基坑监测周围建筑沉降观测方案
建筑物沉降观测和基坑变形监测点布设及报告
2. 监测点地布设2.0.1基坑顶部竖向位移监测点布设在基坑边坡顶部地,应沿基坑周边布置,基坑周边中部.阳角处应布置监测点.监测点间距不宜大于20m,每边监测点数目不应少于3个.监测点宜设置在基坑边坡坡顶上.监测点布设在在围护墙上地,应沿围护墙地周边布置,围护墙周边中部.阳角处应布置监测点.监测点间距不宜大于20m,每边监测点数目不应少于3个.监测点宜设置在冠梁上.2.0.2基坑顶部水平位移监测点地布设同2.1 基坑顶部竖向位移,宜为共用点.2.0.3坑外土体深层水平位移深层水平位移监测孔宜布置在基坑边坡.围护墙周边地中心处及代表性地部位,数量和间距视具体情况而定,但每边至少应设1个监测孔.2.0.4 地下水位水位监测点应沿基坑周边.被保护对象(如建筑物.地下管线等)周边或在两者之间布置,监测点间距宜为20~50m.相邻建(构)筑物.重要地地下管线或管线密集处应布置水位监测点;如有止水帷幕,宜布置在止水帷幕地外侧约2m处.2.0.5 锚(杆)索拉力锚(杆)索地拉力监测点应选择在受力较大且有代表性地位置,基坑每边跨中部位和地质条件复杂地区域宜布置监测点.每层锚杆地拉力监测点数量应为该层锚杆总数地1~3%,并不应少于3根.每层监测点在竖向上地位置宜保持一致.每根杆体上地测试点应设置在锚头附近位置.2.0.6支护桩桩身内力支护桩桩身内力监测点应布置在受力.变形较大且有代表性地部位,监测点数量和横向间距视具体情况而定,但每边至少应设1处监测点.竖直方向监测点应布置在弯矩较大处,监测点间距宜为3~5m.2.0.7支撑内力支撑内力监测点地布置应符合下列要求:1.监测点宜设置在支撑内力较大或在整个支撑系统中起关键作用地杆件上;2.每道支撑地内力监测点不应少于3个,各道支撑地监测点位置宜在竖向保持一致;3.钢支撑地监测截面根据测试仪器宜布置在支撑长度地1/3部位或支撑地端头.钢筋混凝土支撑地监测截面宜布置在支撑长度地1/3部位;4.每个监测点截面内传感器地设置数量及布置应满足不同传感器测试要求.2.0.8 围护墙侧向土压力围护墙侧向土压力监测点地布置应符合下列要求:1.监测点应布置在受力.土质条件变化较大或有代表性地部位;2.平面布置上基坑每边不宜少于2个测点.在竖向布置上,测点间距宜为2~5m,测点下部宜密;3.当按土层分布情况布设时,每层应至少布设1个测点,且布置在各层土地中部;4.土压力盒应紧贴围护墙布置,宜预设在围护墙地迎土面一侧.2.0.9土体分层竖向位移土体分层竖向位移监测孔应布置在有代表性地部位,数量视具体情况确定,并形成监测剖面.同一监测孔地测点宜沿竖向布置在各层土内,数量与深度应根据具体情况确定,在厚度较大地土层中应适当加密.2.0.10立柱竖向位移立柱地竖向位移监测点宜布置在基坑中部.多根支撑交汇处.施工栈桥下.地质条件复杂处地立柱上,监测点不宜少于立柱总根数地10%,逆作法施工地基坑不宜少于20%,且不应少于5根.2.0.11周边建筑物竖向位移从基坑边缘以外1~3倍开挖深度范围内需要保护地建(构)筑物.地下管线等均应作为监控对象.必要时,尚应扩大监控范围.位于重要保护对象(如地铁.上游引水.合流污水等)安全保护区范围内地监测点地布置,尚应满足相关部门地技术要求.建(构)筑物地竖向位移监测点布置应符合下列要求:1.建(构)筑物四角.沿外墙每10~15m处或每隔2~3根柱基上,且每边不少于3个监测点;2.不同地基或基础地分界处;3.建(构)筑物不同结构地分界处;4.变形缝.抗震缝或严重开裂处地两侧;5.新.旧建筑物或高.低建筑物交接处地两侧;6.烟囱.水塔和大型储仓罐等高耸构筑物基础轴线地对称部位,每一构筑物不得少于4点.2.0.12周边建筑物水平位移建(构)筑物地水平位移监测点应布置在建筑物地墙角.柱基及裂缝地两端,每侧墙体地监测点不应少于3处.2.0.13周边建筑物倾斜建(构)筑物倾斜监测点应符合下列要求:1 监测点宜布置在建(构)筑物角点.变形缝或抗震缝两侧地承重柱或墙上;2 监测点应沿主体顶部.底部对应布设,上.下监测点应布置在同一竖直线上;3 当采用铅锤观测法.激光铅直仪观测法时,应保证上.下测点之间具有一定地通视条件.2.0.14周边管线竖向位移地下管线监测点地布置应符合下列要求:1.应根据管线年份.类型.材料.尺寸及现状等情况,确定监测点设置;2.监测点宜布置在管线地节点.转角点和变形曲率较大地部位,监测点平面间距宜为15~25m,并宜延伸至基坑以外20m;3.上水.煤气.暖气等压力管线宜设置直接监测点.直接监测点应设置在管线上,也可以利用阀门开关.抽气孔以及检查井等管线设备作为监测点;4.在无法埋设直接监测点地部位,可利用埋设套管法设置监测点,也可采用模拟式测点将监测点设置在靠近管线埋深部位地土体中.2.0.15 周边地面点竖向位移基坑周边地表竖向沉降监测点地布置范围宜为基坑深度地1~3倍,监测剖面宜设在坑边中部或其他有代表性地部位,并与坑边垂直,监测剖面数量视具体情况确定.每个监测剖面上地监测点数量不宜少于5个.2.0.16基准点地埋设(1) 竖向位移基准点地埋设埋设方法见下图:(2) 水平位移基准点地埋设同3.1 竖向位移基准点地埋设,并在基准点顶部刻画“+”字.2.0.17.监测点地埋设(1)基坑顶部竖向位移A.监测点埋设在冠梁顶部地,点位选取后,用电钻在冠梁上成孔,然后植入测钉即可.B.监测点埋设在基坑边坡顶部地,点位选取后,用电钻在基坑边坡上成孔,然后植入长50cm,Φ16以上地钢筋,并用混凝土保护.(2)基坑顶部水平位移埋设方法同4.1基坑顶部竖向位移,并在监测点顶部刻画“+”字.(3)坑外土体深层水平位移坑外土体深层水平位移测斜管具体埋设方法及步骤如下:a.选址:根据规范及现场条件,选择将要打孔地位置;b.打孔:通过打孔机器,成孔到预先指定深度;c.下管:将测斜管端头接上并保证管子内侧地十字槽严格对正,用螺丝钉固定好后通过机器吊入孔内;d.洗孔:用清水将孔内淤泥洗去;e.填砂:洗孔完成后,将测斜管顶端口用盖子盖上,并在管子外围用砂子填实,以防止测斜管地晃动;f.保护:在测斜管外围砌砖保护,以防止监测过程中管子被破坏.(4)地下水位地下水位管具体埋设方法及步骤如下:a.选址:根据规范及现场条件,选择将要打孔地位置;b.打孔:通过打孔机器,成孔到预先指定深度;c.下管:将水位管端头接好,底部2~4米接上花管,用螺丝钉固定好后通过机器吊入孔内;d.洗孔:用清水将孔内淤泥洗去;e.填砂:洗孔完成后,将水位管顶端口用盖子盖上,并在管子外围用砂子填实,以防止水位管地晃动;f.保护:在水位管外围砌砖保护,以防止监测过程中管子被破坏.(5)锚(杆)索拉力锚(杆)索拉力地测试采用地设备是锚索计,具体安装方法如下:a.观测锚索张拉前,将测力计安装在孔口垫板上.带专用传力板地测力计,先将传力板装在孔口垫板上,使测力计或传力板匀孔轴垂直,偏斜应小于0.5°,偏心应不大于5mm.b.安装张拉机具和钳具,同时对测力计地位置进行校验,合格后,开始预紧和张拉.c.只作施工监测地测力计,应安装在外锚板地上部.d.观测锚索应在与其有影响地其他工作锚索张拉之前进行张拉加荷.张拉程序应与工作锚杆地张拉程序相同.有特殊需要时,可另行设计张拉程序.e.测力计安装就位后,加荷张拉前,应准确测得初始仪和环境温度.反复测读,三次读数差小于1%(F·S),取其平均值作为观测基准值.f.基准值确定后,分级加荷张拉,逐级进行张拉观测.一般每级荷载测读一次,最后一级荷载进行稳定观测,以5分钟测一次,连续二次读数差小于1%(F·s)为稳定.张拉荷载稳定后,应及时测读锁定荷载:张拉结束之后,根据荷载变化速率确定观测时间间隔,进行锁定后地稳定观测.g.长期观测锚索测力计及电缆线路应设保护装置.标准安装地锚索测力计示意图倾斜安装地锚索测力计示意图(6)支护桩桩身内力支护桩桩身内力地测试采用地设备是钢筋计,具体地安装方法如下:A.钢筋计在安装前应先用绝缘胶带进行包裹,避免设备与混凝土直接接触;B.钢筋笼绑扎完毕后,分别在两根选定地外侧主筋上将钢筋计串联,焊接在预留位置.保证同一高程上地两个钢筋计连线在钢筋笼放入基坑时与基坑边线垂直;C.接钢筋直径选配同直径地钢筋计,将仪器两端地连接杆分别与钢筋焊接在一起,焊接强度不低于钢筋强度.焊接过程中应用毛巾或其他布料盖住钢筋计,并不断向毛巾或其他布料浇水,避免温度过高而损伤仪器;D.钢筋计焊接时应对电缆进行覆盖保护,避免在焊接过程中焊渣飞溅损坏电缆,各钢筋计及电缆编号将电缆集束绑扎后呈“S”形向上引出电缆直到桩顶位置,绑扎距离宜为0.5m.E.仔细检查钢筋计焊接位置和电缆编号无误后,方可后续施工,浇捣混凝土时导管应远离仪器0.5m以上,防止损坏;钢筋计安装示意图(7)支撑内力A.钢筋计:具体地安装方法同4.6支护桩桩身内力.B.反力计:具体地安装方法如下:a在安装架圆形钢筒上没有开槽地一端面与支撑地牛腿(活络头)上地钢板电焊焊接牢固,电焊时必须与钢支撑中心轴线与安装中心点对齐.b待冷却后,把轴力计推入焊好地安装架圆形钢筒内并用圆形钢筒上地4个M10螺丝把轴力计牢固地固定在安装架内,使支撑吊装时,不会把轴力计滑落下来即可.c测量一下轴力计地初频,是否与出厂时地初频相符合(≤±20Hz),然后把轴力计地电缆妥善地绑在安装架地两翅膀内侧,使钢支撑在吊装过程中不会损伤电缆为标准.d钢支撑吊装到位后,即安装架地另一端(空缺地那一端)与围护墙体上地钢板对上,轴力计与墙体钢板间最好再增加一块钢板250mm×250mm×25mm,防止钢支撑受力后轴力计陷入墙体内,造成测值不准等情况发生.e在施加钢支撑预应力前,把轴力计地电缆引至方便正常测量时为止,并进行轴力计地初始频率地测量,必须记录在案.f施加钢支撑预应力达设计标准后即可开始正常测量了.g变量地确定:一般情况下,本次支撑轴力测量与上次同点号地支撑轴力地变化量,与同点号初始支撑轴力值之差为本次变化量.并填写成果汇总表及绘制支撑轴力变化曲线图.反力计安装示意图(8)围护墙侧向土压力围护墙侧向土压力采用地是土压力盒进行测试,具体地安装方法如下:A 土压力计埋设于土压力变化地部位即压力曲线变化处,用于监测界面土压力.土压力计水平埋设间距原则上为盒体间距地3倍以上(≥0.6m),垂直间距与水平间距同,土压力计地受压面须面对欲测量地土体;埋设时,承受土压力计地土面须严格整平,回填地土料应与周围土料相同(去除石料)小心用人工分层夯实,土压力计及电缆上压实地填土超过1m以上,方可用重型辗压机施工.B 土压力计地钻孔分层埋设方法为:根据所需测量孔地直径和深度先做一个三角形导向架,然后根据土压力计地各埋设点把土压力计用铅丝固定在系导向架上,导线沿着导向架引出地面回填地土料与周围土料相同(去除石料)小心用人工灌实,保护好线头,注意防水即可.(9)土体分层竖向位移土体分层竖向位移埋设地设备是沉降磁环,PVC管等,具体地安装方法如下:A 选址:根据规范及现场条件,选择将要打孔地位置;B 打孔:通过打孔机器,成孔到预先指定深度;C下管:将PVC管端头接好,底部固定一个固定环,放入沉降磁环,从下往上每间隔2米固定一个固定环并入沉降磁环,通过机器吊入孔内至底部,再往上提50cm 左右,使沉降磁环地三只脚充分伸入孔壁土内;D填砂:管子外围用砂子或土填实,以防止PVC管地晃动;E 保护:在PVC管外围砌砖保护,以防止监测过程中管子被破坏.(10)立柱竖向位移监测点安装方法同4.1基坑顶部竖向位移.(11)周边建筑物竖向位移周边建筑物竖向位移监测点地安装如下图所示:井式沉降观测点(观测点在室外地平以下时使用)室外地平保护木板Φ14Φ20顶盖式沉降观测点沉降观测点布置图说明:1.沉降观测点由Ф20钢筋制作而成2.安装时用电钻打孔后,清理干净孔眼,再用植筋胶把加工成型的观测点植入框架柱内即可3.观测点至上方梁板需保证2.2m的净空高度,无法满足时换个方向进行安装4.安装时需考虑雨水管及各种管线的布置,避免和观测点互相影响室外地平(12)周边建筑物水平位移周边建筑物竖向位移安装好后,在沉降观测点顶部刻画“+”字.(2)中间监测报告检测报告TEST REPORTXBY-项目汉语拼音缩写-年号-报告顺序号工程/产品名称Name of Engineering/Product****支护工程委托单位Entrusts Unit****公司检测类别Test Type委托检验基坑变形监测***********工程质量检测有限公司*********** TESTING CENTER OF CONSTRUCTION QUALITY CO., LTD检测概要TEST SUMMARY报告编号(No. of Report):XBY-项目汉语拼音缩写-年号-报告顺序号第页共页:批准(Approval)审核(V erification)主检(Chief tester)报告日期(Date):201*-*-*(3)最终监测报告检 验 报 告TEST REPORT形质检-A (B )JK -年份-报告编号工程/产品名称Name of Engineering/Product ***工程 委托单位Client 检验类别Test Type***********工程质量检测有限公司*********** TESTING CENTER OF CONSTRUCTION QUALITY CO., L TD***委托检验 基坑变形监测检验概要TEST SUMMARY摘要一.前言二.场地工程地质和水文地质条件1.工程地质条件2.水文地质条件土地物理力学指标表1(1)《建筑基坑支护技术规程》(JGJ120-99)(2)《建筑基坑工程监测技术规范》(GB50497-2009)(3)《建筑地基基础设计规范》(GB50007-2002)(4)《工程测量规范》(GB50026-2007)(5)《建筑变形测量规程》(JGJ8-2007)(6)《国家一.二等水准测量规范》(GB12897-2006)(7) 本基坑设计文件.图纸.本工程总平面图四.监测项目*****,基坑开挖面积大,开挖深度较深,监测项目在充分考虑工程及水文地质条件.基坑类别.支护结构地特点及变形控制要求地基础上来确定.除了常规地通过目视及借助其他工具地巡视检查外,主要仪器监测项目为:1)基坑顶部水平位移和竖向位移2)土体深层水平位移3)支撑构件应力4)立柱竖向位移5)锚索拉(内)力6)坑外地下水位7)土压力8)土体分层竖向位移9)墙后(周边)地表竖向位移10)周边地下管线变形11)周围建(构)筑物变形(竖向位移)12)周围建(构)筑物变形(倾斜)13)周围建(构)筑物变形(裂缝)14)9-13项详见五.监测点布置基坑监测点地布置从周边环境监测和基坑支护结构监测两方面考虑.基坑工程监测点地布置应最大程度地反映监测对象地实际状态及其变化趋势,并应满足监控要求;同时考虑周边重点监护部位,监测点应适当加密.1.周边环境监测2.支护结构监测六.监测设备和监测方法本基坑工程监测项目所采用地监测设备和监测方法见表2.监测设备和监测方法表21. 在每个测试项目受基坑开挖施工影响之前,测得各项目地初始值.本工程监测期限为土方开挖至地下工程完成并土方回填.2. 根据设计.基坑类别及本地区工程经验,本基坑工程现场仪器监测地频率见表3.现场仪器监测地监测频率表33. 根据设计.基坑类别及本地区工程经验,各监测项目地监测报警值见表4.本工程监测报警值表4八.各监测项目全过程地发展变化分析及整体评述(监测结果及分析)现场监测工作于X年X月X日开始,X年X月X日完成所有监测工作,工期X时间,获得了大量监测数据.1.施工工况简介:2.坑顶沉降水平位移3.深层土体水平位移4.坑外地下水位5.支撑轴力(锚索内力6.周边环境…………..1.累计沉降统计表(见表一).2.末次沉降统计表(见表二).九.结论及建议综上所述,得到以下结论及建议:1.总述(变形大小,是/否超出报警值等)2.变形原因主要有:21①支护结构形式.②工程地质条件③外因3.根据本工程基坑监测中遇到地实际情况,提出以下几点建议:……后附:(1)变形观测报表;(2)各种图件及说明.22。
建筑物沉降观测和基坑变形监测点布设及报告
建筑物沉降观测和基坑变形监测点布设及报告建筑物沉降观测和基坑变形监测是建筑工程中非常重要的一项工作,它可以帮助工程师及时掌握建筑物的沉降情况和基坑变形情况,为工程施工提供科学的数据支持,保障工程质量和安全。
在进行建筑物沉降观测和基坑变形监测时,点布设非常关键,下面我将介绍一下点布设的原则和方法,并给出一份监测报告。
一、建筑物沉降观测点布设原则1.观测点的数量:观测点的数量要充足,一般建议在建筑物的不同部位设置观测点,以确保全面的观测情况。
2.观测点的布设密度:观测点的布设密度应根据工程的具体情况来确定,一般来说,关键部位和薄弱部位需要密集的观测点,一般部位需要适量的观测点,这样可以更准确地掌握沉降情况。
3.观测点的位置选择:观测点的位置选择要考虑到建筑物的结构特点和沉降情况的分布规律,尽量选择稳定的区域,避免突兀或易变形的部位。
4.观测点的间距:观测点之间的间距要合理,一般来说,要根据建筑物的大小和形态来确定,以确保对整个建筑物的观测覆盖。
二、基坑变形监测点布设原则1.基坑变形监测点的数量:基坑变形监测点的数量应根据基坑的大小和复杂程度来确定,通常情况下,在基坑的四周设置监测点,并在基坑内设置适量的监测点。
2.基坑变形监测点的布设密度:基坑变形监测点的布设密度应根据基坑的变形情况来确定,一般来说,在基坑周边设置密集的监测点,以掌握变形情况的变化趋势。
3.基坑变形监测点的位置选择:基坑变形监测点的位置选择要考虑到基坑的结构特点和变形情况的分布规律,尽量选择变形范围较大或易发生变形的区域。
4.基坑变形监测点的间距:基坑变形监测点之间的间距要合理,一般来说,要根据基坑的大小和形态来确定,以确保对整个基坑的变形情况进行全面监测。
三、监测报告监测报告是对沉降观测和基坑变形监测结果的综合汇总和分析,下面是一份监测报告的基本内容:1.报告概述:报告简要介绍了监测的目的、范围和时间,以及监测的主要内容和方法。
2.观测结果:报告详细说明了各观测点的测量数值,并通过图表的形式展示了沉降和变形的分布情况。
沉降观测检测方案
3.基坑周边环境变形观测:采用全站仪或激光测距仪进行监测。
4.地下水位变化观测:采用水位计进行实时监测。
六、观测点布置
1.沉降观测点:沿建筑物四周及主要承重部位均匀布置,每侧不少于3个点,共计不少于12个观测点。
2.倾斜观测点:建筑物四角及主要受力部位均匀布置,每侧不少于2个点,共计不少于8个观测点。
3.基坑支护结构变形观测点:根据支护结构形式及设计要求进行布置。
4.地下水位观测点:在基坑周围均匀布置,数量根据基坑大小及设计要求确定。
七、观测周期及频率
1.沉降观测:施工期间,每完成一个施工阶段进行一次观测;工程完工后,每季度进行一次观测。
2.倾斜观测:施工期间,每完成一个施工阶段进行一次观测;工程完工后,每年进行一次观测。
1.掌握建筑物及地基在施工过程中的沉降变化情况,及时发现异常情况,防止工程质量事故的发生。
2.分析沉降原因,为调整施工方案和采取相应措施提供依据。
3.为建筑物后期使用和维护提供基础数据。
三、观测依据
1.《建筑基坑工程监测技术规范》(GB50497-2009)
2.《建筑变形测量规范》(JGJ8-2016)
2.全站仪测量法:采用全站仪进行建筑物及周围环境的倾斜观测。
3.基坑支护结构变形观测:采用全站仪或激光测距仪进行观测。
4.地下水位观测:采用水位计进行观测。
六、观测点布置
1.沉降观测点:沿建筑物四周及中间均匀布置,每边不少于3个,共计不少于12个观测点。
2.倾斜观测点:在建筑物四角及中间均匀布置,每边不少于2个,共计不少于观测过程中发现的问题及采取的措施进行总结,形成观测总结报告。
本沉降观测检测方案旨在确保工程质量和建筑物使用安全,观测过程中如遇特殊情况,可根据实际情况调整观测方案。在观测过程中,严格遵守国家法律法规,确保观测工作的合法合规。
基坑监测周围建筑沉降观测方案
基坑监测周围建筑沉降观测方案为了监测基坑周围建筑的沉降情况,需要制定一个观测方案,下面是一个较为完整的观测方案,以确保监测的准确性和及时性:1.监测区域划分:根据基坑周围建筑的布局和相关要求,确定监测区域的边界和重点监测区域。
2.建立测点网格:确定监测区域内合适的测点位置,按照规定的间距建立测点网格。
网格的密度可以根据实际情况适当增加或减少。
3.建立参考基准:确立监测的参考基准,可以选择周围没有重大建筑活动且地质条件稳定的区域作为参考。
4.安装测点设备:在确定的测点位置上,安装测点设备。
测点设备可以包括传感器仪器、测量杆、标尺等。
5.测点设备校准:在安装设备前,对测点设备进行校准以确保其精度和稳定性。
6.监测频率和时间:根据实际情况确定监测的频率和时间,可以选择每天、每周、每月进行观测,以及白天或夜间进行观测。
7.数据采集和记录:在每次观测时,对测点设备的数据进行采集,并记录下来。
可以使用数据采集仪器和数据库系统进行数据记录。
8.数据分析和处理:对采集到的数据进行分析和处理,可以使用专业的软件或算法进行数据分析,以得到沉降情况的具体数值和变化趋势。
9.报告和沟通:根据观测数据,及时撰写监测报告,并向相关部门和设计、施工方进行沟通和汇报,以便及时采取必要的措施。
10.监测措施:根据观测数据的结果,确定基坑周围建筑的沉降情况是否达到安全限值,如有需要,及时采取相应的监测措施,如加固、支护等。
11.回顾和总结:在工程结束后,进行观测方案的回顾和总结,总结经验教训,为以后的类似工程提供借鉴。
以上是一个基坑监测周围建筑沉降观测方案的大致内容。
根据实际情况,方案的细节可能有所不同,需要根据具体情况进行调整和完善。
同时,在执行方案的过程中,需要确保操作人员的资质和相关设备的质量,以确保监测结果的准确性和可靠性。
基坑边坡沉降观测方案
基坑边坡沉降观测方案一、前言随着城市化进程的加快,大量高层建筑和地下工程项目不断涌现,而基坑边坡沉降是这些工程项目中常见的问题之一、对基坑边坡沉降的观测可以帮助工程师及时发现问题,采取相应的措施,保证工程项目的安全运行。
本文针对基坑边坡沉降观测方案进行详细介绍,以便于工程师们在实际项目中能够合理、准确地进行观测工作。
1.观测方法基坑边坡沉降的观测方法主要包括定点法、集中法和连续法。
其中,定点法是指选取特定位置的标志物进行测量,适用于较小规模的基坑工程;集中法是指在基坑周边设置多个观测点,进行统一的监测管理,适用于中等规模的基坑工程;连续法是指通过连续监测系统对基坑周边的变化进行实时监测,适用于大型基坑工程。
在实际项目中,需要根据具体情况选择合适的观测方法。
2.观测设备基坑边坡沉降的观测设备主要包括测距仪、水准仪、GPS等。
其中,测距仪用于测量标志物的位移变化;水准仪用于测量地面高程变化;GPS用于实现定位和测量控制点的坐标。
在采购观测设备时,需要选择品质优良、准确可靠的产品,确保观测数据的准确性和可靠性。
3.观测频率4.观测内容基坑边坡沉降的观测内容主要包括地面高程变化、标志物位移变化等。
具体来说,观测应包括基坑周边的固定点和控制点,在不同时间段内进行测量,得出相应的数据结果。
观测数据应进行分析比对,及时掌握基坑边坡的沉降情况。
5.数据处理基坑边坡沉降的观测数据需要进行科学处理和分析,在确保数据准确的前提下,得出科学可靠的结论。
数据处理的主要内容包括数据录入、数据校核、数据计算、数据分析等,通过对数据的综合分析,得出基坑边坡沉降的具体情况,为工程项目提供科学依据。
6.报告编制三、总结基坑边坡沉降观测是工程项目管理中重要的一环,通过科学合理地进行观测工作,可以及时发现问题、预防事故,确保工程项目的安全运行。
本文对基坑边坡沉降观测方案进行了详细介绍,希望可以为工程师们在实际项目中提供参考。
在实际工作中,需要根据具体情况合理选择观测方法和设备,严格执行观测方案,确保数据的准确性和可靠性,最终达到确保工程项目安全的目的。
基坑监测监控方案
基坑监测监控方案土方开挖施工期间,应对基坑支护结构受力和变形、周边建筑物、重要道路及地下管线等保护对象进行系统的监测。
通过监测,可以及时掌握基坑开挖过程中支护结构的实际状态及周边环境的变化情况,做到及时预报,为基坑边坡和周边环境的安全与稳定提供监控数据,防患于未然;通过监测数据与设计参数的对比,可以分析设计的正确性与合理性,科学合理地安排下一步工序,必要时及时修改设计,使设计更加合理,施工更加安全。
一.监测频率1坡顶水平位移监测:基坑开挖前3步深度在5m以内,可每2d观测一次,基坑开挖至5m以下及基坑开挖完成后一周内,每天观测一次。
基坑开挖至基底后一周后无明显位移时,可适当延长观测周期,每5~IOd 观测一次。
2、坡顶垂直位移及建筑物沉降观测:在基坑降水时和在基坑土开挖过程中应每天观测一次。
混凝土底板浇完IOd以后,可每2~3d观测一次,直至地下室顶板完工和水位恢复。
此后可每周观测一次至回填土完工。
3、当出现下列情况之一时,应进一步加强监测,缩短监测时间间隔加密观测次数,并及时向施工、监理和设计人员报告监测结果:(1)监测项目的监测值达到报警标准;(2)基坑及周围环境中大量积水、长时间连续降雨、市政管线出现泄漏;(3)基坑附近地面荷载突然加大;(4)临近的建筑物或地面突然出现大量沉降、不均匀沉降或严重开裂。
4、当有危险事故征兆时,应连续监测。
二、监控报警1基坑及支护结构监控报警值以累计变化量和变化速率两个值控制,累计变化量的报警指标不应超过设计限制。
2、本基坑坡顶水平位移报警值设为25mm,水平位移速率报警值设为连续三日大于2mm∕d o3、周围建筑物报警值以累计变形量、变形速率、差异变形量并结合裂缝观测确定。
4、本基坑周围建筑物沉降报警值设为15mm,倾斜报警值设为IOmm,倾斜速率报警值设为连续三日大于Imm/55、当出现下列情况时,应立即报警:6、周围建筑物砌体部分出现宽度大于15mm的变形裂缝;7、附近地面出现宽度大于IOmm的裂缝;三、紧急预案1基坑开挖和喷锚支护施工过程中,由于破坏了土层中的原有的应力平衡,坡面肯定会发生变形,直到达到新的平衡。
基坑监测方案(水平竖向位移、周边地表、周边地表及建筑裂缝、临近建筑沉降、深层水平位移、围墙变形。)
**工程基坑监测方案编制人:审核人:审批人:编制单位:*******公司编制日期:**年**月**日目录(一)、工程概况 (1)(二)、监测依据 (1)(三)、监测目的 (2)(四)、监测范围、项目 (2)(五)、监测点的布置 (2)(六)、监测警戒值及精度 (4)(七)、监测方法及要求 (6)(八)、监测仪器设备及人员 (7)(九)、监测频率 (8)(十)、异常情况下的监测措施 (8)(十一)、数据记录、处理及监测成果 (9)(十二)、基坑监测及沉降观测成果质量保证措施 (9)(十三)、安全文明施测 (11)(十四)、所需要的配合工作 (13)附录A、监测单位资质概况 (14)(一)、工程概况本工程为**工程,位于**,基坑及地下结构施工时需要进行基坑支护,本项目采用自然放坡及土钉墙支护形式。
根据规范和支护设计图纸的要求,基坑需进行支护结构水平位移、支护结构竖向位移、周边地表竖向位移、周边地表及建筑裂缝、临近建筑沉降、深层水平位移、围墙变形。
该基坑基坑监测期间应定期进行巡视检查,巡视检查内容包括:1、支护结构:(1)支护结构成型质量;(2)墙后土体有无裂缝、沉陷及滑移;2、施工工况:(1)开挖后暴露的土质情况与岩土勘察报告有无差异;(2)基坑开挖分段长度、分层厚度及支锚设置是否与设计要求一致;(3)场地地表水状况是否正常;(4)基坑周边地面有无超载;3、周边环境(1)地下管道有无破损、泄露情况;(2)周边建筑有无新增裂缝出现;(3)周边道路(地面)有无裂缝、沉陷;(4)邻近基坑及建筑的施工变化情况;4、监测设施(1)基准点、监测点完好状况;(2)有无影响观测工作的障碍物;(3)监测元件的完好及保护情况。
5、根据设计要求或当地经验确定的其他巡视检查内容。
巡视检查如发现异常和危险情况,应及时通知建设方及其他相关单位。
(二)、监测依据1、《国家一、二等水准测量规范》(GB/T12897-2006)2、《建筑地基基础设计规范》(GB50007-2011)3、《工程测量标准》(GB50026-2020)4、《建筑基坑工程监测技术标准》(GB50497-2019)5、《建筑变形测量规范》(JGJ8-2016)6、《建筑基坑支护技术规程》(JGJ120-2012)7、设计图纸及相关技术资料(三)、监测目的在基坑施工期间,须周期性的对基坑变形情况、周边建筑物和周边地表情况进行监测,及时发现隐患,并根据监测成果相应地及时调整施工速率及采取相应措施,确保施工安全快捷、经济合理。
深基坑监测方案
深基坑监测方案深基坑监测是建设工程中非常关键的一项工作,目的是确保基坑施工的安全和稳定。
下面给出了一个深基坑监测方案的示例,以供参考。
一、监测目标:1. 监测基坑变形和沉降情况,包括水平位移、垂直变形和沉降速度等参数。
2. 监测基坑周边的地面沉降情况,包括径向沉降和破坏区域的扩展情况。
3. 监测基坑周围的建筑物和地下管线的变形情况,确保安全运营。
二、监测方法:1. 使用水平位移监测仪器对基坑周边的地面进行实时监测,记录并分析监测数据,发现任何异常变化。
2. 使用测斜仪对基坑内部的土体进行定期监测,分析土体的变形和沉降情况。
3. 使用沉降观测点和标高测量方法来监测基坑和周边地面的沉降情况。
4. 使用全站仪对基坑周边的建筑物进行定期监测,记录建筑物的变形情况。
5. 使用地下雷达和超声波探测仪对基坑周边地下管线进行定期监测,确保管线的完整性。
三、监测频率:1. 地面监测:每日监测一次,记录并分析数据。
2. 测斜监测:每周监测一次,记录并分析数据。
3. 沉降监测:每周监测一次,记录并分析数据。
4. 建筑物监测:每月监测一次,记录并分析数据。
5. 管线监测:每季度监测一次,记录并分析数据。
四、监测报告:1. 每次监测后,需要生成监测报告,记录监测数据和分析结果。
2. 每周整理一次监测报告,总结监测情况,并提出相应的建议和措施。
五、紧急预警和应急响应:1. 如果监测发现有任何异常情况,需要立即发出预警,并采取相应的紧急措施。
2. 监测人员需要有相应的培训和技能,能够在紧急情况下做出正确的应急响应。
六、监测人员:1. 由专业的监测公司派遣监测人员进行监测工作。
2. 监测人员应具备相关的专业背景和技能,能够熟练操作监测仪器设备,并能准确分析监测数据。
七、监测费用:1. 监测费用由施工单位承担,包括监测仪器设备的购买和维护,以及监测人员的人力成本。
2. 监测费用应计入工程造价。
以上是一个深基坑监测方案的示例,具体实施方案需要根据具体的工程要求进行调整和补充。
基坑沉降观测方案
基坑沉降观测方案一、背景介绍基坑工程是近年来城市建设的常见项目,为了保证基坑的稳定和安全,进行沉降观测是必不可少的环节。
沉降观测旨在监测基坑四周地面的沉降情况,及时发现并处理沉降异常,确保工程的施工质量和安全性。
二、观测目标1.监测基坑施工前后地面的沉降情况。
2.发现并记录基坑施工期间可能导致沉降的因素。
3.提供数据参考,评估和优化基坑工程设计。
三、观测内容1.建立观测控制点:在基坑周边区域设置稳定的观测控制点,定期进行高程、平面测量,并记录与基准点的变化。
2.监测沉降井:沉降井是一种常用的观测沉降的设备,沉降井设置在基坑地面周围固定位置,通过观察沉降井插入的测量管与地面之间的高差变化,得出沉降情况。
3.监测测量管:在基坑边缘设置多个钢筋混凝土立管,通过测量管内的测点位置变化,监测周围土体的沉降情况。
4.观测地下水位:设置地下水位观测点,定期测量地下水位的变化情况,地下水位的变化与基坑周围土体的沉降有一定的关联,能够辅助评估基坑施工过程中土体的变化情况。
四、观测方法1.建立起点:在基坑周边选择适宜的点位,进行高程测量,建立起点控制标志物,将其作为测量的基准点。
2.定期测量:根据工期安排,在工程施工前、施工中和施工后的不同阶段,定期进行测量观测。
观测频率视基坑施工情况而定,通常为每两周至一个月测量一次。
3.测量方法:使用全站仪进行高程测量与平面测量,使用水准仪进行高程测量,使用测量工具进行地下水位测量。
4.数据记录:将测量得到的数据记录在观测记录表中,包括观测时间、观测点位、测量数值等信息。
5.数据处理与分析:将测得的观测数据进行统计和分析,对比不同时间点的测量结果,计算出各个观测点的沉降量,并绘制沉降曲线图。
五、观测异常处理1.对于出现异常的观测点,及时停止施工并进行检查,找出产生异常的原因,并采取相应的措施进行处理。
2.检查施工工艺和材料,排除施工因素导致的异常。
3.如发现地下水位异常变化,应及时对水源进行调查,是否与近期的污水排放、地下管道施工等有关。
沉降观测施工方案 Microsoft Word 文档
沉降观测施工方案一、引言沉降观测是工程建设中的重要环节,通过对工程施工及运行过程中地基沉降变形的监测,可以及时发现问题并采取相应的措施,以确保工程的安全运行。
本文将针对沉降观测的施工方案进行详细探讨。
二、施工前准备1. 测点设置在进行沉降观测前,需要合理设置观测测点,测点的选取应考虑到工程的重要部位、地基状况以及可能出现沉降的区域。
测点设置应满足工程实际需求,具有代表性和可操作性。
2. 仪器校准在开始观测前,需要对使用的仪器进行校准,确保测量结果的准确性和可靠性。
三、观测方法1. 采用全站仪观测沉降观测常采用全站仪进行测量,全站仪可以实现高精度的水平、垂直测量,同时具有数据记录和实时监测功能。
2. 定期观测沉降观测应定期进行,通常可以选择每周、每月或每季度进行一次观测,以监测沉降变形的趋势和速率。
四、数据处理1. 数据录入观测得到的数据应及时录入计算机中,以便进行后续的数据处理和分析。
2. 数据分析对观测数据进行分析,可以采用数学模型等方法,评估地基沉降变形的情况,为工程安全运行提供参考依据。
五、结果展示1. 数据报告根据观测数据和分析结果,编制详细的数据报告,将沉降观测的情况及时反馈给相关工程人员。
2. 常规汇总定期对观测结果进行汇总分析,形成常规的沉降观测报告,以便于工程管理和决策。
六、总结与建议通过科学合理的沉降观测施工方案,可以及时监测地基沉降变形情况,保障工程的安全运行。
建议在实际工程中,根据具体情况细化施工方案,并不断优化观测方法,提高观测数据的准确性和可靠性。
以上是沉降观测施工方案的主要内容,希望能为相关工程人员提供一定参考。
基坑沉降观测实施方案
基坑沉降观测实施方案一、前言。
基坑工程是城市建设中常见的工程类型,其施工过程中,基坑沉降是一个重要的监测指标。
合理的沉降观测方案不仅可以及时发现基坑沉降情况,还可以为工程安全提供重要的数据支持。
因此,本文将就基坑沉降观测实施方案进行详细介绍。
二、基坑沉降观测实施方案。
1. 观测点设置。
在进行基坑沉降观测时,首先需要确定观测点的设置。
一般来说,应选择在基坑周边范围内,分布均匀的地点进行观测,以确保能够全面、准确地监测基坑的沉降情况。
观测点的设置应考虑基坑的大小、周边环境、地质条件等因素,以确保观测数据的可靠性。
2. 观测方法选择。
基坑沉降的观测方法有多种,包括测量法、遥感法、地面变形法等。
在选择观测方法时,需要根据基坑的具体情况和监测要求进行综合考虑。
一般来说,可以采用多种方法相结合的方式进行观测,以获取更加全面、准确的数据。
3. 观测频次确定。
观测频次的确定是基坑沉降观测中的关键环节。
一般来说,观测频次应根据基坑的施工进度、地质条件、监测要求等因素进行合理确定。
在基坑施工初期,观测频次可以适当增加,以及时发现问题;而在基坑施工后期,观测频次可以适当减少,以节约成本。
4. 数据分析与报告编制。
观测数据的分析与报告编制是基坑沉降观测的最后一步。
在获取观测数据后,需要对数据进行科学分析,得出结论并编制观测报告。
观测报告应包括观测数据的详细情况、分析结果、存在的问题及建议等内容,以便工程管理人员及时了解基坑沉降情况,并采取相应的措施。
三、结语。
基坑沉降观测是基坑工程中至关重要的一环,合理的观测方案能够为工程安全提供重要的数据支持。
因此,在进行基坑沉降观测时,需要充分考虑观测点设置、观测方法选择、观测频次确定以及数据分析与报告编制等方面的问题,以确保观测工作的科学性、准确性和及时性。
希望本文所述的基坑沉降观测实施方案能够为相关工程人员提供一定的参考价值。
沉降观测及基坑变形监测方案
一、测区概略1、地理地点待建的秦皇岛恒大城位于秦皇岛市火车站北侧,本次波及沉降观察及基坑变形监测建筑物为:5#、6#地块(6#地块1、2标;5#地块、6#地块3、4标)拟建的住所及商业建筑,该标段位于规划北港大街南侧,迎宾北路由标段中间穿过。
项目工程为剪力墙构造,桩筏、筏板基础,一般为地下2层,地上5—49 层。
该项目由荆州市晴川建筑设计院有限企业设计,恒大地产企业秦皇岛恒大城房地产开发有限企业投资建设,本工程地基基础设计等级为甲级。
依照设计要求,本工程按国家规范,在施工及使用时期均进行沉降观察。
本次沉降观察工程范围主要包含住所及配套工程。
基坑监测部分指依据设计图纸要求需要进行基坑监测部分。
二、工作任务恒大城5#、6#地块3、4标段建筑沉降观察详细状况以下表所示:楼号布点个建筑层数观察层数总监测次数数1#±0、3、6、9、12、15、18、21、24、≥1 3次63327、29、31、332#±0、3、6、9、12、15、18、21、24、633≥13次27、29、31、333# 6 33 ±0、3、6、9、12、15、18、21、24、≥13次27、29、31、334#±0、3、6、9、12、15、18、21、24、633≥13次27、29、31、335#±0、3、6、9、12、15、18、21、24、633≥13次27、29、31、336#±0、3、6、9、12、15、18、21、24、628≥11次26、287#±0、3、6、9、12、15、18、21、24、628≥11次26、288#±0、3、6、9、12、15、18、21、24、628≥11次26、289#±0、3、6、9、12、15、18、21、24、628≥11次26、2810#±0、3、6、9、12、15、18、21、24、628≥11次26、2811#±0、3、6、9、12、15、18、21、24、628≥11次26、2812#±0、3、6、9、12、15、18、21、24、631≥12次27、29、3113#±0、3、6、9、12、15、18、21、24、631≥12次27、29、3114# 6 33 ±0、3、6、9、12、15、18、21、24、≥13次27、29、31、3315#±0、3、6、9、12、15、18、21、24、633≥13次27、29、31、3316#±0、3、6、9、12、14、16、18、20620≥9次17#±0、3、6、9、12、14、16、18、20620≥9次18#±0、3、6、9、12、14、16、18、20620≥9次19#±0、3、6、9、12、15、18、21、24、631≥12次27、29、3120#±0、3、6、9、12、15、18、21、24、631≥12次27、29、3121#±0、3、6、9、12、15、18、21、24、633≥13次27、29、31、3322#±0、3、6、9、12、15、18、21、24、633≥13次27、29、31、3323#±0、4、8、12、16、20、24、27、30、647≥15次33、36、39、41、45、4724#±0、4、8、12、16、20、24、27、30、647≥15次33、36、39、41、45、4725# 6 49 ±0、4、8、12、16、20、24、27、30、≥16次33、36、39、41、45、47、4926#±0、4、8、12、16、20、24、27、30、649≥16次33、36、39、41、45、47、4927#±0、4、8、12、16、20、24、27、30、649≥16次33、36、39、41、45、47、4928#±0、3、6、9、12、15、18、21、24、633≥13次27、29、31、3329#±0、3、6、9、12、15、18、21、24、633≥13次27、29、31、3330#±0、3、6、9、12、15、18、21、24、631≥12次27、29、3131#±0、3、6、9、12、15、18、21、24、633≥13次27、29、31、3332#±0、3、6、9、12、15、18、21、24、633≥13次27、29、31、3333#±0、3、6、9、12、15、18、21、24、631≥12次27、29、3134#±0、3、6、9、12、15、18、21、24、633≥13次27、29、31、3335#±0、3、6、9、12、15、18、21、24、633≥13次27、29、31、3336# 6 31 ±0、3、6、9、12、15、18、21、24、≥12次27、29、3112#南185±0、2、4、5≥4次商业19#南185±0、2、4、5≥4次商业23#南215±0、2、4、5≥4次商业30#北135±0、2、4、5≥4次商业36#南205±0、2、4、5≥4次商业少儿园73±0、2、3≥3次综合楼74±0、2、4≥3次共计32042 7按《规范》要求建筑物沉降观察点建点后,从±0开始进行两次丈量,并取各点两次高程中数作为该点的初始高程,构造封顶前按上表设计的次数监测;完工前按封顶后间隔1个月、2个月、完工前;完工后第一年监测 3次数;第二年监测2次。
建筑物沉降观测和基坑变形监测点布设及报告
建筑物沉降观测和基坑变形监测点布设及报告2、监测点的布设2.0.1基坑顶部竖向位移监测点布设在基坑边坡顶部的,应沿基坑周边布置,基坑周边中部、阳⾓处应布置监测点。
监测点间距不宜⼤于20m,每边监测点数⽬不应少于3个。
监测点宜设置在基坑边坡坡顶上。
监测点布设在在围护墙上的,应沿围护墙的周边布置,围护墙周边中部、阳⾓处应布置监测点。
监测点间距不宜⼤于20m,每边监测点数⽬不应少于3个。
监测点宜设置在冠梁上。
2.0.2基坑顶部⽔平位移监测点的布设同2.1 基坑顶部竖向位移,宜为共⽤点。
2.0.3坑外⼟体深层⽔平位移深层⽔平位移监测孔宜布置在基坑边坡、围护墙周边的中⼼处及代表性的部位,数量和间距视具体情况⽽定,但每边⾄少应设1个监测孔。
2.0.4 地下⽔位⽔位监测点应沿基坑周边、被保护对象(如建筑物、地下管线等)周边或在两者之间布置,监测点间距宜为20~50m。
相邻建(构)筑物、重要的地下管线或管线密集处应布置⽔位监测点;如有⽌⽔帷幕,宜布置在⽌⽔帷幕的外侧约2m处。
2.0.5 锚(杆)索拉⼒锚(杆)索的拉⼒监测点应选择在受⼒较⼤且有代表性的位置,基坑每边跨中部位和地质条件复杂的区域宜布置监测点。
每层锚杆的拉⼒监测点数量应为该层锚杆总数的1~3%,并不应少于3根。
每层监测点在竖向上的位置宜保持⼀致。
每根杆体上的测试点应设置在锚头附近位置。
2.0.6⽀护桩桩⾝⼒. .⽀护桩桩⾝⼒监测点应布置在受⼒、变形较⼤且有代表性的部位,监测点数量和横向间距视具体情况⽽定,但每边⾄少应设1处监测点。
竖直⽅向监测点应布置在弯矩较⼤处,监测点间距宜为3~5m。
2.0.7⽀撑⼒⽀撑⼒监测点的布置应符合下列要求:1、监测点宜设置在⽀撑⼒较⼤或在整个⽀撑系统中起关键作⽤的杆件上;2、每道⽀撑的⼒监测点不应少于3个,各道⽀撑的监测点位置宜在竖向保持⼀致;3、钢⽀撑的监测截⾯根据测试仪器宜布置在⽀撑长度的1/3部位或⽀撑的端头。
钢筋混凝⼟⽀撑的监测截⾯宜布置在⽀撑长度的1/3部位;4、每个监测点截⾯传感器的设置数量及布置应满⾜不同传感器测试要求。
基坑周边地面沉降观测方案
基坑周边地面沉降观测方案沉降观测依据《建筑变形测量规程》实施,观测等级为二级。
仪器采用索佳自动安平水准仪,型号为SDL30o该仪器有优越的水平稳定性、耐寒、耐热性,是一种高精度水准测量仪器,每公里往返中误差为:±0.4mm0与水准仪配合使用的是高精度锢瓦水准尺。
它是施测国家一、二等水准网的专用标尺,具有很高的稳定性,完全适用于建筑物的变形监测。
1.基准点及测点设置:远离工程区域以外稳定地段设置三个沉降观测基准点,观测时利用其中一点作为基准点,另两点作为校核。
在近测点处均匀布设若干工作基点,以方便观测和保证精度。
测点应布设在对沉降反应敏感部位;2、测标埋设:沉降监测的标志,根据不同监测对象的建筑结构类型和建筑材料,采用墙(柱)标志、基础(地基)标志和隐蔽式标志(用于宾馆等高级建筑物)等型式。
各类标志的立尺部位加工成半球形或有明显的突出点。
对于建(构)筑物,沉降点设置在房脚、角点等;对于道路(地下管线),沉降观测点布置在其正上方;对于基坑坡顶、地表,采用普通地面沉降标。
3、观测实施:1)沉降观测点的观测,每次均由工作基点出发,尽可能一站直接观测,以减少转站误差。
在第一次观测时,应对仪器架站处、水准尺立尺处做以标记,在以后观测时严格做到一致,以减少水准仪i角等引起的固定误差;2)工作基点的校测:每次沉降观测前,应对工作基点进行校测,校测工作基点由基准点出发作往返测,检测已测测段高差之差不得大于0.4∖Rι三,n为测站数。
同样要在每次观测中做到架站处立尺处一致。
如果发现某个工作基点高程异常,则需对该工作基点进行高程改正;4、观测精度:沉降观测基准点的观测按二等水准测量执行,采用闭合水准路线,闭合差限差为0.30、R刖(门为测站数)。
基坑监测措施
基坑监测措施
为了科学地预测基坑支护的稳定和周边环境的变化,需要建立基坑支护施工变形与沉降观测网,并定期进行变形沉降观测。
这可以通过以下措施来实现:
1.建立基准网:建立基坑支护施工变形与沉降观测网,以提供准确可靠的变形数据。
2.进行基坑支护变形观测:在基坑边坡顶上布置基线,并在每条基线上设1~3个变形观测点,同时作为沉降观测点。
这样可以观测到基坑支护的水平位移和沉降情况。
3.进行观测方法:水平位移观测使用J2型经纬仪观测网的水平角度,并与城市的大地控制网三角点联测水平夹角。
周围建筑物监测检查基线点是否发生位移,在基线点正确无误的情况下,同时在测端上分别以对应的相邻角点定向,并观测定向基线上各预埋点的水平位移量初始读数。
沉降观测采用S3型精密水准仪进行。
4.监测周边环境的沉降观测网:利用远离场区的城市高程
系水准控制点或独立水准点作为沉降观测的起算点,与以上点联测,构成基坑支护沉降观测网。
周边附近各布置沉降观测点,与基坑周边浅埋基础建(构)筑物、重要管线监测点一起构成监测周边环境的沉降观测网。
通过以上措施,可以有效监测基坑支护的变形和沉降情况,及时预报并提供准确可靠的变形数据,确保基坑支护的稳定和周边环境的安全。
基坑主体沉降观测施工方案
基坑主体沉降观测施工方案一、沉降观测目的和原理1.沉降观测目的沉降观测的目的是监测基坑主体的沉降情况,及时发现变形情况,以便采取相应的措施,确保工程安全和稳定。
2.沉降观测原理沉降观测通过在基坑主体上设置水平基准点,测量基准点沉降的高差,根据沉降量的变化趋势进行分析和判断。
二、观测设备和工具1.观测设备(1)水平仪:用于测量基准点的沉降高差。
(2)经纬仪:用于确定基准点的坐标位置。
(3)GPS定位仪:用于测量基准点的纵向和横向位移。
2.观测工具(1)量程尺:用于测量沉降点的高差。
(2)水平尺:用于调平水平仪和经纬仪。
三、观测点的选择和设置1.观测点选择观测点应选择在基坑主体的四个角和中心位置处,以全面反映基坑沉降情况。
2.观测点设置(1)确定基准点:在基坑主体中心位置选取一个稳定的基准点,进行固定设置,作为测量的基准。
(2)设置观测点:在基坑主体的四个角和中心位置处,以基准点为参照点,测量其高差,并记录下来。
四、观测方法和流程1.观测前准备(1)确定观测周期:根据工程条件和要求,确定每次观测的时间间隔。
(2)清理观测点:在进行观测前,清理观测点及周围环境,确保观测点的稳定性和可读性。
2.观测方法(1)调平水平仪:在基准点处设置水平仪,通过调平水平仪,保证测量的准确性。
(2)测量高差:使用量程尺在观测点处测量高差,记录下来。
(3)测量坐标位置:使用经纬仪和GPS定位仪,对基准点和观测点进行坐标测量,并记录下来。
3.观测流程(1)每次观测前,先调平水平仪和经纬仪。
(2)开始观测后,先测量基准点的高差,再测量观测点的高差。
(3)记录观测数据,并进行分析和判断。
五、观测数据的处理和分析1.数据处理(1)收集观测数据,并整理记录。
(2)计算观测点的沉降量和变形速率。
2.数据分析(1)根据观测数据分析沉降量和变形速率的变化趋势。
(2)判断是否存在异常情况,并进行相应的处理和措施。
六、观测报告和总结1.观测报告每次观测完成后,编写观测报告,包括观测数据、沉降量和变形速率的分析结果,以及可能存在的问题和建议。
沉降观测专项施工方案
沉降观测专项施工方案
一、工程背景
城市建设与发展中,土地利用日益增多,工程建设项目的密集开展导致地基沉
降问题日益凸显。
为保障工程质量及周边环境安全,沉降观测成为必不可少的环节。
二、施工目的
本专项施工方案旨在对工程施工区域内的地表沉降情况进行监测与评估,及时
掌握地表变形情况,为工程安全施工提供数据支撑。
三、施工方案
1. 测点布设
根据工程实际情况和地质特征,合理布设观测测点,保证测点分布均匀、覆盖
面广。
2. 仪器选择
选用精度高、稳定性好的沉降仪器,保证观测数据的准确性和可靠性。
3. 观测频次
制定合理的观测频次,一般选择每天定时观测一次,突发情况下可随时增加观
测频次。
4. 数据处理
观测数据需及时上传至数据中心进行处理分析,定期制作观测报告,做好数据
备份与归档工作。
四、施工流程
1.勘察测量
2.测点布设
3.仪器调试
4.数据采集
5.数据传输与处理
五、质量控制
1.严格遵守观测操作规程
2.定期对仪器进行校准和检定
3.观测数据交叉验证
六、安全措施
1.观测人员需经过专业培训
2.观测场地需设置警示标志
3.遇到雷雨等恶劣气象情况需及时撤离
七、验收标准
1.观测数据准确,符合规定精度要求
2.观测报告清晰明了,数据可靠
3.施工过程中无影响观测的意外事件发生
结语
沉降观测是保障工程安全的重要手段,合理的施工方案和严格的质量控制能够有效地提高观测数据的准确性和可信度,为工程的顺利施工提供重要保障。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生活后勤综合用房
基坑支护工程安全监测方案
一、工程概况
该场地整平标高为5.80m,设计±0.00=6.40m。
拟建两层地下停车场,基坑总面积约为3748㎡,周长约253m。
地下一层底板板面标高为-3.85m,二层底板板面标高-7.85m,开挖面标高为-9.05m,基坑实际挖深为8.45m左右。
本工程采用排桩加一道支撑的挡土形式,止水结构采用双排深搅桩,坑内布置8口管井进行降水。
二、监测目的及监测项目
一)、监测目的:
1.保证基坑支护结构的稳定和安全;
2.保护基坑周边环境(周边建筑物、道路管线等)
根据设计要求监测项目如下:
1.基坑周边水平垂直位移监测
2.周围建筑物、构筑物、管线、道路沉降监测
3.深层水平位移监测
4.水位监测
5.支撑轴力量测
二)、点位布设:
1.沿圈梁顶每15m左右设位移监测点,共布设15个;
2.周围建筑物、构筑物、管线、道路共布设约30个沉降监测点;
3.基坑周边共布设8个深层水平位移监测管,孔深15.0m;
4.支撑轴力监测,布设4个断面,每个断面4个应变计;
5.设4个水位监测管,孔深8.0m。
具体监测点点位见后附平面位置示意图。
三、监测依据的技术标准及监测方法
(一)、监测依据的技术标准:
《建筑变形测量规程》(JGJ/T8-97)
《岩土工程勘察规范》(GB50021-2001)
《建筑基坑设计规范》(JGJ120-99)
《城市测量规范》(CJJ8-99)
《工程测量规范》(GB50026-93)
《城市地下水动态观测规程》(CJJ/T76-98)
(二)、监测方法:
表面变形观测:
包括水平位移和沉降观测,使用精密经纬仪和精密水准仪进行观测。
水平位移采用测小角法,角度观测一测回,距离按1/2000的精度测量,测小角法是利用精密经纬仪精确地测出基准线与置镜点到观测点视线之间
所夹地微小角度αi(如图所示),并按下式计算偏移值:
l i=αi.S i/ρ
式中S i为端点A到观测点P i的距离,ρ’’=206265’’;
2)沉降观测采用精密水准仪进行观测,按二级变形等级或二等水准测量要求执行;
支撑轴力监测:
支撑轴力监测采用阵弦式频率测定仪,这种仪器的传感器是利用钢弦的振动频率将物理量转变为电量,实施远距离电子测量。
在传感器内有一块电磁铁,通过激振使钢弦振动。
因钢弦的自振频率和钢弦应力值的平方根成正比,传感器所受压力值与钢弦频度成一定的比例关系:
ΔP=K(f2-f20)
式中 K——传感器常数;
f——传感器变形后钢弦自振频率;
f0——传感器变形前钢弦自振频率。
地下水位测量:
地下水位测量是采用水位计测量地下水和测水管管口的距离,即水深;水位计一端接有探头,另一端接有指示表,两者通过钢尺连接,钢尺上有长度尺寸,当探头接触到水时指示表会有变化,可以从钢尺上可以读出尺寸,即水深。
四、监测测点的埋设
1. 基本水准点
在远离本基坑(40m外)的地方设置基本水准点BM1~BM3;基本方位控制点,设置PG1~PG4。
2. 支护结构水平位移监测点
测点布置沿支护结构体延伸方向每15米左右布置一个观测点。
在水平位移布设时建立初始读数,在基坑开挖当日起实施监测。
3. 周围建筑物、构筑物、管道沉降观测点
沉降观测点标志为长度12cm,直径16mm膨胀螺栓,采用冲击电钻钻孔,将膨胀螺栓埋入其中。
4. 支撑轴力监测点
支撑轴力监测采用钢弦式钢筋应力计并配合频率巡检仪进行监测。
在绑扎支撑钢筋时将应力计埋设在其中浇筑支撑混凝土时将其覆盖并将其上电线拉出。
5. 水位观测点
在埋设点上用钻机钻孔,达到设计深度后,逐段安放水位观测管,顶底密封,接头处用自攻螺丝拧紧,并用胶布密封。
安放完毕后用粗沙和碎石子回填,直到钻孔孔隙密实为止并用混凝土封口。
水位观测管采用外径50mm,内径8mmPVC管。
孔深8m。
水位观测点共布设4个,用水位计观测。
6深层位移监测点
在埋设点逐段安放测斜管,顶底密封,接头处用自攻螺丝拧紧,并用胶布密封。
测斜管采用外径60mm,内径8mmPVC测斜管。
孔深为15m。
五、监测精度及所采取的措施
基准点观测及沉降观测点采用DSZ2(编号CS001)精密水准仪及配套的
2M因瓦水准尺,水平位移观测点采用Leica Tc402型全站仪(编号CQZ001),支撑轴力监测采用WW-1型振弦读数仪(CPL001),水位观测点采用SWJ型钢尺水位计(编号CSW001),深层水平位移采用ZW2000电阻式位移计。
1.监测精度
本次监测精度按二级变形测量等级要求执行,其精度为:
a.水准测量每站观测高差中误差M0=±0.5㎜
b.水准闭合路线,闭合差f w=±1.0n(n为测站数)
c.垂直变形监测精度(最弱点中误差):M弱=±2.0㎜
2.技术措施
(1)为了确保各项监测项目的精度,投产的仪器必须按规定内容检查标定其主要技术指标,仪器检查合格后方能使用,并做记录归档。
遇特殊情况(如受震、受损)随时检查、标定。
不合格仪器坚决不能投产使用。
(2)水准测量采用闭合环或往返闭合观测方法。
(3)观测数据不能随意涂改。
(4)各监测项目变形量或测量值接近报警值时,及时报警,并提醒业主及有关单位注意。
六、监测频率及监测预警
1.监测频率
基坑安全监测时间为,开挖前一周至地下室建成土体回填后一周止。
监测时间间隔要求:
1开挖过程
开挖深度至第二层支撑底面,即设置第二层支撑时,监测时间间隔为3d;
开挖深度至基坑底面时,监测时间间隔为1d~2d;
1.开挖完成以后
小于15d,监测时间间隔为1~2d;
15~30d,监测时间间隔为2~3d;
大于30d,监测时间间隔为3d
遇超过警戒值时,应根据具体情况及时调整监测时间间隔直至跟踪监测,以保证及时反馈信息。
2.预警值
a支护桩变形预警值:变形速率2mm/d,位移总量小于0.5%挖深;
b支撑立柱及建筑沉降速度不超过1mm/d,沉降总量小于15mm;支撑立柱沉降总量小于10mm;房屋差异沉降不超过1/1000。
c立柱桩差异隆沉:立柱桩隆起或沉降量10mm,速率10mm/d。
d支撑轴力:不超过设计值的80%。
七、
及时提交观测数据, 如有特殊情况
体人员参加。
试题
1、某沉降观测记录手簿,补全相关的内容。
往测
,宽23 m ,需对其作沉降监测,问需要布置多少个基准点和工作基点。
并在该建筑平面图上画出工作基点布置图。
答:需要3个基准点和10个工作基点。
3、试根据某建筑物的最终沉降观测数据平面图绘制建筑等沉降曲线示意图(单位:mm )
答案:
4、某二级基坑,采用桩径800 mm 灌注桩作支护结构,若监测采用测小角法进行视准线测量监测点的水平位移线,若两次测得观测点偏离视准线的偏角分别51'',02''两次观测的时间间隔为1天,P 到A 点的距离为100米,问是否发出预警。
解:D d •=ρα/
天/8.43.71.12mm d =-=∆,应预警。
5、某二级基坑,采用桩径800 mm 灌注桩作支护结构,受场地条件制约,采用前方交会法进行监测点的水平位移测量,若两次测得的角度分别为
51532501'''=α,51214501'''=β
50532502'''=α,50214502'''=β,两次观测的时间间隔为
1天,A 、B 两点的坐标
分别为(500.000,500.000)、(600.000,600.000),问是否发出预警。
解:由前方交会公式:
mm m y x s 4.50054.022==∆+∆=
∆,应预警。
6、某建筑沉降观测,布设6个工作基点形成一闭合环,采用二级水准观测路线,计算环线闭合差,并判断是否超限。
假定1号点的高程为5.0000m,推算其它各点的高程。
解:闭合差:mm 5.20025.02664.01930.01378.02362.01458.01523.0-=-=+---+=ω
限差mm n 2.3100.10
.1=±=±=,没有超限。
改正数mm i 4.05.212
2=⨯=υ
1527
.50004.01523.00000.51112=++=++=υh H H ;
2989
.50004.01458.01527.52223=++=++=υh H H。