STM32滴答时钟
stm32数字时钟课程设计
stm32 数字时钟课程设计一、课程目标知识目标:1. 学生能理解STM32的基本结构和工作原理,掌握其编程方法。
2. 学生能掌握数字时钟的基本原理,包括时钟源、分频器、计数器等组成部分。
3. 学生能了解实时时钟(RTC)的功能及其在STM32中的应用。
技能目标:1. 学生能运用C语言编写程序,实现STM32控制数字时钟的功能。
2. 学生能通过调试工具,对程序进行调试和优化,确保数字时钟的准确性。
3. 学生能运用所学知识,设计具有实用价值的数字时钟产品。
情感态度价值观目标:1. 培养学生对电子技术和编程的兴趣,激发其探究精神。
2. 培养学生团队合作意识,使其在项目实施过程中学会相互沟通、协作。
3. 培养学生严谨、细致、负责的工作态度,提高其解决实际问题的能力。
课程性质:本课程为实践性较强的课程,结合STM32和数字时钟知识,培养学生的动手能力和实际操作技能。
学生特点:学生具备一定的电子技术基础和C语言编程能力,对实际操作感兴趣,但可能缺乏项目实践经验。
教学要求:注重理论与实践相结合,引导学生主动探索,提高其分析问题、解决问题的能力。
在教学过程中,关注学生的个体差异,因材施教,使每位学生都能在原有基础上得到提高。
将课程目标分解为具体的学习成果,便于后续教学设计和评估。
二、教学内容本课程教学内容主要包括以下几部分:1. STM32基本原理与编程基础:介绍STM32的内部结构、工作原理,C语言编程基础及其在STM32中的应用。
- 教材章节:第一章至第三章- 内容:微控制器基础、STM32硬件结构、C语言编程基础、STM32编程环境搭建。
2. 数字时钟原理与设计:讲解数字时钟的基本原理、组成部分以及设计方法。
- 教材章节:第四章至第五章- 内容:时钟源、分频器、计数器、实时时钟(RTC)、数字时钟设计方法。
3. STM32实现数字时钟功能:结合STM32和数字时钟知识,指导学生动手实践,实现数字时钟功能。
stm32的时钟配置(非常详细)
stm32的时钟配置(⾮常详细)⼤家都知道在使⽤单⽚机时,时钟速度决定于外部晶振或内部RC振荡电路的频率,是不可以改变的。
⽽ARM的出现打破了这⼀传统的法则,可以通过软件随意改变时钟速度。
这⼀出现让我们的设计更加灵活,但是也给我们的设计增加了复杂性。
为了让⽤户能够更简单的使⽤这⼀功能,STM32的库函数已经为我们设计的更加简单⽅便。
在⽐较靠前的版本中,我们需要向下⾯那样设置时钟:ErrorStatus HSEStartUpStatus;void RCC_Configuration(void){RCC_DeInit(); // RCC system reset(for debug purpose)RCC_HSEConfig(RCC_HSE_ON); // Enable HSEHSEStartUpStatus = RCC_WaitForHSEStartUp(); // Wait till HSE is readyif (HSEStartUpStatus == SUCCESS) // 当HSE准备完毕切振荡稳定后{RCC_HCLKConfig(RCC_SYSCLK_Div1); // HCLK = SYSCLKRCC_PCLK2Config(RCC_HCLK_Div1); // PCLK2 = HCLKRCC_PCLK1Config(RCC_HCLK_Div2); // PCLK1 = HCLK/2FLASH_SetLatency(FLASH_Latency_2); // Flash 2 wait stateFLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); // Enable Prefetch BufferRCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9); // PLLCLK = 8MHz * 9 = 72 MHzRCC_PLLCmd(ENABLE); // Enable PLLwhile(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET){; // Wait till PLL is ready}RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); // Select PLL as system clock sourcewhile (RCC_GetSYSCLKSource() != 0x08) // Wait till PLL is used as system clock source {;}}}随之函数库的不断升级,到3.0以上时,我们就不⽤再这样编写时钟设置了,我们只要做如下两部即可:第⼀个: system_stm32f10x.c 中 #define SYSCLK_FREQ_72MHz 72000000第⼆个:调⽤SystemInit()说明:在stm32固件库3.0中对时钟频率的选择进⾏了⼤⼤的简化,原先的⼀⼤堆操作都在后台进⾏。
stm32定时器时钟以及中间对齐模式
stm32定时器时钟以及中间对齐模式在永磁同步电机的控制中,需要对电机的三相定⼦施加⼀定的电压,才能控制电机转动。
现在⽤的较多的是SVPWM(SVPWM的具体原理会在后⾯另写⼀篇博客说明),要想产⽣SVPWM波形,需要控制的三相电压呈如下形式,即A、B、C三相的电压是中间对齐的,这就需要⽤到stm32定时器的中间对齐模式了。
1、stm32的时钟树stm32的时钟树如下图所⽰,简单介绍⼀下stm32时钟的配置过程。
以外部时钟作为时钟源为例。
HSE代表外部时钟(假设为8M)、SYSCLK为系统时钟,经过倍频器之后变成168M、SYSCLK经过AHB预分频器(假设分频系数为1)后变成HCLK时钟等于系统时钟SYSCLK,HCLK即AHB外部总线时钟,经过APB预分频器分出APB1时钟(分频系数为2,低速设备SYSCLK/4)与APB2时钟(分频系数为1,⾼速设备SYSCLK/2)HSE->SYSCLK->HCLK->APB1、APB2。
针对stm32f427的配置源码如下static void SetSysClock(void){#if defined (STM32F40_41xxx) || defined (STM32F427_437xx) || defined (STM32F429_439xx) || defined (STM32F401xx)/******************************************************************************//* PLL (clocked by HSE) used as System clock source *//******************************************************************************/__IO uint32_t StartUpCounter = 0, HSEStatus = 0;/* Enable HSE */RCC->CR |= ((uint32_t)RCC_CR_HSEON);/* Wait till HSE is ready and if Time out is reached exit */do{HSEStatus = RCC->CR & RCC_CR_HSERDY;StartUpCounter++;} while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));if ((RCC->CR & RCC_CR_HSERDY) != RESET){HSEStatus = (uint32_t)0x01;}else{HSEStatus = (uint32_t)0x00;}if (HSEStatus == (uint32_t)0x01){/* Select regulator voltage output Scale 1 mode */RCC->APB1ENR |= RCC_APB1ENR_PWREN;PWR->CR |= PWR_CR_VOS;/* HCLK = SYSCLK / 1*/RCC->CFGR |= RCC_CFGR_HPRE_DIV1;//AHB时钟#if defined (STM32F40_41xxx) || defined (STM32F427_437xx) || defined (STM32F429_439xx)/* PCLK2 = HCLK / 2*/RCC->CFGR |= RCC_CFGR_PPRE2_DIV2;//APB2时钟/* PCLK1 = HCLK / 4*/RCC->CFGR |= RCC_CFGR_PPRE1_DIV4;//APB1时钟#endif /* STM32F40_41xxx || STM32F427_437x || STM32F429_439xx *//* Configure the main PLL */RCC->PLLCFGR = PLL_M | (PLL_N << 6) | (((PLL_P >> 1) -1) << 16) |(RCC_PLLCFGR_PLLSRC_HSE) | (PLL_Q << 24);/* Enable the main PLL */RCC->CR |= RCC_CR_PLLON;/* Wait till the main PLL is ready */while((RCC->CR & RCC_CR_PLLRDY) == 0){}#if defined (STM32F427_437xx) || defined (STM32F429_439xx)/* Enable the Over-drive to extend the clock frequency to 180 Mhz */PWR->CR |= PWR_CR_ODEN;while((PWR->CSR & PWR_CSR_ODRDY) == 0){}PWR->CR |= PWR_CR_ODSWEN;while((PWR->CSR & PWR_CSR_ODSWRDY) == 0){}/* Configure Flash prefetch, Instruction cache, Data cache and wait state */FLASH->ACR = FLASH_ACR_PRFTEN | FLASH_ACR_ICEN |FLASH_ACR_DCEN |FLASH_ACR_LATENCY_5WS; #endif /* STM32F427_437x || STM32F429_439xx *//* Select the main PLL as system clock source */RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));RCC->CFGR |= RCC_CFGR_SW_PLL;/* Wait till the main PLL is used as system clock source */while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS ) != RCC_CFGR_SWS_PLL);{}}else{ /* If HSE fails to start-up, the application will have wrong clockconfiguration. User can add here some code to deal with this error */}}2、stm32定时器的时钟stm32定时器分为⾼级定时器(TIM1与TIM8)、通⽤定时器(TIM2-TIM5、TIM9-TIM14)、基本定时器(TIM6、TIM7)。
stm32中滴答定时器的工作原理
stm32中滴答定时器的工作原理滴答定时器(SysTick)是STM32微控制器中的一种基本定时器,用于实现系统级的定时和延时功能。
它通常用于硬件抽象层的操作系统内核的实现以及其他需要高精度定时的应用场景。
滴答定时器的工作原理如下:1.时钟源选择:滴答定时器使用CPU时钟作为输入时钟,因此在使用之前需要首先设置CPU的主频。
CPU时钟可以是外部晶振,也可以是内部RC振荡器,由系统初始化代码进行设置。
2.模式选择和初始化:滴答定时器有两种工作模式,分别是中断模式和定时器模式。
中断模式下,定时器溢出时会产生中断请求,用于实时操作系统的任务调度;在定时器模式下,定时器溢出后会自动清零,用于延时等功能。
通过设置控制寄存器(STK_CTRL)可以选择工作模式和初始化定时器的值。
3.计数器递减:滴答定时器的计数值从初始化值开始递减,直到计数值为零时溢出。
每个CPU时钟周期,计数值会减去一个单位。
CPU的主频越高,滴答定时器的计数速度就越快。
4.滴答定时器中断:当计数值减少到零时,滴答定时器会产生一个溢出中断。
在中断处理函数中,可以执行一些任务,如系统时钟更新、任务调度和延时等。
5. 重载和连续计数:滴答定时器的计数值可以自动加载初始化值,并在溢出后继续计数。
通过设置控制寄存器的使能位(enable)可以实现此功能。
当使能位为1时,计数器溢出后会自动重新加载初始化值并继续计数。
7.滴答定时器的应用:滴答定时器可用于实现微秒级的延时函数,用于生成固定时间间隔的任务调度,或者用于计算程序执行的时间等。
总之,滴答定时器是STM32微控制器中的一种基本定时器,可以用于实现系统级的定时和延时功能。
它通过使用CPU时钟作为输入时钟源,不断递减计数器的值,当计数器溢出时产生中断并执行相应的任务。
通过设置工作模式、初始化值和使能位等参数,可以配置滴答定时器的功能和精度。
它在实时操作系统的任务调度、时钟更新和延时等方面起着重要的作用。
STM32F0xx 微控制器的时钟配置介绍
2 年 05 月
文档 ID 022837 第 1 版
1/16
目录
目录
AN4055
1
术语表 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 专家模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4
已知限制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
文档 ID 022837 第 1 版
3/16
3
图片索引
图片索引
AN4055
图 1. 图 2. 图 3. 图 4. 图 5. 图 6. 图 7.
时钟结构图 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 I2S 时钟结构图 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 向导模式用户界面 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 选择时钟源 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 文件生成错误 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 专家模式用户界面 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 超出系统时钟频率 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
STM32时钟详解
STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为48MHz的时钟源。该时钟源只能从PLL输出端获 取,可以选择为1.5分频或者1分频,也就是,当需要使用USB模块时,PLL必须使能,并且时钟频率配置为48MHz或72MHz。
在以上的时钟输出中,有很多是带使能控制的,例如AHB总线时钟、内核时钟、各种APB1外设、APB2外设等等。当需要 使用某模块时,记得一定要先使能对应的时钟。
需要注意的是定时器的倍频器,当APB的分频为1时,它的倍频值为1,否则它的倍频值就为2。
连接在APB1(低速外设)上的设备有:电源接口、备份接口、CAN、USB、I2C1、I2C2、UART2、UART3、SPI2、窗口看门 狗、Timer2、Timer3、Timer4。注意USB模块虽然需要一个单独的48MHz时钟信号,但它应该不是供USB模块工作的时钟,而 只是提供给串行接口引擎(SIE)使用的时钟。USB模块工作的时钟应该是由APB1提供的。
同时这种设定也是有规律可循的设定参数也是有顺序规范的这是应用中应当注意的例如pll的设定需要在使能之前一旦pll使能后参数不可更经过此番设置后由于我的电路板上是8mhz晶振所以系统时钟为72mhz高速总线和低速总线2都为72mhz低速总线1为36mhzadc时钟为12mhzusb时钟经过15分频设置就可以实现48mhz的数据传输
static void RCC_Config(void)
第2页
STM32时钟讲解.txt {
/* 这里是重置了RCC的设置,类似寄存器复位 */ RCC_DeInit();
stm32时钟概念
stm32时钟概念
在STM32微控制器中,时钟是控制系统时序和同步的重要元件。
时钟通过提供时钟信号来驱动计时器、外设和处理器核心等,实现数据传输和操作的同步。
STM32微控制器使用了多种类型的时钟,包括系统时钟、高
速外设时钟、低速外设时钟和RTC(实时时钟)时钟。
以下
是对每种时钟的概念的简要描述:
1. 系统时钟:
系统时钟(SYSCLK)是微控制器所有部分的主时钟源,它
控制处理器核心以及许多外设的运行。
系统时钟的频率可以通过配置寄存器来选择,通常是通过增加倍频器或分频器来实现。
2. 高速外设时钟(HCLK):
高速外设时钟是系统时钟分频得到的一个时钟,它驱动一些
对实时性要求较高的外设,例如DMA(直接内存访问控制器)和GPIO(通用输入/输出端口)等。
3. 低速外设时钟(PCLK):
低速外设时钟也是通过系统时钟分频得到的一个时钟,它驱
动一些低速外设,如USART(通用异步收发传输器)和I2C (串行通信接口)等。
4. RTC时钟:
RTC时钟是由外部低速晶体振荡器提供的时钟,用于实时时钟和日历功能。
它通常用于实现计时、日期和闹钟等功能。
时钟源的选择和设置可以通过微控制器的时钟控制寄存器来完成,这些寄存器提供了配置时钟的选项。
根据具体的应用需求,可以选择不同的时钟源和频率来优化系统性能和功耗。
stm32数字时钟课程设计
stm32数字时钟课程设计一、课程目标知识目标:1. 学生能理解STM32的内部时钟结构和定时器工作原理;2. 学生能掌握利用STM32设计数字时钟的基本步骤和方法;3. 学生能了解数字时钟的显示原理,并掌握与STM32定时器相结合的编程技巧;4. 学生能解释数字时钟在实际应用中的重要性。
技能目标:1. 学生能运用C语言进行STM32定时器的编程;2. 学生能通过调试工具解决数字时钟编程中的问题;3. 学生能设计并实现一个具有基本功能的数字时钟,包括时、分、秒显示和闹钟功能;4. 学生能对所设计的数字时钟进行测试和优化。
情感态度价值观目标:1. 学生培养对电子制作的兴趣,增强实践操作的自信心;2. 学生培养团队协作意识,学会在项目中相互沟通、共同解决问题;3. 学生通过数字时钟设计,认识到技术与生活的紧密联系,激发创新意识;4. 学生培养严谨的科学态度,注重实验数据的准确性和程序的可维护性。
二、教学内容1. STM32内部时钟结构:介绍STM32的时钟树,讲解时钟源、时钟分频、时钟使能等概念,为学生设计数字时钟提供基础理论知识。
2. 定时器工作原理:详细讲解STM32定时器的工作原理,包括计数器、预分频器、自动重装载寄存器等组成部分,使学生了解定时器在数字时钟中的作用。
3. C语言编程:回顾与定时器编程相关的C语言知识,包括数据类型、运算符、控制语句等,为编写数字时钟程序打下基础。
4. 数字时钟设计步骤:按照以下步骤组织教学内容:a. 硬件设计:讲解如何使用STM32最小系统板,选择合适的显示屏和驱动芯片,连接电路;b. 软件设计:介绍定时器初始化、中断处理、时间计算等编程方法;c. 程序调试:指导学生使用调试工具,如Keil、ST-Link等,进行程序调试;d. 测试与优化:要求学生完成数字时钟设计后进行功能测试,并根据测试结果进行优化。
5. 教材章节关联:教学内容与教材第3章“STM32定时器”和第5章“STM32中断与事件”相关,结合实例进行讲解,使学生更好地掌握相关知识。
基于STM32定时中断的电子闹钟设计
基于定时中断的电子闹钟一、系统主要功能可以通过LCD的输出显示公历和农历时间,通过按键设置时间和闹钟;通过蜂鸣器响应闹钟。
三、电路原理图、接口、硬件构成1.原理图2.接口本次实验使用了串口、定时器、中断接口。
3.硬件组成(1)实验设计程序流程图如图左所示,中断流程图如图右所示。
(2)该设计分为软件设计和硬件设计两大模块,硬件电路由ARM 最小系统电路、时钟显示电路和闹钟提醒电路组成,采用stm32f103RCT6芯片,芯片管脚图示如下。
(3)时钟电路此电路主要是复位电路和时钟电路两部分,其中复位电路采用按键手动复位和上电自动复位组合,电路如图所示:晶振采用的是 8MHz 和 32.786KHz , 8MKz 分别接 STM32 的5 脚和 6 脚, 32.786KHz 分别接 STM32 的 3 脚和 4 脚。
(4)闹钟提醒电路本次实验设计的闹钟提醒电路为蜂鸣器电路,接入芯片的PC7引脚,当时间为设置闹钟时间时,蜂鸣器工作,发出响声,提醒电路如图所示。
四、核心代码(带注释)#include "delay.h"#include "sys.h"#include "lcd.h"#include "dht11.h"#include "ds1302.h"#include "KEY.h"#include "beep.h"u8 temp;u8 humi;u8 t=0;u8 flag=0,flag1=0,flag2=0,flag3=1; u8 a,b,c;int min1=10,hour1=10;DHT11_Data_TypeDef DHT11_Data;void TIM3_Int_Init(u16 arr,u16 psc){TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;NVIC_InitTypeDef NVIC_InitStructure;RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); //时钟使能//定时器TIM3初始化TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载计时器的值TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //设置时钟分割:TDTS = Tck_tim TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //TIM向上计数模式TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); //根据指定的参数初始化TIMx的时间基数单位TIM_ITConfig(TIM3,TIM_IT_Update,ENABLE ); //使能指定的TIM3中断,允许更新中断//中断优先级NVIC设置NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn; //TIM中断NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //先占优先级0级NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; //从优先级3级NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道被使能NVIC_Init(&NVIC_InitStructure); //初始化NVIC寄存器TIM_Cmd(TIM3, DISABLE); //使能TIMx }void gui0(u8 mode){LCD_ShowPicture(0,0,480,320);if(flag3==1){LCD_ShowPicture3(445,0,479,34);}LCD_ShowChinese(0+40,0,0,BLUE,32,mode);//字LCD_ShowChinese(32+40,0,8,BLUE,32,mode);LCD_ShowChinese(64+40,0,9,BLUE,32,mode);LCD_ShowChinese(96+40,0,10,BLUE,32,mode);LCD_ShowNum(52,40,temp,2,BLUE,32,mode);//温度LCD_ShowChinese(132,40,12,BLUE,32,mode);LCD_ShowChinese(128+80+30,0,0,BLUE,32,mode);LCD_ShowChinese(160+80+30,0,8,BLUE,32,mode);LCD_ShowChinese(192+80+30,0,11,BLUE,32,mode);LCD_ShowChinese(224+80+30,0,10,BLUE,32,mode);LCD_ShowNum(248+30,40,humi,2,BLUE,32,mode);LCD_ShowChar(280+30,40,'%',BLUE,32,mode);LCD_ShowNum(20,80,hour/10,1,BLUE,160,mode);//时间 LCD_ShowNum(110,80,hour%10,1,BLUE,160,mode);LCD_ShowChar(200,65,':',BLUE,160,mode);LCD_ShowNum(290,80,min/10,1,BLUE,160,mode);LCD_ShowNum(380,80,min%10,1,BLUE,160,mode);LCD_ShowNum(0,250,year+2000,4,BLUE,32,mode);LCD_ShowChinese(64,250,13,BLUE,32,mode);LCD_ShowNum(96,250,month,2,BLUE,32,mode);LCD_ShowChinese(128,250,14,BLUE,32,mode);LCD_ShowNum(160,250,day,2,BLUE,32,mode);LCD_ShowChinese(192,250,15,BLUE,32,mode);LCD_ShowChinese(224,250,16,BLUE,32,mode);LCD_ShowChinese(256,250,week,BLUE,32,mode);LCD_ShowNum(0,283,hour1,2,BLUE,32,mode);LCD_ShowChar(33,283,':',BLUE,32,mode);LCD_ShowNum(50,283,min1,2,BLUE,32,mode);}void keyscan(u8 mode){switch(t){case KEY0_PRES:if(min1==min&&hour1==hour){flag2=1;BEEP(OFF);}switch(flag){case 1: hour++; if(hour>23)hour=0;LCD_ShowPicture2(20,80,190,240);LCD_ShowNum(20,80,hour/10,1,BLUE,160,mode);//时间LCD_ShowNum(110,80,hour%10,1,BLUE,160,mode);break;case 2: min++; if(min>59)min=0;LCD_ShowPicture2(290,80,460,240);LCD_ShowNum(290,80,min/10,1,BLUE,160,mode); LCD_ShowNum(380,80,min%10,1,BLUE,160,mode); break;case 3: year++; LCD_ShowPicture2(0,250,64,282);LCD_ShowNum(0,250,year+2000,4,BLUE,32,mode);break;case 4: month++; if(month>12) month=1;LCD_ShowPicture2(96,250,128,282); LCD_ShowNum(96,250,month,2,BLUE,32,mode);break;case 5: day++; if(day>31) day=1;LCD_ShowPicture2(160,250,192,282);LCD_ShowNum(160,250,day,2,BLUE,32,mode); break; case 6: week++; if(week>7) week=1;LCD_ShowPicture2(256,250,288,282);LCD_ShowChinese(256,250,week,BLUE,32,mode);break;case 7: hour1++; if(hour1>23)hour1=0;LCD_ShowPicture2(0,283,32,315);LCD_ShowNum(0,283,hour1,2,BLUE,32,mode);break;case 8: min1++;if(min1>59)min1=0;LCD_ShowPicture2(50,283,82,315);LCD_ShowNum(50,283,min1,2,BLUE,32,mo de);break;case 9: flag3=1; LCD_ShowPicture3(445,0,479,34); break;default: break;}break;case KEY1_PRES:if(min1==min&&hour1==hour){flag2=1;BEEP( OFF );}switch(flag){case 1: hour--; if(hour<0)hour=23;LCD_ShowPicture2(20,80,190,240);LCD_ShowNum(20,80,hour/10,1,BLUE,160,mode);//时间LCD_ShowNum(110,80,hour%10,1,BLUE,160,mode); break;case 2: min--; if(min<0) min=59;LCD_ShowPicture2(290,80,460,240);LCD_ShowNum(290,80,min/10,1,BLUE,160,mode);LCD_ShowNum(380,80,min%10,1,BLUE,160,mode); break;case 3: year--; LCD_ShowPicture2(0,250,64,282);LCD_ShowNum(0,250,year+2000,4,BLUE,32,mode);break;case 4: month--; if(month<1) month=12; LCD_ShowPicture2(96,250,128,282);LCD_ShowNum(96,250,month,2,BLUE,32,mode);break;case 5: day--; if(day<1) day=31;LCD_ShowPicture2(160,250,192,282);LCD_ShowNum(160,250,day,2,BLUE,32,mode); break;case 6: week--; if(week<1) week=7;LCD_ShowPicture2(256,250,288,282);LCD_ShowChinese(256,250,week,BLUE,32,mode); break; case 7: hour1--; if(hour1<0)hour1=23;LCD_ShowPicture2(0,283,32,315);LCD_ShowNum(0,283,hour1,2,BLUE,32,mode);break;case 8: min1--;if(min1<0)min1=59;LCD_ShowPicture2(50,283,82,315);LCD_ShowNum(50,283,min1,2,BLUE,32,mo de);break;case 9: flag3=0; LCD_ShowPicture2(445,0,480,36);break;default: break;}break;case WKUP_PRES:cc1();flag++;switch(flag){case 1: TIM_Cmd(TIM3, DISABLE); LCD_DrawLine(20,242,190,243,BLUE);break;case 2: LCD_ShowPicture1(242,243);LCD_DrawLine(290,242,460,243,BLUE); break;case 3: LCD_ShowPicture1(242,243); LCD_DrawLine(0,287,64,288,BLUE);break;case 4: LCD_ShowPicture1(287,288);LCD_DrawLine(96,287,128,288,BLUE);break;case 5: LCD_ShowPicture1(287,288); LCD_DrawLine(160,287,192,288,BLUE); break; case 6: LCD_ShowPicture1(287,288);LCD_DrawLine(256,287,288,288,BLUE); break; case 7: LCD_ShowPicture1(287,288); LCD_DrawLine(0,316,32,317,BLUE);break; case 8: LCD_ShowPicture1(316,317); LCD_DrawLine(50,316,82,317,BLUE);break;case 9: LCD_ShowPicture1(316,317); LCD_DrawLine(445,37,479,38,BLUE);break;case 10: LCD_ShowPicture2(445,37,479,38);ds_wtime();a=sec;b=min;c=hour;TIM_Cmd(TIM3, ENABLE);flag=0;break;default: break;}break;default: delay_ms(5); break;}}int main(void){delay_init();NVIC_Configuration();DHT11_Init ();KEY_Init();BEEP_GPIO_Config();BEEP( OFF );TIM3_Int_Init(9999,7199);ds1302_init();ds_read_time();cc();a=sec;b=min;c=hour;Lcd_Init();LCD_Clear(WHITE);gui0(1);TIM_Cmd(TIM3, ENABLE);while(1){t=KEY_Scan(0);keyscan(1);if( DHT11_Read_TempAndHumidity (&DHT11_Data ) == SUCCESS&&flag==0) {temp=DHT11_Data.temp_int;humi=DHT11_Data.humi_int;LCD_ShowPicture2(52,40,84,72);LCD_ShowPicture2(278,40,310,72);LCD_ShowNum(52,40,temp,2,BLUE,32,1);LCD_ShowNum(278,40,humi,2,BLUE,32,1);}if(flag==0&&min1==min&&hour1==hour&&flag2==0&&flag3==1) {BEEP( ON );}}}。
STM32单片机RTC时钟的使用方法及步骤
STM32单片机RTC时钟的使用方法及步骤一、配置RTC模块时钟源RTC模块的时钟源可以选择外部低速晶振(LSE)或者低速内部时钟(LSI)。
通过以下步骤配置RTC时钟源:1.使能外部低速晶振(LSE)或者低速内部时钟(LSI)。
例如,如果使用外部低速晶振,则需要使能相应的GPIO端口,并配置为晶振模式。
2.配置RCC时钟控制寄存器(RCC_CR)和时钟配置寄存器(RCC_CSR)。
二、使能RTC模块时钟1.使能PWR模块时钟和备份寄存器访问。
RCC_APB1ENR,=(1<<28);RCC_APB1ENR,=(1<<27);2.校验并关闭RTC模块。
RCC->BDCR,=RCC_BDCR_RTCEN;PWR->CR,=PWR_CR_DBP;if ((RCC->BDCR & RCC_BDCR_RTCEN) == 0)RCC->BDCR,=RCC_BDCR_RTCEN;3.配置RTC时钟预分频器和提供给RTC的时钟源。
RTC->PRER ,= rtc_prescaler_value << RTC_PRER_PREDIV_S_Pos;RTC->PRER ,= 127 << RTC_PRER_PREDIV_A_Pos;RTC->CR&=~RTC_CR_FMT;三、配置RTC模块时间和日期1.关闭RTC时钟写保护功能。
RTC->WPR=0xCA;RTC->WPR=0x53;RTC->ISR,=RTC_ISR_INIT;while((RTC->ISR & RTC_ISR_INITF) == 0);2.配置RTC的时间和日期寄存器。
RTC->TR ,= (uint32_t)((hours / 10) << RTC_TR_Hours10_Pos);RTC->TR ,= (uint32_t)((hours % 10) << RTC_TR_Hours1_Pos);RTC->TR ,= (uint32_t)((minutes / 10) <<RTC_TR_Minutes10_Pos);RTC->TR ,= (uint32_t)((minutes % 10) <<RTC_TR_Minutes1_Pos);RTC->TR ,= (uint32_t)((seconds / 10) <<RTC_TR_Seconds10_Pos);RTC->TR ,= (uint32_t)((seconds % 10) <<RTC_TR_Seconds1_Pos);RTC->DR ,= (uint32_t)((year / 10) << RTC_DR_YT_Pos);RTC->DR ,= (uint32_t)((year % 10) << RTC_DR_YU_Pos);RTC->DR ,= (uint32_t)((month / 10) << RTC_DR_MT_Pos);RTC->DR ,= (uint32_t)((month % 10) << RTC_DR_MU_Pos);RTC->DR ,= (uint32_t)((day / 10) << RTC_DR_DT_Pos);RTC->DR ,= (uint32_t)((day % 10) << RTC_DR_DU_Pos);3.开启RTC时钟写保护功能。
STM32F103ZET6时钟
STM32F103ZET6时钟1、STM32F103ZET6时钟说明 STM32F103ZET6的时钟树图如下所⽰: STM32F103ZET6有很多个时钟源,分别有: HSE:⾼速外部时钟信号。
HSI:⾼速内部部时钟信号。
LSI:低速内部时钟信号。
LSE:低速外部时钟信号。
HSI和LSI是芯⽚内置的时钟源,它们的频率⼤⼩是固定的,HSI是8MHZ,LSI是⼤约40KHZ。
时钟树中的序号1是⾼速外部时钟信号HSE: HSE是由有源晶振或⽆源晶振通过OSC_OUT和OSC_IN脚提供的,从图⽚中可以看到,HSE频率从4MHZ到16MHZ不等。
当使⽤有源晶振时,时钟从OSC_IN引脚进⼊,OSC_OUT引脚悬空;当使⽤⽆源晶振时,时钟从OSC_IN和OSC_OUT进⼊,并且要配谐振电容。
HSE最常使⽤的就是8MHZ的⽆源晶振。
时钟树中的序号D是外部低速时钟LSE: LSE是由有源晶振或⽆源晶振通过OSC32_OUT和OSC32_IN脚提供的。
LSE⼀般使⽤的是32.768KHZ的⽆源晶振。
时钟树中的序号2是选择PLL(倍频后的时钟)的时钟源: 从图中可以看出,PLL时钟的来源可以是HSE或HSI/2,通过PLLSRC(CFGR寄存器的bit16)来选择使⽤哪⼀个时钟源。
HSI是8MHZ的内部⾼速时钟信号,HSI会根据温度和环境的情况频率会有漂移,⼀般不作为PLL的时钟来源。
⼀般使⽤HSE作为PLL的时钟源。
时钟树中的序号3是设置PLL的倍频因⼦: 可以对PLL的时钟来源进⾏倍频,然后得到PLLCLK时钟源。
倍频因⼦可以通过时钟配置寄存器CFGR的bit21~bit18:PLLMUL[3:0]来配置,分别可配置成2、3、4、5、6、7、8、9、10、11、12、13、14、15、16倍频。
举个例⼦来说,如果选择HSE作为PLL的时钟源,⽽且HSE=8MHZ,且将PLL的倍频因⼦设置为9倍频,那么PLLCLK=9*8MHZ = 72MZH。
STM32时钟配置方法详解
STM32时钟配置方法详解STM32是意法半导体(STMicroelectronics)公司推出的一系列32位Flash微控制器,被广泛应用于各种嵌入式系统中。
时钟是STM32微控制器的核心部分,正确配置时钟可以确保系统正常工作并达到预期的性能。
本文将详细介绍STM32时钟配置的方法。
1.时钟源:STM32微控制器提供了多个时钟源,包括内部时钟(HSI、LSI)和外部时钟(HSE、LSE)。
其中,HSI(高速内部时钟)是一个高频率(通常为8MHz)的内部RC振荡器,适用于低功耗应用;LSI(低速内部时钟)是一个低频率(通常为40kHz)的内部RC振荡器,用于RTC(实时时钟)模块;HSE(高速外部时钟)是一个外接的高频晶振,用于提供更精确的时钟信号;LSE(低速外部时钟)是一个外接的低频晶振,适用于RTC模块。
2.主频和系统时钟:主频是指CPU的时钟频率,系统时钟是指STM32微控制器的总线时钟,包括AHB(高性能总线)、APB1(低速外设总线)和APB2(高速外设总线)。
在进行STM32时钟配置之前,需要按照以下几个步骤来完成。
1.启用对应的时钟源:根据具体需求,选择合适的时钟源并启用相应的时钟。
可以通过设置RCC_CR寄存器和RCC_APB1ENR/RCC_APB2ENR寄存器来实现。
例如,要使用HSE作为时钟源,需要首先启用HSE时钟。
2.配置时钟分频器:为了使系统时钟不超过芯片规格要求的最大频率,需要对时钟进行分频。
分频器有两个,即AHB分频器和APB分频器。
可以通过设置RCC_CFGR寄存器来实现。
例如,将AHB分频器设置为8,将APB1和APB2分频器分别设置为4,可以将主频分别分频为8MHz、32MHz和64MHz。
3.等待时钟稳定:当启用外部时钟源时,需要等待时钟稳定。
可以通过读取RCC_CR寄存器的特定标志位来判断时钟是否稳定。
4. 配置Flash存储器的延时:根据主频的不同,需要设置Flash存储器的访问延时,以确保正常读写数据。
stm32通用守时器准确延不时刻的核算
stm32通用守时器准确延不时刻的核算STM32中的守时器有多种,按功用分红2个高档操控器守时器,4个一般守时器,2个底子守时器,2个看门狗守时器,1单个系滴答守时器SysTICk。
守时器的要害是守不时刻的核算。
比方用守时器操控继电器的开关的时分,需求延时一段时刻才封闭或许翻开,这时别离不开守时器守时。
通用守时器守不时刻核算。
1秒接连的底子结束:通用守时器模块的进口时钟通过火频得到计数器的时钟,用CK_CNT标明,预分频器的系数为:TIMx_PSC,当TIMx_PSC=0时,标明不分频,=1时,2分频。
以此类比。
公式为:CK_CNT=fclk_PSC/(PSC[15:0]+1),其间PSC最大为65535.其次是TIM5计数器的计数值的设置,TIM5计数器以CK_CNT 为时钟来计数。
计数到设定值发作接连。
(1/分频后计数时钟)*计数值=设守时刻。
以1秒为例(1/(72MHz/7200))*10000=1s初始化通用守时器的一个首要的构造体TIM_TimeBaseInitTypeDeftypedefstruct{u16TIM_Period;//主动装载的计数值,u16TIM_Prescaler;//分频值,当为0时标明不分频所以要减1.u8TIM_CLOCkDivision;//设置时钟切开,u16TIM_CounterMode;//向上,向劣等计数办法}TIM_TimeBaseInitTypeDef;初始化构造体后调用函数voidTIM_TimeBaseInit(TIM_TypeDef*TIMx,TIM_TimeBaseInitTypeD ef*TIM_TimeBaseInitStruct)初始化TIMx守时器时刻基数单位。
其次还要根除接连待处理位,函数voidTIM_ClearITPendingBit(TIM_TypeDef*TIMx,u16TIM_IT)做了这项作业。
其间TIM_IT:待查看的TIM接连待处理位。
stm32外部时钟模式1
stm32外部时钟模式1基础了解时钟选择计数器时钟可由下列时钟源提供:●内部时钟(CK_INT)●外部时钟模式1:外部输⼊脚(TIx)●外部时钟模式2:外部触发输⼊(ETR)●内部触发输⼊(ITRx):使⽤⼀个定时器作为另⼀个定时器的预分频器在平常使⽤中我们系统复位 000 默认使⽤内部时钟源外部时钟源1来⾃定时器⾃⾝输⼊通道1或通道2的输⼊信号,经过极性选择和滤波以后⽣成的触发信号,连接到从模式控制器,进⽽控制计数器的⼯作;来⾃通道1的输⼊信号经过上升沿、下降沿双沿检测⽽⽣成的脉冲信号进⾏逻辑相或以后的信号就是TI1F_ED信号,即TI1F_ED双沿脉冲信号。
//SIGNAL_COUNT(GPIO)#define SIGNAL_COUNT_ENA_CLK_ENABLE() __HAL_RCC_GPIOB_CLK_ENABLE() //PB0#define SIGNAL_COUNT_ENA_GPIO_Port (GPIOB)#define SIGNAL_COUNT_ENA_Pin (GPIO_PIN_0)#define SIGNAL_COUNT_DIR_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() //PA7#define SIGNAL_COUNT_DIR_GPIO_Port (GPIOA)#define SIGNAL_COUNT_DIR_Pin (GPIO_PIN_7)#define SIGNAL_COUNT_DIR_Get_IRQn (EXTI9_5_IRQn) //EXTI7中断//SIGNAL_COUNT(AFIO & TIM)#define SIGNAL_COUNT_PUL_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() //PA6#define SIGNAL_COUNT_PUL_GPIO_Port (GPIOA)#define SIGNAL_COUNT_PUL_Pin (GPIO_PIN_6)#define SIGNAL_COUNT_TIM_CLK_ENABLE() __HAL_RCC_TIM3_CLK_ENABLE() //TIM3#define SIGNAL_COUNT_Get_TIM (TIM3)#define SIGNAL_COUNT_Get_HTIM (htim3)//GPIO输⼊#define SIGNAL_COUNT_READ_DIR_IO() (SIGNAL_DIR_GPIO_Port -> IDR & SIGNAL_DIR_Pin)#define SIGNAL_COUNT_READ_ENA_IO() (SIGNAL_ENA_GPIO_Port -> IDR & SIGNAL_ENA_Pin)//TIM输⼊#define SIGNAL_COUNT_READ_COUNT() (SIGNAL_COUNT_Get_TIM -> CNT)//TIM输出#define SIGNAL_COUNT_UP() (SIGNAL_COUNT_Get_TIM -> CR1 &= ~(TIM_CR1_DIR))#define SIGNAL_COUNT_DOWN() (SIGNAL_COUNT_Get_TIM -> CR1 |= (TIM_CR1_DIR))/*** @brief TIM_SIGNAL_PUL初始化* @param NULL* @retval NULL**/void REIN_TIM_SIGNAL_COUNT_Init(void){/* GPIO初始化 */GPIO_InitTypeDef GPIO_InitStruct = {0};/* GPIO Ports Clock Enable*/SIGNAL_COUNT_PUL_CLK_ENABLE(); //启⽤SIGNAL_COUNT_PUL端⼝时钟/*Configure GPIO pin*/GPIO_InitStruct.Pin = SIGNAL_COUNT_PUL_Pin;GPIO_InitStruct.Mode = GPIO_MODE_INPUT; //输⼊模式GPIO_InitStruct.Pull = GPIO_NOPULL; //禁⽤上下拉HAL_GPIO_Init(SIGNAL_COUNT_PUL_GPIO_Port, &GPIO_InitStruct);/* TIM初始化 */TIM_SlaveConfigTypeDef sSlaveConfig = {0};TIM_MasterConfigTypeDef sMasterConfig = {0};SIGNAL_COUNT_TIM_CLK_ENABLE(); //启⽤TIM时钟SIGNAL_COUNT_Get_HTIM.Instance = SIGNAL_COUNT_Get_TIM;SIGNAL_COUNT_Get_HTIM.Init.Prescaler = 0; //预分频:0SIGNAL_COUNT_Get_HTIM.Init.CounterMode = TIM_COUNTERMODE_UP; //向上计数SIGNAL_COUNT_Get_HTIM.Init.Period = 65535; //16位周期SIGNAL_COUNT_Get_HTIM.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; //不分频SIGNAL_COUNT_Get_HTIM.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; //禁⽤⾃动重新加载if (HAL_TIM_Base_Init(&SIGNAL_COUNT_Get_HTIM) != HAL_OK){Error_Handler();}sSlaveConfig.SlaveMode = TIM_SLAVEMODE_EXTERNAL1; //外部时钟模式sSlaveConfig.InputTrigger = TIM_TS_TI1FP1; //TI1FP1sSlaveConfig.TriggerPolarity = TIM_TRIGGERPOLARITY_RISING; //上升沿触发sSlaveConfig.TriggerFilter = 4; //滤波参数(FDIV2_N6)if (HAL_TIM_SlaveConfigSynchro(&SIGNAL_COUNT_Get_HTIM, &sSlaveConfig) != HAL_OK){Error_Handler();}sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; //主机模式触发复位sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; //禁⽤主机模式if (HAL_TIMEx_MasterConfigSynchronization(&SIGNAL_COUNT_Get_HTIM, &sMasterConfig) != HAL_OK){Error_Handler();}/*begin work*/HAL_TIM_Base_Start(&SIGNAL_COUNT_Get_HTIM);}static void Signal_Count_Capture_Goal(void){//SignalPort获取⽬标//读取En_Pinif(SIGNAL_COUNT_READ_ENA_IO()){if(sg_cut.en_inve)sg_cut.en_valid = true;elsesg_cut.en_valid = false;}else{if(sg_cut.en_inve)sg_cut.en_valid = false;elsesg_cut.en_valid = true;}//采样(对⽐上次的计数值)sg_cut.sampling_count_last = sg_cut.sampling_count;sg_cut.sampling_count = SIGNAL_COUNT_READ_COUNT();sg_cut.sampling_count_sub = sg_cut.sampling_count - sg_cut.sampling_count_last;//采样(缓冲输出)//(采样数/细分数)*Move_Divide_NUM = 电机输出步数sg_cut.interp_out = sg_cut.sampling_count_sub * sg_cut.subdivide_form;//输出if(sg_cut.en_valid){signal_moreio.goal_location = sg_cut.interp_out; //Count模式借⽤⽬标位置存放⽬标位置增量 signal_moreio.goal_disable = false;signal_moreio.goal_brake = false;}else{signal_moreio.goal_location = 0; //Count模式借⽤⽬标位置存放⽬标位置增量signal_moreio.goal_disable = true;signal_moreio.goal_brake = false;}}。
STM32日记之SysTick1
STM32 systick 定时时间计算STM32学习笔记2]SysTick定时器2009-07-14 10:52[STM32学习笔记2]SysTick定时器 - [ARM]版权声明:转载时请以超链接形式标明文章原始出处和作者信息及本声明/logs/35901649.html请先参考以下材料:《Cortex-M3权威指南》《Cortex-M3 Technical Reference Manual》Q:什么是SYSTick定时器?SysTick 是一个24 位的倒计数定时器,当计到0 时,将从RELOAD 寄存器中自动重装载定时初值。
只要不把它在SysTick 控制及状态寄存器中的使能位清除,就永不停息。
Q:为什么要设置SysTick定时器?(1)产生操作系统的时钟节拍SysTick定时器被捆绑在NVIC中,用于产生SYSTICK异常(异常号:15)。
在以前,大多操作系统需要一个硬件定时器来产生操作系统需要的滴答中断,作为整个系统的时基。
因此,需要一个定时器来产生周期性的中断,而且最好还让用户程序不能随意访问它的寄存器,以维持操作系统“心跳”的节律。
(2)便于不同处理器之间程序移植。
Cortex‐M3处理器内部包含了一个简单的定时器。
因为所有的CM3芯片都带有这个定时器,软件在不同 CM3器件间的移植工作得以化简。
该定时器的时钟源可以是内部时钟(FCLK,CM3上的自由运行时钟),或者是外部时钟( CM3处理器上的STCLK信号)。
不过,STCLK的具体来源则由芯片设计者决定,因此不同产品之间的时钟频率可能会大不相同,你需要检视芯片的器件手册来决定选择什么作为时钟源。
SysTick 定时器能产生中断,CM3为它专门开出一个异常类型,并且在向量表中有它的一席之地。
它使操作系统和其它系统软件在CM3器件间的移植变得简单多了,因为在所有CM3产品间对其处理都是相同的。
(3)作为一个闹铃测量时间。
SysTick定时器除了能服务于操作系统之外,还能用于其它目的:如作为一个闹铃,用于测量时间等。
stm32定时器延时时间
SYSTICK_CSR |= 0x06; //时间到关闭 SysTick使能用的时候在打开
}
int main(void)
{
SystemInit(); //注意这么是把系统时钟设初始化为 72M主频,这里是必须的
unsigned long SysTick_Delay;//全局变量
//配置寄存器
void SysTick_InitStructReadCmd(void)
{
SYSTICK_VAL = 0; //当前值寄存器清零
SYSTICK_LOAD = SystemCoreClock / 1000000; //重要部分就在这里 系统72000000 / 100000
#elif defined SYSCLK_FREQ_36MHz
uint32_t SystemCoreClock = SYSCLK_FREQ_36MHz;
#elif defined SYSCLK_FREQ_48MHz
uint32_z;
这个程序折磨我1个星期,没有吃好睡好,搞明白后我就马上做上笔记那给大家分享。
*/
//讲得简单易懂,当然精确定时还是要定时器的
uint32_t SystemCoreClock = SYSCLK_FREQ_72MHz;
#else /*!< HSI Selected as System Clock source */
// uint32_t SystemCoreClock = HSI_VALUE;
/* 好了我们开始讲解程序1us是怎么实现的,我们使用时钟源为APB时钟,APB系统频率陪配置为72MHZ
STM32的系统滴答定时器(Systick)
NVIC_SetPriority (SysTick_IRQn, (1<<__NVIC_PRIO_BITS) - 1); /* 设置优先级 for
Cortex-M0 系统中断 */
SysTick->VAL = 0;
/* 装载计数器值(当前计数值清 0) */
SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk |
断
*/
static __INLINE uint32_t SysTick_Config(uint32_t ticks)
{
if (ticks > SysTick_LOAD_RELOAD_Msk) return (1); /* 重装值超过了 24 位,是不可
能的。返回失败值 0 */
SysTick->LOAD = (ticks & SysTick_LOAD_RELOAD_Msk) - 1; /* 设置重装载寄存器 */
*/
void SysTick_CLKSourceConfig(uint32_t SysTick_CLKSource) {
/* 参数检查 */ assert_param(IS_SYSTICK_CLK_SOURCE(SysTick_CLKSource)); if (SysTick_CLKSource == SysTick_CLKSource_HCLK) {
在 misc.C 文件最后有下面一个函数
/** * @功能: 配置 SysTick 时钟源 * @输入参数: SysTick_CLKSource: 指定 SysTick 时钟源. * 该参数可以是以下其中一个值: * @ SysTick_CLKSource_HCLK_Div8: AHB 时钟 8 分频作为 SysTick 时钟源 * @ SysTick_CLKSource_HCLK: AHB 时钟作为 SysTick 时钟源.
STM32时钟配置方法详解
STM32时钟配置方法详解时钟树是STM32微控制器中一系列时钟源和时钟分频器的组成部分。
时钟树包括系统时钟、外设时钟和内核时钟。
系统时钟用于驱动整个微控制器系统的核心,外设时钟用于驱动各种外设,内核时钟用于驱动CPU的运算。
在进行时钟配置之前,首先需要了解系统所需的时钟频率。
在STM32中,系统时钟可以通过多种方式进行配置,例如使用外部晶体、外部时钟、内部RC振荡器或者PLL(锁相环)等方式。
外部晶体是一种常用的时钟源,可以提供高精度的时钟频率。
在使用外部晶体时,首先需要设置PLL的时钟源为外部晶体,并设置PLL输入除频器的分频系数。
然后,再根据系统所需的时钟频率,设置PLL的倍频系数,以得到最终的系统时钟频率。
外部时钟是从外部提供的时钟信号,一般用于测试和调试。
使用外部时钟时,需要设置PLL的时钟源为外部时钟,并设置PLL的倍频系数,以得到所需的系统时钟频率。
内部RC振荡器是一种低成本的时钟源,但是其频率不如外部晶体稳定和精确。
在使用内部RC振荡器时,需要设置PLL的时钟源为内部RC振荡器,并设置PLL的倍频系数,以得到所需的系统时钟频率。
PLL是一种用于产生稳定高频时钟的电路,可以从一个低频时钟源产生一个高频时钟源。
使用PLL时,需要设置其输入时钟源和倍频系数。
系统时钟的分频系数可以通过RCC_CFGR寄存器进行设置。
RCC_CFGR寄存器的各个位域用于配置系统时钟的分频系数,包括分频因子、APB1的分频系数、APB2的分频系数等。
外设时钟是用于驱动外设的时钟,可以由系统时钟分频得到。
外设时钟的分频系数可以通过RCC_CFGR寄存器及各个外设的控制寄存器进行设置。
内核时钟是用于驱动CPU的运算的时钟。
在STM32微控制器中,CPU 时钟可以由系统时钟分频得到,分频系数可以通过RCC_CFGR寄存器和FLASH_ACR寄存器进行设置。
除了上述方法之外,STM32还可以使用时钟配置工具进行时钟配置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于STM32 滴答时钟
相信不论是初学者还是高手,都会被STM32的滴答时钟所吸引。
STM32有很多计数器,也有很多计数器中断。
当别人还在用计数器做定时扫描的时候,我们就默默的开始了滴答时钟做扫描了。
让他们去任意的浪费资源吧,我们节约资源,把计数器发挥更大的作用。
Systick定时器属于cortex内核部件,在芯片介绍的datasheet中没有提到过,可以参考
《CortexM3权威指南》或《STM32xxx-Cortex编程手册》。
首先来看Systick的时钟来源,如图一。
可以看出在STM32中Systick以HCLK(AHB 时钟)或HCLK/8作为运行时钟。
图1
另外要注意Systick是一个24位的定时器,即一次最多可以计数224个时钟脉冲,这个脉冲计数值被保存到当前计数值寄存器STK_VAL中,这个计数器只能向下计数,每接收到一个时钟脉冲STK_VAL的值就向下减1,直至0,当STK_VAL的值被减至0时,由硬件自动把重载寄存器STK_LOAD中保存的数据加载到STK_VAL,意思就是它会自动重装。
当STK_VAL 的值被倒计至0时,触发中断,就可以在中断服务函数中处理定时事件了。
要让Systick正常工作,必须要对Systick进行配置。
它的配置很简单,只有三个控制位和一个标志位,都位于寄存器STK_CRL中,见图二。
图二
ENABLE:
为Systick timer的使能位,此位为1的时候开始计数,为0则关闭Systick timer。
TICKINT:
为中断触发使能位,此位为1的时候并且STK_VAL倒计至0的时候会触发Systick
中断,此位为0的时候不触发中断。
CLKSOURCE:
为Systick的时钟选择位,此位为1的时候Systick的时钟为AHB时钟,此位为0
的时候Systick的时钟为AHB/8(AHB的8分频)。
COUNTFLAG:
为Systick的标志位,当STK_VAL倒计至0,此标志位会被置1。
现在我们不会再为滴答时钟而感到迷惑了吧!
下面将详细描述如何去设置计数器,我们在很多地方看到这样一个函数:
SysTick_Config(SystemCoreClock / 1000) 配置为1ms中断一次
SysTick_Config(SystemCoreClock / 100000) 配置为10us中断一次
SysTick_Config(SystemCoreClock / 1000000) 配置为10us中断一次
我们将细说一下,SystemCoreClock/100000 为什么是10us
我们从图1时钟数可以看出Systick的时钟和AHB有关,从图2中了解到滴答时钟可设置,结合两处就能看明白。
若不去设置,系统默认为AHB时钟,即72MHz。
系统文件中可查找出以下描述:
/************************************************************************** *****
* Clock Definitions
*************************************************************************** ****/
#ifdef SYSCLK_FREQ_HSE
uint32_t SystemCoreClock = SYSCLK_FREQ_HSE; /*!< System Clock Frequency (Core Clock) */
#elif defined SYSCLK_FREQ_24MHz
uint32_t SystemCoreClock = SYSCLK_FREQ_24MHz; /*!< System Clock Frequency (Core Clock) */
#elif defined SYSCLK_FREQ_36MHz
uint32_t SystemCoreClock = SYSCLK_FREQ_36MHz; /*!< System
Clock Frequency (Core Clock) */
#elif defined SYSCLK_FREQ_48MHz
uint32_t SystemCoreClock = SYSCLK_FREQ_48MHz; /*!< System Clock Frequency (Core Clock) */
#elif defined SYSCLK_FREQ_56MHz
uint32_t SystemCoreClock = SYSCLK_FREQ_56MHz; /*!< System Clock Frequency (Core Clock) */
#elif defined SYSCLK_FREQ_72MHz
uint32_t SystemCoreClock = SYSCLK_FREQ_72MHz; /*!< System Clock Frequency (Core Clock) */
#else /*!< HSI Selected as System Clock source */
uint32_t SystemCoreClock = HSI_VALUE; /*!< System Clock Frequency (Core Clock) */
#endif
可以看出SystemCoreClock的的值是多少,如何得出的。
我们要把SystemCoreClock/100000当做成算次数,在72M的时钟下,我们需要多少次震荡。
Systick的时钟为72M,系统也设置成72M,那么
1ms=1/72M(Systick时钟)*(72M(SystemCoreClock)/ 1000)
然后剩下的就明白了,知道如何计算了吧,其实我们在设置中,只要知道了Systick 和SystemCoreClock是多少就能轻松设置了。
还有的地方提及了滴答时钟的校准,大多数都可以不必使用,在此也没有提及,有兴趣的朋友可以深入研究。