历年导数压轴经典题目

合集下载

导数压轴小题汇编(学生版)

导数压轴小题汇编(学生版)

导数压轴小题练习1. 【图像法】设函数f(a)=e²(2x-1)-ax+a,其中a<1,若存在唯一的整数ag使得f(x₀)<0,则a的取值范围是( )A.1)B.C.D.2. 【图像法】已知函数f(x)=xe²-mx+m,若f(a)<0的解集为(a,b),其中b<0;不等式在(a,b)中有且只有一个整数解,则实数m的取值范围是( )A B. C. D.3. 【切线应用】若函数f(x)=w³+ax²+bx(a,b∈R)的图象与α轴相切于一点A(m,0)(m≠0),且f(a)的极大值为 ,则m 的值为34. 【导数的切线法】设函数f(x)= 2 x²-2ax(a>0)与g(a)=a²lnz+b有公共点,且在公共点处的切线方程相同,则实数b的最大值为( )A. B. C. D.5. 【导数的切线法】若对于函数f(x)=ln(x+1)+a²图象上任意一点处的切线l,在函数g(x)=asinxcosx-a的图象上总存在一条切线L2,使得l工L,则实数a的取值范围为( )A. C.B.D.(-w,- 1)U[1,+w)6. 【导数的切线法】已知实数a,b满足ln(b+1)+a-3b=0,实数c,d满足2d-c- √5=0,则(a-c)2+(b-d)²的最小值为( )A.1B.2C.3D.±7. 【导数的切线法】若直线kx-y-k+1=0(x∈R)和曲线E: 的图像交于A(aj,y),B(xz,yz),C(xg,y3)(x₁<a₂<a3)三点时,曲线E在点A,点C处的切线总是平行,则过点(b, a)可作曲线E的( )条切线.A.0B.1C.2D.38. 【导数的直接应用】若是定义在R上的可导函数,且满足(x-1)f'(a)≥0,则必有( )A.f(0)+f(2)<2f(1)B.f(0)+f(2)>2f(1)C.f(0)+f(2)≤2f(1)D.f(0)+f(2)≥2f(1)9. 【导数的直接应用】若函)上单调递增,则实数a的取值范围是()A.(-c1)B.(- 1)C.(1,+o)D.(1+c)10. 【利用对称中心破题】已知函则)的值为( )A.0B.504C.1008D.201611. 【利用对称中心破题】已知函则的值为( )A.2016B.1008C.504D.012. 【利用对称中心破题】已知函,且f(2017)= 2016,则f(-2017)=( )A.-2014B.-2015C.-2016D.-201713. 【利用对称中心破题】已知函)的图象上存在关于(1,0)对称的点,则实数m的取值范围是( )A.(-o,1-ln2)B.(-w,1-ln2)C.(1-ln2,+o)D.(1-ln2,+c)14. 【通过构造函数破题】已知函数f(a)=e²+mlnx(m∈R,e为自然对数的底数),若对任意的正数ai,αz2,当ai>a2时,都有f(a₁)-f(a₂)>x-az恒成立,则实数m的取值范围为.15. 【通过构造函数破题】已知函数f(a)=aln(a+1) -q²,在区间(0,1)内任取两个实数p,g,且p<q,若不等式恒成立,则实数a的取值范围是( B )A. 15,+α)B.(15,+c)C.(-w,6)D.(-o,6)16. 【直接法】已知直线l与函数f(a)=ln( √e x)-ln(1-x)的图象交于A,B两点,若AB中点为则m的大小为( )A. B. C.1 D.217. 【函数性质+K法】已知函数f(a)=x+sinx(x ∈R),且f(y² - 2y+3)+f(x² - ±w+1)≤0,则当y≥1时,的取值范围是( )A. B.[0, C.. D.18. 【考查函数性质】已知函数f(a)=x²+(a+8)x+a²+a- 12(a<0),且f(a²-4)=f(2a-8),则的最小值为( )A. B. C. D.19【分离参数法+隐含零点】已知函数f(a)=x+alna,若k∈Z,并且h(x-1)<f(a)对任意的x>1恒成立,则k的最大值为( )A.2B.3C.4D.520. 【考查函数的零点+嵌套函数】已知函数,则方程,的实根个数不可能为( )A . 8个B . 7个C . 6个D . 5个21【考查函数的零点】定义在R上的偶函数f(a)满足f(2-a)=f(x),且当a∈[1,2]时,f(a) =lnx-a+1,若函数g(x)=f(x)+mx有7个零点,则实数m的取值范围为()B.D.22. 【考查函数的零点】设函 ),若存在唯二的αo.. 使得h(n)=min{f(x),g(x)}的最小值为h(xo). 则实数a的取值范围是( )A.a<-2B.a≤-2C.a<- 1D.a≤- 123. 【考查函数的零点】已知函数(e为自然对数的底数)有且只有一个零点,则实数k的取值范围是( )A.(0,2)B.(0,C.(0,e)D.(0,+c)24. 【转化法+零点】已知函数f(a)=alnx+a²+(a-6)a在(0,3)上不是单调函数,则实数a的取值范围是25. 【图像法+转化法+零点】函的图象上存在关于y轴对称的点,则实数a的取值范围是( )A.(-w,3-2ln2)B.[3-2ln2,+c)C.(√e,+o)D.(-w,-Ve)26. 【多变量转化+等与不等转化】已知函数f(a)=lna,g(x)=(2m+3)x+n,若对任意的x∈(0,+o),总有f(a)≤g(x)恒成立,记(2m+3)n的最小值为f(m,n),则f(m,n)最大值为( )A.1B.C.D.27. 【多变量转化+等与不等转化】已知不等式e²- (a+2)x≥b-2恒成立,则的最大值为( )A.-ln3B.-ln2C.- 1-ln3D.- 1-ln228.【多变量转化+等与不等转化】对于任意b>0,a∈R,不等式[b-(a-2)]²+[Inb- (a- 1)]²≥m²-m恒成立,则实数m的最大值为()A.√eB.2C.eD.329.嵌套函数+零点图像法】函.若方程af²(a)+bf(a)+c=0有8个不同的实根,则此8个实根之和是( )A. B.4 C. D.230. 【嵌套函数法】已知函,则f(f(w))<2的解集为( )A.(1-ln2,+o)B.(+o,1-ln2)C.(1-ln2,1)D.(1,1+ln2)31. 【导数+嵌套函数法+分离参数】函数f(x)=-a²+3w+a,g(a)=2³-w²,若flg(w)]≥0对a∈[0,1]恒成立,则实数a的取值范围是( )A.(-e,+c)B.(-ln2,+o)C.(-2,+o)D.32. 【导数+嵌套函数法+定义域与值域的关系】已知函数f(x)=e²+a-e- ²+2(a∈R,e为自然对数的底数),若y=f(x)与y=f(f(x))的值域相同,则a的取值范围是()A.a<0 B . a≤- 1 C.O<a≤4 D . a < 0或O < a ≤ 433. 【导数+嵌套函数法+分离参数】已知函),其中e为自然对数的底数.若函数y=f(a)与y=flf(x)]有相同的值域,则实数a的最大值为( )A.. eB.. 2C.1D..34. 【导数+嵌套函数法+导函数零点】已知函有两个极值点ai,αz,若αi<f(x₁)<z2,则关于n方程(f(a))²-2af(a)-b=0的实根个数不可能为( )A.2B.3C.4D.535. 【导数+嵌套函数法+导函数零点】已知函数,有两个极值点ai,x2,若,则关于a方程(f(x))²-2af(a)-b=0的实根个数为( )A.. 2B.. 3C.4D.536. 【嵌套函数法+零点】已知偶函数f(a)满足f(x+4)=f(±-x),且当x∈(0,4)时,关于a的不等式f(a)+af(a)>0在[-200,200]上有且只有300个整数解,则实数a的取值范围是( )C. D.37. 【导数极值点常规处理手段-转化法】已知函数f(a)=xlnx-ae²(e为自然对数的底数)有两个极值点,则实数a的取值范围是( )A. B.(0,e) C. D.(-c,e)38. 【分析法】已知函数f(x)=e²-ax- 1,g(x)=lnx-ax-a,若存在ap ∈(1,2),使得f(x₀)g(x₀)<0,则实数a的取值范围为( )A.(ln2,B.(ln2,e- 1)C.(1,e- 1)D.[1,39. 【导函数构造法】设f(x)定义在R上的可导函数,若f(3)=1,且3f(a)+af(n)>ln(x+1),则不等式(x-2017)f(α-2017)-27>0的解集为( )A.(2014,+o)B.(0,2014)C.(0,2020)D.(2020,+c)40. 【导函数2次构造法】已知f(x)是定义在R上的可导函数,且满足(x+2)f(a)+af'(a)>0,则( )A.f(x)>0B.f(x)<0C.f(x)为减函数D.f(a)为增函数41. 【导函数2次构造法】定义在R上的函数f(x)满足:f"(a) -f(a)=w ·e²,且, 则的最大值为( )A.0B.C.1D.242. 【导函数构造法】设函数f(a)满足2x²f(x)+x³f'(x)=e²,,则w∈(2,+o)时,f(a)的最小值为( )A. B. C. D.43. 【导函数构造法】已知函数f(x)是定义在R上的奇函数,其导函数为f(x),若对任意的正实数z,都有af"(x)+2f(a)>0恒成立,且f( √②)=1,则使a²f(x)<2成立的实数α的集合为( )A.(-w,-√2)U(√2,+c)B.(-√2,√2)C.(-w,√2)D.(√2,+α)44.已知函数f(a)为R上的可导函数,其导函数为f(x),且满足f(x)+f(a)<1恒成立,f(0)=2018,则不等式f(x)<2017e-3+1的解集为( )A.f(a)=x-sinzB.f(a-2)+f(a²)≥0D.f(x)=x³+a45. 【导函数构造法】已知定义在f(x)=x³+a上的可导函数f(a-2)+f(a²)≥0的导函数为f'(a),对任意实数z均有(1-x)f(a)+af'(x)>0成立,且y=f(x+1)-e是奇函数,则不等式af(x)-e³>0的解集是( )A.(-w,e)B.(e,+c)C.(-α,1)D.(1,+o)46. 【导函数构造法】已知定义域为R的函数的导函数为f'(x),并且满足f"(a)>f(a)+1,则下列正确的是()A.f(2018)-ef(2017)>e- 1B.f(2018)-ef(2017)<e- 1C.f(2018)-ef(2017)>e+1D.f(2018)-ef(2017)<e+147.(50)16【导函数类极值零点最值】 .关于a的方有两个不等实根,则实数k的取值范围是48. 【导函数类极值零点最值】已知函数f(a)=x(lnx-ax)有极值,则实数a的取值范围是( )B. D.49. 【导函数类极值零点最值】已知函数f(x)=e²>-ax²+bw-1,其中a,b∈R,e为自然对数的底数.若f(1)=0.f'(a)是f(x)的导函数,函数f(a)在区间(0,1)内有两个零点,则a的取值范围是( )A.(e²-3,e²+1)B.(e²-3,+o)C.(-w,2e²+2)D.(2e²-6,2e²+2)50. 【导函数类极值零点最值】已知a∈R,若区间(0,1)上有且只有一个极值点,则a的取值范围是( )A.a<0B.a>0C.a≤1D.a≥051. 【分析结构+换元法】若存在正实数m,使得关于α的方程α+a(2x+2m-tex)[ln(x+m)-lna]=0有两个不同的根,其中e为自然对数的底数,则实数a的取值范围是( D )A.(-α,0)B.(0,D. 152. 【函数性质+单调性】定义在w∈R上的函数f(x)在(-w,-2)上单调递增,且f(α-2)是偶函数,若对一切实数α,不等式f(2sinx-2)>f(sinx-1-m)恒成立,则实数m的取值范围为53. 【函数性质法-单调性+奇偶性】已知函,若f( - a)+f(a)≤2f(w),则实数的取值范围是( )A.(-w1)U[1,+o)B.[- 1,0]C.[0,1]D.[- 1,1]54. 【函数性质法】已知函数f(x)是偶函数,f(x)是奇函数,且对于任意αi,Xz∈[0,1],且ai≠α2,都有(x₁-x2)[f(a₁)-f'(x2)]<0, 则下列结论正确的是( )A.a>b>CB.b>a>cC.b>c>aD.c>a>b55. 【函数性质-周期函数法】设函数fo(n)=sing,定义fa(m)=f[fo(n)],fo(n)=f[fa(z)], …, fn(a)=f[fn-y(a)],则fa(15°)+fg(15°)+fo(15°)+…+foom(15°)的值是()B. C.0 D.156. 【函数性质-周期函数法】若函数y=f(x),A∈M对于给定的非零实数a,总存在非零常数T,使得定义域M内的任意实数α,都有af(a)=f(x+T)恒成立,此时T为f(a)的假周期,函数f(a)是M上的a 级假周期函数.若函数f(w)是定义在区间(0,+o)内的3级假周期且T=2,当a∈(0,2),有:,若3αi∈[6,8],3αz∈(0,+w)使g(a2)-f(a₁)≤0成立,则实数m的取值范围是( )A. B.(-c,12) C.(-c,39) D.(12,+c)57. 【图像法十零点】已 ,若函数f(a)有四个零点,则实数a 的取值范围是( )A. B . (一w, - e) C.(e,+c) D.58. 【图像法+零点】已知函,若函数y=f(f(a)-a)- 1有三个零点,则实数 a 的取值范围是( B ).. 59. 【导数十零点】若函岁有三个不同的零点,则实数a 的取值范围是( ) A.(1 B. C. D.60. 【零点】已知关于的方程x²e²+t -a=0,m∈[-1,1],若对任意的t∈[1,3],该方程总存在唯一的实数解,则实数a 的取值范围是( )B. C. D. 1,e]61. 【零点】已知当a∈(1,+α)时,关于a 的方程有唯一实数解,则k 的范围为 ( )A.3,4)B.(4,5)C.(5,6)D.(6,7)62. 【考查三次函数值域】已知函数f(x)=(w-a)³ -3m+a(a>0)在[- 1,b]上的值域为[-2-2a,0],则b的取值范围是( )A..[0,3]B.[0,2]C.[2,3]D.(- 1,3)63. (【外接球与内切球】 .如图,圆形纸片的圆心为○,半径为6cm,该纸片上的正方形ABCD 的中心为O . E,F,G,H 为圆O 上的点,△ABE, △BCF, △CDG,△ADH 分别是以AB,BC,CD,DA 为底边的等腰三角形,沿虚线剪开后,分别以AB,BC,CD,DA 为折痕折起△ABE, △BCF, △CDG, △ADH,使得E ,F ,G ,H 重合,得到一个四棱锥,当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为64. 【导数法】设函数f(a)=e² -3w,则关于函数y=f(x)说法错误的是( )A. 在区间(0,1),(1,+o)内均有零点B. 与y=lng 的图象有两个交点C . Vx ₁ ∈R,3x ₂ ∈R 使得f(a)在x=xi,x=az 处的切线互相垂直D . f(a)≥ - 1恒成立65. 【极值点偏移】已知函数y=e² -ax 有两个零点ai,Zz ,α₁<x2,则下面说法正确的是( )A.Qi+α₂<2B.a<eC.αjα₂>1D.有极小值点xg,且aj+x ₂<2o66. 【恒成立-分离参数法】已知函数f(a)=ax+alnx (a∈R)的图像在点处的切线斜率为1,当k∈Z 时,不等式f(x)-kx+k 在x∈(1,+o)上恒成立,则k 的最大值是( C )A.1B. 2C.3D.4 D C67.已知函数f(a)=ax,g(x)=lnz,存在t∈(0,e),使得f(t)-g(t)最小值为3,则函数g(a)=lnx图象上一点P到函数发f(a)=ax图象上一点Q的最短距离为( )A. B..√5 C.2√2 D.368. 【存在与任意】设函数f(a)=a²-wlnx+2,若存在区间,使f(a)在[a,b]上的值域为[k(a+2),k(b+2)],则k的取值范围是( )A. B. C. D.69.【存在与任意】已知函,g(a)=-ex²+aa(e是自然对数的底数),对任意的x∈R,存在],有f(x₁)≤g(x2),则a的取值范围为70. 【导数综合】已知函数f(x)=sinα-xcosx,现有下列结论:①当x ∈[0,π]时,f(x)≥0;②当0<a<β<π时,a-sinB>β ·s ina;③若对)恒成立,则m-n的最小值等于④已知k∈[0,1],当x;∈(0,2π)时,满足的个数记为n,则n的所有可能取值构成的集合为{0,1,2,3}.其中正确的个数为( )A.1B.2C.3D.471.(105)12【导数+隐含零点】已知函2,ag是函数f(a)的极值点。

压轴高考数学复习导数大题精选10题附详细解答

压轴高考数学复习导数大题精选10题附详细解答

高考压轴导数大题例1.已知函数3211()32f x x ax bx =++在区间[11)-,,(13],内各有一个极值点. (I )求24a b -的最大值;(II )当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点A 时,从l 的一侧进入另一侧),求函数()f x 的表达式.例3已知函数()θθcos 163cos 3423+-=x x x f ,其中θ,R x ∈为参数,且πθ20≤≤.(1)当时0cos =θ,判断函数()x f 是否有极值;(2)要使函数()f x 的极小值大于零,求参数θ的取值范围;例4.已知函数32()f x ax bx cx =++在点0x 处取得极大值5,其导函数'()y f x =的图象经过点(1,0),(2,0).求:(Ⅰ)0x 的值;(Ⅱ),,a b c 的值.例5设3=x 是函数()()()R x e b ax x x f x ∈++=-32的一个极值点.(Ⅰ)求a 与b 的关系式(用a 表示b ),并求()x f 的单调区间;(Ⅱ)设0>a ,()x e a x g ⎪⎭⎫ ⎝⎛+=4252.若存在[]4,0,21∈εε使得()()121<-εεg f 成立, 求a 的取值范围例6已知函数321()(2)13f x ax bx b x =-+-+ 在1x x =处取得极大值,在2x x =处取得极小值,且12012x x <<<<.(1)证明0a >;(2)若z =a +2b ,求z 的取值范围。

1. 已知函数21()22f x ax x =+,()g x lnx =.(Ⅰ)如果函数()y f x =在[1,)+∞上是单调增函数,求a 的取值范围;(Ⅱ)是否存在实数0a >,使得方程()()(21)g x f x a x '=-+在区间1(,)e e 内有且只有两个不相等的实数根?若存在,请求出a 的取值范围;若不存在,请说明理由.2. 如果()0x f 是函数()x f 的一个极值,称点()()00,x f x 是函数()x f 的一个极值点.已知函数()()()00≠≠-=a x e b ax x f x a 且(1)若函数()x f 总存在有两个极值点B A ,,求b a ,所满足的关系;(2)若函数()x f 有两个极值点B A ,,且存在R a ∈,求B A ,在不等式1<x 表示的区域内时实数b 的范围.(3)若函数()x f 恰有一个极值点A ,且存在R a ∈,使A 在不等式⎩⎨⎧<<e y x 1表示的区域内,证明:10<≤b .3 已知函数3221()ln ,()3(,,R)32f x x x g x x ax bx c a b c ==-+-+∈.(1)若函数()()()h x f x g x ''=-是其定义域上的增函数,求实数a 的取值范围;(2)若()g x 是奇函数,且()g x 的极大值是3g ,求函数()g x 在区间[1,]m -上的最大值;(3)证明:当0x >时,12()1x f x e ex '>-+.4已知实数a 满足0<a ≤2,a ≠1,设函数f (x )=13x 3-12a +x 2+ax . (Ⅰ) 当a =2时,求f (x )的极小值;(Ⅱ) 若函数g (x )=x 3+bx 2-(2b +4)x +ln x (b ∈R )的极小值点与f (x )的极小值点相同.求证:g (x )的极大值小于等于5/4例1解(I )因为函数3211()32f x x ax bx =++在区间[11)-,,(13],内分别有一个极值点,所以2()f x x ax b '=++0=在[11)-,,(13],内分别有一个实根, 设两实根为12x x ,(12x x <),则2214x x a b -=-2104x x <-≤.于是2044a b <-,20416a b <-≤,且当11x =-,23x =,即2a =-,3b =-时等号成立.故24a b -的最大值是16. (II )解法一:由(1)1f a b '=++知()f x 在点(1(1))f ,处的切线l 的方程是(1)(1)(1)y f f x '-=-,即21(1)32y a b x a =++--, 因为切线l 在点(1())A f x ,处空过()y f x =的图象,所以21()()[(1)]32g x f x a b x a =-++--在1x =两边附近的函数值异号,则 1x =不是()g x 的极值点. 而()g x 321121(1)3232x ax bx a b x a =++-++++,且 22()(1)1(1)(1)g x x ax b a b x ax a x x a '=++-++=+--=-++.若11a ≠--,则1x =和1x a =--都是()g x 的极值点.所以11a =--,即2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--. 解法二:同解法一得21()()[(1)]32g x f x a b x a =-++-- 2133(1)[(1)(2)]322a x x x a =-++-+. 因为切线l 在点(1(1))A f ,处穿过()y f x =的图象,所以()g x 在1x =两边附近的函数值异号,于是存在12m m ,(121m m <<). 当11m x <<时,()0g x <,当21x m <<时,()0g x >;或当11m x <<时,()0g x >,当21x m <<时,()0g x <.设233()1222a a h x x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭,则当11m x <<时,()0h x >,当21x m <<时,()0h x >;或当11m x <<时,()0h x <,当21x m <<时,()0h x <.由(1)0h =知1x =是()h x 的一个极值点,则3(1)21102a h =⨯++=, 所以2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--.例3解(Ⅰ)当cos 0θ=时,3()4f x x =,则()f x 在(,)-∞+∞内是增函数,故无极值.(Ⅱ)2'()126cos f x x x θ=-,令'()0f x =,得12cos 0,2x x θ==. 由(Ⅰ),只需分下面两种情况讨论.①当cos 0θ>时,随x 的变化'()f x 的符号及()f x 的变化情况如下表: x(,0)-∞ 0 cos (0,)2θ cos 2θ cos (,)2θ+∞ '()f x + 0 - 0 + ()f x ↗ 极大值↘ 极小值 ↗因此,函数()f x 在2x =处取得极小值f()2,且3cos 13()cos 2416f θθθ=-+.要使cos ()02f θ>,必有213cos (cos )044θθ-->,可得30cos θ<<由于30cos θ≤≤3116226ππππθθ<<<<或. ②当时cos 0θ<,随x 的变化,'()f x 的符号及()f x 的变化情况如下表: xcos (,)2θ-∞ cos 2θ cos (,0)2θ 0 (0,)+∞ '()f x+ 0 - 0 + ()f x 极大值 极小值因此,函数()0f x x =在处取得极小值(0)f ,且3(0)cos .16f θ= 若(0)0f >,则cos 0θ>.矛盾.所以当cos 0θ<时,()f x 的极小值不会大于零.综上,要使函数()f x 在(,)-∞+∞内的极小值大于零,参数θ的取值范围为311(,)(,)6226ππππ⋃.例4解法一:(Ⅰ)由图像可知,在(),1-∞上()'0f x >,在()1,2上()'0f x <,在()2,+∞上()'0f x >,故()f x 在∞∞(-,1),(2,+)上递增,在(1,2)上递减, 因此()f x 在1x =处取得极大值,所以01x =(Ⅱ)'2()32,f x ax bx c =++由'''f f f (1)=0,(2)=0,(1)=5,得320,1240,5,a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩ 解得2,9,12.a b c ==-=解法二:(Ⅰ)同解法一(Ⅱ)设'2()(1)(2)32,f x m x x mx mx m =--=-+又'2()32,f x ax bx c =++所以3,,232m a b m c m ==-= 32|3()2,32m f x x mx mx =-+ 由(1)5f =,即325,32m m m -+=得6,m =所以2,9,12a b c ==-=例5解(Ⅰ)f `(x)=-[x 2+(a -2)x +b -a ]e 3-x ,由f `(3)=0,得 -[32+(a -2)3+b -a ]e 3-3=0,即得b =-3-2a ,则 f `(x)=[x 2+(a -2)x -3-2a -a ]e 3-x =-[x 2+(a -2)x -3-3a ]e 3-x =-(x -3)(x +a+1)e 3-x .令f `(x)=0,得x 1=3或x 2=-a -1,由于x =3是极值点,所以x+a+1≠0,那么a ≠-4.当a <-4时,x 2>3=x 1,则在区间(-∞,3)上,f `(x)<0, f (x)为减函数;在区间(3,―a ―1)上,f `(x)>0,f (x)为增函数;在区间(―a ―1,+∞)上,f `(x)<0,f (x)为减函数.当a >-4时,x 2<3=x 1,则在区间(-∞,―a ―1)上,f `(x)<0, f (x)为减函数;在区间(―a ―1,3)上,f `(x)>0,f (x)为增函数;在区间(3,+∞)上,f `(x)<0,f (x)为减函数.(Ⅱ)由(Ⅰ)知,当a >0时,f (x)在区间(0,3)上的单调递增,在区间(3,4)上单调递减,那么f (x)在区间[0,4]上的值域是[min(f (0),f (4) ),f (3)], 而f (0)=-(2a +3)e 3<0,f (4)=(2a +13)e -1>0,f (3)=a +6,那么f (x)在区间[0,4]上的值域是[-(2a +3)e 3,a +6].又225()()4x g x a e =+在区间[0,4]上是增函数,且它在区间[0,4]上的值域是[a 2+425,(a 2+425)e 4], 由于(a 2+425)-(a +6)=a 2-a +41=(21-a )2≥0,所以只须仅须(a 2+425)-(a +6)<1且a >0,解得0<a <23. 故a 的取值范围是(0,23).例6解(Ⅰ)由函数()f x 在1x x =处取得极大值,在2x x =处取得极小值,知12x x ,是()0f x '=的两个根.所以12()()()f x a x x x x '=--当1x x <时,()f x 为增函数,()0f x '>,由10x x -<,20x x -<得0a >.(Ⅱ)在题设下,12012x x <<<<等价于(0)0(1)0(2)0f f f '>⎧⎪'<⎨⎪'>⎩ 即202204420b a b b a b b ->⎧⎪-+-<⎨⎪-+->⎩.化简得203204520b a b a b ->⎧⎪-+<⎨⎪-+>⎩.此不等式组表示的区域为平面aOb 上三条直线:203204520b a b a b -=-+=-+=,,.所围成的ABC △的内部,其三个顶点分别为:46(22)(42)77A B C ⎛⎫ ⎪⎝⎭,,,,,. z 在这三点的值依次为16687,,. 所以z 的取值范围为1687⎛⎫ ⎪⎝⎭,. 1解:(Ⅰ)当0a =时,()2f x x =在[1,)+∞上是单调增函数,符合题意. 当0a >时,()y f x =的对称轴方程为2x a =-,由于()y f x =在[1,)+∞上是单调增函数, 所以21a -≤,解得2a ≤-或0a >,所以0a >. 当0a <时,不符合题意.综上,a 的取值范围是0a ≥.(Ⅱ)把方程()()(21)g x f x a x '=-+整理为2(21)lnx ax a x =+-+,即为方程2(12)0ax a x lnx +--=. b a 21 2 4 O 4677A ⎛⎫ ⎪⎝⎭,(42)C , (22)B ,设2()(12)H x ax a x lnx =+-- (0)x >, 原方程在区间(1,e e )内有且只有两个不相等的实数根, 即为函数()H x 在区间(1,e e )内有且只有两个零点.1()2(12)H x ax a x '=+--22(12)1(21)(1)ax a x ax x x x +--+-==令()0H x '=,因为0a >,解得1x =或12x a =-(舍)当(0,1)x ∈时, ()0H x '<, ()H x 是减函数;当(1,)x ∈+∞时, ()0H x '>,()H x 是增函数.()H x 在(1,e e )内有且只有两个不相等的零点, 只需min 1()0,()0,()0,H e H x H e ⎧>⎪⎪<⎨⎪>⎪⎩即2222212(12)10,(1)(12)10,(12)1(2)(1)0,a a a e a e e e e H a a a ae a e e e a e ⎧--++++=>⎪⎪⎪=+-=-<⎨⎪+--=-+->⎪⎪⎩ ∴22,211,1,2e e a e a e a e e ⎧+<⎪-⎪⎪>⎨⎪-⎪>-⎪⎩ 解得2121e e a e +<<-, 所以a 的取值范围是(21,21e e e +-) .2(1)x a x a e x a b ax e a x f ⋅--+⋅=))(()('2令()0f x '=得20x ax b -+= 240a b ∴-> 又 00a x ≠≠且204a b b ∴<≠且(2)20x ax b -+=在(1,1)-有两个不相等的实根. 即2401121010a b a a b a b ⎧∆=->⎪⎪-<<⎪⎨⎪++>⎪-+>⎪⎩ 得 22441b a a b ⎧>⎪<⎨⎪<-⎩110b b ∴-<<≠且(3)由①2()00f x x ax b '=⇒-+=(0)x ≠ ①当()220a xx ax b b f x a e x -+'==⋅⋅在x a =左右两边异号(,())a f a ∴是()y f x =的唯一的一个极值点 由题意知2110()a a e a b e e <<≠⎧⎨-<-<⎩且- 即 220111a a ⎧<<⎨-<<⎩ 即 201a <<存在这样的a 的满足题意 0b ∴=符合题意②当0b ≠时,240a b ∆=-=即24b a = 这里函数()y f x =唯一的一个极值点为(,())22a a f由题意12102()2a a a e b e e ⎧<≠⎪⎪⎨⎪-<-<⎪⎩且即 211222042a a e b e ⎧<<⎪⎨-<-<⎪⎩ 即 1122044b e b e <<⎧⎪⎨⎪-<<⎩01b ∴<<综上知:满足题意 b 的范围为[0,1)b ∈.3解:(1)()ln 1f x x '=+ ,2()23g x x ax b '=-+-,所以2()ln 231h x x x ax b =+-++, 由于()h x 是定义域内的增函数,故1()40x h x x a '=+-≥恒成立,即14x a x ≤+对0x ∀>恒成立,又144xx +≥(2x =时取等号),故(,4]a ∈-∞. (2)由()g x 是奇函数,则()()0g x g x +-=对0x ∀>恒成立,从而0a c ==, 所以323()3g x x bx =--,有2()23g x x b '=--. 由()g x 极大值为3g ,即3(0g '=,从而29b =-;因此32233()g x x x =--,即23323()22(g x x x x '=-+=--+, 所以函数()g x 在3(,-∞和3()+∞上是减函数,在33(上是增函数.由()0g x =,得1x =±或0x =,因此得到:当10m -<<时,最大值为(1)0g -=; 当30m ≤<32233()g m m m =-+; 当3m ≥时,最大值为343(g =.(3)问题等价于证明2()ln x xe ef x x x =>-对0x >恒成立;()ln 1f x x '=+,所以当1(0,)e x ∈时,()0f x '<,()f x 在1(0,)e 上单调减;当1(,)e x ∈+∞时,()0f x '>,()f x 在1(,)e+∞上单调增; 所以()f x 在(0,)+∞上最小值为1e -(当且仅当1e x =时取得) 设2()(0)x xe e m x x =->,则1()x x e m x -'=,得()m x 最大值1(1)e m =-(当且仅当1x =时取得), 又()f x 得最小值与()m x 的最大值不能同时取到,所以结论成立.4(Ⅰ) 解: 当a =2时,f ′(x )=x 2-3x +2=(x -1)(x -2).列表如下:x(-∞,1) 1 (1,2) 2 (2,+∞) f ′(x )+ 0 - 0 + f (x )单调递增 极大值 单调递减 极小值 单调递增所以,f (x )极小值为f (2)=23.(Ⅱ) 解:f ′(x )=x 2-(a +1)x +a =(x -1)(x -a ).g ′(x )=3x 2+2bx -(2b +4)+1x =2(1)[3(23)1]x x b x x -++-.令p (x )=3x 2+(2b +3)x -1,(1) 当 1<a ≤2时,f (x )的极小值点x =a ,则g (x )的极小值点也为x =a ,所以p (a )=0,即3a 2+(2b +3)a -1=0,即b =21332a a a --,此时g(x)极大值=g(1)=1+b-(2b+4)=-3-b=-3+23312a aa+-=313222aa--.由于1<a≤2,故313222aa--≤32⨯2-14-32=54.(2) 当0<a<1时,f (x)的极小值点x=1,则g(x)的极小值点为x=1,由于p(x)=0有一正一负两实根,不妨设x2<0<x1,所以0<x1<1,即p(1)=3+2b+3-1>0,故b>-52.此时g(x)的极大值点x=x1,有g(x1)=x13+bx12-(2b+4)x1+ln x1<1+bx12-(2b+4)x1=(x12-2x1)b-4x1+1(x12-2x1<0)<-52(x12-2x1)-4x1+1=-52x12+x1+1=-52(x1-15)2+1+110(0<x1<1)≤11 10<54.综上所述,g(x)的极大值小于等于54.。

导数压轴通关题含详细答案

导数压轴通关题含详细答案

真题假题——导数压轴通关题1. 设函数f(x)=ax2+lnx,g(x)=x3−x2−3.(1)讨论函数f(x)的单调性;(2)若存在x1,x2∈[−13,3],使得g(x1)−g(x2)≥M成立,求满足条件的最大整数M;(3)若对任意的s,t∈[13,2],都有sf(s)≥g(t)成立,求实数a的取值范围.2. 已知函数f(x)=xlnx−a2x2−x+a(a∈R)在其定义域内有两个不同的极值点.(1)求a的取值范围;(2)记两个极值点为x1,x2,且x1<x2,已知λ>0,若不等式x1⋅x2λ>e1+λ恒成立,求λ的取值范围.3. 设函数f(x)=x2−ax+b.(1)讨论函数f(sinx)在(−π2,π2)内的单调性并判断有无极值,有极值时求出极值;(2)记f0(x)=x2−a0x+b0,求函数∣f(sinx)−f0(sinx)∣在[−π2,π2]上的最大值D;(3)在(2)中,取a0=b0=0,求z=b−a24满足D≤1时的最大值.4. 已知函数f(x)=lnx−ax+1−ax−1(a∈R).(1)当a≤12时,讨论f(x)的单调性;(2)设g(x)=x2−2bx+4,当a=14时,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求实数b的取值范围.5. 已知函数f(x)=e x,x∈R.(1)若直线y=kx+1与f(x)的反函数的图象相切,求实数k的值;(2)设x>0,讨论曲线y=f(x)与曲线y=mx2(m>0)公共点的个数;(3)设a<b,比较f(a)+f(b)2与f(b)−f(a)b−a的大小,并说明理由.6. 已知数列{a n}的各项均为正数,b n=n(1+1n )na n(n∈N+),e为自然对数的底数.(1)求函数f(x)=1+x−e x的单调区间,并比较(1+1n )n与e的大小;(2)计算b1a1,b1b2a1a2,b1b2b3a1a2a3,由此推测计算b1b2⋯b na1a2⋯a n的公式,并给出证明;(3)令c n=(a1a2⋯a n)1n,数列{a n},{c n}的前n项和分别记为S n,T n,证明:T n<eS n.7. 设函数f(x)=(x−1)e x−kx2(k∈R).(1)当k=1时,求函数f(x)的单调区间;(2)当k∈(12,1]时,求函数f(x)在[0,k]上的最大值M.8. 设函数f(x)=1−xax+lnx在[1,+∞)上是增函数.(1)求正实数a的取值范围;(2)设b>0,a>1,求证:1a+b <ln a+bb<a+bb.9. 设函数f(x)=lnx−ax,g(x)=e x−ax,其中a为实数.(1)若 f (x ) 在 (1,+∞) 上是单调减函数,且 g (x ) 在 (1,+∞) 上有最小值,求 a 的取值范围; (2)若 g (x ) 在 (−1,+∞) 上是单调增函数,试求 f (x ) 的零点个数,并证明你的结论.10. 已知函数 f (x )=x 3+ax +14,g (x )=−lnx .(1)当 a 为何值时,x 轴为曲线 y =f (x ) 的切线;(2)用 min {m,n } 表示 m ,n 中的最小值,设函数 ℎ(x )=min {f (x ),g (x )}(x >0),讨论 ℎ(x ) 零点的个数.11. 已知函数 f (x )=(x −2)e x +a (x −1)2 有两个零点.(1)求 a 的取值范围; (2)设 x 1,x 2 是 f (x ) 的两个零点,证明:x 1+x 2<2.12. 已知 M 是由满足下述条件的函数构成的集合:对任意 f (x )∈M ,①方程 f (x )−x =0 有实数根;②函数 f (x ) 的导数 fʹ(x ) 满足 0<fʹ(x )<1. (1)判断函数 f (x )=x2+sinx 4是否是集合 M 中的元素,并说明理由;(2)集合 M 中的元素 f (x ) 具有下面的性质:若 f (x ) 的定义域为 D ,则对于任意 [m,n ]⊆D ,都存在 x 0∈(m,n ),使得等式 f (n )−f (m )=(n −m )fʹ(x 0) 成立.试用这一性质证明:方程 f (x )−x =0 有且只有一个实数根;(3)对任意 f (x )∈M ,且 x ∈(a,b ),求证:对于 f (x ) 定义域中任意的 x 1,x 2,x 3,当 ∣x 2−x 1∣<1,且 ∣x 3−x 1∣<1 时,∣f (x 3)−f (x 2)∣<2.13. 设 f (x )=(x+a )lnx x+1,曲线 y =f (x ) 在点 (1,f (1)) 处的切线与直线 2x +y +1=0 垂直.(1)求 a 的值;(2)若 ∀x ∈[1,+∞),f (x )≤m (x −1) 恒成立,求 m 的范围; (3)求证:ln √2n +14<∑i4i 2−1(n ∈N ∗)n i=1.14. 已知函数 f (x )=x 2+x −1,α,β 是方程 f (x )=0 的两个根 (α>β),f ′(x ) 是 f (x ) 的导数.设 a 1=1,a n+1=a n −f (a n )fʹ(a n),(n =1,2,⋯).(1)求 α,β 的值;(2)证明:对于任意的正整数 n ,都有 a n >α; (3)记 b n =ln a n −βa n−α (n =1,2,⋯),求数列 {b n } 的前 n 项和 S n .15. 已知函数 f (x )=(x −1)2+a (lnx −x +1),(其中 a ∈R ,且 a 为常数.)(1)若对于任意的 x ∈(1,+∞),都有 f (x )>0 成立,求 a 的取值范围;(2)在1的条件下,若方程 f (x )+a +1=0 在 x ∈(0,2] 上有且只有一个实根,求 a 的取值范围.16. 设函数 f (x )=e x −ax +a (a ∈R ),其图象与 x 轴交于 A (x 1,0),B (x 2,0) 两点,且 x 1<x 2.(1)求实数 a 的取值范围;(2)证明:fʹ(√x 1x 2)<0(fʹ(x ) 为函数 f (x ) 的导函数);(3)设点 C 在函数 y =f (x ) 的图象上,且 △ABC 为等腰直角三角形,记 √x 2−1x 1−1=t ,求(a −1)(t −1) 的值.17. 已知函数f(x)=nx−x n,x∈R,其中n∈N∗,且n≥2.(1)讨论f(x)的单调性;(2)设曲线y=f(x)与x轴正半轴的交点为P,曲线在点P处的切线方程为y=g(x),求证:对于任意的正实数x,都有f(x)≤g(x);+2.(3)若关于x的方程f(x)=a(a为实数)有两个正实数根x1,x2,求证:∣x2−x1∣<a1−n18. 设函数f(x)=x3−ax−b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;.(3)设a>0,函数g(x)=∣f(x)∣,求证:g(x)在区间[−1,1]上的最大值不小于1419. 已知函数f(x)=alnx−bx2图象上一点P(2,f(2))处的切线方程为y=−3x+2ln2+2.(1)求a,b的值;,e]内有两个不等实根,求m的取值范围(其中e为自然对数的(2)若方程f(x)+m=0在[1e底,e≈2.7);(3)令g(x)=f(x)−nx,如果g(x)图象与x轴交于A(x1,0),B(x2,0)(x1<x2),AB中点为C(x0,0),求证:gʹ(x0)≠0.20. 设函数f(x)=ln(x+1)+a(x2−x),其中a∈R.(1)讨论函数f(x)极值点的个数,并说明理由;(2)若∀x>0,f(x)≥0成立,求a的取值范围.(a≠0).21. 已知函数f(x)=alnx+1x(1)求函数f(x)的单调区间;(2)若{x∣f(x)≤0}=[b,c](其中b<c),求a的取值范围,并说明[b,c]⊆(0,1).22. 已知函数f(x)=−2(x+a)lnx+x2−2ax−2a2+a,其中a>0.(1)设g(x)是f(x)的导函数,讨论g(x)的单调性;(2)证明:存在a∈(0,1),使得f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解.23. 设函数f(x)=αcos2x+(α−1)(cosx+1),其中α>0,记∣f(x)∣的最大值为A.(1)求fʹ(x);(2)求A;(3)证明∣fʹ(x)∣≤2A.24. 设函数f(x),g(x)的定义域均为R,且f(x)是奇函数,g(x)是偶函数,f(x)+g(x)=e x,其中e为自然对数的底数.(1)求f(x),g(x)的解析式,并证明:当x>0时,f(x)>0,g(x)>1;<bg(x)+(1−b).(2)设a≤0,b≥1,证明:当x>0时,ag(x)+(1−a)<f(x)x25. 已知函数f(x)=e x−ax2+(a−e+1)x−1(e是自然对数的底数,a为常数).x⋅fʹ(x)在区间[1,+∞)上单调递减,求a的取值范围.(1)若函数g(x)=f(x)−12(2)当a∈(e−2,1)时,函数f(x)=e x−ax2+(a−e+1)x−1在(0,1)上是否有零点?并说明理由.26. 已知函数f(x)=(e x−1)ln(x+a)(a>0)在x=0处取得极值.(1)求a的值;(2)当x≥0时,求证:f(x)≥x2.27. 已知函数f(x)=ax−lnx−4(a∈R).(1)讨论f(x)的单调性;(2)当a=2时,若存在区间[m,n]⊆[12,+∞),使f(x)在[m,n]上的值域是[km+1,kn+1],求k的取值范围.28. 已知函数f(x)=13x3+ax2+bx,且fʹ(−1)=0.(1)试用含a的代数式表示b,并求f(x)的单调区间;(2)令a=−1,设函数f(x)在x1,x2(x1<x2)处取得极值,记点M(x1,f(x1)),N(x2,f(x2)),P(m,f(m)),x1<m≤x2.请仔细观察曲线f(x)在点P处的切线与线段MP 的位置变化趋势,并解答以下问题;(ⅰ)若对任意的m∈(t,x2],线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值.并证明你的结论;(ⅱ)若存在点Q(n,f(n)),x1≤n<m,使得线段PQ与曲线f(x)有异于P,Q的公共点,请直接写出m的取值范围(不必给出求解过程).29. 设f(x)=x−ae x(a∈R),x∈R.已知函数y=f(x)有两个零点x1,x2且x1<x2.(1)求a的取值范围;(2)证明:x2x1随着a的减小而增大;(3)证明:x1+x2随着a的减小而增大.30. 已知a>0,函数f(x)=e ax sinx(x∈[0,+∞)),记x n为f(x)的从小到大的第n(n∈N∗)个极值点,证明:(1)数列{f(x n)}是等比数列;(2)若a≥√e2−1,则对一切n∈N∗,x n<∣f(x n)∣恒成立.31. 已知函数f(x)=x3+3∣x−a∣(a∈R).(1)若f(x)在[−1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)−m(a);(2)设b∈R,若[f(x)+b]2≤4对x∈[−1,1]恒成立,求3a+b的取值范围.32. 设f(x)=ln(x+1)+√x+1+ax+b(a,b∈R,a,b为常数),曲线y=f(x)与直线y=32x 在(0,0)点相切.(1)求a,b的值;(2)证明:当0<x<2时,f(x)<9xx+6.33. 设函数f(x)=x1+x−aln(1+x),g(x)=ln(1+x)−bx.(1)若函数f(x)在x=0处有极值,求函数f(x)的最大值.(2)①是否存在实数 b ,使得关于 x 的不等式 g (x )<0 在 (0,+∞) 上恒成立?若存在,求出 b的取值范围;若不存在,说明理由.②证明:−1<∑k k 2+1n k=1−lnn ≤12(n =1,2,⋯).34. 已知函数 f (x )={x 2+2x +a,x <0lnx,x >0,其中 a 是实数.设 A(x 1,f (x 1)),B(x 2,f (x 2)) 为该函数图象上的两点,且 x 1<x 2. (1)指出函数 f (x ) 的单调区间;(2)若函数 f (x ) 的图象在点 A ,B 处的切线互相垂直,且 x 2<0,求 x 2−x 1 的最小值; (3)若函数 f (x ) 的图象在点 A ,B 处的切线重合,求 a 的取值范围.35. 已知函数 f (x )=(1+x )e −2x ,g (x )=ax +x 32+1+2xcosx ,当 x ∈[0,1] 时,(1)求证:1−x ≤f (x )≤11+x;(2)若 f (x )≥g (x ) 恒成立,求实数 a 的取值范围.36. 已知 a ,b ,c ,d 是不全为 0 的实数,函数 f (x )=bx 2+cx +d ,g (x )=ax 3+bx 2+cx +d .方程 f (x )=0 有实根,且 f (x )=0 的实数根都是 g [f (x )]=0 的根,反之,g [f (x )]=0 的实数根都是 f (x )=0 的根. (1)求 d 的值;(2)若 a =0,求 c 的取值范围;(3)若 a =1,f (1)=0,求 c 的取值范围.37. 已知函数 f (x )=alnx x+1+bx ,曲线 y =f (x ) 在点 (1,f (1)) 处的切线方程为 x +2y −3=0.(1)求 a,b 的值; (2)如果当 x >0,且 x ≠1 时,f (x )>lnxx−1+kx ,求 k 的取值范围.38. 已知函数 f (x )=e x [13x 3−2x 2+(a +4)x −2a −4],其中 a ∈R ,e 为自然对数的底数.(1)若函数 f (x ) 的图象在 x =0 处的切线与直线 x +y =0 垂直,求 a 的值; (2)关于 x 的不等式 f (x )<−43e x 在 (−∞,2) 上恒成立,求 a 的取值范围; (3)讨论函数 f (x ) 极值点的个数.39. 已知函数 f (x )=xlnx x+1和直线 l:y =m (x −1).(1)当曲线 y =f (x ) 在点 (1,f (1)) 处的切线与直线 l 垂直时,求原点 O 到直线 l 的距离; (2)若对于任意的 x ∈[1,+∞),f (x )≤m (x −1) 恒成立,求 m 的取值范围; (3)求证:ln √2n +14<∑i4i 2−1n i=1(n ∈N +)40. 已知函数 f (x )=a −1x−lnx (a ∈R ).(1)若 a =2,求函数 f (x ) 在 (1,e 2) 上的零点个数(e 为自然对数的底数); (2)若 f (x ) 恰有一个零点,求 a 的取值集合; (3)若 f (x ) 有两零点 x 1,x 2 (x 1<x 2),求证:2<x 1+x 2<3e a−1−1.41. 设函数 f (x )=x 2−aln (x +1),其中 a ∈R .(1)若 fʹ(1)=0,求 a 的值;(2)当 a <0 时,讨论函数 f (x ) 在其定义域上的单调性; (3)证明:对任意的正整数 n ,不等式 ln (n +1)>∑(1k 2−1k 3)n k=1 都成立.42. 已知函数 f (x )=ax +bx +c (a >0) 的图象在点 (1,f (1)) 处的切线方程为 y =x −1.(1)用 a 表示出 b ,c ;(2)若 f (x )≥lnx 在 [1,+∞) 上恒成立,求 a 的取值范围. (3)证明:1+12+13+⋯+1n >ln (n +1)+n2(n+1)(n ≥1).43. 设函数 f (x )=x −1x −alnx (a ∈R ).(1)讨论函数 f (x ) 的单调性.(2)若 f (x ) 有两个极值点 x 1 和 x 2,记过点 A(x 1,f (x 1)), B(x 2,f (x 2)) 的直线斜率为 k .问:是否存在 a ,使得 k =2−a ?若存在,求出 a 的值;若不存在,请说明理由.44. 已知函数 f (x )=x 2e 1−x −a (x −1),a ∈R .(1)当 a =1 时,求 f (x ) 在 (34,2) 的极大值;(2)设 g (x )=f (x )+a (x −1−e 1−x ),当 g (x ) 有两个极值点 x 1,x 2(x 1<x 2) 时,总有 x 2g (x 1)≤λfʹ(x 1),求此时实数 λ 的值(其中 fʹ(x ) 是 f (x ) 的导函数).45. 设函数 f (x )=lnx ,g (x )=m (x+n )x+1(m >0).(1)当 m =1 时,函数 y =f (x ) 与 y =g (x ) 在 x =1 处的切线互相垂直,求 n 的值; (2)若函数 y =f (x )−g (x ) 在定义域内不单调,求 m −n 的取值范围;(3)是否存在实数 a ,使得 f (2ax )⋅f (e ax )+f (x2a )≤0 对任意正实数 x 恒成立?若存在,求出满足条件的实数 a ;若不存在,请说明理由.46. 已知函数 f (x )=12ax 2+lnx ,g (x )=−bx ,其中 a,b ∈R .设 ℎ(x )=f (x )−g (x ).(1)若 f (x ) 在 x =√22 处取得极值,且 fʹ(1)=g (−1)−2,求函数 ℎ(x ) 的单调区间;(2)若 a =0 时,函数 ℎ(x ) 有两个不同的零点 x 1,x 2. ①求 b 的取值范围;②求证:x 1x 2e 2>1.47. 已知函数 f (x )=ln (1+x 2)+ax (a ≤0).(1)若 f (x ) 在 x =0 处取极值,求 a 的值; (2)讨论 f (x ) 的单调性;(3)证明:(1+13)(1+19)⋯(1+13n )<e √e (e 为自然对数的底数,n ∈N ∗).48. 已知函数 f (x )=x ⋅e x−1−a (x +lnx ),a ∈R .(1)若曲线 y =f (x ) 在点 (1,f (1)) 处的切线为 x 轴,求 a 的值: (2)在(1)的条件下,求 f (x ) 的单调区间;(3)若 ∀x >0,f (x )≥f (m ) 恒成立,且 f (m )≥0,求证:f (m )≥2(m 2−m 3).49. 函数 f (x )=ln (x +1)−axx+a (a >1).(1)讨论 f (x ) 的单调性;(2)设a1=1,a n+1=ln(a n+1),证明:2n+2<a n≤3n+2.50. 已知函数g(x)=xsinθ−lnx−sinθ在[1,+∞)单调递增,其中θ∈(0,π).(1)求θ的值;(2)若f(x)=g(x)+2x−1x2,当x∈[1,2]时,试比较f(x)与fʹ(x)+12的大小关系(其中fʹ(x)是f(x)的导函数),请写出详细的推理过程;(3)当x≥0时,e x−x−1≥kg(x+1)恒成立,求k的取值范围.51. 已知函数f(x)=ax2+cosx(a∈R),记f(x)的导函数为g(x).(1)证明:当a=12时,g(x)在R上单调递增;(2)若f(x)在x=0处取得极小值,求a的取值范围;(3)设函数ℎ(x)的定义域为D,区间(m,+∞)⊆D.若ℎ(x)在(m,+∞)上是单调函数,则称ℎ(x)在D上广义单调.试证明函数y=f(x)−xlnx在(0,+∞)上广义单调.52. 已知函数f(x)=e x−ax(a∈R).(1)求函数f(x)的极值;(2)若函数存在两个不同的零点x1,x2,求证:x1+x2<2lna.53. 已知函数f(x)=mlnx−x2+2(m∈R).(1)当m=1时,求函数f(x)的单调区间;(2)若m≤8,当x≥1时,恒有f(x)−fʹ(x)≤4x−3成立,求m的取值范围.(提示ln2≈0.7)54. 已知常数a>0,函数f(x)=ln(1+ax)−2xx+2.(1)讨论f(x)在区间(0,+∞)上的单调性;(2)若f(x)存在两个极值点x1,x2,且f(x1)+f(x2)>0,求a的取值范围.55. 已知函数f(x)=(a−12)x2+lnx,g(x)=f(x)−2ax(a∈R).(1)当a=−12时,求f(x)在区间[1e,e]上的最大值和最小值;(2)若对∀x∈(2,+∞),g(x)<0恒成立,求a的取值范围.56. 已知函数f(x)=xe2x−lnx−ax.(1)当a=0时,求函数f(x)在[12,1]上的最小值;(2)若∀x>0,不等式f(x)≥1恒成立,求a的取值范围;(3)若∀x>0,不等式f(1x )−1≥1xe2x+1e−1+1xexe恒成立,求a的取值范围.57. 已知函数f(x)=e x+e−x,其中e为自然对数的底数.(1)若关于x的不等式mf(x)≤e−x+m−1在(0,+∞)上恒成立,求实数m的取值范围;(2)已知正实数a满足:存在x0∈[1,+∞)使得f(x0)<a(−x03+3x0)成立,试比较e a−1与a e−1的大小,并证明你的结论.58. 已知函数f(x)=e−x−ax(x∈R).(1)当a=−1时,求函数f(x)的最小值;(2)若x≥0,f(−x)+ln(x+1)≥1,求实数a的取值范围;(3)求证:e2−√e<3.2,其中a∈R.59. 已知函数f(x)=1−x1+ax2(1)当a=−1时,求函数f(x)的图象在点(1,f(1))处的切线方程;4(2)当a>0时,证明:存在实数m>0,使得对任意的实数x,都有−m≤f(x)≤m成立;(3)当a=2时,是否存在实数k,使得关于x的方程f(x)=k(x−a)仅有负实数解?当a=−1时的情形又如何?(只需写出结论)260. 已知a>0,函数f(x)=e ax sinx(x∈[0,+∞)),记x n为f(x)的从小到大的第n(n∈N∗)个极值点.证明:(1)数列{f(x n)}是等比数列;,则对一切n∈N∗,x n<∣f(x n)∣恒成立.(2)若a≥√e2−161. 设函数f(x)=ln(1+x),g(x)=xfʹ(x),x≥0,其中fʹ(x)是f(x)的导函数.(1)令g1(x)=g(x),g n+1(x)=g(g n(x)),n∈N+,求g n(x)的表达式;(2)若f(x)≥ag(x)恒成立,求实数a的取值范围;(3)设n∈N+,比较g(1)+g(2)+⋯+g(n)与n−f(n)的大小,并加以证明..62. 已知函数f(x)=e xx(1)若曲线y=f(x)在点(x0,f(x0))处的切线方程为ax−y=0,求x0的值;(2)当x>0时,求证:f(x)>x;(3)问集合{x∈R∣f(x)−bx=0}(b∈R且为常数)的元素有多少个?(只需写出结论),m∈R.63. 设函数f(x)=lnx+mx(1)当m=e(e为自然对数的底数)时,求f(x)的极小值;零点的个数;(2)讨论函数g(x)=fʹ(x)−x3<1恒成立,求m的取值范围.(3)若对任意b>a>0,f(b)−f(a)b−a64. 已知函数f(x)=e x−e−x−2x.(1)讨论f(x)的单调性;(2)设g(x)=f(2x)−4bf(x),当x>0时,g(x)>0,求b的最大值;(3)已知1.4142<√2<1.4143,估计ln2的近似值(精确到0.001).65. 已知函数f(x)=e x−ax2−bx−1,其中a,b∈R,e=2.71828⋯为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.66. 已知函数f(x)=e x−ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为−1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x<ce x.(a>0且a≠1),g(x)是f(x)的反函数.67. 设f(x)=1+a x1−a x(1)设关于 x 的方程 log a t(x 2−1)(7−x )=g (x ) 在区间 [2,6] 上有实数解,求 t 的取值范围;(2)当 a =e (e 为自然对数的底数)时,证明:∑g (k )n k=2>2√2n (n+1);(3)当 0<a ≤12 时,试比较 ∣∑f (k )n k=1−n ∣ 与 4 的大小,并说明理由.68. 已知函数 f (x )=π(x −cosx )−2sinx −2,g (x )=(x −π)√1−sinx1+sinx +2x π−1.(1)证明:存在唯一 x 0∈(0,π2),使 f (x 0)=0;(2)证明:存在唯一 x 1∈(π2,π),使 g (x 1)=0,且对(1)中的 x 0,有 x 0+x 1>π.69. 已知函数 f (x )=e x −ax 2−bx −1,其中 a,b ∈R ,e =2.71828⋅⋅⋅ 为自然对数的底数.(1)设 g (x ) 是函数 f (x ) 的导函数,求函数 g (x ) 在区间 [0,1] 上的最小值; (2)若 f (1)=0,函数 f (x ) 在区间 (0,1) 内有零点,证明:e −2<a <1.70. 已知函数 f (x )=e x +e −x ,其中 e 是自然对数的底数.(1)证明:f (x ) 是 R 上的偶函数;(2)若关于 x 的不等式 mf (x )≤e −x +m −1 在 (0,+∞) 上恒成立,求实数 m 的取值范围; (3)已知正数 a 满足:存在 x 0∈[1,+∞),使得 f (x 0)<a (−x 03+3x 0) 成立.试比较 e a−1 与a e−1 的大小,并证明你的结论.71. 设函数 f n (x )=−1+x +x 222+x 332+⋯+x nn 2(x ∈R,n ∈N ∗).证明:(1)对每个 n ∈N ∗,存在唯一的 x n ∈[23,1],满足 f n (x n )=0;(2)对任意 p ∈N ∗,由(1)中 x n 构成的数列 {x n } 满足 0<x n −x n+p <1n.72. 已知 a 为正实数,n 为自然数,抛物线 y =−x 2+a n 2与 x 轴正半轴相交于点 A ,设 f (n ) 为该抛物线在点 A 处的切线在 y 轴上的截距. (1)用 a 和 n 表示 f (n ); (2)求对所有 n 都有 f (n )−1f (n )+1≥n 3n 3+1成立的 a 的最小值;(3)当 0<a <1 时,比较 ∑1f (k )−f (2k)n k=1与 274⋅f (1)−f (n )f (0)−f (1)的大小,并说明理由.73. 已知函数 f (x )=ln (x +1a)−ax ,其中 a ∈R 且 a ≠0.(1)讨论 f (x ) 的单调性;(2)若不等式 f (x )<ax 恒成立,求实数 a 的取值范围; (3)若方程 f (x )=0 存在两个异号实根 x 1,x 2,求证:x 1+x 2>0.74. 已知函数 f (x )=x (x −a )2,g (x )=−x 2+(a −1)x +a (其中 a 为常数);(1)如果函数 y =f (x ) 和 y =g (x ) 有相同的极值点,求 a 的值;(2)设 a >0,问是否存在 x 0∈(−1,a3),使得 f (x 0)>g (x 0),若存在,请求出实数 a 的取值范围;若不存在,请说明理由.(3)记函数 H (x )=[f (x )−1]⋅[g (x )−1],若函数 y =H (x ) 有 5 个不同的零点,求实数 a 的取值范围.x2+(1−b)x.已知曲线y=f(x)在点(1,f(1)) 75. 设函数f(x)=ax2+b(lnx−x),g(x)=−12处的切线与直线x−y+1=0垂直.(1)求a的值;(2)求函数f(x)的极值点;(3)若对于任意b∈(1,+∞),总存在x1,x2∈(1,b),使得f(x1)−f(x2)−1>g(x1)−g(x2)+m成立,求实数m的取值范围.76. 设f(x)=lnx,g(x)=f(x)+fʹ(x).(1)求g(x)的单调区间和最小值;)的大小关系;(2)讨论g(x)与g(1x(3)求a的取值范围,使得g(a)−g(x)<1对任意x>0成立.a77. 记函数f(x)=e x的图象为C,函数g(x)=kx−k的图象记为l.(1)若直线l是曲线C的一条切线,求实数k的值.(2)当x∈(1,3)时,图象C恒在l上方,求实数k的取值范围.(3)若图象C与l有两个不同的交点A、B,其横坐标分别是x1、x2,且x1<x2,求证:x1x2<x1+x2.78. 已知函数f(x)=mx2−x+lnx.(1)当m=−1时,求f(x)的极大值;(2)若在函数f(x)的定义域内存在区间D,使得该函数在区间D上为减函数,求实数m的取值范围;(3)当0<m≤1时,若曲线C:y=f(x)在点x=1处的切线l与曲线C有且只有一个公共点,2求m的值或取值范围.(a>0).79. 已知函数f(x)=lnx+a+e−2x(1)当a=2时,求出函数f(x)的单调区间;(2)若不等式f(x)≥a对于x>0的一切值恒成立,求实数a的取值范围.80. 己知f(x)=e x−alnx−a,其中常数a>0.(1)当a=e时,求函数f(x)的极值;<x1<1<x2<a;(2)若函数y=f(x)有两个零点x1,x2(0<x1<x2),求证:1a(3)求证:e2x−2−e x−1lnx−x≥0.81. 已知函数f(x)=e x,g(x)=x−b,b∈R.(1)若函数f(x)的图象与函数g(x)的图象相切,求b的值;(2)设T(x)=f(x)+ag(x),a∈R,求函数T(x)的单调增区间;(3)设ℎ(x)=∣g(x)∣⋅f(x),b<1,若存在x1,x2∈[0,1],使∣ℎ(x1)−ℎ(x2)∣>1成立,求b 的取值范围.82. 已知函数f(x)=(lnx−k−1)x(k∈R).(1)当x>1时,求f(x)的单调区间和极值.(2)若对于任意x∈[e,e2],都有f(x)<4lnx成立,求k的取值范围.(3)若 x 1≠x 2,且 f (x 1)=f (x 2),证明:x 1x 2<e 2k .83. 已知 f (x )=ax 3−3x 2+1(a >0),定义 ℎ(x )=max {f (x ),g (x )}={f (x ),f (x )≥g (x )g (x ),f (x )<g (x ).(1)求函数 f (x ) 的极值;(2)若 g (x )=xfʹ(x ),且存在 x 0∈[1,2] 使 ℎ(x )=f (x ),求实数 a 的取值范围; (3)若 g (x )=lnx ,试讨论函数 ℎ(x )(x >0) 的零点个数.84. 已知函数 f (x )=x +alnx 在 x =1 处的切线l 与直线 x +2y =0 垂直,函数 g (x )=f (x )+12x 2−bx .(1)求实数 a 的值;(2)若函数 g (x ) 存在单调递减区间,求实数 b 的取值范围; (3)设 x 1,x 2(x 1<x 2) 是函数 g (x ) 的两个极值点,若 b ≥72,求 g (x 1)−g (x 2) 的最小值.85. 已知函数 f (x )=ax +xlnx (a ∈R ).(1)若函数 f (x ) 在区间 [e,+∞) 上为增函数,求 a 的取值范围;(2)若函数 f (x ) 的图象在点 x =e (e 为自然对数的底数)处的切线斜率为 3.且 k ∈Z 时,不等式 k (x −1)<f (x ) 在 x ∈(1,+∞) 上恒成立,求 k 的最大值;(3)当 n >m ≥4 时,证明:(mn n )m >(nm m )n .86. 已知函数 f (x )=lnx −ax 2+(2−a )x .(1)若函数 f (x ) 在 [1,+∞) 上为减函数,求 a 的取值范围;(2)当 a =1 时,g (x )=x 2−2x +b ,当 x ∈[12,2] 时,f (x ) 与 g (x ) 有两个交点,求实数 b的取值范围;(3)证明:212+322+432+542+⋯+n+1n 2>ln (n +1) (∀n ∈N ∗).87. 设函数 f (x )=lnx −12ax 2−bx .(1)当时 a =b =12 时,求 f (x ) 的最大值;(2)令 F (x )=f (x )+12ax 2+bx +ax (0<x ≤3),其图象上任意一点 P (x 0,y 0) 处切线的斜率k ≤12 恒成立,求实数 a 的取值范围;(3)当 a =0,b =−1,方程 2mf (x )=x 2 有唯一实数解,求正数 m 的值.88. 定义在 R 上的函数 f (x ) 满足 f (x )=e 2x +x 2−ax ,函数 g (x )=f (x2)−14x 2+(1−b )x +b(其中 a ,b 为常数),若曲线 y =f (x ) 在 x =0 处的切线与 y 轴垂直. (1)求函数 f (x ) 的解析式; (2)求函数 g (x ) 的单调区间;(3)若 s ,t ,r 满足 ∣s −r∣<∣t −r∣ 恒成立,则称 s 比 t 更靠近.在函数 g (x ) 有极值的前提下,当 x ≥1 时,ex 比 e x−1+b 更靠近,试求 b 的取值范围.89. 已知定义在 R 上的偶函数 f (x ),当 x ∈[0,+∞) 时,f (x )=e x .(1)当 x ∈(−∞,0) 时,求过原点与函数 f (x ) 图象相切的直线的方程; (2)求最大的整数 m (m >1),使得存在 t ∈R ,只要 x ∈[1,m ],就有 f (x +t )≤ex .90. 已知 a >0,a ≠1,函数 f (x )=a x −1,g (x )=−x 2+xlna .(1)若a>1,证明函数ℎ(x)=f(x)−g(x)在区间(0,+∞)上是单调增函数;(2)求函数ℎ(x)=f(x)−g(x)在区间[−1,1]上的最大值;(3)若函数F(x)的图象过原点,且Fʹ(x)=g(x),当a>e 103时,函数F(x)过点A(1,m)的切线至少有2条,求实数m的值.91. 对于函数f(x)(x∈D),若x∈D时,恒有fʹ(x)>f(x)成立,则称函数f(x)是D上的J函数.(1)当函数f(x)=me x lnx是定义域上的J函数时,求m的取值范围;(2)若函数g(x)为(0,+∞)上的J函数,①试比较g(a)与e a−1g(1)的大小;②求证:对于任意大于1的实数x1,x2,x3,⋅⋅⋅,x n,均有g(ln(x1+x2+⋅⋅⋅+x n))>g(lnx1)+g(lnx2)+⋅⋅⋅+g(lnx n).92. 已知函数f(x)=lnx+ke x(其中k∈R,e=2.71828⋯是自然对数的底数),fʹ(x)为f(x)的导函数.(1)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当x∈(0,1]时,fʹ(x)=0都有解,求k的取值范围;(3)当fʹ(1)=0,试证明:对任意x>0,fʹ(x)<e −2+1x2+x恒成立.93. 已知函数f(x)=alnx−x−1x+1,g(x)=e x(其中e为自然对数的底数).(1)若函数f(x)在区间(0,1)内是增函数,求实数a的取值范围.(2)当b>0时,函数g(x)的图象C上有两点P(b,e b),Q(−b,e−b),过点P,Q作图象C的切线分别记为l1,l2,设l1与l2的交点为M(x0,y0),证明x0>0.94. 记函数f n(x)=(1+x)n−1(n≥2,n∈N∗)的导函数为f nʹ(x),函数g(x)=f n(x)−nx.(1)讨论函数g(x)的单调区间和极值;(2)若实数x0和正数k满足:f nʹ(x0)f n+1ʹ(x0)=f n(k)f n+1(k),求证:0<x0<k.95. 设函数f(x)=ablnxx ,g(x)=−12x+(a+b)(其中e为自然对数的底数,a,b∈R且a≠0),曲线y=f(x)在点(1,f(1))处的切线方程为y=ae(x−1).(1)求b的值;(2)若对任意x∈[1e,+∞),f(x)与g(x)有且只有两个交点,求a的取值范围.96. 已知函数f(x)=x−lnx,g(x)=lnxx.(1)求f(x)的最小值;(2)求证:f(x)>g(x);(3)若f(x)+ax+b≥0,求b+1a+1的最小值.97. 已知函数f(x)=ln(x+a)−x有且只有一个零点,其中a>0.(1)求a的值;(2)若对任意的x∈(0,+∞),有f(x)≥kx2成立,求实数k的最大值;(3)设ℎ(x)=f(x)+x,对任意x1,x2∈(−1,+∞)(x1≠x2),证明:不等式x1−x2ℎ(x1)−ℎ(x2)>√x1x2+x1+x2+1恒成立.98. 已知函数f(x)=lnx+mx2(m∈R).(1)求函数f(x)的单调区间;(2)若m=0,A(a,f(a)),B(b,f(b))是函数f(x)图象上不同的两点,且a>b>0,fʹ(x)为f(x)的导函数,求证:fʹ(a+b2)<f(a)−f(b)a−b<fʹ(b).99. 已知函数f(x)=∣ex−lnx∣,g(x)=∣e1−x+lnx+a∣.(1)将f(x)写成分段函数的形式(不用说明理由),并求f(x)的单调区间.(2)若x≥1且−1−e1−e<a<−1,比较f(x)与g(x)的大小.100. 已知函数f(x)=ln(1+x),g(x)=kx(k∈R).(1)证明:当x>0时,f(x)<x;(2)证明:当k<1时,存在x0>0,使得对任意的x∈(0,x0),恒有f(x)>g(x);(3)确定k的所有可能取值,使得存在t>0,对任意的x∈(0,t),恒有∣f(x)−g(x)∣<x2.答案1. (1) f (x ) 的定义域为 (0,+∞),fʹ(x )=−2ax 3+1x =x 2−2a x 3,①当 a ≤0 时,fʹ(x )>0,故函数 f (x ) 在 (0,+∞) 上单调递增;②当 a >0 时,令 fʹ(x )>0,且 x >0,得 x >√2a ,故函数 f (x ) 在 (√2a,+∞) 上单调递增; 令 fʹ(x )<0,且 x >0,得 0<x <√2a ,故函数 f (x ) 在 (0,√2a) 上单调递减; (2) 存在 x 1,x 2∈[−13,3],使得 g (x 1)−g (x 2)≥M 成立, 等价于 [g (x 1)−g (x 2)]max ≥M ,由 g (x )=x 3−x 2−3,得 gʹ(x )=3x (x −23), 当 x 变化时,g (x ),gʹ(x ) 的变化情况如下表: x −13(−13,0)0(0,23)23(23,3)3gʹ(x )+0−0+g (x )−8527递增−3递减−8527递增15由上表可知 g (x )min =g (−13)=g (23)=−8527,g (x )max =g (3)=15,所以 [g (x 1)−g (x 2)]max =g (x )max −g (x )min =49027=18427,所以 M ≤18427,所以满足条件的最大整数 M 为 18.(3) 当 x ∈[13,2] 时,由(2)可知,g (x ) 在 [13,23) 上单调递减,在 [23,2] 上单调递增,而 g (13)=−8327<g (2)=1,所以 g (x ) 在 [13,2] 上的最大值为 1,要满足已知条件,则只需当 x ∈[13,2] 时,xf (x )=ax +xlnx ≥1 恒成立, 等价于 a ≥x −x 2lnx 在区间 [13,2] 上恒成立,即 a ≥(x −x 2lnx )max , 记 ℎ(x )=x −x 2lnx ,则 ℎʹ(x )=1−x −2xlnx ,ℎʹ(1)=0,当 x ∈[13,1) 时,1−x >0,xlnx <0,所以 ℎʹ(x )>0,即函数 ℎ(x ) 在区间 [13,1) 上单调递增; 当 x ∈(1,2] 时,1−x <0,xlnx >0,所以 ℎʹ(x )<0,即函数 ℎ(x ) 在区间 (1,2] 上单调递减; 所以 ℎ(x ) 在区间 [13,2] 上的最大值为 ℎ(1)=1, 所以 a ≥1,即实数 a 的取值范围为 [1,+∞).2. (1) 依题意,函数 f (x ) 的定义域为 (0,+∞),fʹ(x )=lnx −ax ,由 fʹ(x ) 在 (0,+∞) 上有两个不同的零点,即方程 lnx −ax =0 在 (0,+∞) 上有两个不同的解, 也即 a =lnx x在 (0,+∞) 上有两个不同的解. 令 g (x )=lnx x,则 gʹ(x )=1−lnx x 2.当 0<x <e 时,gʹ(x )>0,当 x >e 时,gʹ(x )<0, 所以 g (x ) 在 (0,e ) 上单调递增,在 (e,+∞) 上单调递减,所以 g (x )max =g (e )=1e.因为 g (x ) 有且只有一个零点 1,当 x →0 时,g (x )→−∞,当 x →+∞ 时,g (x )→0,且 g (x )>0. 若函数 g (x )=lnx x与函数 y =a 的图象在 (0,+∞) 上有两个不同的交点,即函数 f (x )=xlnx −a2x 2−x +a (a ∈R ) 在其定义域内有两个不同的极值点,只需 0<a <1e .(2) x 1⋅x 2λ>e 1+λ 等价于 1+λ<lnx 1+λlnx 2.因为 x 1,x 2 为方程 lnx −ax =0 的两根, 所以 lnx 1=ax 1,lnx 2=ax 2.所以 1+λ<lnx 1+λlnx 2=ax 1+λax 2=a (x 1+λx 2). 因为 λ>0,0<x 1<x 2, 所以原不等式等价于 a >1+λx1+λx 2.又由 lnx 1=ax 1,lnx 2=ax 2,作差得 ln x 1x 2=a (x 1−x 2),所以 a =ln x 1x 2x 1−x 2.所以原不等式等价于lnx 1x 2x 1−x 2>1+λx 1+λx 2⇔lnx 1x 2<(1+λ)(x 1−x 2)x 1+λx 2 恒成立.令 t =x1x 2,则 t ∈(0,1),不等式等价于 lnt <(1+λ)(t−1)t+λ在 t ∈(0,1) 上恒成立.令 ℎ(t )=lnt −(1+λ)(t−1)t+λ,则 ℎʹ(t )=(t−1)(t−λ2)t (t+λ)2. ①当 λ≥1 时,ℎʹ(t )>0,所以 ℎ(t ) 在 (0,1) 上单调递增,因此 ℎ(t )<ℎ(1)=0,满足条件; ②当 0<λ<1 时,ℎ(t ) 在 (0,λ2) 上单调递增,在 (λ2,1) 上单调递减,又 ℎ(1)=0,所以 ℎ(t ) 在 (0,1) 上不能恒小于零. 综上,λ≥1.3. (1) f (sinx )=sin 2x −asinx +b =sinx (sinx −a )+b ,−π2<x <π2. [f (sinx )]ʹ=(2sinx −a )cosx ,−π2<x <π2. 因为 −π2<x <π2,所以 cosx >0,−2<2sinx <2.(i )a ≤−2,b ∈R 时,函数 f (sinx ) 单调递增,无极值. (ii )a ≥2,b ∈R 时,函数 f (sinx ) 单调递减,无极值.(iii )对于 −2<a <2,在 (−π2,π2) 内存在唯一的 x 0,使得 2sinx 0=a .−π2<x ≤x 0 时,函数 f (sinx ) 单调递减;x 0≤x <π2时,函数 f (sinx ) 单调递增.因此 −2<a <2,b ∈R 时,函数 f (sinx ) 在 x 0 处有极小值. f (sinx 0)=f (a2)=b −a 24.(2) 当 −π2≤x ≤π2时,∣f (sinx )−f 0(sinx )∣=∣(a 0−a )sinx +b −b 0∣≤∣a −a 0∣+∣b −b 0∣, 当 (a 0−a )(b −b 0)≥0 时,取 x =π2,等号成立, 当 (a 0−a )(b −b 0)<0 时,取 x =−π2,等号成立.由此可知,∣f (sinx )−f 0(sinx )∣ 在 [−π2,π2] 上的最大值为 D =∣a −a 0∣+∣b −b 0∣. (3) D ≤1 即为 ∣a∣+∣b∣≤1,此时 0≤a 2≤1,−1≤b ≤1,从而z=b−a 24≤1.取a=0,b=1,则∣a∣+∣b∣≤1,并且z=b−a 24=1.因此可知,z=b−a 24满足条件D≤1时的最大值为1.4. (1)因为f(x)=lnx−ax+1−ax−1,所以fʹ(x)=1x−a+a−1x2=−ax2−x+1−ax2,x∈(0,+∞),令ℎ(x)=ax2−x+1−a,x∈(0,+∞),(i)当a=0时,ℎ(x)=−x+1,x∈(0,+∞),所以当x∈(0,1)时,ℎ(x)>0,此时fʹ(x)<0,函数f(x)单调递减;当x∈(1,+∞)时,ℎ(x)<0,此时fʹ(x)>0,函数f(x)单调递增.(ii)当a≠0时,由fʹ(x)=0,即ax2−x+1−a=0,解得x1=1,x2=1a−1,①当a=12时,x1=x2,ℎ(x)≥0恒成立,此时fʹ(x)≤0,函数f(x)在(0,+∞)上单调递减;②当0<a<12时,1a−1>1>0,x∈(0,1)时,ℎ(x)>0,此时fʹ(x)<0,函数f(x)单调递减;x∈(1,1a−1)时,ℎ(x)<0,此时fʹ(x)>0,函数f(x)单调递增;x∈(1a−1,+∞)时,ℎ(x)>0,此时fʹ(x)<0,函数f(x)单调递减;③当a<0时,由于1a−1<0,x∈(0,1)时,ℎ(x)>0,此时fʹ(x)<0,函数f(x)单调递减;x∈(1,+∞)时,ℎ(x)<0,此时fʹ(x)>0,函数f(x)单调递增.综上所述:当a≤0时,函数f(x)在(0,1)上单调递减;函数f(x)在(1,+∞)上单调递增;当a=12时,函数f(x)在(0,+∞)上单调递减;当0<a<12时,函数f(x)在(0,1)上单调递减;函数f(x)在(1,1a−1)上单调递增;函数f(x)在(1a−1,+∞)上单调递减.(2)因为a=14∈(0,12),由(1)知x1=1,x2=3∉(0,2),当x∈(0,1)时,fʹ(x)<0,函数f(x)单调递减;当x∈(1,2)时,fʹ(x)>0,函数f(x)单调递增,所以f(x)在(0,2)上的最小值为f(1)=−12.由于“对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2)”等价于“g(x)在[1,2]上的最小值不大于f(x)在(0,2)上的最小值−12”.(∗)又g(x)=(x−b)2+4−b2,x∈[1,2],所以①当b<1时,因为[g(x)]min=g(1)=5−2b>0,此时与(∗)矛盾;②当b∈[1,2]时,因为[g(x)]min=4−b2≥0,同样与(∗)矛盾;③当b∈(2,+∞)时,因为[g(x)]min=g(2)=8−4b,解不等式8−4b≤−12,可得b≥178.综上,b的取值范围是[178,+∞).5. (1)f(x)的反函数为g(x)=lnx.设直线y=kx+1与g(x)=lnx的图象在P(x0,y0)处相切,则有y0=kx0+1=lnx0,k=gʹ(x0)=1 x0 .解得x0=e2,k=1 e2 .(2)曲线y=e x与y=mx2的公共点个数等于曲线y=e xx2与y=m的公共点个数.令φ(x)=e xx2,则φʹ(x)=e x(x−2)x3,所以φʹ(2)=0.当x∈(0,2)时,φʹ(x)<0,φ(x)在(0,2)上单调递减;当x∈(2,+∞)时,φʹ(x)>0,φ(x)在(2,+∞)上单调递增.∴φ(x)在(0,+∞)上的最小值为φ(2)=e2 4 .当0<m<e 24时,曲线y=e xx2与y=m无公共点;当m=e 24时,曲线y=e xx2与y=m恰有一个公共点;当m>e 24时,在(0,2)内存在x1=√m,使得φ(x1)>m,在(2,+∞)内存在x2=me2,使得φ(x2)>m,由φ(x)的单调性知,曲线y=e xx2与y=m在(0,+∞)上恰有两个公共点.综上所述,当x>0时,若0<m<e 24,曲线y=f(x)与y=mx2没有公共点;若m=e 24,曲线y=f(x)与y=mx2有一个公共点;若m>e 24,曲线y=f(x)与y=mx2有两个公共点.(3)方法一:可以证明f(a)+f(b)2>f(b)−f(a)b−a.事实上,f(a)+f(b)2>f(b)−f(a)b−a⇔e a+e b2>e b−e ab−a⇔b−a2>e b−e ae b+e a⇔b−a2>1−2e ae b+e a⇔b−a2>1−2e b−a+1(b>a).(∗)令ψ(x)=x2+2e x+1−1(x≥0),则ψʹ(x)=12−2e x(e x+1)2=(e x+1)2−4e x2(e x+1)2=(e x−1)22(e x+1)2≥0(当且仅当x=0时等号成立),∴ψ(x)在(0,+∞)上单调递增,∴x>0时,ψ(x)>ψ(0)=0.令x=b−a,即得(∗)式.结论得证.方法二:f(a)+f(b)2−f(b)−f(a)b−a=e b+e a2−e b−e ab−a=be b+be a−ae b−ae a−2e b+2e a2(b−a)=e a2(b−a)[(b−a)e b−a+(b−a)−2e b−a+2].设函数u(x)=xe x+x−2e x+2(x≥0),则uʹ(x)=e x+xe x+1−2e x.令ℎ(x)=uʹ(x),则ℎʹ(x)=e x+e x+xe x−2e x=xe x≥0(当且仅当x=0时等号成立),∴uʹ(x)单调递增,∴当x>0时,uʹ(x)>uʹ(0)=0,∴u(x)单调递增.当x>0时,u(x)>u(0)=0.令x=b−a,则得(b−a)e b−a+(b−a)−2e b−a+2>0,所以e b+e a2−e b−e ab−a>0,所以f(a)+f(b)2>f(b)−f(a)b−a.6. (1) f (x ) 的定义域为 (−∞,+∞),fʹ(x )=1−e x . 当 fʹ(x )>0,即 x <0 时,f (x ) 单调递增; 当 fʹ(x )<0,即 x >0 时,f (x ) 单调递减.故 f (x ) 的单调递增区间为 (−∞,0),单调递减区间为 (0,+∞). 当 x >0 时,f (x )<f (0)=0,即 1+x <e x . 令 x =1n ,得 1+1n <e 1n ,即 (1+1n )n<e. ⋯⋯① (2) b 1a 1=1×(1+11)1=1+1=2;b 1b 2a 1a 2=b 1a 1×b 2a 2=2×2(1+12)2=(2+1)2=32;b 1b 2b 3a1a 2a 3=b 1b 2a1a 2×b 3a 3=32×3(1+13)3=(3+1)3=43.由此推测:b 1b 2⋯b na 1a 2⋯a n=(n +1)n . ⋯⋯②下面用数学归纳法证明 ②.(i )当 n =1 时,左边=右边=2,② 成立.(ii )假设当 n =k (k ≥1,k ∈N +)时,② 成立,即 b 1b 2⋯bk a 1a 2⋯a k=(k +1)k .当 n =k +1 时,b k+1=(k +1)(1+1k+1)k+1a k+1,由归纳假设可得b 1b 2⋯b k b k+1a 1a 2⋯a k a k+1=b 1b 2⋯b k a 1a 2⋯a k ⋅b k+1a k+1=(k +1)k⋅(k +1)⋅(1+1k +1)k+1=(k +2)k+1,所以当 n =k +1 时,② 也成立.根据(i )(ii ),可知 ② 对一切正整数 n 都成立.(3) 由 c n 的定义,②,均值不等式(推广),b n 的定义及 ① 得 T n =c 1+c 2+c 3+⋯+c n=(a 1)11+(a 1a 2)12+(a 1a 2a 3)13+⋯(a 1a 2⋯a n )1n =(b 1)112+(b 1b 2)123+(b 1b 2b 3)134+⋯+(b 1b 2⋯b n )1n n +1≤b 11×2+b 1+b 22×3+b 1+b 2+b 33×4+⋯+b 1+b 2+⋯+b n n (n +1)=b 1[11×2+12×3+⋯+1n (n +1)]+b 2[12×3+13×4+⋯+1n (n +1)]+⋯+b n ⋅1n (n +1)=b 1(1−1n +1)+b 2(12−1n +1)+⋯+b n (1n −1n +1)<b 11+b 22+⋯+b n n=(1+11)1a 1+(1+12)2a 2+⋯+(1+1n)na n<ea 1+ea 2+⋯+ea n =eS n ,即 T n <eS n . 7. (1)fʹ(x )=(x −1)e x +e x −2kx=xe x −2kx=x (e x −2k ).当 k =1 时,令 fʹ(x )=x (e x −2)=0,得x 1=0,x 2=ln2;当 x <0 时,fʹ(x )>0;当 0<x <ln2 时,fʹ(x )<0;当 x >ln2 时,fʹ(x )>0; ∴函数 f (x ) 的单调递增区间为 (−∞,0),(ln2,+∞);单调递减区间为 (0,ln2). (2) ∵ 12<k ≤1,∴ 1<2k ≤2,所以0<ln (2k )<ln2.记 ℎ(k )=k −ln (2k ),则 ℎʹ(k )=1−22k=k−1k在 k ∈(12,1) 有 ℎʹ(k )<0,∴当 k ∈(12,1) 时,ℎ(k )=k −ln (2k )>ℎ(1)=1−ln2>0,即k >ln (2k )>0.∴当 k ∈(12,1) 时,函数 f (x ) 在 [0,ln (2k )) 单调递减,在 (ln (2k ),k ] 单调递增.f (0)=−1,f (k )=(k −1)e k −k 3,记g (k )=f (k )=(k −1)e k −k 3,下证明 g (k )≥−1.gʹ(k )=k (e k −3k ),设 p (k )=e k −3k ,令pʹ(k )=e k −3=0,得k =ln3>1,∴ p (k )=e k −3k 在 (12,1] 为单调递减函数,而p (12)=√e −32>√2.25−1.5=0,p (1)=e −3<0,∴ gʹ(k )=k (e k −3k )=0 的一个非零的根为 k 0∈(12,1],且 e k 0=3k 0. 显然 g (k )=(k −1)e k −k 3 在 (12,k 0) 单调递增,在 (k 0,1] 单调递减,∴ g (k )=f (k )=(k −1)e k −k 3 在 (12,1) 上的最大值为g (k 0)=(k 0−1)3k 0−k 03=−k 03+3k 02−3k 0=(1−k 0)3−1>−1,g (12)=−12√e −18>−1⇔74>√e 而 74>√3>√e 成立,∴ g (12)>−1,g (1)=−1. 综上所述,当 k ∈(12,1] 时,函数 f (x ) 在 [0,k ] 的最大值。

导数压轴小题精选80题(含答案解析)

导数压轴小题精选80题(含答案解析)

专治学霸不服——导数压轴小题1. 已知函数f(x)=xe x−m2x2−mx,则函数f(x)在[1,2]上的最小值不可能为( )A. e−32m B. −12mln2m C. 2e2−4m D. e2−2m2. 已知函数f(x)=sinxx ,若π3<a<b<2π3,则下列结论正确的是( )A. f(a)<f(√ab)<f(a+b2) B. f(√ab)<f(a+b2)<f(b)C. f(√ab)<f(a+b2)<f(a) D. f(b)<f(a+b2)<f(√ab)3. 已知e为自然对数的底数,对任意的x1∈[0,1],总存在唯一的x2∈[−1,1],使得x1+x22e x2−a=0成立,则实数a的取值范围是( )A. [1,e]B. (1,e]C. (1+1e ,e] D. [1+1e,e]4. 若存在正实数x,y,z满足z2≤x≤ez且zln yz=x,则ln yx的取值范围为( )A. [1,+∞)B. [1,e−1]C. (−∞,e−1]D. [1,12+ln2]5. 已知方程ln∣x∣−ax2+32=0有4个不同的实数根,则实数a的取值范围是( )A. (0,e 22) B. (0,e22] C. (0,e23) D. (0,e23]6. 设函数f(x)=e x(sinx−cosx)(0≤x≤2016π),则函数f(x)的各极小值之和为( )A. −e 2π(1−e2016π)1−e2πB. −e2π(1−e1008π)1−eπC. −e 2π(1−e1008π)1−e2πD. −e2π(1−e2014π)1−e2π7. 若函数f(x)满足f(x)=x(fʹ(x)−lnx),且f(1e )=1e,则ef(e x)<fʹ(1e)+1的解集为( )A. (−∞,−1)B. (−1,+∞)C. (0,1e)D. (1e,+∞)8. 已知 f (x ),g (x ) 都是定义在 R 上的函数,且满足以下条件:① f (x )=a x ⋅g (x )(a >0,且 a ≠1);② g (x )≠0;③ f (x )⋅gʹ(x )>fʹ(x )⋅g (x ).若f (1)g (1)+f (−1)g (−1)=52,则 a 等于 ( )A. 12B. 2C. 54D. 2 或 129. 已知函数 f (x )=1+lnx x,若关于 x 的不等式 f 2(x )+af (x )>0 有两个整数解,则实数 a 的取值范围是 ( ) A. (−1+ln22,−1+ln33) B. (1+ln33,1+ln22) C. (−1+ln22,−1+ln33] D. (−1,−1+ln33]10. 已知函数 f (x )=x +xlnx ,若 m ∈Z ,且 f (x )−m (x −1)>0 对任意的 x >1 恒成立,则 m 的最大值为 ( ) A. 2B. 3C. 4D. 511. 已知函数 f (x )={xln (1+x )+x 2,x ≥0−xln (1−x )+x 2,x <0,若 f (−a )+f (a )≤2f (1),则实数 a 的取值范围是 ( )高中数学资料共享群QQ 群号:734924357A. (−∞,−1]∪[1,+∞)B. [−1,0]C. [0,1]D. [−1,1]12. 已知 fʹ(x ) 是定义在 (0,+∞) 上的函数 f (x ) 的导函数,若方程 fʹ(x )=0 无解,且 ∀x ∈(0,+∞),f [f (x )−log 2016x ]=2017,设 a =f (20.5),b =f (log π3),c =f (log 43),则 a ,b ,c 的大小关系是 ( )A. b >c >aB. a >c >bC. c >b >aD. a >b >c13. 已知函数 f (x )={lnx,x ≥11−x 2,x <1,若 F (x )=f [f (x )+1]+m 有两个零点 x 1,x 2,则 x 1⋅x 2 的取值范围是 ( ) A. [4−2ln2,+∞) B. (√e,+∞)C. (−∞,4−2ln2]D. (−∞,√e)14. 已知函数 f (x ) 是定义在 R 上的奇函数,当 x <0 时,f (x )=(x +1)e x , 则对任意的 m ∈R ,函数 F (x )=f(f (x ))−m 的零点个数至多有 ( )A. 3 个B. 4 个C. 6 个D. 9 个15. 设 f (x )=∣lnx∣,若函数 g (x )=f (x )−ax 在区间 (0,3] 上有三个零点,则实数 a 的取值范围是 ( )A. (0,1e ) B. (ln33,e) C. (0,ln33] D. [ln33,1e)16. 已知 f (x ) 是定义在 R 上的偶函数,其导函数为 fʹ(x ),若 fʹ(x )<f (x ),且 f (x +1)=f (3−x ),f (2015)=2,则不等式 f (x )<2e x−1 的解集为 ( )高中数学资料共享群QQ 群号:734924357A. (1,+∞)B. (e,+∞)C. (−∞,0)D. (−∞,1e)17. 设函数 f (x ) 的导函数为 fʹ(x ),对任意 x ∈R 都有 fʹ(x )>f (x ) 成立,则 ( ) A. 3f (ln2)>2f (ln3) B. 3f (ln2)=2f (ln3) C. 3f (ln2)<2f (ln3)D. 3f (ln2) 与 2f (ln3) 的大小不确定18. 已知函数 f (x )=x 33+12ax 2+2bx +c ,方程 fʹ(x )=0 两个根分别在区间 (0,1) 与 (1,2) 内,则 b−2a−1的取值范围为 ( )A. (14,1)B. (−∞,14)∪(1,∞)C. (−1,−14)D. (14,2)19. 已知 f (x )=∣xe x ∣,又 g (x )=f 2(x )−tf (x )(t ∈R ),若满足 g (x )=−1 的 x 有四个,则 t 的取值范围是 ( )A. (−∞,−e 2+1e) B. (e 2+1e,+∞) C. (−e 2+1e,−2) D. (2,e 2+1e)20. 已知 f (x ) 是定义在 (0,+∞) 上的单调函数,且对任意的 x ∈(0,+∞),都有 f [f (x )−log 2x ]=3,则方程 f (x )−fʹ(x )=2 的解所在的区间是 ( ) A. (0,12)B. (12,1)C. (1,2)D. (2,3)21. 已知函数 f (x )={√1+9x 2,x ≤01+xe x−1,x >0,点 A ,B 是函数 f (x ) 图象上不同两点,则 ∠AOB (O 为坐标原点)的取值范围是 ( )A. (0,π4) B. (0,π4] C. (0,π3) D. (0,π3]22. 定义:如果函数 f (x ) 在 [a,b ] 上存在 x 1,x 2 (0<x 1<x 2<a) 满足 fʹ(x 1)=f (b )−f (a )b−a ,fʹ(x 2)=f (b )−f (a )b−a,则称函数 f (x ) 是 [a,b ] 上的“双中值函数”.已知函数 f (x )=x 3−x 2+a 是 [0,a ] 上的“双中值函数”,则实数 a 的取值范围是 ( )高中数学资料共享群QQ 群号:734924357 A. (13,12)B. (32,3)C. (12,1)D. (13,1)23. 已知函数 f (x )=2mx 2−2(4−m )x +1,g (x )=mx ,若对于任意实数 x ,函数 f (x ) 与 g (x ) 的值至少有一个为正值,则实数 m 的取值范围是 ( )A. (2,8)B. (0,2)C. (0,8)D. (−∞,0)24. 已知 a,b ∈R ,且 e x+1≥ax +b 对 x ∈R 恒成立,则 ab 的最大值是( )A. 12e 3B. √22e 3 C.√32e 3 D. e 325. 函数 f (x ) 是定义在区间 (0,+∞) 上的可导函数 , 其导函数为 fʹ(x ),且满足 xfʹ(x )+2f (x )>0,则不等式 (x+2016)f (x+2016)5<5f (5)x+2016的解集为 ( ) A. {x >−2011} B. {x ∣x <−2011} C. {x ∣−2011<x <0}D. {x∣∣−2016<x <−2011}26. 设 D =√(x −a )2+(lnx −a 24)2+a 24+1(a ∈R ),则 D 的最小值为( ) A. √22B. 1C. √2D. 227. 已知定义在 R 上的函数 y =f (x ) 满足:函数 y =f (x +1) 的图象关于直线 x =−1 对称,且当 x ∈(−∞,0) 时,f (x )+xfʹ(x )<0 成立(fʹ(x ) 是函数 f (x ) 的导函数),若 a =0.76f (0.76),b =log 1076f (log 1076),c =60.6f (60.6),则 a ,b ,c 的大小关系是 ( )A. a >b >cB. b >a >cC. c >a >bD. a >c >b28. 对任意的正数 x ,都存在两个不同的正数 y ,使 x 2(lny −lnx )−ay 2=0 成立,则实数 a 的取值范围为 ( )A. (0,12e ) B. (−∞,12e ) C. (12e ,+∞) D. (12e,1)29. 已知函数 f (x )=x 3−6x 2+9x ,g (x )=13x 3−a+12x 2+ax −13(a >1) 若对任意的 x 1∈[0,4],总存在 x 2∈[0,4],使得 f (x 1)=g (x 2),则实数 a 的取值范围为 ( )高中数学资料共享群QQ 群号:734924357 A. (1,94]B. [9,+∞)C. (1,94]∪[9,+∞)D. [32,94]∪[9,+∞)30. 定义在 R 上的偶函数 f (x ) 满足 f (2−x )=f (x ),且当 x ∈[1,2] 时,f (x )=lnx −x +1,若函数g (x )=f (x )+mx 有 7 个零点,则实数 m 的取值范围为 ( )A. (1−ln28,1−ln26)∪(ln2−16,ln2−18)B. (ln2−16,ln2−18) C. (1−ln28,1−ln26) D. (1−ln28,ln2−16)31. 已知函数 f (x )={e x ,x ≥0ax,x <0,若方程 f (−x )=f (x ) 有五个不同的根,则实数 a 的取值范围为 ( ) A. (−∞,−e )B. (−∞,−1)C. (1,+∞)D. (e,+∞)32. 已知 fʹ(x ) 是奇函数 f (x ) 的导函数,f (−1)=0,当 x >0 时,xfʹ(x )−f (x )>0,则使得 f (x )>0 成立的 x 的取值范围是 ( ) A. (−∞,−1)∪(0,1) B. (−1,0)∪(1,+∞) C. (−1,0)∪(0,1)D. (−∞,−1)∪(1,+∞)33. 已知函数 f (x ) 在定义域 R 上的导函数为 fʹ(x ),若方程 fʹ(x )=0 无解,且 f [f (x )−2017x ]=2017,当 g (x )=sinx −cosx −kx 在 [−π2,π2] 上与 f (x ) 在 R 上的单调性相同时,则实数 k 的取值范围是 ( )A. (−∞,−1]B. (−∞,√2]C. [−1,√2]D. [√2,+∞)34. 已知函数 f (x )=e x ∣x∣,关于 x 的方程 f 2(x )−2af (x )+a −1=0(a ∈R )有 3 个相异的实数根,则 a 的取值范围是 ( ) A. (e 2−12e−1,+∞)B. (−∞,e 2−12e−1) C. (0,e 2−12e−1) D. {e 2−12e−1}35. 函数 y =f (x ) 图象上不同两点 A (x 1,y 1),B (x 2,y 2) 处的切线的斜率分别是 k A ,k B ,规定 φ(A,B )=∣k A −k B ∣∣AB∣叫做曲线在点 A 与点 B 之间的“弯曲度”.设曲线 y =e x 上不同的两点 A (x 1,y 1),B (x 2,y 2),且 x 1−x 2=1,若 t ⋅φ(A,B )<3 恒成立,则实数 t 的取值范围是 ( )A. (−∞,3]B. (−∞,2]C. (−∞,1]D. [1,3]36. 已知函数 f (x )=ax 3+3x 2+1,若至少存在两个实数 m ,使得 f (−m ),f (1),f (m +2) 成等差数列,则过坐标原点作曲线 y =f (x ) 的切线可以作 ( ) A. 3 条B. 2 条C. 1 条D. 0 条37. 已知整数对排列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),⋯,则第 60 个整数对是 ( ) A. (5,7)B. (4,8)C. (5,8)D. (6,7)38. 已知函数 f (x )={∣log 3x ∣,0<x <3,−cos (π3x),3≤x ≤9.若存在实数 x 1,x 2,x 3,x 4,当 x 1<x 2<x 3<x 4 时,满足 f (x 1)=f (x 2)=f (x 3)=f (x 4),则 x 1⋅x 2⋅x 3⋅x 4 的取值范围是 ( ) A. (7,294)B. (21,1354) C. [27,30)D. (27,1354)39. 已知函数 f (x )=e 2x ,g (x )=lnx +12的图象分别与直线 y =b 交于 A ,B 两点,则 ∣AB∣ 的最小值为 ( )A. 1B. e 12C. 2+ln22D. e −ln3240. 设 A ,B 分别为双曲线 C :x 2a 2−y 2b 2=1(a >0,b >0) 的左、右顶点,P ,Q 是双曲线 C 上关于 x 轴对称的不同两点,设直线 AP ,BQ 的斜率分别为 m ,n ,则2b a+a b+12∣mn∣+ln ∣m ∣+ln ∣n ∣ 取得最小值时,双曲线 C 的离心率为 ( ) A. √2B. √3C. √6D. √6241. 已知 f (x ),g (x ) 都是定义在 R 上的函数,且满足以下条件:① f (x )=a x ⋅g (x )(a >0,a ≠1);② g (x ) ≠0;③ f (x )⋅gʹ(x )>fʹ(x )⋅g (x ).若 f (1)g (1)+f (−1)g (−1)=52,则使 log a x >1 成立的 x 的取值范围是 ( )A. (0,12)∪(2,+∞)B. (0,12)C. (−∞,12)∪(2,+∞)D. (2,+∞)42. 已知函数 f (x )=∣sinx ∣(x ∈[−π,π]),g (x )=x −2sinx (x ∈[−π,π]),设方程 f(f (x ))=0,f(g (x ))=0,g(g (x ))=0 的实根的个数分别为 m ,n ,t ,则 m +n +t = ( )A. 9B. 13C. 17D. 2143. 设 f (x ) 是定义在 R 上的奇函数,且 f (2)=0,当 x >0 时,有xfʹ(x )−f (x )x 2<0 恒成立,则不等式 x 2f (x )>0 的解集是 ( )A. (−2,0)∪(2,+∞)B. (−∞,−2)∪(0,2)C. (−∞,−2)∪(2,+∞)D. (−2,0)∪(0,2)44. 已知函数 f (x )={−x 2+2x,x ≤0ln (x +1),x >0,若 ∣f (x )∣≥ax ,则 a 的取值范围是 ( ) A. (−∞,0]B. (−∞,1]C. [−2,1]D. [−2,0]45. 已知函数 f (x )(x ∈R ) 满足 f (−x )=2−f (x ),若函数 y =x+1x与 y =f (x ) 图象的交点为 (x 1,y 1),(x 2,y 2),⋯,(x m ,y m ),则 ∑(x i +m i=1y i )= ( )A. 0B. mC. 2mD. 4m46. 若函数 f (x )=x −13sin2x +asinx 在 (−∞,+∞) 单调递增,则 a 的取值范围是 ( )高中数学资料共享群QQ 群号:734924357 A. [−1,1]B. [−1,13]C. [−13,13]D. [−1,−13]47. 已知两曲线 y =x 3+ax 和 y =x 2+bx +c 都经过点 P (1,2),且在点 P处有公切线,则当 x ≥12 时,log bax 2−c 2x的最小值为 ( )A. −1B. 1C. 12D. 048. 直线 y =m 分别与 y =2x +3 及 y =x +lnx 交于 A ,B 两点,则 ∣AB∣的最小值为 ( ) A. 1B. 2C. 3D. 449. 设函数 f (x )=x 2−2x +1+alnx 有两个极值点 x 1,x 2,且 x 1<x 2,则 f (x 2) 的取值范围是 ( ) A. (0,1+2ln24) B. (1−2ln24,0)C. (1+2ln24,+∞) D. (−∞,1−2ln24)50. 设直线 l 1,l 2 分别是函数 f (x )={−lnx,0<x <1,lnx,x >1,图象上点 P 1,P 2处的切线,l 1 与 l 2 垂直相交于点 P ,且 l 1,l 2 分别与 y 轴相交于点 A ,B ,则 △PAB 的面积的取值范围是 ( )A. (0,1)B. (0,2)C. (0,+∞)D. (1,+∞)51. 已知定义在 R 上的奇函数 f (x ),其导函数为 fʹ(x ),对任意正实数 x 满足 xfʹ(x )>2f (−x ),若 g (x )=x 2f (x ),则不等式 g (x )<g (1−3x ) 的解集是 ( ) A. (14,+∞)B. (−∞,14)C. (0,14)D. (−∞,14)∪(14,+∞)52. 已知函数 f (x )=x (lnx −ax ) 有两个极值点,则实数 a 的取值范围是( )A. (−∞,0)B. (0,12)C. (0,1)D. (0,+∞)53. 已知函数 f (x )=x +xlnx ,若 m ∈Z ,且 (m −2)(x −2)<f (x ) 对任意的 x >2 恒成立,则 m 的最大值为 ( ) A. 4B. 5C. 6D. 854. 已知函数 f (x )=a x+xlnx ,g (x )=x 3−x 2−5,若对任意的 x 1,x 2∈[12,2],都有 f (x 1)−g (x 2)≥2 成立,则 a 的取值范围是 ( )A. (0,+∞)B. [1,+∞)C. (−∞,0)D. (−∞,−1]55. 设函数 f (x )=e x (2x −1)−ax +a ,其中 a <1,若存在唯一的整数x 0 使得 f (x 0)<0,则 a 的取值范围是 ( )A. [−32e,1) B. [−32e ,34) C. [32e ,34)D. [32e,1)56. 函数 f (x )={(x −a )2+e,x ≤2xlnx+a +10,x >2(e 是自然对数的底数),若 f (2) 是函数 f (x ) 的最小值,则 a 的取值范围是 ( ) A. [−1,6]B. [1,4]C. [2,4]D. [2,6]57. f (x ),g (x )(g (x )≠0) 分别是定义在 R 上的奇函数和偶函数,当 x <0时,fʹ(x )g (x )<f (x )gʹ(x ),且 f (−3)=0,f (x )g (x )<0 的解集为 ( )A. (−∞,−3)∪(3,+∞)B. (−3,0)∪(0,3)C. (−3,0)∪(3,+∞)D. (−∞,−3)∪(0,3)58. 已知函数 f (x )=x 3+bx 2+cx +d (b ,c ,d 为常数),当 x ∈(0,1) 时 f (x ) 取得极大值,当 x ∈(1,2) 时 f (x ) 取得极小值,则 (b +12)2+(c −3)2的取值范围是 ( )高中数学资料共享群QQ 群号:734924357 A. (√372,5) B. (√5,5)C. (374,25)D. (5,25)59. 若关于 x 的方程 ∣x 4−x 3∣=ax 在 R 上存在 4 个不同的实根,则实数a 的取值范围为 ( ) A. (0,427)B. (0,427]C. (427,23)D. (427,23]60. 设函数 f (x ) 在 R 上存在导函数 fʹ(x ),若对 ∀x ∈R ,有 f (−x )+f (x )=x 2,且当 x ∈(0,+∞) 时,fʹ(x )>x .若 f (2−a )−f (a )≥2−2a ,则 a 的取值范围是 ( )A. (−∞,1]B. [1,+∞)C. (−∞,2]D. [2,+∞)61. 已知 e 为自然对数的底数,若对任意的 x ∈[1e,1],总存在唯一的 y ∈[−1,1],使得 lnx −x +1+a =y 2e y 成立,则实数 a 的取值范围是 ( ) A. [1e ,e]B. (2e,e]C. (2e,+∞)D. (2e ,e +1e)62. 设函数 f (x )={2x +1,x >0,0,x =0,2x −1,x <0.若不等式 f (x −1)+f (mx)>0 对任意x >0 恒成立,则实数 m 的取值范围是 ( ) A. (−14,14)B. (0,14)C. (14,+∞)D. (1,+∞)63. 若 0<x 1<x 2<1,则 ( )A. e x 2−e x 1>lnx 2−lnx 1B. e x 1−e x 2<lnx 2−lnx 1C. x 2e x 1>x 1e x 2D. x 2e x 1<x 1e x 264. 函数f(x)在定义域R内可导,若f(x)=f(2−x),且(x−1)fʹ(x)<0,若a=f(0),b=f(12),c=f(3),则a,b,c的大小关系是( )A. a>b>cB. b>a>cC. c>b>aD. a>c>b65. 已知函数f(x)=x−4+9x+1,x∈(0,4).当x=a时,f(x)取得最小值b,则函数g(x)=(1a )∣x+b∣的图象为( )A. B.C. D.66. f(x)是定义在(0,+∞)上的单调函数,且对∀x∈(0,+∞)都有f(f(x)−lnx)=e+1,则方程f(x)−fʹ(x)=e的实数解所在的区间是( )高中数学资料共享群QQ群号:734924357A. (0,1e ) B. (1e,1) C. (1,e) D. (e,3)67. 已知R上的奇函数f(x)满足fʹ(x)>−2,则不等式f(x−1)<x2(3−2lnx)+3(1−2x)的解集是( )A. (0,1e) B. (0,1) C. (1,+∞) D. (e,+∞)68. 已知函数f(x)=sinxx,给出下面三个结论:①函数f(x)在区间(−π2,0)上单调递增,在区间(0,π2)上单调递减;②函数f(x)没有最大值,而有最小值;③函数f(x)在区间(0,π)上不存在零点,也不存在极值点.其中,所有正确结论的序号是( )A. ①②B. ①③C. ②③D. ①②③69. 已知函数 f (x ) 是定义在 R 上的可导函数,fʹ(x ) 为其导函数,若对于任意实数 x ,有 f (x )−fʹ(x )>0,则 A. ef (2015)>f (2016) B. ef (2015)<f (2016) C. ef (2015)=f (2016)D. ef (2015) 与 f (2016) 大小不能确定70. 若存在正实数 m ,使得关于 x 的方程 x +a (2x +2m −4ex )[ln (x +m )−lnx ]=0 有两个不同的根,其中 e 为自然对数的底数,则实数 a 的取值范围是 ( ) A. (−∞,0)B. (0,12e )C. (−∞,0)∪(12e ,+∞)D. (12e ,+∞)71. 定义在 (0,π2) 上的函数 f (x ),fʹ(x ) 是它的导函数,且恒有 f (x )⋅tanx <fʹ(x ) 成立,则 ( ) A. √3f (π4)>√2f (π3)B. f (1)<2f (π6)sin1C. √2f (π6)>f (π4) D. √3f (π6)<f (π3)72. 已知函数 f (x )=x 3+ax 2+bx +c ,下列结论中错误的是 ( )A. ∃x 0∈R ,f (x 0)=0B. 函数 y =f (x ) 的图象是中心对称图形C. 若 x 0 是 f (x ) 的极小值点,则 f (x ) 在区间 (−∞,x 0) 单调递减D. 若 x 0 是 f (x ) 的极值点,则 fʹ(x 0)=073. 已知函数 f (x )=ln x2+12,g (x )=e x−2,若 g (m )=f (n ) 成立,则 n −m 的最小值为 ( )A. 1−ln2B. ln2C. 2√e −3D. e 2−374. 设函数 f (x )=e x (x 3−3x +3)−ae x −x (x ≥−2),若不等式 f (x )≤0有解.则实数 a 的最小值为 ( )A. 2e −1 B. 2−2eC. 1+2e2D. 1−1e75. 设函数f(x)=2lnx−12mx2−nx,若x=2是f(x)的极大值点,则m 的取值范围为( )A. (−12,+∞) B. (−12,0)C. (0,+∞)D. (−∞,−12)∪(0,+∞)76. 已知函数f(x)=ax3+bx2−2(a≠0)有且仅有两个不同的零点x1,x2,则( )A. 当a<0时,x1+x2<0,x1x2>0B. 当a<0时,x1+x2>0,x1x2<0C. 当a>0时,x1+x2<0,x1x2>0D. 当a>0时,x1+x2>0,x1x2<077. 已知函数f(x)=ax3−3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围为( )A. (2,+∞)B. (1,+∞)C. (−∞,−2)D. (−∞,−1)78. 设f(x)、g(x)是定义域为R的恒大于零的可导函数,且fʹ(x)g(x)−f(x)gʹ(x)<0,则当a<x<b时,有( )A. f(x)g(x)>f(b)g(b)B. f(x)g(a)>f(a)g(x)C. f(x)g(b)>f(b)g(x)D. f(x)g(x)>f(a)g(a)79. 设函数fʹ(x)是函数f(x)(x∈R)的导函数,f(0)=1,且3f(x)=fʹ(x)−3,则4f(x)>fʹ(x)的解集为( )A. (ln43,+∞) B. (ln23,+∞) C. (√32,+∞) D. (√e3,+∞)80. 下列关于函数f(x)=(2x−x2)e x的判断正确的是( )①f(x)>0的解集是{x∣0<x<2};②f(−√2)是极小值,f(√2)是极大值;③f(x)没有最小值,也没有最大值;④f(x)有最大值,没有最小值.A. ①③B. ①②③C. ②④D. ①②④参考答案,仅供参考啊1. D 【解析】fʹ(x)=e x+xe x−m(x+1)=(x+1)(e x−m),因为1≤x≤2,所以e≤e x≤e2,①当m≤e时,e x−m≥0,由x≥1,可得fʹ(x)≥0,此时函数f(x)单调递增.高中数学资料共享群QQ群号:734924357所以当x=1时,函数f(x)取得最小值,f(1)=e−32m.②当m≥e2时,e x−m≤0,由x≥1,可得fʹ(x)≤0,此时函数f(x)单调递减.所以当x=2时,函数f(x)取得最小值,f(2)=2e2−4m.③当e2>m>e时,由e x−m=0,解得x=lnm.当1≤x<lnm时,fʹ(x)<0,此时函数f(x)单调递减;当lnm<x≤1时,fʹ(x)>0,此时函数f(x)单调递增.所以当x=lnm时,函数f(x)取得极小值即最小值,f(lnm)=−m2ln2m.2. D 【解析】fʹ(x)=xcosx−sinxx2(0<x<π).(i)当x=π2时,fʹ(x)=−4π2<0;(ii)当0<x<π,且x≠π2时,fʹ(x)=xcosx−sinxx2=cosx(x−tanx)x2.①当0<x<π2时,根据三角函数线的性质,得x<tanx,又cosx>0,所以fʹ(x)<0;②当π2<x<π时,tanx<0,则x−tanx>0,又cosx<0,所以fʹ(x)< 0.综合(i)(ii),当0<x<π时,fʹ(x)<0.所以f(x)在(0,π)上是减函数.若π3<a<b<2π3,则π3<a<√ab<a+b2<b<2π3,所以f(a)>f(√ab)>f(a+b2)>f(b).3. C 【解析】令f(x1)=a−x1,则f(x1)=a−x1在x1∈[0,1]上单调递减,且f(0)=a,f(1)=a−1.令g(x2)=x22e x2,则gʹ(x2)=2x2e x2+x22e x2=x2e x2(x2+2),且g(0)=0,g(−1)=1e,g(1)=e.若对任意的x1∈[0,1],总存在唯一的x2∈[−1,1],使得x1+x22e x2−a=0成立,即f(x1)=g(x2),则f(x1)=a−x1的最大值不能大于g(x2)的最大值,即f(0)=a≤e,因为g(x2)在[−1,0]上单调递减,在(0,1]上单调递增,所以当g(x2)∈(0,1e]时,有两个x2使得f(x1)=g(x2).若只有唯一的x2∈[−1,1],使得f(x1)=g(x2),则f(x1)的最小值要比1e大,所以f(1)=a−1>1e,所以a>1+1e,故实数a的取值范围是(1+1e,e].4. B 【解析】zln yz=x,所以xz=lny−lnz,所以lny=xz+lnz,所以ln yx =lny−lnx=xz+lnz−lnx=xz+ln zx,令zx =t,则ln yx=1t+lnt,又因为z2≤x≤ez,所以12≤xz≤e,即t∈[1e ,2],令ln yx=1t+lnt=f(t),则fʹ(t)=t−1t2,令fʹ(t)=0即t=1,又因为1e≤t≤2,所以t∈[1e,1]时fʹ(t)<0,f(t)单调减,t∈[1,2]时fʹ(t)>0,f(t)单调增,所以t=1时f(t)取极小值,即f(1)=1,f(2)=12+ln2,f(1e)=e+ln1e=e−1f(1e )−f(2)=e−ln2−32>e−lne−32=e−52>0,所以f(t)最大值为e−1,所以f(t)∈[1,e−1],高中数学资料共享群QQ群号:734924357所以ln yx∈[1,e−1].5. A【解析】由ln∣x∣−ax2+32=0得ax2=ln∣x∣+32,因为x≠0,所以方程等价为a=ln∣x∣+32x2,设f(x)=ln∣x∣+32x2,则函数f(x)是偶函数,当x>0时,f(x)=lnx+32x2,则fʹ(x)=1x⋅x2−(lnx+32)⋅2xx4=x−2xlnx−3xx4=−2x(1+lnx)x4,由fʹ(x)>0得−2x(1+lnx)>0,得1+lnx<0,即lnx<−1,得0<x<1e,此时函数单调递增,由fʹ(x)<0得−2x(1+lnx)<0,得1+lnx>0,即lnx>−1,得x>1e,此时函数单调递减,即当 x >0 时,x =1e 时,函数 f (x ) 取得极大值 f (1e)=ln 1e +32(1e)2=(−1+32)e 2=12e 2, 作出函数f (x ) 的图象如图:要使 a =ln∣x∣+32x 2,有 4 个不同的交点,则满足 0<a <12e 2.6. D 【解析】提示:令 fʹ(x )=2sinx ⋅e x =0,得 x =kπ,易知当 x =2kπ(k ∈Z ),1≤k ≤1007 时 f (x ) 取到极小值,故各极小值之和为f (2π)+f (4π)+⋯+f (2014π)=−(e 2π+e 4π+⋯+e 2014π)=−e 2π(1−e 2014π)1−e 2π.7. A 【解析】因为 f (x )=x (fʹ(x )−lnx ), 所以 xfʹ(x )−f (x )=xlnx , 所以xfʹ(x )−f (x )x 2=lnx x,所以 [f (x )x]ʹ=lnxx,令 F (x )=f (x )x ,则 Fʹ(x )=lnx x,f (x )=xF (x ),所以 fʹ(x )=F (x )+xFʹ(x )=F (x )+lnx , 所以 fʺ(x )=Fʹ(x )+1x=lnx+1x,因为 x ∈(0,1e ),fʺ(x )<0,fʹ(x ) 单减,x ∈(1e ,+∞),fʺ(x )>0,fʹ(x ) 单增,所以 fʹ(x )≥fʹ(1e )=F (1e )+ln 1e =ef (1e )−1=0,所以 fʹ(x )≥0,所以 f (x ) 在 (0,+∞) 上单增,因为 e ⋅f (e x )<fʹ(1e )+1,fʹ(1e )=−1+e ⋅f (1e )=0, 所以 e ⋅f (e x )<1, 所以 f (e x )<1e ,所以 f (e x )<f (1e ), 所以 0<e x <1e ,所以不等式的解集为 x <−1. 8. A 9. C 【解析】因为 fʹ(x )=1−(1+lnx )x 2=−lnx x 2,所以 f (x ) 在 (0,1) 上单调递增,在 (1,,+∞) 上单调递减,当 a >0 时,f 2(x )+af (x )>0⇔f (x )<−a 或 f (x )>0,此时不等式 f 2(x )+af (x )>0 有无数个整数解,不符合题意;当 a =0 时,f 2(x )+af (x )>0⇔f (x )≠0,此时不等式 f 2(x )+af (x )>0 有无数个整数解,不符合题意;当 a <0 时,f 2(x )+af (x )>0⇔f (x )<0 或 f (x )>−a ,要使不等式 f 2(x )+af (x )>0 恰有两个整数解,必须满足 f (3)≤−a <f (2),得 −1+ln22<a ≤−1+ln33.10. B【解析】因为 f (x )=x +xlnx ,所以 f (x )−m (x −1)>0 对任意 x >1 恒成立,即 m (x −1)<x +xlnx , 因为 x >1,也就是 m <x⋅lnx+x x−1对任意 x >1 恒成立.令 ℎ(x )=x⋅lnx+x x−1,则 ℎʹ(x )=x−lnx−2(x−1)2,令 φ(x )=x −lnx −2(x >1),则 φʹ(x )=1−1x=x−1x>0,所以函数 φ(x ) 在 (1,+∞) 上单调递增.因为 φ(3)=1−ln3<0,φ(4)=2−2ln2>0,所以方程 φ(x )=0 在 (1,+∞) 上存在唯一实根 x 0,且满足 x 0∈(3,4). 当 1<x <x 0 时,φ(x )<0,即 ℎʹ(x )<0, 当 x >x 0 时,φ(x )>0,即 ℎʹ(x )>0,所以函数 ℎ(x ) 在 (1,x 0) 上单调递减,在 (x 0,+∞) 上单调递增. 所以 [ℎ(x )]min =ℎ(x 0)=x 0(1+x 0−2)x 0−1=x 0∈(3,4).所以 m <[g (x )]min =x 0,因为 x 0∈(3,4),故整数 m 的最大值是 3. 11. D 【解析】函数 f (x )={xln (1+x )+x 2,x ≥0−xln (1−x )+x 2,x <0, 将 x 换为 −x ,函数值不变,即有 f (x ) 图象关于 y 轴对称,即 f (x ) 为偶函数,有 f (−x )=f (x ),当 x ≥0 时,f (x )=xln (1+x )+x 2 的导数为 fʹ(x )=ln (1+x )+x 1+x+2x ≥0,则 f (x ) 在 [0,+∞) 递增,f (−a )+f (a )≤2f (1),即为 2f (a )≤2f (1), 可得 f (∣a∣)≤f (1),可得 ∣a∣≤1,解得 −1≤a ≤1.12. D 【解析】由题意,可知 f (x )−log 2016x 是定值,不妨令 t =f (x )−log 2016x ,则 f (x )=log 2016x +t ,又 f (t )=2017,所以 log 2016t +t =2017⇒t =2016,即 f (x )=log 2016x +2016,则 fʹ(x )=1xln2016,显然当x ∈(0,+∞) 时,有 fʹ(x )>0,即函数 f (x ) 在 (0,+∞) 上为单调递增,又 20.5>1>log π3>log 43,所以 f (20.5)>f (log π3)>f (log 43). 13. D 【解析】当 x ≥1 时,f (x )=lnx ≥0, 所以 f (x )+1≥1,所以 f [f (x )+1]=ln (f (x )+1),当 x <1,f (x )=1−x2>12,f (x )+1>32,f [f (x )+1]=ln (f (x )+1),综上可知:F[f(x)+1]=ln(f(x)+1)+m=0,则f(x)+1=e−m,f(x)=e−m−1,有两个根x1,x2,(不妨设x1<x2),当x≥1是,lnx2=e−m−1,当x<1时,1−x12=e−m−1,令t=e−m−1>12,则lnx2=t,x2=e t,1−x12=t,x1=2−2t,所以x1x2=e t(2−2t),t>12,设g(t)=e t(2−2t),t>12,求导gʹ(t)=−2te t,t∈(12,+∞),gʹ(t)<0,函数g(t)单调递减,所以g(t)<g(12)=√e,所以g(x)的值域为(−∞,√e),所以x1x2取值范围为(−∞,√e).14. A 【解析】当x<0时,f(x)=(x+1)e x,可得fʹ(x)=(x+2)e x,可知x∈(−∞,−2),函数是减函数,x∈(−2,0)函数是增函数,f(−2)=−1e2,f(−1)=0,且x→0时,f(x)→1,又f(x)是定义在R上的奇函数,f(0)=0,而x∈(−∞,−1)时,f(x)<0,所以函数的图象如图:令t=f(x)则f(t)=m,由图象可知:当t∈(−1,1)时,方程f(x)=t至多3个根,当t∉(−1,1)时,方程没有实数根,而对于任意m∈R,方程f(t)=m至多有一个根,t∈(−1,1),从而函数F(x)=f(f(x))−m的零点个数至多有3个.15. D【解析】函数g(x)=f(x)−ax在区间(0,3]上有三个零点即函数f(x)=∣lnx∣与y=ax在区间(0,3]上有三个交点.画图如下.当 a ≤0 时,显然,不合乎题意,当 a >0 时,由图知,当 x ∈(0,1] 时,存在一个交点,当 x >1 时,f (x )=lnx ,可得 g (x )=lnx −ax (x ∈(1,3]),gʹ(x )=1x−a =1−ax x,若 gʹ(x )<0,可得 x >1a,g (x ) 为减函数,若 gʹ(x )>0,可得 x <1a,g (x ) 为增函数,此时 y =f (x ) 与 y =ax 必须在 [1,3] 上有两个交点,即 y =g (x ) 在 [1,3] 上有两个零点,所以 {g (1a)>0,g (3)≤0,g (1)≤0,解得ln33≤a <1e,故函数 g (x )=f (x )−ax 在区间 (0,3] 上有三个零点时,ln33≤a <1e.16. A 【解析】因为函数 f (x ) 是偶函数, 所以 f (x +1)=f (3−x )=f (x −3).所以 f (x +4)=f (x ),即函数 f (x ) 是周期为 4 的周期函数. 因为 f (2015)=f (4×504−1)=f (−1)=f (1)=2, 所以 f (1)=2. 设 g (x )=f (x )e x,则 gʹ(x )=fʹ(x )e x −f (x )e xe 2x=fʹ(x )−f (x )e x<0,所以 g (x ) 在 R 上单调递减. 不等式 f (x )<2e x−1 等价于 f (x )e x<2e,即 g (x )<g (1),所以 x >1,所以不等式 f (x )<2e x−1 的解集为 (1,+∞). 17. C 【解析】构造函数 g (x )=f (x )e x,则函数求导得 gʹ(x )=fʹ(x )−f (x )e x.由已知 fʹ(x )>f (x ),所以 gʹ(x )>0,即 g (x ) 在实数范围内单调递增, 所以 g (ln2)<g (ln3),即f (ln2)e ln2<f (ln3)e ln3,解得 3f (ln2)<2f (ln3).18. A 【解析】由题意,fʹ(x )=x 2+ax +2b ,因为 fʹ(x ) 是开口朝上的二次函数,所以 {fʹ(0)>0fʹ(1)<0fʹ(2)>0,得 {b >0,a +a +2b <0,2+a +b >0, 由此可画出可行域,如图,b−2a−1表示可行域内的点 (a,b ) 和点 P (1,2) 连线的斜率,显然 PA 的斜率最小,PC 的斜率最大.19. B 【解析】令 y =xe x ,则 yʹ=(1+x )e x ,由 yʹ=0,得 x =−1,当 x ∈(−∞,−1) 时,yʹ<0,函数 y 单调递减,当 x ∈(−1,∞) 时,yʹ>0 函数单调递增.做出 y =xe x 图象,利用图象变换得 f (x )=∣xe x ∣ 图象(如图),令 f (x )=m ,则关于 m 方程 ℎ(m )=m 2−tm +1=0 两根分别在 (0,1e ),(1e ,+∞) 时(如图),满足 g (x )=−1 的 x 有 4 个,由 ℎ(1e )=1e 2−1e t +1<0 解得 t >e 2+1e.20. C【解析】根据题意,对任意的x∈(0,+∞),都有f[f(x)−log2x]=3,又由f(x)是定义在(0,+∞)上的单调函数,则f(x)−log2x为定值,设t=f(x)−log2x,则f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得,t=2;则f(x)=log2x+2,fʹ(x)=1ln2⋅x,将f(x)=log2x+2,fʹ(x)=1ln2⋅x代入f(x)−fʹ(x)=2,可得log2x+2−1ln2⋅x=2,即log2x−1ln2⋅x=0,令ℎ(x)=log2x−1ln2⋅x,分析易得ℎ(1)=−1ln2<0,ℎ(2)=1−12ln2>0,则ℎ(x)=log2x−1ln2⋅x的零点在(1,2)之间,则方程log2x−1ln2⋅x=0,即f(x)−fʹ(x)=2的根在(1,2)上.21. A 【解析】当x≤0时,由y=√1+9x2得y2−9x2=1(x≤0),此时对应的曲线为双曲线,双曲线的渐近线为y=−3x,此时渐近线的斜率k1=−3,当x>0时,f(x)=1+xe x−1,当过原点的直线和f(x)相切时,设切点为(a,1+ae a−1),函数的导数fʹ(x)=e x−1+xe x−1=(x+1)e x−1,则切线斜率k2=fʹ(a)=(a+1)e a−1,则对应的切线方程为y−(1+ae a−1)=(1+a)e a−1(x−a),即y=(1+a)e a−1(x−a)+1+ae a−1,当x=0,y=0时,(1+a)e a−1(−a)+1+ae a−1=0,即a2e a−1+ae a−1=1+ae a−1,即a2e a−1=1,得a=1,此时切线斜率k2=2,则切线和y=−3x的夹角为θ,则tanθ=∣∣−3−21−2×3∣∣=55=1,则θ=π4,故∠AOB(O为坐标原点)的取值范围是(0,π4).22. C 【解析】由题意可知,因为 f (x )=x 3−x 2+a 在区间 [0,a ] 存在 x 1,x 2 (a <x 1<x 2<b),满足 fʹ(x 1)=fʹ(x 2)=f (a )−f (0)a=a 2−a ,因为 f (x )=x 3−x 2+a , 所以 fʹ(x )=3x 2−2x ,所以方程 3x 2−2x =a 2−a 在区间 (0,a ) 有两个不相等的解. 令 g (x )=3x 2−2x −a 2+a ,(0<x <a ). 则 {Δ=4−12(−a 2+a )>0,g (0)=−a 2+a >0,g (a )=2a 2−a >0,0<16<a. 解得:12<a <1.所以实数 a 的取值范围是 (12,1). 23. C 【解析】当 m <0 时,函数 f (x ) 的图象为开口向下的抛物线,所以在 x >0 时,f (x )>0 不恒成立. 函数 g (x )=mx 当 x >0 时,g (x )<0. 所以不满足题意.当 m =0 时,f (x )=−8x +1,g (x )=0,不满足题意. 当 m >0 时,需 f (x )>0 在 x <0 时恒成立,所以令 Δ<0 或 {Δ≥0,−b2a ≥0,f (0)>0,即 4(4−m )2−8m <0 或 {4(4−m )2−8m ≥0,4−m 2m≥0.解得 2<m <8 或 0<m ≤2.综合得:0<m <8.24. A 【解析】若 a <0,由于一次函数 y =ax +b 单调递减,不能满足且 e x+1≥ax +b 对 x ∈R 恒成立,则 a ≥0. 若 a =0,则 ab =0.若 a >0,由 e x+1≥ax +b 得 b ≤e x+1−ax ,则 ab ≤ae x+1−a 2x . 设函数 f (x )=ae x+1−a 2x ,所以 fʹ(x )=ae x+1−a 2=a (e x+1−a ),令 fʹ(x )=0 得 e x+1−a =0,解得 x =lna −1,因为 x <lna −1 时,x +1<lna ,则 e x+1<a ,则 e x+1−a <0, 所以 fʹ(x )<0,所以函数 f (x ) 递减;同理,x >lna −1 时,fʹ(x )>0,所以函数 f (x ) 递增;所以当 x =lna −1 时,函数取最小值,f (x ) 的最小值为 f (lna −1)=2a 2−a 2lna .设 g (a )=2a 2−a 2lna (a >0),gʹ(a )=a (3−2lna )(a >0),由 gʹ(a )=0 得 a =e 32,不难得到 a <e 32时,gʹ(a )>0;a >e 32时,gʹ(a )<0;所以函数 g (a ) 先增后减,所以 g (a ) 的最大值为 g (e 32)=12e 3,即 ab 的最大值是 12e 3,此时 a=e 32,b =12e 32.25. D【解析】构造函数 g (x )=x 2f (x ),gʹ(x )=x(2f (x )+xfʹ(x )), 当 x >0 时,因为 2f (x )+xfʹ(x )>0, 所以 gʹ(x )>0,所以g(x)在(0,+∞)上单调递增,因为不等式(x+2016)f(x+2016)5<5f(5)x+2016,所以x+2016>0时,即x>−2016时,(x+2016)2f(x+2016)<52f(5),所以g(x+2016)<g(5),所以x+2016<5,所以−2016<x<−2011.26. C 【解析】S=(x−a)2+(lnx−a24)2(a∈R),其几何意义为:两点(x,lnx),(a,a 24)的距离的平方,由y=lnx的导数为yʹ=1x,所以k=1x1,点(a,a24)在曲线y=14x2上,所以yʹ=12x,所以k=12x2,令f(x)=lnx,g(x)=14x2,则D(x)=√(x1−x2)2+[f(x1)−g(x2)]2+g(x2)+1,而g(x2)+1是抛物线y=14x2上的点到准线y=−1的距离,即抛物线y=14x2上的点到焦点(0,1)的距离,则D可以看作抛物线上的点(x2,g(x2))到焦点距离和到f(x)=lnx上的点的距离的和,即∣AF∣+∣AB∣,由两点之间线段最短,得D最小值是点F(0,1)到f(x)=lnx上的点的距离的最小值,由点到直线上垂线段最短,这样就最小,即取B(x0,lnx0),则fʹ(x0)⋅lnx0−1x0=−1,垂直,则 lnx 0−1=−x 02,解得 x 0=1,所以 F 到 B (1,0) 的距离就是点 F (0,1) 到 f (x )=lnx 上的点的距离的最小值, 所以 D 的最小值为 ∣DF ∣=√2.27. D 【解析】定义在 R 上的函数 y =f (x ) 满足:函数 y =f (x +1) 的图象关于直线 x =−1 对称,可知函数 f (x ) 是偶函数, 所以 y =xf (x ) 是奇函数,又因为当 x ∈(−∞,0) 时,f (x )+xfʹ(x )<0 成立(fʹ(x ) 是函数 f (x ) 的导函数),所以函数 y =xf (x ) 在 R 上既是奇函数又是减函数; 0.76∈(0,1),60.6<912∈(2,4),log 1076≈log 1.56∈(4,6).所以 a >c >b .28. A 【解析】由 x 2(lny −lnx )−ay 2=0(x,y >0),可得:a =ln y x (y x)2,令y x=t >0,所以 a =lnt t2,设 g (t )=lnt t2,gʹ(t )=1t×t 2−2tlnt t 4=1−2lnt t 3.令 gʹ(t )>0.解得 0<t <√e ,此时函数 g (t ) 单调递增; 令 gʹ(t )<0.解得 t >√e ,此时函数 g (t ) 单调递减.又t>1时,g(t)>0;1>t>0时,g(t)<0.可得函数g(t)的图象.因此当a∈(0,12e )时,存在两个正数,使得a=lntt2成立,即对任意的正数x,都存在两个不同的正数y,使x2(lny−lnx)−ay2=0成立.29. C 【解析】函数f(x)=x3−6x2+9x,导数为f′(x)=3x2−12x+9=3(x−1)(x−3),可得f(x)的极值点为1,3,由f(0)=0,f(1)=4,f(3)=0,f(4)=4,可得f(x)在[0,4]的值域为[0,4];g(x)=13x3−a+1 2x2+ax−13(a>1),导数为g′(x)=x2−(a+1)x+a=(x−1)(x−a),当1<x<a时,g′(x)<0,g(x)递减;当x<1或x>a时,g′(x)> 0,g(x)递增.由g(0)=−13,g(1)=12(a−1),g(a)=−16a3−12a2−13>−13,g(4)=13−4a,当3≤a≤4时,13−4a≤12(a−1),g(x)在[0,4]的值域为[−13,12(a−1)],由对任意的x1∈[0,4],总存在x2∈[0,4],使得f(x1)=g(x2),可得[0,4]⊆[−13,12(a−1)],即有4≤12(a−1),解得a≥9不成立;当1<a<3时,13−4a>12(a−1),g(x)在[0,4]的值域为[−13,13−4a],由题意可得[0,4]⊆[−13,13−4a],即有4≤13−4a,解得a≤94,即为1<a≤94;当 a >4 时,可得 g (1) 取得最大值,g (4)<−3 为最小值,即有 [0,4]⊆[13−4a,12(a −1)],可得 13−4a ≤0,4≤12(a −1),即 a ≥134,且 a ≥9,解得 a ≥9.综上可得,a 的取值范围是 (1,94]∪[9,+∞).30. A【解析】因为函数 f (2−x )=f (x ) 可得图象关于直线 x =1 对称,且函数为偶函数则其周期为 T =2, 又因为 fʹ(x )=1x −1=1−x x,当 x ∈[1,2] 时有 fʹ(x )≤0,则函数在 x ∈[1,2]为减函数,作出其函数图象如图所示:其中 k OA =ln2−16,k OB =ln2−18,当 x <0 时 , 要使符合题意则 m ∈(ln2−16,ln2−18),根据偶函数的对称性,当 x >0 时,要使符合题意则 m ∈(1−ln28,1−ln26).综上所述,实数 m 的取值范围为 (1−ln28,1−ln26)∪(ln2−16,ln2−18).31. A 【解析】因为 f (x )={e x ,x ≥0ax,x <0,所以 f (−x )={−ax,x >01,x =0e −x ,x <0. 显然 x =0 是方程 f (−x )=f (x ) 的一个根, 当 x >0 时,e x =−ax, ⋯⋯① 当 x <0 时,e −x =ax, ⋯⋯②显然,若 x 0 为方程 ① 的解,则 −x 0 为方程 ② 的解, 即方程 ①,② 含有相同个数的解, 因为方程 f (−x )=f (x ) 有五个不同的根, 所以方程 ① 在 (0,+∞) 上有两解,。

导数压轴大题归类 (解析版)

导数压轴大题归类 (解析版)

导数压轴大题归类目录重难点题型归纳 1【题型一】恒成立求参 1【题型二】三角函数恒成立型求参 4【题型三】同构双变量绝对值型求参 7【题型四】零点型偏移证明不等式 10【题型五】非对称型零点偏移证明不等式 14【题型六】条件型偏移证明不等式 18【题型七】同构型证明不等式 21【题型八】先放缩型证明不等式 24【题型九】放缩参数型消参证明不等式 26【题型十】凸凹翻转型证明不等式 28【题型十一】切线两边夹型证明不等式 30【题型十二】切线放缩型证明不等式 32【题型十三】构造一元二次根与系数关系型证明不等式 35【题型十四】两根差型证明不等式 38【题型十五】比值代换型证明不等式 41【题型十六】幂指对与三角函数型证明不等式 43【题型十七】不等式证明综合型 46好题演练 50一、重难点题型归纳重难点题型归纳题型一恒成立求参【典例分析】1.已知函数f x =x+2aln x(a∈R).(1)讨论f x 的单调性;(2)是否存在a∈Z,使得f x >a+2对∀x>1恒成立?若存在,请求出a的最大值;若不存在,请说明理由.【答案】(1)当a≤0时,f x 在0,+∞上单调递减,在上单调递增;当a>0时,f x 在0,2a2a,+∞上单调递增.(2)不存在满足条件的整数a,理由见解析【分析】(1)构造新函数g x =f x ,分a≤0及a>0两种情况,利用导数研究函数的单调性即可求解;(2)将问题进行转化x ln x-x-ax+2a>0,构造新函数并求导,分a≤0和a>0两种情况分别讨论,利用导数研究函数的单调性及最值,整理求解.(1)因为f x =x +2a ln x x >0 ,所以f x =ln x +1+2ax.记g x =f x =ln x +1+2axx >0 ,则g x =1x -2a x 2=x -2ax 2,当a ≤0时,g x >0,即g x 在0,+∞ 上单调递增;当a >0时,由g x >0,解得x >2a ,即g x 在2a ,+∞ 上单调递增;由g x <0,解得0<x <2a ,即g x 在0,2a 上单调递减.综上所述,当a ≤0时,f x 在0,+∞ 上单调递增;当a >0时,f x 在0,2a 上单调递减,在2a ,+∞ 上单调递增.(2)假设存在a ∈Z ,使得f x >a +2对任意x >1恒成立,即x ln x -x -ax +2a >0对任意x >1恒成立.令h x =x ln x -x -ax +2a x >1 ,则h x =ln x -a ,当a ≤0且a ∈Z 时,h x >0,则h x 在1,+∞ 上单调递增,若h x >0对任意x >1恒成立,则h 1 =a -1≥0,即a ≥1,矛盾,故舍去;当a >0,且a ∈Z 时,由ln x -a >0得x >e a ;由ln x -a <0得1<x <e a ,所以h x 在1,e a 上单调递减,在e a ,+∞ 上单调递增,所以h x min =h e a =2a -e a ,则令h x min =2a -e a >0即可.令G t =2t -e t t >0 ,则G t =2-e t ,当2-e t >0,即t <ln2时,G t 单调递增;当2-e t <0,即t >ln2时,G t 单调递减,所以G t max =G ln2 =2ln2-2<0,所以不存在a >0且a ∈Z ,使得2a -e a >0成立.综上所述,不存在满足条件的整数a .【技法指引】恒成立基本思维:①若k ≥f (x )在[a ,b ]上恒成立,则k ≥f (x )max ;②若k ≤f (x )在[a ,b ]上恒成立,则k ≤f (x )min ;③若k ≥f (x )在[a ,b ]上有解,则k ≥f (x )min ;④若k ≤f (x )在[a ,b ]上有解,则k ≤f (x )max ;【变式演练】1.已知函数f (x )=1+xex ,g (x )=1-ax 2.(1)若函数f (x )和g (x )的图象在x =1处的切线平行,求a 的值;(2)当x ∈[0,1]时,不等式f (x )≤g (x )恒成立,求a 的取值范围.【答案】(1)a =12e (2)-∞,1-2e【分析】(1)分别求出f (x ),g (x )的导数,计算得到f (1)=g (1),求出a 的值即可;(2)问题转化为h x ≤0对任意x ∈[0,1]的恒成立,求导,对参数分类讨论,通过单调性与最值即可得到结果.(1)f (x )=-x ex,f (1)=-1e ,g (x )=-2ax ,g (1)=-2a ,由题意得:-2a =-1e ,解得:a =12e;(2)令h x =f (x )-g (x ),即h x ≤0对任意x ∈[0,1]的恒成立,h x =-xex +2ax ,①a ≤0时,h x ≤0在x ∈[0,1]的恒成立,所以h x 在[0,1]上单调递减. h x max =h 0 =0,满足条件;②a >0时,hx =-x +2axe x e x =x 2ae x -1 e x,令h x =0,得x 1=0,x 2=ln12a(i )当ln 12a ≤0,即a ≥12时,h x ≥0在x ∈[0,1]的恒成立,仅当x =0时h x =0,所以h x 在[0,1]上单调递增.又h 0 =0,所以h x ≥0在[0,1]上恒成立,不满足条件;(ii )当0<ln 12a <1,即12e <a <12时,当x ∈0,ln 12a时,h x <0,h x 上单调递减,当x ∈ln 12a,1 时,h x >0,h x 上单调递增,又h 0 =0,h 1 =2e -1+a ≤0,得a ≤1-2e,于是有12e <a ≤1-2e .(iii )当ln 12a ≥1,即0<a ≤12e时,x ∈[0,1]时,h x ≤0,h x 上单调递减,. 又h 0 =0,所以h x ≤0对任意x ∈[0,1]的恒成立,满足条件综上可得,a 的取值范围为-∞,1-2e题型二三角函数恒成立型求参【典例分析】1.已知函数f (x )=e x +cos x -2,f (x )为f (x )的导数.(1)当x ≥0时,求f (x )的最小值;(2)当x ≥-π2时,xe x +x cos x -ax 2-2x ≥0恒成立,求a 的取值范围.【答案】(1)1(2)(-∞,1]【分析】(1)求导得f ′(x )=e x -sin x ,令g x =e x -sin x ,利用导数分析g (x )的单调性,进而可得f (x )的最小值即可.(2)令h (x )=e x +cos x -ax -2,问题转化为当x ≥-π2时,x ⋅h (x )≥0恒成立,分两种情况:当a ≤1时和当a >1时,判断x e x +cos x -ax -2 ≥0是否成立即可.【详解】(1)由题意,f (x )=e x -sin x ,令g (x )=e x -sin x ,则g (x )=e x -cos x ,当x ≥0时,e x ≥1,cos x ≤1,所以g (x )≥0,从而g (x )在[0,+∞)上单调递增,则g (x )的最小值为g (0)=0,故f (x )的最小值0;(2)由已知得当x ≥-π2时,x e x +cos x -ax -2 ≥0恒成立,令h x =e x+cos x -ax -2,h x =e x -sin x -a ,①当a ≤1时,若x ≥0时,由(1)可知h x ≥1-a ≥0,∴h x 为增函数,∴h x ≥h 0 =0恒成立,∴x ⋅h x ≥0恒成立,即x e x +cos x -ax -2 ≥0恒成立,若x ∈-π2,0 ,令m x =e x -sin x -a 则m x =e x-cos x ,令n x =e x -cos x ,则n x =e x +sin x ,令p x =e x +sin x ,则p x =e x +cos x ,∵在p x 在x ∈-π2,0 内大于零恒成立,∴函数p x 在区间-π2,0 为单调递增,又∵p -π2=e -π2-1<0,p 0 =1,,∴p x 上存在唯一的x 0∈-π2,0 使得p x 0 =0,∴当x ∈-π2,x 0 时,nx <0,此时n x 为减函数,当x ∈x 0,0 时,h x >0,此时n x 为增函数,又∵n -π2=e -π2>0,n 0 =0,∴存在x 1∈-π2,x 0 ,使得n x 1 =0,∴当x ∈-π2,x 1 时,m x >0,m x 为增函数,当x ∈x 1,0 时,mx <0,m x 为减函数,又∵m -π2=e -π2+1-a >0,m 0 =1-a ≥0,∴x ∈-π2,0时,hx >0,则h x 为增函数,∴h x ≤h 0 =0,∴x e x +cos x -ax -2 ≥0恒成立,②当a >1时,m (x )=e x -cos x ≥0在[0,+∞)上恒成立,则m x 在[0,+∞)上为增函数,∵m 0 =1-a <0,m (ln (1+a ))=eln (1+a )-sin (ln (1+a ))-a =1-sin (ln (1+a ))≥0,∴存在唯一的x 2∈0,+∞ 使h x 2 =0,∴当0≤x <x 2时,h (x )<0,从而h (x )在0,x 2 上单调递减,∴h x <h 0 =0,∴x e x +cos x -ax -2 <0,与xe x +x cos x -ax 2-2x ≥0矛盾,综上所述,实数a 的取值范围为(-∞,1].【变式演练】1.已知函数f (x )=2x -sin x .(1)求f (x )的图象在点π2,f π2 处的切线方程;(2)对任意的x ∈0,π2,f (x )≤ax ,求实数a 的取值范围.【答案】(1)2x -y -1=0(2)2-2π,+∞ 【分析】(1)根据导数的几何意义即可求出曲线的切线方程;(2)将原不等式转化为a ≥2-sin x x =h (x )x ∈0,π2,利用二次求导研究函数h (x )的单调性,求出h (x )max 即可.解(1)因为f π2=π-1,所以切点坐标为π2,π-1 ,因为f x =2-cos x ,所以f π2=2,可得所求切线的方程为y -π-1 =2x -π2,即2x -y -1=0.(2)由f x ≤ax ,得2x -sin x ≤ax ,所以a ≥2-sin x x ,其中x ∈0,π2,令h x =2-sin x x ,x ∈0,π2 ,得hx =sin x -cos x x 2,设φx =sin x -x cos x ,x ∈0,π2,则φ x =x sin x >0,所以φx 在0,π2上单调递增,所以φx >φ0 =0,所以h x >0,所以h x 在0,π2上单调递增,h x max =h π2 =2-2πsin π2=2-2π,所以a ≥2-2π,即a 的取值范围为2-2π,+∞ .题型三同构双变量绝对值型求参【典例分析】1.已知函数f x =a ln x +x 2(a 为实常数).(1)当a =-4时,求函数f x 在1,e 上的最大值及相应的x 值;(2)若a >0,且对任意的x 1,x 2∈1,e ,都有f x 1 -f x 2 ≤1x 1-1x 2,求实数a 的取值范围.【答案】(1)当x =e 时,取到最大值e 2-4(2)a ≤1e-2e 2【分析】(1)求导,由导函数判出原函数的单调性,从而求出函数在1,e 上的最大值及相应的x 值;(2)根据单调性对f x 1 -f x 2 ≤1x 1-1x 2转化整理为f x 2 +1x 2≤f x 1 +1x 1,构造新函数h x =f x +1x在1,e 单调递减,借助导数理解并运用参变分离运算求解.解:(1)当a =-4时,则f x =-4ln x +x 2,fx =2x 2-4x(x >0),∵当x ∈1,2 时,f x <0.当x ∈2,e 时,f x >0,∴f x 在1,2 上单调递减,在2,e 上单调递增,又∵f e -f 1 =-4+e 2-1=e 2-5>0,故当x =e 时,取到最大值e 2-4(2)当a >0时,f x 在x ∈1,e 上是增函数,函数y =1x在x ∈1,e 上减函数,不妨设1≤x 1≤x 2≤e ,则f x 1 -f x 2 ≤ 1x 1-1x 2可得f x 2 -f x 1 ≤1x 1-1x 2即f x 2 +1x 2≤f x 1 +1x 1,故原题等价于函数h x =f x +1x 在x ∈1,e 时是减函数,∵h 'x =a x +2x -1x 2≤0恒成立,即a ≤1x -2x 2在x ∈1,e 时恒成立.∵y =1x -2x 2在x ∈1,e 时是减函数∴a ≤1e -2e 2.【变式演练】1.已知f x =x 2+x +a ln x (a ∈R ).(1)讨论f x 的单调性;(2)若a =1,函数g x =x +1-f x ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 恒成立,求实数λ的取值范围.【答案】(1)当a ≥0时,f x 在区间0,+∞ 上单调递增;当a <0时,f x 在区间0,-1+1-8a 4 上单调递减,在区间-1+1-8a4,+∞ 上单调递增.(2)-∞,12ln2+52【分析】(1)先求出f x 的导数fx =2x 2+x +ax,根据a 的取值范围进行分类讨论即可;(2)当x 1x 2>0,时,x 1g x 2 -x 2g x 1 >λx 1-x 2 ⇔g x 2 x 2-g x 1 x 1 >λ1x 2-1x 1,去绝对值后,构造函数求解即可.【详解】(1)由已知,f x =x 2+x +a ln x (a ∈R )的定义域为0,+∞ ,fx =2x +1+a x =2x 2+x +ax,①当a ≥0时,f x >0在区间0,+∞ 上恒成立,f x 在区间0,+∞ 上单调递增;②当a <0时,令f x =0,则2x 2+x +a =0,Δ=1-8a >0,解得x 1=-1-1-8a 4<0(舍),x 2=-1+1-8a4>0,∴当x ∈0,-1+1-8a4时,2x 2+x +a <0,∴f x <0,∴f x 在区间0,-1+1-8a4上单调递减,当x ∈-1+1-8a4,+∞ 时,2x 2+x +a >0,∴f x >0,∴f x 在区间-1+1-8a4,+∞ 上单调递增,综上所述,当a ≥0时,f x 在区间0,+∞ 上单调递增;当a <0时,f x 在区间0,-1+1-8a 4 上单调递减,在区间-1+1-8a4,+∞ 上单调递增.(2)当a =1时,g x =x +1-x 2+x +ln x =-x 2-ln x +1,x ∈0,+∞ ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 等价于x 1g x 2 -x 2g x 1x 1x 2>λx 1-x 2x 1x 2,即g x 2 x 2-g x 1 x 1 >λ1x 2-1x 1,令h x =g x x ,x ∈0,+∞ ,则h x 2 -h x 1 >λ1x 2-1x 1恒成立hx =xg x -g x x 2=x -2x -1x --x 2-ln x +1 x 2=ln x -x 2-2x 2,令F x =ln x -x 2-2,x ∈0,+∞ ,则Fx =1x -2x =1-2x 2x,令F x =0,解得x =22,当x ∈0,22时,Fx >0,F x 在区间0,22 单调递增;当x ∈22,+∞ 时,F x <0,F x 在区间22,+∞ 单调递减,∴当x ∈0,+∞ 时,F x 的最大值为F 22 =ln 22-12-2=-12ln2-52<0,∴当x ∈0,+∞ 时,F x =ln x -x 2-2≤-12ln2-52<0,即hx =ln x -x 2-2x2<0,∴h x =g xx在区间0,+∞ 上单调递减,不妨设x 1<x 2,∴∀x 1,x 2∈(0,+∞),有h x 1 >h x 2 ,又∵y =1x 在区间0,+∞ 上单调递减,∀x 1,x 2∈(0,+∞),且x 1<x 2,有1x 1>1x 2,∴h x 2 -h x 1 >λ1x 2-1x 1等价于h x 1 -h x 2 >λ1x 1-1x 2,∴h x 1 -λx 1>h x 2 -λx 2,设G x =h x -λx,x ∈0,+∞ ,则∀x 1,x 2∈(0,+∞),且x 1<x 2,h x 1 -λx 1>h x 2 -λx 2等价于G x 1 >G x 2 ,即G x 在(0,+∞)上单调递减,∴G x =h x +λx2≤0,∴λ≤-x 2h x ,∴λ≤-x 2⋅ln x -x 2-2x 2=-F x ,∵当x ∈0,+∞ 时,F x 的最大值为F 22 =-12ln2-52,∴-F x 的最小值为12ln2+52,∴λ≤12ln2+52,综上所述,满足题意的实数λ的取值范围是-∞,12ln2+52.题型四零点型偏移证明不等式【典例分析】1.已知函数f x =x ln x ,g x =ax 2+1.(1)求函数f x 的最小值;(2)若不等式x +1 ln x -2x -1 >m 对任意的x ∈1,+∞ 恒成立,求m 的取值范围;(3)若函数f x 的图象与g x 的图象有A x 1,y 1 ,B x 2,y 2 两个不同的交点,证明:x 1x 2>16.(参考数据:ln2≈0.69,ln5≈1.61)【答案】(1)-1e;(2)-∞,0 ;(3)证明见解析.【分析】(1)先求函数f x 的定义域,然后求导,令f (x )>0,可求单调递增区间;令f (x )<0可求单调递减区间.(2)设函数h (x )=(x +1)ln x -2(x -1)(x >1),只需利用二次求导的方法求函数h x 的最小值即可.(3)首先根据题意得出ax 1=ln x 1-1x 1,ax 2=ln x 2-1x 2,从而可构造出ln (x 1x 2)-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x 2x 1;然后根据(2)的结论可得出x 1+x 2x 2-x 1ln x2x 1>2,即得出ln (x 1x 2)-2(x 1+x 2)x 1x 2>2成立;再根据基本不等式得到ln x 1x 2-2x 1x 2>1,从而通过构造函数G (x )=ln x -2x 即可证明结论.解:(1)已知函数f (x )=x ln x 的定义域为0,+∞ ,且f (x )=1+ln x ,令f (x )>0,解得x >1e ;令f (x )<0,解得0<x <1e ,所以函数f x 在0,1e 单调递减,在1e,+∞ 单调递增,所以当x =1e 时,f (x )取得最小值-1e.(2)设函数h (x )=(x +1)ln x -2(x -1)(x >1),则m <h (x )对任意的x ∈1,+∞ 恒成立.h (x )=ln x +1x-1,设函数ϕ(x )=ln x +1x -1(x >1),则ϕ (x )=x -1x 2>0,所以ϕ(x )在1,+∞ 上单调递增,所以ϕ(x )>ϕ(1)=0,即h (x )>0,所以h (x )在1,+∞ 上单调递增,所以h (x )>h (1)=0,所以m 的取值范围是-∞,0 .(3)因为函数f x 的图象与g (x )的图象有A (x 1,y 1),B (x 2,y 2)两个不同的交点,所以关于x 的方程ax 2+1=x ln x ,即ax =ln x -1x有两个不同的实数根x 1,x 2,所以ax 1=ln x 1-1x 1①,ax 2=ln x 2-1x 2②,①+②,得ln (x 1x 2)-x 1+x2x 1x 2=a (x 1+x 2),②-①,得ln x 2x 1+x 2-x1x 1x 2=a (x 2-x 1),消a 得,ln (x 1x 2)-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x2x 1,由(2)得,当m =0时,(x +1)ln x -2(x -1)>0,即x +1x -1ln x >2对任意的x ∈1,+∞ 恒成立.不妨设x 2>x 1>0,则x 2x 1>1,所以x 1+x 2x 2-x 1ln x2x 1=x 2x 1+1x 2x 1-1lnx 2x 1>2,即ln (x 1x 2)-2(x 1+x 2)x 1x 2>2恒成立.因为ln (x 1x 2)-2(x 1+x 2)x 1x 2<ln (x 1x 2)-2×2x 1x 2x 1x 2=2ln x 1x 2-4x 1x 2,所以2ln x1x2-4x1x2>2,即ln x1x2-2x1x2>1.令函数G(x)=ln x-2x,则G(x)在0,+∞上单调递增.又G(4)=ln4-12=2ln2-12≈0.88<1,G(5)=ln5-25≈1.21>1,所以当G(x1x2)>1时,x1x2>4,即x1x2>16,所以原不等式得证.【变式演练】1.已知函数f(x)=12x2+ln x-2x.(1)求函数f(x)的单调区间;(2)设函数g(x)=e x+12x2-(4+a)x+ln x-f(x),若函数y=g(x)有两个不同的零点x1,x2,证明:x1 +x2<2ln(a+2).【答案】(1)f(x)的单调递增区间为(0,+∞),无单调减区间(2)证明见解析【分析】(1)求得函数的导数f (x)=x+1x-2,结合基本不等式求得f (x)≥0恒成立,即可求解;(2)由y=g(x)有两个不同的零点x1,x2,转化为(a+2)=e xx有两个根,设I(x)=e xx,利用导数求得最大值I(1)=e,得到a>e-2,转化为x1-x2ln x1-ln x2=1x1+x2=2ln(a+2)+ln x1x2,不妨设x1>x2,要证x1+x2<2ln(a+2),只需证明x1x2<1,转化为2ln t-t+1t <0恒成立,设h(t)=2ln t-t+1t,结合导数求得函数的单调性,即可求解.【解析】(1)解:由函数f(x)=12x2+ln x-2x定义域为(0,+∞),且f (x)=x+1x-2,因为x+1x≥2x⋅1x=2,当且仅当x=1x时,即x=1时,等号成立,所以f (x)≥0恒成立,所以f x 在(0,+∞)单调递增,故函数f(x)的单调递增区间为(0,+∞),无单调减区间.(2)解:由函数g(x)=e x-(a+2)x,(x>0),因为函数y=g(x)有两个不同的零点x1,x2,所以e x=(a+2)x有两个不同的根,即(a+2)=e xx有两个不同的根,设I(x)=e xx,可得I(x)=e x(x-1)x2,当x∈(0,1)时,I (x)<0;当x∈(1,+∞)时,I (x)>0,所以y=I(x)在(0,1)上单调递减,(1,+∞)上单调递增,当x=1时,函数y=I(x)取得最小值,最小值为I(1)=e,所以a+2>e,即a>e-2,由e x1=(a+2)x1e x2=(a+2)x2,可得x1=ln(a+2)+ln x1x2=ln(a+2)+ln x2,即x1-x2=ln x1-ln x2x1+x2=2ln(a+2)+ln x1x2,所以x1-x2ln x1-ln x2=1x1+x2=2ln(a+2)+ln x1x2 ,不妨设x1>x2,要证x1+x2<2ln(a+2),只需证明x1x2<1即可,即证x1x2<x1-x2ln x1-ln x2,只需证明:lnx1x2<x1x2-x2x1,设x1x2=t(t>1),即证:2ln t-t+1t<0恒成立,设h(t)=2ln t-t+1t,t>1,可得h (t)=2t-1t2-1=-t2+2t-1t2=-(t-1)2t2<0,所以y=h(t)在(1,+∞)上单调递减,所以h(t)<h(1)=0,故x1x2<1恒成立,所以x1+x2<2ln(a+2).题型五非对称型零点偏移证明不等式【典例分析】1.已知函数f x =a ln x-x a∈R.(1)求函数y=f x 的单调区间;(2)若函数y=f x 在其定义域内有两个不同的零点,求实数a的取值范围;(3)若0<x1<x2,且x1ln x1=x2ln x2=a,证明:x1ln x1<2x2-x1.【答案】(1)当a≤0时,函数y=f x 的单调递减区间为0,+∞;当a>0时,函数y=f x 的单调递增区间为0,a,单调递减区间为a,+∞.(2)a>e(3)证明见解析【分析】(1)先求定义域,然后对a进行分类讨论,求解不同情况下的单调区间;(2)在第一问的基础上,讨论实数a的取值,保证函数有两个不同的零点,根据函数单调性及极值列出不等式,求出a>e时满足题意,再证明充分性即可;(3)设x2=tx1,对题干条件变形,构造函数对不等式进行证明.解:(1)函数f x 定义域为0,+∞,∵f x =a ln x-x a∈R,∴f x =ax -1=a-xx①当a≤0时,f x <0在0,+∞上恒成立,即函数y=f x 的单调递减区间为0,+∞;②当a>0时,f x =0,解得x=a,当x∈0,a时,f x >0,∴函数y=f x 的单调递增区间为0,a,当x∈a,+∞时,f x <0,∴函数y=f x 的单调递减区间为a,+∞,综上可知:①当a≤0时,函数y=f x 的单调递减区间为0,+∞;②当a>0时,函数y=f x 的单调递增区间为0,a,单调递减区间为a,+∞;(2)由(1)知,当a≤0时,函数y=f x 在0,+∞上单调递减,∴函数y=f x 至多有一个零点,不符合题意,当a>0时,函数y=f x 在0,a上单调递增,在a,+∞上单调递减,∴f(x)max=f a =a ln a-a,又函数y=f x 有两个零点,∴f a =a ln a-a=a ln a-1>0,∴a>e又f1 =-1<0,∴∃x1∈1,a,使得f x1=0,又f a2=a ln a2-a2=a2ln a-a,设g a =2ln a-a,g a =2a-1=2-aa∵a>e,∴g a <0∴函数g a 在e,+∞上单调递减,∴g a max=g e =2-e<0,∴∃x2∈a,a2,使得f x2=0,综上可知,a>e为所求.(3)依题意,x1,x20<x1<x2是函数y=f x 的两个零点,设x2=tx1,因为x2>x1>0⇒t>1,∵a=x1ln x1=x2ln x2=tx1ln x1+ln t,∴ln x1=ln tt-1,ax1=1ln x1=t-1ln t不等式x1ln x1<2x2-x1⇔x1ln x1<2tx1-x1⇔1ln x1<2t-1⇔t-1ln t<2t-1,∵t>1,所证不等式即2t ln t-ln t-t+1>0设h t =2t ln t-ln t-t+1,∴h t =2ln t+2-1t-1,h t =2t+1t2>0,∴h t 在1,+∞上是增函数,且h t >h 1 =0,所以h t 在1,+∞上是增函数,且h t >h1 =0,即2t ln t-ln t-t+1>0,从而所证不等式成立.【变式演练】1.函数f x =ln x-ax2+1.(1)若a=1,求函数y=f2x-1在x=1处的切线;(2)若函数y=f x 有两个零点x1,x2,且x1<x2,(i)求实数a的取值范围;(ii)证明:x22-x1<-a2+a+1a2.【答案】(1)y=-2x-1;(2)(i)0<a<e2;(ii)证明见解析.【分析】(1)先设g x =f2x-1,再对其求导,根据导数的几何意义,即可求出切线方程;(2)(i)根据题中条件,得到方程ln x+1x2=a有两不等实根,令g x =ln x+1x2,则g x =ln x+1x2的图象与直线y=a有两不同交点,对g x 求导,得到其单调性,结合函数值的取值情况,即可得出结果;(ii)先由题中条件,得到ln x2-ln x1x2-x1=a x2+x1,令h t =ln t-2t-1t+1,t>1,证明ln t>2t-1t+1对任意的t>1恒成立;得出ln x2-ln x1x2-x1>2x2+x1;进一步推出x2+x1>2e;得到x22-x1<x22+x2-1,因此只需证明x22+x2≤1a2+1a即可,即证x2≤1a,即证f x2≥f1a,即证0≥f1a ,即证ln 1a≤1a-1成立;构造函数证明ln1a≤1a-1成立即可.【详解】(1)设g x =f2x-1=ln2x-1-2x-12+1,∴g x =22x-1-42x-1,∴g 1 =-2,且g1 =0,∴切线方程:y=-2x-1.(2)(i)由f x =ln x-ax2+1可得定义域为0,+∞,因为函数y=f x 有两个零点x1,x2,且x1<x2,所以方程ln x-ax2+1=0有两不等实根,即方程ln x+1x2=a有两不等实根,令g x =ln x+1x2,则g x =ln x+1x2的图象与直线y=a有两不同交点,因为g x =1x⋅x2-ln x+1⋅2xx4=-1-2ln xx3,由g x >0得0<x<e-12;由g x <0得x>e-12,所以g x =ln x+1x2在0,e-12上单调递增,在e-12,+∞上单调递减;因此g x max=g e-1 2=-12+1e-1=e2,又当0<x<1e时,ln x+1<0,即g x =ln x+1x2<0;当x>1e时,ln x+1>0,即g x =ln x+1x2>0,所以为使g x =ln x+1x2的图象与直线y=a有两不同交点,只需0<a<e2;即实数a的取值范围为0<a<e 2;(ii)由(i)可知,x1与x2是方程ln x-ax2+1=0的两根,则ln x1-ax12+1=0ln x2-ax22+1=0,两式作差可得ln x2-ln x1=a x22-x12,因为0<x 1<x 2,所以x 2x 1>1,则ln x 2-ln x 1x 2-x 1=a x 2+x 1 ;令h t =ln t -2t -1 t +1=ln t +4t +1-2,t >1,则ht =1t -4t +1 2=t -1 2t t +1 2>0对任意的t >1恒成立,所以h t 在t ∈1,+∞ 上单调递增,因此h t >h 1 =0,即ln t >2t -1t +1对任意的t >1恒成立;令t =x 2x 1,则ln x 2x 1>2x2x 1-1 x 2x 1+1=2x 2-x 1 x 2+x 1,所以ln x 2-ln x 1x 2-x 1>2x 2+x 1,因此a x 2+x 1 =ln x 2-ln x 1x 2-x 1>2x 2+x 1,所以x 2+x 1 2>2a >4e ,则x 2+x 1>2e ;∴x 22-x 1<x 22+x 2-2e<x 22+x 2-1,因此,要证x 22-x 1<-a 2+a +1a 2=1a 2+1a -1,只需证x 22+x 2≤1a2+1a ,因为二次函数y =x 2+x 在0,+∞ 单调递增,因此只需证x 2≤1a ,即证f x 2 ≥f 1a,即证0≥f 1a ,即证ln 1a ≤1a -1成立;令u (x )=ln x -x +1,x >0,则u (x )=1x -1=1-xx,当x ∈0,1 时,u (x )>0,即u (x )单调递增;当x ∈1,+∞ 时,u (x )<0,即u (x )单调递减;所以u (x )≤u (1)=0,所以ln x ≤x -1,因此ln 1a ≤1a -1,所以结论得证.题型六条件型偏移证明不等式【典例分析】1.已知函数f x =ln x +axx,a ∈R .(1)若a =0,求f x 的最大值;(2)若0<a <1,求证:f x 有且只有一个零点;(3)设0<m <n 且m n =n m ,求证:m +n >2e.【答案】(1)1e(2)证明见解析(3)证明见解析【分析】(1)由a =0,得到f x =ln x x ,求导f x =1-ln xx 2,然后得到函数的单调性求解;(2)求导fx =1x +a x -ln x -ax x 2=1-ln x x 2,结合(1)的结论,根据0<a <1,分x >e ,0<x <e ,利用零点存在定理证明;(3)根据m n =n m 等价于ln m m =ln n n ,由(1)知f x =ln xx的单调性,得到0<m <e <n ,令g x =2e -x ln x -x ln 2e -x ,0<x <e ,用导数法得到g x 在0,e 上单调递增,则ln xx<ln 2e -x 2e -x ,0<x <e ,再结合0<m <e <n 且ln m m =ln nn ,利用f x 在e ,+∞ 上单调递减求解.(1)解:由题知:若a =0,f x =ln xx,其定义域为0,+∞ ,所以f x =1-ln xx2,由fx =0,得x =e ,所以当0<x <e 时,f x >0;当x >e 时,f x <0,所以f x 在0,e 上单调递增,在e ,+∞ 上单调递减,所以f x max =f e =1e;(2)由题知:f x =1x +a x -ln x -axx 2=1-ln xx 2,由(1)知,f x 在0,e 上单调递增,在e ,+∞ 上单调递减,因为0<a <1,当x >e 时,f x =ln x +ax x =a +ln xx>a >0,则f x 在e ,+∞ 无零点,当0<x <e 时,f x =ln x +ax x =a +ln xx,又因为f 1e =a -e <0且f e =a +1e>0,所以f x 在0,e 上有且只有一个零点,所以,f x 有且只有一个零点.(3)因为m n =n m 等价于ln m m =ln nn,由(1)知:若a =0,f x =ln xx,且f x 在0,e 上单调递增,在e ,+∞ 上单调递减,且0<m <n ,所以0<m <e ,n >e ,即0<m <e <n ,令g x =2e -x ln x -x ln 2e -x ,0<x <e ,所以g x =-ln x +2e -x x -ln 2e -x +x2e -x ,=-ln x 2e -x +2e -x x +x2e -x ,=-ln x -e 2+e 2 +2e -x x +x2e -x>-ln e 2+2=0,所以g x 在0,e 上单调递增,g x <g e =0,所以ln x x <ln 2e -x 2e -x,0<x <e ,又因为0<m <e <n 且ln m m =ln nn ,所以ln n n =ln mm <ln 2e -m 2e -m ,又因为n >e ,2e -m >e ,且f x 在e ,+∞ 上单调递减,所以n >2e -m ,即m +n >2e.【变式演练】1.已知函数f x =2ln x +x 2+a -1 x -a ,(a ∈R ),当x ≥1时,f (x )≥0恒成立.(1)求实数a 的取值范围;(2)若正实数x 1、x 2(x 1≠x 2)满足f (x 1)+f (x 2)=0,证明:x 1+x 2>2.【答案】(1)-3,+∞ ;(2)证明见解析.【分析】(1)根据题意,求出导函数f x ,分类讨论当a ≥-3和a <-3两种情况,利用导数研究函数的单调性,结合x ≥1时,f (x )≥0恒成立,从而得出实数a 的取值范围;(2)不妨设x 1<x 2,由f (x 1)+f (x 2)=0得出f (x 2)=-f (x 1),从而可知只要证明-f (x 1)>f (2-x 1)⇔f (x 1)+f (2-x 1)<0,构造新函数g (x )=f (x )+f (2-x ),求出g(x )=4(x -1)3x (x -2),利用导数研究函数的单调性得出g (x )在区间(0,1)上单调增函数,进而可知当0<x <1时,g (x )<0成立,即f (x )+f (2-x )<0,从而即可证明x 1+x 2>2.(1)解:根据题意,可知f x 的定义域为0,+∞ ,而f (x )=2x+2x +(a -1),当a ≥-3时,f (x )=2x+2x +(a -1)≥a +3≥0,f 1 =0,∴f (x )为单调递增函数,∴当x ≥1时,f (x )≥0成立;当a <-3时,存在大于1的实数m ,使得f (m )=0,∴当1<x <m 时,f (x )<0成立,∴f (x )在区间(1,m )上单调递减,∴当1<x <m 时,f (x )<f 1 =0;∴a <-3不可能成立,所以a ≥-3,即a 的取值范围为-3,+∞ .(2)证明:不妨设x 1<x 2,∵正实数x 1、x 2满足f (x 1)+f (x 2)=0,有(1)可知,0<x 1<1<x 2,又∵f (x )为单调递增函数,所以x 1+x 2>2⇔x 2>2-x 1⇔f (x 2)>f (2-x 1),又∵f (x 1)+f (x 2)=0⇔f (x 2)=-f (x 1),所以只要证明:-f (x 1)>f (2-x 1)⇔f (x 1)+f (2-x 1)<0,设g (x )=f (x )+f (2-x ),则g (x )=2[ln x +ln (2-x )+x 2-2x +1],可得g(x )=4(x -1)3x (x -2),∴当0<x <1时,g (x )>0成立,∴g (x )在区间(0,1)上单调增函数,又∵g 1 =0,∴当0<x <1时,g (x )<0成立,即f (x )+f (2-x )<0,所以不等式f (x 1)+f (2-x 1)<0成立,所以x 1+x 2>2.题型七同构型证明不等式【典例分析】1.材料:在现行的数学分析教材中,对“初等函数”给出了确切的定义,即由常数和基本初等函数经过有限次的四则运算及有限次的复合步骤所构成的,且能用一个式子表示的.如函数f x =x x x >0 ,我们可以作变形:f x =x x =e ln x x =e x ⋅ln x =e t t =x ln x ,所以f x 可看作是由函数f t=e t 和g x =x ln x 复合而成的,即f x =x x x >0 为初等函数,根据以上材料:(1)直接写出初等函数f x =x x x >0 极值点(2)对于初等函数h x =x x 2x >0 ,有且仅有两个不相等实数x 1,x 20<x 1<x 2 满足:h x 1 =h x 2 =e k .(i )求k 的取值范围.(ii )求证:x e 2-2e 2≤e-e 2x 1(注:题中e 为自然对数的底数,即e =2.71828⋯)【答案】(1)极小值点为x =1e ,无极大值点(2)(i )k ∈-12e,0 ;(ii )证明见解析【分析】(1)根据材料中的信息可求得极小值点为x =1e;(2)(i )将问题转化为求函数的最小值问题,同时要注意考查边界;(ii )通过换元,将问题转化为求函数的最值问题,从而获得证明.解:(1)极小值点为x =1e,无极大值点.(2)由题意得:x x 211=x x 222=e k 即x 21ln x 1=x 22ln x 2=k .(i )问题转化为m x =x 2ln x -k 在0,+∞ 内有两个零点.则m x =x 1+2ln x 当x ∈0,e-12时,mx <0,m x 单调递减;当x ∈e -12,+∞ 时,m x >0,m x 单调递增.若m x 有两个零点,则必有m e -12<0.解得:k >-12e若k ≥0,当0<x <e-12时,m x =x 2ln x -k ≤x 2ln x <0,无法保证m x 有两个零点.若-12e<k <0,又m e 1k>0,m e -12 <0,m 1 =-k >0故∃x 1∈e 1k ,e-12使得m x 1 =0,∃x 2∈e -12,1 使得m x 2 =0.综上:k ∈-12e ,0(ii )设t =x 2x 1,则t ∈1,+∞ .将t =x 2x 1代入x 21ln x 1=x 22ln x 2可得:ln x 1=t 2ln t 1-t 2,ln x 2=ln t 1-t 2(*)欲证:x e 2-2e2≤e -e 2x 1,需证:ln x e 2-2e2≤ln e -e 2x 1即证:ln x 1+e 2-2e ln x 2≤-e 2.将(*)代入,则有t 2+e 2-2e ln t 1-t 2≤-e2则只需证明:x +e 2-2e ln x1-x ≤-e x >1 即ln x ≥e x -1 x +e 2-2ex >1 .构造函数φx =x -1ln x -x e -e +2,则φ x =ln x -x -1xln 2x -1e ,φ x =x +1 2x -1 x +1-ln xx 2ln 3xx >1 (其中φ x 为φx 的导函数)令ωx =2x -1 x +1-ln x x >1 则ωx =-x -1 2x x +1 2<0所以ωx <ω1 =0则φ x <0.因此φ x 在1,+∞ 内单调递减.又φ e =0,当x ∈1,e 时,φ x >0,φx 单调递增;当x ∈e ,+∞ 时,φ x <0,φx 单调递减.所以φx =x -1ln x -x e -e +2≤φe =0,因此有x -1ln x -xe ≤e -2即ln x ≥e x -1x +e 2-2ex >1 .综上所述,命题得证.【变式演练】1.已知函数f x =e ax x ,g x =ln x +2x +1x,其中a ∈R .(1)试讨论函数f x 的单调性;(2)若a =2,证明:xf (x )≥g (x ).【答案】(1)答案见解析;(2)证明见解析.【分析】(1)f x 的定义域为(-∞,0)∪(0,+∞),求出f x ,分别讨论a >0,a =0,a <0时不等式f x >0和fx <0的解集即可得单调递增区间和单调递减区间,即可求解;(2)g x 的定义域为0,+∞ ,不等式等价于xe 2x ≥ln x +2x +1,e ln x +2x ≥ln x +2x +1,令t =ln x +2x ∈R ,只需证e t ≥t +1,令h t =e t -t -1,利用导数判断单调性和最值即可求证.解:(1)f x 的定义域为(-∞,0)∪(0,+∞),由f x =e ax x 可得:f x =ae ax ⋅x -e ax ⋅1x 2=e ax (ax -1)x 2,当a >0时,令f x >0,解得x >1a ;令f x <0,解得x <0或0<x <1a;此时f x 在1a ,+∞上单调递增,在-∞,0 和0,1a上单调递减:当a =0时,f (x )=1x,此时f x 在(-∞,0)和(0,+∞)上单调递减;当a <0时,令f x >0,解得x <1a ,令f x <0,解得1a<x <0或x >0,此时f x 在-∞,1a 上单调递增,在1a,0 和(0,+∞)上单调递减:综上所述:当a >0时,f x 在1a ,+∞ 上单调递增,在(-∞,0)和0,1a上单调递减;当a =0时,f x 在(-∞,0)和(0,+∞)上单调递减;当a <0时,f x 在-∞,1a 上单调递增,在1a ,0 和(0,+∞)上单调递减.(2)因为a =2,g x =ln x +2x +1x的定义域为0,+∞ ,所以xf (x )≥g (x )即xe 2x ≥ln x +2x +1,即证:e ln x ⋅e 2x =e ln x +2x≥ln x +2x +1,令t =ln x +2x ∈R ,只需证e t ≥t +1,令h t =e t -t -1,则h t =e t-1,令h t >0,解得:t >0;h t <0,解得t <0;所以h t 在(-∞,0)上单调递减,在(0,+∞)上单调递增;所以h t ≥h 0 =e 0-0-1=0,所以e t ≥t +1,所以e ln x +2x ≥ln x +2x +1,即xf (x )≥g (x )成立.题型八先放缩型证明不等式【典例分析】1.设函数f x =a ln x +1x-1a ∈R .(1)求函数f x 的单调区间;(2)当x ∈0,1 时,证明:x 2+x -1x-1<e x ln x .【答案】(1)答案不唯一,具体见解析;(2)证明见解析.【分析】(1)求得f x =ax -1x2,分a ≤0、a >0两种情况讨论,分析导数f x 在0,+∞ 上的符号变化,由此可得出函数f x 的增区间和减区间;(2)由(1)可得出ln x >1-1x,要证原不等式成立,先证e x <x +1 2对任意的x ∈0,1 恒成立,构造函数h x =e x -x +1 2,利用导数分析函数h x 在0,1 上的单调性,由此可证得e x <x +1 2对任意的x ∈0,1 恒成立,即可证得原不等式成立.(1)解:f x 的定义域为0,+∞ ,则f x =a x -1x 2=ax -1x2,当a ≤0时,fx ≤0在0,+∞ 恒成立,则函数f x 的单调减区间为0,+∞ ,没有增区间:当a >0时,当x ∈0,1a 时,f x <0;当x ∈1a ,+∞ 时,f x >0.则函数f x 的单调减区间为0,1a,单调增区间为1a ,+∞ .综上所述,当a ≤0时,函数f x 的单调减区间为0,+∞ ,没有增区间:当a >0时,函数f x 的单调减区间为0,1a ,单调增区间为1a,+∞ .(2)证明:由(1)可知当a =1时,f x 的单调减区间为0,1 ,单调增区间为1,+∞ ;当x =1时,f x 取极小值f 1 =0,所以f x ≥f 1 =0,当x ∈0,1 时,即有ln x +1x -1>0,所以ln x >1-1x,所以要证x 2+x -1x -1<e x ln x ,只需证x 2+x -1x -1<e x 1-1x ,整理得e x ⋅x -1x>x +1 2x -1x,又因为x ∈0,1 ,所以只需证e x <x +1 2,令h x =e x -x +1 2,则h x =e x -2x +1 ,令H x =h x =e x -2x +1 ,则H x =e x -2,令H x =e x -2=0,得x =ln2,当0<x <ln2时,H x <0,H x 单调递减,当ln2<x <1时,H x >0,H x 单调递增,所以H x min =H ln2 =e ln2-2ln2+1 =-2ln2<0,又H 0 =e 0-2=-1<0,H 1 =e -4<0,所以在x ∈0,1 时,H x =h x <0恒成立,所以h x 在0,1 上单调递减,所以h x <h 0 =0,即h x =e x -x +1 2<0,即e x <x +1 2成立,即得证.【变式演练】1.已知函数f x =ae x -2-ln x +ln a .(1)若曲线y =f x 在点2,f 2 处的切线方程为y =32x -1,求a 的值;(2)若a ≥e ,证明:f x ≥2.【答案】(1)a =2(2)证明见解析【分析】(1)由f 2 =32,可得a 的值,再验证切点坐标也满足条件;(2)由a ≥e ,e x -2>0知要证f x =ae x -2-ln x +ln a ≥2也即证e x -1-ln x -1≥0,设g x =e x -1-ln x -1,求出导数分析其单调性,得出其最值可证明.解:(1)f x =ae x -2-1x ,则f 2 =ae 2-2-12=a -12=32,解得a =2又f 2 =32×2-1=2,f 2 =ae 2-2-ln2+ln a =2,可得a =2综上a =2(2)由a ≥e ,e x -2>0知要证f x =ae x -2-ln x +ln a ≥2即证e ⋅e x -2-ln x +ln e =e x -1-ln x +1≥2也即证e x -1-ln x -1≥0。

导数大题压轴题难点

导数大题压轴题难点

取值 范围.
14. 设函数 f (x) emx x 2 mx .
(Ⅰ)证明: f (x) 在 (, 0) 单调递减,在 (0, ) 单调递增;
(Ⅱ)若对于任意 x1, x2 [1,1] ,都有 f (x1) f (x2 ) e 1,求 m 的取值范围.
15.已知函数
f
(x)
ln(x
1)

ax x 1
6.设 f (x) a x ln x , g(x) x3 x2 3 . x
(Ⅰ)当 a 2 时,求曲线 y f (x) 在 x 1 处的切线方程;
(Ⅱ)若存在 x1, x2 [0, 2] ,使 g(x1) g(x2 ) M 成立,求满足上述条件的最大整数 M ; (Ⅲ)如果对任意的 s,t [ 1 , 2] ,都有 f (s) g(t) 成立,求实数 a 的取值范围.
x, a
R

(Ⅰ)当 a 0 时,求函数 f (x) 的单调区间;
(Ⅱ)若存在 x 0 ,使 f (x) x 1 x (a Z ) 成立,求 a 的最小值. x 1
16.设函数 f (x) 1 ex.
(Ⅰ)证明:当 x 1时, f (x) x ; x 1
(Ⅱ)当 x 0时, f (x) x 恒成立,求 a 的取值范围. ax 1
f
(
x)
m
x
对所有的
a
0,
3 2
,
x
1, e 2 都成立,求实数
m 的取值范围.
11.已知函数 f (x) ln( 1 1 ax) x 2 ax ( a 为常数, a 0 ). 22
(Ⅰ)若 x 1 是函数 f (x) 的一个极值点,求 a 的值; 2
(Ⅱ)求证:当

2017-2019年高考真题导数压轴题全集(含详细解析)

2017-2019年高考真题导数压轴题全集(含详细解析)

2017-2019年高考真题导数压轴题全集(含详细解析)1.(2019•全国)已知函数2())f x x ax -. (1)当1a =时,求()f x 的单调区间;(2)若()f x 在区间[0,2]的最小值为23-,求a .2.(2019•新课标Ⅲ)已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性;(2)是否存在a ,b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出a ,b 的所有值;若不存在,说明理由.3.(2019•新课标Ⅲ)已知函数32()22f x x ax =-+. (1)讨论()f x 的单调性;(2)当03a <<时,记()f x 在区间[0,1]的最大值为M ,最小值为m ,求M m -的取值范围.4.(2019•浙江)已知实数0a ≠,设函数()f x alnx =0x >. (Ⅰ)当34a =-时,求函数()f x 的单调区间;(Ⅱ)对任意21[x e ∈,)+∞均有()f x …,求a 的取值范围. 注: 2.71828e =⋯为自然对数的底数.5.(2019•新课标Ⅱ)已知函数()(1)1f x x lnx x =---.证明: (1)()f x 存在唯一的极值点;(2)()0f x =有且仅有两个实根,且两个实根互为倒数.6.(2019•江苏)设函数()()()()f x x a x b x c =---,a ,b ,c R ∈,()f x '为()f x 的导函数. (1)若a b c ==,f (4)8=,求a 的值;(2)若a b ≠,b c =,且()f x 和()f x '的零点均在集合{3-,1,3}中,求()f x 的极小值; (3)若0a =,01b <…,1c =,且()f x 的极大值为M ,求证:427M …. 7.(2019•天津)设函数()(1)x f x lnx a x e =--,其中a R ∈. (Ⅰ)若0a …,讨论()f x 的单调性; (Ⅱ)若10a e<<,()i 证明()f x 恰有两个零点;()ii 设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明0132x x ->.8.(2019•天津)设函数()cos x f x e x =,()g x 为()f x 的导函数. (Ⅰ)求()f x 的单调区间; (Ⅱ)当[4x π∈,]2π时,证明()()()02f xg x x π+-…; (Ⅲ)设n x 为函数()()1u x f x =-在区间(24n ππ+,2)2n ππ+内的零点,其中n N ∈,证明20022sin cos n n e n x x x πππ-+-<-.9.(2019•新课标Ⅰ)已知函数()2sin cos f x x x x x =--,()f x '为()f x 的导数. (1)证明:()f x '在区间(0,)π存在唯一零点; (2)若[0x ∈,]π时,()f x ax …,求a 的取值范围. 10.(2019•新课标Ⅱ)已知函数1()1x f x lnx x +=--. (1)讨论()f x 的单调性,并证明()f x 有且仅有两个零点;(2)设0x 是()f x 的一个零点,证明曲线y lnx =在点0(A x ,0)lnx 处的切线也是曲线x y e =的切线.11.(2019•北京)已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2x ∈-,4]时,求证:6()x f x x -剟;(Ⅲ)设()|()()|()F x f x x a a R =-+∈,记()F x 在区间[2-,4]上的最大值为M (a ).当M (a )最小时,求a 的值.12.(2019•新课标Ⅰ)已知函数()sin (1)f x x ln x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.13.(2018•北京)设函数2()[(41)43]x f x ax a x a e =-+++.(Ⅰ)若曲线()y f x =在点(1,f (1))处的切线与x 轴平行,求a ; (Ⅱ)若()f x 在2x =处取得极小值,求a 的取值范围. 14.(2018•北京)设函数2()[(31)32]x f x ax a x a e =-+++.(Ⅰ)若曲线()y f x =在点(2,f (2))处的切线斜率为0,求a ; (Ⅱ)若()f x 在1x =处取得极小值,求a 的取值范围.15.(2018•新课标Ⅲ)已知函数2()(2)(1)2f x x ax ln x x =+++-. (1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a .16.(2018•新课标Ⅰ)已知函数()1x f x ae lnx =--.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间; (2)证明:当1a e…时,()0f x ….17.(2018•新课标Ⅲ)已知函数21()xax x f x e +-=.(1)求曲线()y f x =在点(0,1)-处的切线方程; (2)证明:当1a …时,()0f x e +….18.(2018•新课标Ⅱ)已知函数2()x f x e ax =-. (1)若1a =,证明:当0x …时,()1f x …; (2)若()f x 在(0,)+∞只有一个零点,求a .19.(2018•浙江)已知函数()f x lnx .(Ⅰ)若()f x 在1x x =,212()x x x ≠处导数相等,证明:12()()882f x f x ln +>-;(Ⅱ)若342a ln -…,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点. 20.(2018•天津)已知函数()x f x a =,()log a g x x =,其中1a >. (Ⅰ)求函数()()h x f x xlna =-的单调区间;(Ⅱ)若曲线()y f x =在点1(x ,1())f x 处的切线与曲线()y g x =在点2(x ,2())g x 处的切线平行,证明122()lnlnax g x lna+=-; (Ⅲ)证明当1ea e …时,存在直线l ,使l 是曲线()y f x =的切线,也是曲线()y g x =的切线. 21.(2018•江苏)记()f x ',()g x '分别为函数()f x ,()g x 的导函数.若存在0x R ∈,满足00()()f x g x =且00()()f x g x '=',则称0x 为函数()f x 与()g x 的一个“S 点”. (1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()g x lnx =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,()xbe g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由. 22.(2018•新课标Ⅱ)已知函数321()(1)3f x x a x x =-++.(1)若3a =,求()f x 的单调区间; (2)证明:()f x 只有一个零点. 23.(2018•新课标Ⅰ)已知函数1()f x x alnx x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点1x ,2x ,证明:1212()()2f x f x a x x -<--.24.(2017•全国)已知函数32()3(1)12f x ax a x x =-++. (1)当0a >时,求()f x 的极小值;(Ⅱ)当0a …时,讨论方程()0f x =实根的个数. 25.(2017•新课标Ⅰ)已知函数2()()x x f x e e a a x =--. (1)讨论()f x 的单调性; (2)若()0f x …,求a 的取值范围.26.(2017•天津)设a Z ∈,已知定义在R 上的函数432()2336f x x x x x a =+--+在区间(1,2)内有一个零点0x ,()g x 为()f x 的导函数. (Ⅰ)求()g x 的单调区间;(Ⅱ)设[1m ∈,00)(x x ⋃,2],函数0()()()()h x g x m x f m =--,求证:0()()0h m h x <; (Ⅲ)求证:存在大于0的常数A ,使得对于任意的正整数p ,q ,且[1pq∈,00)(x x ⋃,2],满足041||p x q Aq-…. 27.(2017•新课标Ⅱ)设函数2()(1)x f x x e =-. (1)讨论()f x 的单调性;(2)当0x …时,()1f x ax +…,求a 的取值范围. 28.(2017•山东)已知函数2()2cos f x x x =+,()(cos sin 22)x g x e x x x =-+-,其中2.71828e ≈⋯是自然对数的底数.(Ⅰ)求曲线()y f x =在点(π,())f π处的切线方程;(Ⅱ)令()h x g =()x a -()()f x a R ∈,讨论()h x 的单调性并判断有无极值,有极值时求出极值.29.(2017•天津)设a ,b R ∈,||1a ….已知函数32()63(4)f x x x a a x b =---+,()()x g x e f x =. (Ⅰ)求()f x 的单调区间;(Ⅱ)已知函数()y g x =和x y e =的图象在公共点0(x ,0)y 处有相同的切线, ()i 求证:()f x 在0x x =处的导数等于0;()ii 若关于x 的不等式()x g x e …在区间0[1x -,01]x +上恒成立,求b 的取值范围.30.(2017•江苏)已知函数32()1(0,)f x x ax bx a b R =+++>∈有极值,且导函数()f x '的极值点是()f x 的零点.(Ⅰ)求b 关于a 的函数关系式,并写出定义域; (Ⅱ)证明:23b a >;(Ⅲ)若()f x ,()f x '这两个函数的所有极值之和不小于72-,求实数a 的取值范围.31.(2017•北京)已知函数()cos x f x e x x =-. (1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)求函数()f x 在区间[0,]2π上的最大值和最小值.32.(2017•新课标Ⅱ)已知函数2()f x ax ax xlnx =--,且()0f x …. (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2e f x --<<.33.(2017•浙江)已知函数1()(()2x f x x e x -=….(1)求()f x 的导函数;(2)求()f x 在区间1[2,)+∞上的取值范围.34.(2017•新课标Ⅲ)已知函数2()(21)f x lnx ax a x =+++. (1)讨论()f x 的单调性; (2)当0a <时,证明3()24f x a--…. 35.(2017•新课标Ⅰ)已知函数2()(2)x x f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 36.(2017•新课标Ⅲ)已知函数()1f x x alnx =--. (1)若()0f x …,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222n m ++⋯+<,求m 的最小值.37.(2017•山东)已知函数3211()32f x x ax =-,a R ∈,(1)当2a =时,求曲线()y f x =在点(3,f (3))处的切线方程;(2)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.38.(2016•山东)设2()(21)f x xlnx ax a x =-+-,a R ∈. (1)令()()g x f x =',求()g x 的单调区间;(2)已知()f x 在1x =处取得极大值,求正实数a 的取值范围. 39.(2016•天津)设函数3()f x x ax b =--,x R ∈,其中a ,b R ∈. (1)求()f x 的单调区间;(2)若()f x 存在极值点0x ,且10()()f x f x =,其中10x x ≠,求证:1020x x +=; (3)设0a >,函数()|()|g x f x =,求证:()g x 在区间[1-,1]上的最大值不小于14. 40.(2016•新课标Ⅲ)设函数()1f x lnx x =-+. (1)讨论()f x 的单调性; (2)证明当(1,)x ∈+∞时,11x x lnx-<<; (3)设1c >,证明当(0,1)x ∈时,1(1)x c x c +->. 41.(2016•北京)设函数32()f x x ax bx c =+++. (1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)设4a b ==,若函数()f x 有三个不同零点,求c 的取值范围; (3)求证:230a b ->是()f x 有三个不同零点的必要而不充分条件.42.(2016•新课标Ⅲ)设函数()cos2(1)(cos 1)f x a x a x =+-+,其中0a >,记|()|f x 的最大值为A .(Ⅰ)求()f x '; (Ⅱ)求A ;(Ⅲ)证明:|()|2f x A '….43.(2016•山东)已知221()()x f x a x lnx x -=-+,a R ∈. ()I 讨论()f x 的单调性;()II 当1a =时,证明3()()2f x f x >'+对于任意的[1x ∈,2]成立. 44.(2016•四川)设函数2()f x ax a lnx =--,1()x eg x x e=-,其中a R ∈, 2.718e ⋯=为自然对数的底数. (1)讨论()f x 的单调性; (2)证明:当1x >时,()0g x >;(3)确定a 的所有可能取值,使得()()f x g x >在区间(1,)+∞内恒成立. 45.(2016•江苏)已知函数()(0x x f x a b a =+>,0b >,1a ≠,1)b ≠. (1)设2a =,12b =. ①求方程()2f x =的根;②若对于任意x R ∈,不等式(2)()6f x mf x -…恒成立,求实数m 的最大值; (2)若01a <<,1b >,函数()()2g x f x =-有且只有1个零点,求ab 的值. 46.(2016•新课标Ⅱ)已知函数()(1)(1)f x x lnx a x =+--. (Ⅰ)当4a =时,求曲线()y f x =在(1,f (1))处的切线方程; (Ⅱ)若当(1,)x ∈+∞时,()0f x >,求a 的取值范围. 47.(2016•新课标Ⅱ)(Ⅰ)讨论函数2()2xx f x e x -=+的单调性,并证明当0x >时,(2)20x x e x -++>;(Ⅱ)证明:当[0a ∈,1)时,函数2()(0)x e ax a g x x x--=>有最小值.设()g x 的最小值为h (a ),求函数h (a )的值域.48.(2016•北京)设函数()a x f x xe bx -=+,曲线()y f x =在点(2,f (2))处的切线方程为(1)4y e x =-+, (Ⅰ)求a ,b 的值;(Ⅱ)求()f x 的单调区间.49.(2016•新课标Ⅰ)已知函数2()(2)(1)x f x x e a x =-+-有两个零点. (Ⅰ)求a 的取值范围;(Ⅱ)设1x ,2x 是()f x 的两个零点,证明:122x x +<. 50.(2016•新课标Ⅰ)已知函数2()(2)(1)x f x x e a x =-+-. (Ⅰ)讨论()f x 的单调性;(Ⅱ)若()f x 有两个零点,求a 的取值范围.2017-2019年高考真题导数压轴题全集(含详细解析)参考答案与试题解析一.解答题(共50小题)1.(2019•全国)已知函数2())f x x ax -. (1)当1a =时,求()f x 的单调区间;(2)若()f x 在区间[0,2]的最小值为23-,求a .【解答】解:(1)当1a =时,2())f x x x =-, 则5322()(0)f x x x x '=-…,令()0f x '=,则35x =, ∴当305x <<时,()0f x '<;当35x >时,()0f x '>. ()f x ∴的单调递减区间为3(0,)5,单调递增区间为3(,)5+∞;(2)312253()(02)22f x x ax x '=-剟,令()0f x '=,则35a x =, 当0a …时,()0f x '>,()f x ∴在[0,2]上单调递增,∴2()(0)03min f x f ==≠-,不符合条件; 当1003a <…时,3025a <…,则当305a x <<时,()0f x '<;当325ax <<时,()0f x >,()f x ∴在3(0,)5a 上单调递减,在3(,2)5a上单调递增,∴53223332()()()()5553min a a a f x f a ==-=-,53a ∴=,符合条件;当103a >时,1023>,则当02x <<时,()0f x '<,()f x ∴在(0,2)上单调递减,∴2()(2)2)3min f x f a ==-=-,2a ∴=,不符合条件.()f x ∴在区间[0,2]的最小值为23-,a 的值为53.2.(2019•新课标Ⅲ)已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性;(2)是否存在a ,b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出a ,b 的所有值;若不存在,说明理由.【解答】解:(1)2()626()3af x x ax x x '=-=-.令()6()03a f x x x '=-=,解得0x =,或3a.①0a =时,2()60f x x '=…,函数()f x 在R 上单调递增. ②0a >时,函数()f x 在(,0)-∞,(3a,)+∞上单调递增,在(0,)3a 上单调递减.③0a <时,函数()f x 在(,)3a -∞,(0,)+∞上单调递增,在(3a,0)上单调递减.(2)由(1)可得:①0a …时,函数()f x 在[0,1]上单调递增.则(0)1f b ==-,f (1)21a b =-+=,解得1b =-,0a =,满足条件.②0a >时,函数()f x 在[0,]3a上单调递减.13a…,即3a …时,函数()f x 在[0,1]上单调递减.则(0)1f b ==,f (1)21a b =-+=-,解得1b =,4a =,满足条件. ③013a <<,即03a <<时,函数()f x 在[0,)3a 上单调递减,在(3a,1]上单调递增.则最小值32()2()()1333a a af a b =⨯-⨯+=-,化为:3127a b -+=-.而(0)f b =,f (1)2a b =-+,∴最大值为b 或2a b -+.若:3127a b -+=-,1b =,解得3a =,矛盾,舍去.若:3127a b -+=-,21a b -+=,解得a =±0,矛盾,舍去.综上可得:存在a ,b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1.a ,b 的所有值为:01a b =⎧⎨=-⎩,或41a b =⎧⎨=⎩. 3.(2019•新课标Ⅲ)已知函数32()22f x x ax =-+. (1)讨论()f x 的单调性;(2)当03a <<时,记()f x 在区间[0,1]的最大值为M ,最小值为m ,求M m -的取值范围.【解答】解:(1)2()622(3)f x x ax x x a '=-=-, 令()0f x '=,得0x =或3ax =.若0a >,则当(x ∈-∞,0)(,)3a +∞时,()0f x '>;当(0,)3ax ∈时,()0f x '<. 故()f x 在(,0)-∞,(,)3a+∞上单调递增,在(0,)3a 上单调递减;若0a =,()f x 在(,)-∞+∞上单调递增;若0a <,则当(x ∈-∞,)(03a ⋃,)+∞时,()0f x '>;当(3ax ∈,0)时,()0f x '<.故()f x 在(,)3a -∞,(0,)+∞上单调递增,在(3a,0)上单调递减;(2)当03a <<时,由(1)知,()f x 在(0,)3a 上单调递减,在(3a,1)上单调递增,()f x ∴在区间[0,1]的最小值为3()2327a a f =-+,最大值为(0)2f =或f (1)4a =-.于是,3227a m =-+,4,022,23a a M a -<<⎧=⎨<⎩….332,0227,2327a a a M m a a ⎧-+<<⎪⎪∴-=⎨⎪<⎪⎩…. 当02a <<时,可知3227a a -+单调递减,M m ∴-的取值范围是8(,2)27;当23a <…时,327a 单调递增,M m ∴-的取值范围是8[27,1).综上,M m -的取值范围8[27,2).4.(2019•浙江)已知实数0a ≠,设函数()f x alnx =0x >. (Ⅰ)当34a =-时,求函数()f x 的单调区间;(Ⅱ)对任意21[x e∈,)+∞均有()f x …,求a 的取值范围. 注: 2.71828e =⋯为自然对数的底数.【解答】解:(1)当34a =-时,3()4f x lnx =-+0x >,3()4f x x '=-+=, ∴函数()f x 的单调递减区间为(0,3),单调递增区间为(3,)+∞.(2)由f (1)12a…,得0a <…,当04a <…时,()f x…20lnx -…,令1t a=,则t …设()22g t t lnx =-,t …,则2()2g t t lnx=--,()i 当1[7x ∈,)+∞则()2g x g lnx =…,记()p x lnx =,17x …,则1()p x x '=-==,列表讨论:()p x p ∴…(1)0=,()2()2()0g t g p x p x ∴==厖.()ii 当211[,)7x e ∈时,()g t g =…,令()(1)q x x =++,21[x e ∈,1]7, 则()10q x'=+>,故()q x 在21[e ,1]7上单调递增,1()()7q x q ∴…,由()i 得11()()77q p p =<(1)0=,()0q x ∴<,()0g t g ∴=>…,由()()i ii 知对任意21[x e∈,)+∞,t ∈,)+∞,()0g t …,即对任意21[x e ∈,)+∞,均有()f x …,综上所述,所求的a 的取值范围是(0. 5.(2019•新课标Ⅱ)已知函数()(1)1f x x lnx x =---.证明: (1)()f x 存在唯一的极值点;(2)()0f x =有且仅有两个实根,且两个实根互为倒数. 【解答】证明:(1)函数()(1)1f x x lnx x =---. ()f x ∴的定义域为(0,)+∞, 11()1x f x lnx lnx x x-'=+-=-, y lnx =单调递增,1y x=单调递减,()f x ∴'单调递增, 又f '(1)10=-<,f '(2)1412022ln ln -=-=>, ∴存在唯一的0(1,2)x ∈,使得0()0f x '=.当0x x <时,()0f x '<,()f x 单调递减, 当0x x >时,()0f x '>,()f x 单调递增, ()f x ∴存在唯一的极值点.(2)由(1)知0()f x f <(1)2=-, 又22()30f e e =->,()0f x ∴=在0(x ,)+∞内存在唯一的根x a =,由01a x >>,得011x a<<, 1111()()(1)10f a f ln a a a a a=---=-=, ∴1a是()0f x =在0(0,)x 的唯一根, 综上,()0f x =有且仅有两个实根,且两个实根互为倒数.6.(2019•江苏)设函数()()()()f x x a x b x c =---,a ,b ,c R ∈,()f x '为()f x 的导函数. (1)若a b c ==,f (4)8=,求a 的值;(2)若a b ≠,b c =,且()f x 和()f x '的零点均在集合{3-,1,3}中,求()f x 的极小值; (3)若0a =,01b <…,1c =,且()f x 的极大值为M ,求证:427M ….【解答】解:(1)a b c ==,3()()f x x a ∴=-, f (4)8=,3(4)8a ∴-=, 42a ∴-=,解得2a =.(2)a b ≠,b c =,设2()()()f x x a x b =--. 令2()()()0f x x a x b =--=,解得x a =,或x b =.2()()2()()()(32)f x x b x a x b x b x b a '=-+--=---. 令()0f x '=,解得x b =,或23a bx +=. ()f x 和()f x '的零点均在集合{3A =-,1,3}中,若:3a =-,1b =,则2615333a b A +-+==-∉,舍去. 1a =,3b =-,则2231333a b A +-==-∉,舍去. 3a =-,3b =,则263133a b A +-+==-∉,舍去.. 3a =,1b =,则2617333a b A ++==∉,舍去. 1a =,3b =,则2533a b A +=∉,舍去. 3a =,3b =-,则263133a b A +-==∈,. 因此3a =,3b =-,213a bA +=∈, 可得:2()(3)(3)f x x x =-+. ()3[(3)](1)f x x x '=---.可得1x =时,函数()f x 取得极小值,f (1)22432=-⨯=-. (3)证明:0a =,01b <…,1c =, ()()(1)f x x x b x =--.2()()(1)(1)()3(22)f x x b x x x x x b x b x b '=--+-+-=-++. △22214(1)124444()332b b b b b =+-=-+=-+….令2()3(22)0f x x b x b '=-++=.解得:11(0,]3x =,2x =.12x x <,12223b x x ++=,123b x x =,可得1x x =时,()f x 取得极大值为M ,2111()3(22)0f x x b x b '=-++=,可得:2111[(22)]3x b x b =+-,1111()()(1)M f x x x b x ==--222211111111(22)1()()()()[(21)2]33b x b x b x x x b x b x b x b +-=--=--=--+2222111(22)11[(21)2][(222)]339b x b b b x b b b x b b +-=--+=-+-++, 22132222()022b b b -+-=---<,M ∴在1(0x ∈,1]3上单调递减,2221222524()932727b b b b M b b -+-+-∴++=剟. 427M ∴…. 7.(2019•天津)设函数()(1)x f x lnx a x e =--,其中a R ∈. (Ⅰ)若0a …,讨论()f x 的单调性; (Ⅱ)若10a e<<, ()i 证明()f x 恰有两个零点;()ii 设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明0132x x ->.【解答】()I 解:211()[(1)]x x xax e f x ae a x e x x-'=-+-=,(0,)x ∈+∞.0a …时,()0f x '>,∴函数()f x 在(0,)x ∈+∞上单调递增.()II 证明:()i 由()I 可知:21()xax e f x x-'=,(0,)x ∈+∞. 令2()1x g x ax e =-,10a e<<,可知:()g x 在(0,)x ∈+∞上单调递减,又g (1)10ae =->.且221111()1()1()0g ln a ln ln a a a a =-=-<,()g x ∴存在唯一解01(1,)x ln a∈.即函数()f x 在0(0,)x 上单调递增,在0(x ,)+∞单调递减. 0x ∴是函数()f x 的唯一极值点.令()1h x lnx x =-+,(0)x >,1()xh x x-'=, 可得()h x h …(1)0=,1x ∴>时,1lnx x <-.111111()()(1)()(1)0ln a f ln ln ln a ln e ln ln ln a a a a a=--=--<.0()f x f >(1)0=.∴函数()f x 在0(x ,)+∞上存在唯一零点.又函数()f x 在0(0,)x 上有唯一零点1. 因此函数()f x 恰有两个零点;()ii 由题意可得:0()0f x '=,1()0f x =,即0201x ax e =,111(1)x lnx a x e =-, 1011201x x x lnx ex --∴=,即1020111x x x lnx e x -=-, 1x >,可得1lnx x <-.又101x x >>, 故10220101(1)1x x x x ex x --<=-,取对数可得:100022(1)x x lnx x -<<-, 化为:0132x x ->.8.(2019•天津)设函数()cos x f x e x =,()g x 为()f x 的导函数. (Ⅰ)求()f x 的单调区间; (Ⅱ)当[4x π∈,]2π时,证明()()()02f xg x x π+-…; (Ⅲ)设n x 为函数()()1u x f x =-在区间(24n ππ+,2)2n ππ+内的零点,其中n N ∈,证明20022sin cos n n e n x x x πππ-+-<-.【解答】(Ⅰ)解:由已知,()(cos sin )x f x e x x '=-,因此, 当(24x k ππ∈+,52)()4k k Z ππ+∈时,有sin cos x x >,得()0f x '<,()f x 单调递减;当3(24x k ππ∈-,2)()4k k Z ππ+∈时,有sin cos x x <,得()0f x '>,()f x 单调递增. ()f x ∴的单调增区间为3[24k ππ-,2]()4k k Z ππ+∈,单调减区间为[,52]()4k k Z ππ+∈; (Ⅱ)证明:记()()()()2h x f x g x x π=+-,依题意及(Ⅰ), 有()(cos sin )x g x e x x =-,从而()()()()()(1)()()022h x f x g x x g x g x x ππ'='+'-+-='-<.因此,()h x 在区间[4π,]2π上单调递减,有()()()022h x h f ππ==….∴当[4x π∈,]2π时,()()()02f xg x x π+-…; (Ⅲ)证明:依题意,()()10n n u x f x =-=,即cos 1n x n e x =.记2n n y x n π=-,则(,)42n y ππ∈,且22()cos cos(2)()n n y x n n n n n f y e y e x n e x N πππ--==-=∈.由20()1()n n f y e f y π-==…及(Ⅰ),得0n y y …,由(Ⅱ)知,当(4x π∈,)2π时,()0g x '<,()g x ∴在[4π,]2π上为减函数,因此,0()()()04n g y g y g π<=…, 又由(Ⅱ)知,()()()02n n n f y g y y π+-…,故0222200000()2()()()sin cos (sin cos )n n n n n n y n n f y e e e e y g y g y g y x x e y y πππππ------=--=<--剟. 20022sin cos n n e n x x x πππ-∴+-<-.9.(2019•新课标Ⅰ)已知函数()2sin cos f x x x x x =--,()f x '为()f x 的导数. (1)证明:()f x '在区间(0,)π存在唯一零点; (2)若[0x ∈,]π时,()f x ax …,求a 的取值范围. 【解答】解:(1)证明:()2sin cos f x x x x x =--,()2cos cos sin 1cos sin 1f x x x x x x x x ∴'=-+-=+-,令()cos sin 1g x x x x =+-,则()sin sin cos cos g x x x x x x x '=-++=,当(0,)2x π∈时,cos 0x x >,当(,)2x ππ∈时,cos 0x x <,∴当2x π=时,极大值为()1022g ππ=->, 又(0)0g =,()2g π=-,()g x ∴在(0,)π上有唯一零点,即()f x '在(0,)π上有唯一零点;(2)由(1)知,()f x '在(0,)π上有唯一零点0x , 使得0()0f x '=,且()f x '在0(0,)x 为正,在0(x ,)π为负, ()f x ∴在[0,0]x 递增,在0[x ,]π递减,结合(0)0f =,()0f π=,可知()f x 在[0,]π上非负, 令()h x ax =,()()f x h x …,根据()f x 和()h x 的图象可知,0a ∴…, a ∴的取值范围是(-∞,0].10.(2019•新课标Ⅱ)已知函数1()1x f x lnx x +=--. (1)讨论()f x 的单调性,并证明()f x 有且仅有两个零点;(2)设0x 是()f x 的一个零点,证明曲线y lnx =在点0(A x ,0)lnx 处的切线也是曲线x y e =的切线.【解答】解析:(1)函数1()1x f x lnx x +=--.定义域为:(0,1)(1⋃,)+∞; 212()0(1)f x x x '=+>-,(0x >且1)x ≠, ()f x ∴在(0,1)和(1,)+∞上单调递增,①在(0,1)区间取值有21e,1e 代入函数,由函数零点的定义得, 21()0f e <,1()0f e >,211()()0f f e e<, ()f x ∴在(0,1)有且仅有一个零点,②在(1,)+∞区间,区间取值有e ,2e 代入函数,由函数零点的定义得,又f (e )0<,2()0f e >,f (e )2()0f e <,()f x ∴在(1,)+∞上有且仅有一个零点,故()f x 在定义域内有且仅有两个零点; (2)0x 是()f x 的一个零点,则有00011x lnx x +=-, 曲线y lnx =,则有1y x'=; 由直线的点斜式可得曲线的切线方程,曲线y lnx =在点0(A x ,0)lnx 处的切线方程为:0001()y lnx x x x -=-, 即:0011y x lnx x =-+,将00011x lnx x +=-代入, 即有:00121y x x x =+-, 而曲线x y e =的切线中,在点01(ln x ,1)x 处的切线方程为:00000011111()y x ln x lnx x x x x x -=-=+, 将00011x lnx x +=-代入化简,即:00121y x x x =+-, 故曲线y lnx =在点0(A x ,0)lnx 处的切线也是曲线x y e =的切线. 故得证.11.(2019•北京)已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2x ∈-,4]时,求证:6()x f x x -剟;(Ⅲ)设()|()()|()F x f x x a a R =-+∈,记()F x 在区间[2-,4]上的最大值为M (a ).当M (a )最小时,求a 的值. 【解答】解:(Ⅰ)23()214f x x x '=-+, 由()1f x '=得8()03x x -=,得1280,3x x ==. 又(0)0f =,88()327f =,y x ∴=和88273y x -=-,即y x =和6427y x =-; (Ⅱ)证明:欲证6()x f x x -剟, 只需证6()0f x x --剟, 令321()()4g x f x x x x =-=-,[2x ∈-,4], 则2338()2()443g x x x x x '=-=-, 可知()g x '在[2-,0]为正,在8(0,)3为负,在8[,4]3为正,()g x ∴在[2-,0]递增,在[0,8]3递减,在8[,4]3递增,又(2)6g -=-,(0)0g =,864()6327g =->-,g (4)0=,6()0g x ∴-剟, 6()x f x x ∴-剟;(Ⅲ)由(Ⅱ)可得, ()|()()|F x f x x a =-+ |()|f x x a =-- |()|g x a =-在[2-,4]上,6()0g x -剟, 令()t g x =,()||h t t a =-,则问题转化为当[6t ∈-,0]时,()h t 的最大值M (a )的问题了,①当3a -…时,M (a )(0)||h a a ===-,此时3a -…,当3a =-时,M (a )取得最小值3; ②当3a -…时,M (a )(6)|6||6|h a a =-=--=+,63a +…,M ∴(a )6a =+,也是3a =-时,M (a )最小为3. 综上,当M (a )取最小值时a 的值为3-.12.(2019•新课标Ⅰ)已知函数()sin (1)f x x ln x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.【解答】证明:(1)()f x 的定义域为(1,)-+∞, 1()cos 1f x x x'=-+,21()sin (1)f x x x ''=-++, 令21()sin (1)g x x x =-++,则32()cos 0(1)g x x x '=--<+在(1,)2π-恒成立,()f x ∴''在(1,)2π-上为减函数, 又(0)1f ''=,21()11102(1)2f ππ''=-+<-+=+,由零点存在定理可知, 函数()f x ''在(1,)2π-上存在唯一的零点0x ,结合单调性可得,()f x '在0(1,)x -上单调递增,在0(x ,)2π上单调递减,可得()f x '在区间(1,)2π-存在唯一极大值点;(2)由(1)知,当(1,0)x ∈-时,()f x '单调递增,()(0)0f x f '<'=,()f x 单调递减; 当0(0,)x x ∈时,()f x '单调递增,()(0)0f x f '>'=,()f x 单调递增;由于()f x '在0(x ,)2π上单调递减,且0()0f x '>,1()0212f ππ'=-<+, 由零点存在定理可知,函数()f x '在0(x ,)2π上存在唯一零点1x ,结合单调性可知,当0(x x ∈,1)x 时,()f x '单调递减,1()()0f x f x '>'=,()f x 单调递增; 当1(,)2x x π∈时,()f x '单调递减,1()()0f x f x '<'=,()f x 单调递减.当(2x π∈,)π时,cos 0x <,101x -<+,于是1()cos 01f x x x'=-<+,()f x 单调递减,其中 3.2()1(1)1(1)1 2.610222f ln ln ln lne ππ=-+>-+=->-=,()(1)30f ln ln ππ=-+<-<.于是可得下表:结合单调性可知,函数()f x 在(1-,]2π上有且只有一个零点0,由函数零点存在性定理可知,()f x 在(2π,)π上有且只有一个零点2x ,当[x π∈,)+∞时,()sin (1)1(1)130f x x ln x ln ln π=-+<-+<-<,因此函数()f x 在[π,)+∞上无零点.综上,()f x 有且仅有2个零点.13.(2018•北京)设函数2()[(41)43]x f x ax a x a e =-+++.(Ⅰ)若曲线()y f x =在点(1,f (1))处的切线与x 轴平行,求a ; (Ⅱ)若()f x 在2x =处取得极小值,求a 的取值范围. 【解答】解:(Ⅰ)函数2()[(41)43]x f x ax a x a e =-+++的导数为2()[(21)2]x f x ax a x e '=-++.由题意可得曲线()y f x =在点(1,f (1))处的切线斜率为0, 可得(212)0a a e --+=,且f (1)30e =≠, 解得1a =;(Ⅱ)()f x 的导数为2()[(21)2](2)(1)x x f x ax a x e x ax e '=-++=--, 若0a =则2x <时,()0f x '>,()f x 递增;2x >,()0f x '<,()f x 递减. 2x =处()f x 取得极大值,不符题意;若0a >,且12a =,则21()(2)02x f x x e '=-…,()f x 递增,无极值; 若12a >,则12a <,()f x 在1(a,2)递减;在(2,)+∞,1(,)a -∞递增, 可得()f x 在2x =处取得极小值; 若102a <<,则12a >,()f x 在1(2,)a 递减;在1(a,)+∞,(,2)-∞递增, 可得()f x 在2x =处取得极大值,不符题意;若0a <,则12a <,()f x 在1(a,2)递增;在(2,)+∞,1(,)a -∞递减, 可得()f x 在2x =处取得极大值,不符题意. 综上可得,a 的范围是1(2,)+∞.14.(2018•北京)设函数2()[(31)32]x f x ax a x a e =-+++.(Ⅰ)若曲线()y f x =在点(2,f (2))处的切线斜率为0,求a ; (Ⅱ)若()f x 在1x =处取得极小值,求a 的取值范围. 【解答】解:(Ⅰ)函数2()[(31)32]x f x ax a x a e =-+++的导数为2()[(1)1]x f x ax a x e '=-++.曲线()y f x =在点(2,f (2))处的切线斜率为0, 可得2(4221)0a a e --+=, 解得12a =; (Ⅱ)()f x 的导数为2()[(1)1](1)(1)x x f x ax a x e x ax e '=-++=--, 若0a =则1x <时,()0f x '>,()f x 递增;1x >,()0f x '<,()f x 递减. 1x =处()f x 取得极大值,不符题意;若0a >,且1a =,则2()(1)0x f x x e '=-…,()f x 递增,无极值; 若1a >,则11a<,()f x 在1(a ,1)递减;在(1,)+∞,1(,)a -∞递增,可得()f x 在1x =处取得极小值; 若01a <<,则11a >,()f x 在1(1,)a递减;在1(a ,)+∞,(,1)-∞递增,可得()f x 在1x =处取得极大值,不符题意; 若0a <,则11a<,()f x 在1(a ,1)递增;在(1,)+∞,1(,)a -∞递减,可得()f x 在1x =处取得极大值,不符题意. 综上可得,a 的范围是(1,)+∞.15.(2018•新课标Ⅲ)已知函数2()(2)(1)2f x x ax ln x x =+++-. (1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a .【解答】(1)证明:当0a =时,()(2)(1)2f x x ln x x =++-,(1)x >-. ()(1)1xf x ln x x '=+-+,2()(1)x f x x ''=+,可得(1,0)x ∈-时,()0f x ''…,(0,)x ∈+∞时,()0f x ''… ()f x ∴'在(1,0)-递减,在(0,)+∞递增, ()(0)0f x f ∴''=…,()(2)(1)2f x x ln x x ∴=++-在(1,)-+∞上单调递增,又(0)0f =.∴当10x -<<时,()0f x <;当0x >时,()0f x >.(2)解:由2()(2)(1)2f x x ax ln x x =+++-,得222(12)(1)(1)()(12)(1)211x ax ax x ax x ln x f x ax ln x x x ++-++++'=+++-=++, 令2()(12)(1)(1)h x ax x ax x ln x =-++++, ()4(421)(1)h x ax ax a ln x '=++++.当0a …,0x >时,()0h x '>,()h x 单调递增, ()(0)0h x h ∴>=,即()0f x '>,()f x ∴在(0,)+∞上单调递增,故0x =不是()f x 的极大值点,不符合题意.当0a <时,12()84(1)1ah x a aln x x -''=++++, 显然()h x ''单调递减, ①令(0)0h ''=,解得16a =-.∴当10x -<<时,()0h x ''>,当0x >时,()0h x ''<,()h x ∴'在(1,0)-上单调递增,在(0,)+∞上单调递减, ()(0)0h x h ∴''=…,()h x ∴单调递减,又(0)0h =,∴当10x -<<时,()0h x >,即()0f x '>,当0x >时,()0h x <,即()0f x '<,()f x ∴在(1,0)-上单调递增,在(0,)+∞上单调递减, 0x ∴=是()f x 的极大值点,符合题意;②若106a -<<,则(0)160h a ''=+>,161644(1)(21)(1)0a a aah ea e++-''-=--<,()0h x ∴''=在(0,)+∞上有唯一一个零点,设为0x ,∴当00x x <<时,()0h x ''>,()h x '单调递增,()(0)0h x h ∴'>'=,即()0f x '>,()f x ∴在0(0,)x 上单调递增,不符合题意;③若16a <-,则(0)160h a ''=+<,221(1)(12)0h a e e''-=->,()0h x ∴''=在(1,0)-上有唯一一个零点,设为1x ,∴当10x x <<时,()0h x ''<,()h x '单调递减,()(0)0h x h ∴'>'=,()h x ∴单调递增, ()(0)0h x h ∴<=,即()0f x '<,()f x ∴在1(x ,0)上单调递减,不符合题意. 综上,16a =-.16.(2018•新课标Ⅰ)已知函数()1x f x ae lnx =--.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间; (2)证明:当1a e…时,()0f x ….【解答】解:(1)函数()1x f x ae lnx =--. 0x ∴>,1()x f x ae x'=-, 2x =是()f x 的极值点,f ∴'(2)2102ae =-=,解得212a e=, 21()12x f x e lnx e ∴=--,211()2x f x e e x∴'=-,当02x <<时,()0f x '<,当2x >时,()0f x '>, ()f x ∴在(0,2)单调递减,在(2,)+∞单调递增.(2)证明:当1a e …时,()1x e f x lnx e --…,设()1x e g x lnx e =--,则1()x e g x e x '=-,由1()0x e g x e x'=-=,得1x =,当01x <<时,()0g x '<, 当1x >时,()0g x '>, 1x ∴=是()g x 的最小值点,故当0x >时,()g x g …(1)0=,∴当1a e…时,()0f x ….17.(2018•新课标Ⅲ)已知函数21()xax x f x e +-=.(1)求曲线()y f x =在点(0,1)-处的切线方程; (2)证明:当1a …时,()0f x e +….【解答】解:(1)22(21)(1)(1)(2)()()x x x xax e ax x e ax x f x e e +-+-+-'==-. (0)2f ∴'=,即曲线()y f x =在点(0,1)-处的切线斜率2k =,∴曲线()y f x =在点(0,1)-处的切线方程方程为(1)2y x --=.即210x y --=为所求.(2)证明:函数()f x 的定义域为:R ,可得22(21)(1)(1)(2)()()x x x xax e ax x e ax x f x e e +-+-+-'==-. 令()0f x '=,可得1212,0x x a==-<,当1(,)x a ∈-∞-时,()0f x '<,1(,2)x a ∈-时,()0f x '>,(2,)x ∈+∞时,()0f x '<.()f x ∴在1(,)a -∞-,(2,)+∞递减,在1(a-,2)递增,注意到1a …时,函数2()1g x ax x =+-在(2,)+∞单调递增,且g (2)410a =+> 函数()f x 的图象如下:1a …,∴1(0,1]a∈,则11()a f e e a -=--…,1()aminf x e e ∴=--…,∴当1a …时,()0f x e +….18.(2018•新课标Ⅱ)已知函数2()x f x e ax =-.(1)若1a =,证明:当0x …时,()1f x …; (2)若()f x 在(0,)+∞只有一个零点,求a . 【解答】证明:(1)当1a =时,函数2()x f x e x =-. 则()2x f x e x '=-,令()2x g x e x =-,则()2x g x e '=-, 令()0g x '=,得2x ln =.当(0,2)x ln ∈时,()0g x '<,当(2,)x ln ∈+∞时,()0g x '>,2()(2)222220ln g x g ln e ln ln ∴=-=->…, ()f x ∴在[0,)+∞单调递增,()(0)1f x f ∴=…, 解:(2)方法一、,()f x 在(0,)+∞只有一个零点⇔方程20x e ax -=在(0,)+∞只有一个根,2xe a x⇔=在(0,)+∞只有一个根,即函数y a =与2()xe G x x=的图象在(0,)+∞只有一个交点.3(2)()x e x G x x-'=, 当(0,2)x ∈时,()0G x '<,当(2,)∈+∞时,()0G x '>, ()G x ∴在(0,2)递减,在(2,)+∞递增,当0→时,()G x →+∞,当→+∞时,()G x →+∞,()f x ∴在(0,)+∞只有一个零点时,a G =(2)24e =.方法二:①当0a …时,2()0x f x e ax =->,()f x 在(0,)+∞没有零点..②当0a >时,设函数2()1x h x ax e -=-.()f x 在(0,)+∞只有一个零点()h x ⇔在(0,)+∞只有一个零点.()(2)x h x ax x e -'=-,当(0,2)x ∈时,()0h x '<,当(2,)x ∈+∞时,()0h x '>, ()h x ∴在(0,2)递减,在(2,)+∞递增,∴24()(2)1min ah x h e ==-,(0)x …. 当h (2)0<时,即24e a >,由于(0)1h =,当0x >时,2x e x >,可得33342241616161(4)11110()(2)a a a a a h a e e a a=-=->-=->.()h x 在(0,)+∞有2个零点当h (2)0>时,即24e a <,()h x 在(0,)+∞没有零点,当h (2)0=时,即24e a =,()h x 在(0,)+∞只有一个零点,综上,()f x 在(0,)+∞只有一个零点时,24e a =.19.(2018•浙江)已知函数()f x lnx .(Ⅰ)若()f x 在1x x =,212()x x x ≠处导数相等,证明:12()()882f x f x ln +>-;(Ⅱ)若342a ln -…,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点. 【解答】证明:(Ⅰ)函数()f x lnx =, 0x ∴>,1()f x x'=-, ()f x 在1x x =,212()x x x ≠处导数相等,∴1211x x =, 12x x ≠,∴12=,12x x ≠,12256x x ∴>,由题意得121212()()()f x f x lnx lnx ln x x +=,设()g x lnx,则1()4)4g x x'=, ∴列表讨论:()g x ∴在[256,)+∞上单调递增, 12()(256)882g x x g ln ∴>=-, 12()()882f x f x ln ∴+>-.(Ⅱ)令(||)a k m e -+=,2||1()1a n k+=+, 则()||0f m km a a k k a -->+--…,。

导数综合压轴216道

导数综合压轴216道

导数题整理江苏镇江韩雨1.(2017 全国1 理)已知函数f (x)=a e2 x +(a - 2)e x -x .(1)讨论f (x)的单调性;(2)若f (x)有两个零点,求a 的取值范围.2.(2017 全国1 文)已知函数f (x)= e x (e x -a)-a2 x .(1)讨论f (x)的单调性;(2)若f (x) ≥ 0,求a 的取值范围.3.(2017 全国2 理)已知函数f (x)=ax2 -ax -x ln x ,且f (x) 0 .(1)求a ;(2)证明:f (x )存在唯一的极大值点x ,且e-2 <f (x )< 2-2 .0 04.(2017 全国2 文)设函数f (x)=(1-x2 )e x .(1)讨论f (x)的单调性;(2)当x ≥ 0 时,f (x) ≤ax +1,求a 的取值范围.5.(2017 全国 3 理)已知函数 f (x ) = x -1- a ln x .(1)若 f (x ) 0 ,求 a 的值;(2)设m 为整数,且对于任意正整数 n , ⎛1+1 ⎫⎛1+ 1 ⎫ ⎛1+ 1 ⎫< m ,求m 最小值.2 ⎪ 22 ⎪ 2n ⎪ ⎝ ⎭⎝ ⎭ ⎝ ⎭6.(2017 全国 3 文)已知函数 f (x )= ln x + ax 2+ (2a +1) x .(1)讨论 f (x )的单调性; (2)当a < 0 时,证明: f (x ) ≤ -3- 2 4a7.(2016 全国1 理)已知函数(1)求a 的取值范围;f (x) = (x - 2)e x +a(x -1)2 有两个零点.(2)设x1 ,x2是f (x) 的两个零点,求证:x1+x2< 2 .8.(2016 全国2 理)(1)讨论函数f (x) =x - 2e x 的单调性,并证明当x > 0 时,( x - 2)e x +x + 2 > 0; x + 2(2)证明:当a ∈[0,1) h(a) ,求函数h(a) 的值域.时,函数g (x)=ex -ax -ax2(x > 0) 有最小值.设g (x )的最小值为9.(2016 全国2 文)已知函数f (x)=(x +1)ln x -a (x -1).(1)当a = 4时,求曲线y =f (x)在(1, f (1))处的切线方程;(2)若当x ∈(1, +∞)时,f (x)> 0 ,求a 的取值范围.10.(2016 全国3 理)设函数f (x) =a cos 2x + (a -1)(cos x+1) ,其中a > 0,记f (x) 的最大值为A .(1)求 f '(x) ;(2)求A ;(3)证明| f '(x) |≤ 2A11.(2015 全国1 理)已知函数f (x)=x3 +ax +1,g (x)=- ln x . 4(1)当a 为何值时,x 轴为曲线y =f (x)的切线;(2)用min {m, n}表示m ,n 中的最小值,设函数h (x)=min{f (x), g (x)}(x >0),讨论h (x )零点的个数.12.(2015 全国1 文)设函数f (x)= e2x -a ln x .(1)讨论f (x)的导函数f '(x)零点的个数;(2)求证:当a > 0 时,f (x) ≥ 2a +a ln 2ax b e13.(2015 全国2 理)设函数f (x)= e mx +x2 -mx .(1)证明:f (x)在(-∞, 0)单调递减,在(0, +∞)单调递增;(2)若对于任意x1 , x2∈[-1,1],都有| f (x1 ) -f (x2 ) |≤e -1,求m 的取值范围.x-114.(2014 全国1 理)设函数f (x )=a e ln x +,曲线y =xf (x )在点(1, f (1))处的切线为y = e(x - 1) + 2 .(1)求a, b ;(2)证明:f (x) > 1.15.(2014 全国1 文)设函数f (x )=a ln x +1 -ax 2 -bx2(a ≠ 1),曲线y = f (x )在点(1, f (1))处的切线斜率为0. (1)求b ;(2)若存在x0≥1,使得f (x )<aa -1,求a 的取值范围.16.(2013 全国1 理)已知函数f (x )=x2 +ax +b ,g (x)= e x (cx +d ) ,若曲线y = 和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2f (x)(1)求a,b,c,d 的值(2)若x ≥-2时,f (x) ≤kg(x),求k 的取值范围.17.(2013 全国2 理)已知函数f (x)= e x - ln (x +m).(1)设x = 0 是f (x)的极值点,求m ,并讨论f (x)的单调性;(2)当m ≤2 时,证明f (x )>0 .18.(2013 全国2 文)已知函数f (x) =x2e-x .(1)求f (x) 的极小值和极大值;(2)当曲线y =f (x) 的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围.≠ > +19.(2012 全国 1 理)已知 f (x ) =(1)求 f (x ) 的解析式及单调区间f '(1)e x -1- f (0)x + 1 x 22(2)若 f (x ) ≥ 1x 2+ ax + b ,求(a +1)b 的最大值220.(2011 全国 1 理)已知函数 f (x ) =a ln x + b,曲线 y = f (x ) 在点(1, f (1)) 处的切线方程为 x + 2 y - 3 = 0. (1)求 a ,b 的值;x +1 xln x k (2)如果当 x>0,且 x 1时, f (x ) ,求 k 的取值范围.x -1 x21.(2010 全国1 理)设函数f (x) =e x -1-x -ax2(1)若a = 0 ,求f (x) 单调区间;(2)若当x ≥ 0 时,f (x) ≥ 0,求a 的取值范围22.(2015 山东理)设函数f (x )= ln (x +1)+a (x 2 -x ),其中a ∈R . (1)讨论函数f (x)极值点的个数,并说明理由;(2)若∀x > 0, f (x)≥ 0成立,求a 的取值范围.23.已知函数f ( x) = ( x -1)e x +ax 2 有两个零点x1, x2(Ⅰ)当a = 1时,求f ( x) 的最小值;(Ⅱ)求a 的取值范围;(Ⅲ)设x1, x2 是f ( x) 的两个零点,证明:x1 +x2 < 0 .24.已知函数 f (x) = ln x - 2ax +1(a ∈R)(Ⅰ)讨论函数g( x) =x2 +f ( x) 的单调性;(Ⅱ)若a =1,证明:| f ( x) -1 |>1nx+1 2 x 225. 已知函数 f (x ) = ax - ln x .(1)过原点O 作函数 f ( x ) 图象的切线,求切点的横坐标;(2)对∀x ∈[1,+∞),不等式 f ( x ) ≥ a (2x - x 2 ) 恒成立,求实数a 的取值范围.26. 已知函数 f ( x ) =ln x .x(I)求函数 f ( x ) 的极值;(II)当0 < x < e 时 : 证明 f (e + x ) > f (e - x )(III)设函数 f ( x ) 的图像与直线 y = m 的两个交点分别为 A ( x 1, f ( x 1 )) ,B ( x 1, f ( x 1 )) AB 的中点的横坐标为 x 0 证明: f '( x 0 ) < 00 1 27. 已知函数 f (x ) = 2 l n x + x 2 - ax + 2(a ∈ R ) .(Ⅰ)讨论函数 f (x ) 的单调性;(Ⅱ)若存在 x 0 ∈ (0,1],使得对任意的 a ∈[-2, 0) ,不等式f (x ) > a 2 + 3a + 2 - 2me a(a +1) (其中e 是自然对数的底数)都成立,求实数 m 的取值范围.28. 已知函数 f ( x ) = ln x + 1x 2- 2ax .其中 a ∈ R .2(I )讨论函数 f ( x ) 的单调性;(II)已知函数 g ( x ) =m ln x + m 其中 xm > 0若对任意a ∈[ ,1] 2存在 x 1, x 2 ∈[1, e ] 使得| f ( x 1) - g ( x 2 ) |< 1 成立,求实数 m 的取值范围。

高中数学导数压轴30题(PDF)

高中数学导数压轴30题(PDF)

高中数学导数压轴30题(解答题)解答题(共30小题)1.设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.),其对称轴为其充要条件为,得设)在故2.己知函数f(x)=x2e﹣x(Ⅰ)求f(x)的极小值和极大值;(Ⅱ)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.,.)设切点为(﹣=x=,(<令则=.当)单调递增;当时,3.已知函数f(x)=lnx+x2.(Ⅰ)若函数g(x)=f(x)﹣ax在其定义域内为增函数,求实数a的取值范围;(Ⅱ)在(Ⅰ)的条件下,若a>1,h(x)=e3x﹣3ae x x∈[0,ln2],求h(x)的极小值;(Ⅲ)设F(x)=2f(x)﹣3x2﹣kx(k∈R),若函数F(x)存在两个零点m,n(0<m<n),且2x0=m+n.问:函数F(x)在点(x0,F(x0))处的切线能否平行于x轴?若能,求出该切线方程;若不能,请说明理由.恒成立,即(Ⅱ)由(Ⅰ)知证得函数,,,当且仅当∴,可得,或∵若∴当)取得极小值,极小值为结合题意,有得所以得所以4.已知函数f(x)=+cx+d(a,c,d∈R)满足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.(1)求a,c,d的值;(2)若,解不等式f′(x)+h(x)<0;(3)是否存在实数m,使函数g(x)=f′(x)﹣mx在区间[m,m+2]上有最小值﹣5?若存在,请求出实数m的值;若不存在,请说明理由.∴,有=a是二次函数即,即a=,.∴,即即,即当时,解集为(,<时,解集为(,)b=,∴∴使函数5.已知函数f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)=xe1﹣x.(a∈R,e为自然对数的底数)(Ⅰ)当a=1时,求f(x)的单调区间;(Ⅱ)若函数f(x)在上无零点,求a的最小值;(Ⅲ)若对任意给定的x0∈(0,e],在(0,e]上总存在两个不同的x i(i=1,2),使得f(x i)=g(x0)成立,求a的取值范围.,,﹣,故要使函数只要对任意的恒成立,即对令,则再令则)在在所以故要使)在6.已知函数f(x)=alnx﹣ax﹣3(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数在区间(t,3)上总不是单调函数,求m的取值范围;(Ⅲ)求证:.(Ⅱ)∴∴所以有:∴7.已知函数f(x)=plnx+(p﹣1)x2+1.(1)讨论函数f(x)的单调性;(2)当P=1时,f(x)≤kx恒成立,求实数k的取值范围;(3)证明:1n(n+1)<1+…+(n∈N+).,利用导数求函数=,则得到,x x,)上单调递增,在≥,,则=08.已知函数f(x)=x2+ax﹣lnx,a∈R.(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;(2)令g(x)=f(x)﹣x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;(3)当x∈(0,e]时,证明:.,再令),有得得,=,(舍当)在上单调递减,在∴当,(舍令,∴∴,即>(9.已知函数g(x)=,f(x)=g(x)﹣ax.(1)求函数g(x)的单调区间;(2)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;(3)若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a,求实数a的取值范围.进行讨论:和,分别求出由===a==∴当∴,得,故的最小值为时,,则时,有当则,故,10.已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.=,a|==时,=,11.已知函数f(x)=x﹣alnx,g(x)=﹣,(a∈R).(Ⅰ)若a=1,求函数f(x)的极值;(Ⅱ)设函数h(x)=f(x)﹣g(x),求函数h(x)的单调区间;(Ⅲ)若在[1,e](e=2.718…)上存在一点x0,使得f(x0)<g(x0)成立,求a的取值范围.,(Ⅱ)即函数12.已知函数f(x)=ax3+bx2﹣3x(a,b∈R)在点(1,f(1))处的切线方程为y+2=0.(1)求函数f(x)的解析式;(2)若对于区间[﹣2,2]上任意两个自变量的值x1,x2都有|f(x1)﹣f(x2)|≤c,求实数c的最小值;(3)若过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,求实数m的取值范围.根据题意,得即解得3=13.已知函数f(x)=ax﹣1﹣lnx(a∈R).(1)讨论函数f(x)在定义域内的极值点的个数;(2)若函数f(x)在x=1处取得极值,对∀x∈(0,+∞),f(x)≥bx﹣2恒成立,求实数b的取值范围;(3)当x>y>e﹣1时,求证:.Ⅰ),,令)上单调递增,由此能够证明得,得)在上递减,在)在∴令∴,即.(Ⅲ)证明:令14.已知函数f(x)=(a+)e n,a,b为常数,a≠0.(Ⅰ)若a=2,b=1,求函数f(x)在(0,+∞)上的单调区间;(Ⅱ)若a>0,b>0,求函数f(x)在区间[1,2]的最小值;(Ⅲ)若a=1,b=﹣2时,不等式f(x)≤lnx•e n恒成立,判断代数式[(n+1)!]2与(n+1)e n﹣2(n∈N*)的大小.a+e))=)或因为,(,)单调递增区间为(﹣又因为﹣﹣恒成立,15.已知函数f(x)=(a+1)lnx+ax2+,a∈R.(1)当a=﹣时,求f(x)的最大值;(2)讨论函数f(x)的单调性;(3)如果对任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|恒成立,求实数a的取值范围.﹣lnx﹣x+﹣时,求=﹣,定义域为(=,…=+2ax=x=,(,)上单调递增;在(4=≥16.已知函数f(x)=x3+x2+ax+b(a,b为常数),其图象是曲线C.(1)当a=﹣2时,求函数f(x)的单调减区间;(2)设函数f(x)的导函数为f′(x),若存在唯一的实数x0,使得f(x0)=x0与f′(x0)=0同时成立,求实数b的取值范围;(3)已知点A为曲线C上的动点,在点A处作曲线C的切线l1与曲线C交于另一点B,在点B处作曲线C的切线l2,设切线l1,l2的斜率分别为k1,k2.问:是否存在常数λ,使得k2=λk1?若存在,求出λ的值;若不存在,请说明理由.x<,)则+xx﹣或﹣,x,),﹣)﹣时,﹣;﹣﹣,﹣)∪(﹣+x)17.(2014•惠州模拟)已知函数f(x)=ln(x+)+,g(x)=lnx(1)求函数f(x)的单调区间;(2)如果关于x的方程g(x)=x+m有实数根,求实数m的取值集合;(3)是否存在正数k,使得关于x的方程f(x)=kg(x)有两个不相等的实数根?如果存在,求k满足的条件;如果不存在,说明理由.=﹣,令﹣﹣x+﹣x+(>﹣,且=﹣=﹣(﹣,)的单调递增区间是(﹣,﹣=lnx=﹣﹣x﹣,18.设函数f(x)=x﹣ae x﹣1.(Ⅰ)求函数f(x)单调区间;(Ⅱ)若f(x)≤0对x∈R恒成立,求a的取值范围;(Ⅲ)对任意n的个正整数a1,a2,…a n记A=(1)求证:(i=1,2,3…n)(2)求证:A.恒成立,故∴)知:,,≤故19.已知函数f(x)=lnx﹣,g(x)=f(x)+ax﹣6lnx,其中a∈R(1)当a=1时,判断f(x)的单调性;(2)若g(x)在其定义域内为增函数,求正实数a的取值范围;(3)设函数h(x)=x2﹣mx+4,当a=2时,若∃x1∈(0,1),∀x2∈[1,2],总有g(x1)≥h(x2)成立,求实数m的取值范围.﹣,+=﹣,==,﹣﹣﹣=a+﹣=>=∵≤(>.﹣﹣﹣)﹣,令,20.已知函数f(x)=+lnx﹣2,g(x)=lnx+2x.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由.,=∴∴令∴(21.f(x)=|x﹣a|﹣lnx(a>0).(1)若a=1,求f(x)的单调区间及f(x)的最小值;(2)若a>0,求f(x)的单调区间;(3)试比较++…+与的大小.(n∈N*且n≥2),并证明你的结论.﹣=﹣﹣﹣﹣﹣22.已知函数(1)试判断函数f(x)的单调性;(2)设m>0,求f(x)在[m,2m]上的最大值;(3)试证明:对∀n∈N*,不等式.。

高中数学《导数》压轴小题精练100(含答案)

高中数学《导数》压轴小题精练100(含答案)

A. 22-1 , 1
C.
-
∞,
1-2 2

2-1 2

+

B.
-1

1-2 2
D. - ∞ , -1 ∪ 1, + ∞


答案 D
-1 -2 + 22
≤∃
kl2
<
0
试题6.12 【 导 数 的 切 线 法 】 已 知 实 数 ,则
满足
,实数
的 最 小 值 为(
满足 )
A. 1
B. 2
C. 3
试题25.11 【图像法 + 转化法 + 零点】函数 f x
= l-nx- xx>x0≤ 0
与 gx
=
1 2
x
+
a
+1
的图象
上存在关于 y 轴对称的点,则实数 a 的取值范围是
A. - ∞ , 3 - 2ln2 B. 3 - 2ln2, + ∞ C. e , + ∞
D. - ∞ , -e


B
画出
D. 0
B
试题12.12 【利用对称中心破题】已知函数 f x
=
x+12+ln1+9x2 -3xcosx x2+ 1
,且
f
2017
=
2016,则 f -2017 =
(2015
C. -2016
D. -2017
A
试题13.12 【利用对称中心破题】已知函数 f x
= lnx - x2与 gx
D. 4
A 【距离模型 + 转化法】

导数压轴小题11种题型(1)(解析版)

 导数压轴小题11种题型(1)(解析版)

第8讲 导数和函数压轴小题11类【题型一】 整数解【典例分析】在关于x 的不等式()2222e e 4e e 4e 0x x x a x a -+++>(其中e=2.71828为自然对数的底数)的解集中,有且仅有两个大于2的整数,则实数a 的取值范围为( ) A .4161,5e 2e ⎛⎤ ⎥⎝⎦B .291,4e 2e ⎡⎫⎪⎢⎣⎭C .42164,5e 3e ⎛⎤ ⎥⎝⎦D .2294,4e 3e ⎡⎫⎪⎢⎣⎭【答案】D【分析】将不等式转化为()()22e 21e x x a x ->-,分别研究两个函数的性质,确定a 的取值范围,构造函数,利用放缩法进一步缩小a 的取值范围,列出不等式组,求出结果.【详解】由()2222e e 4e e 4e 0x x x a x a -+++>,化简得:()()22e 21e x x a x ->-,设()()22e 2f x x =-,()()1e xg x a x =-,则原不等式即为()()f x g x >.若0a ≤,则当2x >时,()0f x >,()0g x <,∴原不等式的解集中有无数个大于2的整数,∴0a >.∴()20f =,()22e 0g a =>,∴()()22f g <.当()()33f g ≤,即12e a ≥时,设()()()()4h x f x g x x =-≥,则()()()22e 2e 2e 2e 22e x x x h x x ax x '=--≤--. 设()()()2e 2e 242e x x x x x ϕ=--≥,则()()21e 2e 2exx x ϕ+'=-在[)3,+∞单调递减,所以()()()21e 2e302ex x x ϕϕ+''=-≤=,所以()()2e 2e 22ex x x x ϕ=--在[)4,+∞单调递减,∴()()()242e 2e 0x ϕϕ≤=-<,∴当4x ≥时,()0h x '<,∴()h x 在[]4,+∞上为减函数,即()()2423e 44e 3e e 402h x h a ⎛⎫≤=-≤-< ⎪⎝⎭,∴当4x ≥时,不等式()()f x g x <恒成立,∴原不等式的解集中没有大于2的整数.∴要使原不等式的解集中有且仅有两个大于2的整数,则{f (3)>g (3)f (4)>g (4)f (5)≤g (5),即{e 2>2a e 34e 2>3a e 49e 2≤4a e 5,解得22944e 3ea ≤<.则实数a 的取值范围为2294,4e 3e ⎡⎫⎪⎢⎣⎭.故选:D【变式演练】1.已知函数()()1xf x a x e x =+-,若存在唯一的正整数0x ,使得()00f x <,则实数a 的取值范围是( )A .313,24e e ⎡⎫-⎪⎢⎣⎭B .2332,43e e ⎡⎫⎪⎢⎣⎭C .221,32e e ⎡⎫⎪⎢⎣⎭D .11,22e ⎡⎫⎪⎢⎣⎭【答案】C 【分析】题意等价于存在唯一的正整数0x 使得不等式()1xx a x e +<成立,求出函数()x xg x e =的单调区间,直线()1y a x =+过定点()1,0-,作出函数()xxg x e =和直线()1y a x =+图像,结合图形列出不等式组化简即可. 解:函数()()1xf x a x e x =+-,若存在唯一的正整数0x ,使得()00f x <。

导数压轴题2 三角函数与导数(1)

导数压轴题2  三角函数与导数(1)

导数压轴题 导数与三角函数专题一.试题(共21小题)1.设函数f (x )=e x cos x ,g (x )为f (x )的导函数.(Ⅰ)求f (x )的单调区间;(Ⅱ)当x ∈[π4,π2]时,证明f (x )+g (x )(π2−x )≥0; (Ⅲ)设x n 为函数u (x )=f (x )﹣1在区间(2n π+π4,2n π+π2)内的零点,其中n ∈N ,证明2n π+π2−x n <e −2nπsinx 0−cosx 0.2.已知函数f (x )=e x ﹣ax ,(a ∈R ),g (x )=sinx 2+cosx .(Ⅰ)求函数f (x )的单调区间;(Ⅱ)若g (x )≤kx 在x ∈[0,+∞)恒成立,求k 的取值范围;(Ⅲ)当a =1,x ≥0时,证明:(2+cos x )f ′(x )≥3sin x .3.已知函数f(x)=e x﹣ax+sin x﹣1.(Ⅰ)当a=2时,求函数f(x)的单调区间;(Ⅱ)当1≤a<2时,证明:函数f(x)有2个零点.4.设函数f(x)=e x+ln(x+1)﹣ax.(1)当a=2时,判断函数f(x)在定义域内的单调性;(2)当x≥0时,f(x)≥cos x恒成立,求实数a的取值范围.5.设函数f(x)=x sin x+cos x−12ax2.(1)当a=12时,讨论f(x)在(﹣π,π)内的单调性;(2)当a>13时,证明:f(x)有且仅有两个零点.6.已知函数f(x)=sin x+aln(x+b),g(x)是f(x)的导函数.(1)若a>0,当b=1时,函数g(x)在(π,4)内有唯一的极小值,求a的取值范围;(2)若a=﹣1,1<b<e−π2,试研究f(x)的零点个数.7.已知函数f(x)=lnx﹣x+2sin x,f'(x)为f(x)的导函数.(Ⅰ)求证:f'(x)在(0,π)上存在唯一零点;(Ⅱ)求证:f(x)有且仅有两个不同的零点8.已知函数f(x)=a sin x+sin2x,a∈R.(1)若a=2,求函数f(x)在(0,π)上的单调区间;(2)若a=1,不等式f(x)≥bx cos x对任意x∈(0,2π3)恒成立,求满足条件的最大整数b.9.已知函数f(x)=√x−a−sin x(a∈R).(1)当a=0时,证明:f(x)≥0;(2)若a<−14,证明:f(x)在(0,π2)有唯一的极值点x0,且f(x0)>1π−2x0−x0.10.已知f(x)=e x−12x2﹣x﹣1,g(x)=cos2x+2x2﹣1.(1)证明:x≥0时,f(x)≥0;(2)求函数g(x)的单调区间;(3)证明:x≥0时,xe x+12sin2x≥2sin x+sin2x.。

导数压轴小题必刷100题

导数压轴小题必刷100题

,
2 e2
【答案】B
【解析】因为 f ( x) 与 g ( x) 互为“1距零点函数”.且当 f ( x) = log2020 ( x −1) = 0 时, x = 2
设 g ( x) = x2 − aex = 0 的解为 x0 ,由定义 − n 可知, 2 − x0 1
解得1 x0
3 ,而当 g ( x) = x2 − aex
A.
B.
C.
D.
【答案】A
【解析】因为 不满足方程
,所以原方程化为化为

,令
, 时, ,令
; ,
时,
+
0
-
当 要使
递增
,即 时,
无解,则

递减
,综上可得, 的值域为

即使关于 的方程
3
,
4
+ ln 6
2
【答案】D
【解析】由题意,函数 f ( x) = ln x − ax2 − (a − 2) x 的定义域为 (0, +),
不等式 f ( x) 0 ,即 ln x − ax2 − (a − 2) x 0 ,即 ln x ax2 + (a − 2) x ,
两边除以 x ,可得 ln x a(x +1) − 2 , x
,
+
时,
g
(
x
)
0

所以
g
(
x
)

e−1
,

e
2 3
−2
时增函数,在 e 3 , + 时减函数,且
f
−2 e 3
=
e2 3,f Nhomakorabea1 e

(完整版)导数压轴题

(完整版)导数压轴题

导数压轴题9.(能力挑战题)设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点.(2)若f (x )为⎣⎢⎡⎦⎥⎤12,32上的单调函数,求a 的取值范围.[解析] ∵f ′(x )=(ax 2-2ax +1)e x(1+ax 2)2,(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0⇒x 1=12,x 2=32,∴x 1=12是极大值点,x 2=32是极小值点. (2)记g (x )=ax 2-2ax +1,则 g (x )=a (x -1)2+1-a ,∵f (x )为⎣⎢⎡⎦⎥⎤12,32上的单调函数,则f ′(x )在⎣⎢⎡⎦⎥⎤12,32上不变号,∵e x(1+ax 2)2>0, ∴g (x )≥0或g (x )≤0对x ∈⎣⎢⎡⎦⎥⎤12,32恒成立,又g (x )的对称轴为x =1,故g (x )的最小值为g (1),最大值为g ⎝ ⎛⎭⎪⎫12.由g (1)≥0或g ⎝ ⎛⎭⎪⎫12≤0⇒0<a ≤1或a ≥43, ∴a 的取值范围是0<a ≤1或a ≥43.10.(能力挑战题)函数f (x )=x ln x -ax 2-x (a ∈R ).(1)若函数f(x)在x=1处取得极值,求a的值.(2)若函数f(x)的图象在直线y=-x图象的下方,求a的取值范围.(3)求证:2 0132 012<2 0122 013.[解析](1)函数定义域为(0,+∞),f′(x)=ln x-2ax,∵f(x)在x=1处取得极值,∴f′(1)=0,即-2a=0,∴a=0.∴f′(x)=ln x,当x∈(0,1)时,f′(x)<0,当x∈(1,+∞)时,f′(x)>0,∴f(x)在x=1处取得极值.(2)由题意,得x ln x-ax2-x<-x,∴x ln x-ax2<0.∵x∈(0,+∞),∴a>ln xx.设h(x)=ln xx,则h′(x)=1-ln xx2.令h′(x)>0,得0<x<e,∴h(x)在(0,e)上为增函数;令h′(x)<0,得x>e,∴h(x)在(e,+∞)上为减函数.∴h(x)max=h(e)=1e,∴a>1e.(3)由(2)知h (x )=ln xx 在(e ,+∞)上为减函数, ∴h (x )>h (x +1), ∴ln x x >ln (x +1)x +1.∴(x +1)ln x >x ln(x +1), ∴ln x x +1>ln(x +1)x , ∴x x +1>(x +1)x .令x =2 012,得2 0122 013>2 0132 012. 11.已知函数f (x )=ln(1+x )-ax1-x(a ∈R ). (1)求函数f (x )的单调区间;(2)若数列{a m }的通项公式a m =⎝ ⎛⎭⎪⎫1+12 013×2m +1 2 013(m ∈N *),求证:a 1·a 2·…·a m <3(m ∈N *).[解析] (1)由题意,函数的定义域为(-1,1)∪(1,+∞),f ′(x )=11+x-a(1-x )2, 当a ≤0时,注意到11+x >0,a (1-x )2≤0, 所以f ′(x )>0,即函数f (x )的增区间为(-1,1),(1,+∞),无减区间; 当a >0时,f ′(x )=11+x -a (1-x )2 =x 2-(2+a )x +1-a (1+x )(1-x )2, 由f ′(x )=0,得x 2-(2+a )x +1-a =0,此方程的两根x 1=a +2-a 2+8a 2,x 2=a +2+a 2+8a2,其中-1<x 1<1<x 2,注意到(1+x )(1-x )2>0,所以f ′(x )>0⇔-1<x <x 1或x >x 2,f ′(x )<0⇔x 1<x <1或1<x <x 2,即函数f (x )的增区间为(-1,x 1),(x 2,+∞),减区间为(x 1,1),(1,x 2). 综上,当a ≤0时,函数f (x )的增区间为(-1,1)(1,+∞),无减区间; 当a >0时,函数f (x )的增区间为(-1,x 1),(x 2,+∞),减区间为(x 1,1),(1,x 2),其中x 1=a +2-a 2+8a 2,x 2=a +2+a 2+8a2.(2)当a =1时,由(1)知,函数f (x )=ln(1+x )-x1-x在(0,1)上为减函数, 则当0<x <1时,f (x )=ln(1+x )-x1-x<f (0)=0, 即ln(1+x )<x1-x ,令x =12 013×2m+1(m ∈N *),则 ln ⎝ ⎛⎭⎪⎫1+12 013×2m+1<12 013×2m ,12.已知函数f (x )=x 22+a 3ln(x -a -a 2),a ∈R 且a ≠0. (1)讨论函数f (x )的单调性;(2)当a <0时,若a 2+a <x 1<x 2<a 2-a ,证明:f (x 2)-f (x 1)x 2-x 1<a 22-a .[解析] (1)由题意,f ′(x )=x +a 3x -a -a 2=x 2-(a +a 2)x +a 3x -a -a 2=(x -a )(x -a 2)x -a -a 2.令f ′(x )>0,因为x -a -a 2>0,故(x -a )(x -a 2)>0. 当a >0时,因a +a 2>a 且a +a 2>a 2, 所以上面不等式的解集为(a +a 2,+∞), 从而此时函数f (x )在(a +a 2,+∞)上单调递增.当a <0时,因a <a +a 2<a 2,所以上面不等式的解集为(a 2,+∞),从而此时函数f (x )在(a 2,+∞)上单调递增,同理此时f (x )在(a +a 2,a 2]上单调递减.(2)证法一: 要证原不等式成立,只需证明 f (x 2)-f (x 1)<(x 2-x 1)⎝ ⎛⎭⎪⎫a 22-a ,只需证明f (x 2)-⎝ ⎛⎭⎪⎫a 22-a x 2<f (x 1)-⎝ ⎛⎭⎪⎫a 22-a x 1.因为a 2+a <x 1<x 2<a 2-a ,所以原不等式只需证明函数h (x )=f (x )-⎝ ⎛⎭⎪⎫a 22-a x在x ∈(a 2+a ,a 2-a )内单调递减.由(1)知h ′(x )=x -⎝ ⎛⎭⎪⎫a 22-a +a 3x -a -a 2=x 2-32a 2x +a 42+a 32-a 2x -a -a 2,因为x -a -a 2>0,我们考察函数g (x )=x 2-32a 2x +a 42+a 32-a 2,x ∈(a 2+a ,a 2-a ).因a 2+a +a 2-a 2=a 2>x 对称轴=3a 24,且3a 24<a 2-a ,所以g (x )≤g (a 2-a )=0.从而知h ′(x )<0在x ∈(a 2+a ,a 2-a )上恒成立,所以函数h (x )=f (x )-⎝ ⎛⎭⎪⎫a 22-a x 在x ∈(a 2+a ,a 2-a )内单调递减.从而原命题成立.证法二:要证原不等式成立, 只需证明f (x 2)-f (x 1)<(x 2-x 1)⎝ ⎛⎭⎪⎫a 22-a ,只需证明f (x 2)-⎝ ⎛⎭⎪⎫a 22-a x 2<f (x 1)-⎝ ⎛⎭⎪⎫a 22-a x 1.又a 2+a <x 1<x 2<a 2-a , 设g (x )=f (x )-⎝ ⎛⎭⎪⎫a 22-a x ,则欲证原不等式只需证明函数g (x )=f (x )-⎝ ⎛⎭⎪⎫a 22-a x 在x ∈(a 2+a ,a 2-a )内单调递减.由(1)可知g ′(x )=f ′(x )-⎝ ⎛⎭⎪⎫a 22-a=x +a 3x -a -a2-⎝ ⎛⎭⎪⎫a 22-a =x -a -a 2+a 3x -a -a 2+a +a 2-⎝ ⎛⎭⎪⎫a 22-a .因为a <0,所以y =x -a -a 2+a 3x -a -a2在(a 2+a ,a 2-a )上为增函数, 所以g ′(x )≤g ′(a 2-a )=a 2-a -a -a 2+a 3a 2-a -a -a 2+a +a 2-⎝ ⎛⎭⎪⎫a 22-a =0. 从而知g ′(x )<0在x ∈(a 2+a ,a 2-a )上恒成立,所以函数g (x )=f (x )-⎝ ⎛⎭⎪⎫a 22-a x 在x ∈(a 2+a ,a 2-a )内单调递减.从而原命题成立. 13.已知函数f (x )=e x sin x . (1)求函数f (x )的单调区间;(2)如果对于任意的x ∈⎣⎢⎡⎦⎥⎤1,π2,f (x )≥kx 总成立,求实数k 的取值范围;(3)设函数F (x )=f (x )+e x cos x ,x ∈⎣⎢⎡⎦⎥⎤-2 011π2,2 013π2.过点M ⎝ ⎛⎭⎪⎫π-12,0作函数F (x )图象的所有切线,令各切点的横坐标构成数列{x n },求数列{x n }的所有项之和S 的值.[解析] (1)由于f (x )=e x sin x ,所以 f ′(x )=e x sin x +e x cos x =e x (sin x +cos x ) =2e x sin ⎝ ⎛⎭⎪⎫x +π4.当x +π4∈(2k π,2k π+π),即x ∈⎝ ⎛⎭⎪⎫2k π-π4,2k π+3π4时,f ′(x )>0; 当x +π4∈(2k π+π,2k π+2π),即x ∈⎝ ⎛⎭⎪⎫2k π+3π4,2k π+7π4时,f ′(x )<0.所以f (x )的单调递增区间为⎝ ⎛⎭⎪⎫2k π-π4,2k π+3π4(k ∈Z ),单调递减区间为⎝ ⎛⎭⎪⎫2k π+3π4,2k π+7π4(k ∈Z ).(2)令g (x )=f (x )-kx =e x sin x -kx ,要使f (x )≥kx 总成立,只需x ∈⎣⎢⎡⎦⎥⎤0,π2时g (x )min ≥0.g ′(x )=e x (sin x +cos x )-k ,令h (x )=e x (sin x +cos x ),则h ′(x )=2e x cos x >0,x ∈⎝ ⎛⎭⎪⎫0,π2,所以h (x )在⎣⎢⎡⎦⎥⎤0,π2上为增函数, 所以h (x )∈[1,e ]. 对k 分类讨论:①当k ≤1时,g ′(x )≥0恒成立,所以g (x )在⎣⎢⎡⎦⎥⎤0,π2上为增函数,所以g (x )min=g (0)=0,即g (x )≥0恒成立;②当1<k <e 时,g ′(x )=0在[1,e ]上有实根x 0,因为h (x )在⎝ ⎛⎭⎪⎫0,π2上为增函数,所以当x ∈(0,x 0)时,g ′(x )<0,所以g (x 0)<g (0)=0,不符合题意;③当k ≥e 时,g ′(x )≤0恒成立,所以g (x )在⎝ ⎛⎭⎪⎫0,π2上为减函数,则g (x )<g (0)=0,不符合题意;综合①②③可得,所求的实数k 的取值范围是(-∞,1]. (3)因为F (x )=f (x )+e x cos x =e x (sin x +cos x ), 所以F ′(x )=2e x cos x ,设切点坐标为(x 0,e x 0(sin x 0+cos x 0)), 则斜率为F ′(x 0)=2e x 0cos x 0,切线方程为y -e x 0(sin x 0+cos x 0) =2e x 0cos x 0·(x -x 0),将M ⎝ ⎛⎭⎪⎫π-12,0的坐标代入切线方程,得 -e x 0(sin x 0+cos x 0) =2e x 0cos x 0·⎝ ⎛⎭⎪⎫π-12-x 0, 整理得-tan x 0-1=-2⎝ ⎛⎭⎪⎫x 0-π-12, 即tan x 0=2⎝ ⎛⎭⎪⎫x 0-π2,令y 1=tan x ,y 2=2⎝ ⎛⎭⎪⎫x -π2,则这两个函数的图象均关于点⎝ ⎛⎭⎪⎫π2,0对称,它们交点的横坐标也关于π2对称且成对出现,方程tan x =2⎝ ⎛⎭⎪⎫x -π2,x ∈⎣⎢⎡⎦⎥⎤-2 011π2,2 013π2的根即所作的所有切线的切点横坐标构成的数列{x n }的项也关于π2对称且成对出现,在⎣⎢⎡⎦⎥⎤-2 011π2,2 013π2内共构成1 006对,每对的和为π,因此数列{x n }的所有项的和S =1 006π.14.已知函数f (x )=ln x -px +1. (1)求函数f (x )的极值点;(2)若对任意的x >0,恒有f (x )≤0,求p 的取值范围; (3)证明:ln 222+ln 332+…+ln n n 2<2n 2-n -14(n +1)(n ∈N ,n ≥2).[解析] (1)∵f (x )=ln x -px +1, ∴f (x )的定义域为(0,+∞), f ′(x )=1-pxx ,当p ≤0时,f ′(x )>0,f (x )在(0,+∞)上无极值点;当p >0时,令f ′(x )=0, ∴x =1p ∈(0,+∞),f ′(x ),f (x )随x 的变化情况如下表:从上表可以看出:当p >0时,f (x )有唯一的极大值,当x =1p 时,f (x )=-ln p ;即函数f (x )的极值点是⎝ ⎛⎭⎪⎫-1p ,-ln p .(2)当p >0时,在x =1p 处取得极大值f ⎝ ⎛⎭⎪⎫1p =ln 1p ,此极大值也是最大值,要使f (x )≤0恒成立,只需f ⎝ ⎛⎭⎪⎫1p =ln 1p ≤0;∴p ≥1,∴p 的取值范围为[1,+∞). (3)令p =1,由(2)知,ln x -x +1≤0, ∴ln x ≤x -1,∵n ∈N ,n ≥2,ln n 2≤n 2-1,∴ln n 2n 2≤n 2-1n 2=1-1n 2,∴ln 222+ln 332+…+ln n n 2 =12⎝ ⎛⎭⎪⎫ln 2222+ln 3232+…+ln n 2n 2≤12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-122+⎝ ⎛⎭⎪⎫1-132+…+⎝ ⎛⎭⎪⎫1-1n 2 =12⎣⎢⎡⎦⎥⎤(n -1)-⎝ ⎛⎭⎪⎫122+132+…+1n 2<12(n -1)-12⎣⎢⎡⎦⎥⎤12×3+13×4+…+1n (n +1) =12(n -1)⎣⎢⎡⎦⎥⎤1-12(n +1)=2n 2-n -14(n +1)(n ∈N ,n ≥2),得证.10.(2014·银川模拟)已知函数f (x )=ax +bx 2+1在点M (1,f (1))处的切线方程为x -y -1=0.(1)求f (x )的解析式.(2)设函数g (x )=ln x ,证明:g (x )≥f (x )对x ∈[1,+∞)恒成立. [解析] (1)将x =1代入切线方程得f (1)=0, 又f (1)=a +b2,化简得a +b =0.① f ′(x )=a (x 2+1)-(ax +b )·2x(1+x 2)2,f ′(1)=2a -2(a +b )4=-2b 4=-b2, 由f ′(1)=1得-b2=1.② 由①②解得:a =2,b =-2, 所以f (x )=2x -2x 2+1.(2)要证ln x ≥2x -2x 2+1在[1,+∞)上恒成立,即证(x 2+1)ln x ≥2x -2在[1,+∞)上恒成立, 即证x 2ln x +ln x -2x +2≥0在[1,+∞)上恒成立. 设h (x )=x 2ln x +ln x -2x +2, h ′(x )=2x ln x +x +1x -2.∵x ≥1,∴2x ln x ≥0,x +1x ≥2,即h ′(x )≥0. ∴h (x )在[1,+∞)上单调递增,h (x )≥h (1)=0, ∴g (x )≥f (x )在x ∈[1,+∞)上恒成立.11.(2014·河北质检)已知函数f (x )=2ln x -x 2+ax (a ∈R ). (1)当a =2时,求f (x )的图象在x =1处的切线方程;(2)若函数g (x )=f (x )-ax +m 在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点,求实数m 的取值范围;(3)若函数f (x )的图象与x 轴有两个不同的交点A (x 1,0),B (x 2,0),且0<x 1<x 2,求证:f ′⎝⎛⎭⎪⎫x 1+x 22<0(其中f ′(x )是f (x )的导函数). [解析] (1)当a =2时,f (x )=2ln x -x 2+2x ,f ′(x )=2x -2x +2,切点坐标为(1,1),切线的斜率k =f ′(1)=2,则切线方程为y -1=2(x -1),即y =2x -1. (2)g (x )=2ln x -x 2+m ,则g ′(x )=2x -2x =-2(x +1)(x -1)x,∵x ∈⎣⎢⎡⎦⎥⎤1e ,e ,∴当g ′(x )=0时,x =1.当1e <x <1时,g ′(x )>0;当1<x <e 时,g ′(x )<0.故g (x )在x =1处取得极大值g (1)=m -1. 又g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2, g (e)=m +2-e 2,g (e)-g ⎝ ⎛⎭⎪⎫1e =4-e 2+1e 2<0,则g (e)<g ⎝ ⎛⎭⎪⎫1e .∴g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值是g (e).g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点的条件是⎩⎨⎧g (1)=m -1>0,g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2≤0,解得1<m ≤2+1e 2,∴实数m 的取值范围是⎝ ⎛⎦⎥⎤1,2+1e 2. (3)∵f (x )的图象与x 轴交于两个不同的点A (x 1,0),B (x 2,0),∴方程2ln x -x 2+ax =0的两个根为x 1,x 2,则⎩⎪⎨⎪⎧2ln x 1-x 21+ax 1=0,2ln x 2-x 22+ax 2=0,两式相减得a =(x 1+x 2)-2(ln x 1-ln x 2)x 1-x 2.又f (x )=2ln x -x 2+ax ,f ′(x )=2x -2x +a ,则f ′⎝ ⎛⎭⎪⎫x 1+x 22=4x 1+x 2-(x 1+x 2)+a =4x 1+x 2-2(ln x 1-ln x 2)x 1-x 2. 下证4x 1+x 2-2(ln x 1-ln x 2)x 1-x 2<0(*),即证明2(x 2-x 1)x 1+x 2+ln x 1x 2<0,设t =x 1x 2,∵0<x 1<x 2,∴0<t <1,即证明u (t )=2(1-t )t +1+ln t <0在0<t <1上恒成立.∵u ′(t )=-2(t +1)-2(1-t )(t +1)2+1t =1t -4(t +1)2=(t -1)2t (t +1)2,又0<t <1,∴u ′(t )>0, ∴u (t )在(0,1)上是增函数,则u (t )<u (1)=0,从而知2(x 2-x 1)x 1+x 2+ln x 1x 2<0,故(*)式成立,即f ′⎝ ⎛⎭⎪⎫x 1+x 22<0成立. 12.(2014·潍坊模拟)已知函数f (x )=ax 2+x ,g (x )=ln(x +1). (1)若a =1,求F (x )=g (x )-f (x )在(-1,+∞)上的最大值.(2)利用(1)的结论证明:对任意的正整数n ,不等式2+34+49+…+n +1n 2>ln(n +1)都成立.(3)是否存在实数a (a >0),使得方程2g (x -1)x =f ′(x )-(4a -1)在区间⎝ ⎛⎭⎪⎫1e ,e 内有且只有两个不相等的实数根?若存在,请求出a 的取值范围;若不存在,请说明理由.[解析] (1)F ′(x )=1x +1-2x -1=-x (2x +3)x +1,当x ∈(-1,0)时,F ′(x )>0, x ∈(0,+∞)时,F ′(x )<0,∴x =0是F (x )在(-1,+∞)上唯一的极大值点, 从而当x =0时,F (x )取得最大值 F (0)=0. (2)由(1)知∀x ∈(0,+∞),F (x )<0, 即ln(x +1)<x 2+x , 令x =1n 得ln ⎝ ⎛⎭⎪⎫1n +1<1n 2+1n ,即ln(n +1)-ln n <n +1n 2, ∴ln 2-ln 1<2,ln 3-ln 2<34, ……ln(n +1)-ln n <n +1n 2,∴ln(n +1)-ln 1<2+34+49+…+n +1n 2, 即2+34+49+…+n +1n 2>ln(n +1).(3)把方程2g (x -1)x =f ′(x )-(4a -1)整理为ax 2+(1-2a )x -ln x =0.设H (x )=ax 2+(1-2a )x -ln x (x >0),原方程在区间⎝ ⎛⎭⎪⎫1e ,e 内有且只有两个不相等的实数根,即函数H (x )在区间⎝ ⎛⎭⎪⎫1e ,e 内有且只有两个零点. H ′(x )=2ax +(1-2a )-1x =2ax 2+(1-2a )x -1x=(2ax +1)(x -1)x,令H ′(x )=0,因为a >0,解得x =1或x =12a (舍), 当x ∈(0,1)时,H ′(x )<0,H (x )是减函数;当x ∈(1,+∞)时,H ′(x )>0,H (x )是增函数,H (x )在⎝ ⎛⎭⎪⎫1e ,e 内有且只有两个不相等的零点,只需⎩⎪⎨⎪⎧H ⎝ ⎛⎭⎪⎫1e >0,H (x )min<0,H (e )>0,即⎩⎪⎨⎪⎧a e 2+1-2ae +1=(1-2a )e +a +e 2e 2>0,H (1)=a +(1-2a )=1-a <0,a e 2+(1-2a )e -1=(e 2-2e )a +(e -1)>0,∴⎩⎪⎨⎪⎧a <e 2+e2e -1,a >1,a >1-e e 2-2e,解得1<a <e 2+e 2e -1,所以a 的取值范围是⎝ ⎛⎭⎪⎪⎫1,e 2+e 2e -1. 13.(14届衡水中学期中)已知函数f (x )=a ln x +1x -1(a ≠0)在⎝ ⎛⎭⎪⎫0,12内有极值.(1)求实数a 的取值范围;(2)若x 1∈⎝ ⎛⎭⎪⎫0,12,x 2∈(2,+∞)且a ∈⎣⎢⎡⎦⎥⎤12,2时,求证:f (x 2)-f (x 1)≥ln 2+34.[解析] (1)由f (x )=a ln x +1x -1(a ≠0),得 f ′(x )=ax 2-(2a +1)x +ax (x -1)2,∵a ≠0,令g (x )=x 2-⎝ ⎛⎭⎪⎫2+1a x +1, ∴g (0)=1>0.令g ⎝ ⎛⎭⎪⎫12<0或⎩⎪⎨⎪⎧0<1+12a <12,Δ=(2a +1)2-4a 2>0,g ⎝ ⎛⎭⎪⎫12>0,则0<a <2.即a 的取值范围是(0,2).(2)由(1)得:f ′(x )=ax 2-(2a +1)x +ax (x -1)2,设ax 2-(2a +1)x +a =0(0<a <2)的两根为α,β,则⎩⎨⎧α+β=2+1a ,α·β=1解得0<α<12<2<β.当x ∈(0,α)和(β,+∞)时, f ′(x )=ax 2-(2a +1)x +ax (x -1)2>0,函数f (x )单调递增;当x ∈⎝ ⎛⎭⎪⎫α,12和(2,β)时,f ′(x )=ax 2-(2a +1)x +ax (x -1)2<0,函数f (x )单调递减,则f (x 1)≤f (α),f (x 2)≥f (β), 则f (x 2)-f (x 1)≥f (β)-f (α)=a ln β+1β-1-a ln α-1α-1=a ln βα+α-βαβ-(α+β)+1=a ⎝ ⎛⎭⎪⎫ln β2+β-1β⎝ ⎛⎭⎪⎫利用α+β=2+1a ,α·β=1 令h (x )=ln x 2+x -1x ,x >2则 h ′(x )=(x +1)2x 2>0,则函数h (x )单调递增,h (x )≥h (2)=2ln 2+32, ∴ln β2+β-1β≥2ln 2+32>0. ∵a ∈⎣⎢⎡⎭⎪⎫12,2,则a ⎝ ⎛⎭⎪⎫ln β2+β-1β≥ln 2+34,∴f (x 1)-f (x 2)≥ln 2+34.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历年导数压轴经典题目证题中常用的不等式:① ln 1(0)x x x ≤-> ②≤ln +1(1)x x x ≤>-() ③1x e x ≥+ ④ 1xex -≥-⑤ ln 1(1)12x x x x -<>+ ⑥ 22ln 11(0)22x x x x <->⑦ 1≥e^x (1-x )1.已知函数321()3f x x ax bx =++,且'(1)0f -=(1) 试用含a 的代数式表示b,并求()f x 的单调区间;(2)令1a =-,设函数()f x 在1212,()x x x x <处取得极值,记点M (1x ,1()f x ),N(2x ,2()f x ),P(,()m f m ), 12x m x <<,请仔细观察曲线()f x 在点P 处的切线与线段MP 的位置变化趋势,并解释以下问题: (I )若对任意的m ∈(t, x 2),线段MP 与曲线f(x)均有异于M,P 的公共点,试确定t 的最小值,并证明你的结论;(II )若存在点Q(n ,f(n)), x ≤n< m ,使得线段PQ 与曲线f(x)有异于P 、Q 的公共点,请直接写出m 的取值范围(不必给出求解过程)2. 本小题满分14分)已知函数,,且是函数的极值点。

(Ⅰ)求实数的值; (Ⅱ)若方程有两个不相等的实数根,求实数的取值范围;(Ⅲ)若直线是函数的图象在点处的切线,且直线与函数的图象相切于点,,求实数的取值范围。

1 x x3. 已知函数()()()()201,10.x f x ax bx c e f f =++==且(I )若()f x 在区间[]0,1上单调递减,求实数a 的取值范围;(II )当a=0时,是否存在实数m 使不等式()224141x f x xe mx x x +≥+≥-++对任意x R ∈恒成立?若存在,求出m 的值,若不存在,请说明理由4. 已知:二次函数()g x 是偶函数,且(1)0g =,对,()1x R g x x ∀∈≥-有恒成立,令1()()ln ,()2f xg x m x m R =++∈(I )求()g x 的表达式;(II )当0m <∃≤时,若x>0,使f(x)0成立,求m 的最大值;(III )设12,()()(1),m H x f x m x <<=-+证明:对12,[1,]x x m ∀∈,恒有12|()()| 1.H x H x -<5. 已知函数()(a x ax x f ln -=>)().28,0+=x xx g (I )求证();ln 1a x f +≥(II )若对任意的⎥⎦⎤⎢⎣⎡∈32,211x ,总存在唯一的⎥⎦⎤⎢⎣⎡∈e ex ,122(e 为自然对数的底数),使得()()21x f x g =,求实数a 的取值范围.6. 已知函数2()8,()6ln .f x x x g x x m =-+=+ (I )求()f x 在区间[],1t t +上的最大值();h t(II )是否存在实数,m 使得()y f x =的图象与()y g x =的图象有且只有三个不同的交点?若存在,求出m 的取值范围;若不存在,说明理由。

7. 已知函数()xf x e kx =-,x ∈R(Ⅰ)若k=e ,试确定函数f (x )的单调区间;(Ⅱ)若k>0,且对于任意,()0x R f x ∈>恒成立,试求实数k 的取值范围;(Ⅲ)设函数F (x )=f (x )+f (x )+f (-x ),求证:12(1)(2)()(2)n n F F F n e +⋅⋅⋅>+(*n N ∈)8. (1)已知函数f(x)=x 3=x ,其图像记为曲线C. (i )求函数f(x)的单调区间;(ii)证明:若对于任意非零实数x 1,曲线C 与其在点P 1(x 1,f(x 1)处的切线交于另一点P 2(x 2,f(x 2).曲线C 与其在点P 2处的切线交于另一点P 3 (x 3 f(x 3)),线段P 1P 2,P 2P 3与曲线C 所围成封闭图形的面积分别记为S 1,S 2,则12s s 为定值: (Ⅱ)对于一般的三次函数g (x )=ax 3+bx 2+cx+d(a ≠0),请给出类似于(Ⅰ)(ii)的正确命题,并予以证明。

9.已知函数R a ex ax e x f x∈-+=,)(2(Ⅰ)若曲线)(x f y =在点))1(,1(f 处的切线平行于x 轴,求函数)(x f 的单调区间; (Ⅱ)试确定a 的取值范围,使得曲线)(x f y =上存在唯一的点P ,曲线在该点处的切线与曲线只有一个公共点P 。

10.已知f (x )=222+-x ax (x ∈R )在区间[-1,1]上是增函数.(Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f (x )=x1的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范围;若不存在,请说明理由.11. 已知函数f (x )=ln x ,g(x )=21ax 2+b x ,a ≠0. (Ⅰ)若b =2,且h (x )=f (x )-g(x )存在单调递减区间,求a 的取值范围;(Ⅱ)设函数f (x )的图象C 1与函数g(x )图象C 2交于点P 、Q ,过线段PQ 的中点作x 轴的垂线分别交C 1,C 2于点M 、N ,证明C 1在点M 处的切线与C 2在点N 处的切线不平行.12. 已知()n n n A a b ,(n ∈N*)是曲线xy e =上的点,1a a =,n S 是数列{}n a 的前n 项和,且满足22213n n n S n a S -=+,0n a ≠,234n =,,,….(I )证明:数列2n n b b +⎧⎫⎨⎬⎩⎭(2n ≤)是常数数列; (II )确定a 的取值集合M ,使a M ∈时,数列{}n a 是单调递增数列; (III )证明:当a M ∈时,弦1n n A A +(n ∈N*)的斜率随n 单调递增.13已知函数f (x )=ln 2(1+x)-21x x+. (I)求函数f (x ) 的单调区间; (Ⅱ)若不等式1(1)a ae n++≤对任意的N*n ∈都成立(其中e 是自然对数的底数).求α的最大值.14. 已知函数),()(2R c b c bx x x f ∈++=,对任意R x ∈,恒有).()('x f x f ≤ (I )证明:当0≥x 时,;)()(2c x x f +≤(II )若对满足题设条件的任意b ,c ,不等式)()()(22b c M b f c f -≤-恒成立,求M的最小值.15. 已知函数3()f x x =,()g x x =(Ⅰ)求函数()()()h x f x g x =-的零点个数。

并说明理由;(Ⅱ)设数列{ n a }(*n N ∈)满足10(0)a a =>,1()()n n f a g a +=,证明:存在常数M,使得 对于任意的*n N ∈,都有n a ≤ M .16. 已知函数()f x =axe x =-,其中a ≠0.(1) 若对一切x ∈R ,()f x ≥1恒成立,求a 的取值集合.(2)在函数()f x 的图像上取定两点11(,())A x f x ,22(,())B x f x 12()x x <,记直线AB 的斜率为K ,问:是否存在x 0∈(x 1,x 2),使0()f x k '>成立?若存在,求0x 的取值范围;若不存在,请说明理由.17.设()ln(1)(,,,)f x x ax b a b R a b =+++∈为常数,曲线()y f x =与直线32y x =在(0,0)点相切。

(Ⅰ)求,a b 的值。

(Ⅱ)证明:当02x <<时,9()6xf x x <+。

18. 已知函数()()21xf x x e -=+⋅()3,12cos .2x g x ax x x =+++当[]0,1x ∈时,(I )求证:()11-;1x f x x≤≤+ (II )若()()f x g x ≥恒成立,求实数a 的取值范围。

19. 已知函数8()(cos )(2)(sin 1)3f x x x x x π=-+-+,2()3()cos 4(1sin )ln(3)xg x x x x x π=--+-.证明:(1)存在唯一0(0,)2x π∈,使0()0f x =;(2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+<.20. 已知函数()()()1ln 1,.xf x x a x a Rg x xe -=--∈=(I )求()g x 的极值;(II )设2a =,函数()()322m h x x x f x ⎡⎤'=++⎢⎥⎣⎦在区间()2,3上不是单调函数,求实数m的取值范围.(III )当0a <时,若对任意的 []()()()()()1212212111,3,4,x x x x f x f x g x g x ∈≠-<-恒成立,求a 的最小值.21.已知函数()ln ,().xf x xg x e == ⑴若函数φ (x ) = f (x )-11x x ,求函数φ (x )的单调区间; ⑵设直线l 为函数f (x )的图象上一点A (x 0,f (x 0))处的切线,证明:在区间(1,+∞)上存在唯一的x 0,使得直线l 与曲线y =g (x )相切.22. 已知函数2()ln ,()3f x x x g x x ax ==-+-. ⑴求()f x 在[,2](0)t t t +>上的最小值;⑵若存在1,x e e ⎡⎤∈⎢⎥⎣⎦(e 是常数,e =2.71828⋅⋅⋅)使不等式2()()f x g x ≥成立,求实数a 的取值范围;⑶证明对一切(0,),x ∈+∞都有12ln x x e ex>-成立.23. 设函数1()ln ().f x x a x a R x =--∈⑴讨论函数()f x 的单调性;⑵若()f x 有两个极值点12,x x ,记过点11(,()),A x f x 22(,())B x f x 的直线斜率为k ,问:是否存在a ,使得2k a =-?若存在,求出a 的值;若不存在,请说明理由.24.已知函数()()323,f x ax bx x a b R =+-∈在点()()1,1f 处的切线方程为20y +=.⑴求函数()f x 的解析式;⑵若对于区间[]2,2-上任意两个自变量的值12,x x 都有()()12f x f x c -≤,求实数c 的最小值;⑶若过点()()2,2M m m ≠可作曲线()y f x =的三条切线,求实数m 的取值范围.25. 已知a ∈R ,函数()ln 1,()(ln 1),x af x xg x x e x x=+-=-+(其中 2.718e ≈) (I )求函数()f x 在区间(]0,e 上的最小值;(II )是否存在实数(]00,x e ∈,使曲线()y g x =在点0x x =处的切线与y 轴垂直?若存在,求出0x 的值;若不存在,请说明理由。

相关文档
最新文档