天津理工大学概率论与数理统计第六章习题答案详解

合集下载

概率论与数理统计第六章课后习题及参考答案

概率论与数理统计第六章课后习题及参考答案

概率论与数理统计第六章课后习题及参考答案概率论与数理统计第六章课后习题及参考答案1.已知总体X ~),(2σµN ,其中2σ已知,⽽µ未知,设1X ,2X ,3X 是取⾃总体X 的样本.试问下⾯哪些是统计量?(1)321X X X ++;(2)µ31-X ;(3)222σ+X ;(4)21σµ++X ;(5)},,max{321X X X ;(6)σ221++X X ;(7)∑=3122i i X σ;(8)2µ-X .解:(1)(3)(4)(5)(6)(7)是,(2)(8)不是.2.求下列各组样本值的平均值和样本差.(1)18,20,19,22,20,21,19,19,20,21;(2)54,67,68,78,70,66,67,70.解:(1)9.19)21201919212022192018(101101101=+++++++++==∑=i i x x ;43.1)(9110122=-=∑=i i x x s .(2)5.67)7067667078686754(1018181=+++++++==∑=i i x x ;018.292)(718122=-=∑=i i x x s .3.(1)设总体X ~)1,0(N ,则2X ~)1(2χ.(2)设随机变量F ~),(21n n F ,则F1~),(12n n F .(3)设总体X ~),(2σµN ,则X ~),(2n N σµ,22)1(S n σ-~)1(2-n χ,nS X /µ-~)1(-n t .(4)设总体X ~)10(2χ,Y ~)15(2χ,且X 与Y 相互独⽴,则=+)(Y X E 25,=+)(Y X D 50.4.设随机变量X 与Y 都服从标准正态分布,则(C)A .Y X +服从正态分布B .22Y X +服从2χ分布C .2X 与2Y 均服从2χ分布D .22YX 服从F 分布5.在总体X ~)3.6,52(2N 中随机抽取⼀容量为36的样本,求样本平均值X 落在8.50到8.53之间的概率.解:因为X ~)3.6,52(2N ,即52=µ,223.6=σ,因为36=n ,22205.1363.6==n σ,所以X ~)05.1,52(2N .由此可得)8.538.50(≤≤X P 05.1528.50()05.1528.53(-Φ--Φ=8302.0)1429.1()7143.1(=-Φ-Φ=.6.设总体X ~)1,0(N ,1X ,2X ,…,10X 为总体的⼀个样本,求:(1))99.15(1012>∑=i i X P ;(2)写出1X ,2X ,…,10X 的联合概率密度函数;(3)写出X 的概率密度.解:(1)由题可知∑==1012i i X X ~)10(2χ,查2χ分布表有99.15)10(210.0=χ,可得10.0=α,即10.0)99.15(1012=>∑=i i X P .(2)1X ,2X ,…,10X 相互独⽴,则联合概率密度函数为}exp{321}21exp{21),,,(1012510121021∑∏==-=-=i i i i x x x x x f ππ.(3)X Y =~)1.0,0(N ,所以有2251.02)0(e 5e1.021)(y y y f -?--==ππ.7.设总体X ~)1,0(N ,1X ,2X ,…,5X 为总体的⼀个样本.确定常数c ,使25242321)(XX X X X c Y +++=~)3(t .解:因为i X ~)1,0(N ,5,,2,1 =i ,所以21X X +~)2,0(N ,)(2121X X +~)1,0(N ,252423X X X ++~)3(2χ,因为25242321252423212632XX X X X X X X X X +++=+++~)3(t ,所以有23=c .8.设1X ,2X ,3X ,4X 是来⾃正态总体)4,0(N 的样本.已知243221)43()2(X X b X X a Y -+-=为服从⾃由度为2的2χ分布,求a ,b 的值.解:由题可知i X ~)4,0(N ,4,3,2,1=i ,故有0)2(21=-X X E ,20)2(21=-X X D ,所以212X X -~)20,0(N .同理4343X X -~)100,0(N .⽽20)2(221X X -~)1(2χ,100)43(221X X -~)1(2χ,故有100)43(20)2(243221X X X X -+-~)2(2χ,⽐较可知201=a ,1001=b .9.设总体X ~)3.0,(2µN ,1X ,2X ,…,n X 为总体的⼀个样本,X 是样本均值,问样本容量n ⾄少应取多⼤,才能使95.0)1.0(≥<-µX P .解:易知X ~)3.0,(2nN µ,由题意有95.013(2/3.01.0/3.0()1.0(≥-Φ=<-=<-nnnX P X P µµ,即应有975.0)3(≥Φn,查正态分布表知975.0)96.1(=Φ,所以取96.13≥n,即5744.34≥n ,取35=n .10.设总体X ~)16,(µN ,1X ,2X ,…,10X 为总体的⼀个样本,2S 为样本⽅差,已知1.0)(2=>αS P ,求α的值.解:由抽样分布定理知22)1(σS n -~)1(2-n χ,因为10=n ,故有2249S ~)9(2χ,得1.0)169169()(22=>=>ααS P S P ,查2χ分布表得684.14)9(21.0=χ,即684.14169=α,解得105.26=α.11.设(1X ,2X ,…,1+n X )为来⾃总体X ~),(2σµN 的⼀个样本,记∑==n i i n X n X 11,∑=--=n i in X X n S 122(11,求证:nn n S X X n n T -?+=+11~)1(-n t .证:由题可知n X ~),(2nN σµ,n n X X -+1~))11(,0(2σn N +,标准化得σnX X nn 111+-+~)1,0(N .⼜因为∑=-=-ni inX XS n 1222)(1)1(σσ~)1(2-n χ,从⽽有nn nnn S XX n n n S n n X X -+=--+-++122111)1(11σσ~)1(-n t ,即nnn S X X n n T -?+=+11~)1(-n t .。

天津理工大学概率论与数理统计复习大纲

天津理工大学概率论与数理统计复习大纲

天津理工大学概率论与数理统计复习大纲《概率论与数理统计》期末复习大纲第一章随机事件及其概率主要知识点:事件的互不相容(互斥)、独立的概念;加法公式、乘法公式;全概率公式及逆概率公式及其应用典型习题:同步练习一:2、12、14、21、22、29、30、31第二章一维随机变量及其分布主要知识点:离散随机变量分布律的性质;分布函数的性质;常见分布的分布律、密度、分布函数。

典型习题:同步练习二:一、2,5,6,8;二、3,9,13,16,20,28第三章多维随机变量及其分布主要知识点:离散随机变量联合分布律与边缘分布律的关系;联合分布函数与边缘分布函数的关系;常见分布的联合分布与边缘分布;随机变量独立性的判定及应用。

典型习题:同步练习三:一、5,6,8,10;二、6,8,9,10,11第四章随机变量的数字特征主要知识点:期望、方差的定义与性质;常见分布的分布参数与期望和方差的关系;期望和方差的计算;协方差与相关系数的计算;不相关与独立的区别与联系。

典型习题:同步练习四:一、3,4,6,9,10;二、3, 5,9,11,15,16,17第五章大数定律与中心极限定理主要知识点:切比雪夫不等式条件与结论;大数定律的条件与结论;中心极限定理的条件与结论典型习题:同步练习五:一、1,3, 4,5,10;二、2, 4,10,12第六章数理统计的基本知识主要知识点:总体、样本、统计量的概念;三大分布的定义与性质;正态总体统计量的分布典型习题:同步练习六:一、1,2, 6,9;二、3, 4,第七章参数估计主要知识点:矩估计和极大似然估计的方法及其应用;无偏估计的判定;正态总体期望的区间估计典型习题:同步练习七:点估计:一、2, 3 ;二、2,3, 4;点估计的评价标准:一、2;区间估计一、1,2;二、1,3第八章假设检验主要知识点:单正态总体参数的显著行假设检验的统计量、拒绝域及应用;第一类和第二类错误的概率;典型习题:同步练习八:一、1,2;二、2,5, 6。

完整版概率论与数理统计习题集及答案文档良心出品

完整版概率论与数理统计习题集及答案文档良心出品

《概率论与数理统计》作业集及答案第1章概率论的基本概念§ 1 .1随机试验及随机事件1.(1) 一枚硬币连丢3次,观察正面H、反面T出现的情形.样本空间是:S= __________________________(2)—枚硬币连丢3次,观察出现正面的次数.样本空间是:S= _____________________________________ ;2.(1)丢一颗骰子.A :出现奇数点,贝U A= _________________ ; B:数点大于2,则B=(2)一枚硬币连丢2次, A :第一次出现正面,则A= _________________ ;B:两次出现同一面,则 = ________________ ; C :至少有一次出现正面,则C= § 1 .2随机事件的运算1•设A、B C为三事件,用A B C的运算关系表示下列各事件:(1)A、B、C都不发生表示为: __________ .(2)A 与B都发生,而C不发生表示为:(3)A与B都不发生,而C发生表示为:.(4)A 、B C中最多二个发生表示为:(5)A、B、C中至少二个发生表示为:.(6)A 、B C中不多于一个发生表示为:2.设S = {x : 0 _ x _ 5}, A = {x :1 :: x _ 3}, B = {x : 2 _ :: 4}:贝y(1) A 一 B = , (2) AB = , (3) AB = _______________ ,(4) A B = __________________ , (5) AB = ________________________ 。

§ 1 .3概率的定义和性质1.已知P(A B)二0.8, P( A)二0.5, P(B)二0.6,贝U(1) P(AB) = , (2)( P( A B) )= , (3) P(A B)= .2.已知P(A) =0.7, P(AB) =0.3,则P(AB)= .§ 1 .4古典概型1.某班有30个同学,其中8个女同学,随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3)至少有2个女同学的概率.2.将3个不同的球随机地投入到 4个盒子中,求有三个盒子各一球的概率.§ 1 .5条件概率与乘法公式1 •丢甲、乙两颗均匀的骰子,已知点数之和为7,则其中一颗为1的概率是 ____________________ 。

概率与数理统计第六章习题参考解答

概率与数理统计第六章习题参考解答

《概率论与数理统计》第六章习题exe6-1解:10()0x b f x b ⎧<<⎪=⎨⎪⎩其他01()()2bb E X xf x dx x dx b +∞-∞==⋅=⎰⎰ 令11μ=A ,即2b X =,解得b 的矩估计量为ˆ2b X = 2ˆ2(0.50.60.1 1.30.9 1.60.70.9 1.0) 1.6899bx ==++++++++= exe6-2解:202()()()3x E X xf x dx x dx θθθθ+∞-∞-==⋅=⎰⎰令11μ=A ,即,3θ=X 解得θ的矩估计量为ˆ3X θ= Exe6-3解:(1)由于12222()()()()(1)()E X mpE X D X E X mp p mp μμ==⎧⎨==+=-+⎩令 ⎩⎨⎧==.2211μμA A 求解得221111p m p μμμμ⎧-=-⎪⎪⎨⎪=⎪⎩,p, m 的矩估计量为22211(1)ˆ11ˆˆA A n S pA nX X m p ⎧--=-=-⎪⎪⎨⎪=⎪⎩Exe6-4解:(1)()E X λ= 令11μ=A ,即,λ=X 解得λ的矩估计量为ˆX λ= {}),2,1,0(!===-x e x x X P xλλ{}),2,1,0(!===-i i xi x e x x X P iλλ似然函数11111(){}()!!niii x n nx ni ni i i ii eL P X x e x x λλλλλ=--===∑====∏∏∏11ln ()()ln ln(!)nni i i i L n x x λλλ===-+-∑∑1ln ()0nii x d L n d λλλ==-+=∑解得λ的最大似然估计值为 11ˆnii x x n λ===∑ (2)由(1)知1ˆ(6496101163710)7.210x λ==+++++++++= Exe6-5解:(1)似然函数1(1)111(){}(1)(1)ni i i nnx x ni i i L p P X x p p p p =--==∑===-=-∏∏∑-==-ni i nx np p 1)1(1ln ()ln (1)ln ni i L p n p x p ==+-⋅∑)1ln()(ln 1p n x p n ni i --+=∑=1(1)ln ()01nii x d L p ndp pp=-=-=-∑01)(ln 1=---=∑=pnxp n dp p L d ni i解得p 的最大似然估计值为 11ˆnii npxx===∑ (2)155ˆ5174926px ===++++ Exe6-6解:由22()2()x f x μσ--=(1)2σ已知,似然函数22122()()2211()(,)ni i i x nx n nii i L f x e μμσσμμ=----==∑===∏2211ln ())()2nii L n x μμσ==---∑21ln ()1(22)02nii d L x d μμμσ==--=∑即11()0nniii i x n xμμ==-=-=∑∑解得μ的最大似然估计值 1ˆnii xx nμ===∑(2)μ已知,似然函数为212222)(222)(12122121),()(σμσμπσσπσσ∑⎪⎭⎫ ⎝⎛====----==∏∏ni i i x n x ni n i i e ex f L21222)(21)ln(2)2ln(2)(ln μσσπσ-∑---==n i i x n n L 0)()(212)(ln 2122222=-+-=∑=μσσσσni ixn L d d解得∑=-=n i i x x n 122)(1ˆσ,故2σ的最大似然估计值为 .)(1ˆ122∑=-=n i i i x x n σ Exe6-7解:(1)矩估计量2220()()()(3)2xt x xt xx E X xf x dx x e dx e dx t e dt θθθθθθθθ=--+∞+∞+∞+∞--∞==⋅===Γ=⎰⎰⎰⎰令2X θ=,得ˆ/2X θ= 似然函数211()(,)ix n nii i i x L f x eθθθθ-====∏∏1111ln ()(ln 2ln )ln 2ln nnnii i i i i i x L x x n x θθθθθ====--=--∑∑∑令21ln ()210ni i d L n x d θθθθ==-+=∑解得θ的最大似然估计值为111ˆ22ni i x x n θ===∑ (2)2311()(,)2ixnni i i i x L f x e θθθθ-====∏∏331111ln ()[2ln ln(2)]2ln ln(2)nnnii i i i i i x L x x n x θθθθθ====--=--∑∑∑ 令2321ln ()1602nii d L n xd θθθθθ==-⋅-=∑013)(ln 1223=+⋅-=∑=ni ixn d L d θθθθθ解得θ的最大似然估计值为 111ˆ33n ii x x n θ===∑(3) ),(~p m B X ,m 已知{}∏∏=-=-===ni x m x x m ni i i i ip p C x X P p L 11)1()(1111ln ()[ln ln ()ln(1)]ln ln ln(1)()i inx m i i i nnnx m i i i i i L p C x p m x p C p x p nm x =====++--=++--∑∑∑∑令 11ln ()01n ni ii i x nm x d L p dp p p==-=-=-∑∑即1111(1)1n nniiii i i x xxnmppp p p===+==---∑∑∑ 解得p 的最大似然估计值为 1ˆnii xxpmnm===∑ Exe6-8解:(1)似然函数为{}{}{})1(2)1(2121)(522θθθθθθθ-=⋅-⋅==⋅=⋅==X P X P X P L)1ln(ln 52ln )(ln θθθ-++=L 令 0115)(ln =--=θθθθL d d 解得θ的最大似然估计值为.65ˆ=θ Exe6-9解:1212222)()(22)(12)(111212121),,(),,(),(σβαβασβασβασπσπσπβαβαβα∑∑⎪⎪⎭⎫⎝⎛=====+-+---+--=---===∏∏∏∏ni i ni i i i i i y x ny ni x ni n i i Y n i i X e eey f x f L))()((21ln 2)2ln(),(ln 21212βαβασσπβα+-∑+--∑---===ni i ni i y x n n L0))()((22),(ln 112=+-+--=∂∂∑∑==βαβασβααni i n i i y x L0)()((22),(ln 112=+----=∂∂∑∑==βαβασβαβni i n i i x x L 联立 解得,2ˆ,2ˆyx y x -=+=βα故βα,的最大似然估计量为 .2ˆ,2ˆYX Y X -=+=βαExe6-10解:(1)由1/2EX μθ==,得θ的矩估计量ˆ2X θ= ˆ()2()2()22E E X E X θθθ===⋅= 故θ的矩估计量ˆ2X θ=是θ的无偏估计量。

天津理工概率论与数理统计范围整理版(含详细答案)

天津理工概率论与数理统计范围整理版(含详细答案)

7、设一个工人生产了四个零件,i A 表示事件“他生产的第i 个零件是正品”),,,(4321=i ,用1A ,2A ,3A ,4A 的运算关系表达下列事件.(1)没有一个产品是次品; (1) 43211A A A A B =(2)至少有一个产品是次品;(2) 432143212A A A A A A A A B =⋃⋃⋃= (3)只有一个产品是次品;(3) 43214321432143213A A A A A A A A A A A A A A A A B ⋃⋃⋃= (4)至少有三个产品不是次品4)432143214321432143214A A A A A A A A A A A A A A A A A A A A B ⋃⋃⋃⋃=12. (1)设事件 A , B 的概率分别为 51 与 41,且 A 与 B 互 斥,则 )(B A P =51. (2).一个盒中有8只红球,3只白球,9只蓝球 ,如果随机地无放回地摸3只球 ,则取到的3 只 都 是 红 球 的 事 件 的 概 率 等 于 ___14285____。

(3) 一 袋中有4只白球,2只黑球,另一只袋中有3只白球和5只黑球,如果 从每只袋中各摸一只球 ,则摸到的一只是白球,一只是黑球的事件的概 率等于 ___1324___。

(4) .设 A1 , A2 , A3 是随机试验E 的三个相互独立的事件,已知P(A1) = α , P(A2) = β,P(A3) = γ ,则A1 , A2 , A3 至少有一个 发生的概率是 1- (1- α)(1- β)(1- γ) .(5) .一个盒中有8只红球,3只白球,9只蓝球,如果随机地无放回地摸3只球,则摸到的没有一只是白球的事件的概率等于 __3457____。

19、(1)已知504030.)(,.)(,.)(===B A P B P A P ,求)|(B A B P Y(2)已知213141===)|(,)|(,)(B A P A B P A P ,求)(B A P Y 解: (1)250.)|(=⋃B A B P(2)31=⋃)(B A P28、设每100个男人中有5个色盲者,而每10000个女人中有25个色盲者,今在3000 个男人和 2000个女人中任意抽查一人, 求 这 个 人 是 色 盲 者 的 概 率。

概率论与数理统计教材第六章习题PPT课件

概率论与数理统计教材第六章习题PPT课件
d 2i 1xi 0
参数θ的最大似然估计值为
ˆ
1 n
n
i 1
xi
14
3.
设总体X服从伽玛分布:
f(x;,)()
x1ex,
x0 ,
0,
x0
其中 0,0. 如果取得样本观测值为 x1,x2,,xn,
(1) 求参数α及β的矩估计值;
(2) 已知 0, 求参数β 的最大似然估计值.
解 (1) 矩估计法
定 义 若E (ˆ)0或 E (ˆ), 则 称ˆ为θ的无偏估计量。
结论1 样本均值 X 是总体均值μ的无偏估计量.
结论2 样本方差 S 2是总体方差 2 的无偏估计量.
3
2.有效性
定义 ˆ1X1,X2, ,Xn及 ˆ2X1,X2, ,Xn都是θ的无偏估计量,
如果D(ˆ1)D(ˆ2), 则称ˆ1 较ˆ 2 有效。
23
9、已知高度表的误差 X~N(,0 2) ,01米5,飞机上应该
有多少 这样的仪器,才能使得以概率0.98保持平均高度
的误差的绝对值小于30米?
解 PX300.98
PX3
0
P
X
15 n
30 15 n
P2
nX2
15 n
n2 2n10.98
2n0 .99(2.33)0.9901
X
k i
来估计总体原点矩
vk E(Xk).
(1)设总体分布函数 F(x;)含有一个未知参数θ,令
v1()E(X)n1
n i1
Xi
解方程得:ˆˆ(X1,X2, ,Xn)——θ 的矩估计量
1
(2)设总体分布函数 F(x;1,2)含有两个未知参数θ1,θ2,

概率论与数理统计 第六章抽样分布 练习题与答案详解

概率论与数理统计 第六章抽样分布 练习题与答案详解

概率论与数理统计 第六章 抽样分布练习题与答案详解(答案在最后)1.设n X X X ,,,21 为取自总体X 的样本,总体方差2σ=DX 为已知,X和2S 分别为样本均值,样本方差,则下列各式中( )为统计量.(A)21)(∑=-ni iEX X(B) 22)1(σS n - (C) i EX X - (D) 12+nX2.设总体) ,(~2σμN X ,其中μ已知,2σ未知,n X X X ,,,21 是来自X的样本,判断下列样本的函数中,( )是统计量.(A) σ++21X X (B) 221)(S X ni i∑=-μ(C) ),,,min(21n X X X (D)212σ∑=ni iX3.今测得一组数据为12.06,12.44,15.91,8.15,8.75,12.50,13.42,15.78,17.23.试计算样本均值,样本方差及顺序统计量*1X ,*9X .4.设总体) ,(~2σμN X ,样本观测值为3.27,3.24,3.25,3.26,3.37,假设25.3=μ,22016.0=σ,试计算下列统计量的值:(1) nX U σμ-=,(2) 251221)(1∑=-=i iX Xσχ,(3) 251222)(1∑=-=i iXμσχ.5.某厂生产的电容器的使用寿命服从指数分布,但参数λ未知,为统计推断需要,任意抽查n 只电容器测其实际使用寿命.试问此题中的总体,样本及其分布各是什么?6.某市抽样调查了一百户市民的人均月收入,试指出总体和样本. 7.某校学生的数学考试成绩服从正态分布) ,(2σμN .教委评审组从该校学生中随机抽取50人进行数学测试,问这题中总体,样本及其分布各是什么?8.设1621,,,X X X 是来自正态总体) ,2(~2σN X 的样本,X 是样本均值,则~1684-X ( ) (A) )15(t (B) )16(t (C) )15(2χ (D) 1) ,0(N9.设总体) ,0(~2σN X ,n X X X ,,,21 为其样本,∑==n i i X n X 11,212)(1∑=-=n i i n X X n S ,在下列样本函数中,服从)(2n χ分布的是( ). (A)σnX (B)∑=ni iX1221σ (C)22σnnS (D)nS n X 1- 10.设总体) ,(~2σμN X ,n X X X ,,,21 为X 的简单随机样本,X ,2nS 同上题,则服从)1(2-n χ分布的是( ).(A)nX σμ- (B)1--n S X nμ (C)22σnnS (D)212)(1∑=-ni iXμσ11.设总体) ,(~2σμN X ,n X X X ,,,21 是X 的样本,X ,2S 是样本均值和样本方差,则下列式子中不正确的有( )(A))1(~)(2212--∑=n X Xni iχσ (B))1 ,0(~N X σμ-(C) )1(~--n t nSX μ (D))(~)(2221n Xni iχσμ∑=-12.设n X X X ,,,21 和n Y Y Y ,,,21 分别取自正态总体) ,(~21σμN X 和) ,(~22σμN Y ,且X 和Y 相互独立,则以下统计量各服从什么分布?(1) 22221))(1(σS S n +-; (2)nS S Y X )()()(222121+---μμ;(3) 2221221)]()[(S S Y X n +---μμ. 其中X ,Y 是X ,Y 的样本均值,21S ,22S 是X ,Y 的样本方差.13.设n X X X ,,,21 是正态总体) ,(~2σμN X 的样本,记2121)(11∑=--=n i i X X n S , 2122)(1∑=-=n i i X X n S , 2123)(11∑=--=n i i X n S μ, 2124)(1∑=-=n i i X n S μ, 则服从自由度为1-n 的t 分布的随机变量有( )(A) 11--n S X μ (B) 12--n S X μ (C) n S X 3μ- (D) nS X 4μ-14.设321 , ,X X X 是来自正态总体)9 ,(~μN X 的样本,232212)()(μχ-+-=X b X X a ,则当=a ____,=b ____时,22~χχ(___).15.设921,,,X X X 和1621,,,Y Y Y 分别为来自总体)2 ,(~21μN X 和)2 ,(~22μN Y 的两个相互独立的样本,它们的样本均值和样本方差分别为X ,Y 和21S ,22S .求以下各式中的621,,,ααα .(1) 9.0})({91221=<-<∑=i i X X P αα;(2) 9.0}|{|31=<-αμX P ;(3) 9.0)(||416122=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<--∑=αμi i Y Y Y P ;(4) 9.0815621225=⎭⎬⎫⎩⎨⎧<<ααS S P . 16.在天平上重复称量一个重为a (未知)的物品.假设n 次称量结果是相互独立的,且每次称量结果均服从).20 ,(2a N .用n X 表示n 次称量结果的算术平均值.为使n X 与a 的差的绝对值小于0.1的概率不小于%95,问至少应进行多少次称量?17.根据以往情形,某校学生数学成绩)10 ,72(~2N X ,在一次抽考中,至少应让多少名学生参加考试,可以使参加考试的学生的平均成绩大于70分的概率达到0.9以上?18.在均值为80,方差为400的总体中,随机地抽取一容量为100的样本,X 表示样本均值,求概率}3|80{|>-X P 的值.19.设总体)5 ,40(~2N X ,从中抽取容量64=n 的样本,求概率}1|40{|<-X P 的值.20.设总体X 与Y 相互独立,且都服从)2 ,30(2N ,从这两总体中分别抽取了容量为201=n 与252=n 的样本,求4.0||>-Y X 的概率.21.设总体)2 ,0(~2N X ,而1521,,,X X X 是X 的样本,则)(221521121021X X X X Y ++++= 服从什么分布,参数是多少?又问当a 为何值时,215272621X X X X a F ++++= 服从)9 ,6(F ?22.设总体)4 ,0(~N X ,1021,,,X X X 是X 的样本,求(1) }13{1012≤∑=i i X P ;(2) }76)(3.13{2101≤-≤∑=i i X X P .23.从总体) ,(~2σμN X 中抽取容量为16的样本,2S 为样本方差,求}041.2{22≤σS P .24.从总体)2 ,12(~2N X 中随机抽取容量为5的样本521,,,X X X ,求} 284.44)12( {512>-∑=i i X P .答案详解1.B(A)中含总体期望EX 是未知参数,(C)中EX EX i =也是未知参数,都不是统计量,而(D)不是样本的函数,当然不是统计量.2.B ,C3.样本容量9=n ,利用计算器的统计功能键,算出92.12=x ,65.9)107.3(22==s ,观察921,,,x x x ,可得最小值15.8*1=x ,最大值23.17*=n x .注 上面得到的x ,2s ,*1x ,*nx 依次是统计量∑==ni i X n X 11,),,,max( ),,,,min( ,)(1121*21*1212n n n n i i X X X X X X X X X X n S ==--=∑=的观察值.注意统计量与统计量的观察值的区别,前者是随机变量,后者是具体的数值4.258.3=x ,00017.02=s (1) 118.1=u ; (2) 656.221=χ;(3) 906.322=χ,提示 为了计算22χ的值,先将其展开为)52(1251512222μμσχ+-=∑∑==i i i iX X ,其中,∑=512i iX ,∑=51i i X 均可由计算器的统计功能键求出来5.“电容器的使用寿命”是总体X ,其服从参数为λ的指数分布,即X 的概率密度为⎩⎨⎧≤>=-0.x , 0 0,x ,)(x X e x f λλ“抽查的n 只电容的使用寿命”是容量为n 的样本n X X X ,,,21 .由于n X X X ,,,21 相互独立且每个i X 与总体X 具有相同的分布,所以,样本的联合概率密度为⎩⎨⎧=>=∏=+++-=., 0,,,1 ,0,)(),,,()(12121其它n i x e x f x x x f i x x x n i X ni n n λλ 6.总体X 为该市市民户的人均月收入,容量为100的样本10021,,,X X X 为抽查的100户市民的人均月收入7.总体X 为该校学生的数学考试成绩,容量为50的样本5021,,,X X X 为抽取的50人的数学成绩总体) ,(~2σμN X ,即其概率密度为222)(21)(σμσπ--=x X ex f ,样本5021,,,X X X 的概率密度为∑⎪⎪⎭⎫⎝⎛==--50122)(2150502121),,,(i i x e x x x f μσσπ8.D因为) ,2(~2σN X ,根据正态总体的抽样分布),2(~2nN X σ,)1 ,0(~)2(4162222N X X n X U σσσ-=-=-=9.(A) 因) ,0(~2σN X ,由正态总体的抽样分布,有) ,0(~2nN X σ,所以)1 ,0(~2N nX nXU σσ==.(B) 因) ,0(~2σN X i ,得)1 ,0(~N X iσ,n i ,,1 =,且这n 个标准正态变量相互独立,所以由2χ分布的定义知,)(~1212122n X X ni i ni i χσσ∑∑==⎪⎭⎫⎝⎛=.(C) 2122)1()(S n X X nS ni i n-=-=∑=,由正态总体的抽样分布知)1(~)1()(22221222--=-=∑=n S n X XnSni iχσσσ.(D) ()nS X X n n n S n i i n 2122)1(11=--=-∑=,由正态分布的抽样分布知 )1(~11--=-=-=n t S n X n S X nSX T nnμ, 或者,由(A),(C)的结果,根据t 分布的定义有)1(~1)1(22--=-=n t S n X n nS n X T nn σσ.综上可知,应选B . 10.C 11.B12.(1) )22(2-n χ; (2) )22(-n t ; (3) )22 ,1(-n F 13.B 14.181=a ,91=b 时,)2(~22χχ 15.(1) 由正态总体的抽样分布得∑=-91222)8(~)(21i iX Xχ,因此,}44)(4{})({2912191221αααα<-<=<-<∑∑==i ii i X XP X X P9.0}4)8({}4)8({2212=>->=αχαχP P ,令95.0}4)8({12=>αχP ,05.0}4)8({22=>αχP ,根据2χ分布得上侧临界值的定义,查表可得,733.2)8(4295.01==χα,955.21)8(4205.02==χα,即932.104733.21=⨯=α,82.874955.212=⨯=α注 一般来说,满足条件{}αχ-=<<12B A P的数(临界值)A ,B 有很多对,这里我们采用的取法是使A ,B 满足{}{}222αχχ=≥=≤B P A P .通常认为这样的取法比较好,对于F 分布也类似(2) 由正态总体的抽样分布)1 ,0(~91N X σμ-,即)1 ,0(~321N X μ-, 得9.0}23||23{}|{|3131=<-=<-αμαμX P X P ,根据)1 ,0(N 分布得双侧临界值的定义,查表得645.1232/10.03==u α,所以097.132645.13=⨯=α.(3) 由正态总体的抽样分布)15(~1622t S Y μ-,即)15(~)(422t S Y μ-,得⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<--∑=422241612215||)(||αμαμS Y P Y Y Y P i i 9.0154)(4 422=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-=αμS Y P .根据t 分布的双侧临界值的定义,并查表得75.1)15(1542/10.04==t α,于是,113.015475.14==α.(4) 由正态总体得抽样分布)8 ,15(~222212222122F S S S S =,得90.005.095.0158158815621225621225=-=⎭⎬⎫⎩⎨⎧<<=⎭⎬⎫⎩⎨⎧<<ααααS S P S S P , 查F 分布上侧临界值表,得645.21)15 ,8(1)8 ,15(15805.095.05===F F α, 22.3)8 ,15(15805.06==F α, 所以,709.08645.2155=⨯=α,038.6709.081522.36==⨯=α 16.16≥n ,即至少应进行16次称量提示 对该物品进行独立重复称量的所有可能结果,看成总体X ,则n 次称量结果n X X X ,,,21 就是X 的一容量为n 的样本,n X 即样本均值.由题意知,).20 ,(~2a N X ,根据正态总体的抽样分布,)2.0 ,(~2na N X n ,按条件95.0}1.0 || {≥<-a X P n 来求出n17.至少要42个学生参加抽考18.0.1336提示 该总体并非正态总体,然而100=n 为大样本,所以)100400,80(~N X 19.0.8904 20.约等于0.3446 21.)5 ,10(~F Y ;23=a 22.(1) 因为)4 ,0(~N X i ,)10,,1( =i 且1021,,,X X X 相互独立,所以)10(~421012χ∑=i i X , }4134{}13{10121012∑∑==≤=≤i i i iX P X Pαχ-=>-=1}25.3)10({1 2P ,由于25.3)10(2=αχ,反查2χ分布表,得,975.0=α,故025.0975.01}13{1012=-=≤∑=i i X P .(2) 因为)9(~49)(2221012χσS X Xi i=-∑=,所以, }194932.3{}76)(3.13{21012≤≤=≤-≤∑=S P X X P i i 2122}19)9({}32.3)9({ ααχχ-=>->=P P , 由32.3)9(21=αχ及19)9(22=αχ,反查2χ分布表,得95.01=α及025.02=α,所以,925.0025.095.0}76)(3.13{1012=-=≤-≤∑=i i X X P23.0.99 24.0.05。

概率论与数理统计(天津理工大学)智慧树知到课后章节答案2023年下天津理工大学

概率论与数理统计(天津理工大学)智慧树知到课后章节答案2023年下天津理工大学

概率论与数理统计(天津理工大学)智慧树知到课后章节答案2023年下天津理工大学绪论单元测试1.概率论与数理统计是研究随机现象统计规律的数学学科。

A:对 B:错答案:对第一章测试1.A: B: C: D:答案:2.A: B: C: D:答案:3.A: B: C: D:答案:4.A: B: C:D:答案:5.A: B: C: D:答案:6.A: B: C: D:答案:7.A:B: C:D:答案:8.A:B:C: D:答案:9.A: B: C: D:答案:10.A: B: C: D:答案:第二章测试1.A: B: C: D:答案:2.A:B:C:D:答案:3.A:B:C:D:答案:4.A:B:C:D:答案:5.A: B: C: D:答案:6.A:B:C:D:答案:7.A:B:C:D:答案:8.A: B: C: D:答案:9.A:B:C:D:答案:10.A:B:C:D:答案:第三章测试1.A:B:C:D:答案:2.A:B:C:D:答案:3.A: B: C:D:答案:4.A:B:C:D:答案:5.A:B:C:答案:6.A:B:C:D:答案:7.B:C:D:答案:8.A:B:C:D:答案:9.A:B:C:D:答案:10.A:1/64B:1/16C:3/32D:17/64答案:3/32 第四章测试1.A:1B:2C:D:4答案:2.A:B:2C:1D:答案:3.A:B:C:D:答案:4.A:B:C:D:答案:5.A:4B:3C:2D:答案:46.A:B:C:D:答案:7.A:0 B: C:4 D:2 答案:8.A:B:C:D:答案:9.A:6 B:0 C:1 D:5答案:610.A:-1 B:1 C:0 D:1/2 答案:-1第五章测试1.A:B:C:D:答案:2.A:B:C:D:答案:3.A:B:C:D:答案:4.A:0.5 B:0.6 C:0.8413 D:0.7 答案:0.5 5.A:0.6915 B:0.1587 C:0.9772 D:0.8413 答案:0.84136.A:0.8413B:0.0668C:0.9332D:0.1587答案:0.15877.A:B:0 C:D:答案:第六章测试1.A:B:C:D:答案:2.A: B: C: D:答案:3.A:B:C:D:答案:4.A:B:C:D:答案:5.A:B:C:D:答案:6.A:B:C:D:答案:7.A:B:C:D:答案:8.A:B:C:D:答案:9.A:B:C:D:答案:10.A:B:C:D:答案:第七章测试1.A: B:C: D:答案:2.A: B: C:D:答案:3.A: B: C: D:答案:4.A: B: C:D:答案:5.A: B: C:D:答案:6.A: B: C: D:答案:7.A:B: C:D:答案:8.A: B: C:D:答案:9.A:B:C:D:答案:10.A:B:C:D:答案:第八章测试1.A:B:C:D:答案:2.A:B:C:D:答案:3.A:B:C:D:答案:4.A: B:C:D:答案:5.A: B: C:D:答案:6.A: B:C: D:答案:7.A:B:C: D:答案:8.A:B:C:D:答案:9.A: B:C:D:答案:10.A: B: C: D:答案:。

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案1. 引言概率论与数理统计是统计学的基础课程之一,通过学习这门课程,我们可以理解和运用概率和统计的概念和方法,从而分析和解决实际问题。

本文档将提供《概率论与数理统计》课后习题的详细答案。

2. 习题答案第一章:概率论的基本概念和基本原理1.1 选择题a.概率是以【答案】】D.形式结果给出的。

b.从一副有 52 张牌的扑克牌中,任意取一张牌,其点数是 7 的概率是【答案】】C.$\\frac{4}{52}$。

1.2 计算题a.设 A, B 是两个事件,已知 P(A) = 0.5,P(B) = 0.4,且P(A ∪ B) = 0.7,求P(A ∩ B)。

【解答】根据概率的加法定理可知,P(P∪P)=P(P)+P(P)−P(P∩P)代入已知数据,得到:0.7=0.5+0.4−P(P∩P)解上式得到P(A ∩ B) = 0.2。

所以,P(A ∩ B) = 【答案】0.2。

b.有两个相互独立的事件 A 和 B,且 P(A) = 0.3,P(A∪ B) = 0.5,求 P(B)。

【解答】由于事件 A 和 B 是相互独立的,所以根据概率的乘法定理可知,P(P∪P)=P(P)×P(P)代入已知数据,得到:0.5=0.3×P(P)解上式得到 P(B) = 0.5 ÷ 0.3 = 1.67。

所以,P(B) = 【答案】1.67。

第二章:随机变量及其分布2.1 选择题a.设 X 是一个随机变量,其概率密度函数为:$$ f(x) = \\begin{cases} \\frac{1}{2}x & 0 < x < 2 \\\\ 0 &其他 \\end{cases} $$则 P(X < 1) = 【答案】】C. 0.25。

b.对 X 的分布函数 F(x) = 1 - e^{-x}, 其中x ≥ 0,下列说法中错误的是【答案】】B. F(x) 是一个概率密度函数。

概率论与数理统计习题及答案

概率论与数理统计习题及答案

第一章 概率论的基本概念1. 设C B A ,,为三个随机事件,用C B A ,,的运算表示下列事件: (1)、C B A ,,都发生; (2)、B A ,发生, C 不发生; (3)、C B A ,,都不发生;(4)、B A ,中至少有一个发生而C 不发生; (5)、C B A ,,中至少有一个发生; (6)、C B A ,,中至多有一个发生; (7)、C B A ,,中至多有两个发生; (8)、C B A ,,中恰有两个发生。

2. 设C B A ,,为三个随机事件, 已知:3.0)(=A P ,8.0)(=B P ,6.0)(=C P ,2.0)(=AB P ,0)(=AC P ,6.0)(=BC P 。

试求)(B A P ⋃,)(B A P ,)(C B A P ⋃⋃。

3. 将一颗骰子投掷两次, 依次记录所得点数, 试求: (1)、两次点数相同的概率;(2)、两次点数之差的绝对值为1的概率; (3)、两次点数的乘积小于等于12的概率。

4. 设一袋中有编号为1, 2, 3, ⋅ ⋅ ⋅, 9的球共9只, 某人从中任取3只球, 试求:(1)、取到1号球的概率; (2)、最小号码为5的概率;(3)、所取3只球的号码从小到大排序,中间号码恰为5的概率; (4)、2号球或3号球中至少有一只没有取到的概率。

.5. 已知3.0)(=A P ,4.0)(=B P ,2.0)(=AB P ,试求:(1) )|(A B P ; (2))|(B A P ; (3))|(B A B P ⋃; (4))|(B A B A P ⋃⋃。

6. 设有甲、乙、丙三个小朋友, 甲得病的概率是0.05, 在甲得病的条件下乙得病的概率是0.40, 在甲、乙两人均得病的条件下丙得病的条件概率是0.80, 试求甲、乙、丙三人均得病的概率。

7. 设某人按如下原则决定某日的活动: 如该天下雨则以0.2的概率外出购物,以0.8的概率去探访朋友; 如该天不下雨,则以0.9的概率外出购物,以0.1的概率去探访朋友。

概率论与数理统计习题详解 周概容 习题6解

概率论与数理统计习题详解 周概容  习题6解

由于 X1, X 2,Λ , X n 独立同服从参数为 λ 的泊松分布,可见 ( X1, X 2,Λ , X n ) 的概率函数为
∏ ( ) f (x1, x2,Λ
, xn; λ) =
n i=1
p(xi ; λ) =
e−nλ x1! x2!Λ
λx1+x2 +Λ +xn xn!
xi = 0,1,2,Λ
+
n +1 (n + 1)2
( X n+1

X n )2

2( X n+1 − X n ) n +1
n+1 i=1
(Xi

Xn)
=
nSn2
+ ( X n+1

Xn) +
( X n+1 − X n )2 n +1

2( X n+1 − X n )2 n +1
=
nSn2
+
n
n +
1
(
X
n+1

X n )2;
S
2 0

X
2

X
2
=
61.39.
—习题解答●6.2—
以上各式中使用近似等号“≈”,因为计算时使用的不是原始数据,而是数据所在组的组中
值.
S
2 0

X
2

X
2
= 61.39 是未修正样本方差,样本方差为
S 2 = n S 2 ≈ 100 × 61.39 = 62.0&1&.
n −1
99

概率论与数理统计六七章习题答案

概率论与数理统计六七章习题答案

第六章大数定理和中心极限定理一、大纲要求(1)了解契比雪夫不等式;(2)了解辛钦大数定律,伯努利大数定律成立的条件及结论;(3)了解独立同分布的中心极限定理和棣莫佛—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)的条件和结论,并会用相关定理近似计算有关随机事件的概率.二、重点知识结构图三、基本知识1. 马尔科夫不等式若X 为只取非负值的随机变量,则对任意常数0ε>,有{}EXP X εε≥≤.2. 契比雪夫不等式若DX 存在,则{}2DXP X EX εε-≥≤.3. 辛钦大数定律定理 1 设12,,,,n X X X 是独立同分布的随机变量序列,且具有有限的数学期望()a X E n =,则对任意的0ε>,有{}lim 0n n P X a ε→∞-≥=4. 伯努利大数定律定理2 设()p n B X n ,~,其中n=1,2, …,0<p<1 。

则对任意ε>0,有5.独立同分布的中心极限定理定理3 (林德伯格-列维定理) 设12,,,,n X X X 为独立同分布的随机变量,22,,0,i i EX a DX σσ==<<∞则对任意实数x 有12lim )()n n P X X X na x x →∞⎫++-≤=Φ⎬⎭式中, ()x Φ是标准正态分布(0,1)N 的分布函数,即2/2()t x e dt +∞--∞Φ=6. 棣莫佛-拉普拉斯中心极限定理定理3(棣莫佛-拉普拉斯定理) 设12,,,,n X X X 独立同分布,i X 的分布是{}{}1,01,(01)i i P X p P X p p ====-<<则对任意实数x ,有12lim )()n n P X X X np x x →∞⎧⎫⎪++-≤=Φ⎬⎪⎭0lim =⎭⎬⎫⎩⎨⎧≥-∞→εp n X P n n四、典型例题例1 设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据契比雪夫不等式{}6_____P X Y +≥≤.解 因为 ()0E X Y E X E Y +=+= ()2c o v (,D X Y D X D Y X Y +=++2DX DY ρ=++ 1420.52=+-⨯⨯= 根据契比雪夫不等式{}2DXP X EX εε-≥≤所以 {}3163612P X Y +≥≤= 例2 某保险公司经多年资料统计表明,在索赔户中被盗户占20%,在随意抽查的100家索赔户中以被盗的索赔户数为随机变量,利用中心极限定理,求被盗的索赔户大于14户且小于30户的概率近似值.[分析]本题的随机变量服从参数100,0.2n p ==的二项分布.如果要精确计算,就要用伯努利二项公式:{}291001001514300.20.8kk k k P X C -=<<=∑.如果求近似值,可用契比雪夫不等式估计.解 由于~(100,0.2)X N ,所以1000.220EX np ==⨯=168.02.0100)1(=⨯⨯=-=p np DX{}1430P X P <<=<<=Φ(2.5)-Φ(-1.5)()927.0)5.1(5.2=-Φ+Φ因此被盗的索赔户大于14户且小于30户的概率近似值为0.927.例3 某车间有200台机床,它们彼此工作独立,开工率都为0.6,工作时耗电都为1kW,问供电所至少给这个车间多少度电,才能以99.9%的概率保证这个车间不会因供电不足而影响生产.解 用X 表示工作的机床台数,则~(200,0.6)X B .设要向车间供电a kW,则有由棣莫佛-拉普拉斯定理得{}P o X a P ⎧⎫<≤=<≤020p q ⎛⎫⎛⎫⎫⎫≈Φ-≈⎪⎪⎪⎪⎪⎪⎭⎭⎭⎭()0.999 3.1≈Φ≥=Φ即3.1≥ 因此120 3.48141a ≥+= 例4 用契比雪夫不等式确定当掷一均匀硬币时,需掷多少次,才能保证使得出现正面的频率在0.4~0.6之间的概率不小于90%,并用正态逼近计算同一个问题.解 设需掷n 次,用n S 表示出现正面的次数,则1~(,)2n S B n ,有契比雪夫不等式得0.40.60.50.1n n S S P P n n ⎧⎫⎧⎫<<=-<⎨⎬⎨⎬⎩⎭⎩⎭211110022110.900.014n n n⨯⨯≥-=-≥ 所以10002504n ≥=. 由棣莫佛-拉普拉斯定理得0.40.6n S P P n ⎧⎫<<=<⎨⎬⎩⎭(((0.2210.90=Φ-Φ-=Φ-≥即(Φ≥0.95,查表得 1.645>,故68n ≥.例5 假设12,,,n X X X 是独立同分布的随机变量,且()k k i a X E =(1,2,3,4)k =,证明当n 充分大时,随机变量211n n i i Z X n ==∑近似服从正态分布,并指出其分布参数.证 由12,,,n X X X 是独立同分布的随机变量序列可知, 22212,,,nX X X 独立同分布,且有()22a X E i =, 2242i DX a a =-2211n n i i EZ EX a n ===∑, 2242211n n i i a a DZ DX n n=-==∑由林德伯格-列维定理可知,对任意x 有⎰∞--∞→=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧<--x t n n dte x n a a a Z P 22242221lim π即n Z 近似服从正态分布2422(,)a a N a n-. 例6 有一批建筑房屋用的木柱,其中80%的长度超过3m ,现从这批木柱中随机地取出100根,问其中至少有30根短于3m 的概率是多少?解 设10i X ⎧=⎨⎩()31,2,,1003i m i i m = 当所取的第根木柱短于当所取的第根木柱不短于 则()~1,0.2i X B ,记1001i i X X ==∑,则()~100,0.2X B .由棣莫佛-拉普拉斯定理得{}{}30130P X P X ≥=-<1P =-≤()302011 2.50.0062100.4-⎛⎫≈-Φ=-Φ= ⎪⨯⎝⎭例7 假设男婴的出生率为2243,某地区有7000多名产妇,试估计她们的生育情况.[分析] n 重伯努利实验中A 出现的频率nu n依概率收敛于它的概率p ,当n 很大时,有n u np ≈.解 设10i X ⎧=⎨⎩()1,2,,7000i i = 第名产妇生男婴否则显然, 12,,,n X X X 独立同分布且均服从01-分布2243p ⎛⎫= ⎪⎝⎭,1nn i i u X ==∑表示7000名产妇中生男婴的人数,有伯努利大数定理得()2243n u n n →→∞ 由于7000n =已是足够大,因此227000358143n u ≈⨯≈即该地区估计有3581名男婴出生.例8 某电视机厂每月生产10000台电视机,但它的显像管车间的正品率为0.8,为了以0.997的概率保证出厂的电视机都装上正品的显像管,该车间每月应生产多少只显像管?解 设显像管正品数为X ,月总产量为n ,则有()~,0.8X B n ,从而 0.8E X n =, ()n p np DX 16.01=-=为了使电视机都装上正品的显像管,则每月至少生产10000只正品显像管,即所求为{}100000.997P X n ≤<=由棣莫佛-拉普拉斯定理得{}100000.997P X n P ≤<=≤<=即997.05.016.08.016.08.010000=⎭⎬⎫⎩⎨⎧<-≤-n n n X n n P(0.997Φ-Φ=由题意可知,0<,且n 较大,即(1Φ≈,所以0.997Φ=2.75=,故)(1027.14只⨯≈n因此,每月至少要生产41027.1⨯只显像管才能以0.997的概率保证出厂的10000台电视机都能装上正品的显像管.例9 一养鸡场购进1万个良种鸡蛋,已知每个鸡蛋孵化成雏鸡的概率为0.84,每只雏鸡发育成种鸡的概率为0.90,试计算这批鸡蛋得到种鸡不少于7500只的概率.解 设{}k A k =第只鸡蛋孵化成雏鸡, {}k B k =第只鸡蛋育成种鸡,令 ()11,2,,100000k k k B X k B ⎧==⎨⎩ 当发生当不发生 则诸k A 独立同分布,且{}{}{}{}{}{}1k k k k k k k k P X P B P A P B A P A P B A ===+0.840.900.756=⨯+={}{}244.00===k k B P X P显然, 100001kk X X==∑表示10000个鸡蛋育成的种鸡数,则()~10000,0.756X B ,而64.1844244.07560)1(,7560756.010000=⨯=-=⨯=p np np根据棣莫佛-拉普拉斯定理可得()~0,1nkXnpN -=∑于是,所求概率为{}10000756075001k X P X P ⎧⎫-⎪⎪≥=≥≈-Φ⎪⎪⎩⎭∑()1.400.92=Φ= 因此,由这批鸡蛋得到的种鸡不少于7500只的概率为92%.五、课本习题全解6-1 设11nn i i Y X n ==∑,再对n Y 利用契比雪夫不等式:{}12222220n i i n n n n D X DY n P Y EY n n εεεε=→∞⎛⎫ ⎪⎝⎭-≥≤=≤−−−→∑ 故{}n X 服从大数定理. 6-2 设出现7的次数为X ,则有 ()~10000,0.1,1000,900X B E X n p D X === 由棣莫佛-拉普拉斯定理可得{}100096810001696810.14303015X P X P --⎧⎫⎛⎫<=<=-Φ=⎨⎬ ⎪⎩⎭⎝⎭6-3 11,212i i EX DX ==由中心极限定理可知,10110i X -⨯∑,所以101011616110.136i i i i P X P X ==⎧⎫⎧⎫>=-≤=-Φ=-Φ=⎨⎬⎨⎬⎩⎭⎩⎭∑∑6-4 设报各人数为X ,则.100,100==DX EX . 由棣莫佛-拉普拉斯定理可得()0228.021*********}120{=Φ-=⎭⎬⎫⎩⎨⎧-≥-=≥DX EX X P X P6-5 设()11,2,,100000i i X i i ⎧==⎨⎩ 第个人死亡第个人没有死亡,则{}{}10.006,00.994i i P X P X ====总保险费为51210000 1.210⨯=⨯(万元)(1) 当死亡人数在达到51.210/1000120⨯=人时,保险公司无收入.4100.00660,0.1295np =⨯==所以保险公司赚钱概率为)()12100000.129512060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()7.771=Φ=因而亏本的概率为10P P '=-=.(2)若利润不少于40000,即死亡人数少于80人时,)()12100000.12958060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()2.590.9952=Φ= 若利润不少于60000,即死亡人数少于60人时,)()12100000.12956060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()00.5=Φ=若利润不少于80000,即死亡人数少于40人时,)()12100000.12954060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()2.5920.0048=Φ-=6-6 设总机需备Y 条外线才能有95%的把握保证每个分机外线不必等候,设随机变量()11,2,,2600i i X i i ⎧==⎨⎩ 第架电话分机用外线第架电话分机不用外线,则{}{}10.04,00.96P X P X ====0.04,0.040.00160.0384i i EX DX ==-=由中心极限定理可得16%950384.026004.02602601≈=⎪⎭⎫⎝⎛⨯⨯-Φ=⎭⎬⎫⎩⎨⎧≤∑=Y Y Y X P i i6-7 密度函数为 ()10.50.50x f x -<<⎧=⎨⎩当其他故数学期望为 0.50.50E X x d x -==⎰()0.52220.5112DX EX EX x dx -=-==⎰(1)设i X 为第i 个数的误差,则9973.01)3(251515300130013001=-Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤=⎭⎬⎫⎩⎨⎧≤∑∑∑===i i i i i i DX X P X P30030011151150.0027i i i i P X P X ==⎧⎫⎧⎫>=-≤=⎨⎬⎨⎬⎩⎭⎩⎭∑∑(2)110210.9440.77n i i P X n =⎧⎫≤=Φ-≥⇒≤⎨⎬⎩⎭∑ (3)3001210.99714.855i i Y P X Y Y =⎧⎫⎛⎫≤=Φ-≥⇒≤⎨⎬ ⎪⎝⎭⎩⎭∑6-8 kg kg EX 32105,105--⨯=⨯=σ (1)设i X 为第i 个螺钉的重量,则23100510,5100.05nEX --=⨯⨯⨯=0228.0)2(105.051.51.510011001=Φ-=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧->-=⎭⎬⎫⎩⎨⎧>∑∑==σn nEX X P X P i i i i(2)设()1.11,2,,5000.1i i Y i i ⎧==⎨⎩ 第个螺钉的重量超过5kg第个螺钉的重量不超过5kg,则33.3)1(4.11=-=p np np9951.0)58.2(33.34.1120)1(450050015001=Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧->--=⎭⎬⎫⎩⎨⎧⨯<∑∑==p np np Y P Y P i i i i %6-9 设随机变量()11,2,,10000i i X i ⎧==⎨⎩ 第个人按时进入掩体其他,按时进入掩体的人数为Y ,则()1,~10000,0.9ni i Y X Y B ==∑,所以有10000.9900,9000.190EY DY =⨯==⨯=设有k 人按时进入掩体,则916884645.19090095.090900===-=⎪⎪⎭⎫⎝⎛-Φk k k k 或所以至少有884人,至多有916.六、自测题及答案1.设随机变量X 服从(),B n p ,则对区间(),a b ,恒有lim _______.n P a b →∞⎧⎫⎪⎪<≤=⎨⎬⎪⎪⎩⎭2.一大批产品中优质品占一半,现每次抽取一个,看后放回再抽,问在100次抽 取中取到优质品次数不超过45的概率等于_______.3. 129,,X X X 相互独立, ()1,11,2,9i i EX DX i === ,则对任意给定的0ε>,有( ).9922119922111(A)11(B)119(C)91(D)919i i i i i i i i P X P X P X P X εεεεεεεε--==--==⎧⎫⎧⎫-<≥--<≥-⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫⎧⎫-<≥--<≥-⎨⎬⎨⎬⎩⎭⎩⎭∑∑∑∑4.设12,,,,n X X X 为独立随机变量序列,且()1,2,i X i = 服从参数为λ的泊松分布,则有().()()()()111(A)lim (B)0,1(C),(D)n i n ni i n i i n i i X n P x x n X N n X N n n n P X x x λλλ→∞===⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭⎧⎫≤=Φ⎨⎬⎩⎭∑∑∑∑当充分大的时,近似服从当充分大的时,近似服从当充分大的时,5.设12,,X X 为独立随机变量序列,且服从服从参数为λ的指数分布,则( ).()()()()112211(A)lim (B)lim 1(C)lim (D)lim n n i i i i n n nni i i n n n X X P x x P x x n X n X n P x x P x x n λλλλλλ==→∞→∞=→∞→∞⎧⎫⎧⎫--⎪⎪⎪⎪⎪⎪⎪⎪≤=Φ≤=Φ⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭⎩⎭⎧⎫⎧⎫--⎪⎪⎪⎪⎪⎪⎪≤=Φ≤=Φ⎬⎨⎬⎪⎪⎪⎪⎪⎪⎪⎩⎭⎩⎭∑∑∑∑6.设随机变量12,,,n X X X 相互独立, 12n X X X X =+++ ,根据林德伯格-列维定理,当n 充分大时, X 近似服从正态分布,只要12,,,n X X X ( )(A)(B)(C)(D)有相同的数学期望有相同的方差服从同一指数分布服从同一离散型分布7.某校有1000名学生,每人以80%的概率去图书馆自习,问图书馆至少应设多少个座位,才能以99%的概率保证去上自习的同学都有座位坐?8.某种电子器件的寿命(小时)具有数学期望μ(未知),方差2400σ=.为了估计μ,随机地取n 只这种器件,在时刻0t =投入测试(设测试是相互独立的)直到失败,测得寿命为12,,,nX X X ,以11ni i X X n ==∑作为μ的估计,为了使{}10.95P X μ-<≥,问n 至少为多少?9.利用中心极限定理证明11lim !2i n n n i n e i -→∞=⎡⎤=⎢⎥⎣⎦∑ [答案]1. 由棣莫佛-拉普拉斯定理可得22lim t b a n P a b dt -→∞⎧⎫⎪⎪<≤=⎨⎬⎪⎪⎩⎭⎰2. 令Y 表示100次抽取中取得优质品的次数()11,2,,1000i i X i i ⎧==⎨⎩ 当第次取到优质品当第次没有取到优质品则 ()1001,~100,0.5i i Y X Y B ==∑那么 1000.5,1000.50.E Y D Y =⨯=⨯⨯=由棣莫佛-拉普拉斯定理可得{}504515Y P Y P P -⎧⎫≤=≤=≤-⎨⎬⎩⎭()()11110.84130.1587≈Φ-=-Φ=-=3.由题意可得 99119,9i i i i EX EX DX DX ======∑∑又因为 9211i i DXP X EX εε=⎧⎫-<≥-⎨⎬⎩⎭∑故(D)项正确.4.因为()1,2,i X i = 服从参数为λ的泊松分布,故,i i EX DX λλ==,由林德伯格-列维定理得()lim n i n X n P x x λ→∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭∑ 当n 充分大时,1nii X=∑近似服从(),N n n λλ分布,故C 项正确.5.由题意可知 211,i i EX DX λλ==由林德伯格-列维定理可得()22limntixnX nP x dt xμ-→∞⎧⎫-⎪⎪⎪≤==Φ⎬⎪⎪⎪⎩⎭∑⎰即()l i mninX nP x xλ→∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭∑6.由于林德伯格-列维定理要求12,,,nX X X独立同分布,且具有有限的数学期望与方差.因此C项正确.7.设X表示同时去图书馆上自习的人数,并设图书馆至少有n个座位,才能以99%的概率保证去上自习的同学都有座位,即n满足{}0.99P X n≤≥.因为()~1000,0.8X B,所以{}⎪⎭⎫⎝⎛⨯⨯⨯-Φ-⎪⎭⎫⎝⎛⨯⨯⨯-Φ≈≤2.08.010008.01000`2.08.010008.01000`nnXP8000.9912.65n-⎛⎫=Φ≥⎪⎝⎭查表得8002.3312.65n-≥,故829.5n≥.因此图书馆至少应有830个座位.8.由于12,,,nX X X独立同分布,且2,400i iEX DXμσ===.由林德伯格-列维定理得{}1P X Pμ⎫⎛-<=<≈Φ-Φ⎝⎭⎝⎭21210.95=Φ-=Φ-≥⎝⎭⎝⎭即0.975Φ≥⎝⎭,查表得 1.9620≥,故2400 1.961536.64n≥⨯=.因此n至少为1537.9.设{}n X为独立同服从参数为1的泊松分布的随机变量序列,则1nkkX=∑服从参数为n的泊松分布,因此有101!!k k n n nn nn k k k k n n P X n e e e k k ---===⎧⎫≤==+⎨⎬⎩⎭∑∑∑由林德伯格-列维定理可得()11lim lim 02n k n k n n k X n P X n P →∞→∞=⎧⎫-⎪⎪⎧⎫≤=≤=Φ=⎨⎬⎩⎭⎪⎪⎩⎭∑∑ 所以11lim lim !k n n n n k n n k k n e P X n e k --→∞→∞==⎧⎫⎡⎤⎧⎫=≤-⎨⎨⎬⎬⎢⎥⎩⎭⎣⎦⎩⎭∑∑ 11lim lim 2n n k n n k P X n e -→∞→∞=⎧⎫=≤-=⎨⎬⎩⎭∑第7章数理统计的基础知识一、大纲要求(1)理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,了解直方图和样本分布函数的意义和作用.(2)了解2χ分布、t分布、F分布的概念和性质,了解分位数的概念并掌握查表计算.(3)了解正态总体的抽样分布.二、重点知识结构图三、基本知识1.总体和个体在数理统计中,把研究对象的全体称为总体或母体,把组成总体的每一个研究对象(元素或单元)称为个体.总体分为有限总体和无限总体.有限总体是指其总体中的成员只有有限个.相应的,无限总体是指其总体中的成员有无限个.2.样本在一个总体中,抽取n 个个体12,,,n X X X ,这n 个个体总称为总体X 的样本或子样, n 称为样本容量.样本特性:① 代表性,样本中的每一个分量()1,2,i X i n = 与总体X 有相同的分布。

概率论与数理统计第六章习题答案

概率论与数理统计第六章习题答案

第六章习题6-11、由一致估计的定义,对0ε∀>{}{}{}()1212max ,,,max ,,,n n P X X X P X X X θεεθεθ-<=-+<<+()()F F εθεθ=+--+()0, 0, 01, X x xF x x x θθθ<⎧⎪=≤≤⎨⎪>⎩及(){}()()()()1212max ,,,n n X X X X X X F x F x F x F x F x ==⋅⋅⋅()1F εθ∴+=(){}()12max ,,,1nn x F P X X X εθεθθ⎫⎛-+=<-+≈- ⎪⎝⎭{}()12max ,,,111()nn x P X X X n θεθ⎫⎛∴-<=--→→∞ ⎪⎝⎭2、证明:EX μ=()1111111ni i n n i i i i nn n i i i i i i i i a X E a E X a a a a μμ======⎫⎛⎪ ⎪ ==⋅=⎪ ⎪⎝⎭∑∑∑∑∑∑ 11niii nii a Xa==∴∑∑是μ的无偏估计量3、证明: ()() ()()22D E E θθθ=-()() ()()()2222E D E D θθθθθθ∴=+=+> 2θ∴不是2θ的无偏估计量4、证明:()~X P λEX λ∴=,()()222E X DX EX λλ=+=+()22E X EX λ∴-=,即()22E X X λ-=用样本矩2211n i i A X n ==∑,1A X =代替相应的总体矩()2E X 、EX所以得2λ的无偏估计量: 22111n i i A A X X n λ==-=-∑ 5、()~,X B n p ,EX np ∴=()()()()22222111E X np p n p np n n p EX n n p =-+=+-=+-()()()()222111E X EX E X X p n n n n -⎫⎛∴=-=⎪ --⎝⎭所以用样本矩2211n i i A X n ==∑,1A X =分别代替总体矩()2E X 、EX得2p 的无偏估计量: ()()()222121111ni i i A A p X X n n n n =-==---∑6、()~,1X N m ,()i E X m ∴=,()1i D X =,(1,2)i =()()()11212212121333333E m E X X E X E X m m m ⎫⎛∴=+=+=+= ⎪⎝⎭()()()1121221414153399999D m D X X D X D X ⎫⎛=+=+=+= ⎪⎝⎭同理可得: ()2E m m =, ()258D m =, ()3E m m =, ()212D m =123,,m m m ∴都是m 的无偏估计量,且在 123,,m m m 中, 3m 的方差最小习题6-21、(1)()11cccEX x c xdx cx dx θθθθθθθθ+∞+∞-+-=⋅==-⎰⎰EXEX cθ∴=-,令X EX =X X c θ∴=-为矩估计量,θ的矩估计值为 x x cθ=-,其中11n i i x x n ==∑似然函数为:()()11211,,,;nnn n n ii i i L x x x c xcx θθθθθθθ-+-====∏∏ ,i x c > 对数似然函数:()()()1ln ln ln 1ln nii L n n c x θθθθ==+-+∑求导,并令其为0,得:1ln ln ln 0ni i d L nn c x d θθ==+-=∑ 1ln ln Lnii nx n cθ=∴=-∑,即θ的最大似然估计量为 1ln ln Lnii nXn cθ==-∑(2)21111EX EX x x dx EX θθθθθ-⎫⎛=⋅=⇒= ⎪--⎝⎭⎰ 以X EX =,得: 21X X θ⎫⎛=⎪ -⎝⎭为θ的矩估计量θ的矩估计值为: 21x x θ⎫⎛=⎪ -⎝⎭,其中11ni i x x n ==∑ 而()1121211,,,;n nnn i i i i L x x x x x θθθθθ--==⎫⎛==⎪⎝⎭∏∏ ,01i x ≤≤()()1ln ln 1ln 2nii nL x θθθ=∴=+-∑令1ln 11ln 022ni i d L n x d θθθ==+⋅⋅=∑, 21ln L ni i n x θ=⎫⎛⎪ ⎪ ∴=⎪⎪⎝⎭∑ 所以θ的最大似然估计量 21ln L ni i n x θ=⎫⎛⎪ ⎪ =⎪ ⎪⎝⎭∑ (3)()~,X B m p ,EXEX mp p m∴=⇒=p ∴的矩估计量: 111n i i X p X X m mn m====∑p ∴的矩估计值为: 11n i i p x mn ==∑ 而()()()111211,,,;11nniii i ii i i nnx m x m x x x x n mm i i L x x x p Cpp C pp ==--==∑∑=-=⋅⋅-∏∏ ,0,1,,ix m = ()()()111ln ln ln ln 1i nnn x mi i i i i L p C x p m x p ====+⋅+-⋅-∑∑∑令() 111ln 111101n n n i i L ii i i d L x m x p x x dp p p mn m ====⋅--⋅=⇒==-∑∑∑ p ∴的最大似然估计量为: 1L p X m=2、(1)()01;2EX xf x dx xdx θθθθ+∞-∞===⎰⎰令11n i i EX X X n ===∑,22X X θθ∴=⇒=2X θ∴= (2)由观测的样本值得:6111(0.30.80.270.350.620.55)0.481766i i x x ===+++++≈∑20.9634x θ∴== 3、由1111122EX X θθθθθ+=⨯+⨯++⨯== 21X θ∴=-为θ的矩估计量 4、设p :抽得废品的概率;1p -:抽得正品的概率 引入{1, i i X i =第次抽到废品0,第次抽到正品,1,2,,60i =()1i P X p ∴==,()01i P X p ==-,且i EX p =所以对样本1260,,,X X X 的一个观测值1260,,,x x x由矩估计法得,p 的估计值为: 601141606015ii p x ====∑,即这批产品的废品率为1155、()()2212213132EX θθθθθ=⨯+⨯-+⨯-=-,()1412133x =⨯++=EX x = , 3526x θ-∴==为矩估计值 ()()()()()()()34511223312121i i i L P X x P X x P X x P X x θθθθθθ========⋅⋅-=-∏()()ln ln25ln ln 1L θθθ=++-令() ln 1155016Ld L d θθθθθ=⨯-=⇒=- 6、(1)λ的最大似然估计 LX λ=, ()0LX P X e e λ--∴=== (2)设X :一个扳道员在五年内引起的严重事故的次数()~X P λ∴,122n =得样本均值:5011(044142221394452) 1.123122122r r x r s ==⨯⋅=⨯⨯+⨯+⨯+⨯+⨯+⨯=∑()1.12300.3253x P X e e --∴====习题6-33、从总体中抽取容量为n 的样本12,,,n X X X 由中心极限定理:()~0,1,/X U N n nμσ-=→∞(1)当2σ已知时,近似得到μ的置信度为1α-的置信区间为:22,X u X u n n αασσ⎫⎛-⋅+⋅⎪ ⎝⎭ (2)当2σ未知时,用2σ的无偏点估计2s 代替2σ:~(0,1),/X N n s nμ-→∞于是得到μ的置信度为1α-的置信区间为:22,s s X u X u n n αα⎫⎛-⋅+⋅⎪ ⎝⎭一般要求30n ≥才能使用上述公式,称为大样本区间估计 4、40n = 属于大样本,2,X N n σμ⎫⎛∴⎪ ⎝⎭ 近似μ∴的95%的置信区间近似为:2x u n ασ⎫⎛±⋅⎪ ⎝⎭其中642x =,3σ=,40 6.32n =≈,21.96u α=()23642 1.966420.9340x u n ασ⎫⎛⎫⎛∴±⋅=±⨯≈±⎪ ⎪⎝⎭⎝⎭故μ的95%的置信区间上限为642.93,下限为641.075、100n =属于大样本,2~,X N n σμ⎛⎫∴ ⎪⎝⎭近似μ∴的99%的置信区间近似为:2x u n ασ⎫⎛±⋅⎪ ⎝⎭其中10x =,3σ=,100n =,22.58u α=()()2310 2.58100.7749.226,10.774100x u n ασ⎛⎫⎛⎫∴±⋅=±⨯=±= ⎪ ⎪⎝⎭⎝⎭由此可知最少要准备10.77410000107740()kg ⨯=这种商品,才能以0.99的概率满足要求。

天津理工大学概率论与数理统计同步练习册答案详解

天津理工大学概率论与数理统计同步练习册答案详解

第一章 随机变量 习题一1、写出以下随机试验的样本空间(1)同时掷三颗骰子,记录三颗骰子点数之和Ω={}1843,,, (2)生产产品直到有10件正品为止,记录生产产品的总件数Ω= {} ,,1110 (3)对某工厂出厂的产品进展检验,合格的记上“正品〞,不合格的记上“次品〞,如连续查出2个次品就停顿,或检查4个产品就停顿检查,记录检查的结果。

用“0”表示次品,用“1”表示正品。

Ω={111111101101011110111010110001100101010010000,,,,,,,,,,,}(4)在单位圆任意取一点,记录它的坐标Ω=}|),{(122<+y x y x(5)将一尺长的木棍折成三段,观察各段的长度Ω=},,,|),,{(1000=++>>>z y x z y x z y x其中z y x ,,分别表示第一、二、三段的长度(6 ) .10只产品中有3只次品,每次从其中取一只(取后不放回) ,直到将3只次品都取出,写出抽取次数的根本空间U =“在 ( 6 ) 中,改写有放回抽取〞 写出抽取次数的根本空间U =解: ( 1 ) U = { e3 , e4 ,… e10 。

}其中 ei 表示“抽取 i 次〞的事件。

i = 3、 4、…、 10( 2 ) U = { e3 , e4 ,… }其中 ei 表示“抽取 i 次〞的事件。

i = 3、 4、…2、互不相容事件与对立事件的区别何在?说出以下各对事件的关系(1)δ<-||a x 与δ≥-||a x 互不相容 (2)20>x 与20≤x 对立事件(3)20>x 与18<x 互不相容 (4)20>x 与22≤x 相容事件(5)20个产品全是合格品与20个产品中只有一个废品 互不相容(6)20个产品全是合格品与20个产品中至少有一个废品 对立事件解: 互不相容:φ=AB ;对立事件:φ=AB )1(且Ω=⋃B A3、设A,B,C 为三事件,用A,B,C 的运算关系表示以下各事件(1)A 发生,B 与C 不发生 - C B A (2)A 与B 都发生,而C 不发生 - C AB(3)A,B,C 中至少有一个发生-C B A ⋃⋃ (4)A,B,C 都发生 -ABC(5)A,B,C 都不发生-C B A (6)A,B,C 中不多于一个发生 -C B C A B A ⋃⋃(7)A,B,C 中不多于两个发生-C B A ⋃⋃(8)A,B,C 中至少有两个发生-BC AC AB ⋃⋃4、盒装有10个球,分别编有1- 10的,现从中任取一球,设事件A 表示“取到的球的为偶数〞,事件B 表示“取到的球的为奇数〞,事件C 表示“取到的球的小于5”,试说明以下运算分别表示什么事件.(1)B A 必然事件 (2)AB 不可能事件 (3)C 取到的球的不小于5 (4)C A 1或2或3或4或6或8或10(5)AC 2或4 (6)C A 5或7或9 (7)C B 6或8或10 (8)BC 2或4或5或6或7或8或9或105、指出以下命题中哪些成立,哪些不成立. (1)B B A B A = 成立 (2)B A B A = 不成立 (3)C B A C B A = 不成立 (4)φ=))((B A AB 成立(5)假设B A ⊂,那么AB A = 成立(6)假设φ=AB ,且A C ⊂,那么φ=BC 成立(7)假设B A ⊂,那么A B ⊂ 成立 (8)假设A B ⊂,那么A B A = 成立7、设一个工人生产了四个零件,i A 表示事件“他生产的第i 个零件是正品〞),,,(4321=i ,用1A ,2A ,3A ,4A 的运算关系表达以下事件.(1)没有一个产品是次品; (1)43211A A A A B =(2)至少有一个产品是次品;(2)432143212A A A A A A A A B =⋃⋃⋃=(3)只有一个产品是次品;(3)43214321432143213A A A A A A A A A A A A A A A A B ⋃⋃⋃=(4)至少有三个产品不是次品 4)432143214321432143214A A A A A A A A A A A A A A A A A A A A B ⋃⋃⋃⋃=8. 设 E 、F 、G 是三个随机事件,试利用事件的运算性质化简以下各式:(1)()()F E F E (2) ()()()F E F E F E 〔3〕()()G F F E 解 :(1) 原式()()()()E F F F E F E E E ==(2) 原式 ()()()()E F F E F F E F E F E ===(3) 原式()()()()()G E F G F F F G E F E ==9、设B A ,是两事件且7060.)(,.)(==B P A P ,问(1)在什么条件下)(AB P 取到最大值,最大值是多少?(2)在什么条件下)(AB P 取到最小值,最小值是多少? 解: (1)6.0)(,=⊂AB P B A (2)3.0)(,==⋃AB P S B A10. 设事件 A , B , C 分别表示开关 a , b , c 闭合, D 表示灯亮,那么可用事件A ,B ,C 表示:(1) D = A B C ;(2) D = ()C B A 。

天津理工大学概率论与数理统计第六章习题答案详解

天津理工大学概率论与数理统计第六章习题答案详解

第六章 数理统计的基本概念一.填空题1.若n ξξξ,,,21 是取自正态总体),(2σμN 的样本,则∑==ni i n 11ξξ服从分布 )n,(N 2σμ .2.样本),,,(n X X X 21来自总体),(~2σμN X 则~)(221n S n σ- )(1χ2-n ; ~)(nS n X μ- _)(1-n t __。

其中X 为样本均值,∑=--=n i n X X n S 12211)(。

3.设4321X X X X ,,,是来自正态总体).(220N 的简单随机样本,+-=221)2(X X a X 243)43(X X b -,则当=a 201=a 时,=b 1001=b时,统计量X 服从2X 分布,其自由度为 2 .4. 设随机变量ξ与η相互独立, 且都服从正态分布(0,9)N , 而129(,,,)x x x 和129(,,,)y y y 是分别来自总体ξ和η的简单随机样本, 则统计量~U = (9)t .5. 设~(0,16),~(0,9),,X N Y N X Y 相互独立, 129,,,X X X 与1216,,,Y Y Y 分别为X 与Y 的一个简单随机样本,则2221292221216X X X Y Y Y ++++++服从的分布为 (9,16).F 6. 设随机变量~(0,1)X N , 随机变量2~()Y n χ, 且随机变量X 与Y 相互独立,令T =, 则2~T F (1,n ) 分布.解:由T =, 得22X T Y n =. 因为随机变量~(0,1)X N , 所以22~(1).X χ再由随机变量X 与Y 相互独立, 根据F 分布的构造, 得22~(1,).X T F n Y n= 7. 设12,,,n X X X 是总体(0,1)N 的样本, 则统计量222111n k k X n X =-∑服从的分布为 (1,1)F n - (需写出分布的自由度).解:由~(0,1),1,2,,i X N i n =知222212~(1),~(1)nk k X X n χχ=-∑, 于是8. 总体21234~(1,2),,,,X N X X X X 为总体X 的一个样本, 设212234()()X X Z X X -=-服 从 F (1,1) 分布(说明自由度)解:由212~(0,2)X X N σ+,有22~(1)χ, 又 234~(0,2)X X N σ-,故22~(1),χ因为2与2独立,所以21234~(1,1).X X F X X ⎛⎫+ ⎪-⎝⎭9.判断下列命题的正确性:( 在圆括号内填上“ 错” 或“ 对”)(1) 若 总 体 的 平 均 值 μ与 总 体 方 差 σ2 都 存 在 , 则 样 本 平 均 值 x 是 μ 的 一 致 估 计。

概率论与数理统计答案第六章

概率论与数理统计答案第六章

第六章 样本及抽样分布1.[一] 在总体N (52,6.32)中随机抽一容量为36的样本,求样本均值X 落在50.8到53.8之间的概率。

解:8293.0)78()712(}63.68.163.65263.62.1{}8.538.50{),363.6,52(~2=-Φ-Φ=<-<-=<<X P X P N X2.[二] 在总体N (12,4)中随机抽一容量为5的样本X 1,X 2,X 3,X 4,X 5. (1)求样本均值与总体平均值之差的绝对值大于1的概率。

(2)求概率P {max (X 1,X 2,X 3,X 4,X 5)>15}. (3)求概率P {min (X 1,X 2,X 3,X 4,X 5)>10}.解:(1)⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-=>-25541225415412}112{|X P X P X P=2628.0)]25(1[2=Φ- (2)P {max (X 1,X 2,X 3,X 4,X 5)>15}=1-P {max (X 1,X 2,X 3,X 4,X 5)≤15} =.2923.0)]21215([1}15{1551=-Φ-=≤-∏=i i X P (3)P {min (X 1,X 2,X 3,X 4,X 5)<10}=1- P {min (X 1,X 2,X 3,X 4,X 5)≥10} =.5785.0)]1([1)]21210(1[1}10{15551=Φ-=-Φ--=≥-∏=i iXP 4.[四] 设X 1,X 2…,X 10为N (0,0.32)的一个样本,求}.44.1{1012>∑=i iXP解:)5(1.0}163.0{}44.1{),10(~3.0101221012221012查表=>=>∑∑∑===i i i i i i X P X P χX7.设X 1,X 2,…,X n 是来自泊松分布π (λ )的一个样本,X ,S 2分别为样本均值和样本方差,求E (X ), D (X ), E (S 2 ).解:由X ~π (λ )知E (X )= λ ,λ=)(X D∴E (X )=E (X )= λ, D (X )=.)()(,)(2λX D S E nλn X D === [六] 设总体X~b (1,p),X 1,X 2,…,X n 是来自X 的样本。

概率论与数理统计习题参考答案

概率论与数理统计习题参考答案

概率论与数理统计习题参考答案概率论与数理统计习题参考答案(仅供参考)第一章第1页(共101页)概率论和数理统计的参考答案(附练习)第一章随机事件及其概率1.写出以下随机测试的样本空间:(1)同时掷两颗骰子,记录两颗骰子的点数之和;(2)在单位圆内任意一点,记录它的坐标;(3) 10种产品中有3种存在缺陷。

每次取一个,直到三个有缺陷的产品全部取出后再放回去。

记录提取次数;(4)测量汽车通过给定点的速度解:所求的样本空间如下(1) s={2,3,4,5,6,7,8,9,10,11,12}(2)s={(x,y)|x2+y2<1}(3)s={3,4,5,6,7,8,9,10}(4)s={v|v>0}2.设a、B和C为三个事件,并使用a、B和C的运算关系来表示以下事件:(1)a发生,B和C不发生;(2)a与b都发生,而c不发生;(3)a、b、c都发生;(4)a、b、c都不发生;(5)a、b、c不都发生;(6)至少出现a、B和C中的一种;(7) a、B和C的出现次数不超过一次;(8)解决方案a、B和C中至少有两个出现:请求的事件表示如下(1)abc(2) abc(3)abc(4)abc(6)a?BC(5)abc(7)ab?bc?ac(8)ab?bc?ca3.在某小学的学生中任选一名,若事件a表示被选学生是男生,事件b表示该如果学生是三年级的学生,C项意味着学生是运动员,那么(1)AB项意味着什么?(2)在什么条件下abc=c成立?(3)在什么条件下关系式c?b是正确的?(4)在什么条件下a?b成立?解决方案:请求的事件表示如下(1)事件ab表示该生是三年级男生,但不是运动员.(2)当全校运动员都是三年级男生时,abc=c成立.概率论和数理统计练习参考答案(仅供参考)第1章第2页(101)(3)当全校运动员都是三年级学生时,关系式c?b是正确的.(4)当全校女生都在三年级,并且三年级学生都是女生时,a?b成立.4.设p(a)=0.7,p(a-b)=0.3,试求p(ab)由于一个问题的解决方案?B=acab,P(a)=0.7,所以p(a?b)=p(a?ab)=p(a)??p(ab)=0.3,所以p(ab)=0.4,故p(ab)=1?0.4=0.6.5.对于事件a、B和C,已知P(a)=P(B)=P(C)=,P(AB)=P(CB)=0,P(AC)=141求a、b、c中至少有一个发生的概率.8解由于abc?ab,p(ab)?0,故p(abc)=0那么p(a+B+C)=p(a)+p(B)+p(C)CP(AB)CP(BC)CP(AC)+p(ABC)?11115 04万肆仟肆佰捌拾捌元6.设盒中有α只红球和b只白球,现从中随机地取出两只球,试求下列事件的概率: A={两个颜色相同的球},B={两个颜色不同的球}222解由题意,基本事件总数为aa?b,有利于a的事件数为aa?ab,有利于b111111中的事件数是aaab?阿巴?2aaab,2aa?ab2则p(a)?2aa?b112aaabp(b)?2aa?B7.若10件产品中有件正品,3件次品,(1)取其中任何一个三次,不放回去,计算得到三个不良品的概率;(2)每次取其中任何一个三次,计算得到三次次品的概率(1)让a={得到三次次品}33c3a316p(a)?3?.或者p(a)?3?c10120a10720(2)设b={取到三个次品},则3327p(a)?3.1010008.在一家旅行社的100名导游中,43人说英语,35人说日语,32人说日语和汉语英语,9人会讲法语、英语和日语,且每人至少会讲英、日、法三种语言中的一种,求:(1)此人可能会说英语和日语,但不会说法语;(2)此人只会说法语的可能性解设a={此人会讲英语},b={此人会讲日语},c={此人会讲法语}根据主题的意思,你可以概率论与数理统计习题参考答案(仅供参考)第一章第3页(共101页)(1) p(abc)?p(ab)?p(abc)?(2)p(abc)?p(ab)?p(abc)32923?? 100100100? p(a?b)?0 1? p(a?b)?1.p(a)?p(b)?p(ab)43353254?1一千零一亿零一十万零一百9.罐中有12颗围棋子,其中8颗白子4颗黑子,若从中任取3颗,求:(1)取到的都是白子的概率;(2)获得两个白点和一个太阳黑子的概率;(3)取到三颗棋子中至少有一颗黑子的概率;(4)取到三颗棋子颜色相同的概率.解(1)那么让a={带上所有白人孩子}3c814p(a)?3??0.255.C1255(2)设B={得到两个白点和一个太阳黑子}1c82c4p(b)??0.509.3c12(3)设c={取三颗子中至少的一颗黑子}p(c)?1?p(a).4?0.7(4)设d={取到三颗子颜色相同}33c8?c4p(d)??0.273.3c1210.(1)500人中,至少有一个的生日是7月1日的概率是多少(1年按365日计算)?(2)六个人中有一个人恰好在同一个月过生日的概率是多少?解决方案(1)设a={至少有一个人生日在7月1日},则364500? 0.746便士?1.p(a)?1.365500(2)假设计算的概率为p(b)41c6?c1?1122?0.0073p(b)?12611.将字母C、C、e、e、I、N和S7随机排列成一行,并尝试将它们精确地排列成科学的概率p.227解决方案因为两个C和两个e共享A2,所以有A2安排,基本事件的总数是a722a2p??0.0007947a7概率论与数理统计习题参考答案(仅供参考)第一章第4页(共101页)12.从5副手套中取出4副手套,并找出这4副手套未配对的可能性解要4只都不配对,我们先取出4双,再从每一双中任取一只,共有c54?24中取法.设a={4只手套都不配对},则有c54?2480便士(a)?4.210c1013.一名实习生用一台机器独立生产三个同类型零件,I零件不合格的概率为pi?为多少?假设AI={第I部分不合格},I=1,2,3,那么p(AI)?圆周率?那么p(AI)?1.圆周率?1,I=1,2,3。

概率论与数理统计学1至7章课后答案

概率论与数理统计学1至7章课后答案

一、第六章习题详解6.1 证明(6.2.1)和(6.2.2)式.证明: (1) ∑∑∑===+=+==ni i n i i n i i nb X a n b aX n Y n Y 111)(1)(11b X a b X n a ni i +=+=∑=1)1((2) ∑∑==+-+=--=n i i n i i Yb X a b aX n Y Y n S 12122)]()[(1)(11 2212212)(1)]([1X ni i n i i S a X X n a X X a n =-=-=∑∑==6.2设n X X X ,,,21Λ是抽自均值为μ、方差为2σ的总体的样本, X 与2S 分别为该样本均值。

证明与2(),()/E X Var X n μσ==. 证:()E X =1212111[()]()()n n E X X X E X X X n n n nμμ++=++==L L ()Var X =22121222111[()]()()n n Var X X X E X X X n n n n nσσ++=++==L L6.3 设n X X X ,,,21Λ是抽自均值为μ、方差为2σ的总体的样本,2211()1ni i S X X n ==--∑, 证明: (1) 2S =)(11212X n X n ni i --=∑= (2) 2()E S =2σ= 证:(1) ∑∑==+--=--=n i i i n i i X X X X n X X n S 122122)2(11)(11 ]2)([112112X n X X X n n i i n i i +--=∑∑== ])(2)([11212X n X n X X n n i i +--=∑= )(11212X n X n ni i --=∑=(2) )(11)(2122X n X E n S E n i i --=∑=)]()([11212X nE X E n ni i --=∑= ]})()([])()([{11212X E X Var n EX X Var n ni i i +-+-=∑= )}()({1122122μσμσ+-+-=∑=nn n ni )]()([112222μσμσn n n +-+-=222)(11σσσ=--=n n6.4 在例6.2.3 中, 设每箱装n 瓶洗净剂. 若想要n 瓶灌装量的平均阻值与标定值相差不超 过0.3毫升的概率近似为95%, 请问n 至少应该等于多少? 解:因为1)3.0(2)/3.0|/(|)3.0|(|-Φ≈<-=<-n nnX P X P σσμμ依题意有,95.01)3.0(2=-Φn ,即)96.1(975.0)3.0(Φ==Φn于是 96.13.0=n ,解之得 7.42=n 所以n 应至少等于43.6.5 假设某种类型的电阻器的阻值服从均值μ=200 欧姆, 标准差σ=10 欧姆的分布,在一个电子线路中使用了25个这样的电阻.(1) 求这25个电阻平均阻值落在199 到202 欧姆之间的概率; (2) 求这25个电阻总阻值不超过5100 欧姆的概率. 解:由抽样分布定理,知nX /σμ-近似服从标准正态分布N (0,1),因此(1) )25/10200199()25/10200202()202199(-Φ--Φ≈≤≤X P)5.0(1)1()5.0()1(Φ+-Φ=-Φ-Φ=5328.06915.018413.0=+-= (2) )204()255100()5100(≤=≤=≤X P X P X n P 9772.0)2()25/10200204(=Φ=-Φ≈6.6 假设某种设备每天停机时间服从均值μ=4 小时、标准差σ=0.8小时的分布. (1) 求一个月(30天) 中, 每天平均停机时间在1到5小时之间的概率; (2) 求一个月(30天) 中, 总的停机时间不超过115 小时的概率. 解:(1))30/8.041()30/8.045()/1()/5()51(-Φ--Φ=-Φ--Φ≈≤≤nnX P σμσμ1)54.20()85.6(≈-Φ-Φ=(2) )30115()11530(≤=≤X P X P 1271.08729.01)14.1(1)30/8.0430/115(=-=Φ-=-Φ≈6.7 设~n T t ,证明()0,2,3,.E T n ==L证:)(n t 分布的概率密度为: +∞<<-∞⎪⎪⎭⎫⎝⎛+Γ+Γ=+-t n x n n n x f n ,1)2/(]2/)1[()(212π,()()E T xf x dx +∞-∞==⎰=112222212211(1)10n n nx x x dx d n n nx n ++--+∞+∞-∞-∞-+∞-∞⎫⎫+=++⎪⎪⎭⎭⎛⎫=+=⎪⎭⎰⎰6.8 设总体X ~N(150,252), 现在从中抽取样本大小为25的样本, {140147.5}P X ≤≤. 解: 已知150=μ,25=σ,25=n ,)25/25150140()25/251505.147()5.147140(-Φ--Φ≈≤≤X P)5.0()2()2()5.0(Φ-Φ=-Φ--Φ=2857.09615.09772.0=-=6.9 设某大城市市民的年收入服从均值μ=1.5万元、标准差σ=0.5万元的正态分布. 现 随机调查了100 个人, 求他们的平均年收入落在下列范围内的概率: (1) 大于1.6万元;(2) 小于1.3万元;(3) 落在区间[1.2,1.6] 内.解:设X 为人均年收入,则)5.0,5.1(~2N X ,则)1005.0,5.1(~2N X ,得 (1) )100/5.05.16.1(1)6.1(1)6.1(-Φ-≈≤-=>X P X P0228.09772.01)2(1=-=Φ-=(2) 011)4(1)4()100/5.05.13.1()3.1(=-≈Φ-=-Φ=-Φ≈<X P(3) )100/5.05.12.1()100/5.05.16.1()6.12.1(-Φ--Φ≈<<X P9772.0)6()2(=-Φ-Φ=6.10 假设总体分布为N(12,22), 今从中抽取样本125,,,X X X L . 求 (1) 样本均值X 大于13的概率; (2) 样本的最小值小于10的概率; (3) 样本的最大值大于15的概率.解:因为 )2,12(~2N X ,所以22~(12,)5X N ,得(1) )5/21213(1)13(1)13(-Φ-≈≤-=>X P X P1314.08686.01)12.1(1=-=Φ-=(2) ?设样本的最小值为Y ,则),,,(521X X X Min Y Λ=,于是)10(1)10(≥-=<Y P Y P)10()10()10(1521≥≥≥-=X P X P X P Λ)]21210(1[1)]10(1[15151-Φ-∏-=<-∏-===i i i X P5785.0)8413.0(1)1(1)]1(1[155151=-=Φ∏-=-Φ-∏-===i i(3) ?设样本的最大值为Z ,则),,,(521X X X Max Z Λ=,于是)15(1)15(≤-=>Z P Z P)15()15()15(1521≤≤≤-=X P X P X P Λ)21215(151-Φ∏-==i 2923.0)9332.0(1)5.1(1551=-=Φ∏-==i6.11设总体),(~2σμN X ,从中抽取容量样本1216,,,X X X L , 2S 为样本方差. 计算22 2.04S P σ⎧⎫≤⎨⎬⎩⎭. 解因为),,(~2σμN X 由定理2, 得),1(~)1(21222-⎪⎪⎭⎫ ⎝⎛-=-∑=n XX S n ni i χσσ 所以,1)1(22-=⎪⎪⎭⎫ ⎝⎛-n S n E σ),1(2)1(22-=⎪⎪⎭⎫⎝⎛-n S n D σ于是,)(22σ=S E ).1/(2)(42-=n S D σ 当16=n 时, ,15/2)(42σ=S D 且2222{/ 2.04}{15/30.615}P S P S σσ≤=≤}615.30/15{122>-=σS P99.001.01=-=).578.30)15((201.0=χ第六章 《样本与统计量》定理、公式、公理小结及补充:。

《概率论与数理统计》科学出版社课后习题答案

《概率论与数理统计》科学出版社课后习题答案

(概率课后习题答案详解)1第二章 随机变量2.1 X 2 3 4 5 6 7 8 9 10 11 12 P 1/361/181/121/95/361/65/361/91/121/181/362.2解:根据1)(0==∑∞=k k XP ,得10=∑∞=-k kae,即1111=---eae。

故 1-=e a2.3解:用X 表示甲在两次投篮中所投中的次数,X~B(2,0.7) 用Y 表示乙在两次投篮中所投中的次数, Y~B(2,0.4) (1) 两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}= 011220202111120202222220.70.30.40.60.70.30.40.60.70.30.40.60.3124CC C C C C ⨯+⨯+⨯=(2)甲比乙投中的次数多P{X >Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=(概率课后习题答案详解)212211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628CC C C C C ⨯+⨯+⨯=2.4解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155++=(2) P {0.5<X<2.5}=P{X=1}+ P{X=2}=12115155+=2.5解:(1)P{X=2,4,6,…}=246211112222k+++ =11[1()]1441314kk lim →∞-=-(2)P{X ≥3}=1―P{X <3}=1―P{X=1}- P{X=2}=1111244--=2.6解:设iA 表示第i 次取出的是次品,X 的所有可能取值为0,1,212341213124123{0}{}()(|)(|)(|)P X P A A A A P A P A A P A A A P A A A A ====18171615122019181719⨯⨯⨯=1123412342341234{1}{}{}{}{}2181716182171618182161817162322019181720191817201918172019181795P X P A A A A P A A A A P A A A A P A A A A ==+++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=12323{2}1{0}{1}1199595P X P X P X ==-=-==--=2.7解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)3431444(3)(3)(4)0.40.60.40.60.1792P X P X P X CC ≥==+==+= (2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5,0.4)(概率课后习题答案详解)3345324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X CC C ≥==+=+==++=2.8 (1)X ~P(λ)=P(0.5×3)= P(1.5)1.51.5{0}0!P X e-=== 1.5e-(2)X ~P(λ)=P(0.5×4)= P(2)122222{2}1{0}{1}1130!1!P X P X P X eee---≥=-=-==--=-2.9解:设应配备m 名设备维修人员。

概率论与数理统计答案第六章

概率论与数理统计答案第六章

第六章 样本及抽样分布1.[一] 在总体N (52,6.32)中随机抽一容量为36的样本,求样本均值X 落在50.8到53.8之间的概率。

解: 8293.0)78()712(}63.68.163.65263.62.1{}8.538.50{),363.6,52(~2=-Φ-Φ=<-<-=<<X P X P N X2.[二] 在总体N (12,4)中随机抽一容量为5的样本X 1,X 2,X 3,X 4,X 5. (1)求样本均值与总体平均值之差的绝对值大于1的概率。

(2)求概率P {max (X 1,X 2,X 3,X 4,X 5)>15}. (3)求概率P {min (X 1,X 2,X 3,X 4,X 5)>10}.解:(1)⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-=>-25541225415412}112{|X P X P X P =2628.0)]25(1[2=Φ-(2)P {max (X 1,X 2,X 3,X 4,X 5)>15}=1-P {max (X 1,X 2,X 3,X 4,X 5)≤15}=.2923.0)]21215([1}15{1551=-Φ-=≤-∏=i i X P (3)P {min (X 1,X 2,X 3,X 4,X 5)<10}=1- P {min (X 1,X 2,X 3,X 4,X 5)≥10}=.5785.0)]1([1)]21210(1[1}10{15551=Φ-=-Φ--=≥-∏=i i X P 4.[四] 设X 1,X 2…,X 10为N (0,0.32)的一个样本,求}.44.1{1012>∑=i i X P解:)5(1.0}163.0{}44.1{),10(~3.0101221012221012查表=>=>∑∑∑===i ii ii iX P XP χX7.设X 1,X 2,…,X n 是来自泊松分布π (λ )的一个样本,X ,S 2分别为样本均值和样本方差,求E (X ), D (X ), E (S 2).解:由X ~π (λ )知E (X )= λ ,λ=)(X D∴E (X )=E (X )= λ, D (X )=.)()(,)(2λX D S E nλnX D ===[六] 设总体X~b (1,p),X 1,X 2,…,X n 是来自X 的样本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E( X ) 的 无 偏 估 计 , 且 有 效 性 从 大 到 小 的 顺 序 为
ˆ2 ˆ1 ˆ3 ˆ1 , ˆ2 , ˆ 3 都 是 E( X ) 的 无 偏 估 计 , 且 有 效 性 从 大 到 小 的 顺 序 为 C、 ˆ3 ˆ2 ˆ1 ˆ1 , ˆ2 , ˆ 3 不全是 E ( X ) 的无偏估计,无法比 D、
第六章
一.填空题
数理统计的基本概念
1.若 1 , 2 , , n 是取自正态总体 N ( , 2 ) 的样本,
1 n ) . 则 i 服从分布 N (, n i 1 n (n 1) 2 χ 2 (n 1) 2.样本 ( X1 , X2 , , Xn ) 来自总体 X ~ N(, 2 ) 则 ; S ~ n 2 1 n n 2 (X X )2 。 ( X ) ~ _ t(n 1) __。其中 X 为样本均值, Sn n 1 i 1 Sn
X X2 所以 1 ~ F (1,1). X3 X4 9.判断下列命题的正确性:( 在圆括号内填上“ 错” 或“ 对”)
(1) 若 总 体 的 平 均 值 与 总 体 方 差 2 都 存 在 , 则 样 本 平 均 值 x 是 的 一 致 估 计。 ( 对 )
51
( A ) X 与
n
(X
i1 n i1
n
i
X ¡ )2 独 立
( B )X
i
与X 与X
j
独 立 ( 当
独 立 ( 当
i j )
i j)
来自总
( C ) 6.
体Y
X i 与 X i2 独 立
i1
( D )X
i
2 j

X1 , X 2 , , X n1 ,
2
来自总体 X, X
二、选择题 1、设总体 服从正态分布 N ( N , 2 ) ,其中 已知, 未知,1 , 2 , 3 是取自总体 的一个样本,则非统计量是( D ). B、 1 2 2 D、
1 A、 (1 2 3 ) 3
C、 max(1 , 2 , 3 )
49
7. 设 X1 , X 2 ,
, X n 是总体 N (0,1) 的样本, 则统计量
(需写出分布的自由度).
1 n X k2 服从的分布为 n 1 k 2 X 12
F (n 1,1)
解:由 X i ~ N (0,1), i 1, 2,
X
k 1
n
, n 知 X ~ (1), X k2 ~ 2 (n 1) , 于是
, x9 ) 和
U
x1 x2
2 y12 y2
x9
2 y9
~
t (9)
.
5. 设 X ~ N (0,16), Y ~ N (0,9), X , Y 相互独立, X1 , X 2 , 为 X 与 Y 的一个简单随机样本, 2 X 2 X2 X 92 则 12 服从的分布为 2 Y1 Y22 Y16
C、
n 1 的 t 分布的随机变量是( B ). A、 B、 S1 / n 1 S2 / n 1

S3 / n
D、

S4 / n
3、设 ~ N (1,2 2 ) , 1 , 2 , n 为 的样本,则( C ).
~ N (0.1) 4 2 1 1 C、 D、 ~ N (0,1) ~ N (0,1) 2/ n 2/ n 4、设 1 , 2 , n 是总体 ~ N (0,1) 的样本, , S 分别是样本的均值和样本标准差,
7 i 1
3、设 X 1 , X 2 , X 7 为总体 X ~ N (0,0.52 ) 的一个样本,求 P( X i2 4) .
解: X ~ N (0,0.5 )
2
2 X i ~ N (0,1)
P( X i2 4) P( 4 X i2 16) 0.025
( C )

2 n 1S1 n1 2 1

n 2S 2 2n 2 2 2
~ 2 (n 1 n 2 2)
( D )

n1 n 2 2
~ t (n1 n 2 2)
7. 设 X 1 , X 2 , X n 是取自总体 N (0, 2 ) 的样本,则可以作为 2 的无偏估计量是 ( A ).
1 n Xi n 1 i 1 1 3 1 ˆ1 X 1 X 2 X 3 , 8. 3、设 X 1 , X 2 , X 3 是来自母体 X 的容量为 3 的样本, 5 10 2 1 1 5 1 1 1 ˆ2 X1 X 2 X 3 , ˆ3 X1 X 2 X 3 , 则 下 列 说 法 正 确 的 是 3 4 12 3 6 2
2
2
X X2 2 解:由 X1 X 2 ~ N (0, 2 ) , 有 1 ~ (1) , 2

X X4 2 X 3 X 4 ~ N (0, 2 ) , 故 3 ~ (1), 2
2
2
X X2 X3 X4 因为 1 与 独立, 2 2
3.设 X1 , X2 , X3 , X4 是来自正态总体 N(0.2 2 ) 的简单随机样本,
2 X a( X 1 2 X 2 ) 2 b(3 X 3 4 X 4 ) ,则当 a
2
a
2
1 1 时, b b 100 20
.
时,统计量 X 服从 X 分布,其自由度为
2
4. 设随机变量 与 相互独立, 且都服从正态分布 N (0,9) , 而 ( x1 , x2 , ( y1 , y2 , , y9 ) 是分别来自总体 和 的简单随机样本, 则统计量
)。
(Yi, Y) 2 ,
i 1
2 1 2 2 n1 n 2 ~ N(0,1)
则如下结论中错误的是 ( D ( A )
[(X Y) (1 2 )]
2 S1 n1 (n 2 1) 2 n 2 ( B ) 2 2 1 ~ F(n1 1, n 2 1) n 2 (n1 1) 1 S2n 2
2
2
2
ˆ ) 0 则 称 为 的 渐 近 无 偏 估 计 量 .( (2) 若 E(

)
(3) 设总体 X 的期望 E(X),方差 D(X)均存在, x1 , x2 是 X 的一个样本 , 1 2 则统计量 x1 x2 是 E(X) 的无偏估计量。 ( 对 ) 3 3
ˆ ˆ ˆ ˆ 2 (4) 若 E(1 ) E( 2 ) 且 D(1 ) D( 2 ) 则 以 估 计 较 以 1估
2 1 2 k 2
n
2 k
(n 1)
X12 /1
1 n X k2 ~ F (n 1,1). n 1 k 2 X12
( X 1 X 2 )2 服 ( X 3 X 4 )2
8. 总体 X ~ N (1, 22 ), X1 , X 2 , X 3 , X 4 为总体 X 的一个样本, 设 Z 从 F(1,1) 分布(说明自由度)
1
2
(12 22 32 )
2
2、 设 1 , 2 , n 是来自正态总体 N ( , 2 ) 的简单随机样本 S1
2 S2
1 n ( i ) 2 , n 1 i 1
1 n 1 n 1 n 2 2 2 2 ( ) S ( ) S ( i ) 2 ,则服从自由度为 , , i 3 i 4 n i 1 n 1 i 1 n i 1
, X 9 与 Y1 , Y2 ,
F (9,16).
, Y16 分别
6. 设随机变量 X ~ N (0,1) , 随机变量 Y ~ 2 (n) , 且随机变量 X 与 Y 相互独立, X 令T , 则 T 2 ~ F(1,n) 分布. Y n X2 X 2 解:由 T , 得T . 因为随机变量 X ~ N (0,1) , 所以 X 2 ~ 2 (1). Y Y n n X2 2 T ~ F (1, n). 再由随机变量 X 与 Y 相互独立, 根据 F 分布的构造, 得 Y n
2 ~ N(1 , 1 ), Y1 , Y2 ,, Yn 2
£ , Y ~ N(
n1
, 2 2 ) , 且 X 与 Y 独 立。 X
n 21
1 n1 1 X i, , Y n1 i1 n2
Yi, ,
i 1
n2
2 S1 n1
1 1 (X i , X) 2 , S 2 2n 2 n1 i1 n2
解:因 2 未知,不能用 X N (1000, 而T ~ t (8) S 3
X ~ t ( n 1) S n
T
P( X 940) P(
X 940 ) 而 S 100, 1000 S S 3 3 , (940 1000) 3 ) P(T 1.8) P(T 1.8) P( X 940) P(T 100 由表查得 P( X 940) P(T 1.8) 0.056
1 n Xi X 是总体 X 中2 的有偏估计。 ( 对 n i 1


2
10.设 X1 , X2 , X3 是取自总体 X 的一个样本,则下面三个均值估计量 5X 3 1 3 1 1 1 1 3 1 ˆ1 X 1 X 2 X 3 , u ˆ2 X 1 X 2 ˆ3 X 1 X 2 X 3 ,u 5 10 2 3 4 12 3 4 12 都 ˆ2 是总体均值的无偏估计,其中方差越小越有效,则 最有效.
相关文档
最新文档