大学线性代数考试模拟题解答

合集下载

线性代数模拟试卷及答案

线性代数模拟试卷及答案

线性代数(文)模拟试卷(一)参考答案一。

填空题(每小题3分,共12分)1.设⎪⎪⎪⎭⎫⎝⎛=333222111c b a c b a c b a A ,⎪⎪⎪⎭⎫⎝⎛=333222111d b a d b a d b a B ,2=A ,3=B ,则B A -2=1. 解 B A -2=3332221113332221113333222211112222d b a d b a d b a c b a c b a c b a d c b a d c b a d c b a -=---=12=-B A .2。

已知向量)3,2,1(=α,)31,21,1(=β,设βαT A =,其中T α是α的转置,则n A =A n 13-.解 注意到3321)31,21,1(=⎪⎪⎪⎭⎫ ⎝⎛=T βα,故n A =βαβαβαβαT n T T T 个)())((=ββαβαβααβαTn T T T T 个)1()())((-=A n T n 1133--=βα。

注 若先写出A ,再求2A ,…,n A 将花比前更多的时间.3。

若向量组T )1,0,1(1-=α,T k )0,3,(2=α,T k ),4,1(3-=α线性相关,则k =3-.解 由1α,2α,3α线性相关,则有321,,ααα=k k 0143011--=1043011--k k k =04)1(3143=--=-k k k k 。

由此解得3-=k .4。

若4阶矩阵A 与B 相似,矩阵A 的特征值为21,31,41,51,则行列式E B --1 =24.解 因为A 与B 相似,所以A ,B 有相似的特征值,从而E B --1有特征值1,2,3,4。

故2443211=⋅⋅⋅=--E B . 注 本题解答中要用到以下结论:(1)若A 可逆,A 的特征值为λ,则1-A 的特征值为λ1。

(2)若λ是A 的特征值,则)(A f 的特征值为)(λf ,其中)(x f 为任意关于x 的多项式。

线性代数大学试题及答案

线性代数大学试题及答案

线性代数大学试题及答案一、选择题(每题5分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的伴随矩阵|adj(A)|的值为()。

A. 4B. 8C. 2D. 1答案:B2. 若向量a=(1, 2, 3),向量b=(2, 3, 4),则向量a和向量b的点积为()。

A. 11B. 12C. 13D. 14答案:C3. 设矩阵A和矩阵B为同阶方阵,且AB=I,则矩阵A和矩阵B互为()。

A. 伴随矩阵B. 逆矩阵C. 转置矩阵D. 正交矩阵答案:B4. 设矩阵A为3阶方阵,且A的特征多项式为f(λ)=λ(λ-1)(λ-2),则矩阵A的特征值为()。

A. 0, 1, 2B. 0, 1, 3C. 1, 2, 3D. 2, 3, 4答案:A二、填空题(每题5分,共20分)1. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],则矩阵A的行列式|A|=______。

答案:-22. 设向量a=(1, 2),向量b=(3, 4),则向量a和向量b的叉积为向量c=(______, ______)。

答案:-2, 63. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],矩阵B=\[\begin{bmatrix}2 & 1 \\ 4 & 3\end{bmatrix}\],则矩阵A和矩阵B的乘积AB=______。

答案:\[\begin{bmatrix}10 & 11 \\ 22 & 25\end{bmatrix}\]4. 设矩阵A的特征值为λ1=2,λ2=3,则矩阵A的特征多项式为f(λ)=______(λ-2)(λ-3)。

答案:(λ-2)(λ-3)三、解答题(每题10分,共60分)1. 已知矩阵A=\[\begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\],求矩阵A的逆矩阵。

大学数学线性代数期末复习模拟测试试卷(含答案)

大学数学线性代数期末复习模拟测试试卷(含答案)

线性代数期末模拟测试试卷(含答案)班别 姓名 成绩一、选择题1.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定?( ) A.054<<-t B.5454<<-t C.540<<t D.2154-<<-t2.已知矩阵B A x B A ~,50060321,340430241且⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=,求x 的值( )A.3B.-2C.5D.-53.设A 为n 阶可逆矩阵,则下述说法不正确的是( ) A. 0≠A B. 01≠-A C.n A r =)( D.A 的行向量组线性相关4.过点(0,2,4)且与两平面2312=-=+z y z x 和的交线平行的直线方程为( ) A.14322-=-=-z y x B.24322-=-=z y x C.14322+=+=-z y x D.24322+=+=z y x5.已知矩阵⎪⎪⎭⎫ ⎝⎛-=1513A ,其特征值为( )A.4,221==λλB.4,221-=-=λλC.4,221=-=λλD.4,221-==λλ二、填空题.答题要求:将正确答案填写在横线上6.三阶行列式ij a 的展开式中,321123a a a 前面的符号应是 。

7.设123221,343A ⎛⎫⎪= ⎪ ⎪⎝⎭ij A 为A 中元ij a 的代数余子式,则111213A A A ++= 。

8.设n 阶矩阵A 的秩1)(-<n A r ,则A 的伴随矩阵A *的元素之和∑∑===n i nj ij A 11。

9.三阶初等矩阵()1,2E 的伴随矩阵为 。

10.若非齐次线性方程组AX B =有唯一解,则其导出组0AX =解的情况是 。

11.若向量组11121233,a b a b a b αβ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭线性相关,则向量组112222,a b a b αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭的线性关系是 。

大学数学线性代数题库及答案解析

大学数学线性代数题库及答案解析

大学数学线性代数题库及答案解析1. 求解方程组a) 3x + 2y - z = 7-x + 3y + 2z = -112x - y + 4z = 5解析:首先,我们可以使用增广矩阵表示方程组:[ 3, 2, -1, 7;-1, 3, 2, -11;2, -1, 4, 5 ]接下来,通过行初等变换将矩阵化为阶梯形:[ 3, 2, -1, 7;0, 7/4, 3/4, -21/4;0, 0, 9/7, 4/7 ]从第三行可以得到 z = 4/7,代入第二行可得 y = -21/7,再代入第一行可以得到 x = 3。

因此,方程组的解为 x = 3, y = -3, z = 4/7。

b) 2x + 3y + 2z = 10x - y + z = 44x + 2y + z = 12解析:同样,我们使用增广矩阵表示方程组:[ 2, 3, 2, 10;1, -1, 1, 4;4, 2, 1, 12 ]通过行初等变换将矩阵化为阶梯形:[ 2, 3, 2, 10;0, -5, -1, -6;0, 0, 0, 0 ]从第二行可以得到 -5y - z = -6,即 z = -6 + 5y。

我们可以令 y = t,其中 t 为任意常数。

则得到 z = -6 + 5t。

将 z 的值代入第一行可以得到x = 4 - 3t。

因此,方程组的解可以表示为 x = 4 - 3t, y = t, z = -6 + 5t。

2. 求解线性方程组的向量空间a) 给定矩阵 A = [1, 2, -1; 2, 4, -2; 3, 6, -3],求解 A 的列空间。

解析:列空间由矩阵 A 的列向量张成。

我们可以计算矩阵 A 的列向量组的极简形式:[ 1, 2, -1;2, 4, -2;3, 6, -3 ]通过初等行变换得到:[ 1, 2, -1;0, 0, 0;0, 0, 0 ]可以看出,第一列是主列,而第二列和第三列都是自由列。

因此,矩阵 A 的列空间可以表示为 Span{[1, 2, -1]}。

线性代数试题及答案解析

线性代数试题及答案解析

线性代数试题及答案解析一、选择题(每题4分,共40分)1. 矩阵A和矩阵B相乘,得到的结果矩阵的行列数为()。

A. A的行数乘以B的列数B. A的行数乘以B的行数C. A的列数乘以B的列数D. A的列数乘以B的行数答案:D解析:矩阵乘法中,结果矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。

2. 向量α和向量β线性相关,则下列说法正确的是()。

A. α和β可以是零向量B. α和β可以是任意向量C. α和β中至少有一个是零向量D. α和β中至少有一个是另一个的倍数答案:D解析:线性相关意味着存在不全为零的系数,使得这些系数乘以对应的向量和为零向量,因此至少有一个向量是另一个向量的倍数。

3. 对于n阶方阵A,下列说法不正确的是()。

A. A的行列式可以是0B. A的行列式可以是负数C. A的行列式可以是正数D. A的行列式一定是正数答案:D解析:方阵的行列式可以是正数、负数或0,因此选项D不正确。

4. 矩阵A和矩阵B相等,当且仅当()。

A. A和B的对应元素相等B. A和B的行数相等C. A和B的列数相等D. A和B的行数和列数都相等答案:A解析:两个矩阵相等,必须满足它们具有相同的行数和列数,并且对应元素相等。

5. 向量组α1,α2,…,αn线性无关的充分必要条件是()。

A. 由这些向量构成的矩阵的行列式不为0B. 这些向量不能构成齐次方程组的非零解C. 这些向量不能构成齐次方程组的非平凡解D. 这些向量可以构成齐次方程组的平凡解答案:C解析:向量组线性无关意味着它们不能构成齐次方程组的非平凡解,即唯一的解是零向量。

6. 矩阵A可逆的充分必要条件是()。

A. A的行列式不为0B. A的行列式为1C. A的行列式为-1D. A的行列式为任何非零数答案:A解析:矩阵可逆当且仅当其行列式不为0。

7. 矩阵A的特征值是()。

A. 矩阵A的行数B. 矩阵A的列数C. 矩阵A的对角线元素D. 满足|A-λI|=0的λ值答案:D解析:矩阵的特征值是满足特征方程|A-λI|=0的λ值。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,线性无关的向量集合的最小维度是:A. 1B. 2C. 3D. 向量的数量答案:D2. 矩阵A的行列式为0,这意味着:A. A是可逆矩阵B. A不是可逆矩阵C. A的所有行向量线性相关D. A的所有列向量线性无关答案:B3. 线性变换T: R^3 → R^3,由矩阵[1 2 3; 4 5 6; 7 8 9]表示,其特征值是:A. 1, 2, 3B. 0, 1, 2C. -1, 1, 2D. 0, 3, 6答案:D4. 矩阵A与矩阵B相乘,结果矩阵的秩最多是:A. A的秩B. B的秩C. A和B的秩之和D. A的秩和B的列数中较小的一个答案:D5. 给定两个向量v1和v2,它们的点积v1·v2 > 0,这意味着:A. v1和v2垂直B. v1和v2平行或共线C. v1和v2的夹角小于90度D. v1和v2的夹角大于90度答案:C6. 对于任意矩阵A,下列哪个矩阵总是存在的:A. 伴随矩阵B. 逆矩阵C. 转置矩阵D. 特征矩阵答案:C7. 线性方程组AX=B有唯一解的充分必要条件是:A. A是方阵B. A的行列式不为0C. B是零向量D. A是可逆矩阵答案:D8. 矩阵的特征值和特征向量之间的关系是:A. 特征向量对应于特征值B. 特征值对应于特征向量C. 特征向量是矩阵的行向量D. 特征值是矩阵的对角元素答案:A9. 一个矩阵的迹(trace)是:A. 所有元素的和B. 主对角线上元素的和C. 所有行的和D. 所有列的和答案:B10. 矩阵的范数有很多种,其中最常见的是:A. L1范数B. L2范数C. 无穷范数D. 所有上述范数答案:D二、简答题(每题10分,共20分)1. 请解释什么是基(Basis)以及它在向量空间中的作用是什么?答:基是向量空间中的一组线性无关的向量,它们通过线性组合可以表示空间中的任何向量。

线性代数模拟题及答案

线性代数模拟题及答案

模拟试题一一. 填空题 (将正确答案填在题中横线上。

每小题2分,共10分)1.n 阶行列式D 的值为c, 若将D 的所有元素改变符号, 得到的行列式值为 .2.设矩阵A = ⎪⎪⎪⎭⎫ ⎝⎛101020101 ,矩阵X 满足 E AX + = X A +2 ,则X = ⎪⎪⎪⎭⎫ ⎝⎛2010301023.设n 阶矩阵A 满足 E A A 552+- = 0 ,其中E 为n 阶单位阵,则 1)2(--E A =4.设A ,B 均为3阶方阵,A 的特征值为 1,2,3,则EA +*= .5.当 λ 满足条件 时线性方程组 ⎪⎪⎩⎪⎪⎨⎧=+--=-++-=-++-=+--00004321432143214321x x x x x x x x x x x x x x x x λλλλ 只有零解.二、单项选择题 (每小题仅有一个正确答案, 将正确答案题号填入括号内。

每小题2分,共20分)1.131211232221333231333231232221131211222333 d a a a a a a a a a a a a a a a a a a ---=则=( ).① 6d ② ―6d ③ 4d ④ ―4d 2. 向量组 s ααα,,,21 的秩为s 的充要条件是( )。

① 向量组不含零向量② 向量组没有两个向量的对应分量成比例 ③ 向量组有一个向量不能由其余向量线性表示 ④向量组线性无关3. 当t =( )时,向量组 ),4,5( , )5,2,3( , )0,1,2(321t ===ααα线性相关。

① 5 ② 10③ 15 ④ 204.已知向量组α1,α2,α3线性无关,则向量组( )线性无关。

① α1+2α2+α3, 2α1+4α2+α3, 3α1+6α2 ② α1, α1+α2, α1+α2+α3 ③ α1+α2, α2+α3, α1+2α2+α3 ④ α1-α2, α2-α3, α3-α15. 已知⎪⎪⎪⎭⎫ ⎝⎛---=63322211t A , B 为三阶非零矩阵且AB = 0, 则( ). ① 当t = 4时,B 的秩必为1 ② 当t = 4时,B 的秩必为2 ③ 当t ≠ 4时,B 的秩必为1 ④ 当t ≠ 4时,B 的秩必为26.设非齐次线性方程组A X = b 中未知量个数为n ,方程个数为m ,系数矩阵A 的秩为r ,则 .① r = m 时,方程组A X = b 有解 ② r = n 时,方程组A X = b 有唯一解 ③ m = n 时,方程组A X = b 有唯一解 ④ r < n 时,方程组A X = b 有无穷多解7. 设矩阵A 和B 等价,A 有一个k 阶子式不等于零,则B 的秩( )k.① < ② = ③ ≥ ④ ≤8. 一个向量组的极大线性无关组( ). ① 个数唯一 ② 个数不唯一③ 所含向量个数唯一 ④ 所含向量个数不唯一9. 下列关于同阶不可逆矩阵及可逆矩阵的命题正确的是( ). ① 两个不可逆矩阵之和仍是不可逆矩阵 ② 两个可逆矩阵之和仍是可逆矩阵 ③ 两个不可逆矩阵之积仍是不可逆矩阵 ④ 一个不可逆矩阵与一个可逆矩阵之积必是可逆矩阵10.已知任一n 维向量均可由n ααα,,,21 线性表示,则n ααα,,,21( )。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案一、单项选择题(每题2分,共10分)1. 矩阵A的行列式为0,则矩阵A是:A. 可逆的B. 不可逆的C. 正定的D. 负定的答案:B2. 若向量组\( \alpha_1, \alpha_2, \ldots, \alpha_n \)线性相关,则:A. 存在不全为0的实数k1, k2, ..., kn,使得k1\( \alpha_1 +k2\alpha_2 + \ldots + k_n\alpha_n = 0 \)B. 所有向量都为零向量C. 存在不全为0的实数k1, k2, ..., kn,使得k1\( \alpha_1 +k2\alpha_2 + \ldots + k_n\alpha_n \)是零向量D. 所有向量都为非零向量答案:A3. 矩阵A和B的乘积AB等于零矩阵,则:A. A和B都是零矩阵B. A和B中至少有一个是零矩阵C. A和B的秩之和小于A的列数D. A和B的秩之和小于B的行数答案:C4. 向量组\( \beta_1, \beta_2, \ldots, \beta_m \)可以由向量组\( \alpha_1, \alpha_2, \ldots, \alpha_n \)线性表示,则:A. m > nB. m ≤ nC. m ≥ nD. m < n答案:B5. 若矩阵A和B合同,则:A. A和B具有相同的行列式B. A和B具有相同的秩C. A和B具有相同的特征值D. A和B具有相同的迹答案:B二、填空题(每题3分,共15分)1. 若矩阵A的特征值为λ,则矩阵A^T的特征值为______。

答案:λ2. 若矩阵A可逆,则矩阵A的行列式|A|与矩阵A^-1的行列式|A^-1|满足关系|A^-1|=______。

答案:1/|A|3. 若向量组\( \alpha_1, \alpha_2 \)线性无关,则由这两个向量构成的矩阵的秩为______。

答案:24. 矩阵A的秩为r,则矩阵A的零空间的维数为______。

长沙理工大学线性代数考试试卷及答案

长沙理工大学线性代数考试试卷及答案

长沙理工大学模拟考试试卷…………………………………………………………………………………………………………………………试卷编号1拟题教研室(或教师)签名教研室主任签名…………………………………………………………………………………………………………………………课程名称(含档次)线性代数课程代号0701011专业全校各专业层次(本、专)本科考试方式(开、闭卷)闭卷一、判断题(正确答案填√,错误答案填×。

每小题2分,共10分)1.设阶方阵可逆且满足,则必有()2.设是的解,则是的解()3.若矩阵的列向量组线性相关,则矩阵的行向量组不一定线性相关()4.设表示向量的长度,则()5.设是的解,则是的解()二、填空题:(每小题5分,共20分)1.计算行列式=;2.若为的解,则或必为的解;3.设n维向量组,当时,一定线性,含有零向量的向量组一定线性;4.设三阶方阵有3个特征值2,1,-2,则的特征值为;三、计算题(每小题10分,共60分)1.;第1页(共2页)2.若线性方程组有解,问常数应满足的条件3.设是方程组的解向量,若也是的解,则;4.求齐次线性方程组的基础解系;5.已知矩阵与矩阵相似,求的值;6.设为正定二次型,求.四、证明题(10分):设向量组线性无关,证明线性无关。

长沙理工大学模拟试卷标准答案课程名称:线性代数试卷编号:1一、判断题(正确答案填√,错误答案填×。

每小题2分,共10分)1,×2,×3,√4,×5,√二、填空题:(每小题5分,共20分)1,42;2,;3,相关,相关;4,4,1,4.三、计算题(每小题10分,共60分)1.==5(5分)=5=5(5分)2.(2分)(5分)若有解,则A的秩与的秩相等,即。

(3分)3.(6分)∴(1)当时,矩阵的秩为2;(2分)(2)当时,矩阵的秩为3.(2分)第1页(共3页)4.对系数矩阵作作初等行变换得同解方程组令,;得,基础解系为:5.解:∵与相似,∴特征多项式相同,即亦即6.解:的矩阵为∵为正定二次型,∴的各阶主子式大于0.即>0,>0>0第2页(共3页)解联立不等式组>0或<0<<或<<0<<0即当<<0时,为正定二次型.四、证明题(10分):证明:设存在一组数使得,(3分)又向量组线性无关,因此,(7分)由此可知,只有当时,等式才成立,即向量组线性无关。

线性代数模拟试卷A及答案

线性代数模拟试卷A及答案

线性代数模拟试卷A 及答案(考试时间:120分钟)一、填空题(每小题3分,共15分)1.行列式D 中第2行元素的代数余子式之和21222324A A A A +++= ,其中1111111111111111D -=--。

2.设3阶矩阵⎪⎪⎪⎭⎫⎝⎛-=420310002A ,则A -1等于 。

3.设向量组ααα123,,线性相关,而向量组ααα234,,线性无关,则向量组ααα123,,的最大线性无关组是 。

4.3阶实对称矩阵A 的特征值为2、5、5,A 属于特征值2的特征向量是1111Tα=(,,),则A 属于特征值5的两个线性无关的特征向量可以取为2α=_ ;3α=__ 。

5.已知3阶矩阵⎪⎪⎪⎭⎫ ⎝⎛---=44644325x A 和3阶矩阵对角矩阵⎪⎪⎪⎭⎫⎝⎛=300020001B 相似,则=x ___ _____。

二、单项选择题(每小题3分,共15分)1.设向量组()1,1,1Tαλ=,()21,,1Tαλ=,()31,1,Tαλ=线性相关,则必有( )A.0λ= 或 λ=1B.1λ=- 或 λ=2C.1λ= 或 λ=2D.1λ= 或 λ=-22.设α是n 维列向量,λ为实数,则向量λα的长度λα= ( )A.αλB.αλ⋅C.αλ⋅nD.αλ⋅n3.若向量组r ααα,,,21 可由另一向量组s βββ,,,21 线性表示,则 ( ) A.s r ≤B.s r ≥C.1212(,,,(,,,)r s r r αααβββ≤ )D.1212(,,,(,,,)r s r r αααβββ≥ )4.设n 阶矩阵A 与B 相似,则必有 ( )A.,A B 同时可逆或同时不可逆B.,A B 有相同的特征向量C.,A B 均与同一个对角矩阵相似D.矩阵λE -A 与λE -B 相等5. 设A 为n 阶矩阵,满足2A A =,且A E ¹,则( )A. A 为可逆矩阵B. A 为零矩阵C. A 为不可逆矩阵D. A 为对称矩阵三、计算题(每小题10分,共60分)1.计算行列式 D =--1102334620331247的值2.设101110012A 骣÷ç÷ç÷ç÷=-ç÷ç÷ç÷÷ç桫,301110014B 骣÷ç÷ç÷ç÷=ç÷ç÷ç÷÷ç桫,X 为未知矩阵,且满足:AX B =。

线性代数模拟试题及答案(三套)

线性代数模拟试题及答案(三套)

第一套线性代数模拟试题解答一、填空题(每小题4分,共24分)1、 若12335544i j a a a a a 是五阶行列式中带正号的一项,则,12i j ==。

令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。

2、 若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D =(1)n D- 。

即行列式D 的每一行都有一个(-1)的公因子,所以D =(1)n D-。

3、设1101A ⎛⎫=⎪⎝⎭, 则100A =110001⎛⎫ ⎪⎝⎭。

23111112121113,,010*********A A ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭可得4、设A 为5 阶方阵,5A =,则5A =15n +。

由矩阵的行列式运算法则可知:1555n n A A +==。

5、A 为n 阶方阵,TAA E =且=+<E A A 则,0 0 。

由已知条件:211,1T T TAA E AA A A A E A A =⇒====⇒=±⇒=-, 而 :0TTA E A AA A E A A A E A E A E +=+=+=+=-+⇒+=。

6、设三阶方阵2000023A x y ⎛⎫⎪= ⎪ ⎪⎝⎭可逆,则,x y 应满足条件32x y ≠。

可逆,则行列式不等于零:2002(32)032023A x y x y x y ==⨯-≠⇒≠。

二、单项选择题(每小题4分,共24分) 7、设0333231232221131211≠=M a a a a a aa a a ,则行列式=---------232221333231131211222222222a a a a a a a a a A 。

A .M 8 B .M 2 C .M 2- D .M 8-由于 ()()111213111213111213331323331323321222321222321222331323322222228(1)8222a a a a a a a a a a a a a a a a a a M a a a a a a a a a ------=-=--=---8、设n 阶行列式n D ,则0n D =的必要条件是 D 。

线代第一章测试题及答案

线代第一章测试题及答案

线代第一章测试题及答案一、选择题(每题5分,共20分)1. 以下哪个选项不是线性代数的研究对象?A. 向量空间B. 线性方程组C. 矩阵D. 微分方程答案:D2. 矩阵的秩是指:A. 矩阵的行数B. 矩阵的列数C. 矩阵中非零行(或列)的最大数目D. 矩阵的元素个数答案:C3. 以下哪个矩阵是可逆的?A. 零矩阵B. 单位矩阵C. 奇异矩阵D. 任意矩阵答案:B4. 向量空间的基是指:A. 空间中的任意一组向量B. 空间中的一组线性无关的向量C. 空间中的一组线性相关的向量D. 空间中的一组正交向量答案:B二、填空题(每题5分,共20分)1. 矩阵的元素个数称为矩阵的______。

答案:阶数2. 如果一个矩阵的行向量组线性无关,则该矩阵是______矩阵。

答案:满秩3. 向量空间中,一组向量如果满足线性组合的系数全为零,则称这组向量是______的。

答案:线性无关4. 一个n阶方阵的行列式等于______。

答案:0三、简答题(每题10分,共20分)1. 请简述什么是线性方程组的解。

答案:线性方程组的解是指满足方程组中所有方程的未知数的取值。

2. 请解释什么是矩阵的转置。

答案:矩阵的转置是指将矩阵的行向量变成列向量,列向量变成行向量,即交换矩阵的行和列。

四、计算题(每题15分,共40分)1. 计算矩阵A的行列式,其中A = \[\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\]。

答案:\[ \text{det}(A) = (1)(4) - (2)(3) = 4 - 6 = -2 \]2. 已知矩阵B = \[\begin{bmatrix} 2 & 1 \\ 4 & 2\end{bmatrix}\],求B的逆矩阵。

答案:\[ B^{-1} = \frac{1}{(2)(2) - (1)(4)} \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -0.5 \\-2 & 1 \end{bmatrix} \]。

线性代数模拟试题及答案

线性代数模拟试题及答案

3、
1 1 =__________。 2 2 é 2 3ù é - 1ù ú ê ú =__________。 ë - 1 0û ë 3 û
4、矩阵 ê
5、若 A,B 为 n 阶矩阵,则 ( A + B )( A - B ) =__________。 6.设 A, B 为 3 阶方阵,且 A = 4, B = 2 ,则 2( B* A-1 ) = 7、若 A 是可逆矩阵,则 ( A¢ ) -1 =__________。 .
æ- 2 0 0 ö æ1 0 0 ö ÷ ç ç ÷ A - 3E = ç - 2 2 - 2 ÷ ~ ç 0 1 - 1÷ ç - 2 4 - 4÷ ç0 0 0 ÷ ø è è ø æ0ö ç ÷ ì x 2 - x3 = 0 从而解得基础解系 p1 = ç 1 ÷ 得对应的方程组为 í î x1 = 0 ç1÷ è ø
.
A+ B = A + B
A. 若矩阵 A, B 满足 AB = O ,则有 A = O 或 B = O B. 若矩阵 A, B 满足 AB = E ,则矩阵 A, B 都可逆。 C. 若 A* 是 n 阶矩阵 A 的伴随矩阵,则 A* = A D. 若 A ¹ O ,则 A ¹ 0
7.下列说法不正确的是( ) 。
æ1 ç 0 8.设矩阵 A = ç ç0 ç ç0 è
2 0 0ö ÷ 1 0 0÷ -1 ,则 A = ÷ 0 3 3 ÷ 0 2 1÷ ø
.
9 、 在 线性方程组 AX = O 中,若 末知 量的个数 n=5 , r ( A) = 3 ,则方程组的一 般 解中 自由末知 量的个数为 _________。 10. 设向量组 a1 , a 2 , a3 线性无关,则向量组 a1 , a1 + a 2 , a1 + a2 + a3 (填线性相关,线性无关) 。

线性代数期末模拟试题F(附解答)

线性代数期末模拟试题F(附解答)

线性代数期末模拟试题F一 单项选择题(每题3分,共18分)1.设33)(⨯=j i a A 为非零实矩阵,j i j i A a =,j i A 是行列式 ||A 中元素j i a 的代数余子式,则行列式||A =a . 0;b . 1;c . 2;d . 3。

2.设A 为n 阶非奇异矩阵)2(>n ,*A 为A 的伴随矩阵,则 a . A A A n 2||)(-**=; b . A A A n 1||)(+**=; c . A A A n 1||)(-**=; d . A A A n 2||)(+**=。

3.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=96342321k A ,0)(33≠=⨯j i b B ,且0=AB ,则a . 当6=k 时,必有秩1)(=B r ;b . 当6=k 时,必有秩2)(=B r ;c . 当6≠k 时,必有秩2)(=B r ;d . 当6≠k 时,必有秩1)(=B r 。

4.设B A ,为 n 阶矩阵,且0=AB ,0≠B ,则必有a . 222)(B A B A +=+;b . 0||=B ;c . 0||*=B ;d . 0||*=A 。

5.设n m A ⨯为实矩阵,则线性方程组0=Ax 只有零解是矩阵)(A A T 为正定矩阵的 a . 充分条件; b . 必要条件; c . 充要条件; d . 无关条件。

6.已知32121,,,,αααββ为四维列向量组,且行列式 4,,,1321-==βαααA ,1,,,2231=-=βαααB ,则行列式 =+B Aa . 12;b . 12-;c . 3-;d . 16-。

二 填空题(每题3分,共18分)7.设行列式 2154301200011311=D ,j i A 是D 中元素j i a 的代数余子式,则 =+2414A A 。

8.已知⎪⎪⎪⎭⎫ ⎝⎛=11111b b a a A 相似于对角阵⎪⎪⎪⎭⎫⎝⎛210,则a = ,b = 。

线性代数模拟试卷及答案4套

线性代数模拟试卷及答案4套

线性代数模拟试卷(一)一、 填空题(每小题3分,共6小题,总分18分)1、四阶行列式44434241343332312423222114131211a a a a a a a a a a a a a a a a 展开式中,含有因子3214a a 且带正号的项为___________2、设A 为n 阶可逆方阵,将A 的第i 行和第j 行对换后得到的矩阵记为B ,则AB -1=_________3、已知向量组)2- 5, 4,- ,0( , )0 t,0, ,2( , )1 1,- 2, ,1(321'='='=ααα线性相关,则t =_________4、设三阶方阵) , ,(B ), , ,(2121γγβγγα==A ,其中 , ,,21γγβα都是三维列向量且2B 1, ==A ,则=- 2B A _________5、A 为n 阶正交矩阵, , ,,21n ααα 为A 的列向量组,当i ≠j 时,)21 ,31(j i αα=_________ 6、三阶方阵A 的特征值为1,-2,-3,则 A =_______; E+A -1的特征值为______ 二、 单项选择题(每小题2分,共6小题,总分12分) 1、 设齐次线性方程组AX=0有非零解,其中A=()nn ija ⨯,A ij 为a ij (i,j=1,2,…n) 的代数余子式,则( ) (A)0111=∑=ni i i A a(B)0111≠∑=ni i i A a(C)n A ani i i =∑=111(D)n A ani i i ≠∑=1112、若A -1+ E, E+A, A 均为可逆矩阵,E 为单位矩阵,则(A -1+ E)-1=( ) (A) A+E (B) (A+E)-1 (C) A -1+ E (D) A(A+E)-13、设A, B 为n 阶方阵 ,A*,B*分别为A, B 对应的伴随矩阵,分块矩阵⎪⎪⎭⎫ ⎝⎛=B 00 A C ,则C 的伴随矩阵C* =( )(A) ⎪⎪⎭⎫⎝⎛*A B 0 0 *B A (B) ⎪⎪⎭⎫⎝⎛*B A 0 0 *A B(C) ⎪⎪⎭⎫⎝⎛*B B 0 0 *A A (D) ⎪⎪⎭⎫⎝⎛*A A 0 0 *B B 4、若向量组 , ,,21m ααα 的秩为r ,则( )(A) 必有 r<m (B)向量组中任意小于 r 个向量的部分组线性无关 (C) 向量组中任意 r 个向量线性无关(D) 向量组中任意 r+1个向量必线性相关5、已知 ,,321ααα是四元非齐次线性方程组AX=B 的三个解,且r(A)=3, 已知)3 2, 1, ,0( , )4 3, 2, ,1(321'=+'=ααα,C 为任意常数,则AX=B 通解X=( )(A) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛11114321C (B)⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛32104321C(C) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛54324321C (D) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛65434321C6、设A 为三阶方阵,有特征值λ1=1,λ2= -1, λ3=2,其对应的特征向量分别为 ,,321ααα,记P=(132 ,ααα),则P -1AP=( )(A) ⎪⎪⎪⎭⎫⎝⎛1 2 1- (B)⎪⎪⎪⎭⎫⎝⎛1- 1 2(C) ⎪⎪⎪⎭⎫⎝⎛2 1- 1 (D) ⎪⎪⎪⎭⎫⎝⎛2 1 1-三、计算下列行列式 (12分)1、 D=1- 3 3- 131 1 41- 3 0 5-21- 1 3 2、D n = n1 1 1 1.....................1 1 3 1 111 12 111 1 1 1四、已知A 、B 同为3阶方阵,且满足AB=4A+2B (12分) (1)证明:矩阵A-2E 可逆(2)若B=⎪⎪⎪⎭⎫⎝⎛2 0 00 2 10 2- 1 ,求A五、求向量组 )1 1, 1,- ,1( , )3 2, 1, ,1(21'='=αα, , )6 5, 2,- ,4( , )1 3, 3, ,1( 43'='=αα)7- 4,- 1,- ,3(5'-=α的一个极大无关组,并将其余向量用该极大无关组线性表示(10分)六、已知线性方程组⎪⎪⎩⎪⎪⎨⎧=---=+++-=+-=+-+bx x x x x ax x x x x x x x x x 432143214314321 6 - 17231 4 032 ,讨论参数a 、b 为何值方程组有解,在有解时,求出通解 (12分)七、用正交变换化二次型323121232221321222333),,(x x x x x x x x x x x x f ---++=为标准形,并写出相应的正交变换 (16分)八、已知 ,,,4321αααα是AX = 0的一个基础解系,若322211,ααβααβt t +=+=,144433,ααβααβt t +=+=,讨论t 为何值, ,,,4321ββββ是AX = 0的一个基础解系 (8分)线性代数模拟试卷(二)三、 填空题(每小题3分,共5小题,总分15分)1、j i a a a a a 53544231是五阶行列式展开式中带正号的一项,则i=_____, j=_____2、设n 阶方阵A 满足A 2 =A ,则A+E 可逆且(A+E )-1=_______________(E 为n 阶单位阵)3、已知向量组)0 6, 1,- ,1( , )2k - k,- ,3 ,1( , )2- 2, 1, ,1(321'='='=ααα 若该向量组的秩为2,则k =_________4、已知四阶方阵A 相似于B ,A 的特征值为2,3,4,5,E 是单位阵,则=- E B _________5、 向量α=(4,0,5)′在基)1 ,1- ,1(,)0 ,1 ,1( ,)1 ,2 ,1(321'='='=ηηη下的坐标为_________四、 单项选择题(每小题2分,共5小题,总分10分)1、 设 A 是三阶方阵A 的行列式,A 的三个列向量以γβα ,,表示,则 A =( ) (A)αβγ (B) γβα---(C)αγγββα+++ (D) γβαβαα+++2、设A, B ,C 为n 阶方阵, 若 AB = BA, AC = CA, 则ABC=( ) (A) BCA (B) ACB (C) CBA (D) CAB3、 A, B 均为n 阶方阵, A*为A 的伴随矩阵, 3B 2, -==A ,则21-*B A = ( )(A) 32 12--n (B) 32 1--n (C) 23 12--n (D) 23 1--n4、已知向量组 , ,,4321αααα线性无关,则向量组( ) (A)14433221 , , ,αααααααα++++线性无关(B)14433221 , , ,αααααααα----线性无关(C)14433221 , , ,αααααααα-+++线性无关 (D)14433221 , , ,αααααααα--++线性无关5、若A ~ B ,则 有 ( )(A) A 、B 有相同的特征矩阵 (B) B =A(C) 对于相同的特征值λ,矩阵A 与B 有相同的特征向量 (D) A 、B 均与同一个对角矩阵相似三、计算下列行列式 (13分)2、 D=2- 3 0 112 1 - 121 0 331- 2 1 4、D n = 11 1 111 x 1 1 (1)1 1 1 x 1 1 1 1 x x ++++a)设B= ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1 0 0 01- 1 0 00 1- 1 00 0 1- 1 ,C=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2 0 0 01 2 0 03 12 043 12 ,且矩阵A 满足 E C B C E A =''--)(1, 试将关系式化简并求A (12分)b)求向量组, )4 1,- 2, ,1(1'=α )2 3, 1, ,0( 2'=α, , )14 0, 7, 3,(3'=α , )10 1, 5, 2,( 4'=α)0 2,- 2, ,1(5'=α的一个极大无关组,并将其余向量用该极大无关组线性表示 (13分)六、k 为何值时,线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=++---=+++=+++kx x x x x k x x x x x x x x x x x 9 10 5 - 3)5(2 31 6 3 13 2 4321432143214321 有无穷多个解并求出通解 (14分)七、用正交变换化二次型31232221321422),,(x x x x x x x x f +-+=为标准形,并写出相应的正交变换 (16分)八、若矩阵A=⎪⎪⎪⎭⎫ ⎝⎛0y 10 1- 01 x0 有三个线性无关的特征向量,证明:x – y = 0线性代数模拟试卷(三)一、填空题(每小题3分,共18分)1、A 是三阶方阵,且|A|=6,则 |(3A)-1|= 。

线性代数考试题库及答案(一)

线性代数考试题库及答案(一)

线性代数考试题库及答案(一)1.下面是线性代数考试题库及答案的第一部分专项同步练第一章行列式的格式正确版本:一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。

3.n阶行列式的展开式中含a11a12的项共有(D) (n-1)。

项。

4.1/1 = (D) 2.5.1/(-1) = (B) -1.6.在函数f(x) = (2x-1)/(2-x^3)中x^3项的系数是(A) 0.7.若D = |a11 a12 a13| |a21 a22 a23| |1 a32 a33|,则D1 =2a11a33 - 4a13a31 - 2a12a32.8.若 |a11 a12| |a21 a22| = a,则 |a12 a11| |ka22 ka21| = (-k^2)a。

9.已知4阶行列式中第1行元依次是-4.0.1.3,第3行元的余子式依次为-2.5.1.x,则x = 3.10.若D = |4 3 1 5| |-1 3 4 1| |2 -1 6 3| |-2 1 3 4|,则D中第一行元的代数余子式的和为(B) -2.11.若D = |-1 5| |3 -2|,则D = (A) -1.12.k等于下列选项中哪个值时,齐次线性方程组x1 + kx2 + x3 = 0,kx1 + x2 + x3 = 0,x2 + x3 = 0有非零解。

(B) -2.二、填空题1.2n阶排列24…(2n)13…(2n-1)的逆序数是n(2n-1)。

2.在六阶行列式中项a32a41a25a13a56a64的符号为-。

改写后的文章:线性代数考试题库及答案第一部分专项同步练第一章行列式一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。

线性代数模拟试题及答案

线性代数模拟试题及答案

...《 线性代数期末模拟试题一 》一、填空(本题20分每小题2分) 1.设)det(ij a 为四阶行列式,若23M 表示元素23a 的余子式,23A 表示元素23a 的代数余子式,则23M +23A = 。

2.三阶行列式3331221311000a a a a a 中只有位于两条对角线上的元素均不为零, 则该三阶行列式的所有项中有 项不为零,这一结论对n 阶行列式(填成立或不成立)。

3.设321,,ααα均为3维列向量,记矩阵),,,(321ααα=A 记矩阵),,2(313221αααααα-+-=B ,若6=B ,则=A 。

4.设矩阵⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=458271,131027241,213012C B A ,则=-C B A T2。

5.设矩阵A 可逆,且矩阵AB C =,所以矩阵C 一定可以由矩阵B 经过(填行或列)初等变换而得到。

6.设向量组43,21,,,αααα,若,3),,(,2),,(432321==ααααααR R 则1α一定可以由向量唯一的线性表示。

得分阅卷人...7.非齐次线性方程组b Ax =有 唯一的解是对应的齐次方程组0=Ax 只有零解的充分但不必要条件。

8.设3阶矩阵A 的行列式0=A ,则矩阵A 一定有一个特征值。

9.n 阶矩阵A 有n 个特征值1,2,, n ,n 阶矩阵B 与A 相似,则=B 。

10.向量组:[][]1,121,1,12121-==p p(填是或不是)向量空间2R 一个规范正交基。

二、单项选择(本题10分,每小题2分)注意:请务必将你的选择题的答案按要求填入下表,否则答案无效!1.设矩阵A 为n 阶方阵,则关于非齐次线性方程组b Ax =的解下列说法( )不正确(A ) 若方程组有解,则系数行列式0≠A ; (B ) 若方程组无解,则系数行列式0=A ;(C ) 若方程组有解,则或者有唯一解或者有无穷多解;...(D ) 系数行列式0≠A 是方程组有唯一解的充分必要条件. 2. 设A 为n 阶可逆矩阵,下列正确的是( ) (A ) (2)2T T A A =; (B) 11(2)2A A --=; (C) 111[()][()]T T A A ---=;(D) 111[()][()]T T T A A ---=。

大一线性代数考试题库及答案解析

大一线性代数考试题库及答案解析

大一线性代数考试题库及答案解析一、选择题1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的逆矩阵的行列式为多少?A. 1/2B. 2C. 1/4D. 1答案:C解析:根据行列式的性质,一个矩阵的逆矩阵的行列式等于原矩阵行列式的倒数。

因此,|A^(-1)| = 1/|A| = 1/2。

2. 向量α=(1,2,3)和β=(-1,0,1)是否共线?A. 是B. 否答案:A解析:若向量α和β共线,则存在一个实数k使得β=kα。

将向量α和β的对应分量相除,得到-1/1=0/2=1/3,显然不存在这样的实数k,因此向量α和β不共线。

二、填空题3. 设矩阵B是一个3×3的矩阵,且B的秩为2,则矩阵B的零空间的维数为____。

答案:1解析:矩阵B的零空间的维数等于矩阵的列数减去矩阵的秩,即3-2=1。

4. 若线性方程组Ax=b有唯一解,则系数矩阵A的秩等于____。

答案:n解析:若线性方程组Ax=b有唯一解,则系数矩阵A的秩等于未知数的个数n。

三、解答题5. 给定向量组α1=(1,2,3),α2=(4,5,6),α3=(7,8,9),求证向量组α1,α2,α3线性相关。

答案:证明:首先计算向量组α1,α2,α3的行列式:|α1 α2 α3| = |1 2 3||4 5 6||7 8 9| = 0由于行列式为0,根据行列式的性质,向量组α1,α2,α3线性相关。

6. 设矩阵C为3×3的矩阵,且C的行列式为0,求证矩阵C不可逆。

答案:证明:根据矩阵的逆矩阵的定义,若矩阵C可逆,则存在矩阵C^(-1)使得CC^(-1)=I。

但是,由于|C|=0,根据行列式的性质,不存在矩阵C^(-1)使得CC^(-1)=I,因此矩阵C不可逆。

四、计算题7. 计算矩阵D=\begin{bmatrix}1 & 2 & 3\\4 & 5 & 6\\7 & 8 &9\end{bmatrix}的行列式。

《线性代数》模拟试卷B及答案

《线性代数》模拟试卷B及答案

《线性代数》模拟试卷B及答案一、选择题(每小题3分,共30分)(1)若A为4阶矩阵,则|3A|=()(A)4|A| (B) 34|A| (c) 4*1 (D)3|A|(2)设A, B为n阶方阵,AHO且A3 = 0,则()(A)3 = 0 (B)B4 = 0(C) (A + B¥ =A2 + B2(D)|A| = 0或网=0(3)A, B, C均为n阶方阵,则下列命题正确的是()(A) AB = BA(B) A H 0,3 H 0则A3 工0(D)若A3 = AC,贝ijB = C(4) (A + B)2=A2+2AB + B2成立的充要条件是()(A) AB = BA(B) A = E (C)B = E(D)A = B(5)线性方程组伙—l):+2y = :有唯—解,贝%为( )[2x + (k-\)y = b(A)任意实数(B)不等于(C)等于土岳(D)不等于0(6)若A为可逆阵,则⑺丁、()(A)|A|A(B)|A|A*(c)|矿A(D)|A「&(7)含有4个未知数的齐次方程组AX=09如果/?(A) = 1,则它的每个基础解系中解向量的个数(A) 0 (B) 1 (C) 2 (D) 3(8)设A为加X”矩阵,齐次方程组AX=0仅有零解的充要条件是A的()(A)列向量线性无关(B)列向量线性相关(C)行向量线性无关(D)行向量线性相关3已知矩阵A=,下列向量是A的特征向量的是(-1blb2(A)(B)(C)(D)1k°丿a11(10)二次型/(x p x2,x3) = x l2 +4可+4若+2加宀-2%宀+4心疋为正定二次型,的取值范围(A)-2<2<1 (C)-3<2<-2 (D)2>2二、计算题(第1、2小题每题5分, 第3、4小题每题10分,共30分)U计算行列式(5分)2、设A二3<3 r5 ,求A的逆A」。

(5分)3丿10、 (\3>求矩阵方程AX+B = X9其中A= -1 1 1 、B= 2o -1丿〔5 -1、0 o (10 分)一3‘4、求向量组a严(-1 I 4 3)', a2 = (2 -1 3 5)', a3=(l 0 7 8); , a4 = (5 -3 2 7)'的秩,并求出它的一个最大无关组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5200
2100
求矩阵
的逆阵( 10 分)
0083
0052
解 设A
52 21
B
83 5 2 -------------------------------------------2


1
A1
52 21
1
1 2
2 5
B1
83 52
23 5 8 ----------6 分
1
5200
2100
A
1 A1
于是
10 1
第 2页共4页
五、 得分
x1 x2 设 x1 x2
x1 x2
( 3)有无穷多解 ? ( 15 分)
x3 1
x3
问 为何值时
x3 2
此方程组( 1)有唯一解( 2)无解
解B
11 1 r 1 1 1 1 ~0 1 1 1 1 2 0 0 (1 )(2
2
(1 ) ) (1 )( 1)2
----------6 分
1
11 1
(e1, e2, e3) (a1, a2, a3) 1 0 0 -------------------------------------4 分 1 11
123
于是
(b1, b2, b3) (e1, e2, e3) 2 3 4 -----------------------------------------6 分
再将各列都加到第一列上 得
x (n 1)a a a
0 xa 0
Dn
0
0 xa
a
0 0 -------------------8 分
0
0 0 0xa
[x ( n 1)a]( x a)n 1 -------------------------------------------------10

二、 得分
143
1 1 1 1123
(a1, a2, a3) 1 0 0 1 11
2 3 4 ---------------------------10 分 143
由基 a1 a2 a3 到基 b1 b2 b3 的过渡矩阵为
1
1 1 1 123 P 1 0 0 234
1 11 1 43
234 0 1 0 -----------------------12 分
(
1 3 1) T (2
T
1 0) (1
T
4 1)
是线性相关
还 是 线 性 无 关 ;( 2 ) 试 用 施 密 特 法 把 向 量 组 (a1, a 2 , a 3 )
正交化( 16 分)。 解: (1)以所给向量为列向量的矩阵记为
A 因为
11 1 12 4 13 9
12 1 r 12 1 r 12 1
(1)要使方程组有唯一解 必须 R(A) 3 因此当 1 且 2 时方程组有唯一解 .-----9 分
(2)要使方程组无解 必须 R(A) R(B) 故 (1 )(2 ) 0 (1 )( 1)2 0
因此 2 时 方程组无解 ----------------------------------------------------------------------------12

1
b2
a2
[b1,a2] [ b1,b1]
b1
1 0 --------------------------------------------------5 分
1
b3
a3
[ b1,a3] [ b1,b1]
b1
[ [
b2,a3] b2,b2]
为其基础解系向量 --------------------------------------------------------------------10

故此方程组的通解为:
x k(3 4 5 6)T (2 3 4 5) T (k R ) ---------------------12 分
四、 得分

(3)要使方程组有有无穷多个解 必须 R(A) R(B) 3 故 (1 )(2 ) 0 (1 )( 1)2 0
因此当 1 时 方程组有无穷多个解 .---------------------------------------------------------------15

六、 得分
( 1)判定向量组
已知 R3 的两个基为
a1 (1 1 1) T a2 (1 0
T
1)
a3 (1
0
1) T; b1 (1
2
1) T
b2 (2
3
T
4)
b3 (3 4
T
3)
求由基 a1 a2 a3 到基 b1 b2 b3 的过渡矩阵 P ( 12 分 )
解:设 e1 e2 e3 是三维单位坐标向量组 则
11 1
(a1, a2, a3) (e1, e2, e3) 1 0 0 ----------------------------------------2 分 1 11
学期:
Байду номын сангаас
大学 试 卷 评分标准及参考答案

学年度 第
学期
课程: 线性代数
一、 得分
计算行列式 Dn
xa ax
aa
a a (10 分)
x
解 将第一行乘 ( 1)分别加到其余各行 得
x aa a xx a 0 Dn a x 0 x a
a 0 0 -------------------------4 分
a x 0 0 0x a
0083
B
B1
120 0 2 500 0 0 2 3 -------10 分
0052
0 058
第 1页共4页
三、 得分 是它的三个解向量
设四元非齐次线性方程组的系数矩阵的秩为
3 已知 1 2 3

1 (2 3 4 5) T
T
2 3 (1 2 3 4) 求该方程组的通解
(12 分)
解:由于方程组中未知数的个数是 4 系数矩阵的秩为 3 所以对应的齐次线性方程组的基础解
A
~ ~ 3 1 4
077
0 1 1 ---------------------------6 分
10 1 022 000
所以 R(A) 2 小于向量的个数 从而所给向量组线性相关 ----------------------------8 分 ( 2)根据施密特正交化方法
1
b1 a1 1 ----------------------------------------------------------------------2
系含有一个向量 -----------------------------------------------------------------------4

且由于 1 2 3 均为方程组的解 由非齐次线性方程组解的结构性质得 2 1 ( 2 3) ( 1 2) ( 1 3) (3 4 5 6) T
相关文档
最新文档