2011数值计算方法作业1(地学)

合集下载

《数值计算方法》习题答案

《数值计算方法》习题答案

《数值计算方法》课后题答案详解吉 林 大 学第一章 习 题 答 案1. 已知(1)2,(1)1,(2)1f f f −===,求()f x 的Lagrange 插值多项式。

解:由题意知:()01201212001020211012012202121,1,2;2,1,1()()(1)(2)()()6()()(1)(2)()()2()()(1)(1)()()3(1)(2)(1)(2)()2162nj j j x x x y y y x x x x x x l x x x x x x x x x x l x x x x x x x x x x l x x x x x x x x L x y l x ==−=====−−−−==−−−−+−==−−−−−+−==−−−−+−==×+×−∴∑()2(1)(1)131386x x x x +−+×=−+2. 取节点01210,1,,2x x x ===对x y e −=建立Lagrange 型二次插值函数,并估计差。

解11201201210,1,;1,,2x x x y y e y e −−======1)由题意知:则根据二次Lagrange插值公式得:02011201201021012202110.510.520.51()()()()()()()()()()()()()2(1)(0.5)2(0.5)4(1)(224)(43)1x x x x x x x x x x x x L x y y y x x x x x x x x x x x x x x x x e x x e e e x e e x −−−−−−−−−−−−=++−−−−−−=−−+−−−=+−+−−+22)Lagrange 根据余项定理,其误差为(3)2210122()1|()||()||(1)(0.5)|3!61max |(1)(0.5)|,(0,1)6()(1)(0.5),()330.5030.2113()61()0.2113(0.21131)(0.21130.5)0.008026x f R x x e x x x x x x t x x x x t x x x x t x R x ξξωξ−+≤≤==−−≤−−∈′=−−=−+=−==≤××−×−=∴取 并令 可知当时,有极大值3. 已知函数y =在4, 6.25,9x x x ===处的函数值,试通过一个二次插值函数求的近似值,并估计其误差。

数值计算方法习题答案

数值计算方法习题答案

《数值计算方法》课后题答案详解吉 林 大 学第一章 习 题 答 案1. 已知(1)2,(1)1,(2)1f f f −===,求()f x 的Lagrange 插值多项式。

解:由题意知:()01201212001020211012012202121,1,2;2,1,1()()(1)(2)()()6()()(1)(2)()()2()()(1)(1)()()3(1)(2)(1)(2)()2162nj j j x x x y y y x x x x x x l x x x x x x x x x x l x x x x x x x x x x l x x x x x x x x L x y l x ==−=====−−−−==−−−−+−==−−−−−+−==−−−−+−==×+×−∴∑()2(1)(1)131386x x x x +−+×=−+2. 取节点01210,1,,2x x x ===对x y e −=建立Lagrange 型二次插值函数,并估计差。

解11201201210,1,;1,,2x x x y y e y e −−======1)由题意知:则根据二次Lagrange插值公式得:02011201201021012202110.510.520.51()()()()()()()()()()()()()2(1)(0.5)2(0.5)4(1)(224)(43)1x x x x x x x x x x x x L x y y y x x x x x x x x x x x x x x x x e x x e e e x e e x −−−−−−−−−−−−=++−−−−−−=−−+−−−=+−+−−+22)Lagrange 根据余项定理,其误差为(3)2210122()1|()||()||(1)(0.5)|3!61max |(1)(0.5)|,(0,1)6()(1)(0.5),()330.5030.2113()61()0.2113(0.21131)(0.21130.5)0.008026x f R x x e x x x x x x t x x x x t x x x x t x R x ξξωξ−+≤≤==−−≤−−∈′=−−=−+=−==≤××−×−=∴取 并令 可知当时,有极大值3. 已知函数y =在4, 6.25,9x x x ===处的函数值,试通过一个二次插值函数求的近似值,并估计其误差。

计算方法2011-1

计算方法2011-1
计算机基础教育系
秦九韶的数学成就及对世界数学的贡献主要表现在: – 1、秦九韶的《数书九章》是一部划时代的巨著
秦九韶潜心研究数学多年,在湖州守孝三年,所写成的世界数学 名著《数书九章》,《癸辛杂识续集》称作《数学大略》,《永乐 大典》称作《数书九章》。全书九章十八卷,九章九类:“大衍 类”、“天时类”、“田域类”、“测望类”、“赋役类”、“钱 谷类”、“营建类”、“军旅类”、“市物类”,每类9题(9问) 共计81题(81问),该书内容丰富至极,上至天文、星象、历律、 测候,下至河道、水利、建筑、运输,各种几何图形和体积,钱谷、 赋役、市场、牙厘的计算和互易。许多计算方法和经验常数直到现 在仍有很高的参考价值和实践意义,被誉为“算中宝典”。该书著 述方式,大多由“问曰”、“答曰”、“术曰”、“草曰”四部分 组成:“问曰”,是从实际生活中提出问题;“答曰”,给出答案; “术曰”,阐述解题原理与步骤;“草曰”,给出详细的解题过程。 此书已为国内外科学史界公认的一部世界数学名著。此书不仅代表 着当时中国数学的先进水平,也标志着中世纪世界数学的最高水平。 我国数学史家梁宗巨评价道:“秦九韶的《数书九章》(1247年) 是一部划时代的巨著,内容丰富,精湛绝伦。特别是大衍求一术 (不定方程的中国独特解法)及高次代数方程的数值解法,在世界 数学史上占有崇高的地位。那时欧洲漫长的黑夜犹未结束,中国人 的创造却像旭日一般在东方发出万丈光芒。”
教材2-6章
1 非线性方程求根
2
3 4
线性方程组求解
插值与拟合
数值积分
5
常微分方程初值问题的数值解法
计算机基础教育系
算法研究的意义
引例
引例1: n次多项式求 值
引例2: n阶线性方程 组求解

数值计算方法试题库及答案解析

数值计算方法试题库及答案解析

y 2y, y(0) 1,试问为保证该公式绝对稳定,步长 h 的取值范围为(
)。
(1) 0 h 2 , (2) 0 h 2 , (3) 0 h 2 , (4) 0 h 2
三、1、(8 分)用最小二乘法求形如 y a bx2 的经验公式拟合以下数据:
2
是否为插值型求积公式?为什么?其
代数精度是多少?
七、(9 分)设线性代数方程组 AX b 中系数矩阵 A 非奇异, X 为精确解, b 0 ,若向
~
~
量 X 是 AX b 的 一 个 近 似 解 , 残 向 量 r b A X , 证 明 估 计 式 :
~
X X
r cond ( A)
五、(8 分)已知求 a (a 0) 的迭代公式为:
1
a
xk1 2 (xk xk )
x0 0 k 0,1,2
证明:对一切 k 1,2,, xk a ,且序列xk 是单调递减的,
从而迭代过程收敛。
3 f (x)dx 3 [ f (1) f (2)]
六、(9 分)数值求积公式 0
六、(下列 2 题任选一题,4 分) 1、 1、 数值积分公式形如
1
0 xf (x)dx S(x) Af (0) Bf (1) Cf (0) Df (1)
(1) (1) 试确定参数 A, B,C, D 使公式代数精度尽量高;(2)设
1
f (x) C 4[0,1] ,推导余项公式 R(x) 0 xf (x)dx S(x) ,并估计误差。
i 1
的高斯(Gauss)型求积公式具有最高代数精确度的次
数为 2n 1。 (

数值计算方法习题.doc

数值计算方法习题.doc

第一章 绪论1.把下列各数按四舍五入规则舍入为有3位小数的近似数,并写出近似数的绝对误差和相对误差,指出近似数有几位有效数字: 93.1822 4.32250 15.9477 17.3675 2.按四舍五入原则,将下列数舍成五位有效数字:816.9567 6.000015 17.32250 1.235651 93.18213 0.015236233.设 **,671.3,6716.3x x x 则==有几位有效数字? 4.若1/4用0.25来表示,问有多少位有效数字? 5.若 1.1062,0.947a b ==是经过舍入后得到的近似值,问:,a b a b +⨯各有几位有效数字?6.设120.9863,0.0062y y ==是经过舍入后作为12,x x 的近似值, 求11y 和21y 的计算值与真值的相对误差限及12y y 和得到真值的相对误差限. 7.设0,x x >的相对误差为δ,求ln x 的绝对误差.8.正方形的边长约为100cm ,应该怎样测量,才能使其面积的误差不超过12cm . 9.设x 的相对误差为a %,求x n 的相对误差.10.计算球的体积,为了使相对误差限为1%,问度量半径R 时允许的相对误差限如何?11.5631.2*=x 是经四舍五入得到的近似值,则其相对误差≤*r e __________ 12. 设 0000073.0,1416.3,1415926.3**=-==x x x x 则称_________误差13.设⎰+=1061dx xx I nn ,设计一个计算10I 的算法,并说明你的算法的合理性。

14.设028Y =,按递推公式1n n Y Y -= (1,2,n = ), 计算到100Y27.982≈(5位有效数字),试问计算100Y 将有多大误差. 15.求方程25610x x -+=的两个根,使它至少具有4位有效数字27.982≈).16.当N 充分大时,怎样求121d 1N N x x ++⎰?17.序列{}n y 满足递推关系101n n y y =- (1,2,n = ),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?18.计算61)f =1.41≈,利用下列算式计算,哪一个得到的结果最好?,3(3-,99- 19.()ln(f x x =,求(30)f 的值,若开平方用6位函数表,问求对数时误差有多大?若改用另一等价公式ln(ln(x x =- 计算,求对数时误差有多大?第二章 解线性方程组的直接方法1.用高斯消去法解方程组123234011921261x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦ 2.用LU 分解,将上题系数矩阵分解为L 和U 的乘积,L 是对角线元素为1的下三角矩阵,U 是上三角矩阵。

《数值计算方法》试题集及标准答案(-)-

《数值计算方法》试题集及标准答案(-)-

《数值计算⽅法》试题集及标准答案(-)-《数值计算⽅法》试题集及答案(-)-————————————————————————————————作者:————————————————————————————————⽇期:《计算⽅法》期中复习试题⼀、填空题:1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则⽤⾟普⽣(⾟⼘⽣)公式计算求得≈31_________)(dx x f ,⽤三点式求得≈')1(f 。

答案:2.367,0.252、1)3(,2)2(,1)1(==-=f f f ,则过这三点的⼆次插值多项式中2x 的系数为,拉格朗⽇插值多项式为。

答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;4、设)(x f 可微,求⽅程)(x f x =的⽜顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+5、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );6、计算⽅法主要研究( 截断 )误差和( 舍⼊ )误差;7、⽤⼆分法求⾮线性⽅程 f (x )=0在区间(a ,b )内的根时,⼆分n 次后的误差限为( 12+-n a b );8、已知f (1)=2,f (2)=3,f (4)=5.9,则⼆次Newton 插值多项式中x 2系数为( 0.15 ); 11、两点式⾼斯型求积公式?1d )(xx f ≈(++-≈1)]3213()3213([21d )(f f x x f ),代数精度为( 5 );12、为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍⼊误差,应将表达式19992001-改写为199920012+ 。

2011计算方法上机

2011计算方法上机

三、上机练习题目
1. 用列主元素消去法编程,最大变元数 ;给出下面方程组的运算 用列主元素消去法编程,最大变元数100; 结果。 结果。
x1 + 2 x 2 − 3 x3 = 8 2 x1 + x 2 + 3x3 = 22 3 x + 2 x + x = 28 2 3 1
用矩阵分解法编程,最大变元数100 给出下面方程组的运算结果。 100; 2. 用矩阵分解法编程,最大变元数100;给出下面方程组的运算结果。
4. 对于一组数据表进行二次多项式曲线拟合;根据以下数据的二次 对于一组数据表进行二次多项式曲线拟合; 拟合曲线求y(5)。 拟合曲线求 。 X Y 2 1.6 4 2.8 6 3.6 8 4.9 10 5.4 12 6.8 14 7.9 16 9.2 18 10.2 20 12.4
三、上机练习题目
5. 取h=0.1,用改进欧拉方法求解下列初值问题。 ,用改进欧拉方法求解下列初值问题。
y ' = 2x 2 + 3y 2 y (0) = 5
0 ≤ x ≤ 10
6. 取h=0.2,用四阶龙格-库塔方法求解下列初值问题。 ,用四阶龙格-库塔方法求解下列初值问题。
y ' = 3x 2 + 4 y 2 y (0) = 6
2 x1 + 3x 2 + 4 x3 = 39 3 x1 − 2 x 2 + 2 x3 = 14 4 x + 2 x + 3x = 43 2 3 1
三、上机练习题目
3. 对于一组数据表进行二次插值编程;根据下面数据表计算 对于一组数据表进行二次插值编程;根据下面数据表计算f(0.49) 和f(0.51)。 。 x f(x) 0.2 16 0.4 20 0.6 15 0.8 10

数值计算方法课后习题答案(李庆扬等)

数值计算方法课后习题答案(李庆扬等)

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

2010-2011(1)数值计算方法(A卷)及答案

2010-2011(1)数值计算方法(A卷)及答案

2010­2011《数值计算方法》(A 卷)一、选择题(15%)1、 由四舍五入后得到 *30.120 x = , 则相对误差限 *r e =().(A) 0.5×10 –3(B) 0.5×10 –3 %(C) 0.00166(D) 0.00166%.2、用列主元高斯消去法解线性方程组 123 123 123 341290 531 x x x x x x x x x -+= ì ï-+-= í ï --+=- î,第 1 次消元,选择主元为 ( ).(A) 3 (B) 4 (C) -5 (D) -93、已知求积公式( ) ( ) 21131 1()(2) 626 f x dx f Af f »++ ò,则 A =( )。

(A )16(B ) 1 3 (C ) 1 2 (D )2 34、通过四个互异节点的插值多项式 () P x ,只要满足( ), 则 () P x 是不超过一次的多项式. (A) 初始值 0 0y = (B) 一阶均差都为 0(C) 二阶均差都为0 (D) 三阶均差都为 0 5、解非线性方程 ()0 f x = 的牛顿迭代法在重根附近()。

(A )线性收敛(B )三次收敛(C )平方收敛 (D )不收敛二、填空题(15%)1、 *0.002650 x = 是按“四舍五入”原则得到的近似数,则它有______位有效数字。

2、为了提高数值计算精度,当 1 | | >> x 时,应将 x x - +1 改写为____________。

3、设 32()231 f x x x =+- ,则均差 = ] 3 , 2 , 1 , 0 [ f _________________________。

4、n 个节点的插值型求积公式的代数精度至少为_________次。

5、求方程 ) (x f x = 根的牛顿迭代公式是:_____________________。

数值计算方法课后习题答案(李庆扬等)

数值计算方法课后习题答案(李庆扬等)

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

数值计算方法丁丽娟课后习题答案

数值计算方法丁丽娟课后习题答案

数值计算方法丁丽娟课后习题答案【篇一:北京理工大学数值计算方法大作业数值实验1】)书p14/4分别将区间[?10,10]分为100,200,400等份,利用mesh或surf命令画出二元函数的三维图形。

z=|??|+ ??+?? +??++??【matlab求解】[x,y]=meshgrid(-10:0.1:10);a=exp(-abs(x));b=cos(x+y);c=1./(x.^2+y.^2+1);z=a+b+c;mesh(x,y,z);[x,y]=meshgrid(-10:0.05:10);a=exp(-abs(x));b=cos(x+y);c=1./(x.^2+y.^2+1);z=a+b+c;mesh(x,y,z);[x,y]=meshgrid(-10:0.025:10); a=exp(-abs(x));b=cos(x+y);c=1./(x.^2+y.^2+1);z=a+b+c;mesh(x,y,z);(二)书p7/1.3.2数值计算的稳定性(i)取= ??c语言程序—不稳定解 +=ln1.2,按公式=?? (n=1,2,…) #includestdio.h#includeconio.h#includemath.hvoid main(){float m=log(6.0)-log(5.0),n;int i;i=1;printf(y[0]=%-20f,m); while(i20){n=1/i-5*m;printf(y[%d]=%-20f,i,n);m=n;i++;if (i%3==0) printf(\n); }getch();}(ii) c语言程序—稳定解≈??[ ??+?? +?? ??+??按公式 =??(??)#includestdio.h#includeconio.h#includemath.hvoid main(){float m=(1/105.0+1/126.0)/2,n; k=n,n-1,n-2,…)(【篇二:北京理工大学数值计算方法大作业数值实验4】 p260/1考纽螺线的形状像钟表的发条,也称回旋曲线,它在直角坐标系中的参数方程为= ?????????????????? ?? ??????????= ?????????????? ??曲线关于原点对称,取a=1,参数s的变化范围[-5,5],容许误差限分别是,,和。

数值计算方法答案

数值计算方法答案

数值计算方法习题一(2)习题二(6)习题三(15)习题四(29)习题五(37)习题六(62)习题七(70)2009.9,9习题一1.设x >0相对误差为2%4x 的相对误差。

解:由自变量的误差对函数值引起误差的公式:(())(())'()()()()f x xf x f x x f x f x δδ∆=≈得(1)()f x =11()()*2%1%22x x δδδ≈===;(2)4()f x x =时444()()'()4()4*2%8%x x x x x xδδδ≈===2.设下面各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出他们各有几位有效数字。

(1)12.1x =;(2)12.10x =;(3)12.100x =。

解:由教材9P 关于1212.m nx a a a bb b =±型数的有效数字的结论,易得上面三个数的有效数字位数分别为:3,4,53.用十进制四位浮点数计算 (1)++; (2)+(+)哪个较精确 解:(1)++ ≈21((0.3197100.245610)0.1352)fl fl ⨯+⨯+=2(0.3443100.1352)fl ⨯+=210⨯(2)+(+)21(0.319710(0.245610))fl fl ≈⨯+⨯ = 21(0.3197100.259110)fl ⨯+⨯ =210⨯易见++=210⨯,故(2)的计算结果较精确。

4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少解:设该正方形的边长为x ,面积为2()f x x =,由(())(())'()()()()f x xf x f x x f x f x δδ∆=≈解得(())()()'()f x f x x xf x δδ≈=2(())(())22f x x f x x xδδ==%5.下面计算y 的公式哪个算得准确些为什么(1)已知1x <<,(A )11121xy x x-=-++,(B )22(12)(1)x y x x =++; (2)已知1x>>,(A )y=,(B )y = (3)已知1x <<,(A )22sin x y x =,(B )1cos2xy x-=;(4)(A)9y =-(B )y =解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两个数相乘(除)时,大因子(小除数)可能使积(商)的绝对值误差增大许多。

数值计算方法第1章作业

数值计算方法第1章作业

第一章作业第一题问题叙述:构造算法并编程序精确计算二次方程的根。

●设a≠0,b2-4ac>0,且有方程ax2+bx+c=0●包括b2≈b2-4ac的情况(a=c=1,b=±1000000.000001)问题分析:对于普通的二次求根公式:x1,2=−b±√b2−4ac2a当b2>>4ac时,分子可能非常小。

由于计算机中的算术运算存在减性抵消的现象,即两个几乎相等的浮点数相减时会引起舍入误差,所以在这种极端条件下用这个公式就会带来很大的误差。

解决方法:1.使用双精度2.使用变换公式x1,2=−2cb±√b2−4ac3.先利用原公式计算较大的根(即分子不会引起减性抵消),再利用公式:x1x2=c a计算较小的根。

问题解决:1.使用双精度:%This program uses double precision to solve the equation of two degree%And make a comparision to the single precisionclear;clc;[a,b,c]=textread('data.txt','%n%n%n'); %read the numbers from data.txtdelta=b*b-4*a*c;x1=(-b+sqrt(delta))/(2*a);x2=(-b-sqrt(delta))/(2*a); %double precisiona=single(a);b=single(b);c=single(c);%use single precisiondelta=single(b*b-4*a*c);x11=single((-b+sqrt(delta))/(2*a));x12=single((-b-sqrt(delta))/(2*a));fid=fopen('out.txt','w');fprintf(fid,'%g %g %g %g',[x1 x2 x11 x12]);fclose(fid);%write the result into the out.txt下面是计算结果:结论:1.在一般情况下,即没有出现b2≈b2−4ac时,无论是单精度还是双精度下均可以得出正确答案。

数值计算方法课后习题答案

数值计算方法课后习题答案

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

数值计算方法课后习题答案(李庆扬等)

数值计算方法课后习题答案(李庆扬等)

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

数值计算方法马东升等第 版习题解答

数值计算方法马东升等第 版习题解答

第1章 数值计算引论1.1 内容提要一、误差的来源数值计算主要研究以下两类误差。

1. 截断误差数学模型的准确解与用数值方法求得的解的差称为截断误差,又称为方法误差。

这种误差常常是由用有限过程代替无穷过程时产生的误差。

例如,要计算级数∑∞==+++++1!1!1!31!211k k n的值,当用计算机计算时,用前n 项(有限项)的和∑==+++++nk k n 1!1!1!31!211来代替无穷项之和,即舍弃了n 项后边的无穷多项,因而产生了截断误差∑∞+=1!1n k k2. 舍入误差由于计算机字长为有限位,原始数据和四则运算过程中进行舍入所产生的误差称为舍入误差。

例如,用3.141 59表示圆周率π时产生的误差0.000 002 6…,用0.333 33表示1÷3的运算结果时所产生的误差1÷3-0.333 33 = 0.000 003 3…都是舍入误差。

二.近似数的误差表示1. 绝对误差设x *是准值x 的一个近似值,称**)(x x x e -=为近似值x *的绝对误差,简称误差。

令|)(|*x e 的一个上界为*ε,即***|||)(|ε≤-=x x x e把*ε称为近似数*x 的绝对误差限,简称误差限。

2. 相对误差设*x 是精确值x 的一个近似值,称xx x xx e **)(-=为近似值x *的相对误差。

在实际应用中常取***)(xx x x e r -=为*x 的相对误差。

令相对误差绝对值 |)(|*x e r 的一个上界为ε*r,即 ****|||||)(|r r x x x x e ε≤-=把ε*r称为近似数*x 的相对误差限。

3. 有效数字对有多位数字的准确值四舍五入原则得到其前若干位的近似值时,该近似值的绝对误差不超过末位的半个单位。

设数x 的近似值m n x x x x 10.021*⨯±= ,其中,i x 是0~9之间的任一个数,但i x ≠0,n i ,2,1=是正整数,m 是整数,若nm x x -⨯≤-1021||*则称*x 为x 的具有n 位有效数字的近似值,*x 准确到第n 位,n x x x ,,,21 是*x 的有效数字。

数值计算方法》习题答案

数值计算方法》习题答案

《数值计算方法》课后题答案详解吉 林 大 学第一章 习 题 答 案1. 已知(1)2,(1)1,(2)1f f f −===,求()f x 的Lagrange 插值多项式。

解:由题意知:()01201212001020211012012202121,1,2;2,1,1()()(1)(2)()()6()()(1)(2)()()2()()(1)(1)()()3(1)(2)(1)(2)()2162nj j j x x x y y y x x x x x x l x x x x x x x x x x l x x x x x x x x x x l x x x x x x x x L x y l x ==−=====−−−−==−−−−+−==−−−−−+−==−−−−+−==×+×−∴∑()2(1)(1)131386x x x x +−+×=−+2. 取节点01210,1,,2x x x ===对x y e −=建立Lagrange 型二次插值函数,并估计差。

解11201201210,1,;1,,2x x x y y e y e −−======1)由题意知:则根据二次Lagrange插值公式得:02011201201021012202110.510.520.51()()()()()()()()()()()()()2(1)(0.5)2(0.5)4(1)(224)(43)1x x x x x x x x x x x x L x y y y x x x x x x x x x x x x x x x x e x x e e e x e e x −−−−−−−−−−−−=++−−−−−−=−−+−−−=+−+−−+22)Lagrange 根据余项定理,其误差为(3)2210122()1|()||()||(1)(0.5)|3!61max |(1)(0.5)|,(0,1)6()(1)(0.5),()330.5030.2113()61()0.2113(0.21131)(0.21130.5)0.008026x f R x x e x x x x x x t x x x x t x x x x t x R x ξξωξ−+≤≤==−−≤−−∈′=−−=−+=−==≤××−×−=∴取 并令 可知当时,有极大值3. 已知函数y =在4, 6.25,9x x x ===处的函数值,试通过一个二次插值函数求的近似值,并估计其误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值分析第一次作业(1)
1.已测得函数()
y f x
=的三对数据:(0,1),(-1,5),(2,-1),
(1)用Lagrange插值求二次插值多项式。

(2)构造差商表。

(3)用Newton插值求二次插值多项式。

2.在44
x
-≤≤上给出()x
f x e
=的等距节点函数表,若用二次插值求x e的近似值,要使截断误差不超过6
10-,问使用函数表的步长h应取多少?
3.求2
()
f x x
=在[a,b]上的分段线性插值函数()
h
I x,并估计误差。

4.已知单调连续函数()
y f x
=的如下数据
用插值法计算x约为多少时() 1.
f x=(小数点后至少保留4位)
5.设函数()
f x在区间[0,3]上具有四阶连续导数,试用埃尔米特插值法,求一个次
数不高于3的多项式
3()
P x,使其满足
3(0)0
P=,
3(1)1
P=,
3'(1)3
P=,
3(2)1
P=。

并写出误差估计式。

6.设函数()
y f x
=在节点0,1,2,3
x=的函数值均为零,试分别求满足下列边界条件下的三次样条插值函数()
S x:
(1)
''
(0)1,(3)0
f f
==
(2)
''''
(0)1,(3)0
f f
== 7.编程实现题:
在微电机设计计算中需要查磁化曲线表,通常给出的表是磁密B每间隔100高斯磁路每厘米长所需安匝数at的值,下面要解决B从4000至11000区间的查表问题。

为节省计算机存储单元,采用每500高斯存入一个at值,在利用差分公式计算。

从差分表中看到三阶差分近似于0,计算时只需两阶差分。

当4000≤B≤10500时用牛顿前插公式;当10500≤B≤11000时用牛顿后插公式;
试在计算机上编程实现求任一在区间[4000,11000]内的函数值。

相关文档
最新文档