智能避障小车试验报告与总结

合集下载

避障小车实训心得

避障小车实训心得

避障小车实训心得
在与避障小车的实训过程中,我对小车的工作原理和控制方法有了更深入的理解和认识。

下面是我在实训中的一些心得。

首先,我明确了避障小车的工作原理。

避障小车通常会装配有一些传感器,如红外传感器、超声波传感器等,这些传感器可以检测到小车前方的障碍物,并实时向控制器反馈环境信息。

当传感器检测到障碍物时,控制器会根据接收到的信息改变小车的行进方向,从而实现避障的目的。

其次,在实训过程中,我对单片机的使用有了更深一步的了解。

操控避障小车的核心就是单片机,它就像小车的大脑,控制着小车的一切行动。

单片机会根据
接收到的传感器信息,通过算法决定小车的行动。

这个过程中,我通过编写代码来控制单片机的操作,这让我深刻体验了编程在实际应用中的重要性。

在编程过程中,我遇到了许多挑战,比如解决传感器的误差、优化避障算法等等。

但是,每当我解决了一个问题,我都会有一种成就感,同时也会对我所学的知识有更深的理解和理解。

通过这次实训,我也体验到了团队合作的力量。

当我们遇到困难时,我们会一起讨论,一起寻找解决方案,每个人都在为完成最终的目标尽自己的一份力量。

通过团队合作,我们不仅提高了解决问题的效率,也提高了我们的团队协作能力。

总的来说,这次避障小车实训既锻炼了我动手操作的能力,也提高了我编程和解决问题的能力,让我明白理论知识和实践技能要相结合,希望在未来的学习中,我能把实训中学习到的东西应用到实际的工作和生活中去。

智能循迹避障小车实习报告

智能循迹避障小车实习报告

智能循迹避障小车实习报告一、实习背景及目的随着科技的不断发展,嵌入式系统在各个领域的应用越来越广泛。

智能小车作为一种典型的嵌入式系统应用产品,不仅可以锻炼学生的动手能力,还能深入理解嵌入式系统的原理和应用。

本次实习旨在让学生通过设计制作智能循迹避障小车,掌握嵌入式系统的基本原理,提高动手实践能力,培养创新意识和团队协作精神。

二、实习内容与过程1. 实习准备在实习开始前,我们先学习了嵌入式系统的基本原理,了解了微控制器(如STM32)的工作原理和编程方法。

同时,我们还学习了如何使用相关开发工具(如Keil、CubeMX)进行程序开发和仿真。

2. 设计思路根据实习要求,我们确定了智能循迹避障小车的主要功能:远程控制、循迹、避障。

为了实现这些功能,我们需要选用合适的微控制器、传感器、电机驱动模块等硬件,并编写相应的软件程序。

3. 硬件设计我们选用了STM32F103C8T6作为主控制器,它具有高性能、低功耗的特点。

为了实现循迹功能,我们采用了红外传感器来检测地面上的黑线。

为了实现避障功能,我们采用了超声波传感器来检测前方的障碍物。

此外,我们还选用了两个直流电机来驱动小车行驶,并通过L298N驱动模块来控制电机转动。

4. 软件设计软件设计主要包括初始化配置、循迹算法实现、避障算法实现和远程控制实现。

我们使用了CubeMX工具对STM32的硬件资源进行配置,包括时钟、GPIO、ADC、PWM 等。

然后,我们编写了循迹算法和避障算法,通过不断地读取红外传感器和超声波传感器的数据,调整小车的行驶方向和速度,实现循迹和避障功能。

最后,我们通过蓝牙模块实现了手机APP对小车的远程控制。

5. 实习成果经过一段时间的紧张设计与制作,我们的智能循迹避障小车终于完成了。

在实习总结会议上,我们进行了演示,展示了小车的循迹、避障和远程控制功能。

通过实习,我们不仅掌握了嵌入式系统的设计方法,还提高了团队协作能力。

三、实习收获与反思通过本次实习,我们深入了解了嵌入式系统的设计原理,学会了使用相关开发工具和硬件设备,提高了动手实践能力。

避障小车实训报告

避障小车实训报告

一、引言随着科技的不断发展,智能化技术逐渐渗透到我们生活的方方面面。

智能避障小车作为一种典型的智能化产品,其设计和实现过程对于培养我们的实践能力和创新思维具有重要意义。

本次实训旨在通过设计、制作和调试避障小车,掌握智能避障技术的基本原理和实现方法。

二、实训目的1. 熟悉智能避障小车的基本原理和组成;2. 掌握单片机编程和驱动电路的设计方法;3. 提高动手实践能力和创新思维;4. 培养团队合作精神。

三、实训内容1. 避障小车原理分析避障小车主要由以下几个部分组成:单片机、传感器、驱动电路、电源和车体。

其中,单片机作为控制核心,负责处理传感器采集到的数据,并控制驱动电路使小车实现避障功能。

传感器负责检测小车周围的环境,将信息反馈给单片机。

驱动电路负责将单片机的控制信号转换为电机驱动信号,使小车运动。

电源为小车提供动力。

2. 避障小车硬件设计(1)单片机:本次实训选用STC89C52单片机作为控制核心,该单片机具有丰富的资源,易于编程和调试。

(2)传感器:本次实训选用红外线传感器作为避障传感器,其优点是成本低、体积小、安装方便。

(3)驱动电路:本次实训选用L298N驱动电路,该电路能够驱动直流电机,实现电机的正反转和调速。

(4)电源:本次实训选用可充电锂电池作为电源,具有体积小、容量大、寿命长的特点。

3. 避障小车软件设计(1)主程序:主程序负责初始化单片机、传感器和驱动电路,设置中断和定时器,以及处理传感器采集到的数据。

(2)中断服务程序:中断服务程序负责处理红外线传感器检测到的障碍物信息,根据障碍物距离和方向控制小车转向。

(3)定时器程序:定时器程序负责控制小车的速度,实现匀速行驶。

四、实训过程1. 硬件制作:根据设计图纸,焊接单片机、传感器、驱动电路等元器件,组装成避障小车。

2. 软件编程:使用Keil软件编写单片机程序,调试并优化程序。

3. 调试与测试:在避障小车上进行测试,观察小车的避障效果和行驶稳定性。

智能小车实验报告心得(3篇)

智能小车实验报告心得(3篇)

第1篇一、引言随着科技的不断发展,人工智能技术逐渐渗透到我们生活的方方面面。

作为人工智能的一个典型应用,智能小车实验为我们提供了一个将理论知识与实践操作相结合的平台。

在本次智能小车实验中,我深刻体会到了理论知识的重要性,同时也感受到了动手实践带来的乐趣和成就感。

以下是我对本次实验的心得体会。

二、实验目的本次实验旨在通过设计、搭建和调试智能小车,让学生掌握以下知识:1. 传感器原理及在智能小车中的应用;2. 单片机编程及接口技术;3. 电机驱动及控制;4. PID控制算法在智能小车中的应用。

三、实验过程1. 设计阶段在设计阶段,我们首先对智能小车的功能进行了详细规划,包括自动避障、巡线、遥控等功能。

然后,根据功能需求,选择了合适的传感器、单片机、电机驱动器等硬件设备。

2. 搭建阶段在搭建阶段,我们按照设计图纸,将各个模块连接起来。

在连接过程中,我们遇到了一些问题,如电路板布局不合理、连接线过多等。

通过查阅资料、请教老师,我们逐步解决了这些问题。

3. 编程阶段编程阶段是本次实验的核心环节。

我们采用C语言对单片机进行编程,实现了小车的基本功能。

在编程过程中,我们遇到了许多挑战,如传感器数据处理、电机控制算法等。

通过查阅资料、反复调试,我们最终完成了编程任务。

4. 调试阶段调试阶段是检验实验成果的关键环节。

在调试过程中,我们对小车的各项功能进行了测试,包括避障、巡线、遥控等。

在测试过程中,我们发现了一些问题,如避障效果不稳定、巡线精度不高、遥控距离有限等。

针对这些问题,我们再次查阅资料、调整程序,逐步优化了小车的性能。

四、心得体会1. 理论与实践相结合本次实验让我深刻体会到了理论与实践相结合的重要性。

在实验过程中,我们不仅学习了理论知识,还通过实际操作,将所学知识应用于实践,提高了自己的动手能力。

2. 团队合作在实验过程中,我们充分发挥了团队合作精神。

在遇到问题时,我们互相帮助、共同探讨解决方案,最终完成了实验任务。

智能避障小车报告

智能避障小车报告

智能避障小车报告智能避障小车报告一、引言智能避障小车是一种具有自主导航和避障功能的智能机器人,它利用传感器和算法来感知周围环境并做出相应的动作,以避免与障碍物发生碰撞。

本报告旨在对智能避障小车的设计原理、工作原理以及应用领域进行介绍和分析。

二、设计原理智能避障小车的设计原理包括感知系统、决策系统和执行系统三个部分。

1. 感知系统:感知系统主要负责获取环境信息,常用的感知器件包括超声波传感器、红外线传感器、摄像头等。

超声波传感器可以测量小车与障碍物之间的距离,红外线传感器可以检测障碍物的存在与否,摄像头可以获取环境图像。

2. 决策系统:决策系统根据感知系统获取的信息,通过算法进行分析和处理,决定小车的行动。

常用的算法包括避障算法、路径规划算法等。

避障算法通常基于感知数据计算出避障方向和速度,路径规划算法则是根据目标位置和环境地图计算出最优路径。

3. 执行系统:执行系统根据决策系统的指令控制小车的运动,包括驱动电机、舵机等部件。

驱动电机控制小车的前进、后退和转向,舵机控制车头的转动。

三、工作原理智能避障小车的工作原理如下:1. 感知环境:小车利用传感器获取环境信息,例如超声波传感器测量距离,红外线传感器检测障碍物,摄像头获取图像。

2. 数据处理:小车的决策系统对感知到的数据进行处理和分析,计算出避障方向和速度,或者根据目标位置和环境地图计算出最优路径。

3. 控制执行:决策系统根据计算结果发出指令,控制执行系统驱动电机和舵机,控制小车的运动。

如果遇到障碍物,小车会自动避开,如果目标位置发生变化,小车会自动调整路径。

四、应用领域智能避障小车在许多领域都有广泛的应用。

1. 家庭服务机器人:智能避障小车可以在家庭环境中执行一些简单的任务,如送餐、打扫卫生等。

2. 仓储物流:智能避障小车可以在仓库中自主导航,收集和组织货物,减少人力成本和提高效率。

3. 自动驾驶汽车:智能避障小车的避障和导航算法可以应用于自动驾驶汽车,提高安全性和稳定性。

智能小车实训报告5页

智能小车实训报告5页

智能小车实训报告5页一、实验目的本实验旨在通过图像识别技术和单片机控制技术,构建一辆具有自主巡线和避障功能的智能小车。

二、实验器材硬件器材:1. Arduino UNO 控制器2. 舵机驱动模块4. 红外遥控模块5. 平衡车底盘6. 直流电机7. 陀螺仪传感器8. 红外线反射传感器软件工具:2. Python 编程语言三、实验步骤1. 硬件连接将舵机驱动模块和电机驱动模块连接至 Arduino 控制器上,并将红外遥控模块和陀螺仪传感器两个模块连接到 Arduino 子板上。

2. 巡线程序设计编写巡线程序,使小车能够自主巡线。

巡线程序的主要功能是利用红外线反射传感器检测地面上黑白交替的线条,然后控制小车转向或停止。

4. 远程控制程序设计编写远程控制程序,使小车能够通过红外线遥控器进行操作。

远程控制程序的主要功能是接收红外遥控信号,并进行相应的操作。

5. 整合程序将巡线程序、避障程序和远程控制程序整合到一个程序中,使小车能够在不同情况下实现自主巡线、避障和远程控制操作。

四、实验结果在巡线实验中,小车能够准确地检测到地面上黑白交替的线条,并在此基础上实现正确的转向和运动。

在避障实验中,小车通过陀螺仪传感器检测到自身的倾斜角度,进而避免与障碍物发生碰撞。

总结本实验通过对图像识别和单片机控制技术的应用,实现了自主巡线、避障和远程控制等多种功能的智能小车。

实验过程充满挑战,但通过不断调试和优化,最终实现了预期的效果。

这个实验让我深刻认识到了图像识别和控制技术的重要性和广泛性,也让我更加坚定了今后学习和研究相关领域的决心。

智能小车避障实习报告

智能小车避障实习报告

一、实习背景随着科技的不断发展,智能机器人技术逐渐成为研究热点。

智能小车作为智能机器人的一种,在工业、家庭、教育等领域具有广泛的应用前景。

为了提高我国智能机器人技术的研发水平,本实习报告以智能小车避障系统为研究对象,通过实际操作,掌握智能小车避障系统的设计、实现及调试方法。

二、实习目的1. 熟悉智能小车避障系统的组成及工作原理;2. 掌握智能小车避障系统的硬件设计、软件编程及调试方法;3. 提高实际动手能力和团队协作能力;4. 为今后从事智能机器人研发工作打下基础。

三、实习内容1. 系统概述本实习项目采用基于单片机的智能小车避障系统,主要包括以下模块:(1)传感器模块:超声波传感器、红外传感器;(2)控制器模块:单片机(如STC89C52);(3)执行器模块:电机驱动模块、电机;(4)电源模块:电池、电源管理芯片;(5)通信模块:无线通信模块(如nRF24L01)。

2. 硬件设计(1)传感器模块:采用超声波传感器和红外传感器,分别用于检测前方障碍物和地面上的标记线。

(2)控制器模块:选用STC89C52单片机作为控制器,负责处理传感器数据、生成控制指令,并通过无线通信模块与上位机进行数据交互。

(3)执行器模块:采用直流电机驱动模块,驱动电机实现小车的前进、后退、左转和右转。

(4)电源模块:采用锂电池作为电源,通过电源管理芯片实现电压稳定输出。

(5)通信模块:采用nRF24L01无线通信模块,实现小车与上位机之间的数据传输。

3. 软件编程(1)初始化:初始化单片机,配置端口、中断、定时器等。

(2)传感器数据处理:读取超声波传感器和红外传感器的数据,并进行处理。

(3)控制指令生成:根据传感器数据处理结果,生成控制指令,驱动电机实现小车避障。

(4)无线通信:实现小车与上位机之间的数据传输。

4. 系统调试(1)硬件调试:检查各模块连接是否正确,电源是否稳定,传感器信号是否正常。

(2)软件调试:通过串口调试工具,观察程序运行状态,调试程序错误。

超声波避障小车实习报告

超声波避障小车实习报告

一、实习背景随着科技的不断发展,智能机器人技术在各个领域得到了广泛应用。

其中,超声波避障技术作为一种非接触式测距技术,因其具有非破坏性、高精度、抗干扰能力强等优点,在智能机器人领域具有广泛的应用前景。

本次实习,我们设计并制作了一款基于超声波避障技术的智能小车,旨在通过实践操作,提高我们的动手能力和创新能力。

二、实习目的1. 熟悉超声波避障技术的基本原理和应用。

2. 掌握超声波传感器、单片机、电机驱动器等硬件设备的使用方法。

3. 学会编写控制程序,实现小车自主避障功能。

4. 提高团队协作能力和实践操作能力。

三、实习内容1. 超声波避障原理超声波避障技术是利用超声波传感器发射超声波,当超声波遇到障碍物时,会被反射回来。

通过计算发射和接收超声波的时间差,可以计算出障碍物与传感器之间的距离。

当距离小于设定值时,控制系统会发出避障指令,使小车改变行驶方向。

2. 硬件设备(1)超声波传感器:用于检测前方障碍物距离。

(2)单片机:作为控制系统核心,负责处理数据、发出控制指令。

(3)电机驱动器:驱动小车前进、后退、左转或右转。

(4)电源模块:为整个系统提供稳定可靠的电力支持。

3. 软件设计(1)编写控制程序:根据超声波传感器检测到的距离,编写程序控制小车行驶方向。

(2)调试程序:通过调试,使小车在遇到障碍物时能够自动避障。

四、实习过程1. 硬件组装(1)根据电路图,将超声波传感器、单片机、电机驱动器等硬件设备连接到电路板上。

(2)连接电源模块,确保电路板供电正常。

2. 编写控制程序(1)编写程序实现超声波传感器数据读取、处理和避障逻辑。

(2)编写程序实现电机驱动控制,使小车按照预设逻辑行驶。

3. 调试程序(1)通过调试,使小车在遇到障碍物时能够自动避障。

(2)调整程序参数,提高小车避障精度和稳定性。

五、实习成果1. 成功制作了一款基于超声波避障技术的智能小车。

2. 掌握了超声波避障技术的基本原理和应用。

3. 提高了动手能力和编程能力。

智能避障小车试验报告与总结

智能避障小车试验报告与总结

智能避障小车试验报告与总结专业班级:12自动化-3******学号:**********随着科学技术的发展,机器人的感觉传感器种类越来越多,其中视觉传感器成为自动行走和驾驶的重要部件。

视觉的典型应用领域为自主式智能导航系统,对于视觉的各种技术而言图像处理技术已相当发达,而基于图像的理解技术还很落后,机器视觉需要通过大量的运算也只能识别一些结构化环境简单的目标。

视觉传感器的核心器件是摄像管或CCD,目前的CCD已能做到自动聚焦。

但CCD传感器的价格、体积和使用方式上并不占优势,因此在不要求清晰图像只需要粗略感觉的系统中考虑使用接近觉传感器是一种实用有效的方法。

STC12C5A60S2/AD/PWM系列单片机是宏晶科技生产的单时钟/机器周期(1T)的单片机,是高速/低功耗/超强抗干扰的新一代8051单片机,指令代码完全兼容传统8051,但速度快8-12倍。

内部集成MAX810专用复位电路,2路PWM,8路速10位A/D转换(250K/S),针对电机控制,强干扰场合。

我们采用的就是STC12C5A60S2这种单片机。

避障系统可以采用反射式光电开关或者超声波传感器对前方的障碍物进行检测,前者结构简单,应用方便灵活,但不能获知障碍物与小车间的具体距离;后者结构复杂,但可以测得障碍物与小车间的直线距离。

本系统采用反射式光电开关E3F-DS10C4来检测障碍物。

E3F-DS10C4是漫反射式光电开关,NPN三线输出方式,三线分别为电源线、输出线、地线。

它的灵敏度也可以调节,检测距离比较远,可以达到20cm。

红外发射管,发射50hz调制的38k信号。

当遇到障碍物时,发生漫反射,红外接收头接收到这一信号时,输出端输出50hz的信号。

判断这一信号,即可判断,遇到了障碍物。

避障传感器基本原理,利用物体的反射性质。

在一定范围内,如果没有障碍物,发射出去红外线,因为传播距离越远而逐渐减弱,最后消失,或者反射回来的光很弱时,输出端呈低电平光电开关的检测不受外界干扰。

超声避障小车实习报告

超声避障小车实习报告

一、实习背景随着科技的飞速发展,智能化、自动化技术在各个领域得到了广泛应用。

在机器人领域,避障小车作为基础的研究与开发对象,具有很高的实用价值和研究意义。

本次实习,我们小组选择设计并制作一款基于超声波避障技术的小车,旨在通过实际操作,深入了解超声波避障的原理和实现方法,提升我们的动手能力和团队协作能力。

二、实习目标1. 理解超声波避障的基本原理。

2. 掌握超声波传感器的应用方法。

3. 设计并实现一个基于超声波避障的小车控制系统。

4. 通过实验验证小车的避障性能。

三、实习内容1. 超声波避障原理超声波避障技术利用超声波传感器发射和接收超声波,根据回波的时间差计算障碍物的距离,从而实现避障功能。

具体来说,当超声波传感器发射超声波时,遇到障碍物会反射回来,传感器接收到反射波后,通过计算发射和接收之间的时间差,结合超声波的传播速度,即可得到障碍物的距离。

2. 硬件设计本次实习所使用的硬件主要包括以下部分:单片机:作为系统的核心控制单元,负责接收传感器信号、处理数据并发出控制指令。

超声波传感器:用于检测前方障碍物,并将距离信息传输给单片机。

电机驱动模块:根据单片机的控制指令,驱动小车前进、后退、左转或右转。

电源系统:为整个系统提供稳定可靠的电力支持。

3. 软件设计软件设计主要包括以下部分:超声波测距程序:通过单片机控制超声波传感器发射超声波,并计算回波时间差,从而得到障碍物的距离。

避障控制程序:根据超声波测距程序得到的数据,判断小车是否遇到障碍物,并控制小车进行相应的避障操作。

4. 实验验证通过实际实验,我们对小车的避障性能进行了验证。

实验结果表明,小车能够准确检测到前方障碍物,并在遇到障碍物时及时进行避障,表现出良好的避障性能。

四、实习总结通过本次实习,我们小组成功设计并制作了一款基于超声波避障技术的小车,实现了以下目标:1. 理解了超声波避障的基本原理。

2. 掌握了超声波传感器的应用方法。

3. 设计并实现了小车控制系统。

智能小车设计实验报告

智能小车设计实验报告

智能小车设计实验报告简介智能小车是一种集机械、电子、计算机和通信技术于一体的设备。

通过传感器收集环境信息、通过处理器进行运算、通过电机实现运动,具有自动避障、巡线、遥控等功能。

本实验旨在设计一种智能小车,并测试其在避障和巡线任务中的性能。

设计方案硬件1. 底盘:使用一块稳定且坚固的底板作为小车的基础结构,确保小车运动时的稳定性。

2. 电机:选用两个直流电机,用于驱动小车前进和转向,通过电机控制模块与处理器进行通信。

3. 传感器:- 超声波传感器:用于探测前方障碍物距离,实现智能避障功能。

- 红外线传感器:用于检测地面上的黑白线,实现巡线功能。

4. 处理器:采用Arduino开发板作为处理器,接收传感器数据,根据算法控制电机的运动。

5. 电源:选择一个稳定且容量适当的电池供电。

软件1. 避障算法:- 获取超声波传感器数据。

- 判断是否存在前方障碍物。

- 若存在障碍物,根据距离远近调整电机转速和方向。

- 否则,前进。

- 循环执行以上步骤。

2. 巡线算法:- 获取红外线传感器数据。

- 判断当前传感器是否在黑线上。

- 若在黑线上,调整电机转速和方向。

- 否则,旋转寻找黑线。

- 循环执行以上步骤。

实验过程避障功能测试1. 搭建实验场地,放置障碍物。

2. 小车启动后,执行避障算法,前进并实时检测前方障碍物。

3. 当检测到障碍物时,小车自动调整转速和方向,避免碰撞。

4. 实时记录小车克服障碍物的时间和距离。

巡线功能测试1. 在地面上绘制黑白线条,构建巡线场地。

2. 小车启动后,执行巡线算法,沿着黑线行驶。

3. 当检测到离线时,小车调整转速和方向,重新寻找黑线。

4. 实时记录小车完成巡线任务所花费的时间和路径。

实验结果与分析避障功能在实验中,小车能够成功避开放置的障碍物,且响应迅速,避免了碰撞。

通过记录的时间和距离可以评估小车的避障性能,进而对算法进行优化。

巡线功能在巡线任务中,小车能够识别黑线,并且根据需要进行转向。

循迹避障小车实习报告

循迹避障小车实习报告

循迹避障小车实习报告一、实习目的与意义本次实习旨在通过设计和制作循迹避障小车,掌握嵌入式系统的基本原理和应用,培养实际操作能力和创新能力。

循迹避障小车是一种具有自动循迹和避障功能的智能小车,它可以在预设的路径上自动行驶,并在遇到障碍物时自动调整路径,实现自主导航。

二、实习内容与过程1. 设计思路在设计循迹避障小车时,我们首先确定了整体的设计思路:采用STM32单片机作为主控制器,通过循迹传感器检测路径,利用避障传感器检测障碍物,并根据检测结果控制小车的行驶方向和速度。

2. 硬件设计硬件设计主要包括单片机、循迹传感器、避障传感器、电机驱动器、电机等。

我们选择了STM32F103作为主控制器,因为它具有高性能和丰富的外设资源。

循迹传感器采用红外传感器,用于检测路径上的黑线;避障传感器也采用红外传感器,用于检测前方障碍物。

电机驱动器选用L298N,它可以驱动两个直流电机,实现小车的转向和前进。

3. 软件设计软件设计主要包括单片机的初始化、循迹检测、避障处理、电机控制等。

我们编写了相应的程序,实现了以下功能:(1)循迹功能:通过循迹传感器检测路径上的黑线,根据黑线的高低电平变化调整小车的行驶方向。

(2)避障功能:通过避障传感器检测前方障碍物,当检测到障碍物时,控制小车减速并调整行驶方向。

(3)遥控功能:通过遥控器实现小车的前进、后退、左转、右转等基本操作。

4. 实习结果经过反复调试,我们的循迹避障小车在预设的路径上能够自动行驶,并在遇到障碍物时能够自动避让。

此外,通过遥控器,我们可以实现对小车的远程控制。

三、实习收获与反思通过本次实习,我们深入了解了嵌入式系统的设计和应用,掌握了STM32单片机的编程和调试技巧,提高了实际操作能力和创新能力。

同时,我们也认识到在实际项目中,需要充分考虑硬件和软件的兼容性,以及系统的稳定性和可靠性。

总之,本次实习是一次富有挑战性和收获满满的实践过程。

我们将继续努力,将所学知识应用到实际项目中,为我国的嵌入式技术发展贡献自己的力量。

智能避障小车实验报告与总结.doc

智能避障小车实验报告与总结.doc

智能避障小车实验报告与总结.doc
"
一、实验目的
本次实验的目的主要是为了开发一款智能避障小车,能够在遇到障碍物的时候自动的
调整小车的行驶线路,从而实现自动避障的功能。

二、实验简介
本次实验是借助Arduino组装智能避障小车,小车拥有机械减速装置和两个安装在小
车前面的发射装置,用来发射超声波信号来检测障碍物,当安装在小车前面的发射装置检
测到障碍物的时候,小车会自动的重新调整走行线路,避免进入发射装置检测到的障碍物。

三、实验流程与原理
1. 硬件接线:
硬件从实验清单上将所需电子元件按照所需顺序连接上Arduino开发板,包括:
发射装置、接收装置、步进电机、电机驱动板和超声波传感器。

2. 编程:
编程采用Arduino IDE,将发射装置发射的超声波信号,接收装置接收的反射信号使用超声波模块采集,并且利用Arduino的程序控制电机驱动板,从而调节小车的行驶方向,最终实现自动避障的功能。

3. 运行实验:
将程序上传到Arduino板上,观察小车的避障功能,当小车行驶到障碍物的时候,小车会自动的重新调整方向,避免进入发射装置检测到的障碍物。

四、实验结果与总结
本次实验,通过无线式避障小车,能够在行驶过程中自动检测到障碍物并调整行驶方
向自动避障,且能排除许多可能发生的外界干扰,满足了自动避障的要求,从而达到了实
验目标。

智能寻迹避障小车报告

智能寻迹避障小车报告

智能小车摘要本小车以MSP超低功耗单片机系列MSP430F5438为核心,完成寻迹、避障、测速、测距等功能。

在机械结构上,对普通的小车作了改进,即用一个万用轮来代替两个前轮,使小车的转向更加灵敏。

采用PWM 驱动芯片控制电机,红外传感器来寻迹,超声波传感器来避障、测距,霍尔传感器测速。

基于可靠的硬件设计和稳定的软件算法,实现题目要求。

而且附加实现显示起跑距离、行驶时间、行驶速度等扩展功能。

关键词:MSP430 寻迹避障测速测距AbstractThis design is controlled with the MCU(MSP430F5438) to complete the function of finding trace, detecting medal, avoiding barrier, tending to light and measure speed. By using infrared sensor to locate the trace, photo, electrical sense to measure the light、metal sensor to detect the metal and ultrasonic wave sensor to avoid the barrier. Based on the reliable hardware and software designing, this design is well fulfilled. In addition, such extended functions as measuring the distance and recording the running-time are completed well. On the level of machine structure, we use a perfect wheel to make the car turning more convenience.Key Words: MSP430 find trace detect medal avoid barrier and tend to light.一、系统设计1.1设计要求1、基本要求(1) 小车跑道如下图所示,要求小车在跑道上实现寻迹、避障、测距、测速等基本功能。

双目避障小车实验报告

双目避障小车实验报告

一、实验目的1. 了解和掌握双目视觉系统的基本原理和实现方法。

2. 学习利用双目视觉技术实现小车避障的功能。

3. 培养动手实践能力和创新思维。

二、实验原理双目避障小车是基于双目视觉原理设计的,通过两个摄像头获取图像,经过图像处理和深度估计,实现对周围环境的感知和障碍物的检测。

实验中,小车通过调整方向来避开障碍物,实现自主导航。

三、实验器材1. 双目摄像头2. Arduino开发板3. 小车底盘4. 电机驱动模块5. 电池6. 连接线7. 编程软件(如Arduino IDE)四、实验步骤1. 搭建实验平台:将双目摄像头固定在小车前方,连接Arduino开发板、电机驱动模块和电池,确保电路连接正确。

2. 编写程序:- 初始化摄像头和Arduino开发板;- 从摄像头获取左右图像;- 对左右图像进行预处理,包括灰度化、滤波等;- 对预处理后的图像进行特征提取,如边缘检测、角点检测等;- 计算左右图像中特征点的对应关系,实现立体匹配;- 根据匹配结果计算场景深度;- 根据深度信息判断前方障碍物位置,控制小车转向避障。

3. 调试程序:- 在实验平台上进行调试,观察小车避障效果;- 调整程序参数,优化避障性能。

4. 测试实验:- 在不同环境下进行测试,验证小车避障的稳定性和可靠性;- 记录实验数据,分析实验结果。

五、实验结果与分析1. 实验结果:经过调试和测试,小车能够成功避开前方障碍物,实现自主导航。

2. 结果分析:- 实验结果表明,双目视觉技术在避障小车中的应用是可行的;- 通过调整程序参数,可以优化小车避障性能,提高其在复杂环境下的适应性。

六、实验总结1. 通过本次实验,我们掌握了双目视觉系统的基本原理和实现方法,了解了其在避障小车中的应用;2. 实验过程中,我们培养了动手实践能力和创新思维,提高了编程能力;3. 本次实验为后续研究提供了有益的参考和借鉴。

七、展望1. 进一步优化双目避障小车的算法,提高其在复杂环境下的适应性;2. 探索双目视觉技术在其他领域的应用,如机器人导航、无人驾驶等;3. 深入研究深度估计技术,提高深度信息的准确性和可靠性。

智能小车避障实习报告

智能小车避障实习报告

智能小车避障实习报告一、实习目的本次实习旨在通过设计和实现基于单片机的智能小车避障系统,使学生掌握嵌入式系统的基本原理和应用,提高学生在实际工程中的动手能力和创新能力。

通过实习,学生应能熟练识别电子元器件,了解传感器、电机在控制作用下实现具体机械结构的运动原理,并掌握基于单片机的控制系统设计与调试方法。

二、实习内容1. 设计基于单片机的智能小车避障系统,实现小车在遇到障碍物时能够自动避开,继续前进。

2. 掌握单片机的基本原理和编程方法,熟悉C语言编程。

3. 了解传感器技术、电机驱动技术和控制算法在智能小车避障系统中的应用。

4. 学习使用仿真器和编程软件进行系统仿真和调试。

5. 撰写实习报告,总结实习过程中的收获和不足。

三、实习过程1. 设计思路本实习设计的智能小车避障系统采用单片机作为核心控制器,利用红外线传感器检测前方障碍物,并通过控制算法实现小车的自动避障。

系统主要包括单片机、红外线传感器、电机驱动模块和电源模块等。

2. 硬件设计单片机:选用高性能、低功耗的单片机作为核心控制器,负责处理传感器数据、执行避障算法,以及控制小车的运动。

红外线传感器:用于检测前方障碍物,当红外线传感器检测到障碍物时,输出高电平信号给单片机。

电机驱动模块:负责驱动小车的运动,包括前进、后退、转向等。

通过控制电机的转速和方向,实现小车的运动控制。

电源模块:为整个系统提供稳定的电源供应。

3. 软件设计软件设计主要涉及系统初始化、红外线传感器数据采集、障碍物检测与避障控制以及控制算法等。

程序采用C语言编写,利用单片机的定时器中断实现红外线传感器的周期性扫描,以及通过判断红外线传感器输出的高电平信号持续时间来判断障碍物的距离。

4. 系统调试与仿真利用仿真器对编写好的程序进行仿真,观察小车在遇到障碍物时的避障效果。

通过不断调整控制算法和参数,优化小车的避障性能。

四、实习收获通过本次实习,学生掌握了基于单片机的智能小车避障系统的设计方法和流程,熟悉了传感器技术、电机驱动技术和控制算法在实际工程中的应用。

智能小车实验报告

智能小车实验报告

智能小车实验报告1. 引言近年来,随着科技的快速发展,人工智能成为了研究的焦点之一。

智能小车作为人工智能的应用之一,具有广阔的发展前景。

本实验旨在探索智能小车的设计与实现,并通过实践掌握相关技术。

2. 设计与搭建2.1 电路设计根据实验要求,我们使用了Arduino开发板作为智能小车的控制中心。

通过连接电机驱动模块和超声波传感器,实现了对小车的控制与感知。

电路设计中充分考虑了稳定性与可靠性,保证了智能小车的正常运行。

2.2 程序设计为了实现智能小车的自主导航功能,我们编写了相应的程序。

程序通过读取超声波传感器的测量数据,并结合事先设定的目标,实现了小车的精准避障与循迹。

通过巧妙的算法设计,我们成功地实现了智能小车的自主导航。

3. 实验结果与分析3.1 避障能力在实验中,我们设置了不同的障碍物来测试智能小车的避障能力。

经过多次尝试与优化,智能小车成功地避开了各类障碍物,展现了出色的避障能力。

这一结果验证了我们算法设计的合理性,同时也为智能小车的实际应用提供了保证。

3.2 循迹性能为了测试智能小车的循迹性能,我们在实验中布置了黑白交替的赛道。

通过对小车上的循迹传感器进行调试与测试,我们成功地实现了小车的自主循迹。

无论是直线还是弯道,智能小车始终保持在指定的轨迹上,展示出了出色的循迹性能。

4. 应用前景与展望智能小车作为人工智能的一个典型应用,具有广泛的应用前景。

随着自动驾驶技术的发展,智能小车有望在物流、仓储和无人配送等领域发挥重要作用。

此外,智能小车还能够应用在环境监测、安防巡检等方面,为人们提供更加便利与安全的服务。

然而,目前智能小车仍面临一些挑战。

例如,在复杂环境下的导航和避障问题仍然存在挑战性。

此外,智能小车对高精度的地图与感知数据的依赖性也限制了其在某些场景下的应用。

因此,进一步的研究和技术创新仍然是必要的。

总结通过本次智能小车实验,我们深入了解了智能小车的设计与实现原理,掌握了相关的电路和程序设计技术。

避障智能小车总结汇报

避障智能小车总结汇报

避障智能小车总结汇报避障智能小车是一种基于人工智能技术的智能机器人,它能够通过传感器获取环境信息,并根据这些信息做出相应的反应,以避免与障碍物发生碰撞。

通过控制小车的电机或舵机等执行器,使其能够自主地导航和避开障碍物。

避障智能小车的设计和制作主要包括以下几个方面:硬件设计、传感器选择与布置、算法设计与优化、电机控制与平衡、通信与控制系统等。

通过合理的设计和优化,使得小车能够在复杂的环境中自主导航并避开障碍物。

在硬件方面,避障智能小车通常由底盘、电机、舵机、传感器、控制器和供电系统等组成。

底盘为小车提供了稳定的基础,电机和舵机用于驱动和调整小车的运动方向。

传感器是避障智能小车的“眼睛”,可以通过传感器获取到障碍物的位置和距离等信息。

控制器根据传感器信息和算法进行计算和决策,并控制电机和舵机执行相应的动作。

供电系统为小车提供动力和电能。

在传感器的选择和布置方面,一般会选择红外传感器或超声波传感器作为主要的避障传感器。

红外传感器可以用来检测障碍物的距离,超声波传感器可以用来检测障碍物的位置和形状。

这些传感器通常会布置在小车的前方和两侧,以保证对周围环境的全方位监测。

算法设计与优化是避障智能小车的核心部分,它通过对传感器获取到的数据进行处理和分析,以得到障碍物的位置、距离和形状等信息。

基于这些信息,算法会根据设定的策略和规则,决定小车的运动方向和速度,以避开障碍物和保持稳定平衡。

常见的算法包括基于规则的算法、模糊逻辑算法、机器学习算法等,每种算法都有其优缺点,需要根据实际需求和环境来选择和优化。

电机控制与平衡是保证避障智能小车正常运行的关键环节,通过控制电机和舵机的转动方向和速度,可以实现小车的前进、后退、左转和右转等基本动作。

为了保持小车的稳定平衡,还需要考虑小车的重心调整和姿态控制等问题。

通信与控制系统是避障智能小车与外部设备进行数据交换和远程控制的重要部分,可以通过无线通信或有线通信来实现小车和控制终端的连接。

智能红外避障小车实习报告

智能红外避障小车实习报告

实习报告:智能红外避障小车一、实习背景及目的随着科技的不断发展,人工智能和机器人技术日益成熟,智能车辆已成为研究的热点。

本次实习旨在设计并实现一款基于单片机的智能红外避障小车,掌握单片机原理、传感器应用、电路设计等技能,提高自己的实际操作能力和创新能力。

二、实习内容与过程1. 需求分析本次实习的智能红外避障小车需要具备以下功能:(1)自动避障:当遇到障碍物时,小车能够自动停下或改变方向。

(2)循迹功能:小车能够在黑色轨迹上自主行驶。

(3)红外遥控:通过红外遥控器控制小车的启动、停止和方向。

2. 硬件设计(1)核心控制器:采用STM32F103单片机作为核心控制器,负责处理传感器信号和控制小车运行。

(2)传感器:使用红外传感器检测前方障碍物和循迹,红外发射管和接收管组成红外遥控系统。

(3)电机驱动:采用L298N电机驱动模块驱动两个直流电机,实现小车的运动。

(4)电源:使用9V电源为整个系统供电。

3. 软件设计软件设计主要包括以下几个部分:(1)初始化配置:配置GPIO引脚为输入模式,并启用外部中断。

(2)红外循迹功能实现:通过读取GPIO引脚的状态来判断当前的线路颜色,并控制电机使小车沿着黑线行驶。

(3)红外避障功能实现:当检测到前方有障碍物时,小车需要停下来或者改变方向。

(4)红外遥控功能实现:通过红外接收器接收遥控器信号,并控制小车的启动、停止和方向。

4. 实习结果与分析经过一段时间的实习,最终完成了智能红外避障小车的设计与实现。

通过测试,小车能够实现自动避障、循迹功能和红外遥控功能。

在实习过程中,深入了解了单片机原理、传感器应用、电路设计等知识,提高了自己的实际操作能力和创新能力。

同时,也发现了一些问题,如红外避障灵敏度不够、遥控器信号干扰等,需要在今后的工作中继续优化。

三、实习总结通过本次实习,我对智能车辆的设计与实现有了更深入的了解,掌握了单片机原理、传感器应用、电路设计等技能,为自己今后的科研和工作打下了坚实的基础。

智能循迹避障小车实践报告

智能循迹避障小车实践报告

电气工程与自动化学院课程设计报告(嵌入式技术实践一)题目:****专业班级:****学号:20学生姓名:****指导老师:****2012年 7 月 31 日摘要本课题是基于P89C51单片机的智能小车的设计与实现,小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶,能够检测周围的障碍物寻找最佳路以免小车在行驶的过程中遭到损坏。

小车系统以P89C51单片机为系统控制处理器;采用红外传感获取赛道的信息,利用超声波测距模块判断障碍物,来对小车的方向和速度进行控制。

此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。

关键词:智能循迹避障小车、嵌入式系统。

目录第一章绪论 (4)1.1课题背景 (4)1.2智能汽车的发展现状 (5)1.2.1 国内发展情况 (5)1.2.2 国外的发展情况 (5)1.2.3 智能车竞赛现状 (6)1.3实践的目的和意义 (7)第二章系统方案设计 (8)2.1系统设计目标 (8)2.2系统设计思想 (8)2.3系统的总体结构 (8)2.4系统硬件设计 (9)2.4.1 小车设计 (9)2.4.2 电源模块设计 (9)2.4.3 驱动模块设计 (10)2.4.4 红外传感模块设计 (10)2.4.5 测距模块设计 (10)2.5系统软件设计 (11)2.5.1 编程环境的介绍 (11)2.5.2 电机控制程序设计 (12)2.5.3 循迹程序设计 (12)2.5.4 避障程序设计 (12)第三章系统的调试与分析 (15)3.1系统硬件调试 (15)3.2系统软件调试 (15)附录 (16)第一章绪论1.1课题背景当今世界,传感器技术和自动控制技术正在飞速发展,机械、电气和电子信息已经不再明显分家,自动控制在工业领域中的地位已经越来越重要,“智能”这个词也已经成为了热门词汇。

现在国外的自动控制和传感器技术已经达到了很高的水平,特别是日本,比如日本本田制作的机器人,其仿人双足行走已经做得十分逼真,而且具有一定的学习能力,还据说其智商已达到6岁儿童的水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

智能避障小车试验报告与
总结
专业班级:12自动化-3
******
学号:**********
随着科学技术的发展,机器人的感觉传感器种类越来越多,其中视觉传感器成为自动行走和驾驶的重要部件。

视觉的典型应用领域为自主式智能导航系统,对于视觉的各种技术而言图像处理技术已相当发达,而基于图像的理解技术还很落后,机器视觉需要通过大量的运算也只能识别一些结构化环境简单的目标。

视觉传感器的核心器件是摄像管或CCD,目前的CCD已能做到自动聚焦。

但CCD传感器的价格、体积和使用方式上并不占优势,因此在不要求清晰图像只需要粗略感觉的系统中考虑使用接近觉传感器是一种实用有效的
方法。

STC12C5A60S2/AD/PWM系列单片机是宏晶科技生产的单时钟/机器周期(1T)的单片机,是高速/低功耗/超强抗干扰的新一代8051单片机,指令代码完全兼容传统8051,但速度快8-12倍。

内部集成MAX810专用复位电路,2路PWM,8路速10位A/D转换(250K/S),针对电机控制,强干扰场合。

我们采用的就是STC12C5A60S2这种单片机。

避障系统可以采用反射式光电开关或者超声波传感器
对前方的障碍物进行检测,前者结构简单,应用方便灵活,但不能获知障碍物与小车间的具体距离;后者结构复杂,但可以测得障碍物与小车间的直线距离。

本系统采用反射式光电开关E3F-DS10C4来检测障碍物。

E3F-DS10C4是漫反射式光电开关,NPN三线输出方式,三线分别为电源线、输出线、
地线。

它的灵敏度也可以调节,检测距离比较远,可以达到20cm。

红外发射管,发射50hz调制的38k信号。

当遇到障碍物时,发生漫反射,红外接收头接收到这一信号时,输出端输出50hz的信号。

判断这一信号,即可判断,遇到了障碍物。

避障传感器基本原理,利用物体的反射性质。

在一定范围内,如果没有障碍物,发射出去红外线,因为传播距离越远而逐渐减弱,最后消失,或者反射回来的光很弱时,输出端呈低电平光电开关的检测不受外界干扰。

如果有障碍物,红外线遇到障碍物,被反射到达传感器接收头,则输出端呈高电平。

传感器检测到这一信号,就可以确认正前方有障碍物,并送给单片机,单片机进行一系列的处理分析,协调小车两轮工作。

红外避障基本原理大致就是如此。

利用红外传感器进行“前进-倒退-转向”避障,在车的头部安装光电开关小车采用左右轮分别驱动小车进入障碍
区后,在距离障碍物10cm到20cm的地方就可以检测到前面有障碍物(改变光电开关的灵敏度可改变最远检测距离),然后小车刹车停止,并调整角度,车头右偏一个角度,其方法是小车在前进制动过程中,先制动右轮,这样左轮转动快,使小车右转,并制动停止,随后小车加速后退,然后制动,在制动过程中,先制动右轮,左边快而使车头左偏,小车再
前进,检测前方是否有障碍物。

如此循环,就可以绕开障碍物。

前进停止和后退停止之间的距离约为30cm,只要小车前进时刹车行程小于传感器检测到障碍物的最大距离,就可以肯定小车车头碰不到障碍物。

调整适当的刹车行程和传感器的灵敏度,便可实现这个条件。

单片机电路:
电机驱动电路:
电源电路:
红外传感电路:
之后附上小车实物照片:
采用二轮驱动,后面一个万向轮方便转向,减少阻力。

电源采用3.7v锂电池供电。

至于程序输入,如图电源指示灯旁边有个插口,可以连接数据线,安装的驱动是PL2303Vista_Installer,烧写
软件我采用的是stc-isp-15xx-v6.67D,至于程序则是在同学们的帮助下参考网上的改编的。

程序有如下:
#include"STC12C5A60S2.h"
#include<intrins.h>
/*接线定义*/
sbit IN1=P1^5;
sbit IN2=P1^6;
sbit IN3=P1^1;
sbit IN4=P1^0;
sbit EN1=P1^3;
sbit EN2=P1^4;
/*传感器接线定义*/
sbit Left_InSen=P3^3;
sbit Right_InSen=P2^0;
sbit bleft=P2^4;
sbit bright=P2^3;
sbit BUZZ=P1^7;
void delay(unsigned int n)
{
unsigned char i, j,k;
for(k=0;k<=n;k++)
{
_nop_();
_nop_();
i = 20;
j = 10;
do
{
while (--j);
} while (--i);
}
}
void beep(void)
{
unsigned char i;
for(i=0;i<3;i++)
{
BUZZ=~BUZZ;
delay(10);
}
BUZZ=1;
}
void gogogo(void)
{
IN1=1;
IN2=0;
IN3=1;
IN4=0;
}
void backbackback(void) {
IN1=0;
IN2=1;
IN3=0;
IN4=1;
}
void stop(void)
{
IN1=0;
IN2=0;
IN3=0;
IN4=0;
}
void turnleft(void)
{
IN1=0;
IN2=1;
IN3=1;
IN4=0;
}
void turnright(void)
{
IN1=1;
IN2=0;
IN3=0;
IN4=1;
}
void main(void)
{
while(1)
{
if(bleft==0&&bright==1) {
turnright();
delay(3);
stop();
delay(3);
}
if(bleft==1&&bright==0)
{
turnleft();
delay(3);
stop();
delay(3);
}
if(bleft==0&&bright==0)
{
gogogo();
delay(3);
stop();
delay(3);
}
if(bleft==1&&bright==1)
{
turnright();
delay(3);
stop();
delay(3);
}
}
}
在焊接过程中,也出线了很多错误,再严重的一次是单片机底座引脚有一个没有焊好,然后用万用表连接了多次才发现,然后用一根小铁丝从下面穿上去再用锡焊牢固。

特别要注意的是色环电阻的识别计算方法,在这就不详细介绍了。

最难的莫过于程序的调试和小车的机械方面布局几轮驱动
一类的问题。

总之,通过这次动手制作小车,我从中也学到了很多平时不知道的东西。

以后有机会,会继续加强这方面的动手学习能力。

相关文档
最新文档