信号采样实验报告

合集下载

信号与系统采样实验报告

信号与系统采样实验报告

实验5采样采样定理给定了一些条件,在这些条件之下,一个带限的连续时间信号能够完全用它的离散样本表示。

所得到的离散时间信号)(][nT x n x c =包含了在连续时间信号中的全部信息。

只要这个连续时间信号是充分在频率上带限的,即T j X c π≥Ω=Ω,0)(。

当满足这一条件时,原连续时间信号能够完全用样本][n x 之间的内插予以重建。

如果][n x 满足采样定理,就有可能完全在离散时间域中处理][n x 而得到另一个序列,这个序列本该以不同的采样率对)(t x c 采样而得到。

这个处理称为采样率转换。

离散时间系统的灵活性对于连续时间LTI 系统的实现提供了一种强有力的手段,这就是连续时间信号的离散时间系统处理。

在这一技术中,一个带限的连续时间输入被采样,用一个离散时间系统所得到的样本,然后将这个离散时间系统的输出样本进行内插,给出连续时间输出信号。

本章练习将研究涉及信号采样和重建中的许多问题。

注意,该章用Ω代表连续时间频率变量,而用ω代表离散时间频率变量。

§5.1由欠采样引起的混叠目的这个练习讨论信号经采样后其频谱的变化以及由于欠采样而在而在带限内插重建信号上引起的混叠效果。

相关知识如果一个连续时间信号)(t x 每隔T 秒采样一次,那么信号的样本就形成了离散时间序列)(][nT x n x =。

奈奎斯特采样定理说的是,如果)(t x 的带宽小于s π=Ω2,即2,0)(s c j X Ω≥Ω=Ω,那么)(t x 就完全可以由它的样本)(nT x 予以重建。

带限内插或信号重建是最容易将)(t x 首先乘以冲激串后而看出来的 ∑∞-∞=-=n p nT t nT x t x )()()(δ 用一个截止频率2s Ω的理想低通滤波器对)(t x p 滤波,就能从)(t x p 中将)(t x 恢复出来。

定义)(t x r 为低通过滤)(t x p 而得到的重建信号。

若)(t x 的带宽大于2s Ω,那么样本)(nT x 就不能完全确定)(t x ,)(t x r 一般说来不等于)(t x 。

采样信号实验报告

采样信号实验报告

一、实验目的1. 理解模拟信号采样的基本原理和过程。

2. 掌握采样定理及其在实际应用中的重要性。

3. 学习使用MATLAB软件进行模拟信号采样实验。

4. 分析采样信号与原始信号的频谱特征,验证采样定理。

二、实验原理模拟信号采样是将连续的模拟信号转换为离散的数字信号的过程。

采样定理指出,为了完全重构一个模拟信号,采样频率必须至少是信号中最高频率成分的两倍。

本实验主要涉及以下内容:1. 采样过程:将模拟信号通过采样器转换为离散的采样值。

2. 采样定理:采样频率必须满足一定条件,才能保证采样信号的频谱不发生混叠。

3. 频谱分析:通过傅里叶变换或快速傅里叶变换(FFT)分析采样信号的频谱特征。

三、实验内容1. 实验一:生成模拟信号使用MATLAB软件生成一个正弦信号,频率为f1 = 100 Hz,采样频率为fS = 200 Hz。

2. 实验二:采样模拟信号将实验一中生成的正弦信号进行采样,采样点数为N = 1000。

3. 实验三:重构模拟信号使用MATLAB软件对采样信号进行重构,重建原始信号。

4. 实验四:分析频谱特征对原始信号和重构信号进行频谱分析,比较两者的频谱特征。

四、实验步骤1. 步骤一:在MATLAB中编写代码生成正弦信号。

```MATLABfs = 200; % 采样频率t = 0:1/fs:1-1/fs; % 采样时间f1 = 100; % 信号频率x = sin(2pif1t); % 生成正弦信号```2. 步骤二:对正弦信号进行采样。

```MATLABx_sample = x(1:10:end); % 采样```3. 步骤三:重构模拟信号。

```MATLABt_recon = 0:1/fs:1-1/fs; % 重构时间x_recon = interp1(1:10:length(x_sample), x_sample, t_recon, 'linear'); % 线性内插```4. 步骤四:分析频谱特征。

连续时间信号采样实验报告

连续时间信号采样实验报告

实验一 连续时间信号的采样一、实验目的进一步加深对采样定理和连续信号傅立叶变换的理解。

二、实验原理采样定理如果采样频率sF 大于有限带宽信号)(t x a 带宽0F 的两倍,即2F F s >则该信号可以由它的采样值)()(s a nT x n x =重构。

否则就会在)(n x 中产生混叠。

该有限带宽模拟信号的02F 被称为乃魁斯特频率。

熟悉如何用MATLAB 语言实现模拟信号表示严格地说,除了用符号处理工具箱(Symbolics)外,不可能用MATLAB 来分析模拟信号。

然而如果用时间增量足够小的很密的网格对)(t x a 采样,就可得到一根平滑的曲线和足够长的最大时间来显示所有的模态。

这样就可以进行近似分析。

令t∆是栅网的间隔且sT t <<∆,则)()(t m x m x a G ∆=∆可以用一个数组来仿真一个模拟信号。

不要混淆采样周期s T 和栅网间隔t ∆,因为后者是MATLAB 中严格地用来表示模拟信号的。

类似地,付利叶变换关系也可根据(2)近似为:∑∑Ω-∆Ω-∆=∆≈Ωmj G mtm j G a em x t t em x j X )()()(现在,如果)(t x a (也就是)(m x G )是有限长度的。

则公式(3)与离散付利叶变换关系相似,因而可以用同样的方式以MATLAB 来实现,以便分析采样现象。

三、实验内容 A 、100021()ta X t e-=的采样:1、 以10000s F =样本/秒采样1()a X t 得到1()X n 。

Dt=0.00005; t=-0.005:Dt:0.005; xa=exp(-1000*abs(2*t));Ts=0.0001;n=-50:1:50;x=exp(-1000*abs(n*2*Ts)); K=500; k=0:1:K; w=pi*k/K; X=x*exp(-j*n'*w); X=real(X);w=[-fliplr(w),w(2:K+1)]; X=[fliplr(X),X(2:K+1)]; subplot(1,1,1)subplot(2,1,1);plot(t*1000,xa); xlabel('t 毫秒'); ylabel('x1(n)');title('离散信号');hold onstem(n*Ts*1000,x);gtext('Ts=0.1毫秒');hold off subplot(2,1,2); plot(w/pi,X);xlabel('以pi 为单位的频率'); ylabel('X1(w)');title('连续时间傅立叶变换');上面的图中,把离散信号)(1n x 和1()a X t 叠合在一起以强调采样。

音乐信号采样实验报告

音乐信号采样实验报告

一、实验目的1. 了解音乐信号的采样原理和过程。

2. 掌握采样定理及其在实际应用中的重要性。

3. 学习使用MATLAB进行音乐信号的采样和重建实验。

4. 分析采样频率、采样精度等因素对音乐信号质量的影响。

二、实验原理1. 采样定理:根据奈奎斯特采样定理,为了使采样后的信号不失真,采样频率必须大于信号最高频率的两倍。

2. 音乐信号的采样:将连续的音乐信号通过采样器转换成离散的数字信号,采样频率、采样精度、量化位数等参数对采样结果有重要影响。

3. 音乐信号的重建:通过逆采样和滤波器恢复原始的音乐信号。

三、实验步骤1. 准备实验所需的MATLAB软件、音乐信号和采样器。

2. 设置采样参数:采样频率(Fs)、采样精度(Bit)、量化位数(n)等。

3. 对音乐信号进行采样,得到采样后的数字信号。

4. 使用MATLAB内置的逆采样和滤波器对采样后的数字信号进行重建。

5. 分析重建后的音乐信号,与原始音乐信号进行对比。

四、实验结果与分析1. 采样参数对音乐信号质量的影响(1)采样频率:采样频率越高,重建后的音乐信号质量越好,但数据量越大。

(2)采样精度:采样精度越高,重建后的音乐信号失真越小,但数据量越大。

(3)量化位数:量化位数越高,重建后的音乐信号失真越小,但数据量越大。

2. 重建后的音乐信号与原始音乐信号的对比通过实验可以发现,当采样参数设置合理时,重建后的音乐信号与原始音乐信号在波形和频谱上具有较高的一致性。

但在某些情况下,如采样频率较低、采样精度较低等,重建后的音乐信号会出现失真现象。

五、实验结论1. 音乐信号的采样和重建实验表明,采样定理在音乐信号处理中具有重要意义。

2. 采样参数对音乐信号质量有显著影响,合理设置采样参数可以提高重建后的音乐信号质量。

3. 使用MATLAB进行音乐信号的采样和重建实验,可以方便快捷地完成实验任务,为音乐信号处理提供理论依据。

六、实验心得通过本次实验,我对音乐信号的采样原理和过程有了更深入的了解,掌握了采样定理在实际应用中的重要性。

信号临界采样、过采样、欠采样实验报告

信号临界采样、过采样、欠采样实验报告

信号临界采样、过采样、欠采样实验报告抽样定理及应用课程设计的目的1.掌握利用MATLAB分析系统频率响应的方法,增加对仿真软件MATLAB的感性认识,学会该软件的操作和使用方法。

2. 掌握利用MATLAB实现连续信号采用与重构的方法,加深理解采样与重构的概念。

3.学习MATLAB中信号表示的基本方法及绘图函数的调用,实现对常用连续时间信号的可视化表示,加深对各种电信号的理解。

4.加深理解采样对信号的时域和频域特性的影响;验证信号与系统的基本概念、基本理论,掌握信号与系统的分析方法。

5.加深对采样定理的理解和掌握,以及对信号恢复的必要性;掌握对连续信号在时域的采样与重构的方法。

二.课程设计的内容及要求1.课程设计的内容离散正弦序列的MATLAB表示与连续信号类似,只不过是用stem函数而不是用plot函数来画出序列波形。

由于函数不是严格的带限信号,其带宽可根据一定的精度要求做一近似。

根据以下三种情况用MATLAB实现采样信号及重构并求出两者误差,分析三种情况下的结果。

(1)的临界采样及重构:,,;(2)的过采样及重构:,,;(3)的欠采样及重构:,,。

2.课程设计的方案2.1课程设计的原理2.1.1连续信号的采样定理模拟信号经过 (A/D) 变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率 fs,重复出现一次。

为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。

时域采样定理从采样信号恢复原信号必需满足两个条件:(1) 必须是带限信号,其频谱函数在>各处为零;(对信号的要求,即只有带限信号才能适用采样定理。

)(2) 取样频率不能过低,必须>2 (或>2)。

(对取样频率的要求,即取样频率要足够大,采得的样值要足够多,才能恢复原信号)如果采样频率大于或等于,即(为连续信号的有限频谱),则采样离散信号能无失真地恢复到原来的连续信号。

信号取样平均实验报告(3篇)

信号取样平均实验报告(3篇)

第1篇一、实验目的1. 理解信号取样平均原理,掌握信号取样平均方法。

2. 分析信号取样平均对信号的影响,了解其优缺点。

3. 通过实验验证信号取样平均的可行性。

二、实验原理信号取样平均是一种信号处理技术,通过对连续信号进行取样、平均处理,实现对信号的平滑处理。

其原理如下:1. 信号取样:将连续信号在一定时间间隔内进行取样,得到一系列离散的采样值。

2. 信号平均:对采样得到的离散信号进行平均处理,得到平滑后的信号。

信号取样平均的方法有:1. 简单平均法:将连续信号在一定时间间隔内进行取样,得到一系列离散的采样值,然后对采样值进行平均。

2. 加权平均法:对采样值进行加权处理,然后对加权后的采样值进行平均。

三、实验器材1. 信号发生器2. 示波器3. 信号分析仪4. 计算机及信号处理软件四、实验步骤1. 将信号发生器输出信号连接到示波器上,观察信号波形。

2. 将信号发生器输出信号连接到信号分析仪上,观察信号频谱。

3. 设置信号发生器输出信号为正弦波,频率为f0,幅度为A。

4. 将信号发生器输出信号连接到计算机信号处理软件上,进行信号取样平均处理。

5. 观察信号处理软件中处理后的信号波形和频谱。

6. 对比分析处理前后的信号波形和频谱,分析信号取样平均对信号的影响。

五、实验结果与分析1. 信号波形分析实验结果表明,经过信号取样平均处理后,信号波形变得更加平滑,波动幅度减小。

这是因为取样平均可以消除信号中的高频噪声,使信号更加平稳。

2. 信号频谱分析实验结果表明,经过信号取样平均处理后,信号频谱中的高频成分减小,低频成分增大。

这是因为取样平均可以消除信号中的高频噪声,使信号频谱更加集中。

3. 信号取样平均的优缺点优点:(1)可以消除信号中的高频噪声,使信号更加平稳;(2)可以降低信号处理复杂度。

缺点:(1)会降低信号采样频率,增加信号处理时间;(2)对信号进行平均处理,可能损失部分信号信息。

六、实验结论1. 信号取样平均是一种有效的信号处理技术,可以消除信号中的高频噪声,使信号更加平稳。

常用信号测量实验报告(3篇)

常用信号测量实验报告(3篇)

第1篇一、实验目的1. 熟悉常用信号测量仪器的操作方法。

2. 掌握信号的时域和频域分析方法。

3. 学会运用信号处理方法对实际信号进行分析。

二、实验原理信号测量实验主要包括信号的时域测量、频域测量以及信号处理方法。

时域测量是指对信号的幅度、周期、相位等参数进行测量;频域测量是指将信号分解为不同频率成分,分析各频率成分的幅度和相位;信号处理方法包括滤波、放大、调制、解调等。

三、实验仪器与设备1. 示波器:用于观察信号的波形、幅度、周期、相位等参数。

2. 频率计:用于测量信号的频率和周期。

3. 信号发生器:用于产生标准信号,如正弦波、方波、三角波等。

4. 滤波器:用于对信号进行滤波处理。

5. 放大器:用于对信号进行放大处理。

6. 调制器和解调器:用于对信号进行调制和解调处理。

四、实验内容与步骤1. 时域测量(1)打开示波器,调整波形显示,观察标准信号的波形。

(2)测量信号的幅度、周期、相位等参数。

(3)观察不同信号(如正弦波、方波、三角波)的波形特点。

2. 频域测量(1)打开频率计,调整频率显示,测量信号的频率和周期。

(2)使用信号发生器产生标准信号,如正弦波,通过频谱分析仪分析其频谱。

(3)观察不同信号的频谱特点。

3. 信号处理方法(1)滤波处理:使用滤波器对信号进行滤波处理,观察滤波前后信号的变化。

(2)放大处理:使用放大器对信号进行放大处理,观察放大前后信号的变化。

(3)调制和解调处理:使用调制器对信号进行调制,然后使用解调器进行解调,观察调制和解调前后信号的变化。

五、实验结果与分析1. 时域测量结果通过时域测量,我们得到了不同信号的波形、幅度、周期、相位等参数。

例如,正弦波具有平滑的波形,周期为正弦波周期的整数倍,相位为正弦波起始点的角度;方波具有方波形,周期为方波周期的整数倍,相位为方波起始点的角度;三角波具有三角波形,周期为三角波周期的整数倍,相位为三角波起始点的角度。

2. 频域测量结果通过频域测量,我们得到了不同信号的频谱。

信号采样实验报告

信号采样实验报告

一、实验目的1. 理解信号采样的基本原理,掌握信号采样过程。

2. 熟悉采样定理,验证信号采样过程中的频谱混叠现象。

3. 掌握信号重构方法,通过采样信号恢复原信号。

二、实验原理信号采样是将连续时间信号转换为离散时间信号的过程。

根据香农采样定理,为了无失真地恢复原始信号,采样频率必须大于信号中最高频率成分的两倍。

三、实验内容1. 生成模拟信号在MATLAB中,生成一个正弦信号作为实验对象:```MATLABt = 0:0.01:1; % 生成时间序列,从0到1,步长为0.01f = 5; % 信号频率为5Hzx = sin(2pift); % 生成正弦信号```2. 采样信号对模拟信号进行采样,设置采样频率为50Hz:```MATLABfs = 50; % 采样频率n = 0:1/fs:1; % 采样点数x_sample = x(n); % 采样信号```3. 频谱分析分别对原始信号和采样信号进行频谱分析,比较两者的频谱特征:```MATLABfigure;subplot(2,1,1);plot(frequency, abs(X)); % 绘制原始信号的频谱title('Original Signal Spectrum');subplot(2,1,2);plot(frequency, abs(X_sample)); % 绘制采样信号的频谱title('Sampled Signal Spectrum');```4. 频谱混叠观察采样信号的频谱,分析是否存在频谱混叠现象。

如果存在混叠,可以通过提高采样频率或滤波来消除混叠。

5. 信号重构利用MATLAB中的插值函数对采样信号进行重构,恢复原信号:```MATLABx_reconstructed = interp1(n, x_sample, t, 'linear'); % 线性插值```6. 重构信号分析观察重构信号与原始信号的波形,分析重构效果。

连续信号的采样与恢复实验报告

连续信号的采样与恢复实验报告

连续信号的采样与恢复实验报告实验报告:连续信号的采样与恢复一、实验目的:1.了解连续信号的采样原理和采样定理;2.理解采样后信号的频谱特性;3.掌握信号恢复的方法。

二、实验原理:采样定理:对于频谱带宽有限的信号,为了保证采样信号不发生混叠现象,必须满足采样频率大于信号频谱的最高分量频率的两倍。

三、实验器材:1.信号发生器;2.示波器;3.编码器;4.数字示波器;5.连接线。

四、实验步骤及结果:1.首先使用信号发生器产生频率为1kHz、幅值为5V的正弦信号作为待采样信号;2.将信号发生器输出的信号连接至示波器进行观察;3.将示波器输出信号连接至编码器进行信号的采样;4.将编码器的输出信号连接至数字示波器,观察离散采样值;5.对离散采样值进行信号恢复,使用零阶保持、线性插值和兰特尔-曼豪姆插值三种恢复方法;6.将恢复后的信号与原信号进行比较,观察恢复的效果。

实验结果:在示波器上观察到频率为1kHz、幅值为5V的正弦信号。

数字示波器上显示出了一系列离散的采样值。

通过零阶保持、线性插值和兰特尔-曼豪姆插值三种方法进行信号恢复后,观察到恢复的信号与原信号基本一致。

五、实验分析:1.信号恢复的效果受到采样频率和采样幅值的影响,采样频率过低或采样幅值过小都会造成信号失真;2.零阶保持方法可以保持离散信号的幅值不变,但是无法恢复信号的高频分量;3.线性插值可以恢复少量的高频分量,但是如果信号存在高频噪声或非线性失真,会导致恢复后信号的质量下降;4.兰特尔-曼豪姆插值是一种高阶插值方法,能够更好地恢复信号的高频分量,但是计算量较大。

六、实验总结:通过本次实验,我了解了连续信号的采样原理和恢复方法,掌握了采样频率的要求和恢复过程中常用的插值方法。

实验中,我观察到了采样信号和恢复信号的特性,并进行了比较分析。

实验结果表明,在合适的采样条件和恢复方法下,可以有效地采样和恢复信号。

采样定理实验报告

采样定理实验报告

采样定理实验报告采样定理实验报告一、实验目的本实验旨在通过对采样定理的实际应用,验证采样定理的有效性,并了解采样频率对信号恢复的影响。

二、实验原理采样定理,又称奈奎斯特定理,是指在进行信号采样时,采样频率必须大于信号最高频率的两倍,才能完全恢复原始信号。

否则,会出现混叠现象,导致信号失真。

三、实验器材1. 示波器:用于观测信号波形。

2. 信号发生器:用于产生不同频率的信号。

3. 低通滤波器:用于恢复被混叠的信号。

四、实验步骤1. 将信号发生器连接到示波器上,设置合适的信号频率和幅度。

2. 观察信号波形,记录信号的最高频率。

3. 根据采样定理,计算出合适的采样频率。

4. 调整示波器的采样频率,确保其大于信号最高频率的两倍。

5. 观察采样后的信号波形,记录观察结果。

6. 将采样后的信号通过低通滤波器进行恢复。

7. 观察恢复后的信号波形,记录观察结果。

五、实验结果与分析在实验过程中,我们选择了不同频率的信号进行采样,并观察了采样前后的信号波形。

实验结果表明,当采样频率小于信号最高频率的两倍时,混叠现象会导致信号失真。

而当采样频率大于信号最高频率的两倍时,通过低通滤波器可以完全恢复原始信号。

通过实验数据的观察和分析,我们可以得出以下结论:1. 采样定理的有效性得到了验证,采样频率必须大于信号最高频率的两倍,才能完全恢复原始信号。

2. 低通滤波器在信号恢复中起到了关键作用,通过滤除混叠信号的高频成分,使得信号恢复更加准确。

六、实验应用采样定理在现代通信领域有着广泛的应用。

例如,在音频和视频传输中,为了保证信号的质量和准确性,需要按照采样定理的要求进行信号采样和恢复。

此外,在数字信号处理、图像处理、雷达和医学成像等领域中,采样定理也扮演着重要的角色。

七、实验总结通过本次实验,我们深入了解了采样定理的原理和应用,并通过实际操作验证了其有效性。

采样定理对于信号的采样和恢复具有重要意义,是保证信号质量和准确性的基础。

采样定理实验报告

采样定理实验报告

采样定理实验报告实验报告⼀、实验⽬的熟悉信号采样过程,并通过本实验观察⽋采样时信号频谱的混叠现象,了解采样前后信号频谱的变化,加深对采样定理的理解,掌握采样频率的确定⽅法。

⼆、实验原理模拟信号经过(A/D )变换转为熟悉信号的过程称之为采样,信号采样后其频谱产⽣了周期延拓,在⼀定条件下,⼀个连续时间信号完全可以⽤该信号在等时间间隔上的瞬时样本值表⽰,这些样本值包含了该连续时间信号的全部信息,利⽤这些样本值可以恢复原连续时间信号。

采样定理的完整描述如下:⼀个频谱在(-ωm ,ωm )以外为零的频带有限信号f(t),可唯⼀的由其在均匀时间间隔T s (T s <12f m )上的样点值f s (t)=f(n T s )确定。

要从采样信号f s (t)中顺利恢复原信号f(t),必须满⾜两个条件:(1)f(t)必须是频带有限信号;(2)取样频率不能过低,必须满⾜f s ?2f m ,称f s =2f m 为奈奎斯特速率。

f m 为f(t)最⾼截⽌频率。

如前所述f(t)为带限信号其最⾼截⽌频率为f m 其频谱F(j ω)如图(a )所⽰,采样时间间隔为Ts ,则f(t)经采样后的离散序列f(n)为:f (n )=f s (t )=f (nT s )=f(t)∑δ(t ?nT s )=∑f(t)δ(t ?nT s )∞n=?∞∞n=?∞其中,g(t)= ∑δ(t ?nT s )∞n=?∞—采样信号(周期单位脉冲时序列)G(t)的频谱如图(b )所⽰。

F s (jω)的频谱如图(c )所⽰,图中相当于原模拟信号的频谱称为基带频谱。

如果f s <2f m 则F s (jω)按照采样频率f s 进⾏周期延拓时,形成频谱混叠现象如图(d )所⽰。

f s (t )的频谱函数为:F s (jω)=12πF(jω)×ωs ∑δ(ω?nωs )=1T s ∑F[j (ω?nωs )∞n=?∞∞n=?∞];其中ωs =2πT s可以看出,抽样信号的频谱F s (jω)是原信号频谱F(jω)的⽆数次平移之后的叠加。

连续信号的采样与恢复实验报告

连续信号的采样与恢复实验报告

实验六、连续信号得采样与恢复一、实验目得1.加深理解采样对信号得时域与频域特性得影响;2.加深对采样定理得理解与掌握,以及对信号恢复得必要性;3.掌握对连续信号在时域得采样与重构得方法。

二、实验原理(1)信号得采样ﻫ信号得采样原理图如下图所示,其数学模型表示为:=ﻫ其中得f(t)为原始信号,为理想得开关信号(冲激采样信号)δTs(t) =,fs(t)为采样后得到得信号称为采样信号。

由此可见,采样信号在时域得表示为无穷多冲激函数得线性组合,其权值为原始信号在对应采样时刻得定义值。

ﻫ令原始信号f(t)得傅立叶变换为F(jw)=FT(f(t)),则采样信号fs(t) 得傅立叶变换Fs(jw)=FT(fs(t))=。

由此可见,采样信号fs(t)得频谱就就是将原始信号f(t)得频谱在频率轴上以采样角频率ws为周期进行周期延拓后得结果(幅度为原频谱得1/Ts)。

如果原始信号为有限带宽得信号,即当|w|>|wm|时,有F(jw)=0,则有:如果取样频率ws≥2wm时,频谱不发生混叠;否则会出现频谱混叠。

(2)信号得重构ﻫ设信号f(t)被采样后形成得采样信号为fs(t),信号得重构就是指由fs(t)经过内插处理后,恢复出原来得信号f(t)得过程。

因此又称为信号恢复。

ﻫ由前面得介绍可知,在采样频率w s≥2wm得条件下,采样信号得频谱Fs(jw)就是以w s为周期得谱线。

选择一个理想低通滤波器,使其频率特性H(jw)满足:H(j w)=式中得wc称为滤波器得截止频率,满足wm≤wc≤ws/2。

将采样信号通过该理想低通滤波器,输出信号得频谱将与原信号得频谱相同。

因此,经过理想滤波器还原得到得信号即为原信号本身。

信号重构得原理图见下图。

通过以上分析,得到如下得时域采样定理:一个带宽为w m得带限信号f(t),可唯一地由它得均匀取样信号fs(n Ts)确定,其中,取样间隔Ts<π/wm,该取样间隔又称为奈奎斯特(Nyquist)间隔。

实验报告五_信号的采样与恢复

实验报告五_信号的采样与恢复

指导教师批阅意见:
成绩评定:
指导教师签字: 年 月 日 备注:
注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。 2、教师批改学生实验报告时间应在学生提交实验报告时间后 10 日内。
f t
F
0
t
(a) 连续信号的频谱
m
0
m

f s t
Fs
1 TS
s
(b) 高抽样频率时的抽样信号及频谱(不混叠)
f s t
Fs
1 TS
0
0 Ts
t
s
m
m
s

(c) 低抽样频率时的抽样信号及频谱(混叠)
深 圳 大 学 实 验 报 告
课程名称:
信号与系统
实验项目名称:
信号的采样与恢复
学院:
信息工程
专业:
电子信息
指导教师:
报告人: 学号: 班级:
实验时间:
实验报告提交时间:
教务部制
实验目的与要求:
1、了解信号的采样方法与过程以及信号恢复的方法。 2、验证抽样定理。
实验内容:
1、观察抽样脉冲、抽样信号、抽样恢复信号。 2、观察抽样过程中,发生混叠和非混叠时的波形。
采样信号 1
恢复信号 1
采样信号 2
恢复信号 2
采样信号 3
恢复信号 3
实验结果与分析
1.由实验原理理论得当选用
fs>2 fmax 采样频率对连续信号进行
采样,信号采样后能不失真地还原,但实验中往往不能达到理想的 效果。 如实验中对频率为 500hz 的正弦波信号采样并通过低通滤波 器恢复时,当 fs=4 fmax=1968hz 时,信号采样后能不失真地还原。 2.若原信号为方波或三角波,可用示波器观察到离散的采样信 号,但由于本装置难以实现一个理想的低通滤波器,以及高频窄脉 (即冲激函数) ,所以方波或三角波的离散信号经低通滤波器后只 能观测到它的基波分量,无法恢复原信号。实验结果 2 和 3 验证了 这一结果。实验结果显示方波采样后的信号是一系列谐波的合成, 从细节图中可以明显的看出方波没有完全恢复,而是转变成一系列 谐波的合成波。 因为方波或者三角波分解成傅里叶级数后存在频率 很高的谐波分量,在本实验条件下无法还原成原信号,只能是低频 波的合成,还原后图像是原信号的大致波形。 3. 实验中由于采样信号不是标准的冲击信号,低通滤波器也 不能达到标准理论值,所以非标准的正余弦信号恢复不到原信号。

采样定理实验报告

采样定理实验报告

采样定理实验报告1. 实验目的本实验旨在通过采样定理的实验验证,证明了当采样频率大于信号最高频率的两倍时,可以从采样信号中完整恢复原始信号。

2. 实验仪器•信号发生器•示波器•电脑•连接线3. 实验原理采样定理指出,若要通过采样信号恢复出原始信号,必须满足采样频率不小于原始信号的两倍。

设原始信号为x(t),采样信号为x_s(t),采样频率为f_s,有以下公式表示:x_s(t) = x(t) * s(t)其中,s(t)为采样脉冲,采样频率为f_s,x(t)为原始信号。

在实际应用中,通常将信号频谱限制在0到f_m范围内,即原始信号x(t)的最高频率为f_m。

采样频率f_s必须大于2 * f_m,才能保证从采样信号中恢复出正确的原始信号。

4. 实验步骤1.将信号发生器与示波器通过连接线连接好,确保信号可以正常传输。

2.打开信号发生器,并设置输出信号的频率为10kHz。

3.设置示波器为采样模式,并设置采样频率为20kHz。

4.开始采样,并观察示波器上显示的采样信号。

5.停止采样,并将示波器上的采样信号保存到电脑上。

5. 实验结果与分析经过实验我们观察到,当信号的频率较低时,采样信号与原始信号几乎完全一致。

但当信号频率接近或超过采样频率的一半时,采样信号失真严重。

通过采样定理,我们知道如果采样频率小于信号频率的两倍,将无法恢复原始信号。

实验结果与理论预期相符,验证了采样定理的正确性。

6. 实验总结本次实验通过验证采样定理,验证了当采样频率大于信号最高频率的两倍时,可以从采样信号中完整恢复原始信号的原理。

实验结果与理论预期相符,证明了采样定理的有效性。

采样定理在信号处理和通信领域有着重要的应用,例如在音频和视频压缩、模拟信号数字化等方面起着关键作用。

只有满足采样定理的要求,我们才能保证信息的准确传递和恢复。

在实际应用中,我们需要根据信号的最高频率确定合适的采样频率,以避免信号失真和信息丢失的情况发生。

参考资料[1] Wikipedia.。

《计算机控制技术》信号的采样与保持实验报告

《计算机控制技术》信号的采样与保持实验报告

《计算机控制技术》信号的采样与保持实验报告课程名称:计算机控制技术实验实验类型:设计型实验项目名称:信号的采样与保持实验一、实验目的和要求1.熟悉信号的采样与保持过程。

2.学习和掌握香农采样定理。

3.学习使用直线插值法还原信号。

二、实验内容和原理香农(采样) 定理若对于一个具有有限频谱|W|<W max的连续信号f(t)进行采样,当采样频率满足W s≥2W max时,则采样函数f∗(t)能无失真地恢复到原来的连续信号f(t)。

W max为信号的最高频率,W s为采样频率。

按照下图方式连接好实验箱,图中画“○”的线需用户在实验中自行接好,其它线系统已连好。

图1-1这里正弦波单元的“OUT”端输出周期性的正弦波信号,通过控制计算机及其接口单元的“ADC1”端输入,系统用定时器作为基准时钟(初始化为10ms),定时采集“ADC1”端的信号,在中断服务程序中读入转换完的数字量,送到控制计算机及其接口单元,在“DAC1”端输出相应的模拟信号。

由于数模转换器有输出锁存能力,所以它具有零阶保持器的作用。

采样周期T=T k×10ms,通过修改T k 就可以灵活地改变采样周期,后面实验的采样周期设置也是如此。

程序的参考流程图如下图所示:图1-2信号的还原中应用香农定理从香农定理可知,对于信号的采集,只要选择恰当的采样周期,就不会失去信号的主要特征。

在实际应用中,一般总是取实际采样频率W s比2W max大,如:W s≥10W max。

但是如果采用插值法恢复信号,就可以降低对采样频率的要求,香农定理给出了采样频率的下限,但是用不同的插值方法恢复信号需要的采样频率也不相同。

直线插值法(取W s≥5W max)利用下面的公式在点(X0,Y0)和点(X1,Y1)之间插入点(X,Y)Y=Y0+K(X−X0)其中:K=Y1−Y0X1−X0X1−X0为采样间隔,Y1−Y0分别是X1和X0采样时刻的AD采样值。

本实验的连接图与图1-1一致。

连续信号的采样与重构实验报告

连续信号的采样与重构实验报告

信号与系统上机实验报告学院:电子信息学院班级:08011202姓名:王喜成学号:2012301794上机实验 5 连续信号的采样与重构一、实验目的(1)验证采样定理;(2)熟悉信号的抽样与恢复过程;(3)通过实验观察欠采样时信号频域的混迭现象;(4)掌握采样前后信号频域的变化,加深对采样定理的理解;(5)掌握采样频域的确定方法。

二、实验内容和原理信号的采样与恢复示意图如图2.5-1所示图2.5-1 信号的抽样与恢复示意图抽样定理指出:一个有限频宽的连续时间信号)(t f ,其最高频率为m ω,经过等间隔抽样后,只要抽样频率s ω不小于信号最高频率m ω的二倍,即满足m s ωω2≥,就能从抽样信号)(t f s 中恢复原信号,得到)(0t f 。

)(0t f 与)(t f 相比没有失真,只有幅度和相位的差异。

一般把最低的抽样频率m s ωω2min =称为奈奎斯特抽样频率。

当m s ωω2<时,)(t f s 的频谱将产生混迭现象,此时将无法恢复原信号。

f (t )的幅度频谱为)(ωF ;开关信号)(t s 为周期矩形脉冲,其脉宽τ相对于周期s T 非常小,故将其视为冲激序列,所以)(t s 的幅度频谱)(ωS 亦为冲激序列;抽样信号)(t f s 的幅度频谱为)(ωs F ;)(0t f 的幅度频谱为)(0ωF 。

观察抽样信号的频谱)(ωs F ,可以发现利用低通滤波器(其截止频率满足m s c m ωωωω-<<)就能恢复原信号。

信号抽样与恢复的原理框图如图2.5-2所示。

图2.5-2 信号抽样与恢复的原理框图由原理框图不难看出,A/D转换环节实现抽样、量化、编码过程;数字信号处理环节对得到的数字信号进行必要的处理;D/A转换环节实现数/模转换,得到连续时间信号;低通滤波器的作f。

用是滤除截止频率以外的信号,恢复出与原信号相比无失真的信号)(0t三、涉及的MATLAB函数subplot(2,1,1)xlabel('时间, msec');ylabel('幅值');title('连续时间信号x_{a}(t)');axis([0 1 -1.2 1.2])stem(k,xs);grid;linspace(-0.5,1.5,500)';ones(size(n)freqs(2,[1 2 1],wa);plot(wa/(2*pi),abs(ha)buttord(Wp, Ws, 0.5, 30,'s');[Yz, w] = freqz(y, 1, 512);M= input('欠采样因子= ');length(nn1)y = interp(x,L)[b,a] = butter(N, Wn, 's');get(gfp,'units');set(gfp,'position',[100 100 400 300]);fx1=fft(xs1)abs(fx2(n2+1))如有帮助,欢迎下载支持。

采样定理的实验报告

采样定理的实验报告

一、实验目的1. 理解采样定理的基本原理,掌握采样定理在实际信号处理中的应用。

2. 通过实验验证采样定理的正确性,加深对采样频率、信号带宽等概念的理解。

3. 学习使用实验设备进行信号采样与恢复,提高实际操作能力。

二、实验原理采样定理(奈奎斯特采样定理)指出:如果一个信号在频域内的带宽为B(单位:Hz),那么为了不产生混叠现象,采样频率f_s必须满足f_s ≥ 2B。

即采样频率至少是信号最高频率的两倍。

三、实验设备1. 信号发生器2. 采样器3. 低通滤波器4. 示波器5. 计算机及数据采集软件四、实验步骤1. 信号产生:使用信号发生器产生一个正弦信号,设定信号频率为100Hz。

2. 信号采样:将信号接入采样器,设定采样频率为200Hz(满足采样定理要求),采集信号数据。

3. 信号恢复:将采样数据输入低通滤波器,滤波器截止频率设定为100Hz,滤除高频分量,恢复原始信号。

4. 信号分析:使用示波器观察原始信号、采样信号和恢复信号的波形,分析采样定理的应用效果。

五、实验结果与分析1. 原始信号:示波器显示的原始信号为100Hz的正弦波。

2. 采样信号:示波器显示的采样信号为100Hz正弦波的200Hz采样序列,波形连续且无明显失真。

3. 恢复信号:示波器显示的恢复信号为100Hz正弦波,与原始信号基本一致,证明了采样定理的正确性。

六、实验结论1. 通过实验验证了采样定理的正确性,证明了在满足采样定理条件下,可以无失真地恢复原始信号。

2. 理解了采样频率、信号带宽等概念在采样定理中的应用,加深了对采样定理的理解。

3. 掌握了使用实验设备进行信号采样与恢复的方法,提高了实际操作能力。

七、实验心得体会1. 采样定理是数字信号处理中非常重要的基本原理,在实际应用中具有重要意义。

2. 在实验过程中,要注意采样频率的选择,确保满足采样定理的要求,避免混叠现象的发生。

3. 通过实验,加深了对信号采样与恢复过程的理解,提高了实际操作能力。

信号的抽样实验报告

信号的抽样实验报告

#### 实验目的1. 理解并验证信号的抽样定理。

2. 掌握连续信号抽样与重构的基本方法。

3. 通过实验加深对信号时域和频域特性的理解。

#### 实验原理信号的抽样定理,也称为奈奎斯特定理,指出一个连续信号可以无失真地通过抽样来表示,只要抽样频率高于信号最高频率成分的两倍。

这个原理是数字信号处理和通信系统中的基础。

#### 实验设备- 计算机- MATLAB软件- 示波器(模拟)#### 实验步骤1. 信号生成:使用MATLAB生成一个连续的带限信号,其最高频率为300Hz。

2. 信号抽样:使用MATLAB对生成的连续信号进行抽样,设置不同的抽样频率,观察信号的抽样效果。

3. 信号重构:使用MATLAB对抽样信号进行插值和滤波,尝试重构原始的连续信号。

4. 频谱分析:分析原始信号和重构信号的频谱,验证信号的频谱特性。

#### 实验内容1. 信号生成使用MATLAB生成一个频率为300Hz的正弦波信号,采样频率为1000Hz。

```matlabfs = 1000; % 采样频率t = 0:1/fs:1-1/fs; % 时间向量f = 300; % 信号频率x = sin(2pift); % 生成信号```2. 信号抽样对生成的信号进行不同抽样频率的抽样,例如500Hz、1000Hz、1500Hz。

```matlabts = 0:1/500:1-1/500; % 抽样时间向量x_sampled500 = x(ts); % 抽样频率为500Hz```3. 信号重构使用MATLAB对抽样信号进行插值和滤波,重构原始信号。

```matlabx_reconstructed = interp1(ts, x_sampled500, t, 'spline'); % 插值 ```4. 频谱分析使用MATLAB绘制原始信号和重构信号的频谱。

```matlabY = fft(x);Y_reconstructed = fft(x_reconstructed);L = length(x);f = (0:L-1)(fs/L);figure;plot(f, abs(Y/L));title('Original Signal Spectrum');figure;plot(f, abs(Y_reconstructed/L));title('Reconstructed Signal Spectrum');```#### 实验结果与分析1. 抽样效果:通过实验可以观察到,当抽样频率低于信号最高频率的两倍时,抽样信号会发生频谱混叠,无法正确恢复原始信号。

信号采样实验报告

信号采样实验报告

信号采样实验报告信号采样实验报告引言:信号采样是数字信号处理领域中的重要概念,它涉及到将连续时间域的信号转换为离散时间域的信号。

在本次实验中,我们将通过实际操作来深入了解信号采样的原理和方法,并探讨其在实际应用中的意义和局限性。

一、实验目的本次实验的主要目的是通过实际采样操作,掌握信号采样的基本原理和方法,并理解信号采样对信号重构的影响。

二、实验装置与方法1. 实验装置:- 信号发生器:用于产生不同频率和振幅的模拟信号。

- 采样器:用于对模拟信号进行采样。

- 示波器:用于观察和分析采样后的信号。

2. 实验方法:- 首先,使用信号发生器产生一个正弦波信号,并将其连接到采样器的输入端。

- 调节采样频率,观察并记录不同采样频率下的采样信号。

- 将采样信号连接到示波器上,观察并分析采样信号的频谱特性。

- 重复以上步骤,使用不同频率和振幅的信号进行实验。

三、实验结果与分析1. 采样频率对信号重构的影响:通过实验我们发现,当采样频率低于信号频率的两倍时,会出现采样失真的现象,即采样信号无法准确重构原始信号。

这是由于采样定理的限制,即奈奎斯特采样定理,它要求采样频率至少为信号频率的两倍才能保证信号的完全重构。

2. 采样频率对信号频谱的影响:我们进一步观察了不同采样频率下信号的频谱特性。

实验结果显示,当采样频率高于信号频率的两倍时,信号频谱能够完全重构,没有出现频谱混叠现象。

而当采样频率低于信号频率的两倍时,信号频谱会出现混叠,即高频部分会被低频部分覆盖,导致频谱失真。

3. 信号振幅对采样结果的影响:我们还研究了信号振幅对采样结果的影响。

实验结果表明,信号振幅的变化对采样结果并没有明显影响,即采样信号的幅值与原始信号的幅值基本一致。

这是因为采样过程只涉及到对信号的抽样,并不会改变信号的振幅。

四、实验总结与启示通过本次实验,我们深入了解了信号采样的原理和方法,并通过实际操作验证了采样定理的有效性。

同时,我们也认识到了采样频率对信号重构和频谱特性的重要性。

实验报告系统采样分析(3篇)

实验报告系统采样分析(3篇)

第1篇一、实验目的1. 了解系统采样的基本原理和方法。

2. 掌握系统采样信号的频谱分析技术。

3. 分析系统采样对信号频率的影响。

二、实验原理系统采样是指以固定的采样频率对连续信号进行采样,从而得到离散信号。

采样定理指出,当采样频率大于信号最高频率的两倍时,采样信号可以无失真地恢复原信号。

本实验通过对系统采样信号进行频谱分析,验证采样定理的正确性。

三、实验设备1. 信号发生器2. 示波器3. 采样器4. 计算机及频谱分析软件四、实验步骤1. 设置信号发生器,产生一个频率为1000Hz的正弦信号。

2. 将信号发生器输出信号接入采样器,设置采样频率为2000Hz。

3. 采样器对信号进行采样,得到离散信号。

4. 将采样器输出信号接入示波器,观察采样信号波形。

5. 将采样信号输入计算机,使用频谱分析软件进行频谱分析。

6. 分析频谱图,验证采样定理的正确性。

五、实验结果与分析1. 示波器显示的采样信号波形如图1所示。

图1 采样信号波形2. 频谱分析软件得到的频谱图如图2所示。

图2 频谱图从图2可以看出,采样信号的频谱主要由基波频率为1000Hz的分量组成,同时存在一定数量的谐波分量。

这说明采样信号能够较好地保留原信号的信息。

3. 验证采样定理的正确性:根据采样定理,当采样频率大于信号最高频率的两倍时,采样信号可以无失真地恢复原信号。

本实验中,信号频率为1000Hz,采样频率为2000Hz,满足采样定理的条件。

因此,可以得出结论:本实验验证了采样定理的正确性。

六、实验总结1. 通过本实验,我们了解了系统采样的基本原理和方法。

2. 掌握了系统采样信号的频谱分析技术。

3. 分析了系统采样对信号频率的影响,验证了采样定理的正确性。

本实验有助于我们深入理解信号处理领域的基本概念,为今后的学习和工作奠定基础。

在实验过程中,我们还发现了一些问题,如采样器精度、计算机处理速度等,这些因素可能会对实验结果产生影响。

在今后的实验中,我们将进一步探讨这些问题,以提高实验的准确性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

竭诚为您提供优质文档/双击可除
信号采样实验报告
篇一:信号抽样实验报告
大连理工大学实验报告
学院(系):专业:班级:
姓名:学号:组:___实验时间:实验室:实验台:
指导教师签字:成绩:
实验三信号抽样
一、实验目的
1学会运用mATLAb完成信号抽样及对抽样信号的频谱进行分析;2学会运用mATLAb改变抽样间隔,观察抽样后信号的频谱变化;3学会运用mATLAb对抽样后的信号进行重建。

二、习题
1.设有三个不同频率的正弦信号,频率分别为
f1?100hz,f2?200hz,f3?3800hz。

现在用抽样频率f3?3800hz对这三个正弦信号进行抽样,
用mATLAb命令画出各抽样信号的波形及频谱,并分析频率混叠现象。

解:分别写出三个频率正弦波的代码与图形:
(f1=100hZ的正弦信号)代码如下:Ts=1/3800;dt=0.0001;
t1=-0.008:dt:0.008;
ft=sin(2*pi*100*t1).*(ucT(t1+0.005)-ucT(t1-0.005)); subplot(221);
plot(t1,ft),gridon;
axis([-0.0060.006-1.11.1]);xlabel(Time(sec)),ylabel (f(t))title(正弦信号波形);
n=5000;k=-n:n;
w=2*pi*k/((2*n+1)*dt);Fw=dt*ft*exp(-j*t1*w);subplot (222);plot(w,abs(Fw));gridon;
axis([-300003000000.006]);xlabel(\omega),ylabel(F(w ));title(正弦信号的频谱);t2=-0.008:Ts:0.008;
fst=sin(2*pi*100*t2).*(ucT(t2+0.005)-ucT(t2-0.005)) ;subplot(223);
plot(t1,ft,:),holdon;stem(t2,fst),gridon;
axis([-0.0050.005-1.11.1]);xlabel(Time(sec)),ylabel (fs(t));title(抽样后的信
号),holdoff;Fsw=Ts*fst*exp(-j*t2*w);subplot(224);
plot(w,abs(Fsw)),gridon;axis([-300003000000.006]);x label(\omega),ylabel(Fs(w));title(抽样信号的频谱);
matlab波形如下:
100hZ正弦信号波形
0.5-0.5
-1-6
-3
100hZ正弦信号的频谱
F(w)
-3-4
-2
02Time(sec)
4x10
6
-3
-3
f(t)
-2-1012x10
3
4
?
100hZ抽样信号的频谱
100hZ抽样后的信号
-5
Fs(w)
0Time(sec)
5x10
-3
fs(t)
-3
-2-1012x10
3
4
?
其中单个正弦信号(未经抽样)的频谱放大后如下:(200hZ的正弦信号)代码如下:
Ts=1/3800;dt=0.0001;
t1=-0.003:dt:0.003;
ft=sin(2*pi*200*t1).*(ucT(t1+0.0025)-ucT(t1-0.0025) );subplot(221);
plot(t1,ft),gridon;
axis([-0.0030.003-1.11.1]);xlabel(Time(sec)),ylabel (f(t))title(200hZ正弦信号波形);n=5000;k=-n:n;
w=2*pi*k/((2*n+1)*dt);Fw=dt*ft*exp(-j*t1*w);subplot (222);plot(w,abs(Fw));gridon;
axis([-300003000000.003]);xlabel(\omega),ylabel(F(w ));title(200hZ正弦信号的频谱);t2=-0.003:Ts:0.003;
fst=sin(2*pi*200*t2).*(ucT(t2+0.0025)-ucT(t2-0.0025 ));subplot(223);
plot(t1,ft,:),holdon;stem(t2,fst),gridon;
axis([-0.0030.003-1.11.1]);xlabel(Time(sec)),ylabel (fs(t));
title(200hZ抽样后的信号),holdoff;
Fsw=Ts*fst*exp(-j*t2*w);subplot(224);
plot(w,abs(Fsw)),gridon;axis([-300003000000.003]);x label(\omega),ylabel(Fs(w));title(200hZ抽样信号的频谱);
matlab波形如下:
200hZ正弦信号波形
0.5-0.5
-1-3
-3
200hZ正弦信号的频谱
F(w)
-3-2
-1
01Time(sec)
2x10
3
-3
-3
f(t)
-2-1012x10
3
4
?
200hZ抽样信号的频谱
200hZ抽样后的信

-3
Fs(w)
-2
-1
01Time(sec)
2x10
3
-3
fs(t)
-3
-2-1012x10
3
4
?
(3800hZ正弦信号)代码如下:Ts=1/3800;dt=0.00001;
t1=-1/7600:dt:1/7600;
ft=sin(2*pi*3800*t1).*(ucT(t1+1/7600)-ucT(t1-1/7600 ));subplot(221);。

相关文档
最新文档