算法分析与设计常见算法思想
算法设计与分析-第3章-蛮力法

哨兵
0123456789 k 10 15 24 6 12 35 40 98 55
查找方向
i
清华大学出版社
算法设计与分析
算法3.2——改进的顺序查找
int SeqSearch2(int r[ ], int n, int k) //数组r[1] ~ r[n]存放查找集合 { r[0]=k; i=n; while (r[i]!=k)
清华大学出版社
算法设计与分析
第3章 蛮力法
3.1 蛮力法的设计思想 3.2 查找问题中的蛮力法 3.3 排序问题中的蛮力法 3.4 组合问题中的蛮力法 3.5 图问题中的蛮力法 3.6 几何问题中的蛮力法 3.7 实验项目——串匹配问题
清华大学出版社
算法设计与分析
3.1 蛮力法的设计思想
蛮力法的设计思想:直接基于问题的描述。 例:计算an
52 37 65 不可行 不可行 不可行 不可行 不可行
清华大学出版社
算法设计与分析
对于一个具有n个元素的集合,其子集 数量是2n,所以,不论生成子集的算法 效率有多高,蛮力法都会导致一个Ω(2n) 的算法。
清华大学出版社
算法设计与分析
3.4.4 任务分配问题
假设有n个任务需要分配给n个人执行, 每个任务只分配给一个人,每个人只分配一 个任务,且第j个任务分配给第i个人的成本 是C[i, j](1≤i , j≤n),任务分配问题要求 找出总成本最小的分配方案。
用蛮力法解决0/1背包问题,需要考虑给定n个 物品集合的所有子集,找出所有可能的子集(总重 量不超过背包容量的子集),计算每个子集的总价 值,然后在他们中找到价值最大的子集。
清华大学出版社
算法设计与分析
10
常见算法的原理与实现分析

常见算法的原理与实现分析算法可以说是现代科技中最重要的组成部分之一。
一个优秀的算法可以让程序性能提高数倍,让问题更快的得到解决。
因此,学习算法是每一个程序员必须努力追求的。
接下来,本文将介绍一些常见的算法,包括它们的实现和原理分析。
一、快速排序快速排序是一种基于分治思想的排序算法,其基本思路是将待排序数组不断划分成较小的子数组,然后分别对这些子数组进行排序。
在分治的过程中,我们需要选择一个基准数,将其与数组中的其他数进行比较,并将小于它的数放到其左边,大于它的数放到其右边。
通过这种方式,我们可以实现快速排序的过程。
快速排序的原理比较简单,但是在实际的应用中,我们需要注意一些问题。
首先,我们需要避免基准数的选择过于靠边,这会导致快速排序效率的降低。
其次,如果数组中存在大量重复的元素,我们需要使用基于三路划分的快速排序算法来提高效率。
二、二分查找二分查找也称为折半查找,它是一种可以在有序数组中查找目标元素的高效算法。
二分查找的原理是将有序数组从中间划分成两个子数组,并判断目标元素与中间元素的大小关系,进而确定需要查找的子数组。
通过不断的缩小查找范围,我们可以最终找到目标元素。
二分查找在实际应用中有很多优点,包括查询速度快、查找效率高、内存消耗小等。
但同时,二分查找也存在一些问题,比如只能在有序数组中进行查找,而无法在无序数组中进行查找。
三、动态规划动态规划是一种高效的求解最优化问题的算法。
它的核心思想是将一个大问题拆分成若干个小问题,通过解决这些小问题,最终得到大问题的最优解。
动态规划的实现通常需要借助一个表格来记录问题的解。
在表格的计算过程中,我们需要找到问题的递推关系式,并通过简单的计算来填充表格。
最终,我们可以通过查找表格中的最后一项来获取问题的最优解。
四、最小生成树最小生成树是一种可以在带权图中查找最小权值子集的算法。
最小生成树的核心思想是通过遍历图中所有节点,构建一个包含所有节点的树,并保证这棵树的权值总和最小。
软件工程师常见算法分析

软件工程师常见算法分析一、概述在软件开发中,算法是程序员必备的核心能力之一。
算法是解决问题的方法和步骤,是一种数学思维方式的体现。
对于软件工程师而言,常见的算法分析是学习和掌握各种算法的性能特点,选择合适的算法来解决具体的问题。
本文将介绍一些常见的算法以及其分析。
二、冒泡排序算法冒泡排序是一种简单且常见的排序算法。
它通过不断比较相邻的两个元素,并根据规则交换位置,实现将较大(或较小)的元素逐渐“冒泡”到最终位置的目的。
冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。
三、插入排序算法插入排序是一种简单且高效的排序算法。
它将数组分为已排序和未排序两个部分,逐个将未排序的元素插入到已排序的部分中,使得整个数组有序。
插入排序的时间复杂度为O(n^2),空间复杂度为O(1)。
四、选择排序算法选择排序是一种简单但较低效的排序算法。
它通过不断选择最小(或最大)的元素,并放置到已排序部分的末尾,实现整个数组的排序。
选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。
五、快速排序算法快速排序是一种高效的排序算法。
它采用分治思想,通过确定一个基准元素,将数组划分为两个子数组,并递归地对子数组进行排序,最终实现整个数组的排序。
快速排序的时间复杂度通常为O(nlogn),空间复杂度为O(logn)。
六、二分查找算法二分查找是一种常见的搜索算法。
它适用于有序数组,通过不断将待查找区间缩小为一半,最终找到目标元素的位置。
二分查找的时间复杂度为O(logn),空间复杂度为O(1)。
七、动态规划算法动态规划是一种常见且重要的算法思想。
它通过将大问题拆分为子问题,并存储子问题的解,避免重复计算,从而提高算法的效率。
常见的动态规划问题包括斐波那契数列、背包问题等。
八、贪心算法贪心算法是一种简单且常用的算法思想。
它通过每一步选择当前状态下的最优解,从而希望得到全局最优解。
贪心算法通常适用于当局部最优解能够导致全局最优解的情况。
计算机算法设计五大常用算法的分析及实例

计算机算法设计五⼤常⽤算法的分析及实例摘要算法(Algorithm)是指解题⽅案的准确⽽完整的描述,是⼀系列解决问题的清晰指令,算法代表着⽤系统的⽅法描述解决问题的策略机制。
也就是说,能够对⼀定规范的输⼊,在有限时间内获得所要求的输出。
如果⼀个算法有缺陷,或不适合于某个问题,执⾏这个算法将不会解决这个问题。
不同的算法可能⽤不同的时间、空间或效率来完成同样的任务。
其中最常见的五中基本算法是递归与分治法、动态规划、贪⼼算法、回溯法、分⽀限界法。
本⽂通过这种算法的分析以及实例的讲解,让读者对算法有更深刻的认识,同时对这五种算法有更清楚认识关键词:算法,递归与分治法、动态规划、贪⼼算法、回溯法、分⽀限界法AbstractAlgorithm is the description to the problem solving scheme ,a set of clear instructions to solve the problem and represents the describe the strategy to solve the problem using the method of system mechanism . That is to say, given some confirm import,the Algorithm will find result In a limited time。
If an algorithm is defective or is not suitable for a certain job, it is invalid to execute it. Different algorithms have different need of time or space, and it's efficiency are different.There are most common algorithms: the recursive and divide and conquer、dynamic programming method、greedy algorithm、backtracking、branch and bound method.According to analyze the five algorithms and explain examples, make readers know more about algorithm , and understand the five algorithms more deeply.Keywords: Algorithm, the recursive and divide and conquer, dynamic programming method, greedy algorithm、backtracking, branch and bound method⽬录1. 前⾔ (4)1.1 论⽂背景 (4)2. 算法详解 (5)2.1 算法与程序 (5)2.2 表达算法的抽象机制 (5)2.3 算法复杂性分析 (5)3.五中常⽤算法的详解及实例 (6)3.1 递归与分治策略 (6)3.1.1 递归与分治策略基本思想 (6)3.1.2 实例——棋盘覆盖 (7)3.2 动态规划 (8)3.2.1 动态规划基本思想 (8)3.2.2 动态规划算法的基本步骤 (9)3.2.3 实例——矩阵连乘 (9)3.3 贪⼼算法 (11)3.3.1 贪⼼算法基本思想 (11)3.3.2 贪⼼算法和动态规划的区别 (12)3.3.3 ⽤贪⼼算法解背包问题的基本步骤: (12)3.4 回溯发 (13)3.4.1 回溯法基本思想 (13)3.3.2 回溯发解题基本步骤 (13)3.3.3 实例——0-1背包问题 (14)3.5 分⽀限界法 (15)3.5.1 分⽀限界法思想 (15)3.5.2 实例——装载问题 (16)总结 (18)参考⽂献 (18)1. 前⾔1.1 论⽂背景算法(Algorithm)是指解题⽅案的准确⽽完整的描述,是⼀系列解决问题的清晰指令,算法代表着⽤系统的⽅法描述解决问题的策略机制。
《计算机算法设计与分析》课程设计

《计算机算法设计与分析》课程设计用分治法解决快速排序问题及用动态规划法解决最优二叉搜索树问题及用回溯法解决图的着色问题一、课程设计目的:《计算机算法设计与分析》这门课程是一门实践性非常强的课程,要求我们能够将所学的算法应用到实际中,灵活解决实际问题。
通过这次课程设计,能够培养我们独立思考、综合分析与动手的能力,并能加深对课堂所学理论和概念的理解,可以训练我们算法设计的思维和培养算法的分析能力。
二、课程设计内容:1、分治法:(2)快速排序;2、动态规划:(4)最优二叉搜索树;3、回溯法:(2)图的着色。
三、概要设计:分治法—快速排序:分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。
递归地解这些子问题,然后将各个子问题的解合并得到原问题的解。
分治法的条件:(1) 该问题的规模缩小到一定的程度就可以容易地解决;(2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;(3) 利用该问题分解出的子问题的解可以合并为该问题的解;(4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
抽象的讲,分治法有两个重要步骤:(1)将问题拆开;(2)将答案合并;动态规划—最优二叉搜索树:动态规划的基本思想是将问题分解为若干个小问题,解子问题,然后从子问题得到原问题的解。
设计动态规划法的步骤:(1)找出最优解的性质,并刻画其结构特征;(2)递归地定义最优值(写出动态规划方程);(3)以自底向上的方式计算出最优值;(4)根据计算最优值时得到的信息,构造一个最优解。
●回溯法—图的着色回溯法的基本思想是确定了解空间的组织结构后,回溯法就是从开始节点(根结点)出发,以深度优先的方式搜索整个解空间。
这个开始节点就成为一个活结点,同时也成为当前的扩展结点。
在当前的扩展结点处,搜索向纵深方向移至一个新结点。
这个新结点就成为一个新的或节点,并成为当前扩展结点。
《算法设计与分析》期末必考复习及答案题整理

《算法设计与分析》期末必考复习及答案题整理1、分治法的基本思想:是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题互相独立且与原问题相同。
递归地解这些子问题,然后将各子问题的解合并得到原问题的解。
2、贪心选择性质:指所求问题的整体最优解可以通过一系列局部最优的选择,3、 Prim算法:设G=(V,E)是连通带权图,V={1,2,…,n}。
构造G的最小生成树的Prim算法的基本思想是:首先置S={1},然后,只要S是V的真子集,就作如下的贪心选择:选取满足条件i?S,j?V-S,且c[j]最小的边,将顶点j添加到S 中。
这个过程一直进行到S=V时为止。
4、什么是剪枝函数:回溯法搜索解空间树时,通常采用两种策略避免无效搜索,提高回溯法的搜索效率。
其一是用约束函数在扩展结点处剪去不满足约束的子树;其二是用限界函数剪去得不到最优解的子树。
这两类函数统称为剪枝函数。
6、分支限界法的基本思想:(1)分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。
(2)在分支限界法中,每一个活结点只有一次机会成为扩展结点。
活结点一旦成为扩展结点,就一次性产生其所有儿子结点。
在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。
(3)此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程,这个过程一直持续到找到所需的解或活结点表这空时为止。
5、什么是算法的复杂性:是该算法所需要的计算机资源的多少,它包括时间和空间资源。
6、最优子结构性质:该问题的最优解包含着其子问题的最优解。
7、回溯法:是一个既带有系统性又带有跳跃性的搜索算法。
这在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树。
算法搜索至解空间树的任一结点时,先判断该结点是否包含问题的解。
如果肯定不包含,则跳过对以该结点为根的子树的搜索,逐层向其祖先结点回溯;否则,进入该子树,继续按深度优先策略搜索。
算法设计与分析知识点

第一章算法概述1、算法的五个性质:有穷性、确定性、能行性、输入、输出。
2、算法的复杂性取决于:(1)求解问题的规模(N) , (2)具体的输入数据(I),( 3)算法本身的设计(A),C=F(N,I,A。
3、算法的时间复杂度的上界,下界,同阶,低阶的表示。
4、常用算法的设计技术:分治法、动态规划法、贪心法、回溯法和分支界限法。
5、常用的几种数据结构:线性表、树、图。
第二章递归与分治1、递归算法的思想:将对较大规模的对象的操作归结为对较小规模的对象实施同样的操作。
递归的时间复杂性可归结为递归方程:1 11= 1T(n) <aT(n—b) + D(n) n> 1其中,a是子问题的个数,b是递减的步长,~表示递减方式,D(n)是合成子问题的开销。
递归元的递减方式~有两种:1、减法,即n -b,的形式。
2、除法,即n / b,的形式。
2、D(n)为常数c:这时,T(n) = 0(n P)。
D(n)为线形函数cn:r O(n) 当a. < b(NT(n) = < Ofnlog^n) "n = blljI O(I1P)二"A bl吋其中.p = log b a oD(n)为幕函数n x:r O(n x) 当a< D(b)II JT{ii) = O(ni1og b n) 'ia = D(b)ll].O(nr)D(b)lHJI:中,p= log b ao考虑下列递归方程:T(1) = 1⑴ T( n) = 4T(n/2) +n⑵ T(n) = 4T(n/2)+n2⑶ T(n) = 4T(n/2)+n3解:方程中均为a = 4,b = 2,其齐次解为n2。
对⑴,T a > b (D(n) = n) /• T(n) = 0(n);对⑵,•/ a = b2 (D(n) = n2) T(n) = O(n2iog n);对⑶,•/ a < b3(D(n) = n3) - T(n) = 0(n3);证明一个算法的正确性需要证明两点:1、算法的部分正确性。
【分析】算法分析与设计作业参考答案

【关键字】分析《算法分析与设计》作业参考答案作业一一、名词解释:1.递归算法:直接或间接地调用自身的算法称为递归算法。
2.程序:程序是算法用某种程序设计语言的具体实现。
2、简答题:1.算法需要满足哪些性质?简述之。
算法是若干指令的有穷序列,满足性质:1)输入:有零个或多个外部量作为算法的输入。
2)输出:算法产生至少一个量作为输出。
3)确定性:组成算法的每条指令清晰、无歧义。
4)有限性:算法中每条指令的执行次数有限,执行每条指令的时间也有限。
2.简要分析分治法能解决的问题具有的特征。
分析分治法能解决的问题主要具有如下特征:1)该问题的规模缩小到一定的程度就可以容易地解决;2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;3)利用该问题分解出的子问题的解可以合并为该问题的解;4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。
3.简要分析在递归算法中消除递归调用,将递归算法转化为非递归算法的方法。
将递归算法转化为非递归算法的方法主要有:1)采用一个用户定义的栈来模拟系统的递归调用工作栈。
该方法通用性强,但本质上还是递归,只不过人工做了本来由编译器做的事情,优化效果不明显。
2)用递推来实现递归函数。
3)通过Cooper变换、反演变换能将一些递归转化为尾递归,从而迭代求出结果。
后两种方法在时空复杂度上均有较大改善,但其适用范围有限。
三、算法编写及算法应用分析题:1.冒泡排序算法的基本运算如下:for i ←1 to n-1 dofor j ←1 to n-i doif a[j]<a[j+1] then交换a[j]、a[j+1];分析该算法的时间复杂性。
解答:排序算法的基本运算步为元素比较,冒泡排序算法的时间复杂性就是求比较次数与n的关系。
1)设比较一次花时间1;2)内循环次数为:n-i次,(i=1,…n),花时间为:3)外循环次数为:n-1,花时间为:2.设计一个分治算法计算一棵二叉树的高度。
算法设计与分析实验报告

算法设计与分析报告学生姓名学号专业班级指导教师完成时间目录一、课程内容 (3)二、算法分析 (3)1、分治法 (3)(1)分治法核心思想 (3)(2)MaxMin算法分析 (3)2、动态规划 (4)(1)动态规划核心思想 (4)(2)矩阵连乘算法分析 (5)3、贪心法 (5)(1)贪心法核心思想 (5)(2)背包问题算法分析 (6)(3)装载问题算法分析 (7)4、回溯法 (7)(1)回溯法核心思想 (7)(2)N皇后问题非递归算法分析 (7)(3)N皇后问题递归算法分析 (8)三、例子说明 (9)1、MaxMin问题 (9)2、矩阵连乘 (10)3、背包问题 (10)4、最优装载 (10)5、N皇后问题(非递归) (11)6、N皇后问题(递归) (11)四、心得体会 (12)五、算法对应的例子代码 (12)1、求最大值最小值 (12)2、矩阵连乘问题 (13)3、背包问题 (15)4、装载问题 (17)5、N皇后问题(非递归) (19)6、N皇后问题(递归) (20)一、课程内容1、分治法,求最大值最小值,maxmin算法;2、动态规划,矩阵连乘,求最少连乘次数;3、贪心法,1)背包问题,2)装载问题;4、回溯法,N皇后问题的循环结构算法和递归结构算法。
二、算法分析1、分治法(1)分治法核心思想当要求解一个输入规模为n,且n的取值相当大的问题时,直接求解往往是非常困难的。
如果问题可以将n个输入分成k个不同子集合,得到k个不同的可独立求解的子问题,其中1<k≤n, 而且子问题与原问题性质相同,原问题的解可由这些子问题的解合并得出。
那末,这类问题可以用分治法求解。
分治法的核心技术1)子问题的划分技术.2)递归技术。
反复使用分治策略将这些子问题分成更小的同类型子问题,直至产生出不用进一步细分就可求解的子问题。
3)合并技术.(2)MaxMin算法分析问题:在含有n个不同元素的集合中同时找出它的最大和最小元素。
算法与程序设计的教案范文

算法与程序设计一、教学目标:1. 了解算法的概念和特点,理解算法在解决问题中的重要性。
2. 学习常用的编程语言和工具,掌握基本的编程技巧。
3. 通过实例学习,掌握常见的算法思想和实现方法。
4. 培养学生的逻辑思维能力和创新能力,提高学生解决实际问题的能力。
二、教学内容:1. 算法概述:算法的定义、特点、分类和评价。
2. 编程语言及工具:常用的编程语言(如Python、C++、Java等)和开发工具(如Visual Studio、Eclipse等)的介绍和使用。
3. 基本算法思想:顺序结构、选择结构、循环结构、递归等。
4. 常见算法实现:排序算法(冒泡排序、快速排序等)、查找算法(二分查找、顺序查找等)、图算法(深度优先搜索、广度优先搜索等)。
5. 算法优化与分析:时间复杂度、空间复杂度、算法优化方法等。
三、教学方法:1. 讲授法:讲解算法的概念、特点、分类和评价等基本知识。
2. 实践法:让学生通过编写代码,实际操作来掌握算法思想和实现方法。
3. 案例分析法:通过分析典型实例,让学生理解并掌握算法的应用。
4. 小组讨论法:分组进行讨论,培养学生的团队协作能力和沟通能力。
1. 第一课时:算法概述及编程语言介绍2. 第二课时:基本算法思想及实现3. 第三课时:常见算法实现4. 第四课时:算法优化与分析5. 第五课时:综合案例分析与实践五、教学评价:1. 课堂表现:观察学生在课堂上的积极参与程度、提问回答等情况,了解学生的学习状态。
2. 课后作业:布置相关的编程练习,检查学生对知识点的掌握情况。
3. 项目实践:让学生完成一个综合性的项目,评价学生的综合运用能力和创新能力。
4. 小组评价:对学生在小组讨论中的表现进行评价,包括团队协作能力和沟通能力。
六、教学资源:1. 教材:算法与程序设计相关教材,如《算法导论》、《编程之美》等。
2. 在线资源:编程社区(如Stack Overflow、GitHub等)、在线编程平台(如LeetCode、牛客网等)。
算法总结---最常用的五大算法(算法题思路)

算法总结---最常⽤的五⼤算法(算法题思路)算法总结---最常⽤的五⼤算法(算法题思路)⼀、总结⼀句话总结:> 【明确所求:dijkstra是求点到点的距离,辅助数组就是源点到⽬标点的数组】> 【最简实例分析:⽐如思考dijkstra:假设先只有三个点】1、贪⼼算法是什么?> 当前看来最好的选择> 局部最优解> 可能得到整体最优解或是最优解的近似解贪⼼算法(⼜称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。
也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。
贪⼼算法不是对所有问题都能得到整体最优解,但对范围相当⼴泛的许多问题他能产⽣整体最优解或者是整体最优解的近似解。
2、贪⼼算法实例?> 求最⼩⽣成树的Prim算法:【边集中依次选取那些权值最⼩的边】> 求最⼩⽣成树的Kruskal算法:【和求最短路径有点相似:不过这⾥是求两个集合之间的距离】:【⼀维中间数组记录到当前已经选择顶点的最短距离】:【⼆维表记录每个点到每个点的最短距离】> 计算强连通⼦图的Dijkstra算法:【和最⼩⽣成树Kruskal类似】【⼆维表记录每个点到每个点的最短距离】【明确所求:dijkstra是求点到点的距离,辅助数组就是源点到⽬标点的数组】【每次从辅助数组中选择最⼩的,⽤选出的点来更新辅助数组】【最简实例分析:⽐如思考dijkstra:假设先只有三个点】> 构造huffman树的算法:【每次都选取权值⼩的两个点合成⼆叉树】Kruskal算法简述在带权连通图中,不断地在边集合中找到最⼩的边,如果该边满⾜得到最⼩⽣成树的条件,就将其构造,直到最后得到⼀颗最⼩⽣成树。
假设 WN=(V,{E}) 是⼀个含有 n 个顶点的连通⽹,则按照克鲁斯卡尔算法构造的过程为:先构造⼀个只含 n 个顶点,⽽边集为空的⼦图,若将该⼦图中各个顶点看成是各棵树上的根结点,则它是⼀个含有 n 棵树的⼀个森林。
《算法设计与分析》教案

《算法设计与分析》教案算法设计与分析是计算机科学与技术专业的一门核心课程,旨在培养学生具备算法设计、分析和优化的能力。
本课程通常包括算法基础、算法设计方法、高级数据结构以及算法分析等内容。
本教案主要介绍了《算法设计与分析》课程的教学目标、教学内容、教学方法和评价方法等方面。
一、教学目标本课程的教学目标主要包括以下几个方面:1.掌握算法设计的基本思想和方法。
2.熟悉常见的算法设计模式和技巧。
3.理解高级数据结构的原理和应用。
4.能够进行算法的时间复杂度和空间复杂度分析。
5.能够使用常见的工具和软件进行算法设计和分析。
二、教学内容本课程的主要教学内容包括以下几个方面:1.算法基础:算法的定义、性质和分类,时间复杂度和空间复杂度的概念和分析方法。
2.算法设计方法:贪心算法、分治算法、动态规划算法、回溯算法等算法设计思想和方法。
3.高级数据结构:堆、树、图等高级数据结构的原理、实现和应用。
4.算法分析:渐进分析法、均摊分析法、递归方程求解等算法分析方法。
5. 算法设计与分析工具:常见的算法设计和分析工具,如C++、Java、Python和MATLAB等。
三、教学方法本课程采用多种教学方法结合的方式,包括讲授、实践和讨论等。
1.讲授:通过教师讲解理论知识,引导学生掌握算法的基本思想和方法。
2.实践:通过课堂上的编程实验和课后作业,培养学生动手实践的能力。
3.讨论:通过小组讨论和学生报告,促进学生之间的交流和合作,提高学习效果。
四、评价方法为了全面评价学生的学习情况,本课程采用多种评价方法,包括考试、作业和实验报告等。
1.考试:通过期中考试和期末考试,检验学生对算法设计和分析的理解和掌握程度。
2.作业:通过课后作业,检验学生对算法设计和分析的实践能力。
3.实验报告:通过编程实验和实验报告,检验学生对算法设计和分析工具的应用能力。
五、教学资源为了支持教学工作,我们为学生准备了如下教学资源:1.课件:编写了详细的教学课件,包括理论知识的讲解和案例分析。
算法设计与分析的基本方法-论文

算法设计与分析的基本方法1.递推法递推算法是一种用若干步可重复的简运算(规律)来描述复杂问题的方法.递推是序列计算机中的一种常用算法。
它是按照一定的规律来计算序列中的每个项,通常是通过计算机前面的一些项来得出序列中的指定象的值。
其思想是把一个复杂的庞大的计算过程转化为简单过程的多次重复,该算法利用了计算机速度快和不知疲倦的机器特点。
2.递归法程序调用自身的编程技巧称为递归(recursion)。
一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。
递归的能力在于用有限的语句来定义对象的无限集合。
一般来说,递归需要有边界条件、递归前进段和递归返回段。
当边界条件不满足时,递归前进;当边界条件满足时,递归返回。
注意:(1) 递归就是在过程或函数里调用自身;(2) 在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口。
3.穷举法穷举法,或称为暴力破解法,是一种针对于密码的破译方法,即将密码进行逐个推算直到找出真正的密码为止。
例如一个已知是四位并且全部由数字组成的密码,其可能共有10000种组合,因此最多尝试10000次就能找到正确的密码。
理论上利用这种方法可以破解任何一种密码,问题只在于如何缩短试误时间。
因此有些人运用计算机来增加效率,有些人辅以字典来缩小密码组合的范围。
4.贪心算法贪婪算法是一种对某些求最优解问题的更简单、更迅速的设计技术。
用贪婪法设计算法的特点是一步一步地进行,常以当前情况为基础根据某个优化测度作最优选择,而不考虑各种可能的整体情况,它省去了为找最优解要穷尽所有可能而必须耗费的大量时间,它采用自顶向下,以迭代的方法做出相继的贪心选择,每做一次贪心选择就将所求问题简化为一个规模更小的子问题, 通过每一步贪心选择,可得到问题的一个最优解,虽然每一步上都要保证能获得局部最优解,但由此产生的全局解有时不一定是最优的,所以贪婪法不要回溯。
算法设计与分析的方法研究

算法设计与分析的方法研究随着计算机技术的发展,算法设计与分析也变得愈加重要。
算法是计算机领域中的一项核心技术,是计算机解决复杂问题的基础。
算法的好坏直接影响到计算机的运行速度和效率。
因此,研究算法设计与分析的方法十分重要。
一、算法设计算法设计是指按照指定的计算准则,通过有限个基本操作步骤,求解某个问题的过程。
算法设计应满足正确性、可读性、简单性和高效性等要求。
(一)分而治之的思想分而治之是一种常用的算法设计思想。
它将大问题分解成若干个小问题,通过递归处理每个小问题,最终解决大问题。
例如,在排序算法中,快速排序和归并排序都是基于分而治之的思想。
这种思想的使用能够提升算法的效率。
(二)贪心算法贪心算法是一种可行性问题的一种常用算法,它在每一步选择中都采取当前状态下最好或最优(即最有利)的选择,从而希望导致结果是全局最好或最优的算法。
贪心算法与动态规划算法相似,但它只考虑局部最优解,并未考虑全局最优解,因此并不能保证得到全局最优解。
二、算法分析算法分析是对算法运行时间、空间等方面的评估。
针对给定的计算问题和输入规模,通常有以下几种算法复杂度评价方法。
(一)时间复杂度时间复杂度是指算法运行时间与输入规模的关系,用 O(f(n)) 表示。
其中,f(n) 是某个函数,它表示算法的运行时间与输入规模n 的增长速度。
通过分析算法的时间复杂度,可以比较不同算法的效率,从而选择最优方案。
(二)空间复杂度空间复杂度是指算法在运行时需要占用的内存与输入规模的关系,即算法需要的额外空间与输入规模之间的关系。
通常用O(f(n)) 表示,其中,f(n) 是占用空间大小与输入规模 n 增长速度的函数。
(三)平均复杂度平均复杂度是对算法的期望评估,通常情况下,平均复杂度比最坏情况下的复杂度更能反映算法的性能。
平均复杂度通常与数据的分布有关。
(四)最坏复杂度最坏复杂度是指算法在最坏情况下的时间复杂度,它通常是用O(f(n)) 表示,其中,f(n) 是算法在最坏情况下的时间复杂度与输入规模 n 的增长速度。
算法分析与设计论文

算法分析与设计论⽂1:递归算法程序直接或间接调⽤⾃⾝的编程技巧称为递归算法(Recursion)。
递归算法是⼀个过程或函数在其定义或说明中有直接或间接调⽤⾃⾝的⼀种⽅法。
它通常把⼀个⼤型复杂的问题转化为⼀个与原问题类似的规模较⼩的问题来求解。
递归策略只需少量的代码就可描述出解题过程所需要的多次重复计算,⼤⼤减少了程序的代码量。
递归的优势在于⽤有限的语句来定义对象的⽆限集合,⽤递归思想写出的程序往往⼗分简洁易懂。
递归需要有边界条件,递进前进段和递归返回段,当边界条件不满⾜时,递归前进;当边界条件满⾜时,递归返回(使⽤递归时,不必须有⼀个明确的递归出⼝,否则递归将⽆限进⾏下去)。
递归算法解题的运⾏效率较低,在递归调⽤过程中,系统为每⼀层的返回点,局部变量等开辟了堆栈来储存。
递归次数过多容易造成堆栈溢出等。
例:Fibonacci数列“菲波那切数列”是意⼤利数学家列昂纳多-斐波那契最先研究的⼀种递归数列,他的每⼀项都等于前两项制盒次数列的前⼏项为1,1,2,3,5等。
在⽣物数学中许多⽣物现象都会出现菲波那切数列的规律,斐波那契数列相邻两项的⽐例近于黄⾦分割数,其递归定义为:Fibonacci数列的递归算法:int fib(int n){if (n<=1) return 1;return fib(n-1)+fib(n-2);}算法效率⾮常低,重复递归的次数太多,通常采⽤递推算法:int fib[50]; //采⽤数组保存中间结果void Fibonacci(int n){fib[0] = 1;fib[1] = 1;for (int i=2; i<=n; i++)fib[i] = fib[i-1]+fib[i-2];}采⽤数组保存之前已求出的数据,减少了递归次数,提⾼了算法效率。
2:分治算法在计算机科学中,分治法是⼀种很重要的算法。
字⾯上的解释是“分⽽治之”,就是把⼀个复杂的问题分成两个或更多的相同或相似的⼦问题,再把⼦问题分成更⼩的⼦问题……直到最后⼦问题可以简单的直接求解,原问题的解即⼦问题的解的合并。
算法原理概述

算法原理概述
算法原理是指算法的基本概念、基本思想和基本方法。
它是指导算法设计和分析的理论基础,可以帮助解决各种问题。
算法原理包括以下几个方面:
1. 算法的定义:算法是一系列定义良好的指令,用于解决特定问题的方法或过程。
算法通常包括输入、输出、明确的指令和结束条件。
2. 算法的基本思想:算法的基本思想是指算法设计的思路和方法。
常见的算法思想有递归、分治、贪心、动态规划、回溯、穷举等等。
3. 算法的时间复杂度和空间复杂度:算法的时间复杂度是指算法运行时间与问题规模的增长关系。
算法的空间复杂度是指算法所需空间与问题规模的增长关系。
时间复杂度和空间复杂度是评价算法效率的重要指标。
4. 算法的正确性:算法的正确性是指算法能够得到正确的输出结果。
为了保证算法的正确性,通常需要进行数学证明和测试验证。
5. 算法的优化:算法的优化是指改进算法的效率和性能。
通过改善算法的设计和实现方法,可以减少算法的运行时间和空间消耗。
总之,算法原理是指导算法设计和分析的基本理论,它涉及算法的定义、基本思想、复杂度分析、正确性和优化等方面。
掌握算法原理可以帮助我们设计高效、正确的算法来解决各种问题。
从计算思维的视角辨析算法中的递归与迭代

从计算思维的视角辨析算法中的递归与迭代算法是指一系列操作步骤,以实现特定目标的计算过程。
在算法设计中,常常会使用到递归和迭代两种常见的算法策略,两者之间具有一定的相关性和互补性。
递归和迭代都是重复执行某个操作的方法,它们在计算机程序中广泛应用,可以使程序更加简洁、高效、可读性更好。
下面我们从计算思维的角度,分别介绍递归和迭代的概念、特点、优缺点以及适用场景,并对二者进行比较与分析。
一、递归算法递归是一种在算法中经常使用的重要策略,通常用于解决问题的分治思想。
递归算法可以将一个问题拆分为更小的同类问题,逐层递归,直到问题简单化为不需要继续递归的边界情况。
递归算法的优点是思路清晰简单,代码易于编写和理解。
比如在树的遍历、搜索、排序算法等场景下,递归算法可以更好地处理问题。
同时,递归可以大大降低算法的时间复杂度。
但是,递归算法可能会引起栈溢出等问题,需要特别注意。
递归算法的一般形式如下:```function Recursion(arr) {if (termination-condition) { // 边界情况return value;} else {reduce arr; // 将问题分解为子问题let result = Recursion(arr); // 递归调用,解决子问题return aggregate-results(result); // 将子问题结果汇总}}```二、迭代算法迭代是一种基于循环的算法,它通过反复执行同一组操作来达到特定的目标,直到遇到停止条件。
与递归算法不同的是,迭代算法通常是用循环语句来实现的。
迭代算法的优点是具有更好的空间复杂度和迭代更加安全稳定,不会发生栈溢出等问题。
比如在图形处理、数值计算等场景下,迭代算法可以更好地发挥作用。
但是,迭代算法的缺点是可读性较差,代码结构比较复杂。
三、递归与迭代的比较与应用递归与迭代都是非常重要的算法思想,两者在代码编写和问题解决方面具有各自的优缺点和适用场景。
算法设计与分析——任务分配问题

算法设计与分析——任务分配问题【问题描述】假设有n个任务需要分配给n个⼈执⾏,每个⼈只执⾏⼀个任务,每个任务只由⼀个⼈执⾏。
第i个⼈执⾏第j个任务的成本是Cij(1<=i,j<=n),求解初最⼩成本的分配⽅案。
【基本算法思想】暴⼒法:⽤矩阵表⽰任务分配问题,矩阵元素Cij(1<=i,j<=n)表⽰⼈员i执⾏任务j的成本。
任务分配问题转化为,在矩阵中的每⼀⾏选取⼀个元素,这些元素分别属于不同的列。
⽤⼀个n元组(j1,j2,...,jn)表⽰⼀个可能解,其中ji表⽰第i⾏中选择的列号。
⽤暴⼒法解决此问题则可表⽰成,⽣成⼀个n元组的全排列,遍历输出最⼩的成本代价即可。
复杂度分析: ⼀个n元组的全排列的个数为n!个。
暴⼒法慎⽤【源代码】#include<stdio.h>#include<iostream>#include<stdlib.h>#include<math.h>#include<algorithm>#define MAX 99999using namespace std;int main(){int num,c[10][10],i,j,temp[10],minCost=MAX,cost=0;cout<<"输⼊任务个数:\n";cin>>num;cout<<"输⼊成本矩阵\n";for(i=1;i<=num;i++){ //输⼊成本的矩阵值for(j=1;j<=num;j++)cin>>c[i][j];temp[i]=i; //设置全排列辅助数组,默认升序}do{ //利⽤next_permutation函数依次求出数组的全排列cost=0;for(i=1;i<=num;i++)cost+=c[i][temp[i]];if(cost<minCost)minCost=cost; //记录最⼩代价}while(next_permutation(temp+1,temp+1+num));cout<<"最⼩成本:\n"<<minCost;return0;}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法导论复习——常见算法思想PPT2-1:1.堆排序(选择类排序,不稳定)(1)初始化操作:将R[1..n]构造为初始堆;(2)每一趟排序的基本操作:将当前无序区的堆顶记录R[1]和该区间的最后一个记录交换,然后将新的无序区调整为堆(亦称重建堆)。
时间复杂度是:O(nlgn)2.归并排序)归并排序采用分治法思想的稳定的排序。
算法思想是先使每个子序列有序,再使子序列段间有序。
第一步:申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列第二步:设定两个指针,最初位置分别为两个已经排序序列的起始位置第三步:比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置重复步骤3直到某一指针超出序列尾,将另一序列剩下的所有元素直接复制到合并序列尾。
时间复杂度是:O(nlgn)3.快速排序(交换类排序,不稳定)|(1)通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小;(2)然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
时间复杂度是:O(nlgn)。
4.分治法实现大数相乘将a,b写成前一半数字和后一半数字相加的形式,例如若 a = 5423678,那么a1 = 542,a0 = 3678(注意若不是偶数截取较小一半)这样a和b相乘就可以写为:a * b = { a1 * 10^(n1/2) + a0 } * { b1 * 10^(n 2/2) + b0 }(展开后整理得:a *b = a1*b1 * 10^[ (n1+n2)/2 ] + a1*b0 * 10^(n1/2 ) + a0*b1 * 10^(n2/2) + a0*b0 四项这样就很容易递归的来求a * b,如果你嫌分解后的数还太大,就可以继续分解。
(你可以自己规定在何时结束递归)时间复杂度是:O(nlgn)参考资料见:5.分治法求最近点对步骤一:找一条中垂线m(坐位S集合x坐标的中位数)把n个元素分成左右两部分元素,步骤二:递归查找两边点集的的最短距离d1,d2,然后取两者中的最小者记为d;步骤三:在中线两边分别取d的距离,记录该距离范围内点的个数,中线左边有L个元素,右边有R个元素,分别将两边的点按y坐标升序排列,在左边集合中每一个点,找右边集合的点,找到与之距离小于d的点,更新最短距离,直到循环结束,即可求出最短距离。
>时间复杂度是:O(nlgn)6.格雷厄姆Graham扫描法求凸包基本思想:通过设置一个关于候选点的堆栈s来解决凸包问题。
操作:输入集合Q中的每一个点都被压入栈一次,非CH(Q)(表示Q的凸包)中的顶点的点最终将被弹出堆栈,当算法终止时,堆栈S中仅包含CH(Q)中的顶点,其顺序为个各顶点在边界上出现的逆时针方向排列的顺序。
具体步骤如下:(1)设P0 是Q 中Y 坐标最小的点,如果有多个这样的点则取最左边的点作为P0;(2)设<P1,P2,……,Pm>是Q 中剩余的点,对其按逆时针方向相对P0 的极角进行排序,如果有数个点有相同的极角,则去掉其余的点,只留下一个与P0 距离最远的那个点;!(3)PUSH(p0 , S)(4)PUSH(p1 , S)(6)PUSH(p3 , S)(7)for i ← 3 to m{while 由点NEXT-TOP-TOP(S),TOP(S)和Pi 所形成的角形成一次非左转do POP(S)PUSH(pi , S).}(8)return S时间复杂度是:O(nlgn)注:Jarvis步进法更加容易理解,见算法导论中文版P609。
7.D&C for 2D maxima Finding Problem(1)如果点集S只包含一个点,这直接输出该点。
否则找一条中垂线m(坐位S集合x坐标的中位数)把n个元素分成左右两部分个数相等的元素,分别为Sl和Sr。
^(2)递归查找两边点集的的最大点;(3)将获得的所有最大点按y值排序,并查找出Sl中y值小于Sr中最大点的y值的最大点,并将其排除;(4)最终获得所有的点集S的所有maximal point。
时间复杂度是:O(nlgn)Homework:Voronoi DiagramPPT2-2:8.,9.Depth First Search(DFS)深度优先搜索算法也叫回溯法,其基本策略是:尽可能深的深的搜索某一分支。
从源节点开始发现有一节点v,如果v还有未探测到的边,就沿此边继续探测下去,当节点v的所有边都被探测过,搜索过程将回溯到最初发现v点的源节点。
这一过程一直进行到已发现从源节点可达的所有节点为止。
这显然是一个递归过程。
伪代码(使用栈实现),递归实现:long DFS(图g,结点v0){(2)从网中删去该顶点,并且删去从该顶点发出的全部有向边.(3)重复上述两步,直到剩余的网中不再存在没有前趋的顶点为止.10.?11.参考资料:字典序法生成全排列(permutation)设P是1~n的一个全排列:p=p1p2......pn=p1p2......pj-1pjpj+1......pk-1pkpk+1......pn1.从右向左找,找到第一个比下一个元素还小的地方,记下位置,标注为左元素。
2.从右向左找,找到第一个比左元素大的元素,也是左元素右边比左元素大的数中最小的数,记下位置,标注为右元素。
3.交换左元素和右元素。
4.不管现在左元素位置上放的是谁,将左元素右边的序列逆序。
5.这样就得到了一个新数了。
6.可以继续重复1-5,来继续得到下一个排列。
7.如果再也找不到一个比下一个元素还小的地方,那么意味着这个序列已经降序了,排列完成了,那就结束吧。
时间复杂度:O(n!)参考资料:12.关节点(Articulation Point)见homework。
(13.约瑟夫问题(Josephus Problem)设有n个人围坐在一个圆桌周围,现从第s个人开始报数,数到第m的人出列,然后从出列的下一个人重新开始报数,数到第m的人又出列,…,如此反复直到所有的人全部出列为止。
Josephus问题是:对于任意给定的n,s和m,求出按出列次序得到的n个人员的序列。
解决思想:循环链表表示1 建立循环单链表2 寻找第s个结点,输出并删除第m个节点。
14.,15.二查搜索树BST(Binary Search Tree)PART2-3:(Transform &Conquer)16.霍纳法则(Horner Rule)霍纳法则出现的原因:为多项式求值提供了一个高效的方法。
用来简化朴素多项式的求值,在中国叫秦九韶算法。
朴素多项式可以简化为:举个例子,多项式变换如下::pseudo code:其中P[n]是多项式的系数组成的数组,17.平衡二叉树AVL(Balanced Binary Tree)18.红黑树R-B树19.参考链接:树每个节点最多包含两个关键子,所有叶子节点在树的同一层,因此树总是高度平衡的。
[20.堆Heap21.树堆Treap见homework,有可能考代码!22.优先队列Priority Queue重点:优先级队列,是要看优先级的,谁的优先级更高,谁就先得到权限。
不分排队的顺序! 利用堆可以实现优先队列!"21. 迷宫问题Maze Problem使用DFS或者BFS遍历搜索出口!PART2-423.计数排序Counting Sorting计数排序的基本思想是对于给定的输入序列中的每一个元素x,确定该序列中值小于x 的元素的个数。
一旦有了这个信息,就可以将x直接存放到最终的输出序列的正确位置上。
例如,如果输入序列中只有17个元素的值小于x的值,则x可以直接存放在输出序列的第18个位置上。
当然,如果有多个元素具有相同的值时,我们不能将这些元素放在输出序列的同一个位置上,因此,上述方案还要作适当的修改。
伪代码:A待排序数组,B排序后的数组,k待排序中最大的数(24.字符串匹配算法Horspool AlgorithmsHorspool算法是对Boyer-Moore算法的简化。
其基本思想(后缀匹配法):模式串是需要匹配的串,主串是在其中查找模式串的字符串,匹配窗口是模式串从左往右移动,在主串中需要比对的字符形成的窗口。
模式串是从左往右移动,字符比对是从匹配窗口的右边往左。
horspool算法将主串中匹配窗口的最后一个字符跟模式串中的最后一个字符比较。
如果相等,继续从后向前对主串和模式串进行比较,直到完全相等或者在某个字符处不匹配为止(如下图中的α与σ失配)。
如果不匹配,则根据主串匹配窗口中的最后一个字符β在模式串中的从右往左下一个出现位置,将窗口向右移动与之对齐。
为了实现模式串的移动,必须先记录模式串中每一个字符(不包括最后一个字符)在模式中距离最右边的距离,如若出现相同字符的距离不同,取最短的距离:#时间复杂度:假设主串的长度为n,模式串的长度为m,那么Horspool算法最坏情况下的时间复杂度是O(mn),但平均情况下它的时间复杂度是O(n)。
25.参考资料:字符串匹配算法BM:Boyer-Moore算法思想(后缀匹配法):Boyer-Moore算法是一种基于后缀匹配的模式串匹配算法,后缀匹配就是模式串从右到左开始比较,但模式串的移动还是从左到右的。
字符串匹配的关键就是模式串的如何移动才是最高效的,Boyer-Moore为了做到这点定义了两个规则:坏字符规则和好后缀规则,具体的移动规则见参考资料链接。
Boyer-Moore算法步骤1.对模式子串进行预处理Boyer-Moore算法实现必须对模式串进行预处理,得到坏字符规则和好后缀规则移动的映射表,下面代码中MakeSkip是建立坏字符规则移动的映射表,MakeShift是建立好后缀规则的移动映射表。
&MakeSkip是构造数组skip[],skip[k]表示字符k距离模式串末尾的距离。
MakeShfit是构造数组shfit[],shfit[k]表示模式串的以k为边界的后缀子串的最靠近的模式子串(或最前缀子串)到模式子串末尾的距离,例如:abcab,shfit[3]=3和shfit[2]=3(即都是第一个b到末尾的距离),k=2时,后缀子串为cab,这时只有最长前缀ab,shfit[2]=3。
2.从b_idx开始查找,得到坏字符和好后缀,得到最大移动距离,移动b_idx,直至b_idx 到达母串的末尾。
26.参考资料:(去年未考)27.字符串匹配算法KMP算法算法思想(前缀匹配法):KMP算法是一种高效的前缀匹配算法,在传统蛮力(BF)匹配算法的基础上改进的地方在于每次移动的距离不是1可以是更大,没有进行回溯,BF算法的时间复杂度是O(m*n),而KMP算法的时间复杂度是O(m+n)。