,经过5次操作后,黑色部分是整个三角形的.19.长方形的广告牌长为15米,宽为10米,A、B、C、D分别在四条边上,并且C比A低4米,D在B的右边7米,则四边形ABCD的面积是平方米.三.解答题(共19小题)20.如图所示的多边形是由一个三角形和三个长方形组成的.已知三个长方形的面积分别是12平方厘米、4平方厘米和6平方厘米.三角形面积是多少平方厘米?21.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为多少平方厘米?22.给一个直角楼梯铺地毯,如图所示(图中阴影处不铺),至少需要多少平方米的地毯?(单位:米)23.求如图的体积.(π取3.14)24.A和B都是高度为12厘米的圆柱形容器,底面半径分别是1厘米和2厘米,一水龙头单独向A注水,一分钟可注满.现将两容器在它们的高度的一半出用一根细管连通(连通管的容积忽略不计),仍用该水龙头向A注水,求(1)2分钟容器A中的水有多高?(2)3分钟时容器A中的水有多高.25.求小路的占地面积.如图所示:一块长方形草坪,长20米,宽14米,中间有一条宽2米的曲折小路.26.用20个大小相同的小正方可以组成一个十字图形.把这个十字图形分割为4个部分,是的它们的形状和大小都一样(分割线须沿着图内的虚线),方法有很多,如图例所示,请你再画出与范例不同的两种分割方法.27.如图,O是半圆的圆心,AC=BC,CD=DB,AB=12厘米,求阴影部分的面积.28.计算如图的面积,你能相出不同的解法吗?请你给出三种不同的解法.(单位:米)29.如图,有三个正方形ABCD,BEFG和CHIJ,其中正方形ABCD的边长是10,正方形BEFG 的边长是6,那么三角形DFI的面积是.30.如图,正方形ABCD的边长为10厘米,E,F,G,H分别为正方形四边上的中点,求阴影部分的面积是多少平方厘米.31.如图,已知大圆半径为6cm,四个小圆的面积相等.阴影部分面积是多少平方厘米?(分合割补法)32.如图,有边长分别是15分米和20分米的两个正方形,一条直线把这两个相连的正方形分成甲、乙、丙、丁四部分.甲三角形的面积比丙三角形的面积大多少平方分米?33.如图是直角三角形中有一个内接正方形,求图中阴影部分的面积.单位:厘米.提示:分拆图形时常用“分割、填补、组合、旋转”等方法.34.看图求阴影部分的面积.(1)求出图(1)中阴影部分的面积.(2)分析上面各图形之间的关系,看一看、想一想、找一找图(4)中阴影部分的面积是.35.图形计算(1)求下图阴影部分的周长和面积.(单位:厘米)(2)三条边长分别是6厘米、8厘米、10厘米的直角三角形.将它的最短边对折到斜边相重合,(如图)图中阴影部分面积是平方厘米.36.公园里有一块长方形的草坪,为方便游客,在草坪中间开辟了两条小路(如图).现在草坪的面积是多少?(单位:m)37.边长分别为8cm和6cm的两个正方形ABCD与BEFG如图并排放在一起.连接DE交BG 于P,则图中阴影部分APEG的面积是多少?38.如图,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形面积是多少平方厘米.小学几何面积求解参考答案与试题解析一.选择题(共3小题)1.如图,长方形的面积与圆的面积相等,已知阴影部分的面积是84.78cm2,圆的周长是()cm.A.18.84 B.75.36 C.37.68【解答】解:84.78÷÷3.14,=113.04÷3.14,=36(cm2);6×6=36(cm2),3.14×6×2=37.68(cm).答:圆的周长是37.68cm.故选:C.2.以下是四位同学运用转化的策略将左边的图形转化成右边的图形解决问题,其中做对的有()位.A.1 B.2 C.3 D.4【解答】解:(1)如图,,因为阴影部分A的面积等于空白部分B的面积,所以涂色部分的面积可以转化为圆的面积,所以涂色部分的面积占整个图形面积的,所以(1)正确.(2)如图,,因为△ABC的面积可以转化为△CDE的面积,△AFG的面积可以转化为△EFH的面积,所以涂色部分的面积可以转化为10个小方格的面积,所以涂色部分的面积占整个图形面积的,即,所以(2)不正确.(3)如图,,因为阴影部分A的面积等于空白部分B的面积,所以涂色部分的面积转化为一个正方形的面积,所以涂色部分的面积占整个图形面积的,所以(3)正确.(4)因为该图形的周长转化为直径是4cm的半圆的周长和直径是4cm的圆的周长的和,而不是转化为直径是4cm的半圆的周长和一条8cm的直径的长度之和,所以(4)不正确.综上,可得做对的有2位:(1)(3).故选:B.3.如果图中每个小方格代表1cm 2,那么大长方形的面积是( )cm 2.A .56B .60C .58D .66【解答】解:1×(6×11),=1×66,=66(平方厘米);答:大长方形的面积是66平方厘米.故选:D .二.填空题(共16小题)4.如图梯形中两个阴影的三角形面积一定相等. 正确 (判断对错)【解答】解:把各顶点加上字母如下图:由于△ABD 和△ADC 是等底等高的,所以S △ABD =S △ADC ,又由于S △ABD =S △ABO +S △AOD ,S △ADC =S △DCO +S △AOD ,所以S △ABO =S △DCO ;故答案为:正确.5.如图所示,把底面直径4厘米、高10厘米的圆柱切成若干等份,拼成一个近似的长方体.这个长方体的体积是 125.6 立方厘米,表面积是 190.72 平方厘米.【解答】解:长方体的长:3.14×4÷2=6.28(厘米);长方体的宽:4÷2=2(厘米);体积:6.28×2×10=12.56×10=125.6(立方厘米);表面积是:(6.28×2+6.28×10+2×10)×2=(12.56+62.8+20)×2=190.72(平方厘米).答:这个近似长方体的体积是125.6立方厘米,表面积是190.72平方厘米.故答案为:125.6,190.72.6.有一种饮料瓶的容积是50立方厘米,瓶身呈圆柱形(不包括瓶颈).现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米.瓶内现有饮料40立方厘米.【解答】解:50×[20÷(20+5)]=50×=40(立方厘米)故答案为:40立方厘米.7.如图,ABCDEF为正六边形,P为其内部任意一点,若△PBC、△PEF的面积分别为3和12,则正六边形ABCDEF的面积是45.【解答】解:假设P到BC 的距离为h1,P到EF 的距离为h2,BC到EF的距离为h,则h1+h2=h.再假设正六边形边长为a,中心到各边的距离为d,则h=2d;△PBC的面积+△PEF的面积=a×h1÷2+a×h2÷2=a×(h1+h2)÷2=a×h÷2=a×2d÷2=ad,正六边形的面积=(a×d÷2)×6=3ad,所以正六边形的面积=3(△PBC的面积+△PEF的面积)=3×(3+12)=3×15=45;答:正六边形ABCDEF的面积是45,故答案为:45.8.每块砖0.6元,修补好下图中的墙体上的漏洞需要砖钱12.6元.【解答】解:修补好下图中的墙体上的漏洞需要的砖:(2+6)×5÷2+1=8×5÷2+1=21(块),0.6×21=12.6(元),答:修补好下图中的墙体上的漏洞需要砖钱12.6元,故答案为:12.6.9.如图,四边形ABFE和四边形CDEF都是矩形,AB的长是4厘米,BC的长是3厘米,那么图中阴影部分的面积是6平方厘米.【解答】解:上面4个三角形面积之和等于长方形ABFE面积的一半,下面3个三角形面积之和等于长方形EFCD面积的一半;阴影部分面积:4×3÷2=6(平方厘米);故答案为:6.10.图中阴影部分的面积是107平方厘米.(图中的三角形是等腰直角三角形,π=3.14)【解答】解:阴影部分的面积为:(20÷2)×(20÷2)×3.14÷2﹣(20÷2)×(20÷2)÷2,=10×10×3.14÷2﹣10×10÷2,=157﹣50,=107(cm2).答:阴影部分的面积是107平方厘米.故答案为:107平方厘米.11.在如图的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)的面积为36.【解答】解:长方形的宽,是“一”与“二”两个正方形的边长之和,长方形的长,是“一”、“三”与“二”三个正方形的边长之和,则长﹣宽=30﹣22=8,是“三”正方形的边长;宽又是两个“三”正方形与中间小正方形的边长之和,因此中间小正方形边长=22﹣8×2=6.所以中间小正方形面积=6×6=36.答:中间这个小正方形(阴影部分)的面积为36.故答案为:36.12.如图所示,用一张斜边长为17厘米的红色直角三角形纸片,一张斜边长为29厘米的黄色直角三角形纸片,一张蓝色的正方形纸片,拼成一个直角三角形.红、黄两张三角形纸片面积之和是多少?【解答】解:根据题干分析可得:29×17÷2=246.5(平方厘米),答:这两个直角三角形的面积和是246.5平方厘米.故答案为:246.5平方厘米.13.如图,E,F,G,H是边长为2的正方形ABCD各边的中点,则图中阴影部分的面积等于2.【解答】解:根据题干分析可得:2×2×=2,答:阴影部分的面积是2.故答案为:2.14.如图,外侧大正方形的边长是10厘米,图中阴影部分的面积是27.5平方厘米,那么圆内的大正方形面积是小正方形面积的5倍.【解答】解:由分析可知:总阴影部分的面积=大正方形的面积四分之一+圆内小正方形的面积四分之一=27.5(平方厘米),大正方形的面积四分之一:10×10×=25(平方厘米),所以圆内小正方形的面积四分之一:27.5﹣25=2.5(平方厘米),则圆内小正方形的面积=2.5×4=10(平方厘米),圆内大正方形的面积:(10÷2)×(10÷2)÷2×4=5×5×2=50(平方厘米),圆内的大正方形面积是小正方形面积的:50÷10=5(倍);故答案为:5.15.如图,三个大小相同的正方形重叠地放在一个大的正方形ABCD内,已知能看见的部分Ⅰ、Ⅱ、Ⅲ的面积分别是64平方厘米、38平方厘米、34平方厘米.那么正方形ABCD的边长是12.5厘米.【解答】解:如上图图所示:设出其中两条边分别为a,b:则将图Ⅱ所在的小正方形向左移动到最左边,图Ⅱ减少的面积等于图Ⅲ增加的面积,图Ⅱ面积+图Ⅲ面积=38+34=72(平方厘米),因为大正方形ABCD的边长=小正方形的边长+a=小正方形的边长+b,所以a=b,所以将图Ⅱ所在的小正方形向左移动到最左边后,图Ⅱ的面积等于图Ⅲ的面积,即8a=8b=72÷2=36(平方厘米),则a=b=36÷8=4.5(厘米),则大正方形ABCD的边长为:8+4.5=12.5(厘米).答:正方形ABCD的边长是12.5厘米.故答案为:12.5.16.如图中E、F、G、H分别是边AB、BC、CD、DA上的三等分点,如果阴影部分面积为10平方厘米,则四边形ABCD的面积等于18平方厘米.【解答】解:如图,连接BD、BH,根据面积的关系:S△AEH=×S△ABH,而S△ABH=S△ABD,所以S△AEH=S△ABD=S△ABD;同理S△CFG=S△BCD,则S△AEH+S△CFG=S四边形ABCD;同理,S△DHG+S△BEF=S四边形ABCD,所以阴影部分是四边形面积的1﹣×2,=1﹣,=,四边形的面积是10÷=18(平方厘米).答:四边形的面积是18平方厘米.故答案为:18.17.下图是一个正方体木块.M是AB的中点,N是AD的中点.用一把锋利的锯,过M、N、G三个点将木块锯成两块,使截面是平的,这个截面是五边形.【解答】解:如图过M、N、G三个点将木块锯成两块,经过三点的平面与木块的上、左、右、前、后五个面相交,所以得到的截面是五边形;故答案为:五边形.18.一个三角形全涂上黑色,每次进行一次操作,即把全黑三角形分成四个全等的小三角形,中间的小正三角形涂上白色,经过5次操作后,黑色部分是整个三角形的.【解答】解:因为每一次黑三角形个数为整个的,所以5次变换为××=.故答案为:.19.长方形的广告牌长为15米,宽为10米,A、B、C、D分别在四条边上,并且C比A低4米,D在B的右边7米,则四边形ABCD的面积是89平方米.【解答】解:如下图,中间长方形的面积是:7×4=28(平方米);三角形5、6、7、8的面积之和是:(15×10﹣28)÷2,=122÷2,=61(平方米);四边形ABCD的面积:61+28=89(平方米);答:四边形ABCD的面积是89平方米.故答案为:89.三.解答题(共19小题)20.如图所示的多边形是由一个三角形和三个长方形组成的.已知三个长方形的面积分别是12平方厘米、4平方厘米和6平方厘米.三角形面积是多少平方厘米?【解答】解:如图,设三角形面积为x平方厘米,则2x:12=6:44×2x=12×68x=728x÷8=72÷8x=9答:三角形面积是9平方厘米.21.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为多少平方厘米?【解答】解:如图,,阴影部分A的面积等于空白部分B的面积,阴影部分C的面积等于空白部分D的面积,所以阴影部分的面积和等于正方形面积的一半,4×4÷2=8(平方厘米)答:图中阴影部分的面积为8平方厘米.22.给一个直角楼梯铺地毯,如图所示(图中阴影处不铺),至少需要多少平方米的地毯?(单位:米)【解答】解:(2.5+3.2)×2=5.7×2=11.4(平方米),答:至少需要11.4平方米的地毯.23.求如图的体积.(π取3.14)【解答】解:3.14×(4÷2)2×(15+20)×,=3.14×4×35×,=219.8;答:体积是219.8;故答案为:219.8.24.A和B都是高度为12厘米的圆柱形容器,底面半径分别是1厘米和2厘米,一水龙头单独向A注水,一分钟可注满.现将两容器在它们的高度的一半出用一根细管连通(连通管的容积忽略不计),仍用该水龙头向A注水,求(1)2分钟容器A中的水有多高?(2)3分钟时容器A中的水有多高.【解答】解:(1)A容器的容积是:3.14×12=3.14×1=3.14(立方厘米),B容器的容积是:3.14×22=3.14×4=12.56(立方厘米),12.56÷3.14=4,即B容器的容积是A容器容积的4倍,因为一水龙头单独向A注水,一分钟可注满,所以要注满B容器需要4分钟,因此注满A、B两个容器需要1+4=5(分钟),已知现在两个容器在它们高度一半处用一个细管连通,2分钟后A中的水位是容器高的一半,即12÷2=6(厘米);(2)因为注满A、B两个容器需要1+4=5(分钟),所以5÷2=2.5(分钟)时,A、B容器中的水位都是容器高的一半,即6厘米,2.5分钟后两容器中的水位是同时上升的,3分钟后,实际上3﹣2.5=0.5(分钟)水位是同时上升的,0.5÷5=,12×=1.2(厘米),6+1.2=7.2(厘米);答:2分钟时,容器A中的高度是6厘米,3分钟时,容器A中水的高度是7.2厘米.25.求小路的占地面积.如图所示:一块长方形草坪,长20米,宽14米,中间有一条宽2米的曲折小路.【解答】解:小路面积为:(20+14)×2﹣2×2=64(平方米),答:小路的占地面积64平方米.26.用20个大小相同的小正方可以组成一个十字图形.把这个十字图形分割为4个部分,是的它们的形状和大小都一样(分割线须沿着图内的虚线),方法有很多,如图例所示,请你再画出与范例不同的两种分割方法.【解答】解:根据题干分析可将这个图形分割如下:27.如图,O是半圆的圆心,AC=BC,CD=DB,AB=12厘米,求阴影部分的面积.【解答】解:S阴=S扇形COB=×3.14×,=3.14×9,=28.26(平方厘米);答:阴影部分的面积是28.26平方厘米.28.计算如图的面积,你能相出不同的解法吗?请你给出三种不同的解法.(单位:米)【解答】解:方法一:(12﹣5)×(10﹣4)÷2+12×4,=7×6÷2+48,=42÷2+48,=21+48,=69(平方米);方法二:(4+10)×(12﹣5)÷2+5×4,=14×7÷2+20,=49+20,=69(平方米);方法三:10×(12﹣5)÷2+(5+12)×4÷2,=10×7÷2+17×4÷2,=35+34,=69(平方米);答:图形的面积是69平方米.29.如图,有三个正方形ABCD,BEFG和CHIJ,其中正方形ABCD的边长是10,正方形BEFG 的边长是6,那么三角形DFI的面积是20.【解答】解:连接IC,FC,∠FDC=∠ICD由正方形的对角线易知IC∥DF;等积变换得到:三角形DFI的面积=三角形DFC的面积=10×4×=20,故答案为:20.30.如图,正方形ABCD的边长为10厘米,E,F,G,H分别为正方形四边上的中点,求阴影部分的面积是多少平方厘米.【解答】解:将原图割补为下图:.;答:阴影部分的面积是20平方厘米.31.如图,已知大圆半径为6cm,四个小圆的面积相等.阴影部分面积是多少平方厘米?(分合割补法)【解答】解:阴影部分的面积:(6×2)×(6×2)÷2,=12×12÷2,=144÷2,=72(cm2).答:阴影部分的面积是72平方厘米.32.如图,有边长分别是15分米和20分米的两个正方形,一条直线把这两个相连的正方形分成甲、乙、丙、丁四部分.甲三角形的面积比丙三角形的面积大多少平方分米?【解答】解:如图,甲三角形的面积是:×20×=114(平方分米),丙三角形的面积是:×15×=64(平方分类),114﹣64=50(平方分米);故答案为:50平方分米.33.如图是直角三角形中有一个内接正方形,求图中阴影部分的面积.单位:厘米.提示:分拆图形时常用“分割、填补、组合、旋转”等方法.【解答】解:根据题干分析可得:18×12÷2=108(平方厘米),答:图中阴影部分的面积是108平方厘米.故答案为:108平方厘米.34.看图求阴影部分的面积.(1)求出图(1)中阴影部分的面积.(2)分析上面各图形之间的关系,看一看、想一想、找一找图(4)中阴影部分的面积是3.44cm2.【解答】解:(1)正方形边长:2×2=4(cm);阴影部分的面积:4×4﹣3.14×22,=16﹣12.56,=3.44(cm2);(2)把第一幅图横竖分割成4等份,可组拼成后3个图形,其阴影部分的面积是不变的,所以第四幅图中阴影部分的面积仍是3.44cm2;故答案为:3.44cm2.35.图形计算(1)求下图阴影部分的周长和面积.(单位:厘米)(2)三条边长分别是6厘米、8厘米、10厘米的直角三角形.将它的最短边对折到斜边相重合,(如图)图中阴影部分面积是6平方厘米.【解答】解:(1)如图,阴影部分的周长:3.14×10÷2×2+3.14×10×2×=31.4+15.7=47.1(厘米);两个直角等腰三角形的面积:(直角边2+直角边2)÷2=102(斜边2)÷2=100÷2=50(平方厘米);阴影部分的面积:3.14×102×﹣=78.5﹣50=28.5(平方厘米).答:阴影部分的周长是47.1厘米,面积是28.5平方厘米.(2)阴影部分大直角边长:10﹣6=4(厘米);阴影部分小直角边长:6÷2=3(厘米);阴影部分面积:4×3÷2=6(平方厘米).答:图中阴影部分面积是6平方厘米.故答案为:(1)47.1厘米,28.5平方厘米;(2)636.公园里有一块长方形的草坪,为方便游客,在草坪中间开辟了两条小路(如图).现在草坪的面积是多少?(单位:m)【解答】解:20×12﹣(2×12+2×20)+2×2,=240﹣(24+40)+4,=240﹣64+4,=180(平方米);答:现在草坪的面积是180平方米.37.边长分别为8cm和6cm的两个正方形ABCD与BEFG如图并排放在一起.连接DE交BG 于P,则图中阴影部分APEG的面积是多少?【解答】解:如图,连结DG三角形DGC的面积:8×(8﹣6)÷2=8×2÷2=8(cm2)四边形ABGD的面积:8×8﹣8=64﹣8=56(cm2)三角形AED的面积:(8+6)×8÷2=14×8÷2=56(cm2)所以三角形DPG的面积等于三角形BEP的面积所以阴影部分面积:6×6÷2=36÷2=18(cm2)答:阴影部分面积是18cm2.38.如图,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形面积是多少平方厘米.【解答】解:如下图所示,涂阴影部分小正六角星形可等分成12个小三角形,且都与外围的6个空白小三角形面积相等,所以正六边形ABCDEF的面积:16÷12×(12+6)=24(平方厘米);又由于正六边形ABCDEF又可等分成6个小正三角形,且它们与外围六个大角的面积相等,所以大正六角星形面积:24×2=48(平方厘米);答:大正六角星形面积是48平方厘米.第31页(共31页)。

相关文档
最新文档