初中七年级数学竞赛培优讲义全套专题16 不等式
(完整版)初一数学培优专题讲义
初一数学基础知识讲义第一讲和绝对值有关的问题一、知识结构框图:数二、绝对值的意义:(1)几何意义:一般地,数轴上表示数a的点到原点的距离叫做数a的绝对值,记作|a|。
(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;③零的绝对值是零。
也可以写成:()()() ||0a aa aa a⎧⎪⎪=⎨⎪-⎪⎩当为正数当为0当为负数说明:(Ⅰ)|a|≥0即|a|是一个非负数;(Ⅱ)|a|概念中蕴含分类讨论思想。
三、典型例题例1.(数形结合思想)已知a、b、c在数轴上位置如图:则代数式| a | + | a+b | + | c-a | - | b-c | 的值等于(A )A.-3a B. 2c-a C.2a-2b D. b解:| a | + | a+b | + | c-a | - | b-c |=-a-(a+b)+(c-a)+b-c=-3a分析:解绝对值的问题时,往往需要脱去绝对值符号,化成一般的有理数计算。
脱去绝对值的符号时,必须先确定绝对值符号内各个数的正负性,再根据绝对值的代数意义脱去绝对值符号。
这道例题运用了数形结合的数学思想,由a 、b 、c 在数轴上的对应位置判断绝对值符号内数的符号,从而去掉绝对值符号,完成化简。
例2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++的值( C )A .是正数B .是负数C .是零D .不能确定符号解:由题意,x 、y 、z 在数轴上的位置如图所示:所以分析:数与代数这一领域中数形结合的重要载体是数轴。
这道例题中三个看似复杂的不等关系借助数轴直观、轻松的找到了x 、y 、z 三个数的大小关系,为我们顺利化简铺平了道路。
虽然例题中没有给出数轴,但我们应该有数形结合解决问题的意识。
例3.(分类讨论的思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?分析:从题目中寻找关键的解题信息,“数轴上表示这两数的点位于原点的两侧”意味着甲乙两数符号相反,即一正一负。
(完整版)初一数学培优专题讲义
初一数学基础知识讲义第一讲和绝对值有关的问题一、知识结构框图:数二、绝对值的意义:(1)几何意义:一般地,数轴上表示数a的点到原点的距离叫做数a的绝对值,记作|a|。
(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;③零的绝对值是零。
也可以写成:()()() ||0a aa aa a⎧⎪⎪=⎨⎪-⎪⎩当为正数当为0当为负数说明:(Ⅰ)|a|≥0即|a|是一个非负数;(Ⅱ)|a|概念中蕴含分类讨论思想。
三、典型例题例1.(数形结合思想)已知a、b、c在数轴上位置如图:则代数式| a | + | a+b | + | c-a | - | b-c | 的值等于(A )A.-3a B. 2c-a C.2a-2b D. b解:| a | + | a+b | + | c-a | - | b-c |=-a-(a+b)+(c-a)+b-c=-3a分析:解绝对值的问题时,往往需要脱去绝对值符号,化成一般的有理数计算。
脱去绝对值的符号时,必须先确定绝对值符号内各个数的正负性,再根据绝对值的代数意义脱去绝对值符号。
这道例题运用了数形结合的数学思想,由a 、b 、c 在数轴上的对应位置判断绝对值符号内数的符号,从而去掉绝对值符号,完成化简。
例2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++的值( C )A .是正数B .是负数C .是零D .不能确定符号解:由题意,x 、y 、z 在数轴上的位置如图所示:所以分析:数与代数这一领域中数形结合的重要载体是数轴。
这道例题中三个看似复杂的不等关系借助数轴直观、轻松的找到了x 、y 、z 三个数的大小关系,为我们顺利化简铺平了道路。
虽然例题中没有给出数轴,但我们应该有数形结合解决问题的意识。
例3.(分类讨论的思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?分析:从题目中寻找关键的解题信息,“数轴上表示这两数的点位于原点的两侧”意味着甲乙两数符号相反,即一正一负。
七年级数学培优辅导讲义(共十讲80页)
第一讲有理数的巧算有理数运算是中学数学中一切运算的基础.它要求同学们在理解有理数的有关概念、法则的基础上,能根据法则、公式等正确、迅速地进行运算.不仅如此,还要善于根据题目条件,将推理与计算相结合,灵活巧妙地选择合理的简捷的算法解决问题,从而提高运算能力,发展思维的敏捷性与灵活性.1.括号的使用在代数运算中,可以根据运算法则和运算律,去掉或者添上括号,以此来改变运算的次序,使复杂的问题变得较简单.例1计算:分析中学数学中,由于负数的引入,符号“+”与“-”具有了双重涵义,它既是表示加法与减法的运算符号,也是表示正数与负数的性质符号.因此进行有理数运算时,一定要正确运用有理数的运算法则,尤其是要注意去括号时符号的变化.注意在本例中的乘除运算中,常常把小数变成分数,把带分数变成假分数,这样便于计算.例2计算下式的值:211×555+445×789+555×789+211×445.分析直接计算很麻烦,根据运算规则,添加括号改变运算次序,可使计算简单.本题可将第一、第四项和第二、第三项分别结合起来计算.解原式=(211×555+211×445)+(445×789+555×789)=211×(555+445)+(445+555)×789=211×1000+1000×789=1000×(211+789)=1 000 000.说明加括号的一般思想方法是“分组求和”,它是有理数巧算中的常用技巧.例3计算:S=1-2+3-4+…+(-1)n+1·n.分析不难看出这个算式的规律是任何相邻两项之和或为“1”或为“-1”.如果按照将第一、第二项,第三、第四项,…,分别配对的方式计算,就能得到一系列的“-1”,于是一改“去括号”的习惯,而取“添括号”之法.解 S=(1-2)+(3-4)+…+(-1)n+1·n.下面需对n的奇偶性进行讨论:当n为偶数时,上式是n/2个(-1)的和,所以有当n为奇数时,上式是(n-1)/2个(-1)的和,再加上最后一项(-1)n+1·n=n,所以有例4在数1,2,3,…,1998前添符号“+”和“-”,并依次运算,所得可能的最小非负数是多少?分析与解因为若干个整数和的奇偶性,只与奇数的个数有关,所以在1,2,3,…,1998之前任意添加符号“+”或“-”,不会改变和的奇偶性.在1,2,3,…,1998中有1998÷2个奇数,即有999个奇数,所以任意添加符号“+”或“-”之后,所得的代数和总为奇数,故最小非负数不小于1.现考虑在自然数n,n+1,n+2,n+3之间添加符号“+”或“-”,显然n-(n+1)-(n+2)+(n+3)=0.这启发我们将1,2,3,…,1998每连续四个数分为一组,再按上述规则添加符号,即(1-2-3+4)+(5-6-7+8)+…+(1993-1994-1995+1996)-1997+1998=1.所以,所求最小非负数是1.说明本例中,添括号是为了造出一系列的“零”,这种方法可使计算大大简化.2.用字母表示数我们先来计算(100+2)×(100-2)的值:(100+2)×(100-2)=100×100-2×100+2×100-4=1002-22.这是一个对具体数的运算,若用字母a代换100,用字母b代换2,上述运算过程变为(a+b)(a-b)=a2-ab+ab-b2=a2-b2.于是我们得到了一个重要的计算公式(a+b)(a-b)=a2-b2,①这个公式叫平方差公式,以后应用这个公式计算时,不必重复公式的证明过程,可直接利用该公式计算.例5计算 3001×2999的值.解 3001×2999=(3000+1)(3000-1)=30002-12=8 999 999.例6计算 103×97×10 009的值.解原式=(100+3)(100-3)(10000+9)=(1002-9)(1002+9)=1004-92=99 999 919.例7计算:分析与解直接计算繁.仔细观察,发现分母中涉及到三个连续整数:12 345,12 346,12 347.可设字母n=12 346,那么12 345=n-1,12 347=n+1,于是分母变为n2-(n-1)(n+1).应用平方差公式化简得n2-(n2-12)=n2-n2+1=1,即原式分母的值是1,所以原式=24 690.例8计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).分析式子中2,22,24,…每一个数都是前一个数的平方,若在(2+1)前面有一个(2-1),就可以连续递进地运用(a+b)(a-b)=a2-b2了.解原式=(2-1)(2+1)(22+1)(24+1)(28+1)×(216+1)(232+1)=(22-1)(22+1)(24+1)(28+1)(216+1)×(232+1)=(24-1)(24+1)(28+1)(216+1)(232+1)=……=(232-1)(232+1)=264-1.例9计算:分析在前面的例题中,应用过公式(a+b)(a-b)=a2-b2.这个公式也可以反着使用,即a2-b2=(a+b)(a-b).本题就是一个例子.通过以上例题可以看到,用字母表示数给我们的计算带来很大的益处.下面再看一个例题,从中可以看到用字母表示一个式子,也可使计算简化.例10计算:我们用一个字母表示它以简化计算.3.观察算式找规律例11某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.分析与解若直接把20个数加起来,显然运算量较大,粗略地估计一下,这些数均在90上下,所以可取90为基准数,大于90的数取“正”,小于90的数取“负”,考察这20个数与90的差,这样会大大简化运算.所以总分为90×20+(-3)+1+4+(-2)+3+1+(-1)+(-3)+2+(-4)+0+2+(-2)+0+1+(-4)+(-1)+2+5+(-2)=1800-1=1799,平均分为 90+(-1)÷20=89.95.例12 计算1+3+5+7+…+1997+1999的值.分析观察发现:首先算式中,从第二项开始,后项减前项的差都等于2;其次算式中首末两项之和与距首末两项等距离的两项之和都等于2000,于是可有如下解法.解用字母S表示所求算式,即S=1+3+5+…+1997+1999.①再将S各项倒过来写为S=1999+1997+1995+…+3+1.②将①,②两式左右分别相加,得2S=(1+1999)+(3+1997)+…+(1997+3)+(1999+1)=2000+2000+…+2000+2000(500个2000)=2000×500.从而有 S=500 000.说明一般地,一列数,如果从第二项开始,后项减前项的差都相等(本题3-1=5-3=7-5=…=1999-1997,都等于2),那么,这列数的求和问题,都可以用上例中的“倒写相加”的方法解决.例13计算 1+5+52+53+…+599+5100的值.分析观察发现,上式从第二项起,每一项都是它前面一项的5倍.如果将和式各项都乘以5,所得新和式中除个别项外,其余与原和式中的项相同,于是两式相减将使差易于计算.解设S=1+5+52+…+599+5100,①所以5S=5+52+53+…+5100+5101.②②—①得4S=5101-1,说明如果一列数,从第二项起每一项与前一项之比都相等(本例中是都等于5),那么这列数的求和问题,均可用上述“错位相减”法来解决.例14 计算:分析一般情况下,分数计算是先通分.本题通分计算将很繁,所以我们不但不通分,反而利用如下一个关系式来把每一项拆成两项之差,然后再计算,这种方法叫做拆项法.解由于所以说明本例使用拆项法的目的是使总和中出现一些可以相消的相反数的项,这种方法在有理数巧算中很常用.练习一1.计算下列各式的值:(1)-1+3-5+7-9+11-…-1997+1999;(2)11+12-13-14+15+16-17-18+…+99+100;(3)1991×1999-1990×2000;(4)4726342+472 6352-472 633×472 635-472 634×472 636;(6)1+4+7+ (244)2.某小组20名同学的数学测验成绩如下,试计算他们的平均分.81,72,77,83,73,85,92,84,75,63,76,97,80,90,76,91,86,78,74,85.第二讲绝对值绝对值是初中代数中的一个基本概念,在求代数式的值、化简代数式、证明恒等式与不等式,以及求解方程与不等式时,经常会遇到含有绝对值符号的问题,同学们要学会根据绝对值的定义来解决这些问题.下面我们先复习一下有关绝对值的基本知识,然后进行例题分析.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.即绝对值的几何意义可以借助于数轴来认识,它与距离的概念密切相关.在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.结合相反数的概念可知,除零外,绝对值相等的数有两个,它们恰好互为相反数.反之,相反数的绝对值相等也成立.由此还可得到一个常用的结论:任何一个实数的绝对值是非负数.例1 a,b为实数,下列各式对吗?若不对,应附加什么条件?(1)|a+b|=|a|+|b|;(2)|ab|=|a||b|;(3)|a-b|=|b-a|;(4)若|a|=b,则a=b;(5)若|a|<|b|,则a<b;(6)若a>b,则|a|>|b|.解 (1)不对.当a,b同号或其中一个为0时成立.(2)对.(3)对.(4)不对.当a≥0时成立.(5)不对.当b>0时成立.(6)不对.当a+b>0时成立.例2设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.解由图1-1可知,a>0,b<0,c<0,且有|c|>|a|>|b|>0.根据有理数加减运算的符号法则,有b-a<0,a+c<0,c-b<0.再根据绝对值的概念,得|b-a|=a-b,|a+c|=-(a+c),|c-b|=b-c.于是有原式=(a-b)-(a+c)+(b-c)=a-b-a-c+b-c=-2c.例3已知x<-3,化简:|3+|2-|1+x|||.分析这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.解原式=|3+|2+(1+x)||(因为1+x<0)=|3+|3+x||=|3-(3+x)|(因为3+x<0)=|-x|=-x.解因为 abc≠0,所以a≠0,b≠0,c≠0.(1)当a,b,c均大于零时,原式=3;(2)当a,b,c均小于零时,原式=-3;(3)当a,b,c中有两个大于零,一个小于零时,原式=1;(4)当a,b,c中有两个小于零,一个大于零时,原式=-1.说明本例的解法是采取把a,b,c中大于零与小于零的个数分情况加以解决的,这种解法叫作分类讨论法,它在解决绝对值问题时很常用.例5若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.解因为|x-y|≥0,所以y-x≥0,y≥x.由|x|=3,|y|=2可知,x<0,即x=-3.(1)当y=2时,x+y=-1;(2)当y=-2时,x+y=-5.所以x+y的值为-1或-5.例6若a,b,c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.解 a,b,c均为整数,则a-b,c-a也应为整数,且|a-b|19,|c-a|99为两个非负整数,和为1,所以只能是|a-b|19=0且|c-a|99=1,①或|a-b|19=1且|c-a|99=0.②由①有a=b且c=a±1,于是|b-c|=|c-a|=1;由②有c=a且a=b±1,于是|b-c|=|a-b|=1.无论①或②都有|b-c|=1且|a-b|+|c-a|=1,所以|c-a|+|a-b|+|b-c|=2.解依相反数的意义有|x-y+3|=-|x+y-1999|.因为任何一个实数的绝对值是非负数,所以必有|x-y+3|=0且|x+y-1999|=0.即由①有x-y=-3,由②有x+y=1999.②-①得2y=2002, y=1001,所以例8 化简:|3x+1|+|2x-1|.分析本题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.若分别去掉每个绝对值符号,则是很容易的事.例如,化简|3x+1|,只要考虑3x+1的正负,即可去掉绝对值符号.这里我们为三个部分(如图1-2所示),即这样我们就可以分类讨论化简了.原式=-(3x+1)-(2x-1)=5x;原式=(3x+1)-(2x-1)=x+2;原式=(3x+1)+(2x-1)=5x.即说明解这类题目,可先求出使各个绝对值等于零的变数字母的值,即先求出各个分界点,然后在数轴上标出这些分界点,这样就将数轴分成几个部分,根据变数字母的这些取值范围分类讨论化简,这种方法又称为“零点分段法”.例9已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.分析首先使用“零点分段法”将y化简,然后在各个取值范围内求出y的最大值,再加以比较,从中选出最大者.解有三个分界点:-3,1,-1.(1)当x≤-3时,y=-(2x+6)-(x-1)+4(x+1)=x-1,由于x≤-3,所以y=x-1≤-4,y的最大值是-4.(2)当-3≤x≤-1时,y=(2x+6)-(x-1)+4(x+1)=5x+11,由于-3≤x≤-1,所以-4≤5x+11≤6,y的最大值是6.(3)当-1≤x≤1时,y=(2x+6)-(x-1)-4(x+1)=-3x+3,由于-1≤x≤1,所以0≤-3x+3≤6,y的最大值是6.(4)当x≥1时,y=(2x+6)+(x-1)-4(x+1)=-x+1,由于x≥1,所以1-x≤0,y的最大值是0.综上可知,当x=-1时,y取得最大值为6.例10设a<b<c<d,求|x-a|+|x-b|+|x-c|+|x-d|的最小值.分析本题也可用“零点分段法”讨论计算,但比较麻烦.若能利用|x-a|,|x-b|,|x-c|,|x-d|的几何意义来解题,将显得更加简捷便利.解设a,b,c,d,x在数轴上的对应点分别为A,B,C,D,X,则|x-a|表示线段AX之长,同理,|x-b|,|x-c|,|x-d|分别表示线段BX,CX,DX之长.现要求|x-a|,|x-b|,|x-c|,|x-d|之和的值最小,就是要在数轴上找一点X,使该点到A,B,C,D四点距离之和最小.因为a<b<c<d,所以A,B,C,D的排列应如图1-3所示:所以当X在B,C之间时,距离和最小,这个最小值为AD+BC,即(d-a)+(c-b).例11若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值.分析与解要使原式对任何数x恒为常数,则去掉绝对值符号,化简合并时,必须使含x的项相加为零,即x的系数之和为零.故本题只有2x-5x+3x=0一种情况.因此必须有|4-5x|=4-5x且|1-3x|=3x-1.故x应满足的条件是此时原式=2x+(4-5x)-(1-3x)+4=7.练习二1.x是什么实数时,下列等式成立:(1)|(x-2)+(x-4)|=|x-2|+|x-4|;(2)|(7x+6)(3x-5)|=(7x+6)(3x-5).2.化简下列各式:(2)|x+5|+|x-7|+|x+10|.3.若a+b<0,化简|a+b-1|-|3-a-b|.4.已知y=|x+3|+|x-2|-|3x-9|,求y的最大值.5.设T=|x-p|+|x-15|+|x-p-15|,其中0<p<15,对于满足p≤x≤15的x 来说,T的最小值是多少?6.已知a<b,求|x-a|+|x-b|的最小值.7.不相等的有理数a,b,c在数轴上的对应点分别为A,B,C,如果|a-b|+|b-c|=|a-c|,那么B点应为( ).(1)在A,C点的右边;(2)在A,C点的左边;(3)在A,C点之间;(4)以上三种情况都有可能.第三讲求代数式的值用具体的数代替代数式里的字母进行计算,求出代数式的值,是一个由一般到特殊的过程.具体求解代数式值的问题时,对于较简单的问题,代入直接计算并不困难,但对于较复杂的代数式,往往是先化简,然后再求值.下面结合例题初步看一看代数式求值的常用技巧.例1求下列代数式的值:分析上面两题均可直接代入求值,但会很麻烦,容易出错.我们可以利用已经学过的有关概念、法则,如合并同类项,添、去括号等,先将代数式化简,然后再求值,这样会大大提高运算的速度和结果的准确性.=0-4a3b2-a2b-5=-4×13×(- 2)2- 12×(-2)-5=-16+2-5=-19.(2)原式=3x2y-xyz+(2xyz-x2z)+4x2?[3x2y-(xyz-5x2z)]=3x2y-xyz+2xyz-x2z+4x2z-3x2y+(xyz-5x2z)=(3x2y-3x2y)+(-xyz+2xyz+xyz)+(-x2z+4x2z-5x2z)=2xyz-2x2z=2×(-1)×2×(-3)-2×(-1)2×(-3)=12+6=18.说明本例中(1)的化简是添括号,将同类项合并后,再代入求值;(2)是先去括号,然后再添括号,合并化简后,再代入求值.去、添括号时,一定要注意各项符号的变化.例2已知a-b=-1,求a3+3ab-b3的值.分析由已知条件a-b=-1,我们无法求出a,b的确定值,因此本题不能像例1那样,代入a,b的值求代数式的值.下面给出本题的五种解法.解法1由a-b=-1得a=b-1,代入所求代数式化简a3+3ab-b3=(b-1)3+3(b-1)b-b3=b3-3b2+3b-1+3b2-3b-b3=-1.说明这是用代入消元法消去a化简求值的.解法2因为a-b=-1,所以原式=(a3-b3)+3ab=(a-b)(a2+ab+b2)+3ab=-1×(a2+ab+b2)+3ab=-a2-ab-b2+3ab=-(a2-2ab+b2)=-(a-b)2=-(-1)2=-1.说明这种解法是利用了乘法公式,将原式化简求值的.解法3 因为a-b=-1,所以原式=a3-3ab(-1)-b3=a3-3ab(a-b)-b3=a3-3a2b+3ab2-b3=(a-b)3=(-1)3=-1.说明这种解法巧妙地利用了-1=a-b,并将3ab化为-3ab(-1)=-3ab(a-b),从而凑成了(a-b)3.解法4 因为a-b=-1,所以(a-b)3=(-1)3=1,即 a3+3ab2-3a2b-b3=-1,a3-b3-3ab(a-b)=-1,所以 a3-b3-3ab(-1)=-1,即 a3-b3+3ab=-1.说明这种解法是由a-b=-1,演绎推理出所求代数式的值.解法 5a3+3ab-b3=a3+3ab2-3a2b-b3-3ab2+3a2b+3ab=(a-b)3+3ab(a-b)+3ab=(-1)3+3ab(-1)+3ab=-1.说明这种解法是添项,凑出(a-b)3,然后化简求值.通过这个例题可以看出,求代数式的值的方法是很灵活的,需要认真思考,才能找到简便的算法.在本例的各种解法中,用到了几个常用的乘法公式,现总结如下:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a-b)3=a3-3a2b+3ab2-b3;a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2).解由已知,xy=2(x+y),代入所求代数式中,消去xy,然后化简.所以解因为a=3b,所以c=5a=5×(3b)=15b.将a,c代入所求代数式,化简得解因为(x-5)2,|m|都是非负数,所以由(1)有由(2)得y+1=3,所以y=2.下面先化简所求代数式,然后再代入求值.=x2y+5m2x+10xy2=52×2+0+10×5×22=250例6如果4a-3b=7,并且3a+2b=19,求14a-2b的值.分析此题可以用方程组求出a,b的值,再分别代入14a-2b求值.下面介绍一种不必求出a,b的值的解法.解 14a-2b=2(7a-b)=2[(4a+3a)+(-3b+2b)]=2[(4a-3b)+(3a+2b)]=2(7+19)=52.|x|+|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的值.分析所求代数式中六个绝对值的分界点,分别为:0,1,2,据绝对值的意义去掉绝对值的符号,将有3个x和3个-x,这样将抵消掉x,使求值变得容易.原式=x+(x-1)+(x-2)-(x-3)-(x-4)-(x-5)=-1-2+3+4+5=9.说明实际上,本题只要x的值在2与3之间,那么这个代数式的值就是9,即它与x具体的取值无关.例8若x:y:z=3:4:7,且2x-y+z=18,那么x+2y-z的值是多少?分析 x:y:z=3:4:7可以写成的形式,对于等比,我们通常可以设它们的比值为常数k,这样可以给问题的解决带来便利.x=3k,y=4k,z=7k.因为2x-y+z=18,所以2×3k-4k+7k=18,所以k=2,所以x=6,y=8,z=14,所以x+2y-z=6+16-14=8.例9已知x=y=11,求(xy-1)2+(x+y-2)(x+y-2xy)的值.分析本题是可直接代入求值的.下面采用换元法,先将式子改写得较简洁,然后再求值.解设x+y=m,xy=n.原式=(n-1)2+(m-2)(m-2n)=(n-1)2+m2-2m-2mn+4n=n2-2n+1+4n-2m-2mn+m2=(n+1)2-2m(n+1)+m2=(n+1-m)2=(11×11+1-22)2=(121+1-22)2=1002=10000.说明换元法是处理较复杂的代数式的常用手法,通过换元,可以使代数式的特征更加突出,从而简化了题目的表述形式.练习三1.求下列代数式的值:(1)a4+3ab-6a2b2-3ab2+4ab+6a2b-7a2b2-2a4,其中a=-2,b=1;的值.3.已知a=3.5,b=-0.8,求代数式|6-5b|-|3a-2b|-|8b-1|的值.4.已知(a+1)2-(3a2+4ab+4b2+2)=0,求 a,b的值.5.已知第四讲一元一次方程方程是中学数学中最重要的内容.最简单的方程是一元一次方程,它是进一步学习代数方程的基础,很多方程都可以通过变形化为一元一次方程来解决.本讲主要介绍一些解一元一次方程的基本方法和技巧.用等号连结两个代数式的式子叫等式.如果给等式中的文字代以任何数值,等式都成立,这种等式叫恒等式.一个等式是否是恒等式是要通过证明来确定的.如果给等式中的文字(未知数)代以某些值,等式成立,而代以其他的值,则等式不成立,这种等式叫作条件等式.条件等式也称为方程.使方程成立的未知数的值叫作方程的解.方程的解的集合,叫作方程的解集.解方程就是求出方程的解集.只含有一个未知数(又称为一元),且其次数是1的方程叫作一元一次方程.任何一个一元一次方程总可以化为ax=b(a≠0)的形式,这是一元一次方程的标准形式(最简形式).解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项,化为最简形式ax=b;(5)方程两边同除以未知数的系数,得出方程的解.一元一次方程ax=b的解由a,b的取值来确定:(2)若a=0,且b=0,方程变为0·x=0,则方程有无数多个解;(3)若a=0,且b≠0,方程变为0·x=b,则方程无解.例1解方程解法1从里到外逐级去括号.去小括号得去中括号得去大括号得解法2按照分配律由外及里去括号.去大括号得化简为去中括号得去小括号得例2已知下面两个方程3(x+2)=5x,①4x-3(a-x)=6x-7(a-x) ②有相同的解,试求a的值.分析本题解题思路是从方程①中求出x的值,代入方程②,求出a的值.解由方程①可求得3x-5x=-6,所以x=3.由已知,x=3也是方程②的解,根据方程解的定义,把x=3代入方程②时,应有4×3-3(a-3)=6×3-7(a-3),7(a-3)-3(a-3)=18-12,例3已知方程2(x+1)=3(x-1)的解为a+2,求方程2[2(x+3)-3(x-a)]=3a的解.解由方程2(x+1)=3(x-1)解得x=5.由题设知a+2=5,所以a=3.于是有2[2(x+3)-3(x-3)]=3×3,-2x=-21,例4解关于x的方程(mx-n)(m+n)=0.分析这个方程中未知数是x,m,n是可以取不同实数值的常数,因此需要讨论m,n取不同值时,方程解的情况.解把原方程化为m2x+mnx-mn-n2=0,整理得 m(m+n)x=n(m+n).当m+n≠0,且m=0时,方程无解;当m+n=0时,方程的解为一切实数.说明含有字母系数的方程,一定要注意字母的取值范围.解这类方程时,需要从方程有唯一解、无解、无数多个解三种情况进行讨论.例5解方程(a+x-b)(a-b-x)=(a2-x)(b2+x)-a2b2.分析本题将方程中的括号去掉后产生x2项,但整理化简后,可以消去x2,也就是说,原方程实际上仍是一个一元一次方程.解将原方程整理化简得(a-b)2-x2=a2b2+a2x-b2x-x2-a2b2,即 (a2-b2)x=(a-b)2.(1)当a2-b2≠0时,即a≠±b时,方程有唯一解(2)当a2-b2=0时,即a=b或a=-b时,若a-b≠0,即a≠b,即a=-b时,方程无解;若a-b=0,即a=b,方程有无数多个解.例6已知(m2-1)x2-(m+1)x+8=0是关于x的一元一次方程,求代数式199(m+x)(x-2m)+m的值.解因为(m2-1)x2-(m+1)x+8=0是关于x的一元一次方程,所以m2-1=0,即m=±1.(1)当m=1时,方程变为-2x+8=0,因此x=4,代数式的值为199(1+4)(4-2×1)+1=1991;(2)当m=-1时,原方程无解.所以所求代数式的值为1991.例7 已知关于x的方程a(2x-1)=3x-2无解,试求a的值.解将原方程变形为2ax-a=3x-2,即 (2a-3)x=a-2.由已知该方程无解,所以例8 k为何正数时,方程k2x-k2=2kx-5k的解是正数?来确定:(1)若b=0时,方程的解是零;反之,若方程ax=b的解是零,则b=0成立.(2)若ab>0时,则方程的解是正数;反之,若方程ax=b的解是正数,则ab>0成立.(3)若ab<0时,则方程的解是负数;反之,若方程ax=b的解是负数,则ab<0成立.解按未知数x整理方程得(k2-2k)x=k2-5k.要使方程的解为正数,需要(k2-2k)(k2-5k)>0.看不等式的左端(k2-2k)(k2-5k)=k2(k-2)(k-5).因为k2≥0,所以只要k>5或k<2时上式大于零,所以当k<2或k>5时,原方程的解是正数,所以k>5或0<k<2即为所求.例9若abc=1,解方程解因为abc=1,所以原方程可变形为化简整理为化简整理为说明像这种带有附加条件的方程,求解时恰当地利用附加条件可使方程的求解过程大大简化.例10若a,b,c是正数,解方程解法1原方程两边乘以abc,得到方程ab(x-a-b)+bc(x-b-c)+ac(x-c-a)=3abc.移项、合并同类项得ab[x-(a+b+c)]+bc[x-(a+b+c)]+ac[x-(a+b+c)]=0,因此有[x-(a+b+c)](ab+bc+ac)=0.因为a>0,b>0,c>0,所以ab+bc+ac≠0,所以x-(a+b+c)=0,即x=a+b+c为原方程的解.解法2将原方程右边的3移到左边变为-3,再拆为三个“-1”,并注意到其余两项做类似处理.设m=a+b+c,则原方程变形为所以即x-(a+b+c)=0.所以x=a+b+c为原方程的解.说明注意观察,巧妙变形,是产生简单优美解法所不可缺少的基本功之一.例11设n为自然数,[x]表示不超过x的最大整数,解方程:分析要解此方程,必须先去掉[ ],由于n是自然数,所以n与(n+1)…,n[x]都是整数,所以x必是整数.解根据分析,x必为整数,即x=[x],所以原方程化为合并同类项得故有所以x=n(n+1)为原方程的解.例12已知关于x的方程且a为某些自然数时,方程的解为自然数,试求自然数a的最小值.解由原方程可解得a最小,所以x应取x=160.所以所以满足题设的自然数a的最小值为2.练习四1.解下列方程:*2.解下列关于x的方程:(1)a2(x-2)-3a=x+1;4.当k取何值时,关于x的方程3(x+1)=5-kx,分别有:(1)正数解;(2)负数解;(3)不大于1的解.第五讲方程组的解法二元及多元(二元以上)一次方程组的求解,主要是通过同解变形进行消元,最终转化为一元一次方程来解决.所以,解方程组的基本思想是消元,主要的消元方法有代入消元和加减消元两种,下面结合例题予以介绍.例1解方程组解将原方程组改写为由方程②得x=6+4y,代入①化简得11y-4z=-19.④由③得2y+3z=4.⑤④×3+⑤×4得33y+8y=-57+16,所以 y=-1.将y=-1代入⑤,得z=2.将y=-1代入②,得x=2.所以为原方程组的解.说明本题解法中,由①,②消x时,采用了代入消元法;解④,⑤组成的方程组时,若用代入法消元,无论消y,还是消z,都会出现分数系数,计算较繁,而利用两个方程中z的系数是一正一负,且系数的绝对值较小,采用加减消元法较简单.解方程组消元时,是使用代入消元,还是使用加减消元,要根据方程的具体特点而定,灵活地采用各种方法与技巧,使解法简捷明快.例2解方程组解法1由①,④消x得由⑥,⑦消元,得解之得将y=2代入①得x=1.将z=3代入③得u=4.所以解法2由原方程组得所以x=5-2y=5-2(8-2z)=-11+4z=-11+4(11-2u)=33-8u=33-8(6-2x)=-15+16x,即x=-15+16x,解之得x=1.将x=1代入⑧得u=4.将u=4代入⑦得z=3.将z=3代入⑥得y=2.所以为原方程组的解.解法3①+②+③+④得x+y+z+u=10,⑤由⑤-(①+③)得y+u=6,⑥由①×2-④得4y-u=4,⑦⑥+⑦得y=2.以下略.说明解法2很好地利用了本题方程组的特点,解法简捷、流畅.例3解方程组分析与解注意到各方程中同一未知数系数的关系,可以先得到下面四个二元方程:①+②得x+u=3,⑥②+③得y+v=5,⑦③+④得z+x=7,⑧④+⑤得u+y=9.⑨又①+②+③+④+⑤得x+y+z+u+v=15.⑩⑩-⑥-⑦得z=7,把z=7代入⑧得x=0,把x=0代入⑥得u=3,把u=3代入⑨得y=6,把y=6代入⑦得v=-1.所以为原方程组的解.例4解方程组解法1①×2+②得由③得代入④得为原方程组的解.为原方程组的解.说明解法1称为整体处理法,即从整体上进行加减消元或代入消为换元法,也就是干脆引入一个新的辅助元来代替原方程组中的“整体元”,从而简化方程组的求解过程.例5已知分析与解一般想法是利用方程组求出x,y,z的值之后,代入所求的代数式计算.但本题中方程组是由三个未知数两个方程组成的,因此无法求出x,y,z的确定有限解,但我们可以利用加减消元法将原方程组变形.①-②消去x得①×3+②消去y得①×5+②×3消去z得例6已知关于x,y的方程组分别求出当a为何值时,方程组(1)有唯一一组解;(2)无解;(3)有无穷多组解.分析与一元一次方程一样,含有字母系数的一次方程组求解时也要进行讨论,一般是通过消元,归结为一元一次方程ax=b的形式进行讨论.但必须特别注意,消元时,若用含有字母的式子去乘或者去除方程的两边时,这个式子的值不能等于零.解由①得2y=(1+a)-ax,③将③代入②得(a-2)(a+1)x=(a-2)(a+2).④(1)当(a-2)(a+1)≠0,即a≠2且a≠-1时,方程④有因而原方程组有唯一一组解.(2)当(a-2)(a+1)=0且(a-2)(a+2)≠0时,即a=-1时,方程④无解,因此原方程组无解.(3)当(a-2)(a+1)=0且(a-2)(a+2)=0时,即a=2时,方程④有无穷多个解,因此原方程组有无穷多组解.例7已知关于x,y的二元一次方程(a-1)x+(a+2)y+5-2a=0,当a每取一个值时,就有一个方程,而这些方程有一个公共解,试求出这个公共解.解法1根据题意,可分别令a=1,a=-2代入原方程得到一个方程组将x=3,y=-1代入原方程得(a-1)·3+(a+2)·(-1)+5-2a=0.所以对任何a值都是原方程的解.说明取a=1为的是使方程中(a-1)x=0,方程无x项,可直接求出y值;取a=-2的道理类似.解法2可将原方程变形为a(x+y-2)-(x-2y-5)=0.由于公共解与a无关,故有例8甲、乙两人解方程组原方程的解.分析与解因为甲只看错了方程①中的a,所以甲所得到的解4×(-3)-b×(-1)=-2.③a×5+5×4=13.④解由③,④联立的方程组得所以原方程组应为练习五1.解方程组2.若x1,x2,x3,x4,x5满足方程组试确定3x4+2x5的值.3.将式子3x2+2x-5写成a(x+1)2+b(x+1)+c的形式,试求4.k为何值时,方程组有唯一一组解;无解;无穷多解?5.若方程组的解满足x+y=0,试求m的值.第六讲一次不等式(不等式组)的解法不等式和方程一样,也是代数里的一种重要模型.在概念方面,它与方程很类似,尤其重要的是不等式具有一系列基本性质,而且“数学的基本结果往往是一些不等式而不是等式”.本讲是系统学习不等式的基础.下面先介绍有关一次不等式的基本知识,然后进行例题分析.1.不等式的基本性质这里特别要强调的是在用一个不等于零的数或式子去乘(或去除)不等式时,一定要注意它与等式的类似性质上的差异,即当所乘(或除)的数或式子大于零时,不等号方向不变(性质(5));当所乘(或除)的数或式子小于零时,不等号方向要改变(性质(6)).2.区间概念在许多情况下,可以用不等式表示数集和点集.如果设a,b为实数,且a<b,那么(1)满足不等式a<x<b的数x的全体叫作一个开区间,记作(a,b).如图1-4(a).(2)满足不等式a≤x≤b的数x的全体叫作一个闭区间,记作[a,b].如图1-4(b).(3)满足不等式a<x≤b(或a≤x<b)的x的全体叫作一个半开半闭区间,记作(a,b](或[a,b)).如图1-4(c),(d).3.一次不等式的一般解法一元一次不等式像方程一样,经过移项、合并同类项、整理后,总可以写成下面的标准型:ax>b,或ax<b.为确定起见,下面仅讨论前一种形式.一元一次不等式ax>b.(3)当a=0时,用区间表示为(-∞,+∞).例1解不等式解两边同时乘以6得12(x+1)+2(x-2)≥21x-6,化简得-7x≥-14,两边同除以-7,有x≤2.所以不等式的解为x≤2,用区间表示为(-∞,2].例2求不等式的正整数解.正整数解,所以原不等式的正整数解为x=1,2,3.例3解不等式分析与解因y2+1>0,所以根据不等式的基本性质有例4解不等式为x+2>7,解为x>5.这种错误没有考虑到使原不等式有意义的条件:x≠6.解将原不等式变形为解之得所以原不等式的解为x>5且x≠6.例5已知2(x-2)-3(4x-1)=9(1-x),且y<x+9,试比较解首先解关于x的方程得x=-10.将x=-10代入不等式得y<-10+9,即y<-1.例6解关于x的不等式:解显然a≠0,将原不等式变形为3x+3-2a2>a-2ax,即(3+2a)x>(2a+3)(a-1).说明对含有字母系数的不等式的解,也要分情况讨论.例7已知a,b为实数,若不等式(2a-b)x+3a-4b<0解由(2a-b)x+3a-4b<0得(2a-b)x<4b-3a.。
中学数学竞赛讲义不等式不等式
中学数学竞赛讲义——不等式一、基础知识不等式的基本性质:(1)a>b ⇔a-b>0;(2)a>b, b>c ⇒a>c ; (3)a>b ⇒a+c>b+c ;(4)a>b, c>0⇒ac>bc ;(5)a>b, c<0⇒ac<bc 。
(6)a>b>0, c>d>0⇒ac>bd 。
(7)a>b>0, n ∈N+⇒an>bn 。
(8)a>b>0, n ∈N+⇒n n b a >。
(9)a>0, |x|<a ⇔-a<x<a, |x|>a ⇔x>a 或x<-a 。
(10)a, b ∈R ,则|a|-|b|≤|a+b|≤|a|+|b|。
(11)a, b ∈R ,则(a-b)2≥0⇔a2+b2≥2ab 。
(12)x, y, z ∈R+,则x+y ≥2xy , x+y+z .33xyz ≥ 前五条是显然的,以下从第六条开始给出证明。
(6)因为a>b>0, c>d>0,所以ac>bc, bc>bd ,所以ac>bd ;重复利用性质(6),可得性质(7);再证性质(8),用反证法,若n n b a ≤,由性质(7)得n n n n b a )()(≤,即a ≤b ,与a>b 矛盾,所以假设不成立,所以n nb a >;由绝对值的意义知(9)成立;-|a|≤a ≤|a|, -|b|≤b ≤|b|,所以-(|a|+|b|)≤a+b ≤|a|+|b|,所以|a+b|≤|a|+|b|;下面再证(10)的左边,因为|a|=|a+b-b|≤|a+b|+|b|,所以|a|-|b|≤|a+b|,所以(10)成立;(11)显然成立;下证(12),因为x+y-22)(y x xy -=≥0,所以x+y ≥xy 2,当且仅当x=y 时,等号成立,再证另一不等式,令c z b y a x ===333,,,因为x3+b3+c3-3abc =(a+b)3+c3-3a2b-3ab2-3abc =(a+b)3+c3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca)= 21(a+b+c)[(a-b)2+(b-c)2+(c-a)2]≥0,所以a3+b3+c3≥3abc ,即x+y+z ≥33xyz ,等号当且仅当x=y=z 时成立。
初中七年级数学竞赛培优讲义全套专题16 不等式[精品]
专题16 不等式(组)阅读与思考客观世界与实际生活既存在许多相等关系,又包含大量的不等关系,方程(组)是研究相等关系的重要手段,不等式(组)是探求不等关系的基本工具,方程与不等式既有相似点,又有不同之处,主要体现在:1. 解一元一次不等式与解一元一次方程类似,但解题时要注意两者之间的重要区别;等式两边都乘(或除)以同一个数时,只要考虑这个数是否为零,而不等式两边都乘以(或除以)同一个数时,不但要考虑这个数是否为零,而且还要考虑这个数的正负性.2. 解不等式组与解方程组的主要区别是:解方程组时,我们可以对几个方程进行“代入”或“加减”式的加工,但在解不等组时,我们只能对某个不等式进行变形,分别求出每个不等式的解集,然后再求公共部分.通俗地说,解方程组时,可以“统一思想”,而解不等式组时只能“分而治之”.例题与求解【例1】已知关于x 的不等式组⎪⎩⎪⎨⎧<-+->-+x t x x x 235352恰好有5个整数解,则t 的取值范围是( )A 、2116-<<-tB 、2116-<≤-tC 、2116-≤<-tD 、2116-≤≤-t(2013 年全国初中数学竞赛广东省试题)解题思路:把x 的解集用含t 的式子表示,根据题意,结合数轴分析t 的取值范围. 【例2】如果关于x 的不等式71005)2(<>---x n m x n m 的解集为那么关于x 的不等式)0(≠>m n mx 的解集为 .(黑龙江省哈尔滨市竞赛试题)解题思路:从已知条件出发,解关于x 的不等式,求出m ,n 的值或m ,n 的关系. 【例3】已知方程组⎩⎨⎧=+=-62y mx y x 若方程组有非负整数解,求正整数m 的值. (天津市竞赛试题)解题思路:解关于x ,y 的方程组,建立关于m 的不等式组,求出m 的取值范围.【例4】已知三个非负数a ,b ,c 满足3a +2b +c =5和2a +b -3c =1,若m =3a +b -7c ,求m 的最大 值和最小值.(江苏省竞赛试题)解题思路:本例综合了方程组、不等式(组)的知识,解题的关键是用含一个字母的代数式表示m ,通过解不等式组,确定这个字母的取值范围,在约束条件下,求m 的最大值与最小值.【例6】设765,4321,,,,,x x x x x x x 是自然数,7654321x x x x x x x <<<<<<,654543432321,,,x x x x x x x x x x x x =+=+=+=+,2010,7654321765=++++++=+x x x x x x x x x x 又,求321x x x ++的最大值.(“希望杯”邀请赛试题)解题思路:代入消元,利用不等式和取整的作用,寻找解题突破口.【例6】已知实数a ,b 满足,10,41≤-≤≤+≤b a b a 且a -2b 有最大值,求8a +2003b 的值. 解题思路:解法一:已知a -b 的范围,需知-b 的范围,即可知a -2b 的最大值得情形. 解法二:设a -2b =m (a +b )+n (a -b )=(m +n )a +(m -n )b能力训练A 级1、已知关于的不等式4321432≥-≤+x mx x m 的解集是那么m 的值是 (“希望杯”邀请赛试题)2、不等式组⎩⎨⎧<->+5242b x a x 的解集是20<<x ,那么a +b 的值为(湖北省武汉市竞赛试题)3、若a +b <0,ab <0,a <b ,则b b a a --,,,的大小关系用不等式表示为(湖北省武汉市竞赛试题)4、若方程组⎩⎨⎧+=++=+36542m y x m y x 的解,y 都是正数,则m 的取值范围 是(河南省中考试题)5、关于的不等式x a ax +>+33的解集为3-<x ,则a 应满足( ) A 、a >1 B 、a <1 C 、1≥a D 、1≤a(2013年全国初中数学竞赛预赛试题)6、适合不等式21414312-≥+->-x x x 的的取值的范围是( )7、已知不等式0)2)(1(>+-x mx 的解集23-<<-x 那么m 等于( ) A 、31 B 、31- C 、3 D 、-3 8、已知0≠a ,下面给出4个结论:①012>+a ;②012<-a ;③1112>+a ④1112<-a ,其中,一定成立的结论有( )A 、1个B 、2个C 、3个D 、4个(江苏省竞赛试题)9、当为何整数值时,方程组 ⎩⎨⎧-=-=+ky x y x 3962有正整数解?(天津市竞赛试题)10、如果⎩⎨⎧==21y x 是关于,y 的方程08)12(2=+-+-+by ax by ax 的解,求不等式组⎪⎩⎪⎨⎧+<-+>-331413x ax b x a x 的解集11、已知关于的不等式组⎪⎩⎪⎨⎧<≥-203b x a x 的整数解有且仅有4个:-1,0,1,2那么,适合这个不等式组的所有可能的整数对(a ,b )共有多少个?(江苏省竞赛试题)B 级1、如果关于的不等式03≥+ax 的正整数解为1,2,3那么a 的取值范围是(北京市”迎春杯“竞赛试题)2、若不等式组⎩⎨⎧-≥-≥+2210x x a x 有解, 则a 的取值范围是___________.(海南省竞赛试题)3、已知不等式03≤-a x 只有三个正整数解,那么这时正数a 的取值范围为 .(”希望杯“邀请赛试题)4、已知1121<-<-x 则12-x的取值范围为 . (“新知杯”上海市竞赛试题)5、若正数a ,b ,c 满足不等式组 ⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<<+<<+<b c a b a c b a c b a c 4112535232611,则a ,b ,c 的大小关系是( )A 、a <b <cB 、 b <c <aC 、c <a <bD 、不确定(“祖冲之杯”邀请赛试题)6、一共( )个整数适合不等式99992000≤+-x xA 、10000B 、20000C 、9999D 、80000(五羊杯“竞赛试题)7、已知m ,n 是整数,3m +2=5n +3,且3m +2>30,5n +3<40,则mn 的值是( ) A 、70 B 、72 C 、77 D 、84 8、不等式5+>x x 的解集为( )A 、25<x B 、25>x C 、25-<x D 、25->x (山东省竞赛试题)9、31,2351312++---≥--x x xx x 求已知的最大值和最小值. (北京市”迎春杯”竞赛试题)10、已知,y ,是三个非负有理数,且满足3+2y +=5,+y -=2,若s =2+y -,求s 的取值范围.(天津市竞赛试题)11、求满足下列条件的最小正整数n ,对于n 存在正整数使137158<+<k n n 成立.12、已知正整数a ,b ,c 满足a <b <c ,且1111=++cb a ,试求a ,b ,c 的值.。
初中七年级数学竞赛培优讲义
初中七年级数学竞赛培优讲义《初中七年级数学竞赛培优讲义》哎呀,一提到数学竞赛培优讲义,我这心里就像揣了只小兔子,怦怦直跳!为啥?因为这可真是个充满挑战又超级有趣的东西啊!你想想,数学就像一座神秘的城堡,里面藏着无数的宝藏和秘密。
而七年级的数学竞赛培优讲义,那就是打开这座城堡大门的一把神奇钥匙!我们先来说说那些有趣的几何图形吧。
三角形、四边形、圆形,它们就像是城堡里不同形状的房间。
三角形稳定得像泰山,不管怎么推怎么挤,它都稳稳当当的,难道这还不够神奇吗?四边形呢,有时候像个调皮的孩子,轻轻一拉就变形了。
圆形就更妙啦,像个超级大皮球,从哪个角度看都那么圆润可爱。
再讲讲代数部分,那些字母和数字的组合,就像是一场精彩的魔术表演。
X、Y 一会儿变大,一会儿变小,一会儿又消失不见,然后又突然冒出来,这难道不像魔术师手中的道具,让人眼花缭乱又惊喜连连?我们在课堂上,老师拿着培优讲义,就像拿着一本武功秘籍,给我们传授着一招一式。
“同学们,这道题可不容易哦,大家好好想想!”老师这么一说,大家都皱起了眉头,开始苦思冥想。
我心里想:“哼,我就不信我解不出来!”然后和同桌小声嘀咕:“你觉得从哪里入手好?”同桌挠挠头:“我也不太清楚呢,咱们再看看。
”小组讨论的时候那才热闹呢!“我觉得应该这样做。
”“不对不对,应该那样。
”大家争得面红耳赤,可谁也不服谁。
最后老师来给我们指点迷津,一下子就恍然大悟,那种感觉,就像在黑暗中突然看到了光明,别提多兴奋啦!做数学竞赛题,有时候就像爬山。
一开始觉得山坡好陡啊,怎么爬都爬不上去。
可是当你咬咬牙,坚持一下,突然就发现找到了一条小路,然后顺着这条路,一下子就爬到了山顶,那种成就感,简直无与伦比!数学竞赛培优讲义里的每一道题,都是一个小怪兽,我们就是勇敢的战士,拿着知识的武器去打败它们。
有时候会被小怪兽打得晕头转向,但是只要不放弃,总有战胜它们的时候。
经过这么长时间的学习和努力,我深深地觉得,数学竞赛培优讲义虽然难,但是它就像一个超级好玩的游戏,只要你用心去玩,就能从中获得无尽的乐趣和收获。
初中数学培优专题学习专题16 不等式
专题16 不等式(组)阅读与思考客观世界与实际生活既存在许多相等关系,又包含大量的不等关系,方程(组)是研究相等关系的重要手段,不等式(组)是探求不等关系的基本工具,方程与不等式既有相似点,又有不同之处,主要体现在:1. 解一元一次不等式与解一元一次方程类似,但解题时要注意两者之间的重要区别;等式两边都乘(或除)以同一个数时,只要考虑这个数是否为零,而不等式两边都乘以(或除以)同一个数时,不但要考虑这个数是否为零,而且还要考虑这个数的正负性.2. 解不等式组与解方程组的主要区别是:解方程组时,我们可以对几个方程进行“代入”或“加减”式的加工,但在解不等组时,我们只能对某个不等式进行变形,分别求出每个不等式的解集,然后再求公共部分.通俗地说,解方程组时,可以“统一思想”,而解不等式组时只能“分而治之”.例题与求解【例1】已知关于x 的不等式组⎪⎩⎪⎨⎧<-+->-+x t x x x 235352恰好有5个整数解,则t 的取值范围是( )A 、2116-<<-tB 、2116-<≤-tC 、2116-≤<-tD 、2116-≤≤-t(2013 年全国初中数学竞赛广东省试题)解题思路:把x 的解集用含t 的式子表示,根据题意,结合数轴分析t 的取值范围. 【例2】如果关于x 的不等式71005)2(<>---x n m x n m 的解集为那么关于x 的不等式)0(≠>m n mx 的解集为 .(黑龙江省哈尔滨市竞赛试题)解题思路:从已知条件出发,解关于x 的不等式,求出m ,n 的值或m ,n 的关系. 【例3】已知方程组⎩⎨⎧=+=-62y mx y x 若方程组有非负整数解,求正整数m 的值.(天津市竞赛试题)解题思路:解关于x ,y 的方程组,建立关于m 的不等式组,求出m 的取值范围.【例4】已知三个非负数a ,b ,c 满足3a +2b +c =5和2a +b -3c =1,若m =3a +b -7c ,求m 的最大 值和最小值.(江苏省竞赛试题)解题思路:本例综合了方程组、不等式(组)的知识,解题的关键是用含一个字母的代数式表示m ,通过解不等式组,确定这个字母的取值范围,在约束条件下,求m 的最大值与最小值.【例6】设765,4321,,,,,x x x x x x x 是自然数,7654321x x x x x x x <<<<<<,654543432321,,,x x x x x x x x x x x x =+=+=+=+,2010,7654321765=++++++=+x x x x x x x x x x 又,求321x x x ++的最大值.(“希望杯”邀请赛试题)解题思路:代入消元,利用不等式和取整的作用,寻找解题突破口.【例6】已知实数a ,b 满足,10,41≤-≤≤+≤b a b a 且a -2b 有最大值,求8a +2003b 的值. 解题思路:解法一:已知a -b 的范围,需知-b 的范围,即可知a -2b 的最大值得情形. 解法二:设a -2b =m (a +b )+n (a -b )=(m +n )a +(m -n )b能力训练A 级1、已知关于x 的不等式4321432≥-≤+x mx x m 的解集是那么m 的值是 (“希望杯”邀请赛试题)2、不等式组⎩⎨⎧<->+5242b x a x 的解集是20<<x ,那么a +b 的值为(湖北省武汉市竞赛试题)3、若a +b <0,ab <0,a <b ,则b b a a --,,,的大小关系用不等式表示为(湖北省武汉市竞赛试题)4、若方程组⎩⎨⎧+=++=+36542m y x m y x 的解x ,y 都是正数,则m 的取值范围 是 (河南省中考试题)5、关于x 的不等式x a ax +>+33的解集为3-<x ,则a 应满足( ) A 、a >1 B 、a <1 C 、1≥a D 、1≤a(2013年全国初中数学竞赛预赛试题)6、适合不等式21414312-≥+->-x x x 的x 的取值的范围是( )7、已知不等式0)2)(1(>+-x mx 的解集23-<<-x 那么m 等于( )A 、31 B 、31- C 、3 D 、-3 8、已知0≠a ,下面给出4个结论:①012>+a ;②012<-a ;③1112>+a ④1112<-a ,其中,一定成立的结论有( )A 、1个B 、2个C 、3个D 、4个(江苏省竞赛试题)9、当k 为何整数值时,方程组 ⎩⎨⎧-=-=+ky x y x 3962有正整数解?(天津市竞赛试题)10、如果⎩⎨⎧==21y x 是关于x ,y 的方程08)12(2=+-+-+by ax by ax 的解,求不等式组⎪⎩⎪⎨⎧+<-+>-331413x ax bx a x 的解集11、已知关于x 的不等式组⎪⎩⎪⎨⎧<≥-203b x a x 的整数解有且仅有4个:-1,0,1,2那么,适合这个不等式组的所有可能的整数对(a ,b )共有多少个?(江苏省竞赛试题)B 级1、如果关于x 的不等式03≥+ax 的正整数解为1,2,3那么a 的取值范围是(北京市”迎春杯“竞赛试题) 2、若不等式组⎩⎨⎧-≥-≥+2210x x a x 有解, 则a 的取值范围是___________.(海南省竞赛试题)3、已知不等式03≤-a x 只有三个正整数解,那么这时正数a 的取值范围为 .(”希望杯“邀请赛试题) 4、已知1121<-<-x 则12-x的取值范围为 . (“新知杯”上海市竞赛试题)5、若正数a ,b ,c 满足不等式组 ⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<<+<<+<b c a b a c b a c b a c 4112535232611,则a ,b ,c 的大小关系是( )A 、a <b <cB 、 b <c <aC 、c <a <bD 、不确定(“祖冲之杯”邀请赛试题) 6、一共( )个整数x 适合不等式99992000≤+-x xA 、10000B 、20000C 、9999D 、80000(五羊杯“竞赛试题)7、已知m ,n 是整数,3m +2=5n +3,且3m +2>30,5n +3<40,则mn 的值是( ) A 、70 B 、72 C 、77 D 、84 8、不等式5+>x x 的解集为( ) A 、25<x B 、25>x C 、25-<x D 、25->x (山东省竞赛试题)9、31,2351312++---≥--x x xx x 求已知的最大值和最小值. (北京市”迎春杯”竞赛试题)10、已知x ,y ,z 是三个非负有理数,且满足3x +2y +z =5,x +y -z =2,若s =2x +y -z ,求s 的取值范围.(天津市竞赛试题)11、求满足下列条件的最小正整数n ,对于n 存在正整数k 使137158<+<k n n 成立.12、已知正整数a ,b ,c 满足a <b <c ,且1111=++cb a ,试求a ,b ,c 的值.。
初一数学竞赛培优讲义 含答案 全册 共15讲 改好98页
装订线初一数学竞赛培优第1讲数论的方法技巧(上)数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。
数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。
因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。
任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。
”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。
数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。
主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r(0≤r<b),且q,r是唯一的。
特别地,如果r=0,那么a=bq。
这时,a被b整除,记作b|a,也称b是a的约数,a是b的倍数。
2.若a|c,b|c,且a,b互质,则ab|c。
3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的。
(1)式称为n的质因数分解或标准分解。
4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(a k+1)。
5.整数集的离散性:n与n+1之间不再有其他整数。
因此,不等式x<y与x≤y-1是等价的。
下面,我们将按解数论题的方法技巧来分类讲解。
一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。
这些常用的形式有: 1.十进制表示形式:n=a n 10n +a n-110n-1+…+a 0; 2.带余形式:a=bq+r ;4.2的乘方与奇数之积式:n=2m t ,其中t 为奇数。
例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。
初中数学竞赛不等式和不等式组
第1讲不等式和不等式组知识总结归纳一.不等式的概念:用“>”、“<”等符号表示大小关系的式子叫不等式。
二.不等式的解:不等式的解:使不等式成立的未知数x的值叫不等式的解。
三.解集:使不等式成立的x的取值范围叫不等式解的集合,简称解集。
四.一元一次不等式:含有一个未知数,未知数的次数是1的不等式叫做一元一次不等式。
五.一元一次不等式组:把几个不等式合起来,组成一个一元一次不等式组。
六.不等式的性质:(1)不等式两边同时加(或减)同一个数(或式子),不等号的方向不变。
(2)不等式两边同乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边同乘(或除以)同一个负数,不等号的方向改变.七.不等式组的解集:不等式组中每一个解集的公共部分叫不等式组的解集。
八.解一元一次不等式的步骤(1)去分母;(注意:不等式两边都乘以或除以同一个负数时,不等号方向要改变)(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1(注意:不等式两边都乘以或除以同一个负数时,不等号方向要改变)典型例题一. 解不等式【例1】 解下列不等式,并在数轴上表示出它们的解集.(1)3228x x +<-;(2)3[2(2)]3(2)x x x x -->--;(3)112[(1)](1)225x x x -+≤-;(4)0.40.90.030.02.50.50.032x x x ++-->.【例2】 解不等式:11315111x x x x ++>+-++.【例3】解不等式组,并在数轴上表示它的解集.(1)1122433x xx x⎧-<⎪⎨⎪->+⎩(2)41282(2)xx x⎧+≤⎪⎨⎪->+⎩(3)243763543723x xx xx x+>-⎧⎪->-⎨⎪-<-⎩(4)2131(3)02611xxx+>⎧⎪⎪->⎨⎪+>⎪⎩【例4】解不等式,并在数轴上表示它的解集.(1)-5<6-2x<3 (2)3 21542 x x x-≤-≤-二.含参数的不等式【例5】求a的值,使不等式组52122541xxx a+⎧+<⎪⎨⎪-<-⎩的解是11x-<<.【例6】若不等式组2123x ax b-<⎧⎨->⎩的解集是11x-<<,求(1)(1)a b++的值.【例7】若关于x的不等式组1532223xxxx a+⎧>-⎪⎪⎨+⎪<+⎪⎩只有4个整数解,求a的取值范围.【例8】关于的x不等式组321x ax-≥⎧⎨->-⎩的整数解共有5个,求a的取值范围.【例9】k取哪些整数时,关于x的方程5416x k x+=-的根大于2且小于10?【例10】已知关于x,y的方程组2743x y mx y m+=+⎧⎨-=-⎩的解x,y为正数,求m的取值范围.【例11】当k取何值时,方程组3525x y kx y-=⎧⎨+=-⎩的解x,y都是负数.【例12】已知方程组227243x y mx y m+=+⎧⎨-=-⎩的解x y>,求m的取值范围.【例13】已知方程组21321x y mx y m+=+⎧⎨+=-⎩①②的解满足0x y+<,求m的取值范围.【例14】已知24221x y kx y k+=⎧⎨+=+⎩中的x,y满足0<y-x<1,求k的取值范围.【例15】k取哪些整数时,关于x的方程5x+4=16k-x的根大于2且小于10?【例16】k满足什么条件时,方程组24x y kx y+=⎧⎨-=⎩中的x大于1,y小于1.【例17】若m、n为有理数,解关于x的不等式(-m2-1)x>n.【例18】 当102(3)3k k --<时,求关于x 的不等式(5)4k x x k ->-的解集.思维飞跃【例19】 解关于x 的不等式:22(1)2m x m m ->--.【例20】 解关于x 的不等式:233122x x a a+-->.【例21】 已知不等式(2)340a b x a b -+-<为49x >,求不等式(4)230a b x a b -+->的解集.【例22】 已知22)3(41)9(1)x x x ---=-(,且9y x <+,试比较1y π与1031y 的大小.【例23】 如果不等式组9080x a x b -≥⎧⎨-<⎩的整数解仅为1、2、3,那么适合这个不等式组的整数a 、b 的有序数对(a ,b )有多少对?作业1.解下列不等式,并在数轴上表示出它们的解集.(1)5(2)86(1)7x x-+<-+;(2)532122x x++-<;(3)57721234x x x+--≥-;(4)329251332x x x--+-≤2.解不等式组,并在数轴上表示它的解集.(1)253223x xx x-<⎧⎪-⎨>⎪⎩(2)1232(3)3(2)6x xx x⎧->-⎪⎨⎪--->-⎩(3)234743743723x xx xx x+>-⎧⎪->-⎨⎪-<-⎩(4)2(13)795x--≤≤.3.已知a是自然数,关于x的不等式组3420x ax-≥⎧⎨->⎩的解集是2x>,求a的值.4.不等式组951,1x xx m+<+⎧⎨>+⎩的解集是2x>,求m的取值范围.5.已知关于x,y的方程组321431x y px y p+=+⎧⎨+=-⎩的解满足x y≥,求p的取值范围.6.适当选择a的取值范围,使1.7x a<<的整数解:(1)x只有一个整数解;(2)x一个整数解也没有.7.关于x的不等式组23(3) 1324x xxx a<-+⎧⎪⎨+>+⎪⎩①②,有四个整数解,求a的取值范围.8.已知不等式(2)50a b x a b-+->为107x<,求不等式ax b>的解集.。
不等式讲义知识点详解+例题+习题(含详细答案)(最新整理)
不等式讲义最新考纲:1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:(1)|a +b |≤|a |+|b |(a ,b ∈R ).(2)|a -b |≤|a -c |+|c -b |(a ,b ∈R ).2.会利用绝对值的几何意义求解以下类型的不等式:|ax +b |≤c ,|ax +b |≥c ,|x -c |+|x -b |≥a .3.了解柯西不等式的几种不同形式,理解它们的几何意义,并会证明.4.通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法、数学归纳法.1.含有绝对值的不等式的解法(1)|f (x )|>a (a >0)⇔f (x )>a 或f (x )<-a ;(2)|f (x )|<a (a >0)⇔-a <f (x )<a ;(3)对形如|x -a |+|x -b |≤c ,|x -a |+|x -b |≥c 的不等式,可利用绝对值不等式的几何意义求解.2.含有绝对值的不等式的性质|a |-|b |≤|a ±b |≤|a |+|b |.问题探究:不等式|a |-|b |≤|a ±b |≤|a |+|b |中,“=”成立的条件分别是什么?提示:不等式|a |-|b |≤|a +b |≤|a |+|b |,右侧“=”成立的条件是ab ≥0,左侧“=”成立的条件是ab ≤0且|a |≥|b |;不等式|a |-|b |≤|a -b |≤|a |+|b |,右侧“=”成立的条件是ab ≤0,左侧“=”成立的条件是ab ≥0且|a |≥|b |.3.基本不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab .当且仅当a =b 时,等号成立.定理2:如果a 、b 为正数,则≥,当且仅当a =b 时,等号成立.a +b 2ab 定理3:如果a 、b 、c 为正数,则≥,当且仅当a =b =c 时,a +b +c 33abc 等号成立.定理4:(一般形式的算术—几何平均值不等式)如果a 1、a 2、…、a n 为n 个正数,则≥,当且仅当a 1=a 2=…=a n 时,等号成立.a 1+a 2+…+a nn n a 1a 2…a n 4.柯西不等式(1)柯西不等式的代数形式:设a ,b ,c ,d 为实数,则(a 2+b 2)·(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)若a i ,b i (i ∈N *)为实数,则()()≥(i b i )2,当且仅当b i =0(i =n ∑i =1a 2i n ∑i =1b 2i n ∑i =1a 1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.(3)柯西不等式的向量形式:设α,β为平面上的两个向量,则|α|·|β|≥|α·β|,当且仅当这两个向量同向或反向时等号成立.1.判断正误(在括号内打“√”或“×”)(1)对|a +b |≥|a |-|b |当且仅当a >b >0时等号成立.( )(2)对|a -b |≤|a |+|b |当且仅当ab ≤0时等号成立.( )(3)|ax +b |≤c (c >0)的解等价于-c ≤ax +b ≤c .( )(4)不等式|x -1|+|x +2|<2的解集为Ø.( )(5)若实数x 、y 适合不等式xy >1,x +y >-2,则x >0,y >0.( )[答案] (1)× (2)√ (3)√ (4)√ (5)√2.不等式|2x -1|-x <1的解集是( )A .{x |0<x <2}B .{x |1<x <2}C .{x |0<x <1}D .{x |1<x <3}[解析] 解法一:x =1时,满足不等关系,排除C 、D 、B ,故选A.解法二:令f (x )=Error!则f (x )<1的解集为{x |0<x <2}.[答案] A3.设|a |<1,|b |<1,则|a +b |+|a -b |与2的大小关系是( )A .|a +b |+|a -b |>2B .|a +b |+|a -b |<2C .|a +b |+|a -b |=2D .不能比较大小[解析] |a +b |+|a -b |≤|2a |<2.[答案] B4.若a ,b ,c ∈(0,+∞),且a +b +c =1,则++的最大值为( )a b c A .1 B . 2C. D .23[解析] (++)2=(1×+1×+1×)2≤ (12+12+12)(a +b +c )a b c a b c =3.当且仅当a =b =c =时,等号成立.13∴(++)2≤3.a b c ++的最大值为.故应选C.a b c 3[答案] C5.若存在实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是________.[解析] 利用数轴及不等式的几何意义可得x 到a 与到1的距离和小于3,所以a 的取值范围为-2≤a ≤4.[答案] -2≤a ≤4考点一 含绝对值的不等式的解法解|x -a |+|x -b |≥c (或≤c )型不等式,其一般步骤是:(1)令每个绝对值符号里的代数式为零,并求出相应的根.(2)把这些根由小到大排序,它们把定义域分为若干个区间.(3)在所分区间上,去掉绝对值符号组成若干个不等式,解这些不等式,求出它们的解集.(4)这些不等式解集的并集就是原不等式的解集.解绝对值不等式的关键是恰当的去掉绝对值符号.(1)(2015·山东卷)不等式|x -1|-|x -5|<2的解集是( )A .(-∞,4)B .(-∞,1)C .(1,4)D .(1,5)(2)(2014·湖南卷)若关于x 的不等式|ax -2|<3的解集为Error!,则a =________.[解题指导] 切入点:“脱掉”绝对值符号;关键点:利用绝对值的性质进行分类讨论.[解析] (1)当x <1时,不等式可化为-(x -1)+(x -5)<2,即-4<2,显然成立,所以此时不等式的解集为(-∞,1);当1≤x ≤5时,不等式可化为x -1+(x -5)<2,即2x -6<2,解得x <4,又1≤x ≤5,所以此时不等式的解集为[1,4);当x >5时,不等式可化为(x -1)-(x -5)<2,即4<2,显然不成立,所以此时不等式无解.综上,不等式的解集为(-∞,4).故选A.(2)∵|ax -2|<3,∴-1<ax <5.当a >0时,-<x <,与已知条件不符;1a 5a当a =0时,x ∈R ,与已知条件不符;当a <0时,<x <-,又不等式的解集为Error!,故a =-3.5a 1a[答案] (1)A (2)-3用零点分段法解绝对值不等式的步骤:(1)求零点;(2)划区间、去绝对值号;(3)分别解去掉绝对值的不等式;(4)取每个结果的并集,注意在分段时不要遗漏区间的端点值.对点训练已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.[解] (1)当a =-3时,f (x )=Error!当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1;当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3得2x -5≥3,解得x ≥4;所以f (x )≥3的解集为{x |x ≤1或x ≥4}.(2)f (x )≤|x -4|⇔|x -4|-|x -2|≥|x +a |.当x ∈[1,2]时,|x -4|-|x -2|≥|x +a |⇔4-x -(2-x )≥|x +a |⇔-2-a ≤x ≤2-a .由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0.故满足条件的a 的取值范围为[-3,0].考点二 利用绝对值的几何意义或图象解不等式对于形如|x -a |+|x -b |>c 或|x -a |+|x -b |<c 的不等式,利用绝对值的几何意义或者画出左、右两边函数的图象去解不等式,更为直观、简捷,它体现了数形结合思想方法的优越性.|x -a |+|x -b |的几何意义是数轴上表示x 的点与点a 和点b 的距离之和,应注意x 的系数为1.(1)(2014·重庆卷)若不等式|x -1|+|x +2|≥a 2+a +2对任意实数x 恒成立,12则实数a 的取值范围是________.(2)不等式|x +1|-|x -2|>k 的解集为R ,则实数k 的取值范围是__________.[解题指导] 切入点:绝对值的几何意义;关键点:把恒成立问题转化为最值问题.[解析] (1)∵|x -1|+|x +2|≥|(x -1)-(x -2)|=3,∴a 2+a +2≤3,解得≤a ≤.12-1174-1+174即实数a 的取值范围是.[-1-174,-1+174](2)解法一:根据绝对值的几何意义,设数x ,-1,2在数轴上对应的点分别为P ,A ,B ,则原不等式等价于PA -PB >k 恒成立.∵AB =3,即|x +1|-|x -2|≥-3.故当k <-3时,原不等式恒成立.解法二:令y =|x +1|-|x -2|,则y=Error!要使|x+1|-|x-2|>k恒成立,从图象中可以看出,只要k<-3即可.故k<-3满足题意.[答案] (1) (2)(-∞,-3)[-1-174,-1+174]解含参数的不等式存在性问题,只要求出存在满足条件的x即可;不等式的恒成立问题,可转化为最值问题,即f(x)<a恒成立⇔a>f(x)max,f(x)>a恒成立⇔a<f(x)min.对点训练(2015·唐山一模)已知函数f(x)=|2x-a|+a,a∈R,g(x)=|2x-1|.(1)若当g(x)≤5时,恒有f(x)≤6,求a的最大值;(2)若当x∈R时,恒有f(x)+g(x)≥3,求a的取值范围.[解] (1)g(x)≤5⇔|2x-1|≤5⇔-5≤2x-1≤5⇔-2≤x≤3;f(x)≤6⇔|2x-a|≤6-a⇔a-6≤2x-a≤6-a⇔a-3≤x≤3.依题意有,a-3≤-2,a≤1.故a的最大值为1.(2)f(x)+g(x)=|2x-a|+|2x-1|+a≥|2x-a-2x+1|+a=|a-1|+a,当且仅当(2x-a)(2x-1)≤0时等号成立.解不等式|a-1|+a≥3,得a的取值范围是[2,+∞).考点三 不等式的证明与应用不等式的证明方法很多,解题时既要充分利用已知条件,又要时刻瞄准解题目标,既不仅要搞清是什么,还要搞清干什么,只有兼顾条件与结论,才能找到正确的解题途径.应用基本不等式时要注意不等式中等号成立的条件.(2015·新课标全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则+>+;a b c d (2)+>+是|a -b |<|c -d |的充要条件.a b c d [解题指导] 切入点:不等式的性质;关键点:不等式的恒等变形.[证明] (1)因为(+)2=a +b +2,(+)2=c +d +2,a b ab c d cd 由题设a +b =c +d ,ab >cd 得(+)2>(+)2.a b c d +>+.a b c d (2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .因为a +b =c +d ,所以ab >cd .由(1)得+>+.a b c d +>+,则(+)2>(+)2,即a b c d a b c d a +b +>c +d +2.ab cd 因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2.因此|a -b |<|c -d |.+>+是|a -b |<|c -d |的充要条件.a b c d分析法是证明不等式的重要方法,当所证不等式不能使用比较法且与重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.对点训练(2014·新课标全国卷Ⅱ)设a 、b 、c 均为正数,且a +b +c =1.证明:(1)ab +bc +ac ≤;13(2)++≥1.a 2b b 2c c 2a[证明] (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab +bc +ca .由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤.13(2)因为+b ≥2a ,+c ≥2b ,+a ≥2c ,a 2b b 2c c 2a故+++(a +b +c )≥2(a +b +c ),a 2b b 2c c 2a即++≥a +b +c .a 2b b 2c c 2a所以++≥1.a 2b b 2c c 2a———————方法规律总结————————[方法技巧]1.绝对值不等式求解的根本方向是去除绝对值符号.2.绝对值不等式在求与绝对值运算有关的最值问题时需灵活运用,同时还要注意等号成立的条件.3.在证明不等式时,应根据命题提供的信息选择合适的方法与技巧.如在使用柯西不等式时,要注意右边为常数.[易错点睛]1.对含有参数的不等式求解时,分类要完整.2.应用基本不等式和柯西不等式证明时要注意等号成立的条件.课时跟踪训练(七十)一、填空题1.不等式|2x -1|<3的解集为__________.[解析] |2x -1|<3⇔-3<2x -1<3⇔-1<x <2.[答案] (-1,2)2.若不等式|kx -4|≤2的解集为{x |1≤x ≤3},则实数k =__________.[解析] ∵|kx -4|≤2,∴-2≤kx -4≤2,∴2≤kx ≤6.∵不等式的解集为{x |1≤x ≤3},∴k =2.[答案] 23.不等式|2x +1|+|x -1|<2的解集为________.[解析] 当x ≤-时,原不等式等价为-(2x +1)-(x -1)<2,即-3x <2,x >-12,此时-<x ≤-.当-<x <1时,原不等式等价为(2x +1)-(x -1)<2,即x <0,23231212此时-<x <0.当x ≥1时,原不等式等价为(2x +1)+(x -1)<2,即3x <2,x <,此1223时不等式无解,综上,原不等式的解为-<x <0,即原不等式的解集为.23(-23,0)[答案] (-23,0)4.已知关于x 的不等式|x -1|+|x |≤k 无解,则实数k 的取值范围是__________.[解析] ∵|x -1|+|x |≥|x -1-x |=1,∴当k <1时,不等式|x -1|+|x |≤k 无解,故k <1.[答案] (-∞,1)5.(2015·西安统考)若关于实数x 的不等式|x -5|+|x +3|<a 无解,则实数a 的取值范围是________.[解析] |x -5|+|x +3|≥|(x -5)-(x +3)|=8,故a ≤8.[答案] (-∞,8]6.(2015·重庆卷)若函数f (x )=|x +1|+2|x -a |的最小值为5,则实数a =__________.[解析] 当a =-1时,f (x )=3|x +1|≥0,不满足题意;当a <-1时,f (x )=Error!f (x )min =f (a )=-3a -1+2a =5,解得a =-6;当a >-1时,f (x )=Error!f (x )min =f (a )=-a +1+2a =5,解得a =4.[答案] -6或47.若关于x 的不等式|a |≥|x +1|+|x -2|存在实数解,则实数a 的取值范围是__________.[解析] ∵f (x )=|x +1|+|x -2|=Error!∴f (x )≥3.要使|a |≥|x +1|+|x -2|有解,∴|a |≥3,即a ≤-3或a ≥3.[答案] (-∞,-3]∪[3,+∞)8.已知关于x 的不等式|x -a |+1-x >0的解集为R ,则实数a 的取值范围是__________.[解析] 若x -1<0,则a ∈R ;若x -1≥0,则(x -a )2>(x -1)2对任意的x ∈[1,+∞)恒成立,即(a -1)[(a +1)-2x ]>0对任意的x ∈[1,+∞)恒成立,所以Error!(舍去)或Error!对任意的x ∈[1,+∞]恒成立,解得a <1.综上,a <1.[答案] (-∞,1)9.设a ,b ,c 是正实数,且a +b +c =9,则++的最小值为__________.2a 2b 2c[解析] ∵(a +b +c )(2a +2b +2c )=[()2+()2+()2]a b c [(2a )2+(2b )2+(2c )2]≥2=18,(a ·2a +b ·2b +c ·2c )∴++≥2,∴++的最小值为2.2a 2b 2c 2a 2b 2c[答案] 210.(2014·陕西卷)设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则 m 2+n 2的最小值为________.[解析] 由柯西不等式,得(a 2+b 2)(m 2+n 2)≥(am +bn )2,即5(m 2+n 2)≥25,∴m 2+n 2≥5,当且仅当an =bm 时,等号成立.∴的最小值为.m 2+n 25[答案] 511.对任意x ,y ∈R ,|x -1|+|x |+|y -1|+|y +1|的最小值为__________.[解析] ∵|x -1|+|x |+|y -1|+|y +1|=(|1-x |+|x |)+(|1-y |+|1+y |)≥|(1-x )+x |+|(1-y )+(1+y )|=1+2=3,当且仅当(1-x )·x ≥0,(1-y )·(1+y )≥0,即0≤x ≤1,-1≤y ≤1时等号成立,∴|x -1|+|x |+|y -1|+|y +1|的最小值为3.[答案] 312.若不等式|x +1|-|x -4|≥a +,对任意的x ∈R 恒成立,则实数a 的取4a值范围是________.[解析] 只要函数f (x )=|x +1|-|x -4|的最小值不小于a +即可.由于||x +1|4a-|x -4||≤|(x +1)-(x -4)|=5,所以-5≤|x +1|-|x -4|≤5,故只要-5≥a +即4a可.当a >0时,将不等式-5≥a +整理,得a 2+5a +4≤0,无解;当a <0时,4a将不等式-5≥a +整理,得a 2+5a +4≥0,则有a ≤-4或-1≤a <0.综上可知,4a实数a 的取值范围是(-∞,-4]∪[-1,0).[答案] (-∞,-4]∪[-1,0)二、解答题13.已知不等式2|x -3|+|x -4|<2a .(1)若a =1,求不等式的解集;(2)若已知不等式的解集不是空集,求a 的取值范围.[解] (1)当a =1时,不等式即为2|x -3|+|x -4|<2,若x ≥4,则3x -10<2,x <4,∴舍去;若3<x <4,则x -2<2,∴3<x <4;若x ≤3,则10-3x <2,∴<x ≤3.83综上,不等式的解集为Error!.(2)设f (x )=2|x -3|+|x -4|,则f (x )=Error!作出函数f (x )的图象,如图所示.由图象可知,f (x )≥1,∴2a >1,a >,即a 的取值范围为.12(12,+∞)14.(2015·新课标全国卷Ⅰ)已知函数f (x )=|x +1|-2|x -a |,a >0.(1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围.[解] (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解;当-1<x <1时,不等式化为3x -2>0,解得<x <1;23当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为Error!.(2)由题设可得,f (x )=Error!所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ,B (2a +1,0),C (a ,a +1),△ABC 的面积为(a +1)2.(2a -13,0)23由题设得(a +1)2>6,故a >2.23所以a 的取值范围为(2,+∞).15.设函数f (x )=|x -1|+|x -a |.(1)若a =-1,解不等式f (x )≥3;(2)如果∀x ∈R ,f (x )≥2,求a 的取值范围.[解] (1)当a =-1时,f (x )=|x -1|+|x +1|,f (x )=Error!作出函数f (x )=|x -1|+|x +1|的图象.由图象可知,不等式f (x )≥3的解集为Error!.(2)若a =1,f (x )=2|x -1|,不满足题设条件;若a <1,f (x )=Error!f (x )的最小值为1-a ;若a >1,f (x )=Error!f (x )的最小值为a -1.∴对于∀x ∈R ,f (x )≥2的充要条件是|a -1|≥2,∴a 的取值范围是(-∞,-1]∪[3,+∞).16.(2015·福建卷)已知a >0,b >0,c >0,函数f (x )=|x +a |+|x -b |+c 的最小值为4.(1)求a +b +c 的值;(2)求a 2+b 2+c 2的最小值.1419[解] (1)因为f (x )=|x +a |+|x -b |+c ≥|(x +a )-(x -b )|+c =|a +b |+c ,当且仅当-a ≤x ≤b 时,等号成立.又a >0,b >0,所以|a +b |=a +b ,所以f (x )的最小值为a +b +c .又已知f (x )的最小值为4,所以a +b +c =4.(2)由(1)知a +b +c =4,由柯西不等式得(4+9+1)≥(14a 2+19b 2+c 2)2=(a +b +c )2=16,(a 2×2+b 3×3+c ×1)即a 2+b 2+c 2≥.141987当且仅当==,12a 213b 3c 1即a =,b =,c =时等号成立.8718727故a 2+b 2+c 2的最小值为.141987。
七年级数学培优讲义版
目录第01讲与有理数有关的概念(2--8)第02讲有理数的加减法(3--15)第03讲有理数的乘除、乘方(16--22)第04讲整式(23--30)第05讲整式的加减(31--36)第06讲一元一次方程概念和等式性质(37--43)第07讲一元一次方程解法(44--51)第08讲实际问题与一元一次方程(52--59)第09讲多姿多彩的图形(60--68)第10讲直线、射线、线段(69--76)第11讲角(77--82)第12讲与相交有关概念及平行线的判定(83--90)第13讲平行线的性质及其应用(91--100)第14讲平面直角坐标系(一)(101--106)第15讲平面直角坐标系(二)(107--112)第16讲认识三角形(113--119)第17讲认识多边形(120--126)第18讲二元一次方程组及其解法(127--134)第19讲实际问题与二元一次方程组(135--145)第20讲三元一次方程组和一元一次不等式组(146--155)第21讲一元一次不等式(组)的应用(156--164)第22讲一元一次不等式(组)与方程(组)的结合(165--174)第23讲数据的收集与整理(175--186)模拟测试一模拟测试二模拟测试三第1讲与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量.2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数.经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米⑵收人-50元⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作()A .-18%B .-8%C .+2%D .+8%02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为()A .-5吨B .+5吨C .-3吨D .+3吨03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间l 5:00,纽约时问是____【例2】在-227,π,0.033.3这四个数中有理数的个数()A .1个B .2个C .3个D .4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0.15,-12,-301.31.25,-18,100.l ,-3001中,负分数为,整数为,正整数.02.(河北秦皇岛)请把下列各数填入图中适当位置15,-19,215,-138,0.1.-5.32,123,2.333【例3】(宁夏)有一列数为-1,12,-13,14.-15,16,…,找规律到第2007个数是.【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.击归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007.【变式题组】01.(湖北宜宾)数学解密:第一个数是3=2+1,第二个数是5=3+2,第三个数是9=5+4,第四十数是17=9+8…观察并精想第六个数是.02.(毕节)毕选哥拉斯学派发明了一种“馨折形”填数法,如图则?填____.03.(茂名)有一组数l ,2,5,10,17,26…请观察规律,则第8个数为____.【例4】(2008年河北张家口)若l +m 2的相反数是-3,则m 的相反数是____.【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫互为相反数,本题m 2=-4,m =-8【变式题组】01.(四川宜宾)-5的相反数是()A .5B .15C .-5D .-1502.已知a 与b 互为相反数,c 与d 互为倒数,则a +b +cd =______03.如图为一个正方体纸盒的展开图,若在其中的三个正方形A 、B 、C 内分别填人适当的数,使得它们折成正方体.若相对的面上的两个数互为相反数,则填人正方形A 、B 、C 内的三个数依次为()A .-1,2,0B .0,-2,1C .-2,0,1D .2,1,0【例5】(湖北)a 、b 为有理数,且a >0,b <0,|b |>a ,则a ,b 、-a ,-b 的大小顺序是()A .b <-a <a <-bB .–a <b <a <-bC .–b <a <-a <bD .–a <a <-b <b【解法指导】理解绝对值的几何意义:一个数的绝对值就是数轴上表示a 的点到原点的距离,即|a|,用式子表示为|a|=0) 0(0)(0)a aaa a>⎧⎪=⎨⎪-<⎩(.本题注意数形结合思想,画一条数轴标出a、b,依相反数的意义标出-b,-a,故选A.【变式题组】01.推理①若a=b,则|a|=|b|;②若|a|=|b|,则a=b;③若a≠b,则|a|≠|b|;④若|a|≠|b|,则a≠b,其中正确的个数为()A.4个B.3个C.2个D.1个02.a、b、c三个数在数轴上的位置如图,则|a|a+|b|b+|c|c=.03.a、b、c为不等于O的有理散,则a|a|+b|b|+c|c|的值可能是____.【例6】(江西课改)已知|a-4|+|b-8|=0,则a+bab的值.【解法指导】本题主要考查绝对值概念的运用,因为任何有理数a的绝对值都是非负数,即|a|≥0.所以|a-4|≥0,|b-8|≥0.而两个非负数之和为0,则两数均为0.解:因为|a-4|≥0,|b-8|≥0,又|a-4|+|b-8|=0,∴|a-4|=0,|b-8|=0即a-4=0,b-8=0,a=4,b=8.故a+bab=1232=38【变式题组】01.已知|a|=1,|b|=2,|c|=3,且a>b>c,求a+b+C.02.(毕节)若|m-3|+|n+2|=0,则m+2n的值为()A.-4B.-1C.0D.403.已知|a|=8,|b|=2,且|a-b|=b-a,求a和b的值【例7】(第l8届迎春杯)已知(m+n)2+|m|=m,且|2m-n-2|=0.求mn的值.【解法指导】本例关键是通过分析(m+n)2+|m|的符号,挖掘出m的符号特征,从而把问题转化为(m+n)2=0,|2m-n-2|=0,找到解题途径.解:∵(m+n)2≥0,|m|≥O∴(m+n)2+|m|≥0,而(m+n)2+|m|=m∴m≥0,∴(m+n)2+m=m,即(m+n)2=0∴m+n=O①又∵|2m-n-2|=0∴2m-n-2=0②由①②得m=23,n=-23,∴mn=-49【变式题组】01.已知(a+b)2+|b+5|=b+5且|2a-b–l|=0,求a-B.02.(第16届迎春杯)已知y=|x-a|+|x+19|+|x-a-96|,如果19<a<96.a≤x≤96,求y的最大值.演练巩固·反馈提高01.观察下列有规律的数12,16,112,120,130,142…根据其规律可知第9个数是()A .156B .172C .190D .111002.(芜湖)-6的绝对值是()A .6B .-6C .16D .-1603.在-227,π,8..0.3四个数中,有理数的个数为()A .1个B .2个C .3个D .4个04.若一个数的相反数为a +b ,则这个数是()A .a -bB .b -aC .–a +bD .–a -b05.数轴上表示互为相反数的两点之间距离是6,这两个数是()A .0和6B .0和-6C .3和-3D .0和306.若-a 不是负数,则a ()A .是正数B .不是负数C .是负数D .不是正数07.下列结论中,正确的是()①若a =b ,则|a |=|b |②若a =-b ,则|a |=|b |③若|a |=|b |,则a =-b ④若|a |=|b |,则a =bA .①②B .③④C .①④D .②③08.有理数a 、b 在数轴上的对应点的位置如图所示,则a 、b ,-a ,|b |的大小关系正确的是()A .|b |>a >-a >bB .|b |>b >a >-aC .a >|b |>b >-aD .a >|b |>-a >b09.一个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,则这个数是____.10.已知|x +2|+|y +2|=0,则xy =____.11.a 、b 、c 三个数在数轴上的位置如图,求|a |a +|b |b +|abc |abc +|c |c12.若三个不相等的有理数可以表示为1、a 、a +b 也可以表示成0、b 、b a的形式,试求a 、b 的值.13.已知|a |=4,|b |=5,|c |=6,且a >b >c ,求a +b -C .14.|a|具有非负性,也有最小值为0,试讨论:当x为有理数时,|x-l|+|x-3|有没有最小值,如果有,求出最小值;如果没有,说明理由.15.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a-b|当A、B两点都不在原点时有以下三种情况:①如图2,点A、B都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②如图3,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;③如图4,点A、B在原点的两边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;综上,数轴上A、B两点之间的距离|AB|=|a-b|.回答下列问题:⑴数轴上表示2和5的两点之间的距离是,数轴上表示-2和-5的两点之间的距离是,,数轴上表示1和-3的两点之间的距离是;⑵数轴上表示x和-1的两点分别是点A和B,则A、B之间的距离是,如果|AB|=2,那么x=;⑶当代数式|x+1|+|x-2|取最小值时,相应的x的取值范围是.培优升级·奥赛检测01.(重庆市竞赛题)在数轴上任取一条长度为199919的线段,则此线段在这条数轴上最多能盖住的整数点的个数是()A.1998B.1999C.2000D.200102.(第l8届希望杯邀请赛试题)在数轴上和有理数a、b、c对应的点的位置如图所示,有下列四个结论:①abc<0;②|a-b|+|b-c|=|a-c|;③(a-b)(b-c)(c-a)>0;④|a|<1-bc.其中正确的结论有()A.4个B.3个C.2个D.1个03.如果a、b、c是非零有理数,且a+b+c=0.那么a|a|+b|b|+c|c|+abc|abc|的所有可能的值为()A.-1B.1或-1C.2或-2D.0或-204.已知|m|=-m,化简|m-l|-|m-2|所得结果()A.-1B.1C.2m-3D.3-2m05.如果0<p<15,那么代数式|x-p|+|x-15|+|x-p-15|在p≤x≤15的最小值() A.30B.0C.15D.一个与p有关的代数式06.|x+1|+|x-2|+|x-3|的最小值为.07.若a>0,b<0,使|x-a|+|x-b|=a-b成立的x取值范围.08.(武汉市选拔赛试题)非零整数m、n满足|m|+|n|-5=0所有这样的整数组(m,n)共有组09.若非零有理数m、n、p满足|m|m+|n|n+|p|p=1.则2mnp|3mnp|=.10.(19届希望杯试题)试求|x-1|+|x-2|+|x-3|+…+|x-1997|的最小值.11.已知(|x+l|+|x-2|)(|y-2|+|y+1|)(|z-3|+|z+l|)=36,求x+2y+3的最大值和最小值.12.电子跳蚤落在数轴上的某点k 0,第一步从k 0向左跳1个单位得k 1,第二步由k 1向右跳2个单位到k 2,第三步由k 2向左跳3个单位到k 3,第四步由k 3向右跳4个单位到k 4…按以上规律跳100步时,电子跳蚤落在数轴上的点k 100新表示的数恰好19.94,试求k 0所表示的数.13.某城镇,沿环形路上依次排列有五所小学,它们顺扶有电脑15台、7台、1l 台、3台,14台,为使各学校里电脑数相同,允许一些小学向相邻小学调出电脑,问怎样调配才能使调出的电脑总台数最小?并求出调出电脑的最少总台数.第02讲有理数的加减法考点·方法·破译1.理解有理数加法法则,了解有理数加法的实际意义.2.准确运用有理数加法法则进行运算,能将实际问题转化为有理数的加法运算.3.理解有理数减法与加法的转换关系,会用有理数减法解决生活中的实际问题.4.会把加减混合运算统一成加法运算,并能准确求和.经典·考题·赏析【例1】(河北唐山)某天股票A开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0.3元,则股票A这天的收盘价为()A.0.3元B.16.2元C.16.8元D.18元【解法指导】将实际问题转化为有理数的加法运算时,首先将具有相反意义的量确定一个为正,另一个为负,其次在计算时正确选择加法法则,是同号相加,取相同符号并用绝对值相加,是异号相加,取绝对值较大符号,并用较大绝对值减去较小绝对值.解:18+(-1.5)+(0.3)=16.8,故选C.【变式题组】01.今年陕西省元月份某一天的天气预报中,延安市最低气温为-6℃,西安市最低气温2℃,这一天延安市的最低气温比西安低()A.8℃B.-8℃C.6℃D.2℃02.(河南)飞机的高度为2400米,上升250米,又下降了327米,这是飞机的高度为__________03.(浙江)珠穆朗玛峰海拔8848m,吐鲁番海拔高度为-155m,则它们的平均海拔高度为__________【例2】计算(-83)+(+26)+(-17)+(-26)+(+15)【解法指导】应用加法运算简化运算,-83与-17相加可得整百的数,+26与-26互为相反数,相加为0,有理数加法常见技巧有:⑴互为相反数结合一起;⑵相加得整数结合一起;⑶同分母的分数或容易通分的分数结合一起;⑷相同符号的数结合一起.解:(-83)+(+26)+(-17)+(-26)+(+15)=[(-83)+(-17)]+[(+26)+(-26)]+15=(-100)+15=-85【变式题组】01.(-2.5)+(-312)+(-134)+(-114)02.(-13.6)+0.26+(-2.7)+(-1.06)03.0.125+314+(-318)+1123+(-0.25)【例3】计算111112233420082009++++⨯⨯⨯⨯ 【解法指导】依111(1)1n n n n =-++进行裂项,然后邻项相消进行化简求和.解:原式=1111111(1)()()()2233420082009-+-+-++- =111111112233420082009-+-+-++- =112009-=20082009【变式题组】01.计算1+(-2)+3+(-4)+…+99+(-100)02.如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为18的长方形,如此进行下去,试利用图形揭示的规律计算11111111248163264128256+++++++=__________.【例4】如果a <0,b >0,a +b <0,那么下列关系中正确的是()A .a >b >-b >-aB .a >-a >b >-bC .b >a >-b >-aD .-a >b >-b >a【解法指导】紧扣有理数加法法则,由两加数及其和的符号,确定两加数的绝对值的大小,然后根据相反数的关系将它们在同一数轴上表示出来,即可得出结论.解:∵a <0,b >0,∴a +b 是异号两数之和又a +b <0,∴a 、b 中负数的绝对值较大,∴|a |>|b |将a 、b 、-a 、-b 表示在同一数轴上,如图,则它们的大小关系是-a >b >-b >a【变式题组】01.若m >0,n <0,且|m |>|n |,则m +n ________0.(填>、<号)02.若m <0,n >0,且|m |>|n |,则m +n ________0.(填>、<号)03.已知a <0,b >0,c <0,且|c |>|b |>|a |,试比较a 、b 、c 、a +b 、a +c 的大小【例5】425-(-33311)-(-1.6)-(-21811)【解法指导】有理数减法的运算步骤:⑴依有理数的减法法则,把减号变为加号,并把减数变为它的相反数;⑵利用有理数的加法法则进行运算.解:425-(-33311)-(-1.6)-(-21811)=425+33311+1.6+21811=4.4+1.6+(33311+21811)=6+55=61【变式题组】01.21511 ()()()()(1) 32632 --+---+-+02.434-(+3.85)-(-314)+(-3.15)03.178-87.21-(-43221)+1531921-12.79【例6】试看下面一列数:25、23、21、19…⑴观察这列数,猜想第10个数是多少?第n个数是多少?⑵这列数中有多少个数是正数?从第几个数开始是负数?⑶求这列数中所有正数的和.【解法指导】寻找一系列数的规律,应该从特殊到一般,找到前面几个数的规律,通过观察推理、猜想出第n个数的规律,再用其它的数来验证.解:⑴第10个数为7,第n个数为25-2(n-1)⑵∵n=13时,25-2(13-1)=1,n=14时,25-2(14-1)=-1故这列数有13个数为正数,从第14个数开始就是负数.⑶这列数中的正数为25,23,21,19,17,15,13,11,9,7,5,3,1,其和=(25+1)+(23+3)+…+(15+11)+13=26×6+13=169【变式题组】01.(杭州)观察下列等式1-12=12,2-25=85,3-310=2710,4-417=6417…依你发现的规律,解答下列问题.⑴写出第5个等式;⑵第10个等式右边的分数的分子与分母的和是多少?02.观察下列等式的规律9-1=8,16-4=12,25-9=16,36-16=20⑴用关于n(n≥1的自然数)的等式表示这个规律;⑵当这个等式的右边等于2008时求n.【例7】(第十届希望杯竞赛试题)求12+(13+23)+(14+24+34)+(15+25+3 5+45)+…+(150+250+…+4850+4950)【解法指导】观察式中数的特点发现:若括号内在加上相同的数均可合并成1,由此我们采取将原式倒序后与原式相加,这样极大简化计算了.解:设S=12+(13+23)+(14+24+34)+…+(150+250+…+4850+4950)则有S=12+(23+13)+(34+24+14)+…+(4950+4850+…+250+150)将原式和倒序再相加得2S=12+12+(13+23+23+13)+(14+24+34+34+24+14)+…+(150+250+…+4850+4950+4950+4850+…+250+150)即2S=1+2+3+4+…+49=49(491)2⨯+=1225∴S=1225 2【变式题组】01.计算2-22-23-24-25-26-27-28-29+21002.(第8届希望杯试题)计算(1-12-13-…-12003)(12+13+14+…+12003+12004)-(1-12-13-…-12004)(12+13+14+…+12003)演练巩固·反馈提高01.m是有理数,则m+|m|()A.可能是负数B.不可能是负数C.比是正数D.可能是正数,也可能是负数02.如果|a|=3,|b|=2,那么|a+b|为()A.5B.1C.1或5D.±1或±5 03.在1,-1,-2这三个数中,任意两数之和的最大值是()A.1B.0C.-1D.-3 04.两个有理数的和是正数,下面说法中正确的是()A.两数一定都是正数B.两数都不为0C.至少有一个为负数D.至少有一个为正数05.下列等式一定成立的是()A.|x|-x=0B.-x-x=0C.|x|+|-x|=0D.|x|-|x|=0 06.一天早晨的气温是-6℃,中午又上升了10℃,午间又下降了8℃,则午夜气温是()A.-4℃B.4℃C.-3℃D.-5℃07.若a<0,则|a-(-a)|等于()A.-a B.0C.2a D.-2a08.设x是不等于0的有理数,则||||2x xx值为()A.0或1B.0或2C.0或-1D.0或-2 09.(济南)2+(-2)的值为__________10.用含绝对值的式子表示下列各式:⑴若a<0,b>0,则b-a=__________,a-b=__________⑵若a>b>0,则|a-b|=__________⑶若a<b<0,则a-b=__________11.计算下列各题:⑴23+(-27)+9+5⑵-5.4+0.2-0.6+0.35-0.25⑶-0.5-314+2.75-712⑷33.1-10.7-(-22.9)-|-2310|12.计算1-3+5-7+9-11+…+97-9913.某检修小组乘汽车沿公路检修线路,规定前进为正,后退为负,某天从A地出发到收工时所走的路线(单位:千米)为:+10,-3,+4,-2,-8,+13,-7,+12,+7,+5⑴问收工时距离A地多远?⑵若每千米耗油0.2千克,问从A地出发到收工时共耗油多少千克?14.将1997减去它的12,再减去余下的13,再减去余下的14,再减去余下的15……以此类推,直到最后减去余下的11997,最后的得数是多少?15.独特的埃及分数:埃及同中国一样,也是世界著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如13+115来表示25,用14+17+128表示37等等.现有90个埃及分数:12,13,14,15,…190,191,你能从中挑出10个,加上正、负号,使它们的和等于-1吗?培优升级·奥赛检测01.(第16届希望杯邀请赛试题)1234141524682830-+-+-+-+-+-+- 等于()A .14B .14-C .12D .12-02.自然数a 、b 、c 、d 满足21a +21b +21c +21d =1,则31a +41b +51c +61d等于()A .18B .316C .732D .156403.(第17届希望杯邀请赛试题)a 、b 、c 、d 是互不相等的正整数,且abcd =441,则a +b +c +d 值是()A .30B .32C .34D .3604.(第7届希望杯试题)若a =1995199519961996,b =1996199619971997,c =1997199719981998,则a 、b 、c大小关系是()A .a <b <cB .b <c <aC .c <b <aD .a <c <b05.11111(1)(1)(1)(1)(1)1324351998200019992001+++++⨯⨯⨯⨯⨯的值得整数部分为()A.1B.2C.3D.406.(-2)2004+3×(-2)2003的值为()A.-22003B.22003C.-22004D.22004 07.(希望杯邀请赛试题)若|m|=m+1,则(4m+1)2004=__________08.12+(13+23)+(14+24+34)+…+(160+260+…+5960)=__________09.1919197676 7676761919-=__________10.1+2-22-23-24-25-26-27-28-29+210=__________ 11.求32001×72002×132003所得数的末位数字为__________ 12.已知(a+b)2+|b+5|=b+5,且|2a-b-1|=0,求aB.13.计算(11998-1)(11997-1)(11996-1)…(11001-1)(11000-1)14.请你从下表归纳出13+23+33+43+...+n3的公式并计算出13+23+33+43+ (1003)值.第03讲有理数的乘除、乘方考点·方法·破译1.理解有理数的乘法法则以及运算律,能运用乘法法则准确地进行有理数的乘法运算,会利用运算律简化乘法运算.2.掌握倒数的概念,会运用倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法则,熟练进行有理数的除法运算.4.掌握有理数乘除法混合运算的顺序,以及四则混合运算的步骤,熟练进行有理数的混合运算.5.理解有理数乘方的意义,掌握有理数乘方运算的符号法则,进一步掌握有理数的混合运算.经典·考题·赏析【例1】计算⑴11()24⨯-⑵1124⨯⑶11()()24-⨯-⑷25000⨯⑸3713()()(1)()5697-⨯-⨯⨯-【解法指导】掌握有理数乘法法则,正确运用法则,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积.解:⑴11111()()24248⨯-=-⨯=-⑵11111()24248⨯=⨯=⑶11111()()()24248-⨯-=+⨯=⑷250000⨯=⑸3713371031()()(1)()()569756973-⨯-⨯⨯-=-⨯⨯⨯=-【变式题组】01.⑴(5)(6)-⨯-⑵11()124-⨯⑶(8)(3.76)(0.125)-⨯⨯-⑷(3)(1)2(6)0(2)-⨯-⨯⨯-⨯⨯-⑸111112(2111)42612-⨯-+-02.24(9)5025-⨯3.1111(2345)()2345⨯⨯⨯⨯---04.111(5)323(6)3333-⨯+⨯+-⨯【例2】已知两个有理数a 、b ,如果ab <0,且a +b <0,那么()A .a >0,b <0B .a <0,b >0C .a 、b 异号D .a 、b 异号且负数的绝对值较大【解法指导】依有理数乘法法则,异号为负,故a 、b 异号,又依加法法则,异号相加取绝对值较大数的符号,可得出判断.解:由ab <0知a 、b 异号,又由a +b <0,可知异号两数之和为负,依加法法则得负数的绝对值较大,选D .【变式题组】01.若a +b +c =0,且b <c <0,则下列各式中,错误的是()A .a +b >0B .b +c <0C .ab +ac >0D .a +bc >002.已知a +b >0,a -b <0,ab <0,则a___________0,b___________0,|a|___________|b|.03.(山东烟台)如果a +b <0,0ba>,则下列结论成立的是()A .a >0,b >0B .a <0,b <0C .a >0,b <0D .a <0,b>004.(广州)下列命题正确的是()A .若ab >0,则a >0,b >0B .若ab <0,则a <0,b <0C .若ab =0,则a =0或b =0D .若ab =0,则a =0且b =0【例3】计算⑴(72)(18)-÷-⑵11(2)3÷-⑶13()()1025-÷⑷0(7)÷-【解法指导】进行有理数除法运算时,若不能整除,应用法则1,先把除法转化成乘法,再确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算.若能整除,应用法则2,可直接确定符号,再把绝对值相除.解:⑴(72)(18)72184-÷-=÷=⑵17331(2)1()1()3377÷-=÷-=⨯-=-⑶131255()()()()10251036-÷=-⨯=-⑷0(7)0÷-=【变式题组】01.⑴(32)(8)-÷-⑵112(1)36÷-⑶10(2)3÷-⑷13()(1)78÷-02.⑴12933÷⨯⑵311()(3)(1)3524-⨯-÷-÷⑶530()35÷-⨯03.113()(10.2)(3)245÷-+-÷⨯-【例4】(茂名)若实数a 、b 满足0a b a b +=,则abab=___________.【解法指导】依绝对值意义进行分类讨论,得出a 、b 的取值范围,进一步代入结论得出结果.解:当ab >0,2(0,0)2(0,0)a b a b a b a b >>⎧+=⎨-<<⎩;当ab <0,0a b a b +=,∴ab <0,从而ab ab=-1.【变式题组】01.若k 是有理数,则(|k|+k )÷k 的结果是()A .正数B .0C .负数D .非负数02.若A .b 都是非零有理数,那么aba b a b ab++的值是多少?03.如果0x y xy+=,试比较xy-与xy 的大小.【例5】已知223(2),1x y =-=-⑴求2008xy的值;⑵求32008x y的值.【解法指导】n a 表示n 个a 相乘,根据乘方的符号法则,如果a 为正数,正数的任何次幂都是正数,如果a 是负数,负数的奇次幂是负数,负数的偶次幂是正数.解:∵223(2),1x y =-=-⑴当2,1x y ==-时,200820082(1)2xy =-=当2,1x y =-=-时,20082008(2)(1)2xy=-⨯-=-⑵当2,1x y ==-时,332008200828(1)x y ==-当2,1x y =-=-时,3320082008(2)8(1)x y -==--【变式题组】01.(北京)若2(2)0m n m -+-=,则nm 的值是___________.02.已知x 、y 互为倒数,且绝对值相等,求()nnx y --的值,这里n 是正整数.【例6】(安徽)2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学记数法表示为()A .0.135×106B .1.35×106C .0.135×107D .1.35×107【解法指导】将一个数表示为科学记数法的a×10n 的形式,其中a 的整数位数是1位.故答案选B .【变式题组】01.(武汉)武汉市今年约有103000名学生参加中考,103000用科学记数法表示为()A .1.03×105B .0.103×105C .10.3×104D .103×10302.(沈阳)沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是()A .25.3×105亩B .2.53×106亩C .253×104亩D .2.53×107亩【例7】(上海竞赛)222222221299110050002200500010050009999005000k k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+【解法指导】找出21005000k k -+的通项公式=22(50)50k -+原式=2222222222221299(150)50(250)50(50)50(9950)50k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+=222222222222199298[][](150)50(9950)50(250)50(9850)50++++⋅⋅⋅+-+-+-+-+222222222495150[](4950)50(5150)50(5050)50++-+-+-+=49222+1++⋅⋅⋅+个=99【变式题组】3333+++=( )2+4+6++10042+4+6++10062+4+6++10082+4+6++2006⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅A .31003B .31004C .1334D .1100002.(第10届希望杯试题)已知111111111.2581120411101640+++++++=求111111112581120411101640---+--++的值.演练巩固·反馈提高01.三个有理数相乘,积为负数,则负因数的个数为()A .1个B .2个C .3个D .1个或3个02.两个有理数的和是负数,积也是负数,那么这两个数()A .互为相反数B .其中绝对值大的数是正数,另一个是负数C .都是负数D .其中绝对值大的数是负数,另一个是正数03.已知abc >0,a >0,ac <0,则下列结论正确的是()A .b <0,c >0B .b >0,c <0C .b <0,c <0D .b >0,c >004.若|ab |=ab ,则()A .ab >0B .ab ≥0C .a <0,b <0D .ab <005.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式a bm cd m+-+的值为()A .-3B .1C .±3D .-3或106.若a >1a,则a 的取值范围()A .a >1B .0<a <1C .a >-1D .-1<a <0或a >107.已知a 、b 为有理数,给出下列条件:①a +b =0;②a -b =0;③ab <0;④1ab=-,其中能判断a 、b 互为相反数的个数是()A .1个B .2个C .3个D .4个08.若ab≠0,则a ba b+的取值不可能为()A .0B .1C .2D .-209.1110(2)(2)-+-的值为()A .-2B .(-2)21C .0D .-21010.(安徽)2010年一季度,全国城镇新增就业人数289万人,用科学记数法表示289万正确的是()A .2.89×107B .2.89×106C .2.89×105D .2.89×10411.已知4个不相等的整数a 、b 、c 、d ,它们的积abcd =9,则a +b +c +d =___________.12.21221(1)(1)(1)n n n +--+-+-(n 为自然数)=___________.13.如果2x yxy +=,试比较x y-与xy 的大小.14.若a 、b 、c 为有理数且1a b ca b c ++=-,求abc abc的值.15.若a 、b 、c 均为整数,且321a b c a -+-=.求a c c b b a -+-+-的值.培优升级·奥赛检测01.已知有理数x 、y 、z 两两不相等,则,,x y y z z xy z z x x y------中负数的个数是()A .1个B .2个C .3个D .0个或2个02.计算12345211,213,217,2115,2131-=-=-=-=-=⋅⋅⋅归纳各计算结果中的个位数字规律,猜测201021-的个位数字是()A .1B .3C .7D .503.已知23450ab c d e <,下列判断正确的是()A .abcde <0B .ab 2cd 4e <0C .ab 2cde <0D .abcd 4e <004.若有理数x 、y 使得,,,xx y x y xy y+-这四个数中的三个数相等,则|y |-|x |的值是()A .12-B .0C .12D .3205.若A =248163264(21)(21)(21)(21)(21)(21)(21)+++++++,则A -1996的末位数字是()A .0B .1C .7D .906.如果20012002()1,()1a b a b +=--=,则20032003a b +的值是()A .2B .1C .0D .-107.已知5544332222,33,55,66a b c d ====,则a 、b 、c 、d 大小关系是()A .a >b >c >dB .a >b >d >cC .b >a >c >dD .a >d >b >c08.已知a 、b 、c 都不等于0,且a b c abc a b c abc+++的最大值为m ,最小值为n ,则2005()m n +=___________.09.(第13届“华杯赛”试题)从下面每组数中各取一个数将它们相乘,那么所有这样的乘积的总和是___________.第一组:15,3,4.25,5.753-第二组:112,315-第三组:52.25,,412-10.一本书的页码从1记到n ,把所有这些页码加起来,其中有一页码被错加了两次,结果得出了不正确的和2002,这个被加错了两次的页码是多少?11.(湖北省竞赛试题)观察按下列规律排成一列数:11,12,21,13,22,31,14,23,32,41,15,24,23,42,51,16,…(*),在(*)中左起第m 个数记为F(m),当F(m)=12001时,求m 的值和这m 个数的积.12.图中显示的填数“魔方”只填了一部分,将下列9个数:11,,1,2,4,8,16,32,6442填入方格中,使得所有行列及对角线上各数相乘的积相等,求x 的值.32x6413.(第12届“华杯赛”试题)已知m 、n 都是正整数,并且111111(1)(1)(1)(1)(1)(1);2233A m m =-+-+⋅⋅⋅-+111111(1)(1)(1)(1)(1)(1).2233B n n=-+-+⋅⋅⋅-+证明:⑴11,;22m n A B m n ++==⑵126A B -=,求m 、n 的值.第04讲整式考点·方法·破译1.掌握单项式及单项式的系数、次数的概念.2.掌握多项式及多项式的项、常数项及次数等概念.3.掌握整式的概念,会判断一个代数式是否为整式.4.了解整式读、写的约定俗成的一般方法,会根据给出的字母的值求多项式的值.经典·考题·赏析【例1】判断下列各代数式是否是单项式,如果不是请简要说明理由,如果是请指出它的系数与次数.【解法指导】理解单项式的概念:由数与字母的积组成的代数式,单独一个数或一个字母也是单项式,数字的次数为0,是常数,单项式中所有字母指数和叫单项式次数.解:⑴不是,因为代数式中出现了加法运算;⑵不是,因为代数式是与x的商;⑶是,它的系数为π,次数为2;⑷是,它的系数为32 ,次数为3.【变式题组】01.判断下列代数式是否是单项式02.说出下列单项式的系数与次数【例2】如果与都是关于x、y的六次单项式,且系数相等,求m、n的值.【解法指导】单项式的次数要弄清针对什么字母而言,是针对x或y或x、y等是有区别的,该题是针对x与y而言的,因此单项式的次数指x、y的指数之和,与字母m无关,此时将m看成一个要求的已知数.解:由题意得【变式题组】01.一个含有x、y的五次单项式,x的指数为3.且当x=2,y=-1时,这个单项式的值为32,求这个单项式.02.(毕节)写出含有字母x、y的五次单项式______________________.【例3】已知多项式⑴这个多项式是几次几项式?⑵这个多项式最高次项是多少?二次项系数是什么?常数项是什么?【解法指导】n个单项式的和叫多项式,每个单项式叫多项式的项,多项式里次数最高项的次数叫多项式的次数.解:⑴这个多项式是七次四项式;(2)最高次项是,二次项系数为-1,常数项是1.【变式题组】01.指出下列多项式的项和次数⑴(2)02.指出下列多项式的二次项、二次项系数和常数项⑴(2)【例4】多项式是关于x的三次三项式,并且一次项系数为-7.求m+n-k的值【解法指导】多项式的次数是单项式中次数最高的次数,单项式的系数是数字与字母乘积中的数字因数.解:因为是关于x的三次三项式,依三次知m=3,而一次项系数为-7,即-(3n+1)=-7,故n=2.已有三次项为,一次项为-7x,常数项为5,又原多项式为三次三项式,故二次项的系数k=0,故m+n-k=3+2-0=5.【变式题组】01.多项式是四次三项式,则m的值为()A.2B.-2C.±2D.±102.已知关于x、y的多项式不含二次项,求5a-8b的值.03.已知多项式是六次四项式,单项式的次数与这个多项式的次数相同,求n的值.【例5】已知代数式的值是8,求的值.【解法指导】由,现阶段还不能求出x的具体值,所以联想到整体代入法.解:由得由(3【变式题组】01.(贵州)如果代数式-2a+3b+8的值为18,那么代数式9b-6a+2的值等于()A.28B.-28C.32D.-3202.(同山)若,则的值为_______________.03.(潍坊)代数式的值为9,则的值为______________.【例6】证明代数式的值与m的取值无关.【解法指导】欲证代数式的值与m的取值无关,只需证明代数式的化简结果不出现字母即可.证明:原式=∴无论m的值为何,原式值都为4.∴原式的值与m的取值无关.【变式题组】01.已知,且的值与x无关,求a的值.02.若代数式的值与字母x的取值无关,求a、b的值.【例7】(北京市选拔赛)同时都含有a、b、c,且系数为1的七次单项式共有()个A.4B.12C.15D.25【解法指导】首先写出符合题意的单项式,x、y、z都是正整数,再依x+y+z=7来确定x、y、z的值.解:为所求的单项式,则x、y、z都是正整数,且x+y+z=7.当x=1时,y=1,2,3,4,5,z=5,4,3,2,1.当x=2时,y=1,2,3,4,z=4,3,2,1.当x=3时,y=1,2,3,z=3,2,1.当x=4时,y=1,2,z=2,1.当x=5时,y=z=1.所以所求的单项式的个数为5+4+3+2+1=15,故选C.【变式题组】01.已知m、n是自然数,是八次三项式,求m、n值.02.整数n=___________时,多项式是三次三项式.演练巩固·反馈提高01.下列说法正确的是()A.是单项式B.的次数为5C.单项式系数为0D.是四次二项式02.a表示一个两位数,b表示一个一位数,如果把b放在a的右边组成一个三位数.则这个三位数是()A.100b+a B.10a+b C.a+b D.100a+b03.若多项式的值为1,则多项式的值是()A.2B.17C.-7D.704.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑原售价为n元,降低m 元后,又降低20%,那么该电脑的现售价为()A.B.C.D.05.若多项式是关于x的一次多项式,则k的值是()A.0B.1C.0或1D.不能确定06.若是关于x、y的五次单项式,则它的系数是____________.07.电影院里第1排有a个座位,后面每排都比前排多3个座位,则第10排有_______个座位.08.若,则代数式xy+mn值为________.09.一项工作,甲单独做需a天完成,乙单独做需b天完成,如果甲、乙合做7天完成工作量是____________.10.(河北)有一串单项式(1)请你写出第100个单项式;⑵请你写出第n个单项式.11.(安徽)一个含有x、y的五次单项式,x的指数为3,且当x=2,y=-1时,这个单项式值为32,求这个单项式.12.(天津)已知x=3时多项式的值为-1,则当x=-3时这个多项式的值为多少?13.若关于x、y的多项式与多项式的系数相同,并且最高次项的系数也相同,求a-b的值.14.某地电话拨号入网有两种方式,用户可任取其一.A:计时制:0.05元/分B:包月制:50元/月(只限一部宅电上网).此外,每种上网方式都得加收通行费0.02元/分.⑴某用户某月上网时间为x小时,请你写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月内上网时间为20小时,你认为采用哪种方式更合算.培优升级·奥赛检测01.(扬州)有一列数,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差.若,则为()A.2007B.2C.D.-102.(华师一附高招生)设记号*表示求a、b算术平均数的运算,即,则下列等式。
七年级数学培优第十六讲
第十三讲:用枚举法解题
一、内容提要
有一类问题的解答,可依题意一一列举,并从中找出规律。
列举解答要注意:
① 按一定的顺序,有系统地进行;
② 分类列举时,要做到既不重复又不违漏;
③ 遇到较大数字或抽象的字母,可从较小数字入手,由列举中找到规律。
二、例题
例1 如图由西向东走, 从A 处到B 处有几 种走法? 解:
例2 讨论不等式ax<b 的解集。
例4 如图把等边三角形各边4等分,分别连结对应点,试计算图中所有的三角形个数 解:设原等边三角形边长为4个单位,则最小的等边三角形边长是1个单位,
13A B
三、练习13
1.己知x,y都是整数,且xy=6,那么适合等式解共___个,它们是___2.a+b=37,适合等式的非负整数解共___组,它们是__________3.xyz=6,写出所有的正整数解有:_____
4.如图线段AF上有B,C,D,E四点,试分别写出以A,B,C,D,E为一端且不重复的所有线段,并统计总条数。
A B C D
5.写出以a,b,c中的一个或几个字母组成的非同类项(系数为1)的所有三次
单项式。
6.除以4余1 两位数共有几个?
7.从1到10这十个自然数中每次取两个,其和要大于10,共有几种不同取法?
8.把边长等于4的正方形各边4等分,連结各对应点成16个小正方形,试用
枚举法,计算共有几个正方形?如果改为5等分呢?10等分呢?
9.右图是街道的一部分,纵横各有5条路,如果从
A到B(只能从北向南,从西向东),有几种走法?
10.列表讨论不等式ax>b的解集.
11.一个正整数加上3是5的倍数,减去3是6的倍数,
则这个正整数的最小值是__。
人教版七年级数学培优教程
比例数.
有限小数
可化为分数形式,是有理数
小数 无限循环小数
无限不循环小数 不可化为分数形式,不是有理数
有理数的分类:
正整数
整数
零
自然数
有理数(按定义分类)
负整数
分数
正分数 负分数
正整数
正有理数
正分数
有理数(按符号分类) 零(零既不是正数,也不是负数)
负有理数
负整数 负分数
该定义更接近分类而非本质定义,例如小数是有理数吗?下面给出有理数更加接近本质的定
义.
定义:能写成 m (m、n 为整数,n≠0,(m,n)=1)的数. n
例: 12 3 , 3 3 , 0.1
1
,
0.3
1
82
1
10
3
有理数:rational number,rational(有道理的)的词根为 ratio(比例),有理数可以理解为
6、数轴上:B 到 A 的距离为 1,C 到 B 的距离为 2,求 AC=________
动点(规律类) 1、数轴上:点 A 从原点向右移一个单位,再向左移动两个单位,求现在位置 2、数轴上:点 A 向左移动 3 个单位,向右移动 5 个单位到 2014,求开始的位置 3、数轴上:点 A 从原点开始按照右移 1 个单位,左移 2 个单位,右移 3 个单位,左移 4 个 单位……右移 99 个单位,左移 100 个单位的规律移动 (1)最后的位置________. (2)共移动了多少个单位长度? (3)若 A 为一个起始为 300kg 的质点,每移动一个单位减少 1kg,A 点消失的位置? 基础夯实 【例 3】(1)如右图所示,数轴的一部分被墨水污染了,被污染的部分内含有的整数为
七年级数学竞赛 第16讲 一元一次不等式
15.求最大的正整数 n,使不等式 8 n 7 对唯一的一个整数 k 成立。 15 n + k 13
(“希望杯”邀请赛试题)
16.设 x1,x2,x3,x4,x5,x6,x7 是自然数,且 x1<x2<x3<x4<x5<x6<x7,x1+x2=x3,x2+x3=x4,x3+x4=x5,x4+x5=x6, x5+x6=x7,又 x1+x2+x3+x4+x5+x6+x7=2010,求 x1+x2+x3 的最大值。
)。
A. −11 a − 5
4
2
B. −11 a − 5
4
2
C. −11 a − 5
4
2
D. −11 a − 5
4
2
(山东省竞赛Leabharlann )8.已知关于x的不等式组
|
x
+ 1 | x
4x a
−
1
无解,则实数
a
的取值范围是(
)。
A.a< 2 3
B.a≤ 2 3
C.a> 2 3
D.a≥ 2 3
共有 13( )。
A.49 对
B.42 对
C.36 对
D.13 对
解题思路:借助数轴,分别建立 m,n 的不等式,确定整数 m,n 的值。
(江苏省竞赛题)
例 3.解下列关于 x 的不等式: (1)(2mx+3)−n<3x; (2)|x−2|≤2x−10; (3)|x−5|−|2x+3|<1。 (上海市竞赛题)
。 (上海市“宇振杯”竞赛题)
初中七年级数学竞赛培优讲义全套专题16 不等式_答案[精品]
专题16 不等式(组)例1 C 提示:解不等式组得3220t x -<<,则5个整数解为x =19,18,17,16,15.结合数轴分析,应满足14≤3-2t <15,故-6<t ≤1162t -<≤-.例2 1345x < 提示:(2)5m n x m n ->+,20m n -<,51027m n m n +=-,0m <,1345m n =.例3 1m =或3m = 提示:解方程组得81621x m my m ⎧=⎪⎪+⎨-⎪=⎪+⎩,由,0x y ≥⎧⎨≥⎩得-1≤m ≤0例4 提示:由已知条件得325213a b ca b c +=-⎧⎨+=+⎩ ,解得73711a c b c =-⎧⎨=-⎩,m=3c -2.由000a b c ≥⎧⎪≥⎨⎪≥⎩ 得73071100c c c -≥⎧⎪-≥⎨⎪≥⎩,解得37711c ≤≤,故m 的最大值为111-,最小值为57- 例5先用x 1和x 2表示x 3,x 4,…,x 7,得312423125341264512756122233558x x x x x x x x x x x x x x x x x x x x x x x =+⎧⎪=+=+⎪⎪=+=+⎨⎪=+=+⎪=+=+⎪⎩,因此x 1+x 2+x 3+x 4+x 5+x 6+x 7= 2 010. 于是得121201013113100()20220xx x -==+-.因为x 2是自然数,所以1113()220x -是整数,所以x 1是10的奇数倍.又因为x 1<x 2,故有三组解:x 1=10,x 2=94,或x 1=30,x 2=81,或x 1=50,x 2=68. 因此x 1+x 2的最大值为50+68=118,所以x 1+x 2 +x 3的最大值为2(x 1+x 2)=2×118=236. 例6解法一 :∵0≤a -b ≤1①,1≤a +b ≤4 ②,由②知-4≤-a -b ≤-1③,①+③得-4≤-2b ≤0,即-2≤-b ≤0④,①+④得-2≤a -2b ≤1要使a —2b 最大,只有a -b =1且-b =0. ∴a =1 且b =0,此时8a +2003b =8.解法二 :设a -2b=m(a+b)+n(a -b)=(m+n)a+ (m -n)b,知12m n m n +=⎧⎨-=-⎩,解得1232m n ⎧=-⎪⎪⎨⎪=⎪⎩. 而()11222a b -≤-+≤-,()33022a b ≤-≤,∴a -2b=()12a b -++()32a b -∴-2≤a -2b ≤1当a —2b 最大时,a +b=1,a -b=1∴b=0,a=1,此时8a +2003b =8.A 级 1.9102.11. 1提示:原不等式组变形为4252x a b x >-+<由解集是0<x <2知40502a b -=⎧⎪⎨+=⎪⎩,解得21a b =⎧⎨=-⎩故a +b =2+(-1)=13.a <-b <b <-a4.52<m <75.B 提示:由ax +3a >3+x ,得(a -1)(x +3)>0,.由不等式的解集为x <-3知x +3<0, 所以a -1<0,得a <1.6.C7.B8.C9.k =2或3.10. 提示:由非负数性质求得a =2,b =5,原不等式组的解集为x <-3.11.原不等式组等价于322ax b b x ⎧≥⎪⎪⎨⎪-<<⎪⎩,因为该不等式组的整数解一1,0,1,2不是对称地出现, 所以其解不可能是22bbx -<<必有32ab x ≤<,由整数解的情况可知213a -<≤-,232b<≤得a =-5,-4,-3;b =5,6.故整数对(a ,b )共有2×3=6对.B 级 1.314a -≤<- 提示:由题意可知:3x a ≤-.由正整数解为1,2,3知334a ≤-<-,解得314a -≤<- 2.a ≥-1 提示:原不等式组变形为1x ax≥-⎧⎨≤⎩由不等式组有解知-a ≤1,故a ≥-1 3. 9≤a <12 4.211x ->5. B 提示:原不等式组变形为1736c a b c c ≤++<,5823a a b c a <++<,71524b a b c b <++<.6. C 示:若x ≥2000,则(x -2000)+x ≤9999,即2000≤x ≤5999, 共有4 000个整数; 若0≤x <2000,则(x -2000)+x ≤9999.2000≤9999,恒成立,又有2000个整数适合若x <0,则2000-x +(-x ) ≤9999即-3999.5≤x <0,共有3999个整数适合,故一共有 4000+2 000+3999 = 9 999个整数适合.7. D 8.C 提示:由原不等式得x 2>(x +5)29.提示:解不等式,得711x ≤,原式=()()()41223143x x x x -≥⎧⎪---≤<⎨⎪<-⎩,从而知最大值为4,最小值为3311- 10.提示:s =x +2,2≤s ≤311.提示:由871513n n k <<+,得151387n k n +<<,即7687k n >> .又n 与k 是都是正整数,显然n >8,当n 取9,10,11,12,13,14时,k 都取不到整数. 当n =15时,9010578k <<,即61121378k << 此时是k =13故满足条件的最小正整数n =15,k =13. 12.由a b c <<得111a b c >>,故1113a b c a ++<,即31,3a a ><,又因为1a >,故a=2,从而有1112b c +=,又11c b <,则212b >,即b <4,又b >a=2,得b=3,从而得c=6,故a=2,b=3,c=6即为所求.。
七数培优竞赛讲座第16讲 不等式(组)的应用
第十六讲 不等式(组)的应用在客观世界中,相等的关系是相对的、局部的,不等的关系是绝对的、普遍的,因此,我们常常需要比较一些量的大小或者对某个量进行估计,列出不等式(组),运用不等式(组)的相关知识予以求解.不等式(组)的应用主要表现在:作差或作商比较数的大小;求代数式的取值范围;求代数式的最值,列不等式(组)解应用题.列不等式(组)解应用题与列方程解应用题的步骤相仿,一般步骤是:1.弄清题意和题中的数量关系,用字母表示未知数;2.找出能够表示题目全部含义的一个或几个不等关系;3.列出不等式(组);4.解这个不等式(组),求出解集并作答.例题【例1】 给出四个自然数a ,b 、c 、d ,其中每三个数之和分别是180、197、208、 222,则a ,b 、c 、d 中最大的数是 .(“希望杯”邀请赛试题)思路点拨 较繁的一般解法是解关于a ,b 、c 、d 的四元一次方程组.由题意知a ,b 、c 、d 互不相等,不妨设a<b<c<d ,思维定向,整体考虑可优化解题过程.【例2】 甲从一个鱼摊上买了三条鱼,平均每条a 元,又从另一个鱼摊上买了两条鱼,平均每条b 元,后来他又以每条2b a +元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是( ).A .a>bB .a<bC .a=bD .与a 和b 的大小无关(山东省竞赛题)思路点拨 把买卖的钱数作差比较,推导出a 与b 的关系.注: 学习不等式 (1)基本≠简单许多人非常不重视基本的东西,甚至轻视它,“基本”应该等于“重要”加上“简单”.(2)懂≠会≠对“懂”有时只是浮面的,只是形式上的了解,还必须经过组织与整理,融会贯通,并从问题的演练中.不断地发现自己不会的地方,才可以逐渐达到“真会”的地步.在解一些涉及到多个变元的数学问题时,题设条件并没有给出变元的大小顺序,若给它们假设一个大小顺序,并不影响命题的成立,则给问题的解决增加了一个可供使用的条件,从而降低问题的难度,这种方法叫排序法.【例3】已知7654321,,,,,,a a a a a a a 是彼此互不相等的正整数,它们的和等于159,求其中最小数a 1的最大值.(北京市竞赛题)思路点拨 设7643215a a a a a a a <<<<<<则a 1+a 2+a 3+…+a 7=159,解题的关键是怎样把多元等式转化为只含a 1o 的不等式,这里要用到整数的如下性质:设a 、b 为整数,若a<b ,则a+1≤b .【例4】现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A 、B 两种不同规格的货车厢共40节,使用A 型车厢每节费用为6000元,使用B 型车厢每节费用为8000元.(1)设运送这批货物的总费用为y 万元,这列货车挂A 型车厢x 节,试写出y 与x 之间的关系式:(2)如果每节A 型车厢最多可装甲种货物35吨和乙种货物15吨,每节B 型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A 、B 两种车厢的节数,那么共有哪几种安排车厢的方案?(3)在上述方案中,哪个方案运费最省?最少运费为多少元?(广州市中考题)思路点拨 (2)解关于x 的不等式组,由正整数x 的值确定安排车厢的不同方案.【例5】 某钱币收藏爱好者想把3.50元纸币兑换成1分、2分、5分的硬币,他要求硬币总数为150枚,且每种硬币不少于20枚,5分的硬币要多于2分的硬币,请你据此设计兑换方案.(河北省竞赛题)思路点拨 引入字母,列出含等式、不等式的混合组,把解方程组、解不等式组结合起来.注: 从近年中考应用题中可以看出,应用题涉及我们日常生活中的经营决策、商品买卖、方案设计,最佳效益等多方面,且呈现出数量关系复杂、背景新颖的趋势.为此,我们应对社会和自然充满好奇心,贴近生活实际,关心c 社会热点,加强应用数学的意识,努力用数学的思想和方法研究解决实际问题,同时在解题中侧重于与解答有关联的数量关系进行分析,不必追求那些自己一时不易弄懂的背景材料的实际意义.解含等式、不等式组成的混合型问题的基本策略是,通过消元转化成只舍有一个未知数的不等式(组),解不等式(组)通近求解,从而解决相关问题.【例6】 (江苏省常州市中考题)某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们.如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本.设该校买了m 本课外读物,有x 名学生获奖,请解答下列问题:(1)用含x 的代数式表示m ;(2)求出该校的获奖人数及所买的课外读物的本数.思路点拨 (1)m=3x 十8;(2) 依题意得⎩⎨⎧<--+≥--+3)1(5830)1(583x x x x ,∴2165≤<x ∵x 是正整数,∴x=6,m=26.答:该校的获奖人数为6人,所买的课外读中的本数为26.注:在一些实际问题中,往往含有:“不足”“不超过”不低于”等关键词,将这些关键词转换成不等符号,就可以建立不等式,从而使问题得以解决.【例7】(黑龙江省中考题)为了迎接2002年的世界杯足球赛,某足球协会举办了一次足球赛,其记分规则和奖励方案如下:当比赛进行到第12轮结束时(每队需要比赛12场),A 队共积19分.(1)请通过计算,判断A 队胜、平、负各九场?(2)若每赛一场,每个参赛队员得出场费500元,设A 队其中一名,参赛队员所得的奖金和出场费的和为W(元),试求W 的最大值.思路点拨 设A 队胜x 场,平y 场,负z 场,则有⎩⎨⎧=+=++19312y x z y x , 解得⎩⎨⎧-=-=72319x z x y 由题意可知x ≥0,y ≥0,z ≥0,且x 、y 、z 均为整数,∴⎪⎩⎪⎨⎧≥≥-≥-00720319x x x解得 321≤x ≤631,∴ x=4,5,6. ∴ A 队胜4场,平7场,负1场;或胜5场,平4场,负3场;或胜6场,平1场,负5场(2)W=(1500+500)x+(700十500)y+ 500z=-600x 十19300,观察代数式-600x+19300,发现x 越小,W 越大.∴ 当x=4时,W 最大值=16900元.注: 题中有两个明显的相等关系,可以列出两个方程,但问题中迫切需要求出三个未知量,利用题中隐含的不等关系“三个未知量都是非负整数”建立不等式组,确定未知量的取值范围.这实际上也是利用不等式求不定方程组的整数解的一种重要方法.【例8】 商业大厦购进某种商品1000件,销售价定为购进价的125%.现计划节日期间按原定销售价让利10%,售出至多100件商品,而在销售淡季按原定销售价的60%大甩卖,为使全部商品售完后赢利,在节日和淡季外要按原定价销售至少多少件商品?思路点拨 设购进价为a 元,按原定价销售x 件,节日让利销售y 件,则淡季销售(1000-x -y)件.依题意有125%ax+125%(1—10%)ay+125%x60%a(1000-x-y)>1000a即4x+3y>2000,∵ y ≤100,∴ 4x>2000—3y ≥1700,又x 是整数,∴x ≥425.所以,在节日和淡季外要按原定价销售至少435件商品才能赢利.注:充分利用“赢利”这一不等关系,赢利即销售金颇大于成本,题目中并没有包含x 、y 的等量关系,但利用y ≤100和不等式的传递性建立关于x 的不等式,从而求出x 的取值范围.【例9】 (江苏省竞赛试题)货轮上卸下若干只箱子,其总重量为10t ,每只箱子的重量不超过1t ,为保证能把这些箱子一次运走,问至少需要多少辆载重3t 的汽车?思路点拨 设共需n 辆汽车,它们运走的重量依次为a 1,a 2,…,a n 则2≤a i ≤3(I=1,2,…,n),a l +a 2+…+a n =10∴2n ≤10≤3n ,解得5310≤≤n . ∵ 车子数n 应为整数,∴ n=4或5,但4辆车子不够.例如有13只箱子,每只重量为1310,而3×1310<3,4×1310>3,即每辆车子只能运走3只箱子,4辆车子只能运走12只箱子,还剩一只箱子,故需5辆汽车.学力训练1.若方程019971997=--x x a 只有负数根,则a 的取值范围是 . 2.若方程组⎩⎨⎧+=++=+36542m y x m y x 的解x 、y 都是正数,则m 的取值范围是(河南省中考题)3.某化工厂2001年12月在制定2002年某种化肥的生产计划时,收集了如下信息:(1)生产该种化肥的工人数不能超过200人;(2)每个工人全年工作时数不得多于2100个;(3)预计2002年该化肥至少可售销80000袋;(4)每生产一袋该化肥需要工时4个;(5)每袋该化肥需要原料20千克;(6)现库存原料800吨,本月还需用200吨,2002年可以补充1200吨.根据上述数据,确定2002年该种化肥的生产袋数的范围是 .(江苏徐州中考题) :4.设121220001999++=P ,121220012000++=Q ,则P 、Q 的大小关系是( ). A .P>Q B .P<Q C .P=Q D .不能确定5.某种出租车的收费标准是:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米以后.每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路 程是x 千米,那么x 的最大值是( ).A .11B .3C .7D .5(南京市中考题)6.韩日“世界杯“期间.重庆球迷一行56人从旅馆乘出租车到球场为中国队加油,现有A 、B 两个出租车队,A 队比B 队少3辆车,若全部安排乘A 队的车,每辆坐5人,车不够,每辆坐6人,有的车未坐满;若全部安排乘B 队的车,每辆车坐4人,车不够,每辆车坐5人,有的车未坐满,则A 队有出租车( ).A .11辆B .10辆C . 9辆D .8辆(重庆市中考题)7.为了能有效地使用电力资源,宁波市电业局从2002年1月起进行居民峰谷用电试点,每天8:00至22:00用电每千瓦时0.56元(“峰电’’价),22:00至次日8:00每千瓦时0.28元(“谷电”价),而目前不使用“峰谷”电的居民用电每千瓦时0.53元.(1)一居民家庭在某月使用“峰谷”电后,付电费95.2元,经测算比不使用“峰谷”电节约10.8元,问该家庭当月使用“峰电”和“谷电”各多少千瓦时?(2)当“峰电”用量不超过每月总用电量的百分之几时,使用“谷电”合算?(精确到1%).(宁波市中考题)8.为了保护环境,某企业决定购买10台污水处理设备.现有A 、B 两种型号的设备,其中每台的价格、月处理污水量及年消耗费如下表:经预算,该企业购买设备的资金不高于105万元.(1)请你设计该企业有几种购买方案;(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案;(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,l0年节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费)(黑龙江省中考题)9.大、中、小三个正整数,大数与中数之和等于2003,中数减小数之差等于1000,那么这三个正整数的和为 .(北京市竞赛题)10.已知a+b+c=0,a>b>c ,则a c 的取值范围是 . (江苏省竞赛题)11.适合方程1213312111=+++++x x x 的正整数x 的值是 . 12. 设7654321,,,,,,x x x x x x x 为自然数,且76321x x x x x <<<<Λ,又1597654321=++++++x x x x x x x ,则321x x x ++的最大值是 .(安徽省竞赛题)13.正五边形广场ABCDE 的周长为2000m ,甲、乙两人分别从A 、C 两点同时出发绕广场沿A →B →C →D →E →A 的方向行走,甲的速度为50m /mIm ,乙的速度为46m /min ,则出发后经过 min ,甲、乙第一次行走在同一条边上. (河北省竞赛题)14.如果11=-+x x ,那么( ).A .(x+1)(x 一1)>0B .(x+1)(x 一1)<0C .(x+1)(x 一1)≥0D .(x+1)(x 一1)≤0 (山东省竞赛题)15.小林拟将1,2,……,n 这n 个数输入电脑,求平均数.当他认为输入完毕时,电脑显示只输入了(n 一1)个数,平均数为3575,假设这(n 一1)个数输入无误,则漏输入的一个数为( ).A .10B .53C .56D .67(江苏省竞赛题)16.已知0≤a 一b ≤1且1≤a+b ≤4,则a 的取值范围是( ).A .1≤ao ≤2B .2≤a ≤3 c .21≤a ≤25 D .23≤a ≤25 (重庆市竞赛题)17.某果品公司急需将一批不易存放的水果从A 市运到B 市销售,现有三家运输公司可供选择,这三家运输公司提供的信息如下:解答下列问题:(1)若乙、丙两家公司的包装与装卸及运输的费用总和恰好是甲公司的2倍,求A、B两市的距离(精确到个位);(2)如果A、B两市的距离为S千米,且这批水果在包装与装卸及运输过程上损耗为300元/时,那么要使果晶公司支付的总费用(包装与装卸费用、运输费用及损耗三项之和)最小,应选择哪家公司?(南通市中考题)18.今有浓度为5%、8%、9%的甲、乙、丙三种盐水分别为60克、60克、47克,现要配制浓度为7%的盐水100克,问甲种盐水最多可用多少克?最少可用多少克?(北京市竞赛题)19.某企业有员工300人生产A种产品,平均每人每年可创造利润m万元(m为大于零的常数).为减员增效,决定从中调配x人去生产新开发的B种产品.根据评估,调配后继续生产A种产品的员工平均每人每年创造的利润可增加20%,生产B种产品的员工平均每人每年可创造利润1.54m万元.(1)调配后企业生产A种产品的年利润为万元,生产月种产品的年利润为万元(用含rn的代数式表示).若设调配后企业全年的总利润为y万元,则y关于x的关系式为;(2)若要求调配后企业生产A种产品的年利润不少于调配前企业年利润的五分之四,生产B 种产品的年利润大于调配前企业年利润的一半,应有哪几种调配方案?请设计出来,并指出其中哪种方案全年总利润最大(必要时运算过程可保留3个有效数字).(3)企业决定将(2)中的年最大总利润(m=2)继续投资开发新产品,现有六种产品可供选择(不得重复投资同一种产品),各产品所需资金以及所获利润如下表:如果你是企业决策者,为使此项投资所获年利润不少于145万元,你可以投资开发哪些产品?请你写出两种投资方案.(江苏镇江市中考题)20.一玩具厂用于生产的全部劳力为450个工时,原料为400个单位,生产一个小熊要使用15个工时、20个单位的原料,售价为80元;生产一个小猫要使用10个工时、5个单位的原料,售价为45元.在劳力和原料的限制下合理安排生产小熊、小猫的个数,可以使小熊和小猫总售价尽可能高.请你用你所学过的数学知识分析,总售价是否可能达到2200元? ( “希望杯”邀请赛试题)参考答案。
初中七年级培优竞赛辅导讲义全册(207页)
初中七年级培优竞赛辅导讲义目录(共207页,按住ctrl键点击目录直接跳转到对应章节)第01讲与有理数有关的概念第02讲有理数的加减法第03讲有理数的乘除、乘方第04讲整式第05讲整式的加减第06讲一元一次方程概念和等式性质第07讲一元一次方程解法第08讲实际问题与一元一次方程第09讲多姿多彩的图形第10讲直线、射线、线段第11讲角第12讲与相交有关概念及平行线的判定第13讲平行线的性质及其应用第14讲平面直角坐标系(一)第15讲平面直角坐标系(二)第16讲认识三角形第17讲认识多边形第18讲二元一次方程组及其解法第19讲实际问题与二元一次方程组第20讲三元一次方程组和一元一次不等式组第21讲一元一次不等式(组)的应用第22讲一元一次不等式(组)与方程(组)的结合第23讲数据的收集与整理第1讲 与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量. 2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数. 经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米⑵收人-50元⑶体重增加-3千克 【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( ) A . -18% B . -8% C . +2% D . +8% 02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( ) A . -5吨 B . +5吨 C . -3吨 D . +3吨 03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间l5:00,纽约时问是____【例2】在-227,π,0.033.3这四个数中有理数的个数( )A . 1个B . 2个C . 3个D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0.1 5,-12,-301.31.25,-18,100.l ,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置 15,-19,215,-138,0.1.-5.32,123, 2.333【例3】(宁夏)有一列数为-1,12,-13,14.-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.击归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007.【变式题组】 01.(湖北宜宾)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四十数是17=9+8…观察并精想第六个数是 . 02.(毕节)毕选哥拉斯学派发明了一种“馨折形”填数法,如图则?填____. 03.(茂名)有一组数l ,2,5,10,17,26…请观察规律,则第8个数为____. 【例4】(2008年河北张家口)若l +m 2的相反数是-3,则m 的相反数是____.【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫互为相反数,本题m2=-4,m =-8【变式题组】 01.(四川宜宾)-5的相反数是( ) A .5 B . 15 C . -5 D . -1502.已知a 与b 互为相反数,c 与d 互为倒数,则a +b +cd =______03.如图为一个正方体纸盒的展开图,若在其中的三个正方形A 、B 、C 内分别填人适当的数,使得它们折成正方体.若相对的面上的两个数互为相反数,则填人正方形A 、B 、C 内的三个数依次为( )A . - 1 ,2,0B . 0,-2,1C . -2,0,1D . 2,1,0 【例5】(湖北)a 、b 为有理数,且a >0,b <0,|b|>a ,则a,b 、-a,-b 的大小顺序是( ) A . b <-a <a <-b B . –a <b <a <-b C . –b <a <-a <b D . –a <a <-b< b【解法指导】理解绝对值的几何意义:一个数的绝对值就是数轴上表示a 的点到原点的距离,即|a|,用式子表示为|a|=0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩(.本题注意数形结合思想,画一条数轴标出a 、b,依相反数的意义标出-b,-a,故选A .【变式题组】01.推理①若a =b ,则|a|=|b|;②若|a|=|b|,则a =b ;③若a ≠b ,则|a |≠|b|;④若|a |≠|b|,则a ≠b ,其中正确的个数为( ) A . 4个 B . 3个 C . 2个 D . 1个02.a 、b 、c 三个数在数轴上的位置如图,则|a|a +|b|b +|c|c = .03.a 、b 、c 为不等于O 的有理散,则a |a|+b |b|+c|c|的值可能是____.【例6】(江西课改)已知|a -4|+|b -8|=0,则a+bab的值.【解法指导】本题主要考查绝对值概念的运用,因为任何有理数a 的绝对值都是非负数,即|a|≥0.所以|a -4|≥0,|b -8|≥0.而两个非负数之和为0,则两数均为0.解:因为|a -4|≥0,|b -8|≥0,又|a -4|+|b -8|=0,∴|a -4|=0,|b -8|=0即a -4=0,b -8=0,a =4,b =8.故a+b ab =1232=38【变式题组】01.已知|a|=1,|b|=2,|c|=3,且a >b >c ,求a +b +C . 02.(毕节)若|m -3|+|n +2|=0,则m +2n 的值为( ) A . -4 B . -1 C . 0 D . 403.已知|a|=8,|b|=2,且|a -b|=b -a ,求a 和b 的值 【例7】(第l8届迎春杯)已知(m +n)2+|m|=m ,且|2m -n -2|=0.求mn 的值.【解法指导】本例关键是通过分析(m +n)2+|m|的符号,挖掘出m 的符号特征,从而把问题转化为(m +n)2=0,|2m -n -2|=0,找到解题途径. 解:∵(m +n)2≥0,|m|≥O∴(m +n)2+|m|≥0,而(m +n)2+|m|=m ∴ m ≥0,∴(m +n)2+m =m ,即(m +n)2=0 ∴m +n =O ① 又∵|2m -n -2|=0 ∴2m -n -2=0 ②由①②得m =23,n =-23,∴ mn =-49【变式题组】01.已知(a +b)2+|b +5|=b +5且|2a -b –l|=0,求a -B . 02.(第16届迎春杯)已知y =|x -a|+|x +19|+|x -a -96|,如果19<a <96.a ≤x ≤96,求y 的最大值.演练巩固·反馈提高01.观察下列有规律的数12,16,112,120,130,142…根据其规律可知第9个数是( )A . 156B . 172C . 190D . 111002.(芜湖)-6的绝对值是( )A . 6B . -6C . 16D . -1603.在-227,π,8..0.3四个数中,有理数的个数为( )A . 1个B . 2个C . 3个D . 4个 04.若一个数的相反数为a +b ,则这个数是( )A . a -bB . b -aC . –a +bD . –a -b05.数轴上表示互为相反数的两点之间距离是6,这两个数是( ) A . 0和6 B . 0和-6 C . 3和-3 D . 0和3 06.若-a 不是负数,则a( )A . 是正数B . 不是负数C . 是负数D . 不是正数 07.下列结论中,正确的是( )①若a =b,则|a|=|b| ②若a =-b,则|a|=|b| ③若|a|=|b|,则a =-b ④若|a|=|b|,则a =b A . ①② B . ③④ C . ①④ D . ②③08.有理数a 、b 在数轴上的对应点的位置如图所示,则a 、b ,-a ,|b|的大小关系正确 的是( )A . |b|>a >-a >bB . |b| >b >a >-aC . a >|b|>b >-aD . a >|b|>-a >b09.一个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,则这个数是____.10.已知|x +2|+|y +2|=0,则xy =____.11.a 、b 、c 三个数在数轴上的位置如图,求|a|a +|b|b +|abc|abc +|c|c12.若三个不相等的有理数可以表示为1、a 、a +b 也可以表示成0、b 、ba 的形式,试求a 、b 的值.13.已知|a|=4,|b|=5,|c|=6,且a >b >c ,求a +b -C .14.|a|具有非负性,也有最小值为0,试讨论:当x为有理数时,|x-l|+|x-3|有没有最小值,如果有,求出最小值;如果没有,说明理由.15.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a-b| 当A、B两点都不在原点时有以下三种情况:①如图2,点A、B都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②如图3,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;③如图4,点A、B在原点的两边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;综上,数轴上A、B两点之间的距离|AB|=|a-b|.回答下列问题:⑴数轴上表示2和5的两点之间的距离是 , 数轴上表示-2和-5的两点之间的距离是 , 3,数轴上表示1和-3的两点之间的距离是 4;⑵数轴上表示x和-1的两点分别是点A和B,则A、B之间的距离是 |x+1|,如果|AB|=2,那么x= 1或3;⑶当代数式|x+1|+|x-2|取最小值时,相应的x的取值范围是 7.培优升级·奥赛检测01.(重庆市竞赛题)在数轴上任取一条长度为199919的线段,则此线段在这条数轴上最多能盖住的整数点的个数是( )A . 1998B . 1999C . 2000D . 2001 02.(第l8届希望杯邀请赛试题)在数轴上和有理数a 、b 、c 对应的点的位置如图所示,有下列四个结论:①abc <0;②|a -b|+|b -c|=|a -c|;③(a -b )(b -c)(c -a)>0;④|a|<1-bc .其中正确的结论有( )A . 4个B . 3个C . 2个D . 1个03.如果a 、b 、c 是非零有理数,且a +b +c =0.那么a |a|+b |b|+c |c|+abc|abc|的所有可能的值为( )A . -1B . 1或-1C . 2或-2D . 0或-2 04.已知|m|=-m ,化简|m -l|-|m -2|所得结果( ) A . -1 B . 1 C . 2m -3 D . 3- 2m05.如果0<p <15,那么代数式|x -p|+|x -15|+|x -p -15|在p ≤x ≤15的最小值( ) A . 30 B . 0 C . 15 D . 一个与p 有关的代数式 06.|x +1|+|x -2|+|x -3|的最小值为 .07.若a >0,b <0,使|x -a|+|x -b|=a -b 成立的x 取值范围 . 08.(武汉市选拔赛试题)非零整数m 、n 满足|m|+|n|-5=0所有这样的整数组(m ,n)共有 组09.若非零有理数m 、n 、p 满足|m|m +|n|n +|p|p =1.则2mnp|3mnp|= .10.(19届希望杯试题)试求|x -1|+|x -2|+|x -3|+…+|x -1997|的最小值.11.已知(|x +l|+|x -2|)(|y -2|+|y +1|)(|z -3|+|z +l|)=36,求x +2y +3的最大值和最小值.12.电子跳蚤落在数轴上的某点k0,第一步从k0向左跳1个单位得k1,第二步由k1向右跳2个单位到k2,第三步由k2向左跳3个单位到k3,第四步由k3向右跳4个单位到k4…按以上规律跳100步时,电子跳蚤落在数轴上的点k100新表示的数恰好19.94,试求k0所表示的数.13.某城镇,沿环形路上依次排列有五所小学,它们顺扶有电脑15台、7台、1l台、3台,14台,为使各学校里电脑数相同,允许一些小学向相邻小学调出电脑,问怎样调配才能使调出的电脑总台数最小?并求出调出电脑的最少总台数.第02讲有理数的加减法考点·方法·破译1.理解有理数加法法则,了解有理数加法的实际意义.2.准确运用有理数加法法则进行运算,能将实际问题转化为有理数的加法运算.3.理解有理数减法与加法的转换关系,会用有理数减法解决生活中的实际问题.4.会把加减混合运算统一成加法运算,并能准确求和.经典·考题·赏析【例1】(河北唐山)某天股票A开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0.3元,则股票A这天的收盘价为()A.0.3元B.16.2元C.16.8元D.18元【解法指导】将实际问题转化为有理数的加法运算时,首先将具有相反意义的量确定一个为正,另一个为负,其次在计算时正确选择加法法则,是同号相加,取相同符号并用绝对值相加,是异号相加,取绝对值较大符号,并用较大绝对值减去较小绝对值.解:18+(-1.5)+(0.3)=16.8,故选C.【变式题组】01.今年陕西省元月份某一天的天气预报中,延安市最低气温为-6℃,西安市最低气温2℃,这一天延安市的最低气温比西安低()A.8℃B.-8℃C.6℃D.2℃02.(河南)飞机的高度为2400米,上升250米,又下降了327米,这是飞机的高度为__________03.(浙江)珠穆朗玛峰海拔8848m,吐鲁番海拔高度为-155 m,则它们的平均海拔高度为__________【例2】计算(-83)+(+26)+(-17)+(-26)+(+15)【解法指导】应用加法运算简化运算,-83与-17相加可得整百的数,+26与-26互为相反数,相加为0,有理数加法常见技巧有:⑴互为相反数结合一起;⑵相加得整数结合一起;⑶同分母的分数或容易通分的分数结合一起;⑷相同符号的数结合一起.解:(-83)+(+26)+(-17)+(-26)+(+15)=[(-83)+(-17)]+[(+26)+(-26)]+15=(-100)+15=-85【变式题组】01.(-2.5)+(-312)+(-134)+(-114)02.(-13.6)+0.26+(-2.7)+(-1.06)03.0.125+314+(-318)+1123+(-0.25)【例3】计算1111 12233420082009 ++++⨯⨯⨯⨯【解法指导】依111(1)1n n n n=-++进行裂项,然后邻项相消进行化简求和.解:原式=1111111 (1)()()()2233420082009 -+-+-++-=1111111 12233420082009 -+-+-++-=112009-=20082009【变式题组】01.计算1+(-2)+3+(-4)+…+99+(-100)02.如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为18的长方形,如此进行下去,试利用图形揭示的规律计算11111111 248163264128256+++++++=__________.【例4】如果a<0,b>0,a+b<0,那么下列关系中正确的是()A.a>b>-b>-a B.a>-a>b>-bC.b>a>-b>-a D.-a>b>-b>a【解法指导】紧扣有理数加法法则,由两加数及其和的符号,确定两加数的绝对值的大小,然后根据相反数的关系将它们在同一数轴上表示出来,即可得出结论.解:∵a <0,b >0,∴a +b 是异号两数之和又a +b <0,∴a 、b 中负数的绝对值较大,∴| a |>| b |将a 、b 、-a 、-b 表示在同一数轴上,如图,则它们的大小关系是-a >b >-b >a 【变式题组】01.若m >0,n <0,且| m |>| n |,则m +n ________ 0.(填>、<号)02.若m <0,n >0,且| m |>| n |,则m +n ________ 0.(填>、<号)03.已知a <0,b >0,c <0,且| c |>| b |>| a |,试比较a 、b 、c 、a +b 、a +c 的大小【例5】425-(-33311)-(-1.6)-(-21811)【解法指导】有理数减法的运算步骤:⑴依有理数的减法法则,把减号变为加号,并把减数变为它的相反数;⑵利用有理数的加法法则进行运算.解:425-(-33311)-(-1.6)-(-21811)=425+33311+1.6+21811 =4.4+1.6+(33311+21811)=6+55=61【变式题组】01.21511()()()()(1)32632--+---+-+02.434-(+3.85)-(-314)+(-3.15)03.178-87.21-(-43221)+1531921-12.79【例6】试看下面一列数:25、23、21、19…⑴观察这列数,猜想第10个数是多少?第n个数是多少?⑵这列数中有多少个数是正数?从第几个数开始是负数?⑶求这列数中所有正数的和.【解法指导】寻找一系列数的规律,应该从特殊到一般,找到前面几个数的规律,通过观察推理、猜想出第n个数的规律,再用其它的数来验证.解:⑴第10个数为7,第n个数为25-2(n-1)⑵∵n=13时,25-2(13-1)=1,n=14时,25-2(14-1)=-1故这列数有13个数为正数,从第14个数开始就是负数.⑶这列数中的正数为25,23,21,19,17,15,13,11,9,7,5,3,1,其和=(25+1)+(23+3)+…+(15+11)+13=26×6+13=169【变式题组】01.(杭州)观察下列等式1-12=12,2-25=85,3-310=2710,4-417=6417…依你发现的规律,解答下列问题.⑴写出第5个等式;⑵第10个等式右边的分数的分子与分母的和是多少?02.观察下列等式的规律9-1=8,16-4=12,25-9=16,36-16=20⑴用关于n(n≥1的自然数)的等式表示这个规律;⑵当这个等式的右边等于2008时求n.【例7】(第十届希望杯竞赛试题)求12+(13+23)+(14+24+34)+(15+25+35+45)+…+(150+250+…+4850+4950)【解法指导】观察式中数的特点发现:若括号内在加上相同的数均可合并成1,由此我们采取将原式倒序后与原式相加,这样极大简化计算了.解:设S=12+(13+23)+(14+24+34)+…+(150+250+…+4850+4950)则有S=12+(23+13)+(34+24+14)+…+(4950+4850+…+250+150)将原式和倒序再相加得2S=12+12+(13+23+23+13)+(14+24+34+34+24+14)+…+(150+250+…+4850+4950+4950+4850+…+250+150)即2S=1+2+3+4+…+49=49(491)2⨯+=1225∴S=1225 2【变式题组】01.计算2-22-23-24-25-26-27-28-29+21002.(第8届希望杯试题)计算(1-12-13-…-12003)(12+13+14+…+12003+12004)-(1-12-13-…-12004)(12+13+14+…+12003)演练巩固·反馈提高01.m是有理数,则m+|m|()A.可能是负数B.不可能是负数C.比是正数D.可能是正数,也可能是负数02.如果|a|=3,|b|=2,那么|a+b|为()A. 5 B.1 C.1或5 D.±1或±503.在1,-1,-2这三个数中,任意两数之和的最大值是()A. 1 B.0 C.-1 D.-304.两个有理数的和是正数,下面说法中正确的是()A.两数一定都是正数B.两数都不为0C.至少有一个为负数D.至少有一个为正数05.下列等式一定成立的是()A.|x|- x =0 B.-x-x =0 C.|x|+|-x| =0 D.|x|-|x|=0 06.一天早晨的气温是-6℃,中午又上升了10℃,午间又下降了8℃,则午夜气温是()A.-4℃B.4℃C.-3℃D.-5℃07.若a<0,则|a-(-a)|等于()A.-a B.0 C.2a D.-2a08.设x是不等于0的有理数,则||||2x xx值为()A.0或1 B.0或2 C.0或-1 D.0或-2 09.(济南)2+(-2)的值为__________10.用含绝对值的式子表示下列各式:⑴若a<0,b>0,则b-a=__________,a-b=__________⑵若a>b>0,则|a-b|=__________⑶若a<b<0,则a-b=__________11.计算下列各题:⑴23+(-27)+9+5 ⑵-5.4+0.2-0.6+0.35-0.25⑶-0.5-314+2.75-712⑷33.1-10.7-(-22.9)-|-2310|12.计算1-3+5-7+9-11+…+97-9913.某检修小组乘汽车沿公路检修线路,规定前进为正,后退为负,某天从A地出发到收工时所走的路线(单位:千米)为:+10,-3,+4,-2,-8,+13,-7,+12,+7,+5⑴问收工时距离A地多远?⑵若每千米耗油0.2千克,问从A地出发到收工时共耗油多少千克?14.将1997减去它的12,再减去余下的13,再减去余下的14,再减去余下的15……以此类推,直到最后减去余下的11997,最后的得数是多少?15.独特的埃及分数:埃及同中国一样,也是世界著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如13+115来表示25,用14+17+128表示37等等.现有90个埃及分数:12,13,14,15,…190,191,你能从中挑出10个,加上正、负号,使它们的和等于-1吗?培优升级·奥赛检测01.(第16届希望杯邀请赛试题)1234141524682830-+-+-+-+-+-+-等于()A.14B.14-C.12D.12-02.自然数a、b、c、d满足21a+21b+21c+21d=1,则31a+41b+51c+61d等于()A.18B.316C.732D.1564534333231303.(第17届希望杯邀请赛试题)a 、b 、c 、d 是互不相等的正整数,且abcd =441,则a +b +c +d 值是( )A .30B .32C .34D .3604.(第7届希望杯试题)若a =1995199519961996,b =1996199619971997,c =1997199719981998,则a 、b 、c大小关系是( )A .a <b <cB .b <c <aC .c <b <aD .a <c <b05.11111(1)(1)(1)(1)(1)1324351998200019992001+++++⨯⨯⨯⨯⨯的值得整数部分为( )A .1B .2C .3D .4 06.(-2)2004+3×(-2)2003的值为( )A .-22003B .22003C .-22004D .2200407.(希望杯邀请赛试题)若|m|=m +1,则(4m +1)2004=__________08.12+(13+23)+(14+24+34)+ … +(160+260+…+5960)=__________ 09.19191976767676761919-=__________10.1+2-22-23-24-25-26-27-28-29+210=__________ 11.求32001×72002×132003所得数的末位数字为__________ 12.已知(a +b)2+|b +5|=b +5,且|2a -b -1|=0,求aB .13.计算(11998-1)(11997-1) (11996-1) … (11001-1) (11000-1)14.请你从下表归纳出13+23+33+43+…+n3的公式并计算出13+23+33+43+…+1003的值.第03讲有理数的乘除、乘方考点·方法·破译1.理解有理数的乘法法则以及运算律,能运用乘法法则准确地进行有理数的乘法运算,会利用运算律简化乘法运算.2.掌握倒数的概念,会运用倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法则,熟练进行有理数的除法运算.4.掌握有理数乘除法混合运算的顺序,以及四则混合运算的步骤,熟练进行有理数的混合运算.5.理解有理数乘方的意义,掌握有理数乘方运算的符号法则,进一步掌握有理数的混合运算.经典·考题·赏析【例1】计算⑴11()24⨯-⑵1124⨯⑶11()()24-⨯-⑷25000⨯⑸3713 ()()(1)() 5697 -⨯-⨯⨯-【解法指导】掌握有理数乘法法则,正确运用法则,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积.解:⑴11111 ()() 24248⨯-=-⨯=-⑵11111() 24248⨯=⨯=⑶11111 ()()() 24248 -⨯-=+⨯=⑷250000⨯=⑸3713371031 ()()(1)()() 569756973 -⨯-⨯⨯-=-⨯⨯⨯=-【变式题组】01.⑴(5)(6)-⨯-⑵11()124-⨯⑶(8)(3.76)(0.125)-⨯⨯-⑷(3)(1)2(6)0(2)-⨯-⨯⨯-⨯⨯-⑸111112(2111)42612-⨯-+-02.24(9)5025-⨯3.1111(2345)()2345⨯⨯⨯⨯---04.111 (5)323(6)3333 -⨯+⨯+-⨯【例2】已知两个有理数a、b,如果ab<0,且a+b<0,那么()A.a>0,b<0 B.a<0,b>0C.a、b异号 D.a、b异号且负数的绝对值较大【解法指导】依有理数乘法法则,异号为负,故a、b异号,又依加法法则,异号相加取绝对值较大数的符号,可得出判断.解:由ab<0知a、b异号,又由a+b<0,可知异号两数之和为负,依加法法则得负数的绝对值较大,选D.【变式题组】01.若a+b+c=0,且b<c<0,则下列各式中,错误的是()A.a+b>0 B.b+c<0 C.ab+ac>0 D.a+bc>002.已知a+b>0,a-b<0,ab<0,则a___________0,b___________0,|a|___________|b|.03.(山东烟台)如果a+b<0,ba>,则下列结论成立的是()A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>0 04.(广州)下列命题正确的是()A.若ab>0,则a>0,b>0 B.若ab<0,则a<0,b<0C.若ab=0,则a=0或b=0 D.若ab=0,则a=0且b=0 【例3】计算⑴(72)(18)-÷-⑵11(2)3÷-⑶13()()1025-÷⑷0(7)÷-【解法指导】进行有理数除法运算时,若不能整除,应用法则1,先把除法转化成乘法,再确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算.若能整除,应用法则2,可直接确定符号,再把绝对值相除.解:⑴(72)(18)72184 -÷-=÷=⑵1733 1(2)1()1()3377÷-=÷-=⨯-=-⑶131255 ()()()() 10251036 -÷=-⨯=-⑷0(7)0÷-=【变式题组】01.⑴(32)(8)-÷-⑵112(1)36÷-⑶10(2)3÷-⑷13()(1)78÷-02.⑴12933÷⨯⑵311()(3)(1)3524-⨯-÷-÷⑶530()35÷-⨯03.113()(10.2)(3) 245÷-+-÷⨯-【例4】(茂名)若实数a、b满足a ba b+=,则abab=___________.【解法指导】依绝对值意义进行分类讨论,得出a、b的取值范围,进一步代入结论得出结果.解:当ab>0,2(0,0)2(0,0)a ba ba ba b>>⎧+=⎨-<<⎩;当ab<0,a ba b+=,∴ab<0,从而abab=-1.【变式题组】01.若k是有理数,则(|k|+k)÷k的结果是()A.正数 B.0 C.负数 D.非负数02.若A.b都是非零有理数,那么aba ba b ab++的值是多少?03.如果x yx y+=,试比较xy-与xy的大小.【例5】已知223(2),1 x y=-=-⑴求2008xy 的值; ⑵求32008x y 的值.【解法指导】na 表示n 个a 相乘,根据乘方的符号法则,如果a 为正数,正数的任何次幂都是正数,如果a 是负数,负数的奇次幂是负数,负数的偶次幂是正数.解:∵223(2),1x y =-=- ⑴当2,1x y ==-时,200820082(1)2xy =-= 当2,1x y =-=-时,20082008(2)(1)2xy =-⨯-=- ⑵当2,1x y ==-时,332008200828(1)x y ==- 当2,1x y =-=-时,3320082008(2)8(1)x y -==--【变式题组】 01.(北京)若2(2)0m n m -+-=,则nm 的值是___________.02.已知x 、y 互为倒数,且绝对值相等,求()n nx y --的值,这里n 是正整数.【例6】(安徽)2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学记数法表示为( )A .0.135×106B .1.35×106C .0.135×107D .1.35×107【解法指导】将一个数表示为科学记数法的a×10n 的形式,其中a 的整数位数是1位.故答案选B .【变式题组】 01.(武汉)武汉市今年约有103000名学生参加中考,103000用科学记数法表示为( ) A .1.03×105 B .0.103×105 C .10.3×104 D .103×103 02.(沈阳)沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是( )A .25.3×105亩B .2.53×106亩C .253×104亩D .2.53×107亩 【例7】(上海竞赛)222222221299110050002200500010050009999005000k k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+【解法指导】找出21005000k k -+的通项公式=22(50)50k -+原式=2222222222221299(150)50(250)50(50)50(9950)50k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+ =222222222222199298[][](150)50(9950)50(250)50(9850)50++++⋅⋅⋅+-+-+-+-+ 222222222495150[](4950)50(5150)50(5050)50++-+-+-+=49222+1++⋅⋅⋅+个=99【变式题组】3333+++=( )2+4+6++10042+4+6++10062+4+6++10082+4+6++2006⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ A .31003 B .31004 C .1334 D .11000 02.(第10届希望杯试题)已知11111111 1.2581120411101640+++++++= 求111111112581120411101640---+--++的值.演练巩固·反馈提高01.三个有理数相乘,积为负数,则负因数的个数为( )A .1个B .2个C .3个D .1个或3个 02.两个有理数的和是负数,积也是负数,那么这两个数( )A .互为相反数B .其中绝对值大的数是正数,另一个是负数C .都是负数D .其中绝对值大的数是负数,另一个是正数 03.已知abc >0,a >0,ac <0,则下列结论正确的是( )A .b <0,c >0B .b >0,c <0C .b <0,c <0D .b >0,c >0 04.若|ab|=ab ,则( )A .ab >0B .ab ≥0C .a <0,b <0D .ab <005.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式a bm cd m +-+的值为( )A .-3B .1C .±3D .-3或106.若a >1a ,则a 的取值范围( )A .a >1B .0<a <1C .a >-1D .-1<a <0或a >107.已知a 、b 为有理数,给出下列条件:①a +b =0;②a -b =0;③ab <0;④1ab =-,其中能判断a 、b 互为相反数的个数是( )A .1个B .2个C .3个D .4个08.若ab≠0,则a b a b+的取值不可能为( )A .0B .1C .2D .-209.1110(2)(2)-+-的值为( )A .-2B .(-2)21C .0D .-21010.(安徽)2010年一季度,全国城镇新增就业人数289万人,用科学记数法表示289万正确的是( )A .2.89×107B .2.89×106C .2.89×105D .2.89×10411.已知4个不相等的整数a 、b 、c 、d ,它们的积abcd =9,则a +b +c +d =___________.12.21221(1)(1)(1)n n n +--+-+-(n 为自然数)=___________.13.如果2x y x y +=,试比较xy -与xy 的大小.14.若a 、b 、c 为有理数且1a b ca b c++=-,求abc abc的值.15.若a 、b 、c 均为整数,且321a b c a -+-=.求a c cb b a-+-+-的值.培优升级·奥赛检测01.已知有理数x 、y 、z 两两不相等,则,,x y y z z xy z z x x y ------中负数的个数是( ) A .1个 B .2个 C .3个 D .0个或2个02.计算12345211,213,217,2115,2131-=-=-=-=-=⋅⋅⋅归纳各计算结果中的个位数字规律,猜测201021-的个位数字是( )A.1 B.3 C.7 D.503.已知23450ab c d e<,下列判断正确的是()A.abcde<0 B.ab2cd4e<0 C.ab2cde<0 D.abcd4e<004.若有理数x、y使得,,,xx y x y xyy+-这四个数中的三个数相等,则|y|-|x|的值是()A.12-B.0 C.12 D.3205.若A=248163264(21)(21)(21)(21)(21)(21)(21)+++++++,则A-1996的末位数字是()A.0 B.1 C.7 D.906.如果20012002()1,()1a b a b+=--=,则20032003a b+的值是()A.2 B.1 C.0 D.-107.已知5544332222,33,55,66a b c d====,则a、b、c、d大小关系是()A.a>b>c>d B.a>b>d>c C.b>a>c>d D.a>d>b>c08.已知a、b、c都不等于0,且a b c abca b c abc+++的最大值为m,最小值为n,则2005()m n+=___________.09.(第13届“华杯赛”试题)从下面每组数中各取一个数将它们相乘,那么所有这样的乘积的总和是___________.第一组:15,3,4.25,5.753-第二组:11 2,315 -第三组:5 2.25,,412-10.一本书的页码从1记到n,把所有这些页码加起来,其中有一页码被错加了两次,结果得出了不正确的和2002,这个被加错了两次的页码是多少?11.(湖北省竞赛试题)观察按下列规律排成一列数:11,12,21,13,22,31,14,23,3 2,41,15,24,23,42,51,16,…(*),在(*)中左起第m个数记为F(m),当F(m)=12001时,求m 的值和这m 个数的积.12.图中显示的填数“魔方”只填了一部分,将下列9个数:11,,1,2,4,8,16,32,6442填入方格中,使得所有行列及对角线上各数相乘的积相等,求x 的值.13.(第12届“华杯赛”试题)已知m 、n 都是正整数,并且111111(1)(1)(1)(1)(1)(1);2233A m m =-+-+⋅⋅⋅-+ 111111(1)(1)(1)(1)(1)(1).2233B n n =-+-+⋅⋅⋅-+证明:⑴11,;22m n A B m n ++==⑵126A B -=,求m 、n 的值.第04讲整式考点·方法·破译1.掌握单项式及单项式的系数、次数的概念.2.掌握多项式及多项式的项、常数项及次数等概念.3.掌握整式的概念,会判断一个代数式是否为整式.4.了解整式读、写的约定俗成的一般方法,会根据给出的字母的值求多项式的值.经典·考题·赏析【例1】判断下列各代数式是否是单项式,如果不是请简要说明理由,如果是请指出它的系数与次数.【解法指导】理解单项式的概念:由数与字母的积组成的代数式,单独一个数或一个字母也是单项式,数字的次数为0,是常数,单项式中所有字母指数和叫单项式次数.解:⑴不是,因为代数式中出现了加法运算;⑵不是,因为代数式是与x的商;⑶是,它的系数为π,次数为2;⑷是,它的系数为32,次数为3.【变式题组】01.判断下列代数式是否是单项式02.说出下列单项式的系数与次数【例2】如果与都是关于x、y的六次单项式,且系数相等,求m、n 的值.【解法指导】单项式的次数要弄清针对什么字母而言,是针对x或y或x、y等是有区别的,该题是针对x与y而言的,因此单项式的次数指x、y的指数之和,与字母m无关,此时将m看成一个要求的已知数.解:由题意得【变式题组】01.一个含有x、y的五次单项式,x的指数为3.且当x=2,y=-1时,这个单项式的值为32,求这个单项式.02.(毕节)写出含有字母x、y的五次单项式______________________.【例3】已知多项式⑴这个多项式是几次几项式?⑵这个多项式最高次项是多少?二次项系数是什么?常数项是什么?【解法指导】 n个单项式的和叫多项式,每个单项式叫多项式的项,多项式里次数最高项的次数叫多项式的次数.解:⑴这个多项式是七次四项式;(2)最高次项是,二次项系数为-1,常数项是1.【变式题组】01.指出下列多项式的项和次数⑴ (2)02.指出下列多项式的二次项、二次项系数和常数项⑴ (2)【例4】多项式是关于x的三次三项式,并且一次项系数为-7.求m+n-k的值【解法指导】多项式的次数是单项式中次数最高的次数,单项式的系数是数字与字母乘积中的数字因数.解:因为是关于x的三次三项式,依三次知m=3,而一次项系数为-7,即-(3n+1)=-7,故n=2.已有三次项为,一次项为-7x,常数项为5,又原多项式为三次三项式,故二次项的系数k=0,故m+n-k=3+2-0=5.【变式题组】01.多项式是四次三项式,则m的值为()A.2 B.-2 C.±2 D.±102.已知关于x、y的多项式不含二次项,求5a-8b的值.03.已知多项式是六次四项式,单项式的次数与这个多项式的次数相同,求n的值.【例5】已知代数式的值是8,求的值.【解法指导】由,现阶段还不能求出x的具体值,所以联想到整体代入法.解:由得由(3【变式题组】01.(贵州)如果代数式-2a+3b+8的值为18,那么代数式9b-6a+2的值等于()A.28 B.-28 C.32 D.-3202.(同山)若,则的值为_______________.03.(潍坊)代数式的值为9,则的值为______________.【例6】证明代数式的值与m的取值无关.【解法指导】欲证代数式的值与m的取值无关,只需证明代数式的化简结果不出现字母即可.证明:原式=∴无论m的值为何,原式值都为4.∴原式的值与m的取值无关.【变式题组】01.已知,且的值与x无关,求a的值.02.若代数式的值与字母x的取值无关,求a、b 的值.【例7】(北京市选拔赛)同时都含有a、b、c,且系数为1的七次单项式共有()个A.4 B.12 C.15 D.25【解法指导】首先写出符合题意的单项式,x、y、z都是正整数,再依x+y+z=7来确定x、y、z的值.解:为所求的单项式,则x、y、z都是正整数,且x+y+z=7.当x=1时,y=1,2,3,4,5,z =5,4,3,2,1.当x=2时,y=1,2,3,4,z=4,3,2,1. 当x=3时,y=1,2,3,z=3,2,1.当 x =4时,y=1,2,z=2,1.当 x=5时,y=z=1.所以所求的单项式的个数为5+4+3+2+1=15,故选C.【变式题组】01.已知m、n是自然数,是八次三项式,求m、n值.02.整数n=___________时,多项式是三次三项式.演练巩固·反馈提高01.下列说法正确的是()A.是单项式 B.的次数为5 C.单项式系数为0 D.是四次二项式02.a表示一个两位数,b表示一个一位数,如果把b放在a的右边组成一个三位数.则这个三位数是()A.100b+a B.10a+b C.a+b D.100a+b03.若多项式的值为1,则多项式的值是()A.2 B.17 C.-7 D.704.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑原售价为n元,降低m 元后,又降低20%,那么该电脑的现售价为()A. B. C. D.05.若多项式是关于x的一次多项式,则k的值是()A.0 B.1 C.0或1 D.不能确定06.若是关于x、y的五次单项式,则它的系数是____________.07.电影院里第1排有a个座位,后面每排都比前排多3个座位,则第10排有_______个座位.08.若,则代数式xy+mn值为________.09.一项工作,甲单独做需a天完成,乙单独做需b天完成,如果甲、乙合做7天完成工作量是____________.10.(河北)有一串单项式(1)请你写出第100个单项式;⑵请你写出第n个单项式.11.(安徽)一个含有x、y的五次单项式,x的指数为3,且当x=2,y=-1时,这个单项式值为32,求这个单项式.12.(天津)已知x=3时多项式的值为-1,则当x=-3时这个多项式的值为多少?13.若关于x、y的多项式与多项式的系数相同,并且最高次项的系数也相同,求a-b的值.14.某地电话拨号入网有两种方式,用户可任取其一.A:计时制:0.05元/分B:包月制:50元/月(只限一部宅电上网).此外,每种上网方式都得加收通行费0.02元/分.⑴某用户某月上网时间为x小时,请你写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月内上网时间为20小时,你认为采用哪种方式更合算.培优升级·奥赛检测01.(扬州)有一列数,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差.若,则为()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题16 不等式(组)
阅读与思考
客观世界与实际生活既存在许多相等关系,又包含大量的不等关系,方程(组)是研究相等关系的重要手段,不等式(组)是探求不等关系的基本工具,方程与不等式既有相似点,又有不同之处,主要体现在:
1. 解一元一次不等式与解一元一次方程类似,但解题时要注意两者之间的重要区别;等式两边都乘(或除)以同一个数时,只要考虑这个数是否为零,而不等式两边都乘以(或除以)同一个数时,不但要考虑这个数是否为零,而且还要考虑这个数的正负性.
2. 解不等式组与解方程组的主要区别是:解方程组时,我们可以对几个方程进行“代入”或“加减”式的加工,但在解不等组时,我们只能对某个不等式进行变形,分别求出每个不等式的解集,然后再求公共部分.通俗地说,解方程组时,可以“统一思想”,而解不等式组时只能“分而治之”.
例题与求解
【例1】已知关于x 的不等式组⎪⎩⎪⎨⎧<-+->-+x t x x x 2
35
35
2恰好有5个整数解,则t 的取值范围是( )
A 、2116-<<-t
B 、2116-<≤-t
C 、2116-≤<-t
D 、2
116-≤≤-t
(2013 年全国初中数学竞赛广东省试题)
解题思路:把x 的解集用含t 的式子表示,根据题意,结合数轴分析t 的取值范围. 【例2】如果关于x 的不等式7
10
05)2(<
>---x n m x n m 的解集为那么关于x 的不等式)0(≠>m n mx 的解集为 .
(黑龙江省哈尔滨市竞赛试题)
解题思路:从已知条件出发,解关于x 的不等式,求出m ,n 的值或m ,n 的关系. 【例3】已知方程组⎩⎨
⎧=+=-6
2y mx y x 若方程组有非负整数解,求正整数m 的值.
(天津市竞赛试题)
解题思路:解关于x ,y 的方程组,建立关于m 的不等式组,求出m 的取值范围.
【例4】已知三个非负数a ,b ,c 满足3a +2b +c =5和2a +b -3c =1,若m =3a +b -7c ,求m 的最大 值和最小值.
(江苏省竞赛试题)
解题思路:本例综合了方程组、不等式(组)的知识,解题的关键是用含一个字母的代数式表示m ,通过解不等式组,确定这个字母的取值范围,在约束条件下,求m 的最大值与最小值.
【例6】设765,4321,,,,,x x x x x x x 是自然数,7654321x x x x x x x <<<<<<,
6
54543432321,,,x x x x x x x x x x x x =+=+=+=+,
2010,7654321765=++++++=+x x x x x x x x x x 又,求321x x x ++的最大值.
(“希望杯”邀请赛试题)
解题思路:代入消元,利用不等式和取整的作用,寻找解题突破口.
【例6】已知实数a ,b 满足,10,41≤-≤≤+≤b a b a 且a -2b 有最大值,求8a +2003b 的值. 解题思路:解法一:已知a -b 的范围,需知-b 的范围,即可知a -2b 的最大值得情形. 解法二:设a -2b =m (a +b )+n (a -b )=(m +n )a +(m -n )b
能力训练
A 级
1、已知关于x 的不等式
4
3
21432≥-≤+x mx x m 的解集是那么m 的值是 (“希望杯”邀请赛试题)
2、不等式组⎩
⎨
⎧<->+5242b x a x 的解集是
20<<x ,那么a +b 的值为
(湖北省武汉市竞赛试题)
3、若a +b <0,ab <0,a <b ,则b b a a --,,,的大小关系用不等式表示为
(湖北省武汉市竞赛试题)
4、若方程组⎩⎨
⎧+=++=+3
6542m y x m y x 的解x ,y 都是正数,则m 的取值范围 是 (河南省中考试题)
5、关于x 的不等式x a ax +>+33的解集为3-<x ,则a 应满足( ) A 、a >1 B 、a <1 C 、1≥a D 、1≤a
(2013年全国初中数学竞赛预赛试题) 6、适合不等式21414312-≥+->-x x x 的x 的取值的范围是( )
7、已知不等式0)2)(1(>+-x mx 的解集23-<<-x 那么m 等于( )
A 、
31 B 、3
1
- C 、3 D 、-3 8、已知0≠a ,下面给出4个结论:①012
>+a ;②012
<-a ;③1112>+
a ④11
12
<-a ,其中,一定成立的结论有( )
A 、1个
B 、2个
C 、3个
D 、4个
(江苏省竞赛试题)
9、当k 为何整数值时,方程组 ⎩⎨
⎧-=-=+k
y x y x 3962有正整数解?
(天津市竞赛试题)
10、如果⎩⎨
⎧==2
1y x 是关于x ,y 的方程
08)12(2=+-+-+by ax by ax 的解,求不等式组⎪⎩⎪⎨⎧+<-+>
-3
31413x ax b
x a x 的解集
11、已知关于x 的不等式组⎪⎩
⎪⎨⎧<≥-20
3b x a x 的整数解有且仅有4个:-1,0,1,2那么,适合这个不等式组的所有可能的整数对(a ,b )共有多少个?
(江苏省竞赛试题)
B 级
1、如果关于x 的不等式03≥+ax 的正整数解为1,2,3那么a 的取值范围是
(北京市”迎春杯“竞赛试题) 2、若不等式组⎩
⎨
⎧-≥-≥+2210x x a x 有解, 则a 的取值范围是___________.
(海南省竞赛试题)
3、已知不等式03≤-a x 只有三个正整数解,那么这时正数a 的取值范围为 .
(”希望杯“邀请赛试题) 4、已知1121<-<-x 则
12
-x
的取值范围为 . (“新知杯”上海市竞赛试题)
5、若正数a ,b ,c 满足不等式组 ⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<<+<<+<b c a b a c b a c b a c 4112
53523
2611
,则a ,b ,c 的大小关系是( )
A 、a <b <c
B 、 b <c <a
C 、c <a <b
D 、不确定
(“祖冲之杯”邀请赛试题) 6、一共( )个整数x 适合不等式99992000≤+-x x
A 、10000
B 、20000
C 、9999
D 、80000
(五羊杯“竞赛试题)
7、已知m ,n 是整数,3m +2=5n +3,且3m +2>30,5n +3<40,则mn 的值是( ) A 、70 B 、72 C 、77 D 、84 8、不等式5+>x x 的解集为( ) A 、25<
x B 、25>x C 、25-<x D 、2
5->x (山东省竞赛试题)
9、31,2
351312++---≥--x x x
x x 求已知
的最大值和最小值. (北京市”迎春杯”竞赛试题)
10、已知x ,y ,z 是三个非负有理数,且满足3x +2y +z =5,x +y -z =2,若s =2x +y -z ,求s 的取值范围.
(天津市竞赛试题)
11、求满足下列条件的最小正整数n ,对于n 存在正整数k 使13
7158<+<k n n 成立.
12、已知正整数a ,b ,c 满足a <b <c ,且11
11=++c
b a ,试求a ,b ,
c 的值.。