二次函数最值及应用

合集下载

【数学中考一轮复习】 二次函数最值应用(含解析)

【数学中考一轮复习】 二次函数最值应用(含解析)

专项训练 二次函数最值应用结合图象,分两类情形: (1)最值在顶点位置如图所示,P 为二次函数y =ax 2+bx +c (a ≠0)的图象的顶点,则二次函数的最值(开口向上有最小值,开口向下有最大值)为顶点P 的纵坐标ab ac 442-.(2)最值不在顶点位置如图所示,M (x 1,y 1),N (x 2,y 2)为y 二次函数y =ax 2+bx +c (a ≠0)的图象上的两点,则当x 1≤x ≤x 2时,二次函数的最大值为y 2,最小值为ab ac 442-.具体应结合开口方向,根据M ,N ,P 三个点的位置,通过比较y M ,y P ,y N ,确定二次函数的最值.如果在实际问题中,还要考虑取值的实际意义,综合进行分析,确定二次函数的最值. 类型一 面积中的最值应用1.把一根长为120 cm 的铁丝剪成两段,并把每一段铁丝围成一个正方形.若设围成的一个正方形的边长为 x cm.(1)要使这两个正方形的面积的和等于650 cm 2,则剪出的两段铁丝长分别是多少? (2)剪出的两段铁丝长分别是多少cm 时,这两个正方形的面积和最小?最小值是多少?2.如图所示,在足够大的空地上有一段长为100 m 的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,其中AD ≤MN ,已知矩形菜园的一边靠墙,另三边一共用了100 m 的木栏.(1)若AD <20 m ,所围成的矩形菜园的面积为450 m 2,求所利用的旧墙AD 的长; (2)求矩形菜园ABCD 面积的最大值.3.如图所示,为美化中心城区环境,政府计划在长为30米,宽为20米的矩形场地ABCD 上修建公园其中要留出宽度相等的三条小路,且两条与AB 平行,另一条与AD 平行,其余部分建成花圃.(1)若花圃总面积为448平方米,求小路宽为多少米?(2)已知某园林公司修建小路的造价y 1(元)和修建花圃的造价y 2(元)与修建面积s (平方米)之间的函数关系分别为y 1=40s 和y 2=35s +20000.若要求小路宽度不少于2米且不超过4米,求小路宽为多少米时修建小路和花圃的总造价最低?类型二 利润中的最值应用4.超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y (瓶)与每瓶售价x (元)之间满足一次函数关系(其中10≤x ≤15,且x 为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶.(1)求y 与x 之间的函数关系式;(2)设超市销售该品牌洗手液每天销售利润为w 元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元?5.在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售调查发现,线下的月销量y (单位:件)与线下售价x (单位:元/件,12≤x <24)满足一次函数的关系,部分数据如下表:(1)求y 与x 的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.6.2020年是决战决胜扶贫攻坚和全面建成小康社会的收官之年,荆门市政府加大各部门和单位对口扶贫力度.某单位的帮扶对象种植的农产品在某月(按30天计)的第x 天(x为正整数)的销售价格p (元/千克)关于x 的函数关系式为p =⎪⎪⎩⎪⎪⎨⎧≤<+-≤<+)3020(1251)200(452x x x x ,销售量y (千克)与x 之间的关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)当月第几天,该农产品的销售额最大,最大销售额是多少?(销售额=销售量×销售价格)类型三运动中的最值应用,7.周末,小明陪爸爸去打高尔夫球,小明看到爸爸打出的球的飞行路线的形状如图所示,如果不考虑空气阻力,小球的飞行路线是一条抛物线.小明测得小球的飞行高度h(单位:m)与飞行时间t(单位:s)的几组值后,发现h与t满足的函数关系式是h=20t-5t2. (1)小球飞行时间是多少时达到最大高度,求最大高度是多少?(2)小球飞行时间t在什么范围时,飞行高度不低于15 m?8.如图所示,一位篮球运动员在离篮圈水平距离4 m处跳起投篮,球运行的高度y(m)与运行的水平距离x(m)满足解析式y=ax2+x+c,当球运行的水平距离为1.5 m时,球离地面高度为3.3 m,球在空中达到最大高度后,准确落入篮圈内.已知篮圈中心离地面距离为3.05 m.(1)当球运行的水平距离为多少时,达到最大高度?最大高度为多少?(2)若该运动员身高1.8 m,这次跳投时,球在他头顶上方0.25 m处出手,问球出手时他跳离地面多高?9.如图所示,某足球运动员站在点O处练习射门将足球从离地面0.5 m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c.已知足球飞行0.8 s时,离地面的高度为3.5 m.(1)a=_________;c=___________.(2)当足球飞行的时间为多少时,足球离地面最高?最大高度是多少?(3)若足球飞行的水平距离x(单位:m)与飞行时间(单位:s)之间具有函数关系x=10t,已知球门的高度为 2.44 m,如果该运动员正对球门射门时,离球门的水平距离为28 m,他能否将球直接射入球门?巩固训练1.某宾馆共有80间客房宾馆负责人根据经验作出预测:今年7月份,每天的房间空闲数y (间)与定价x (元/间)之间满足y =41x-42(x ≥168).若宾馆每天的日常运营成本为5000元,有客人入住的房间,宾馆每天每间另外还需支出28元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠,应将房间定价确定为( ) A.252元/间 B.256元/间 C.258元/间 D.260元/间 2.如图所示,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900 m (篱笆的厚度忽略不计),当AB =_______m 时,矩形土地ABCD 的面积最大.3.小明和小丽先后从A 地出发沿同一直道去B 地.设小丽出发第x min 时,小丽、小明离B 地的距离分别为y 1 m 、y 2 m.y 1与x 之间的函数表达式是y 1=-180x +2250,y2与x 之间的函数表达式是y 2=-10x 2-100x +2000.(1)小丽出发时,小明离A 地的距离为_________m ;(2)小丽出发至小明到达B 地这段时间内,两人何时相距最近?最近距离是多少?4.因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y (桶)与销售单价x (元)之间满足一次函数关系,其图象如图所示. (1)求y 与x 之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价-进价)参考答案1.解:(1)根据题意知:一个正方形的边长分别为x cm , 则另一个正方形的边长为41(120-4x )=(30-x )cm , 且分成的铁丝一段长度为4x cm ,另一段为(120-4x )cm ,x 2+(30-x )2=650. 整理得:x 2-30x +125=0,解得:x 1=5,x 2=25, 故这根铁丝剪成两段后的长度分别是20 cm ,100 cm ; (2)设这两个正方形的面积之和为y cm 2,y =x 2+(30-x )2=2x 2-60x +900=2(x-15)2+450, ∴当x =15时,y 取得最小值,最小值为450cm 2,即剪成两段均为60 cm 的长度时面积之和最小,最小面积和为450 cm 2. 2.解:(1)设AB =x m ,则BC =(100-2x )m.x (100-2x )=450. 解得,x 1=5,x 2=45,当x =5时,100-2x =90>20,不合题意,舍去. 当x =45时,100-2x =10, 答:AD 的长为10m ;(2)设AD =a m ,面积为S m 2, S =a ·1250)50(2121002+-=-x a , ∴当a =50时,S 取得最大值,此时S =1250. 答:矩形菜园ABCD 面积的最大值是1250 m 2.3.解:(1)设小路的宽为m 米,则可列方程(30-m )(20-2m )=448; 解得:m 1=2或m 2=38(舍去); 答:小路的宽为2米;(2)设小路的宽为x 米,总造价为w 元,则花圃的面积为(2x 2-80x +600)平方米,小路面积为(-2x 2+80x )平方米,所以w =40·(-2x 2+80x )+35·(2x 2-80x +600)+20000, 整理得:w =-10(x-20)2+45000,∴当2≤x ≤4时,w 随x 的增大而增大.∴当x =2时,w 取最小值. 答:小路的宽为2米时修建小路和花圃的总造价最低.4.解:(1)设y 与x 之间的函数关系式为y =kx +b (k ≠0),根据题意,得1⎩⎨⎧=+=+80149012b k b k ,解得⎩⎨⎧=-=1505b k , ∴y 与x 之间的函数关系式为y =-5x +150; (2)根据题意,得w =(x-10)(-5x +150)=-5x 2+200x-1500=-5(x-20)2+500 ∵a =-5<0,∴抛物线开口向下,w 有最大值.∴当x <20时,w 随x 的增大而增大.10≤x ≤15,且x 为整数, ∴当x =15时,w 有最大值. 即w =-5×(15-20)2+500=375.答:当每瓶洗手液的售价定为15元时,超市销售该品牌洗手液每天销售利润最大,最大利润是375元.5.解:(1)∵y 与x 满足一次函数的关系,∴设y =kx +b.将x =12,y =1200;x =13,y =1100代入得:⎩⎨⎧b +13k =1100b +12k =1200,解得:⎩⎨⎧2400=b 100-=k ,∴y 与x 的函数关系式为:y =-100x +2400;(2)设线上和线下月利润总和为m 元,则m =400(x-2-10)+y (x-10) =400x-4800+(-100x +2400)(x-10)=-100(x-19)2+7300,∴当x 为19元/件时,线上和线下月利润总和达到最大,此时的最大利润为7300元. 6.解:(1)当0<x ≤20时,设y =k 1x +b 1,由图象得:⎩⎨⎧=+=402080111b k b ,解得⎩⎨⎧=-=80211b k ,∴y =-2x +80(0<x ≤20); 当20<x ≤30时,设y =k 2x +b 2,由图象得:⎩⎨⎧=+=+803040202222b k b k ,解得⎩⎨⎧-==40422b k ,∴y =4x-40(20<x ≤30). 综上,y =⎩⎨⎧);30≤x <2040-4x (),20≤x <080+2x (((2)设当月该农产品的销售额为w 元,则w =yp , 当0<x ≤20时,w =(-2x +80)(52x +4)=-54x 2+24x +320=-54(x-15)2+500 ∵-54<0,由二次函数的性质可知:∴当x =15时,w 最大=500.当20<x ≤30时,W =(4x-40)(-51x +12)=-54x 2+56x-480=-54(x-35)2+500,∵-54<0,20<x ≤30,由二次函数的性质可知:当x =30时,W 最大=(30-35)2+500=480.∵500>480, ∴当x =15时,w 取得最大值,该最大值为500.答:当月第15天,该产品的销售额最大,最大销售额是500元. 7.解:(1)h =20t-5t 2. ∵-5<0,故h 有最大值,当t =)(5220-⨯=2,此时h 的最大值为20,∴当t =2 s 时,最大高度是20 m ;(2)令h ≥15,则h =20t-5t 2≥15,解得:1≤t ≤3, ∴1≤t ≤3时,飞行高度不低于15 m.8.解:(1)依题意,抛物线y =ax 2+x +c 经过点(1.5,3.3)和(4,3.05),∴⎩⎨⎧ 3.05=c +4+42×a 3.3=c +1.5+1.52×a ,解得⎩⎨⎧ 2.25=c 0.2-=a ,∴y =-0.2x 2+x +2.25=-0.2(x-2.5)2+3.5.∴当球运行的水平距离为2.5 m 时,达到最大高度为3.5 m ; (2)∵x =0时,y =2.25,∴2.25-0.25-1.8=0.2 m. 即球出手时,他跳离地面0.2 m.9.解:(1)由题意得:函数y =at 2+5t +c 的图象经过(0,0.5)(0.8,3.5),∴⎩⎨⎧c +0.8×5+0.82a =3.5c =0.5,解得:⎪⎪⎩⎪⎪⎨⎧=-=211625c a ,∴抛物线的解析式为:y =-1625t2+5t +21, 故答案为:-1625,21. (2)∵y =-1625t2+5t +21,∴y =29)58(16252+--t . ∴当t =58时,y 最大=4.5.∴当足球飞行的时间为58s 时,足球离地面最高,最大高度是4.5 m ;(3)把x =28代入x =10t 得t =2.8,∴当t =2.8时,y =-1625×2.82+5×2.8+21=2.25<2.44, ∴他能将球直接射入球门. 巩固训练 1.B 2.1503.解:(1)∵y 1=-180x +2250,y 2=-10x 2-100x +2000, ∴当x =0时,y 1=2250,y 2=2000,∴小丽出发时,小明离A 地的距离为2250-2000=250(m ), 故答案为:250;(2)设小丽出发第x min 时,两人相距s m ,则s =(-180x +2250)-(-10x 2-100x +2000)=10x 2-80x +250=10(x-4)2+90, ∴当x =4时,s 取得最小值,此时s =90,答:小丽出发第4min 时,两人相距最近,最近距离是90m. 4.解:(1)设y 与销售单价x 之间的函数关系式为:y =kx +b ,将点(60,100),(70,80)代入一次函数表达式得:⎩⎨⎧+=+=b k b k 708060100,解得:⎩⎨⎧=-=2202b k ,故函数的表达式为:y =-2x +220;(2)设药店每天获得的利润为w 元,由题意得: W =(x-50)(-2x +220)=2(x-80)2+1800, ∵-2<0,函数有最大值,∴当x =80时,w 有最大值,此时最大值是1800,故销售单价定为80元时,该药店每天获得的利润最大,最大利润1800元.。

专题74 二次函数在实际应用中的最值问题(解析版)

专题74 二次函数在实际应用中的最值问题(解析版)

专题74 二次函数在实际应用中的最值问题1、某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (1≤x <15)之间的函数关系式,并求出第几天时销售利润最大?(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?【答案】(1)10%;(2)217.7352(19){36080(915)x x y x x x -+≤<=-++≤<,第10天时销售利润最大;(3)0.5. 【详解】解:(1)设该种水果每次降价的百分率是x ,10(1﹣x )2=8.1,x =10%或x =190%(舍去). 答:该种水果每次降价的百分率是10%;(2)当1≤x <9时,第1次降价后的价格:10×(1﹣10%)=9,∴y =(9﹣4.1)(80﹣3x )﹣(40+3x )=﹣17.7x +352,∴﹣17.7<0,∴y 随x 的增大而减小,∴当x =1时,y 有最大值,y 大=﹣17.7×1+352=334.3(元); 当9≤x <15时,第2次降价后的价格:8.1元,∴y =(8.1﹣4.1)(120﹣x )﹣(3x 2﹣64x +400)=﹣3x 2+60x +80=﹣3(x ﹣10)2+380,∴﹣3<0,∴当9≤x ≤10时,y 随x 的增大而增大,当10<x <15时,y 随x 的增大而减小,∴当x =10时,y 有最大值,y 大=380(元).综上所述,y 与x (1≤x <15)之间的函数关系式为: 217.7352(19){ 36080(915)x x y x x x -+≤<=-++≤<,第10天时销售利润最大;(3)设第15天在第14天的价格基础上最多可降a 元,由题意得:380﹣127.5≤(4﹣a )(120﹣15)﹣(3×152﹣64×15+400),252.5≤105(4﹣a )﹣115,a ≤0.5. 答:第15天在第14天的价格基础上最多可降0.5元.2、农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p (千克)与销售价格x (元/千克)之间的关系,经过市场调查获得部分数据如下表:(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p 与x 之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a 元(a >0)的相关费用,当40≤x ≤45时,农经公司的日获利的最大值为2430元,求a 的值.(日获利=日销售利润﹣日支出费用)【答案】(1)p =﹣30x +1500;(2)这批农产品的销售价格定为40元,才能使日销售利润最大;(3)a =2. 【详解】(1)假设P 与x 的一次函数关系,设函数关系式p kx b =+,则3060040300k b k b +=⎧⎨+=⎩,解得301500k b =-⎧⎨=⎩, ∴301500p x =-+,检验:当35,450x P ==,当45,150,x P ==当50,0x P ==,均符合一次函数解析式 ∴所求的函数关系式301500p x =-+,(2)设日销售利润()()()3030150030w P x x x =-=-+-,即()223024004500030403000w x x x =-+-=--+,当40x =时,w 有最大值为3000元,故这批农产口的销售价格定为40元,才能使日销售利润最大, (3)日获利()()()3030150030w p x a x x a =--=-+--, 即()()230240030150045000w x a x a =-++-+,对称轴这()2400301402302a x a +=-=+⨯-,若10a >,则当45x =时,w 有最大值,即22501502430w a =-<(不合题意), 若10a <,则当1402x a =+时,w 有最大值, 把1402x a =+代入,可得2130101004w a a ⎛⎫=-+ ⎪⎝⎭, 当2430w =时,21243030101004a a ⎛⎫=-+⎪⎝⎭, 解得12a =,238a =(舍去), 综上所述,a 的值为2.3、怡然美食店的A 、B 两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元. (1)该店每天卖出这两种菜品共多少份;(2)该店为了增加利润,准备降低A 种菜品的售价,同时提高B 种菜品的售价,售卖时发现,A 种菜品售价每降0.5元可多卖1份;B 种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少. 【答案】(1)60;(2)316. 【详解】解:(1)、设该店每天卖出A 、B 两种菜品分别为x 、y 份,根据题意得:()()2018112020141814280x y x y +=⎧⎪⎨-+-=⎪⎩,解得:2040x y =⎧⎨=⎩,答:该店每天卖出这两种菜品共60份;(2)、设A 种菜品售价降0.5a 元,即每天卖(20+a )份,总利润为w 元,因为两种菜品每天销售总份数不变,所以B 种菜品卖(40﹣a )份,每份售价提高0.5a 元. 则w=(20﹣14﹣0.5a )(20+a )+(18﹣14+0.5a )(40﹣a )=(6﹣0.5a )(20+a )+(4+0.5a )(40﹣a )=(﹣0.5a 2﹣4a+120)+(﹣0.5a 2+16a+160) =﹣a 2+12a+280=﹣(a ﹣6)2+316, 当a=6,w 最大,w=316答:这两种菜品每天的总利润最多是316元.4、“五一”期间,恒大影城隆重开业,影城每天运营成本为1000元,试营业期间统计发现,影城每天售出的电影票张数y (张)与电影票售价x (元/张)之间满足一次函数:y=﹣4x+220(10≤x≤50,且x 是整数),设影城每天的利润为w (元)(利润=票房收入﹣运营成本). (1)试求w 与x 之间的函数关系式;(2)影城将电影票售价定为多少元/张时,每天获利最大?最大利润是多少元?【答案】(1)w=﹣4x 2+220x ﹣1000;(2)影城将电影票售价定为27或28元/张时,每天获利最大,最大利润是2024元. 【详解】(1)根据题意,得:w =(﹣4x +220)x ﹣1000=﹣4x 2+220x ﹣1000;(2)∴w =﹣4x 2+220x ﹣1000=﹣4(x ﹣27.5)2+2025,∴当x =27或28时,w 取得最大值,最大值为2024,答:影城将电影票售价定为27或28元/张时,每天获利最大,最大利润是2024元.5、把函数21:23(0)C y ax ax a a =--≠的图象绕点(,0)P m 旋转180,得到新函数2C 的图象,我们称2C 是1C 关于点P 的相关函数.2C 的图象的对称轴与x 轴交点坐标为(,0)t .(1)填空:t 的值为 (用含m 的代数式表示) (2)若1a =-,当12x t ≤≤时,函数1C 的最大值为1y ,最小值为2y ,且121y y -=,求2C 的解析式; (3)当0m =时,2C 的图象与x 轴相交于,A B 两点(点A 在点B 的右侧).与y 轴相交于点D .把线段AD 原点O 逆时针旋转90,得到它的对应线段''A D ,若线''A D 与2C 的图象有公共点,结合函数图象,求a 的取值范围.【答案】(1)21m -;(2)22(2)44y x x x =--=-;(3)103a <≤或1a ≥或13a ≤- 【详解】解:(1)221:23(1)4C y ax ax a a x a =--=--顶点(1,4)a -围绕点(,0)P m 旋转180180°的对称点为(21,4)m a -,2:(21)24C y a x m a =--++,函数的对称轴为:21x m =-,21t m =-,故答案为:21m -; (2)1a =-时,21:(1)4C y x =--,∴当112t ≤<时, 12x =时,有最小值2154y =, x t =时,有最大值21(1)4y t =--+,则21215(1)414y y t -=--+-=,无解; ∴312t ≤≤时, 1x =时,有最大值14y =,12x =时,有最小值22(1)4y t =--+, 12114y y -=≠(舍去); ∴当32t >时, 1x =时,有最大值14y =,x t =时,有最小值22(1)4y t =--+, 212(1)1y y t -=-=,解得:0t =或2(舍去0), 故222:(2)44C y x x x =--=-; (3)0m =,22:(1)4C y a x a =-++,点'',,,,A B D A D 的坐标分别为(1,0),(3,0),(0,3),(0,1),(3,0)a a --, 当0a >时,a 越大,则OD 越大,则点'D 越靠左,当2C 过点'A 时,2(01)41y a a =-++=,解得:13a =, 当2C 过点'D 时,同理可得:1a =,故:103a <≤或1a ≥; 当0a <时,当2C 过点'D 时,31a -=,解得:13a =-,故:13a ≤-;综上,故:103a <≤或1a ≥或13a ≤-. 6、湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养天的总成本为万元;放养天的总成本为万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是万元,收购成本为万元,求和的值;(2)设这批淡水鱼放养天后的质量为(),销售单价为元/.根据以往经验可知:与的函数关系为;与的函数关系如图所示.∴分别求出当和时,与的函数关系式;∴设将这批淡水鱼放养天后一次性出售所得利润为元,求当为何值时,最大?并求出最大值.(利润=销售总额-总成本)【答案】(1)a的值为0.04,b的值为30(2)∴y=t+15,y=t+30∴当t为55天时,W最大,最大值为180250元【详解】(1)由题意得解得答:a的值为0.04,b的值为30.(2)∴当0≤t≤50时,设y与t的函数关系式为y=k1t+n1把点(0,15)和(50,25)的坐标分别代入y=k1t+n1,得解得∴y与t的函数关系式为y=t+15当50<t≤100时,设y与t的函数关系式为y=k2t+n2把点(50,25)和(100,20)的坐标分别代入y=k2t+n2,得解得∴y与t的函数关系式为y=t+30∴由题意得,当0≤t≤50时,W=20000×(t+15)-(400t+300000)=3600t∴3600>0,∴当t=50时,W最大值=180000(元)当50<t≤100时,W=(100t+15000)(t+30)-(400t+300000)=-10t2+1100t+150000=-10(t-55)2+180250∴-10<0,∴当t=55时,W最大值=180250综上所述,当t为55天时,W最大,最大值为180250元.7、某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长度为50m .设饲养室为长为x(m),占地面积为.(1)如图,问饲养室为长x为多少时,占地面积y 最大?(2)如图,现要求在图中所示位置留2m的门,且仍使饲养室占地面积最大.小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.【答案】(1)x=25;(2)小敏的说法不正确.【详解】(1)∴=,∴当x=25时,占地面积y最大;(2)=,∴当x=26时,占地面积y最大.即当饲养室长为26m时,占地面积最大.∴26-25=1≠2,∴小敏的说法不正确.8、铁岭“荷花节”举办了为期15天的“荷花美食”厨艺秀.小张购进一批食材制作特色美食,每盒售价为50元,由于食材需要冷藏保存,导致成本逐日增加,第x天(1≤x≤15且x为整数)时每盒成本为p元,已知p与x之间满足一次函数关系;第3天时,每盒成本为21元;第7天时,每盒成本为25元,每天的销售量为y盒,y与x之间的关系如下表所示:(1)求p与x的函数关系式;(2)若每天的销售利润为w元,求w与x的函数关系式,并求出第几天时当天的销售利润最大,最大销售利润是多少元?(3)在“荷花美食”厨艺秀期间,共有多少天小张每天的销售利润不低于325元?请直接写出结果.【答案】(1)p=x+18;(2)第13天时当天的销售利润最大,最大销售利润是361元;(3)第7、8、9、10、11、12、13天共7天销售利润不低于325元.【详解】(1)设p=kx+b(k≠0),∴第3天时,每盒成本为21元;第7天时,每盒成本为25元,∴321 725 k bk b+=⎧⎨+=⎩,解得:118kb=⎧⎨=⎩,所以p=x+18;(2)1≤x ≤6时,w =10[50﹣(x +18)]=﹣10x +320,6<x ≤15时,w =[50﹣(x +18)](x +6)=﹣x 2+26x +192,所以,w 与x 的函数关系式为210320(16)26192(615)x x w x x x -+≤≤⎧=⎨-++<≤⎩, 当1≤x ≤6时,∴﹣10<0,∴w 随x 的增大而减小,∴当x =1时,w 最大为﹣10+320=310,6<x ≤15时,w =﹣x 2+26x +192=﹣(x ﹣13)2+361,∴当x =13时,w 最大为361,综上所述,第13天时当天的销售利润最大,最大销售利润是361元;(3)w =325时,﹣x 2+26x +192=325,x 2﹣26x +133=0,解得x 1=7,x 2=19,所以,7≤x ≤13时,即第7、8、9、10、11、12、13天共7天销售利润不低于325元.9、2016年12月29日至31日,黔南州第十届旅游产业发展大会在“中国长寿之乡”﹣﹣罗甸县举行,从中寻找到商机的人不断涌现,促成了罗甸农民工返乡创业热潮,某“火龙果”经营户有A 、B 两种“火龙果”促销,若买2件A 种“火龙果”和1件B 种“火龙果”,共需120元;若买3件A 种“火龙果”和2件B 种“火龙果”,共需205元.(1)设A ,B 两种“火龙果”每件售价分别为a 元、b 元,求a 、b 的值;(2)B 种“火龙果”每件的成本是40元,根据市场调查:若按(1)中求出的单价销售,该“火龙果”经营户每天销售B 种“火龙果”100件;若销售单价每上涨1元,B 种“火龙果”每天的销售量就减少5件. ∴求每天B 种“火龙果”的销售利润y (元)与销售单价(x )元之间的函数关系?∴求销售单价为多少元时,B 种“火龙果”每天的销售利润最大,最大利润是多少?【详解】(1)根据题意得:2120{ 32205a b a b +=+= ,解得:a =35,b =50;(2)∴由题意得:y =(x ﹣40)[100﹣5(x ﹣50)]∴y =﹣5x 2+550x ﹣14000;∴∴y=﹣5x2+550x﹣14000=﹣5(x﹣55)2+1125,∴当x=55时,y最大=1125,∴销售单价为55元时,B商品每天的销售利润最大,最大利润是1125元.10、鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?【答案】(1)y=10x+160;(2)5280元;(3)10000元.【详解】(1)依题意有:y=10x+160;(2)依题意有:W=(80﹣50﹣x)(10x+160)=﹣10(x﹣7)2+5290,∴-10<0且x为偶数,故当x=6或x=8时,即故当销售单价定为74或72元时,每周销售利润最大,最大利润是5280元;(3)依题意有:﹣10(x﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).答:他至少要准备10000元进货成本.11、鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?【答案】(1)y=10x+160;(2)5280元;(3)10000元.【详解】(1)依题意有:y=10x+160;(2)依题意有:W=(80﹣50﹣x)(10x+160)=﹣10(x﹣7)2+5290,∴-10<0且x为偶数,故当x=6或x=8时,即故当销售单价定为74或72元时,每周销售利润最大,最大利润是5280元;(3)依题意有:﹣10(x﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).答:他至少要准备10000元进货成本.12、某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润的最大值.【答案】(1)y与x的函数解析式为()()20022006102001012x xyx⎧-+≤≤⎪=⎨<≤⎪⎩;(2)这一天销售西瓜获得利润的最大值为1250元.【详解】(1)当6≤x≤10时,由题意设y =kx +b(k =0),它的图象经过点(6,1000)与点(10,200),∴1000620010k b k b =+⎧⎨=+⎩, 解得2002200k b =-⎧⎨=⎩, ∴当6≤x≤10时, y =-200x+2200,当10<x≤12时,y =200,综上,y 与x 的函数解析式为()()20022006102001012x x y x ⎧-+≤≤⎪=⎨<≤⎪⎩; (2)设利润为w 元,当6≤x≤10时,y =-200x +2200,w =(x -6)y =(x -6)(-200x +200)=-2002172x -()+1250, ∴-200<0,6∴x≤10,当x =172时,w 有最大值,此时w=1250; 当10<x≤12时,y =200,w =(x -6)y =200(x -6)=200x -1200,∴200>0,∴w =200x -1200随x 增大而增大,又∴10<x≤12,∴当x =12时,w 最大,此时w=1200,1250>1200,∴w 的最大值为1250,答:这一天销售西瓜获得利润的最大值为1250元.13、我市某化工材料经销商购进一种化工材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销发现,日销售量y (千克)与销售单价x (元)符合一次函数关系,如图所示.(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)若在销售过程中每天还要支付其他费用450元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?【答案】(1)2200(3060)y x x =-+≤≤;(2)每千克60元,最大获利为1950元【详解】解:(1)设一次函数关系式为(0)y kx b k =+≠由图象可得,当30x =时,140y =;50x =时,100y =∴1403010050k b k b =+⎧⎨=+⎩,解得k 2b 200=-⎧⎨=⎩∴y 与x 之间的关系式为2200(3060)y x x =-+≤≤.(2)设该公司日获利为W 元,由题意得2(30)(2200)4502(65)2000W x x x =--+-=--+∴20a =-<;∴抛物线开口向下;∴对称轴65x =;∴当65x <时,W 随着x 的增大而增大;∴3060x ≤≤,∴60x =时,W 有最大值;22(6065)200015=90W -⨯-+=最大值.即,销售单价为每千克60元时,日获利最大,最大获利为1950元.。

二次函数的应用最值问题

二次函数的应用最值问题

二次函数的应用最值问题二次函数是一个在数学中广泛应用的函数模型。

在实际问题和生产生活中,二次函数的最值问题也经常出现。

本文将介绍二次函数的最值问题,包括实际问题中的二次函数最值、生产生活中的二次函数最值、利用配方法求二次函数的最值、利用导数求解二次函数的最值、利用作图法求解二次函数的最值、利用公式法求解二次函数的最值和利用对称轴求解二次函数的最值等方面。

一、实际问题中的二次函数最值在实际问题中,二次函数最值通常出现在诸如最大利润、最小成本、最高产量等问题中。

例如,一个工厂生产一种产品,该产品的成本包括固定成本和可变成本。

固定成本是不随产量变化的成本,而可变成本是随产量变化的成本。

因此,总成本函数是一个开口向下的二次函数。

为了使总成本最低,需要找到自变量的取值,使得总成本函数的导数为零,并判断导数是否为零,从而确定最值是否存在。

二、生产生活中的二次函数最值在生产生活中,二次函数最值也经常出现。

例如,一个公司投资一个项目,该项目的收益随投资额变化,且收益函数是一个开口向下的二次函数。

为了使收益最大,需要找到投资额的最优解。

最优解可以通过求解收益函数的导数并令其为零得到。

三、利用配方法求二次函数的最值配方法是求二次函数最值的一种常用方法。

该方法的基本思想是将二次函数转化为一个完全平方项和一个常数项之和的形式,然后利用平方的非负性求出最值。

具体步骤如下:(1)将二次函数配方为一个完全平方项和一个常数项之和的形式;(2)根据平方的非负性,求出这个完全平方项的取值;(3)将这个完全平方项的取值代入配方后的二次函数中,求出最值。

四、利用导数求解二次函数的最值利用导数求解二次函数的最值是一种比较简单的方法。

该方法的基本思想是先求出二次函数的导数,然后令导数为零,解出此时的自变量取值,最后比较所有自变量取值对应的函数值,找出最大(或最小)的一个即可。

五、利用作图法求解二次函数的最值作图法是一种直观地求解二次函数最值的方法。

二次函数的最值与应用题解析

二次函数的最值与应用题解析

二次函数的最值与应用题解析二次函数是一种常见的函数类型,在数学和实际生活中都有着广泛的应用。

掌握二次函数的最值及其在应用题中的解析方法,对于数学学习和解决实际问题都具有重要意义。

本文将介绍二次函数的最值的概念、求解方法以及应用题的解析方法。

一、二次函数的最值概念与性质二次函数通常具有形如f(x) = ax^2 + bx + c的表达式,其中a、b和c都是常数且a ≠ 0。

二次函数的图像一般是一个抛物线,开口方向由a 的正负决定。

1. 最小值与最大值对于二次函数f(x),如果存在一个点x0,使得对于所有的x都有f(x) ≥ f(x0),则称f(x0)为函数f(x)的最小值;如果存在一个点x0,使得对于所有的x都有f(x) ≤ f(x0),则称f(x0)为函数f(x)的最大值。

2. 寻找最值的方法(1)若a > 0,即抛物线开口向上,则函数的最小值为抛物线的顶点,可以通过顶点的横坐标求得;(2)若a < 0,即抛物线开口向下,则函数的最大值为抛物线的顶点,同样可以通过顶点的横坐标求得。

二、二次函数最值的求解方法下面将介绍两种常用的方法来求解二次函数的最值。

1. 利用顶点坐标求解对于函数f(x) = ax^2 + bx + c,我们可以通过求顶点的横坐标来获得函数的最值。

(1)对于抛物线开口向上:顶点的横坐标为 x = -b / (2a),将该值代入函数中求解即可得到最小值;(2)对于抛物线开口向下:顶点的横坐标为 x = -b / (2a),将该值代入函数中求解即可得到最大值。

2. 利用二次函数的性质求解利用二次函数的几何性质也可以求解最值。

(1)对于抛物线开口向上:最小值为y轴截距,即 f(0) = c;(2)对于抛物线开口向下:最大值为y轴截距,即 f(0) = c。

三、二次函数在应用题中的解析方法除了求解二次函数的最值,我们还可以通过二次函数来解决一些实际问题。

1. 最优解问题某公司生产一个产品,每个产品成本为C(x) = ax^2 + bx + c,销售价格为p。

二次函数的最值及其应用

二次函数的最值及其应用

二次函数的最值及其应用若自变量是全体实数,则当x=-a b2时,y 最值=244ac b a- (2008年南京市中考题)已知二次函数y=x2+bx+c 中,函数y 与自变量x 的部分对应值如下表:x … -1 0 1 2 3 4 … y…1052125…(1)求该二次函数的关系式;当x 为何值时,y 有最小值,最小值是多少?分析:(1)任选表中两组对应值待入y=x2+bx+c 可求b 、c 。

(2)得出y=x2+bx+c 后代x=-ab2时,y 最值=244ac ba-解:(1)根据题意,当x=0时,y=5;当x=1时,y=2。

所以⎩⎨⎧++==c b c 125 解得⎩⎨⎧=-=54c b所以,该二次函数关系式为y=x2-4x+5(2)因为y=x2-4x+5,所以当x=124∙- =2时,y 有最小值,最小值为1445142∙-∙∙=1一、 求实际问题中的二次函数的最值例2 (2008年黄冈市中考题) 四川汶川大地震发生后,我市某工厂A 车间接到生产一批帐篷的紧急任务,要求必须在12天(含12天)内完成。

已知每项帐篷的成本价为800元,该车间平时每天能生产帐篷20顶。

为了加快进度,车间采取工人分批日夜加班,机器满负荷运转的生产方式,生产效率得到了提高。

这样,第一天生产了22顶,以后每天生产的帐篷都比前一天多2顶,由于机器损耗等原因,当每天生产的帐篷数达到30顶后,每增加1顶帐篷,当天生产的所有帐篷,平均每顶的成本就增加20元。

设生产这批帐篷的时间为x 天,每天生产的帐篷为y 顶。

(1) 直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2) 若这批帐篷的订购价格为每顶1200元,该车间决定把获得最高利润的那一天的全部利润捐献给灾区,设该车间每天的利润为W 元,试求出W 与x 之间的函数关系式,并求出该车间捐献给灾区多少钱? 分析:(1)由题意直接列出。

(2)当1≤x ≤5时,由一次函数的增减性得W 的最大值;当5<x ≤12时,由二次函数的增减性得W 的最大值。

二次函数的最值问题总结

二次函数的最值问题总结

二次函数的最值问题二次函数2(0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a =-处取得最小值244ac b a -,无最大值;当0a <时,函数在2b x a=-处取得最大值244ac b a-,无最小值. 本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用.二次函数求最值(一般范围类)例1.当22x -≤≤时,求函数223y x x =--的最大值和最小值.分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值.解:作出函数的图象.当1x =时,min 4y =-,当2x =-时,max 5y =.例2.当12x ≤≤时,求函数21y x x =--+的最大值和最小值.解:作出函数的图象.当1x =时,min 1y =-,当2x =时,max 5y =-.由上述两例可以看到,二次函数在自变量x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.根据二次函数对称轴的位置,函数在所给自变量x 的范围的图象形状各异.下面给出一些常见情况:例3.当0x ≥时,求函数(2)y x x =--的取值范围.解:作出函数2(2)2y x x x x =--=-在0x ≥内的图象.可以看出:当1x =时,min 1y =-,无最大值.所以,当0x ≥时,函数的取值范围是1y ≥-.例4.当1t x t ≤≤+时,求函数21522y x x =--的最小值(其中t 为常数). 分析:由于x 所给的范围随着t 的变化而变化,所以需要比较对称轴与其范围的相对位置.解:函数21522y x x =--的对称轴为1x =.画出其草图. (1) 当对称轴在所给范围左侧.即1t >时: 当x t =时,2min 1522y t t =--; (2) 当对称轴在所给范围之间.即1101t t t ≤≤+⇒≤≤时:当1x =时,2min 1511322y =⨯--=-; (3) 当对称轴在所给范围右侧.即110t t +<⇒<时:当1x t =+时,22min 151(1)(1)3222y t t t =+-+-=-.综上所述:2213,023,0115,122t t y t t t t ⎧-<⎪⎪=-≤≤⎨⎪⎪-->⎩在实际生活中,我们也会遇到一些与二次函数有关的问题:二次函数求最值(经济类问题)例1.为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y (台)与补贴款额x (元)之间大致满足如图①所示的一次函数关系.随着补贴款额x 的不断增大,销售量也不断增加,但每台彩电的收益Z (元)会相应降低且Z 与x 之间也大致满足如图②所示的一次函数关系.(1)在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元?(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y 和每台家电的收益Z 与政府补贴款额x 之间的函数关系式;(3)要使该商场销售彩电的总收益w (元)最大,政府应将每台补贴款额x 定为多少?并求出总收益w 的最大值.分析:(1)政府未出台补贴措施前,商场销售彩电台数为800台,每台彩电的收益为200元;(2)利用两个图像中提供的点的坐标求各自的解析式;(3)商场销售彩电的总收益=商场销售彩电台数×每台家电的收益,将(2)中的关系式代入得到二次函数,再求二次函数的最大值.解:(1)该商场销售家电的总收益为800200160000⨯=(元);(2)依题意可设1800y k x =+,2200Z k x =+,∴有14008001200k +=,2200200160k +=,解得12115k k ==-,.所以800y x =+,12005Z x =-+. (3)1(800)2005W yZ x x ⎛⎫==+-+ ⎪⎝⎭21(100)1620005x =--+,政府应将每台补贴款额x 定为100元,总收益有最大值,其最大值为162000元.说明:本题中有两个函数图像,在解题时要结合起来思考,不可顾此失彼.例2.凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去.(1)设每间包房收费提高x (元),则每间包房的收入为y 1(元),但会减少y 2间包房租出,请分别写出y 1、y 2与x 之间的函数关系式.(2)为了投资少而利润大,每间包房提高x (元)后,设酒店老板每天晚餐包房总收入为y (元),请写出y 与x 之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由.分析:(1)提价后每间包房的收入=原每间包房收包房费+每间包房收包房提高费,包房减少数=每间包房收包房提高费数量的一半;(2)酒店老板每天晚餐包房总收入=提价后每间包房的收入×每天包房租出的数量,得到二次函数后再求y 取得最大值时x 的值.解:(1)x y +=1001,x y 212=; (2))21100()100(x x y -•+=y 11250)50(212+--=x ,因为提价前包房费总收入为100×100=10000,当x=50时,可获最大包房收入11250元,因为11250>10000又因为每次提价为20元,所以每间包房晚餐应提高40元或60元. 说明:本题的答案有两个,但从“投资少而利润大”的角度来看,因尽量少租出包房,所以每间包房晚餐应提高60元应该更好.例3.某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价1y (元)与销售月份x (月)满足关系式1y =36x 83+-,而其每千克成本2y (元)与销售月份x (月)满足的函数关系如图所示.(1)试确定b c 、的值;(2)求出这种水产品每千克的利润y (元)与销售月份x (月)之间的函数关系式;(3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少? 分析:(1)将点(3,25),(4,24)代入求b 、c 的值;(2)y =1y -2y ;(3)将(2)中的二次函数配方为顶点式,再利用二次函数的增减性,在满足“五·一”之前的前提下求最大值.解:(1)由题意:22125338124448b c b c ⎧=⨯++⎪⎪⎨⎪=⨯++⎪⎩,解得7181292b c ⎧=-⎪⎪⎨⎪=⎪⎩; (2)12y y y =-23115136298882x x x ⎛⎫=-+--+ ⎪⎝⎭21316822x x =-++; (3)21316822y x x =-++ 2111(1236)46822x x =--+++21(6)118x =--+. ∵108a =-<,∴抛物线开口向下.在对称轴6x =左侧y 随x 的增大而增大.由题意5x <,所以在4月份出售这种水产品每千克的利润最大.最大利润211(46)111082=--+=(元). 说明:本题在x =6,即6月份时取得最大值,但题目要求在“五·一”之前,所以要将二次函数配方为顶点式,利用二次函数的增减性来求解.例4.某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数1623,3054m x x =-≤≤.(1) 写出商场卖这种商品每天的销售利润y 与每件销售价x 之间的函数关系式;(2) 若商场要想每天获得最大销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?解:(1) 由已知得每件商品的销售利润为(30)x -元,那么m 件的销售利润为(30)y m x =-,又1623m x =-.y 22 (30)(1623)32524860,3054y x x x x x ∴=--=-+-≤≤(2) 由(1)知对称轴为42x =,位于x 的范围内,另抛物线开口向下 ∴当42x =时,2max 342252424860432y =-⨯+⨯-=∴当每件商品的售价定为42元时每天有最大销售利润,最大销售利润为432元. 二次函数求最值(面积最值问题)例1.在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少?(2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少?答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S t t t t y =∴+-=<<+-=+--⨯=+-=⋅-=例2.小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米则长为:x x 4342432-=+-(米)则:)434(x x S -=x x 3442+-= 4289)417(42+--=x ∵104340≤-<x ∴2176<≤x∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内, 而当2176<≤x 内,S 随x 的增大而减小, ∴当6=x 时,604289)4176(42max =+--=S (平方米) 答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大.例3.已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.解:设矩形PNDM 的边DN=x ,NP=y ,则矩形PNDM 的面积S=xy (2≤x≤4)易知CN=4-x ,EM=4-y .过点B 作BH ⊥PN 于点H则有△AFB ∽△BHP∴PHBH BF AF =,即3412--=y x , ∴521+-=x y , x x xy S 5212+-==)42(≤≤x , 此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,函数值y 随x 的增大而增大,对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.例4.某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省?解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点按顺(逆)时针方向旋转90°后得到的,故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形.(2)设CE =x , 则BE =0.4-x ,每块地砖的费用为y 元那么:y =x ×30+×0.4×(0.4-x )×20+[0.16-x -×0.4×(0.4-x )×10]=xx)-102+242.0.0(-=x)4.0102+3.2()1.0<x0(<当x=0.1时,y有最小值,即费用为最省,此时CE=CF=0.1.答:当CE=CF=0.1米时,总费用最省.。

二次函数的最值与最值问题的应用

二次函数的最值与最值问题的应用

二次函数的最值与最值问题的应用二次函数是数学中常见的一类函数,具有很多重要的性质和应用。

其中最值与最值问题是二次函数的重要内容之一。

本文将详细介绍二次函数的最值性质,以及如何利用最值问题解决实际应用中的相关问题。

一、二次函数的基本性质二次函数的一般形式为:y = ax² + bx + c其中,a、b、c为常数,且a ≠ 0。

二次函数的图像为抛物线,开口方向取决于a的正负性。

在讨论二次函数的最值之前,我们先了解一些与最值相关的基本性质。

1. 首先,二次函数的开口方向由系数a的正负性决定。

当a > 0时,抛物线开口向上,函数的最小值出现在顶点上;当a < 0时,抛物线开口向下,函数的最大值出现在顶点上。

2. 其次,二次函数的顶点即为函数的最值点。

顶点坐标为(h, k),其中h为抛物线的对称轴的横坐标,k为函数的最值(最小值或最大值)。

3. 再次,二次函数的对称轴与顶点的横坐标相同。

对称轴的方程为x = h。

二、二次函数的最值问题二次函数的最值问题是指求解函数的最小值或最大值的问题。

在实际应用中,最值问题经常出现,例如求解投掷问题中的飞行距离最大值或者盈利问题中的最大利润等。

1. 求解二次函数的最值为了求解二次函数的最值,我们可以利用二次函数图像的特点,即找出抛物线的顶点坐标。

通过完成平方项的平方,将二次函数转换为顶点形式,可以轻松地求解最值问题。

例如,对于函数y = x² - 4x + 3,我们可以完成平方项的平方,将其转换为顶点形式:y = (x - 2)² - 1从中可以看出,顶点坐标为(2, -1),函数的最小值为-1。

因此,原二次函数的最小值为-1。

2. 应用最值问题最值问题在实际应用中非常常见,下面以一个具体的应用为例进行解析。

例题:某商品的价格为p(元),销量为x(件),已知该商品的价格和销量满足二次函数关系p = 0.5x² - 2x + 8,求该商品的最佳销量以及最佳价格。

(完整版)二次函数(应用题求最值)(含答案)

(完整版)二次函数(应用题求最值)(含答案)

二次函数应用题1、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?2.如图,在平面直角坐标系中,顶点为(,)的抛物线交轴于点,交轴于,41-y A x B 两点(点在点的左侧). 已知点坐标为(,).C B C A 03(1)求此抛物线的解析式;(2)过点作线段的垂线交抛物线于点,如果以点为圆心的圆与直线B AB DC 相切,请判断抛物线的对称轴与⊙有怎样的位置关系,并给出证明;BD l C (3)已知点是抛物线上的一个动点,且位于,两点之间,问:当点运动到P A C P 什么位置时,的面积最大?并求出此时点的坐标和的最大面积.PAC ∆P PAC ∆3、张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙x(第13题)另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米.矩形ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围). (2)当x 为何值时,S 有最大值?并求出最大值.(参考公式:二次函数2y ax bx c =++(0a ≠),当2bx a=-时,244ac b y a-=最大(小)值)4、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系,去年的月销售量p (万台)与月份x 之间成一次函数关系,其502600y x =-+中两个月的销售情况如下表:月份1月5月销售量 3.9万台 4.3万台(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下%m 乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求的值(保留一位小数).m )5.831 5.9166.083 6.1645、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价(元)符合一次函数y x ,且时,;时,.y kx b =+65x =55y =75x =45y =(1)求一次函数的表达式;y kx b =+(2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定W W x 为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价的范围.x 6、某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。

二次函数的最值与零点问题解析与应用

二次函数的最值与零点问题解析与应用

二次函数的最值与零点问题解析与应用二次函数在数学中占有重要的地位,它的研究内容包括最值与零点问题。

本文将对二次函数的最值与零点问题展开深入的分析与应用。

一、二次函数的定义与性质二次函数是指具有以下形式的函数:$f(x) = ax^2 + bx + c$,其中$a$、$b$和$c$为实数,且$a \neq 0$。

在二次函数中,$a$称为二次系数,$b$称为一次系数,$c$称为常数项。

二次函数的图像为一条开口朝上或朝下的抛物线,其性质如下:1. 当$a > 0$时,抛物线开口朝上;当$a < 0$时,抛物线开口朝下。

2. 抛物线的顶点坐标为$(-\frac{b}{2a}, f(-\frac{b}{2a}))$,其中$f(-\frac{b}{2a})$为抛物线的最值。

3. 如果$a > 0$,则$f(x)$在$(-\infty, -\frac{b}{2a})$上单调递减,在$(-\frac{b}{2a}, \infty)$上单调递增;如果$a < 0$,则$f(x)$在$(-\infty, -\frac{b}{2a})$上单调递增,在$(-\frac{b}{2a}, \infty)$上单调递减。

二、二次函数的最值问题解析1. 开口朝上的二次函数对于开口朝上的二次函数$f(x) = ax^2 + bx + c$,最值为抛物线的顶点坐标$(h, k)$,其中$h = -\frac{b}{2a}$,$k = f(h)$。

例如,对于函数$f(x) = x^2 + 2x + 1$,$a = 1$,$b = 2$,$c = 1$。

根据公式可得到$h = -\frac{2}{2} = -1$,$k = f(-1) = (-1)^2 + 2(-1) + 1 =0$。

因此,函数的最小值为$0$,最小值点为$(-1, 0)$。

2. 开口朝下的二次函数对于开口朝下的二次函数$f(x) = ax^2 + bx + c$,最值为负无穷。

二次函数的最值与应用学习二次函数的最值性质及其在实际问题中的应用

二次函数的最值与应用学习二次函数的最值性质及其在实际问题中的应用

二次函数的最值与应用学习二次函数的最值性质及其在实际问题中的应用二次函数的最值与应用二次函数是高中数学中一个非常重要的概念,在学习二次函数的最值性质及其在实际问题中的应用之前,我们首先需要了解二次函数的基本形式和性质。

二次函数的一般形式为y=ax^2+bx+c,其中a、b、c为常数且a不等于0,x、y为变量。

在此基础上,我们将深入探讨二次函数的最值及其在实际问题中的应用。

一、二次函数的最值性质二次函数的图像是一个抛物线,其开口方向由二次项的系数a的正负决定。

当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。

对于一个二次函数而言,其最值即为函数的最大值和最小值。

1. 最值存在性对于二次函数y=ax^2+bx+c,当抛物线开口向上时,函数存在最小值;当抛物线开口向下时,函数存在最大值。

即最值存在性与a的正负相关。

2. 最值点的横坐标对于二次函数y=ax^2+bx+c,最值点的横坐标可以通过计算二次函数的自变量x的取值来确定。

最值点的横坐标为二次函数的顶点,顶点的横坐标为-x轴的对称轴,即x=-b/2a。

3. 最值点的纵坐标最值点的纵坐标可通过将最值点的横坐标代入二次函数中求得。

将x=-b/2a代入二次函数y=ax^2+bx+c中,可以求出最值点的纵坐标。

二、二次函数最值的应用二次函数的最值性质在实际问题中具有广泛的应用。

下面将介绍二次函数最值的几个常见应用场景。

1. 最值问题通过研究二次函数的最值性质,可以解决许多涉及最值问题的实际情况。

例如,我们要抛掷一个物体,求出其最高点的高度以及达到最高点时的时间。

可以建立一个关于时间的二次函数模型,然后通过最值性质计算出最高点的高度和达到最高点的时间。

2. 优化问题在实际生活中,许多问题可以通过优化函数来解决。

例如,我们要制造一个容积为V的长方体包装盒,为了节省材料成本,我们想使包装盒的表面积最小。

可以建立一个关于长方体各边长的二次函数模型,然后通过最值性质求解出使表面积最小的边长。

二次函数的最值与应用

二次函数的最值与应用

二次函数的最值与应用二次函数是高中数学中重要的一个概念,它可以用于描述很多实际问题。

在本文中,我们将探讨二次函数的最值以及它在实际应用中的一些情况。

1. 二次函数的基本形式二次函数的一般形式可以表示为:y = ax² + bx + c,其中a、b、c为常数。

二次函数的图像是一个抛物线,可以是开口向上或开口向下的形状。

2. 二次函数的最值二次函数的最值指的是函数的最大值或最小值。

我们可以通过找到二次函数的顶点来确定最值。

对于开口向上的二次函数,顶点即为最小值;对于开口向下的二次函数,顶点即为最大值。

要确定二次函数的顶点,我们可以使用一些方法。

其中一种方法是将二次函数转化为标准形式,即通过配方法将函数转化为完全平方的形式。

通过求导数的方法也可以找到顶点,但需要注意的是,必须先确定导数的存在性。

3. 二次函数在实际问题中的应用二次函数在实际问题中有广泛的应用。

以下是两个常见的例子:(1) 抛物线的弧长我们知道,抛物线是一个连续曲线,我们可以根据抛物线的方程求解抛物线的弧长。

假设有一个开口向上的二次函数y = ax² + bx + c,我们可以通过求解弧长公式来计算抛物线上两个点之间的弧长。

这个问题可以应用到建筑设计中,比如设计一个拱形桥的弧长。

(2) 最优解的求解在很多实际问题中,我们需要求解一些最优解。

例如,在物流运输问题中,我们希望找到最短的路径和最小的成本。

这些问题可以用二次函数求解。

通过建立二次函数模型,并确定最值点,我们可以找到最优解。

除了以上两个例子,二次函数在金融、物理学、经济学等领域中也有广泛的应用。

无论是求解最值还是建立模型,二次函数在实际问题中扮演着重要的角色。

4. 总结二次函数的最值与应用是高中数学中重要的内容。

我们可以通过求解顶点来确定最大值或最小值,同时应用二次函数解决实际问题。

无论是计算弧长还是求解最优解,二次函数都能提供有效的解决方案。

在学习二次函数时,我们不仅需要理解其理论知识,还需要灵活运用。

二次函数的实际应用----最值问题以及设计方案问题

二次函数的实际应用----最值问题以及设计方案问题

二次函数的实际应用——最大(小)值问题知识要点:二次函数的一般式c bx ax y ++=2(0≠a )化成顶点式ab ac a b x a y 44)2(22-++=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).即当0>a 时,函数有最小值,并且当abx 2-=,a b ac y 442-=最小值;当0<a 时,函数有最大值,并且当abx 2-=,a b ac y 442-=最大值.如果自变量的取值范围是21x x x ≤≤,如果顶点在自变量的取值范围21x x x ≤≤内,则当abx 2-=,a b ac y 442-=最值,如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性;如果在此范围内y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小1.二次函数c 中,2b ac =,且0x =时4y =-,则( ) A.4y =-最大 B.4y =-最小 C.3y =-最大 D.3y =-最小2..已知二次函数22)3()1(-+-=x x y ,当x =_________时,函数达到最小值。

3..若一次函数的图像过第一、三、四象限,则函数()A.最大值B..最大值C.最小值D.有最小值4.若二次函数2()y a x h k =-+的值恒为正值, 则 _____. A. 0,0a k <> B. 0,0a h >> C. 0,0a k >> D. 0,0a k << 5.函数92+-=x y 。

当-2<X<4时函数的最大值为6.若函数322-+=x x y ,当24-≤≤-x 函数值有最 值为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式.(3分) (2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式.(3分)(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?(4分)2.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg 放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg 蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x 天后每千克活蟹的市场价为p 元,写出p 关于x 的函数关系式;(2)如果放养x 天后将活蟹一次性出售,并记1000 kg 蟹的销售总额为Q 元,写出Q 关于x 的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q -收购总额)?类型二1.随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高。

二次函数的应用 最值问题

二次函数的应用 最值问题
二次函数的应用
——最值问题
例1:已知二次函数y=x2+bx+c的图象过 点A(-3,0)和点B(1,0), 且与y轴交于点C,D点在抛物线上且横 坐标是-2. (1)求抛物线的解析式; (2)抛物线的对称轴上有一动点Q使得 QA+QD的值最小,求出QA+QD的最小值.

例2:如图,直线y=x-3与x轴、 y轴分别交于B、C两点,抛 物 线 y=x2+bx+c同 时 经 过 B、 C两点,点A是抛物线与x轴 的另一交点
(1)求抛物线解析式 ( 2 ) 若 点 p 在 直 线 BC 上 , 且
S△ABP=4,求P点坐标
例2变式: 1.如图,直线y=x-3与x轴、y 轴分别交于B、C两点,抛物 线y=x2+bx+c同时经过B、C两 点,点A是抛物线与x轴的另 一交点,若点p在抛物线上, 且S△ABP=4求P点坐标。
线y=x2+bx+c同时经过B、C两
点,点A是抛物线与x轴的另
一交点,
若点P是直线BC下方抛物线上
一点,△PBC的面积是否存在
P
最大面积?最大面积是多少?
例2变式:
4.如图,直线y=x-3与x轴、y
轴分别交于B、C两点,抛物
线y=x2+bx+c同时经过B、C两
点,点A是抛物线与x轴的另
一交点,
若点P是直线BC下方抛物线上
一点,四边形ABPC的面积是
P
否存在最大面积?最大面积是
多少?
练习1.
如图,在平面直角坐标系中,直线 y=x+4与x轴、y轴分别交于A、B两点, 抛物线y=﹣x2+bx+c经过A、B两点, 并与x轴交于另一点C(点C点A的右 侧),点P是抛物线上一动点. (1)求抛物线的解析式及点C的坐标; (2)若点P在第二象限内,过点P作 PD⊥x轴于D,交AB于点E.当点P运 动到什么位置时,线段PE最长? 此时PE等于多少? (3)△PAB的面积是否存在最大面积? 最大面积是多少?

二次函数的最值及其应用

二次函数的最值及其应用

二次函数的最值及其应用在我们的数学学习中,二次函数是一个非常重要的概念。

它不仅在数学领域有着广泛的应用,还与我们的实际生活息息相关。

今天,咱们就来好好聊聊二次函数的最值及其应用。

首先,咱们得弄清楚啥是二次函数。

一般来说,形如 y = ax²+ bx + c(a ≠ 0)的函数就叫做二次函数。

其中,a、b、c 是常数,a 叫做二次项系数,b 叫做一次项系数,c 叫做常数项。

那二次函数的最值是咋回事呢?简单来说,最值就是函数在某个范围内能取到的最大或者最小的值。

对于二次函数 y = ax²+ bx + c,如果 a > 0,那么函数图像开口向上,有最小值;如果 a < 0,函数图像开口向下,就有最大值。

要找到这个最值,咱们可以用公式来算。

对于二次函数 y = ax²+bx + c,其最值(顶点的纵坐标)为:当 a > 0 时,y 最小值=(4ac b²) / 4a;当 a < 0 时,y 最大值=(4ac b²) / 4a。

二次函数的最值在实际生活中有好多用处呢。

比如说,在商业领域,商家常常要考虑成本和利润的问题。

假设一家工厂生产某种产品,其成本函数为 C = ax²+ bx + c,销售价格为固定值 p,那么利润函数 L = px C 就是一个二次函数。

通过求出这个二次函数的最值,商家就能知道在什么情况下能获得最大利润,从而做出最优的生产决策。

再比如,在建筑设计中,要设计一个矩形的花坛,周围要用篱笆围起来,篱笆的长度是固定的。

咱们设矩形的长为 x,宽为 y,篱笆长度为 L。

那么就有 L = 2(x + y)。

而花坛的面积 S = xy,咱们可以通过篱笆长度的条件,用一个变量表示另一个变量,然后把面积表示成一个二次函数,求出最值,就能得到在篱笆长度固定的情况下,花坛面积最大的设计方案。

还有在农业生产中,农民伯伯要规划一块土地来种植作物。

假设种植的收益是一个二次函数,通过求出最值,就能知道怎么规划土地能获得最大的收益。

二次函数的最值问题和像的平移翻折伸缩

二次函数的最值问题和像的平移翻折伸缩

二次函数的最值问题和像的平移翻折伸缩二次函数在数学中是非常重要的一个概念,它具有许多特殊的性质和应用。

其中,最值问题以及像的平移、翻折和伸缩是二次函数的基本操作和应用之一。

本文将对二次函数的最值问题和像的平移、翻折和伸缩进行探讨和讲解。

一、二次函数的最值问题二次函数的最值问题,即求解二次函数在定义域上的最大值或最小值。

要解决这个问题,首先需要明确的是二次函数的图像特点和相关知识。

对于一般的二次函数y=ax^2+bx+c(a≠0),其对称轴为x=-b/2a,开口方向由a的正负号决定,开口向上当a>0,开口向下当a<0。

当二次函数的a>0时,函数的最小值就是函数的顶点,即对称轴上的点;当二次函数的a<0时,函数的最大值同样是函数的顶点。

为了进一步求解二次函数在定义域上的最值,可以使用求导方法。

对二次函数进行求导,求得的导函数即为一次函数,通过解一次函数的方程可以得到最值点的横坐标。

将横坐标带入二次函数中,即可求得最值点的纵坐标。

二、像的平移、翻折和伸缩在二次函数的图像中,像的平移、翻折和伸缩是通过调整二次函数的系数来实现的。

具体而言,像的平移是通过调整二次函数的常数项c来实现的,像的翻折是通过调整二次函数的系数a的符号来实现的,像的伸缩是通过调整二次函数的系数a和b来实现的。

1. 像的平移:若二次函数的常数项c发生变化,整个二次函数的图像将上下平移。

当c>0时,图像下移;当c<0时,图像上移。

平移的距离由c的绝对值决定。

2. 像的翻折:若二次函数的系数a的符号发生变化,整个二次函数的图像将发生翻折。

当a>0时,图像翻折后开口向上;当a<0时,图像翻折后开口向下。

3. 像的伸缩:若二次函数的系数a和b发生变化,整个二次函数的图像将发生伸缩。

当a的绝对值大于1时,图像在y轴方向上发生压缩;当0<|a|<1时,图像在y轴方向上发生拉伸。

当b的绝对值大于1时,图像在x轴方向上发生压缩;当0<|b|<1时,图像在x轴方向上发生拉伸。

二次函数的最值与应用

二次函数的最值与应用

二次函数的最值与应用二次函数是高中数学中的重要内容,它在实际问题中有着广泛的应用。

在研究二次函数时,最值是其中一个重要的性质,它能帮助我们解决很多实际生活中的问题。

本文将深入探讨二次函数的最值原理及其应用。

一、二次函数的最值原理1. 最值的定义最值即函数在某个特定区间内取得的最大值或最小值。

二次函数的最值可以通过抽象函数形式来确定。

对于一般形式的二次函数y = ax^2 + bx + c,其中a、b、c为实数且a不为零,其图像是一个开口朝上或开口朝下的抛物线。

2. 最值的条件二次函数的最值可以通过一些条件来确定。

当二次函数开口方向为开口朝上时,其最值为最小值,当开口方向为开口朝下时,其最值为最大值。

此外,对于二次函数y = ax^2 + bx + c,最值的横坐标为(-b/2a)。

二、二次函数最值的求解1. 最值的求解方法解决二次函数的最值问题可以通过图像、导数以及配方法来求解。

其中通过图像可以直观地确定最值点的位置,通过导数可以求得最值点的切线斜率为零,而通过配方法则是用完全平方式将二次函数转化为顶点形式,从而确定最值。

2. 图像法求最值图像法通过绘制二次函数的图像来确定最值点的位置。

对于开口朝上的二次函数,最小值点即为图像的顶点;对于开口朝下的二次函数,最大值点即为图像的顶点。

通过观察图像的形状,可以直观地判断出最值点的位置。

3. 导数法求最值导数法通过求二次函数的导函数(一次导数)来确定最值点的位置。

对于二次函数y = ax^2 + bx + c,其导函数为y' = 2ax + b。

通过求导函数的解,可以得到最值点的横坐标,从而确定最值点的位置。

4. 配方法求最值配方法通过将二次函数用完全平方式转化为顶点形式来确定最值点的位置。

对于二次函数y = ax^2 + bx + c,通过完全平方式将其转化为y = a(x - h)^2 + k的形式,其中(h, k)为顶点的坐标。

通过转化后的函数形式,可以直接确定最值点的位置。

二次函数的最值与应用

二次函数的最值与应用

二次函数的最值与应用二次函数是数学中常见且重要的一种函数类型。

它的一般形式可以表示为f(x) = ax^2 + bx + c,其中a、b和c均为实数且a ≠ 0。

在这篇文章中,我们将探讨二次函数的最值问题以及它在实际应用中的意义和用途。

1. 二次函数的最值在二次函数中,最值指的是函数的最大值和最小值。

要确定二次函数的最值,我们首先需要考虑二次函数的开口方向。

当a > 0时,二次函数的图像开口向上,最小值存在;当a < 0时,二次函数的图像开口向下,最大值存在。

为了找到二次函数的最值,我们需要用到一些重要的概念和方法,包括顶点、轴对称和判别式。

二次函数的顶点坐标可以通过公式x = -b / (2a)和y = f(x)来求得。

此外,二次函数的轴对称轴是通过顶点且与x 轴垂直的一条直线。

判别式Δ = b^2 - 4ac用于判断二次函数的图像与x 轴的交点个数,从而帮助我们确定最值是否存在。

2. 最值问题的应用二次函数的最值问题在现实生活中有许多应用场景,包括经济学、物理学和工程学等领域。

以下是其中的一些例子:(1) 经济学:在某个产业中,产品的产量和售价往往与成本和利润相关。

通过分析二次函数模型,我们可以找到使利润最大化或成本最小化的最优生产量和售价。

这有助于企业优化经营策略和提高竞争优势。

(2) 物理学:在物理学中,二次函数经常用来描述抛物线轨迹,如抛体运动中的轨迹和弹簧的伸缩长度与施加力的关系。

通过分析二次函数的最值,我们可以确定物理系统的最优参数,从而优化实验设计和模型预测。

(3) 工程学:在工程学中,二次函数可以用来描述不同材料的特性和性能。

通过最值问题,我们可以确定最优的材料组合、变量调节范围和工艺参数,从而提高产品质量和工程效率。

3. 实例分析:二次函数最值问题的求解为了更好地理解二次函数最值问题的求解过程,我们来看一个具体的实例。

假设有一个二次函数f(x) = 2x^2 + 3x - 5,我们的任务是求出其最大值或最小值。

二次函数的最值及实际应用

二次函数的最值及实际应用

第六讲二次函数的最值及实际应用板块一 二次函数的最值对于二次函数()20y ax bx c a =++>(max y 表示y 的最大值,min y 表示y 的最小值) ⑴当自变量x 的取值范围为全体实数,如图①,函数在顶点处2bx a=-时,取到最小值,无最大 值。

⑵若2bm x n a<-≤≤,如图②,当x m =,max y y =;当x n =,min y y =。

⑶若2bm x n a-<≤≤,如图③,当x m =,min y y =;当x n =,max y y =。

⑷若m x n ≤≤,且2b m n a -≤≤,如图④,当2bx a=-,min y y =;当x n =,max y y =。

b()20y ax bx c a =++<练习: ⑴ 若x 为任意实数,求函数221y x x =-+的最小值;⑵ 若12x ≤≤,求221y x x =-+的最大值、最小值; ⑶ 若01x ≤≤,求221y x x =-+的最大值、最小值; ⑷ 若20x -≤≤,求221y x x =-+的最大值、最小值;⑸ 若x 为整数,求函数221y x x =-+的最小值。

【例1】真题大比拼。

⑴(2010镇江市)已知实数x y ,满足2330x x y ++-=,则x y +的最大值为 。

⑵(2009昌平二模)当12x ≤时,二次函数223y x x =--的最小值为( ) A .4-B .154-C .12- D.12【例2】(2009—2010人大附练习题)如图,有长为30米的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度10a 米),当AB 为多少米时,围成的花圃面积最大。

【例3】(2009—2010查与预测,种植树木的利润y 量x 成二次函数关系,如图2①分别求出利润1y 与2y ②如果这位专业户以8润是多少?【例4】(河北中考)某机械租赁公司有同一型号的机械设备40套。

二次函数的实际应用(面积最值问题含答案)

二次函数的实际应用(面积最值问题含答案)

二次函数的实际应用——面积最大(小)值问题知识要点:在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。

求最值的问题的方法归纳起来有以下几点: 1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值; 3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值.[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少? (2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少? 答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S tt t t y =∴+-=<<+-=+--⨯=+-=⋅-=[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米则长为:x x 4342432-=+-(米)则:)434(x x S -= x x 3442+-=4289)417(42+--=x ∵104340≤-<x∴2176<≤x∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内, 而当2176<≤x 内,S 随x 的增大而减小,∴当6=x 时,604289)4176(42max =+--=S (平方米)答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大.[例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积. 解:设矩形PNDM 的边DN=x ,NP=y , 则矩形PNDM 的面积S=xy (2≤x≤4) 易知CN=4-x ,EM=4-y . 过点B 作BH ⊥PN 于点H 则有△AFB ∽△BHP ∴PHBHBF AF =,即3412--=y x , ∴521+-=x y , x x xy S 5212+-==)42(≤≤x ,此二次函数的图象开口向下,对称轴为x=5, ∴当x≤5时,函数值y 随x 的增大而增大, 对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省? 解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点 按顺(逆)时针方向旋转90°后得到的, 故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形. (2)设CE =x , 则BE =0.4-x ,每块地砖的费用为y 元 那么:y =x ×30+×0.4×(0.4-x )×20+[0.16-x -×0.4×(0.4-x )×10])24.02.0(102+-=x x3.2)1.0(102+-=x )4.00(<<x当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.作业布置:1.(2008浙江台州)某人从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是,那么小球运动中的最大高度=最大h 4.9米 .2.(2008庆阳市)兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);已知点(x ,y )都在一个二次函数的图像上,(如图所示),则6楼房子的价格为 元/平方米.5 m 12m ABCD提示:利用对称性,答案:2080.3.如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )A .424m B .6 m C .15 m D .25m 解:AB =x m ,AD=b ,长方形的面积为y m 2∵AD ∥BC ∴△MAD ∽△MBN ∴MB MA BN AD =,即5512x b -=,)5(512x b -=)5(512)5(5122x x x x xb y --=-⋅==, 当5.2=x 时,y 有最大值.4.(2008湖北恩施)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( C ) A .7 B .6 C .5 D .45.如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数关系式是:35321212++-=x x y ,则该运动员此次掷铅球的成绩是( D ) A .6 mB .12 mC .8 mD .10m解:令0=y ,则:02082=--x x 0)10)(2(=-+x xxyO AB M O(图5) (图6) (图7)6.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图6,如果抛物线的最高点M 离墙1 m ,离地面340m ,则水流落地点B 离墙的距离OB 是( B )A .2 mB .3 mC .4 mD .5 m解:顶点为)340,1(,设340)1(2+-=x a y ,将点)10,0(代入,310-=a 令0340)1(3102=+--=x y ,得:4)1(2=-x ,所以OB=3 7.(2007乌兰察布)小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图7所示,若命中篮圈中心,则他与篮底的距离L 是( B )8.某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少? 解:)240(x x y -=)20(22x x --=200)10(22+--=x∵152400≤-<x ∴205.12<≤x∵二次函数的顶点不在自变量x 的范围内, 而当205.12<≤x 内,y 随x 的增大而减小, ∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ? (2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,则宽为350x-米,设面积为S 平方米. )50(313502x x x x S --=-⋅= 3625)25(312+--=x∴当25=x 时,3625max =S (平方米)即:鸡场的长度为25米时,面积最大.(2) 中间有n 道篱笆,则宽为250+-n x米,设面积为S 平方米. 则:)50(212502x x n n x x S -+-=+-⋅= 2625)25(212++-+-=n x n ∴当25=x 时,2625max +=n S (平方米)由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米. 即:使面积最大的x 值与中间有多少道隔墙无关.10.如图,矩形ABCD 的边AB=6 cm ,BC=8cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设BP=x cm ,CQ=y cm ,试以x 为自变量,写出y 与x 的函数关系式.ABCD PQ解:∵∠APQ=90°, ∴∠APB+∠QPC=90°. ∵∠APB+∠BAP=90°,∴∠QPC=∠BAP ,∠B=∠C=90° .∴△ABP ∽△PCQ.,86,yxx CQ BP PC AB =-= ∴x x y 34612+-=.11.(2006年南京市)如图,在矩形ABCD 中,AB=2AD ,线段EF=10.在EF 上取一点M ,•分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN=x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少? 解:∵矩形MFGN ∽矩形ABCD ∴MF=2MN =2x ∴ EM=10-2x ∴S=x (10-2x )=-2x 2+10x=-2(x-2.5)2+12.5 ∵1020<<x ,∴50<<x当x=2.5时,S 有最大值12.5易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 0.5 米. 答案:如图所示建立直角坐标系则:设c ax y +=2将点)1,5.0(-,)5.2,1(代入,⎩⎨⎧+=+-⨯=ca c a 5.2)5.0(12,解得⎩⎨⎧==5.02c a 5.022+=x y 顶点)5.0,0(,最低点距地面0.5米.13.(2008黑龙江哈尔滨)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当x 是多少时,矩形场地面积S 最大?最大面积是多少? 解:(1)根据题意,得x x x xS 3022602+-=⋅-=自变量的取值范围是(2)∵01<-=a ,∴S 有最大值当时,答:当为15米时,才能使矩形场地面积最大,最大面积是225平方米.14.(2008年南宁市)随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图12-①所示;种植花卉的利润与投资量成二次函数关系,如图12-②所示(注:利润与投资量的单位:万元)(1)分别求出利润与关于投资量的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少? 解:(1)设=,由图12-①所示,函数=的图像过(1,2),所以2=,故利润关于投资量的函数关系式是=;因为该抛物线的顶点是原点,所以设2y =,由图12-②所示,函数2y =的图像过(2,2),所以,故利润2y 关于投资量的函数关系式是2221x y =; (2)设这位专业户投入种植花卉万元(),则投入种植树木(x -8)万元,他获得的利润是万元,根据题意,得 ==+21y y +== ∵021>=a ∴当时,的最小值是14;∴他至少获得14万元的利润.因为,所以在对称轴2=x 的右侧, z 随x 的增大而增大所以,当8=x 时,z 的最大值为32.15.(08山东聊城)如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.解:(1)设正方形的边长为cm,则.即.解得(不合题意,舍去),.剪去的正方形的边长为1cm.(2)有侧面积最大的情况.设正方形的边长为cm,盒子的侧面积为cm2,则与的函数关系式为:.即.改写为.当时,.即当剪去的正方形的边长为2.25cm时,长方体盒子的侧面积最大为40.5cm2.设正方形的边长为cm ,盒子的侧面积为cm 2.若按图1所示的方法剪折, 则与的函数关系式为:x xx x y ⋅-⋅+-=22102)28(2 即.当时,.若按图2所示的方法剪折, 则与的函数关系式为:x xx x y ⋅-⋅+-=2282)210(2. 即.当时,.比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm 时,折成的有盖长方体盒子的侧面积最大,最大面积为cm 2.16.(08兰州)一座拱桥的轮廓是抛物线型(如图16所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m .(1)将抛物线放在所给的直角坐标系中(如图17所示),求抛物线的解析式; (2)求支柱的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.解:(1)根据题目条件,的坐标分别是.设抛物线的解析式为,将的坐标代入,得解得.所以抛物线的表达式是.(2)可设,于是从而支柱的长度是米.(3)设是隔离带的宽,是三辆车的宽度和,则点坐标是.过点作垂直交抛物线于,则.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.11。

中考数学专题复习二次函数的应用题与最值问题

中考数学专题复习二次函数的应用题与最值问题

二次函数的应用题与最值问题二次函数最值问题(一)开口向上:1.当对称轴a b x 2-=在所给范围内,必在顶点处取得最小值,在离对称轴较远端点处取得最大值;2.当对称轴ab x 2-=不在所给范围内,在离对称轴较远端点处取得最大值,离对称轴较近端点处取得最小值.(二)开口向下:1.当对称轴a b x 2-=在所给范围内,必在顶点处取得最大值,在离对称轴较远端点处取得最小值;2.当对称轴ab x 2-=不在所给范围内,在离对称轴较远端点处取得最小值,离对称轴较近端点处取得最大值.1. 求解析式综合题型:例1.如图,抛物线y =x 2+bx +c 与x 轴交于A ,B 两点,点A ,B 分别位于原点的左、右两侧,BO =3AO =3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C ,D ,BC =CD .(1)求b ,c 的值;(2)求直线BD 的函数解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出所有满足条件的点Q 的坐标.2.已知二次函数y =ax 2+bx +c 的图象过点(﹣1,0),且对任意实数x ,都有4x ﹣12≤ax 2+bx +c ≤2x 2﹣8x +6.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x 轴的正半轴交点为A ,与y 轴交点为C ;点M 是(1)中二次函数图象上的动点.问在x 轴上是否存在点N ,使得以A 、C 、M 、N 为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N 的坐标;若不存在,请说明理由.2.二次函数的应用题例1.某商品现在的售价为每件25元,每天可售出50件,市场调查发现,售价每上涨1元,每天就少卖出2件,已知该商品的进价为每件20元,设该商品每天的销售量为y件,售价为每件x元(x为正整数)(1)求y与x之间的函数关系式;(2)该商品的售价定为每件多少元时,每天的销售利润W(元)最大,最大利润是多少元?1.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?2.某商家在构进一款产品时,由于运输成本及产品成本的提高,该产品第x天的成本y (元/件)与x(天)之间的关系如图所示,并连续60天均以80元/件的价格出售,第x 天该产品的销售量z(件)与x(天)满足关系式z = x + 15.(1)第25天,该商家的成本是元,获得的利润是元;(2)设第x天,该商家出售该产品的利润为w元.①求w与x之间的函数关系式;②求出第几天的利润最大,最大利润是多少?.3.为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;如果每台设备提价5万元时,则年销售量就减少50台.设该设备的年销售量为y(单位:台),销售单价为x(单位:万元/台).(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,则应把这种设备的销售单价定为多少万元时,该公司所获得的年利润最大?最大的年利润是多少?4.某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式.例2.某农场拟建三间矩形牛饲养室,饲养室的一面全部靠现有墙(墙长为40m),饲养室之间用一道用建筑材料做的墙隔开(如图).已知计划中的建筑材料可建围墙的总长为60m,设三间饲养室合计长x(m),总占地面积为y(m2).(1)求y关于x的函数表达式和自变量的取值范围.(2)x为何值时,三间饲养室占地总面积最大?最大为多少?1.某单位为了创建城市文明单位,准备在单位的墙(线段MN所示)外开辟一处长方形的土地进行绿化美化,除墙体外三面要用栅栏围起来,计划用栅栏50米.(1)不考虑墙体长度,问长方形的各边的长为多少时,长方形的面积最大?(2)若墙体长度为20米,问长方形面积最大是多少?2.如图,用48米篱笆围成一个外形为矩形的花园,花园一面利用院墙,中间用一道篱笆间隔成两个小矩形,院墙的长度为20米,平行于院墙的一边长为x米,花园的面积为S平方米.(1)求S与x之间的函数关系式;(2)问花园面积可以达到180平方米吗?如果能,花园的长和宽各是多少?如果不能,请说明理由.3.某社区决定把一块长50m,宽30m的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小、形状都相同的矩形),空白区域为活动区,且四周的4个出口宽度相同,其宽度不小于14m,不大于26m,设绿化区较长边为xm,活动区的面积为ym2.为了想知道出口宽度的取值范围,小明同学根据出口宽度不小于14m,算出x≤18.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)求活动区的最大面积;(3)预计活动区造价为50元/m2,绿化区造价为40元/m2,若社区的此项建造投资费用不得超过72000元,求投资费用最少时活动区的出口宽度?例3.如图是把一个抛物线形桥拱,量得两个数据,画在纸上的情形.小明说只要建立适当的坐标系,就能求出此抛物线的表达式.你认为他的说法正确吗?如果不正确,请说明理由;如果正确,请你帮小明求出该抛物线的表达式.1.有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为10m.现将它的图形放在如图所示的直角坐标系中.求这条抛物线的解析式.2.如图是一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m,在图中直角坐标系中该抛物线的解析式.3.如图,是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m,若水面上升1m,则水面宽为()A.m B.2m C.2m D.2m4.飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是s =60t ﹣1.5t 2,那么飞机着陆后滑行的最远距离为( )A .600mB .400mC .300mD .200m5.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为()341212+--=x y ,由此可知铅球达到的最大高度是 m ,推出的距离是 m .6.如图,若被击打的小球飞行高度h (单位:m )与飞行时间t (单位:s )直接具有的关系为h =24t ﹣4t 2,则小球从飞出到落地所用的时间为 s .7.廊桥是我国古老的文化遗产,如图是某座抛物线形的廊桥示意图.已知抛物线的函数表达式为y =﹣x 2+10,为保护廊桥的安全,在该抛物线上距水面AB 高为6米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是 米.例4.当22≤≤-x 时,求函数322--=x x y 的最大值和最小值.1.当21≤≤x 时,求函数12+--=x x y 的最大值和最小值.2.已知二次函数y =x 2+2bx +c(1)若b =c ,是否存在实数x ,使得相应的y 的值为1?请说明理由;(2)若b =c ﹣2,y 在﹣2≤x ≤2上的最小值是﹣3,求b 的值.3.当﹣1≤x ≤1时,函数y =﹣x 2﹣2mx +2n +1的最小值是﹣4,最大值是0,求m 、n 的值.4.如图是甲、乙两人进行羽毛球练习赛时的一个瞬间,羽毛球飞行的高度y (m )与水平距离x (m )的路线为抛物线的一部分,如图,甲在O 点正上方1m 的P 处发出一球,已知点O 与球网的水平距离为5m ,球网的高度为1.55m .羽毛球沿水平方向运动4m 时,达到羽毛球距离地面最大高度是m .(1)求羽毛球经过的路线对应的函数关系式;(2)通过计算判断此球能否过网;(3)若甲发球过网后,羽毛球飞行到离地面的高度为m 的Q 处时,乙扣球成功求此时乙与球网的水平距离.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第17讲、二次函数最值及应用(B)
姓名________
一、知识梳理:
知识点一:二次函数的最值:
知识点二:利用二次函数研究“最大利润”:
利用二次函数解决实际问题中的最值问题(如最大利润)的步骤为:
(1)分析题意,设出自变量x ,根据题中两个变量之间的关系列出二次函数关系式; (2)利用公式法或者配方法求出其最大(小)值; (3)结合相关问题写出结果。

二、精典题型例析:
考点一、求二次函数的最值
例1.求二次函数223y x x =-+的最值。

(用两种方法)
考点二、区间最值
例2.分别在下列范围内求函数223y x x =-+的最小值和最大值。

(1)20≤≤x (2)23x ≤≤ (3)30x -≤≤
2
A . ﹣10.5
B . 2
C . ﹣2.5
D . ﹣6
考点三、面积最值问题
例3、(2012·张家界).如图,抛物线
233
5
2++
-=x x y 与x 轴交于 C 、A 两点,与y 轴交于点B ,OB =2点O 关于直线AB 的对称点为D . (1) 分别求出点A 、点B 的坐标 (2) 求直线AB 的解析式, (3) 若反比例函数x
k
y =
的图像过点D ,求k 值. (4)两动点P 、Q 同时从点A 出发,分别沿AB 、AO 方向向B 、O 移动,点P 每秒移动1个单位,点Q 每秒移动
2
1
个单位,设△POQ 的面积为S ,移动时间为t ,问:S 是否存在最大值?若存在,求出这个最大值,并求出此时的t 值,若不存在,请说明理由.
考点四、应用题中的最值问题 例4、(2014.成都)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用长为28米长的篱笆围成一个矩形花园ABCD (篱笆只围AB 、BC 两边),设AB=x 米。

(1)若花园的面积为192平方米,求x 的值; (2)若在P 处有一棵树与墙CD 、AD 的距离分别是15米和6米,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S 的最大值。

y
x
B
D
P
A
Q O
C
2
例5:(2011黄冈)我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x 万元,可获得利润()2
16041100
P x =-
-+(万元)
.当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x 万元,可获利润
()()2
992941001001601005
Q x x =-
-+-+(万元) ⑴若不进行开发,求5年所获利润的最大值是多少?
⑵若按规划实施,求5年所获利润(扣除修路后)的最大值是多少? ⑶根据⑴、⑵,该方案是否具有实施价值?
[名书、名校、中考在线:]
1.(2015•温州)某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m 宽的门.已知计划中的材料可建墙体(不包括门)总长为27m ,则能建成的饲养室面积最大为 m 2.
2.(2014•杭州)复习课中,教师给出关于x 的函数y=2kx 2﹣(4k+1)x ﹣k+1(k 是实数). 教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.
学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条: ①存在函数,其图象经过(1,0)点; ②函数图象与坐标轴总有三个不同的交点;
③当x >1时,不是y 随x 的增大而增大就是y 随x 的增大而减小;
④若函数有最大值,则最大值为正数,若函数有最小值,则最小值为负数.
教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.
3.(2014•内江)如图,抛物线y=ax2+bx+c经过A(﹣3.0)、C(0,4),点B在抛物线上,CB ∥x轴,且AB平分∠CAO.
(1)求抛物线的解析式;
(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.
【家庭作业】
第一部分
1.(2015•咸宁)如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x 的取值范围是x≥0.其中正确的个数有()
A. 1个B. 2个C. 3个D. 4个
第二部分:
2.(2015•莆田)用一根长为32cm的铁丝围成一个矩形,则围成矩形面积的最大值是cm2.3、已知二次函数y=ax2+bx+c, 当x=1时,有最值为16,且它在x轴上截得的线段为8。

则a、b、
c的值是___ _____________。

4.(2015•营口)某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.
第三部分:
5.(2014•泸州)如图,已知一次函数y1=x+b的图象l与二次函数y2=﹣x2+mx+b的图象C′都经
过点B(0,1)和点C,且图象C′过点A(2﹣,0).
(1)求二次函数的最大值;
(2)设使y2>y1成立的x取值的所有整数和为s,若s是关于x的方程=0的
根,求a的值;
(3)若点F、G在图象C′上,长度为的线段DE在线段BC上移动,EF与DG始终平行于y轴,当四边形DEFG的面积最大时,在x轴上求点P,使PD+PE最小,求出点P的坐标.。

相关文档
最新文档