二次函数各知识点、考点、典型例题及对应练习(超全)

合集下载

初中数学二次函数知识点归纳及例题

初中数学二次函数知识点归纳及例题

初中数学二次函数知识点归纳及例题一、知识点汇总(一)、定义与定义表达式一般地,自变量x和因变量之间存在如下关系:y=ax2+bx+c(a,b,c 为常数,a≠0)则称y 为x 的二次函数。

其中,a 决定函数的开口方向,a>0 时,开口方向向上,a<0 时,开口方向向下;Ial 还可以决定开口大小,Ial 越大开口就越小,Ial 越小开口就越大。

二次函数表达式的右边通常为二次三项式。

(二)、二次函数的三种表达式1、一般式y=ax2+bx+c(a,b,c 为常数,a≠0)2、顶点式:y=a(x-h)2+k,抛物线的顶点P (h,k)3、交点式: y=a(x-x1)(x-x2),仅限于与x轴有交点A (x1,0) 和B (x2,0)的抛物线4、在3 种形式的互相转化中,有如下关系: h=-b/2a;k=(4ac-b2)/4a;x1,x2=(-b 士√b2:-4ac)/2a(三)、抛物线的性质1、抛物线是轴对称图形。

对称轴为直线x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特地当b=0时,抛物线的对称轴是y轴(即直线x=0)2、抛物线有一个顶点P,坐标为P[ -b/2a ,(4ac-b2)/4a ]。

当-b/2a=0时,P在y 轴上;当b2-4ac=0时,P在x轴上。

3、二次项系数a 决定抛物线的开口方向和大小。

当a>0 时,抛物线向上开口;当a<0 时,抛物线向下开口。

a 越大,则抛物线的开口越小。

4、一次项系数b 和二次项系数a 共同决定对称轴的位置。

当a与b 同号时(即ab>0),对称轴在y轴左:当a与b 异号时(即ab<0),对称轴在y轴右。

5、常数项c 决定抛物线与y 轴交点。

抛物线与y 轴交于(0,c)6、抛物线与x轴交点个数b2-4ac>0 时,抛物线与x轴有2个交点。

b2-4ac=0 时,抛物线与x轴有1个交点。

b2-4ac<0 时,抛物线与x轴没有交点。

二次函数各知识点、考点、典型例题及对应练习(超全)

二次函数各知识点、考点、典型例题及对应练习(超全)

二次函数各知识点、考点、典型例题及对应练习专题一:二次函数的图象与性质本专题涉及二次函数概念,二次函数的图象性质,抛物线平移后的表达式等.试题多以填空题、选择题为主,也有少量的解答题出现.考点1.二次函数图象的对称轴和顶点坐标二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a ,顶点坐标是(-2b a ,244ac b a-).例 1 已知,在同一直角坐标系中,反比例函数5y x=与二次函数22y x x c =-++的图像交于点(1)A m -,.(1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标.考点2.抛物线与a 、b 、c 的关系抛物线y=ax 2+bx+c 中,当a>0时,开口向上,在对称轴x=-2ba的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限考点3.二次函数的平移当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0)的图象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到.例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2 专题练习一 1.对于抛物线y=13-x 2+103x 163-,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3)图1C.开口向下,顶点坐标为(-5,3)D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4D.抛物线与x 轴交点为(-1,0),(3,0)3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________.4.小明从图2所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号)专题复习二:二次函数表达式的确定本专题主要涉及二次函数的三种表示方法以及根据题目的特点灵活选用方法确定二次函数的表达式.题型多以解答题为主.考点1.根据实际问题模型确定二次函数表达式例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2)与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围).考点2.根据抛物线上点的坐标确定二次函数表达式1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+c (a ≠0);2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a (x-h )2+k (a ≠0);3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=a (x-x 1)(x-x 2)(a ≠0). 例2 已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式.例3 已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标.图2ABCD图1菜园墙专项练习二1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数表达式为( )A.y=2a (x-1) B.y=2a (1-x ) C.y=a (1-x 2) D.y=a (1-x )22.如图2,在平而直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C ,且tan ∠ACO=12,CO=BO ,AB=3,则这条抛物线的函数解析式是 .3.对称轴平行于y 轴的抛物线与y 轴交于点(0,-2),且x=1时,y=3;x=-1时y=1, 求此抛物线的关系式.4.推理运算:二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式;(2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点. 专题三:二次函数与一元二次方程的关系本专题主要涉及根据二次函数的图象求一元二次方程的近似根,由图象判断一元二次方程根的情况,由一元二次方程根的情况判断抛物线与x 轴的交点个数等,题型主要填空题、选择题和解答题.考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况.例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )A.6 6.17x <<B.6.17 6.18x << C.6.18 6.19x<<D.6.19 6.20x <<考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.图2图1考点3.抛物线的交点个数与一元二次方程的根的情况当二次函数y=ax 2+bx+c 的图象与x 轴有两个交点时,则一元二次方程ax 2+bx+c=0有两个不相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴有一个交点时,则一元二次方程ax 2+bx+c=0有两个相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴没有交点时,则一元二次方程ax 2+bx+c=0没有实数根.反之亦然.例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A.3B.2C.1D.0专项练习三1.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k 的取值范围是________.2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .3.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根.(2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.专题四:利用二次函数解决实际问题本专题主要涉及从实际问题中建立二次函数模型,根据二次函数的最值解决实际问题,能根据图象学习建立二次函数模型解决实际问题.解决实际问题的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.例某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?专题训练四1.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)当x是多少时,矩形场地面积S最大?最大面积是多少?2.某旅行社有客房120间,每间客房的日租金为50元,每天都客满.旅社装修后要提高租金,经市场调查发现,如果每间客房的日租金每增加5元时,则客房每天出租数就会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?3.一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式;(2)求支柱EF的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.x图1。

二次函数全部知识点及典型例题(全)

二次函数全部知识点及典型例题(全)

二次函数一.复习1.函数的概念:一般地,在一个变化过程中,如果有两个变量x,y,对于自变量x在某一范围内的每一个确定值,y都有惟一确定的值与它对应,那么就说y是x的函数.对于自变量x在可以取值范围内的一个确定的值a,函数y有惟一确定的对应值,这个对应值叫做当x=a时函数的值,简称函数值. 要点诠释:对于函数的概念,应从以下几个方面去理解:(1)函数的实质,揭示了两个变量之间的对应关系;(2)判断两个变量之间是否有函数关系,要看对于x允许取的每一个值,y是否都有惟一确定的值与它相对应;(3)函数自变量的取值范围,应要使函数表达式有意义,在解决实际问题时,还必须考虑使实际问题有意义.2.函数的三种表示方法表示函数的方法,常见的有以下三种:(1)解析法:用来表示函数关系的数学式子叫做函数的表达式,(或解析式),用数学式子表示函数的方法称为解析法.(2)列表法:用一个表格表达函数关系的方法.(3)图象法:用图象表达两个变量之间的关系的方法.要点诠释:函数的三种表示方法各有不同的长处.解析式法能揭示出变量之间的内在联系,但较抽象,不是所有的函数都能列出解析式;列表法可以清楚地列出一些自变量和函数值的对应值,这会对某些特定的数值带来一目了然的效果,例如火车的时刻表,平方表等;图象法可以直观形象地反映函数的变化趋势,而且对于一些无法用解析式表达的函数,图象可以充当重要角色.对照表如下:二.二次函数的概念一般地,形如y=ax2+bx+c(a, b, c是常数,a≠0)的函数叫做x的二次函数.若b=0,则y=ax2+c;若c=0,则y=ax2+bx;若b=c=0,则y=ax2.以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c(a≠0)是二次函数的一般式.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.例1.下列函数一定是二次函数的是__________.①;②;③;④;⑤y=(x-3)2-x 2 例2.若是221(3)2a a y a x --=--二次函数,则a=__________例 3.中的二次项系数=__________,一次项系数=__________,常数项=__________.例4.边长为12 cm 的正方形铁片,中间剪去一个边长x cm 的小正方形铁片,剩下的四方框铁片的面积y(cm 2)与x(cm)之间的函数关系式为_______________.例 6.某地绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在当地收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x 天后,将这批香菇一次性出售,设这批香菇的销售总金额为y 元,试写出y 与x 之间的函数关系式.(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)c bx ax y ++=2xy 3-=1342+-=x x y c bx x m y ++-=2)1(2y =(2x -1)-6a b c练习:1.下列函数中是二次函数的有( )个.(1)1y x x=+;(2)y=3(x-1)2+2;(3)y=(x+3)2-2x 2;(4) 21y x x =+ A.4 B.3 C.2 D.1 2.当m= 时,函数y=(m ﹣1)x |m|+1是二次函数.3.若267(1)m m y m x-+=-是二次函数,则m 的值是( ).A.5B.1C.1或5D.以上都不对.4.将化成二次函数的一般式是:________________.5.一个圆柱的高与底面直径相等,试写出它的表面积S 与底面半径r 之间的函数关系式___________________.6.(2014秋·温岭市校级月考) 已知某商品的进价为每件40元,售价是每件60元,每周可卖出300件.市场调查反映:如调整价格,每涨价1元,每周要少卖出10件.假设涨价x 元,求每周的利润y (元)与涨价x 之间的函数关系式,并写出自变量的取值范围.(23)(1)3y x x =+--三.二次函数的图像及性质:二次函数y=ax2(a≠0)的图象与性质二次函数y=ax2(a≠0)的图象:二次函数y=ax2的图象(如图),是一条关于y轴对称的曲线,这样的曲线叫做抛物线.抛物线y=ax2(a≠0)的对称轴是y轴,它的顶点是坐标原点.当a> 0时,抛物线的开口向上,顶点是它的最低点;当a<0时,抛物线的开口向下,顶点是它的最高点.二次函数y=ax2(a≠0)的图象的画法——描点法描点法画图的基本步骤:列表、描点、连线.(1)列表:选择自变量取值范围内的一些适当的x的值,求出相应的y值,填入表中.(自变量x的值写在第一行,其值从左到右,从小到大.)(2)描点:以表中每对x和y的值为坐标,在坐标平面内准确描出相应的点.一般地,点取的越多,图象就越准确.(3)连线:按照自变量的值由小到大的顺序,把所描的点用平滑的曲线连结起来. 要点诠释:(1)用描点法画二次函数y=ax 2(a≠0)的图象时,应在顶点的左、右两侧对称地选取自变量x 的值,然后计算出对应的y 值. (2)二次函数y=ax 2(a≠0)的图象,是轴对称图形,对称轴是y 轴.y=ax 2(a≠0)是最简单的二次函数.(3)画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.二次函数y=ax 2(a ≠0)的图象的性质x y要点诠释:顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. │a │相同,抛物线的开口大小、形状相同.│a │越大,开口越小,图象两边越靠近y 轴,│a │越小,开口越大,图象两边越靠近x 轴二次函数y=ax 2+c(a ≠0)的图象关于二次函数的性质,主要从抛物线的开口方向、顶点、对称轴、函数值的增减性以及函数的最大值或最小值等方面来研究.下面结合图象,将其性质列表归纳如下:a 2(0)y ax c a =+≠例1.二次函数y=ax2与直线y=2x﹣1的图象交于点P(1,m)(1)求a,m的值;(2)写出二次函数的表达式,并指出x取何值时该表达式y随x的增大而增大?(3)写出该抛物线的顶点坐标和对称轴.例2.已知y=(m+1)x 2m m +是二次函数且其图象开口向上,求m 的值和函数解析式例3.求下列抛物线的解析式:(1)与抛物线形状相同,开口方向相反,顶点坐标是(0,-5)的抛物线;(2)顶点为(0,1),经过点(3,-2)并且关于y 轴对称的抛物线.例4.在同一直角坐标系中,画出和的图象,并根据图象回答下列问题.2132y x =-+2y x =-21y x =-+(1)抛物线向________平移________个单位得到抛物线;(2)抛物线开口方向是________,对称轴为________,顶点坐标为________;(3)抛物线,当x________时,随x 的增大而减小;当x________时,函数y 有最________值,其最________值是________. 练习:1.下列函数中,当x <0时,y 值随x 值的增大而增大的是( ) A. B. C. D.2.在同一坐标系中,作出,,的图象,它们的共同点是( ).A .关于y 轴对称,抛物线的开口向上B .关于y 轴对称,抛物线的开口向下21y x =-+2y x =-21y x =-+21y x =-+25y x =212y x =-2y x =213y x =22y x =22y x =-212y x =C .关于y 轴对称,抛物线的顶点都是原点D .关于原点对称,抛物线的顶点都是原点3.抛物线y=2x 2+1的对称轴是( ) A .直线x=B.直线x=﹣ C .y 轴 D . x轴4.已知抛物线的解析式为y =-3x 2,它的开口向________,对称轴为________,顶点坐标是________,当x >0时,y 随x 的增大而________.5.函数,、的图象大致如图所示,则图中从里向外的三条抛物线对应的函数关系式是_____________________.6.抛物线与的形状相同,其顶点坐标为(0,1),则其解析式为 .7.已知直线与x 轴交于点A ,抛物线的顶点平移后与点A 重合.(1)求平移后的抛物线C 的解析式;2y x =212y x =23y x=2y ax c =+23y x =1y x =+22y x =-(2)若点B(,),C(,)在抛物线C 上,且,试比较,的大小.8.(2014春·牙克石市校级月考)函数y=ax 2 (a ≠0)的图象与直线y=2x-3交于点(1,b). (1)求a 和b 的值;(2)求抛物线y=ax 2的解析式,并求顶点坐标和对称轴; (3)x 取何值时,y 随x 的增大而增大?(4)求抛物线与直线y=-2的两个交点及其顶点所构成的三角形的面积.函数2()(0)y a x h a =-≠与函数2()(0)y a x h k a =-+≠的图象与性质 1.函数2()(0)y a x h a =-≠的图象与性质1x 1y 2x 2y 1212x x -<<1y 2y2.函数2()(0)y a x h k a =-+≠的图象与性质要点诠释:二次函数的图象常与直线、三角形、面积问题结合在一起,借助它的图象与性质.运用数形结合、函数、方程思想解决问题.要点二、二次函数的平移 1.平移步骤:2()+(0y a x h k a =-≠)⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标;⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:2.平移规律:在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左加右减,上加下减”. 要点诠释:⑴沿轴平移:向上(下)平移个单位,变成(或)⑵沿x 轴平移:向左(右)平移个单位,变成(或例1.将抛物线作下列移动,求得到的新抛物线的解析式.(1)向左平移2个单位,再向下平移3个单位;()2y a x h k =-+()h k ,2y ax =()h k,h k c bx ax y ++=2y m c bx ax y ++=2m c bx ax y +++=2m c bx ax y -++=2c bx ax y ++=2m c bx ax y ++=2c m x b m x a y ++++=)()(2c m x b m x a y +-+-=)()(222(1)3y x =-+(2)顶点不动,将原抛物线开口方向反向; (3)以x 轴为对称轴,将原抛物线开口方向反向.例2.二次函数的图象可以看作是二次函数的图象向 平移4个单位,再向 平移3个单位得到的.例3.将抛物线y=x 2﹣6x+5向上平移2个单位长度,再向右平移1个单位长度后,抛物线解析式为______________.例4.已知抛物线向上平移2个单位长度,再向右平移1个单位长度得到抛物线; (1)求出a ,h ,k 的值;(2)在同一直角坐标系中,画出与的图象; (3)观察的图象,当________时,y 随x 的增大而增大;当________时,函数y 有最________值,最________值是________;(4)观察的图象,你能说出对于一切的值,函数y 的取值范围吗?21(3)42y x =-+212y x=212y x =-2()y a x h k =-+2()y a x h k =-+212y x =-2()y a x h k =-+x x y =2()y a x h k =-+x例5.二次函数y 1=a (x ﹣2)2的图象与直线y 2交于A (0,﹣1),B (2,0)两点.(1)确定二次函数与直线AB 的解析式.(2)如图,分别确定当y 1<y 2,y 1=y 2,y 1>y 2时,自变量x 的取值范围.练习:1.抛物线的顶点坐标是( )A .(2,-3)B .(-2,3)C .(2,3)D .(-2,-3) 2.函数y=x 2+2x+1写成y=a(x -h)2+k 的形式是( )A.y=(x -1)2+2 B.y=(x -1)2+ C.y=(x -1)2-3 D.y=(x+2)2-1 3.抛物线y=x 2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是( )2(2)3y x =-+-21212121212121A.y=(x+3)2-2 B.y=(x -3)2+2 C.y=(x -3)2-2 D.y=(x+3)2+2 4.把二次函数配方成顶点式为( )A .B .C .D .5.由二次函数,可知( )A .其图象的开口向下B .其图象的对称轴为直线C .其最小值为1D .当时,y 随x 的增大而增大6.(2015•泰安)在同一坐标系中,一次函数y=﹣mx+n 2与二次函数y=x 2+m 的图象可能是( ).A. B. C. D.7. 把二次函数的图象先向左平移2个单位,再向上平移4个单位,得到二次函数的图象.(1)试确定a 、h 、k 的值;(2)指出二次函数的开口方向,对称轴和顶点坐标,分析函数的增减性.21212121122--=x x y 2)1(-=x y 2)1(2--=x y 1)1(2++=x y 2)1(2-+=x y 22(3)1y x =-+3x =-3x <2()y a x h k =-+21(1)12y x =-+-2()y a x h k =-+二次函数与之间的相互关系:1.顶点式化成一般式从函数解析式我们可以直接得到抛物线的顶点(h ,k),所以我们称为顶点式,将顶点式去括号,合并同类项就可化成一般式. 2.一般式化成顶点式.对照,可知,.∴ 抛物线的对称轴是直线,顶点坐标是. 要点诠释:1.抛物线的对称轴是直线,顶点坐标是2(0)y ax bx c a =++≠=-+≠2()(0)y a x h k a 2()y a x h k =-+2()y a x h k =-+2()y a x h k =-+2y ax bx c =++2222222b b b b y ax bx c a x x c a x x c a a a a ⎡⎤⎛⎫⎛⎫⎛⎫=++=++=++-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦22424b ac b a x a a -⎛⎫=++ ⎪⎝⎭2()y a x h k =-+2b h a=-244ac b k a -=2y ax bx c =++2bx a=-24,24b ac b a a ⎛⎫-- ⎪⎝⎭2y ax bx c =++2bx a=-,可以当作公式加以记忆和运用. 2.求抛物线的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.二次函数的图象的画法1.一般方法:列表、描点、连线;2.简易画法:五点定形法. 其步骤为:(1)先根据函数解析式,求出顶点坐标和对称轴,在直角坐标系中描出顶点M ,并用虚线画出对称轴.(2)求抛物线与坐标轴的交点,当抛物线与x 轴有两个交点时,描出这两个交点A 、B 及抛物线与y 轴的交点C ,再找到点C 关于对称轴的对称点D ,将A 、B 、C 、D 及M 这五个点按从左到右的顺序用平滑曲线连结起来. 要点诠释:当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D ,由C 、M 、D 三点可粗略地画出二次函数图象的草图;如果需要画出比较精确的图象,可再描出一对对称点A 、B ,然后顺次用平滑曲线连结五点,画出二次函数的图象,24,24b ac b a a ⎛⎫-- ⎪⎝⎭2y ax bx c =++2(0)y ax bx c a =++≠2y ax bx c =++二次函数的图象与性质2(0)=++≠y ax bx c aa<a>02.二次函数图象的特征与a 、b 、c 及b 2-4ac 的符号之间的关系20()y ax bx c a =++≠要点四、求二次函数的最大(小)值的方法如果自变量的取值范围是全体实数,那么函数在顶点处取得最大(或最小)值,即当时,.要点诠释:如果自变量的取值范围是x 1≤x ≤x 2,那么首先要看是否在自变量的取值范围x 1≤x ≤x 2内,若在此范围内,则当时,,若不在此范围内,则需要考虑函数在x 1≤x ≤x 2范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当x =x 2时,;当x =x 1时,,如果在此范围内,y 随x 的增大而减小,则当x =x 1时,211=ax +bx +y c 最大值;当x =x 2时,222=ax +bx +y c 最小值,如果在此范围内,y 值有增有减,则需考察x =x 1,x =x 2,时y 值的情况.例1.求抛物线的对称轴和顶点坐标.例2.把一般式化为顶点式.2(0)y ax bx c a =++≠2b x a =-244ac b y a-=最值2ba-2bx a=-244ac b y a-=最值222y ax bx c =++最大值211y ax bx c =++最小值2bx a=-2142y x x =-+-2286y x x =-+-(1)写出其开口方向、对称轴和顶点D 的坐标;(2)分别求出它与y 轴的交点C ,与x 轴的交点A 、B 的坐标.例3.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b ;③抛物线与x 轴的另一个交点为(3,0);④abc >0.其中正确的结论是 (填写序号).例4.求二次函数的最小值.例5.已知二次函数的图象过点P(2,1).(1)求证:; (2)求bc 的最大值.例6. 抛物线与y 轴交于(0,3)点:211322y x x =++21y x bx c =+++24c b =--2(1)y x m x m =-+-+(1)求出m 的值并画出这条抛物线; (2)求它与x 轴的交点和抛物线顶点的坐标; (3)x 取什么值时,抛物线在x 轴上方? (4)x 取什么值时,y 的值随x 值的增大而减小练习:1. 将二次函数化为的形式,结果为( ).A .B .C .D . 2.已知二次函数的图象,如图所示,则下列结论正确的是( ).A .B .C .D . 3.若二次函数配方后为,则b 、k 的值分别为( ).A .0,5B .0,1C .-4,5D .-4,14.抛物线的图象向右平移2个单位长度,再向下平移3个单位长度,所得图象的解析式为,则b 、c 的值为( ). A .b=2,c=2 B . b=2,c=0 C . b= -2,c= -1 D . b= -3,c=25.已知抛物线y=ax 2+bx+c 的对称轴为x=2,且经过点(3,0),则a+b+223y x x =-+2()y x h k =-+2(1)4y x =++2(1)4y x =-+2(1)2y x =++2(1)2y x =-+2y ax bx c =++0a >0c <240b ac -<0a b c ++>25y x bx =++2(2)y x k =-+2y x bx c =++223y x x =--的值( )A. 等于0B.等于1C. 等于-1D. 不能确定6.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q 两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A. B. C. D.7.如图二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0)且与y轴交于负半轴.第①问:给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0其中正确的结论的序号是__________第②问:给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1,其中正确的结论的序号是_________8.如图,在平面直角坐标系中,正方形OABC 的边长为4,顶点A 、C 分别在x 轴、y 轴的正半轴,抛物线y=﹣x 2+bx+c 经过B 、C 两点,点D 为抛物线的顶点,连接AC 、BD 、CD . (1)求此抛物线的解析式.(2)求此抛物线顶点D 的坐标和四边形ABCD 的面积.用待定系数法求二次函数解析式1.二次函数解析式常见有以下几种形式 :(1)一般式:2y ax bx c =++(a ,b ,c 为常数,a ≠0);(2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,a ≠0); (3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a ≠0).2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如2y ax bx c =++或2()y a x h k =-+,或12()()y a x x x x =--,其中a ≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组);第三步,解:解此方程或方程组,求待定系数; 第四步,还原:将求出的待定系数还原到解析式中. 要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为2y ax bx c =++;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为2()y a x h k =-+;③当已知抛物线与x 轴的两个交点(x 1,0),(x 2,0)时,可设函数的解析式为12()()y a x x x x =--.例1. 已知抛物线c bx ax y 2++=经过A ,B ,C 三点,当x ≥0时,其图象如图所示.求抛物线的解析式,写出顶点坐标.例2. 形状与抛物线y=2x 2﹣3x +1的图象形状相同,但开口方向不同,顶点坐标是(0,﹣5)的抛物线的关系式为 . 例3. 已知抛物线c bx ax y 2++=的顶点坐标为(-1,4),与x 轴两交点间的距离为6,求此抛物线的函数关系式.例4.已知二次函数的图象如图所示,根据图中的数据,(1)求二次函数的解析式;(2)设此二次函数的顶点为P,求△ABP的面积.练习:1.已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式.2.已知抛物线的顶点坐标为M(1,﹣2),且经过点N(2,3),求此二次函数的解析式.3.(2016•丹阳市校级模拟)抛物线的图象如图,则它的函数表达式是.当x时,y>0.4.已知抛物线经过(3,5),A(4,0),B(-2,0),且与y轴交于点C.(1)求二次函数解析式;(2)求△ABC的面积.5.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.。

二次函数知识点归纳及相关习题(含答案)

二次函数知识点归纳及相关习题(含答案)
2

a 的符号
开口方向 向上
顶点坐标
对称轴
性质
a0
0 ,0 0 ,0
y轴
x 0 时, y 随 x 的增大而增大; x 0 时, y 随 x 的增大而减小;x 0 时,y 有最小值 0 . x 0 时, y 随 x 的增大增大而减小; x 0 时, y 随 x 的增大而增大; x 0 时, y 有最 大值 0 .
2
二次函数图象的对称:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达
关于 x 轴对称 y ax 2 bx c 关于 x 轴对称后,得到的解析式是 y ax 2 bx c ;
y a x h k 关于 x 轴对称后,得到的解析式是 y a x h k ;
2
二次函数由特殊到一般, 可分为以下几种形式: ① y ax ; ② y ax k ; ③ y ax h ;
2 2
2
b 4ac b 2 . ,k 2a 4a
2

顶点式: y a( x h) 2 k ( a , h , k 为常数, a 0 ) ; 两根式: y a( x x1 )( x x2 ) ( a 0 , x1 , x2 是抛物线与 x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式, 但并非所有的二次函数都可以写成交 2 点式,只有抛物线与 x 轴有交点,即 b 4ac 0 时,抛物线的解析式才可以用交点式表示.二次 函数解析式的这三种形式可以互化. 二次函数 y ax 的性质
抛物线与 x 轴的交点:二次函数 y ax bx c 的图像与 x 轴的两个交点的横坐标 x1 、 x 2 ,

二次函数考点、知识点、例题(全)

二次函数考点、知识点、例题(全)

二次函数考点1 二次函数的概念一般地,形如① (a,b,c是常数,a≠0)的函数叫做二次函数.其中x是自变量,a、b、c分别为函数表达式的二次项系数、一次项系数和常数项.【易错提示】二次函数的增减性一定要分在对称轴的左侧或右侧两种情况讨论.【易错提示】(1)用顶点式代入顶点坐标时横坐标容易弄错符号;(2)所求的二次函数解析式最后要化成一般式. 考点5 二次函数与一元二次方程以及不等式之间的关系考点6 二次函数的应用1.二次函数y=(x-h)2+k的图象平移时,主要看顶点坐标的变化,一般按照“横坐标加减左右移”、“纵坐标加减上下移”的方法进行.2.二次函数的图象由对称轴分开,在对称轴的同侧具有相同的性质,在顶点处有最大值或最小值,如果自变量的取值中不包含顶点,那么在取最大值或最小值时,要依据其增减性而定.3.求二次函数图象与x轴的交点的方法是令y=0解关于x的方程;求函数图象与y轴的交点的方法是令x=0得y的值,最后把所得的数值写成坐标的形式.命题点1 二次函数的图象和性质例1 (2013·昭通)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是( )A.a>0B.3是方程ax2+bx+c=0的一个根C.a+b+c=0D.当x<1时,y随x的增大而减小方法归纳:解决此类问题应注意观察所给抛物线的特征,逐个排除不符合的选项.1.(2014·上海)如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是( )A.y=x2-1B.y=x2+1C.y=(x-1)2D.y=(x+1)22.(2012·巴中)对于二次函数y=2(x+1)(x-3),下列说法正确的是( )A.图象的开口向下B.当x>1时,y随x的增大而减小C.当x<1时,y随x的增大而减小D.图象的对称轴是直线x=-13.(2014·云南)抛物线y=x2-2x+3的顶点坐标为 .4.(2014·珠海)如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为 .5.(2014·滨州)已知二次函数y=x2-4x+3.(1)用配方法求其函数的顶点C的坐标,并描述该函数的函数值随自变量的增减而增减的情况;(2)求函数图象与x轴的交点A,B的坐标(A在B的左侧),及△ABC的面积.命题点2 二次函数的图象与系数的关系例2 抛物线y=ax2+bx+c(a≠0)的图象如图所示,则下列说法正确的是( )A.b 2-4ac <0 B.abc <0 C.-2ba<-1 D.a-b+c <0方法归纳:解决此类问题应当了解a,b,c,Δ=b2-4ac,a+b+c,a-b+c 的符号判定的方法,同时还要观察对称轴x=2b a-.1.(2014·黔东南)如图,已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列4个结论:①abc <0;②b <a+c ;③4a+2b+c >0;④b 2-4ac >0. 其中正确结论的有( )A.①②③B.①②④C.①③④D.②③④2.(2014·陕西)二次函数y=ax 2+bx+c (a ≠0)的图象如图,则下列结论中正确的是( ) A.c >-1 B.b >0 C.2a+b ≠0 D.9a+c >3b3.(2014·巴中)已知二次函数y=ax 2+bx+c 的图象如图,则下列叙述正确的是( )A.abc <0B.-3a+c <0C.b 2-4ac ≥0D.将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax 2+c 命题点3 确定二次函数的解析式例3 (2013·泰州)如图,在平面直角坐标系xOy 中,边长为2的正方形OABC 的顶点A,C 分别在x 轴、y 轴的正半轴上,二次函数y=23-x 2+bx+c 的图象经过B,C 两点.(1)求该二次函数的解析式;(2)结合函数的图象探索:当y>0时x 的取值范围. 【思路点拨】(1)通过正方形的边长得出点B,C的坐标,然后代入函数解析式列方程求解;(2)求出函数图象与x轴的交点坐标,结合图象求解.【解答】方法归纳:求二次函数的解析式,通常采用待定系数法,根据题目给出的条件选择不同的函数表达式,这样便于计算.1.(2013·安徽)已知二次函数图象的顶点坐标为(1,-1),且经过原点(0,0),求该函数的解析式.2.(2014·宁波)如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.1.(2013·益阳)抛物线y=2(x-3)2+1的顶点坐标是( )A.(3,1)B.(3,-1)C.(-3,1)D.(-3,-1)2.(2014·宿迁)若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的解析式为( )A.y=(x+2)2+3B.y=(x-2)2+3C.y=(x+2)2-3D.y=(x-2)2-33.(2013·泰安)设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+m上的三点,则y1,y2,y3的大小关系为( )A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y2>y1>y34.(2014·东营)若函数y=mx2+(m+2)x+12m+1的图象与x轴只有一个交点,那么m的值为( )A.0B.0或2C.2或-2D.0,2或-25.(2014·毕节)抛物线y=2x2,y=-2x2,y=12x2共有的性质是( )A.开口向下B.对称轴是y轴C.都有最低点D.y随x的增大而减小6.(2014·黄石)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数值y>0时,x的取值范围是( )A.x<-1B.x>3C.-1<x<3D.x<-1或x>37.(2014·新疆)对于二次函数y=(x-1)2+2的图象,下列说法正确的是( )A.开口向下B.对称轴是x=-1C.顶点坐标是(1,2)D.与x轴有两个交点8.(2014·淄博)如图,二次函数y=x2+bx+c的图象过点B(0,-2).它与反比例函数y=8x的图象交于点A(m,4),则这个二次函数的解析式为( )A.y=x2-x-2B.y=x2-x+2C.y=x2+x-2D.y=x2+x+29.(2013·广安)已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>0,②2a+b=0,③b2-4ac<0,④4a+2b+c>0.其中正确的是( )A.①③B.只有②C.②④D.③④10.(2014·长沙)抛物线y=3(x-2)2+5的顶点坐标是 .11.(2013·北京)请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式 .12.已知函数y=-3(x-2)2+4,当x= 时,函数取得最大值为 .13.(2013·河南)点A(2,y1),B(3,y2)是二次函数y=x2-2x+1的图象上两点,则y1与y2的大小关系为y1<y2(填“>”“<”或“=”).14.(2014·安徽)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为 .15.(2013·温州)如图,抛物线y=a(x-1)2+4与x轴交于点A,B,与y轴交于点C.过点C作CD∥x轴交抛物线的对称轴于点D,连接BD.已知点A的坐标为(-1,0).(1)求抛物线的解析式;(2)求梯形COBD的面积.16.(2014·龙东)如图,二次函数y=ax2+bx+3的图象与x轴交于A(-3,0)和B(1,0)两点,交y轴于点C,点C,D是二次函数图象上的一对对称点,一次函数的图象过点B,D.(1)请直接写出D点的坐标;(2)求二次函数的解析式;(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.1.(2014·荆州)将抛物线y=x2-6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是( )A.y=(x-4)2-6B.y=(x-4)2-2C.y=(x-2)2-2D.y=(x-1)2-32.(2014·黔东南)已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2 014的值为( )A.2 012B.2 013C.2 014D.2 0153.(2014·长沙)函数y=ax与y=ax2(a≠0)在同一平面直角坐标系中的图象可能是( )4.(2014·泰安)已知函数y=-(x-m)(x-n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=mxn的图象可能是( )5.(2014·凉山)下列图形中阴影部分的面积相等的是( )A.②③B.③④C.①②D.①④6.(2014·枣庄)已知二次函数y=ax2+bx+c的x,y的部分对应值如下表:则该二次函数图象的对称轴为( )A.y轴B.直线x=52C.直线x=2D.直线x=327.(2014·烟台)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:其中正确的结论有( )①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>-1时,y的值随x的值的增大而增大.A.1个B.2个C.3个D.4个8.(2014·齐齐哈尔)如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C,D两点.点P是x轴上的一个动点.(1)求此抛物线的解析式;(2)当PA+PB的值最小时,求点P的坐标.9.(2014·徐州)某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx-75.其图象如图.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?参考答案考点解读①y=ax2+bx+c ②上③下④减小⑤增大⑥增大⑦减小⑧上⑨下⑩小⑪y ⑫左⑬右⑭原点⑮正⑯负○17唯一○18两个不同○19没有○20a+b+c○21a-b+c ○22>○23<○24y=ax2+bx+c ○25y=a(x-h)2+k ○26y=a(x-x1)(x-x2) ○27x○28横○29>○30<各个击破例1 B解析:根据抛物线的开口向下,可判断a<0,故A错误;由抛物线与x轴的交点(-1,0)和对称轴x=1可知抛物线与x轴的另一个交点是(3,0),故B正确;由当x=1时,y=a+b+c≠0,故C错误;从图象即可看出,当x<1时,y 随x的增大而增大,故D错误.故选B.题组训练1.C2.C3.(1,2)4.直线x=25.(1)y=x2-4x+3=x2-4x+4-1=(x-2)2-1,∴其函数的顶点C的坐标为(2,-1),∴当x≤2时,y随x的增大而减小;当x>2时,y随x的增大而增大.(2)令y=0,则x2-4x+3=0,解得x1=1,x2=3,∴A(1,0),B(3,0),AB=|1-3|=2.过点C作CD⊥x轴于D,则△ABC的面积=12AB·CD=12×2×1=1.例2 C 解析:由图象与x 轴有2个交点可判断A错误;根据图象的开口方向、对称轴、与y 轴的交点可判断a <0,2ba-<-1,c >0,即abc >0,故B 错误,C 正确;由当x=-1时,y=a-b+c >0可判断D 错误.故答案选C. 题组训练1.B2.D3.B例3 (1)由题意可得:B (2,2),C (0,2),将B,C 坐标代入y=23-x 2+bx+c ,得c=2,b=43, ∴二次函数的解析式是y=23-x 2+43x+2.(2)解23-x 2+43x+2=0,得x 1=3,x 2=-1.由图象可知:y>0时x 的取值范围是-1<x <3.题组训练1.设二次函数的解析式为y=a (x-1)2-1(a ≠0), ∵函数图象经过原点(0,0),∴a (0-1)2-1=0,解得a=1,∴该函数解析式为y=(x-1)2-1.2.(1)∵二次函数y=ax 2+bx+c 的图象过B (0,-1),∴二次函数解析式为y=ax 2+bx -1.∵二次函数y=ax 2+bx -1的图象过A (2,0)和C (4,5)两点,∴42101641 5.a b a b +-=⎧⎨+-=⎩,解得1,21.2a b ⎧=⎪⎪⎨⎪=⎪⎩-∴y=12x 2-12x -1. (2)当y=0时,12x 2-12x -1=0,解得x=2或x=-1,∴D (-1,0).(3)如图,当-1<x <4时,一次函数的值大于二次函数的值.整合集训 基础过关1.A2.B3.A4.D5.B6.D7.C8.A9.C10.(2,5) 11.y =x 2+1 12.2 4 13.< 14.y=a(1+x)215.(1)把A (-1,0)代入y=a(x -1)2+4,得0=4a+4,∴a=-1.∴y=-(x -1)2+4.(2)当x=0时,y=3,∴OC=3.∵抛物线y=-(x -1)2+4的对称轴是直线x=1,∴CD=1.∵A (-1,0),∴B (3,0),∴OB=3.∴S 梯形COBD =13)32+⨯(=6. 16.(1)D (-2,3).(2)把点A,B 代入y=ax 2+bx+3中,得9330,30.a b a b -+=⎧⎨++=⎩解得1,2.a b =-⎧⎨=-⎩ ∴二次函数的解析式为y=-x 2-2x+3.(3)x <-2或x >1.能力提升1.B2.D3.D4.C5.A6.D7.B 提示:∵抛物线的对称轴为直线x=2b a-=2,∴b=-4a ,即4a+b=0,故①正确; ∵当x=-3时,y <0,∴9a-3b+c <0,即9a+c <3b ,故②错误;∵抛物线与x 轴的一个交点为(-1,0),∴a-b+c=0,而b=-4a ,∴a+4a+c=0,即c=-5a ,∴8a+7b+2c=8a-28a-10a=-30a ,∵抛物线开口向下,∴a <0,∴8a+7b+2c >0,故③正确;观察图象,④明显错误,即正确的结论是①③2个.8.(1)∵抛物线顶点坐标为(1,4),∴设y=a(x-1)2+4,由于抛物线过点B(0,3),∴3=a(0-1)2+4,解得a=-1.∴解析式为y=-(x-1)2+4,即y=-x 2+2x+3.(2)作点B 关于x 轴的对称点E (0,-3),连接AE 交x 轴于点P.设AE 解析式y=kx+b ,则4,3.k b b +=⎧⎨=-⎩解得7,3.k b =⎧⎨=-⎩∴y AE =7x-3.当y=0时,x=37,∴点P坐标为(37,0).9.(1)y=ax2+bx-75图象过点(5,0),(7,16),∴255750, 4977516.a ba b+-=⎧⎨+-=⎩解得1,20.ab=-⎧⎨=⎩y=-x2+20x-75的顶点坐标是(10,25).当x=10时,y最大=25.答:销售单价为10元时,该种商品每天的销售利润最大,最大利润为25元.(2)∵函数y=-x2+20x-75图象的对称轴为直线x=10,可知点(7,16)关于对称轴的对称点是(13,16),又∵函数y=-x2+20x-75图象开口向下,∴当7≤x≤13时,y≥16.答:销售单价不少于7元且不超过13元时,该种商品每天的销售利润不低于16元.。

二次函数知识点总结及练习

二次函数知识点总结及练习

二次函数知识点总结及练习知识点1:二次函数的概念(1)一般地,形如 (a,b,c 是常数, )的函数,叫做二次函数。

注意:①a ②最高次数为 ③代数式一定是 (2)二次函数的一般形式是 (a,b,c 是常数, ) 是二次项系数, 是一次项系数, 是常数项.练习:1.已知函数35)1(12-+-=+x x m y m 是二次函数,求m 的值。

2.若函数y=(m 2+2m-7)x 2+4x+5是关于x 的二次函数,则m 的取值范围为 。

知识点2:二次函数的图像和性质(1)y=ax 2的图像和性质:练习:1. y=-2x 2的对称轴是 ,顶点坐标是 ;当 时,y 的值随x 值的增大而减小 2.当m= 时,抛物线mm x m y +-=2)1(开口向下,对称轴为 ,当x<0时,y 随x 的增大而 ;当x>0时,y 随x 的增大而 .3.已知点(x 1,y 1),(x 2,y 2)在二次函数y=-2x 2图象上,当x 1>x 2>0时,则y 1与y 2的大小关系是 .4.已知点(-1,y 1),(2,y 2),(-3,y 3)都在函数y=5x 2的图象上,则则y 1与y 2,y 3的大小关系是 . (2)y=ax 2+c 的图像和性质:1.二次函数y=-2x 2+6图象的对称轴是 ,顶点坐标是 ,当 时,y 随x 的增大而增大. 2.已知y=ax 2+c 的图象上有A(-3,y 1),B(1,y 2),C(2,y 3)三点,且y 2<y 3<y 1,则a 的取值范围是 . 3.将二次函数y=2x 2-1的图象沿y 轴向上平移2个单位长度,所得图象对应的函数表达式为 .4.已知抛物线y=(m-1)x 2+m 2-2m-2的开口方向向下,且经过点(0,1). (1)求m 的值;(2)求此抛物线的顶点坐标及对称轴; (3)当x 为何值时,y 随x 的增大而增大?(3)y=a(x-h)2+k 的图像和性质:1.抛物线y=-12(x +4)2的顶点坐标为 ,当x >-4时,y 随x 的增大而 .2.抛物线y=-2(x-1)2-3的开口方向是 ,其顶点坐标是 ,对称轴是直线 ,当 时,函数值y 随自变量x 的值的增大而减小.3.若抛物线y=(x-m)2+(m +1)的顶点在第一象限,则m 的取值范围为 .4.已知A(1,y 1)、B(-12,y 2)、C(-2,y 3)在函数y=a(x +1)2+k(a>0)的图象上,则y 1、y 2、y 3的大小关系是 .(4)二次函数c bx ax y ++=2(a ≠0)的图像和性质练习:1.抛物线3842-+-=x x y 的开口方向向 ,对称轴是 ,最高点的坐标是 , 函数值得最大值是 。

二次函数知识点、考点、典型例题及练习(附解析)

二次函数知识点、考点、典型例题及练习(附解析)

二次函数知识点、考点、典型例题及练习(附解析)一、二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c=++(a b ca≠)的函数,叫做,,是常数,0二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1. 二次函数基本形式:2=的性质:y axa 的绝对值越大,抛物线的开口越小。

y ax c=+的性质:上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的二、专题与考点专题一:二次函数的图象与性质本专题涉及二次函数概念,二次函数的图象性质,抛物线平移后的表达式等.试题多以填空题、选择题为主,也有少量的解答题出现.考点1.二次函数图象的对称轴和顶点坐标二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a ,顶点坐标是(-2b a,244ac b a-). 例 1 已知,在同一直角坐标系中,反比例函数5y x=与二次函数22y x x c =-++的图像交于点(1)A m -,. (1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标.考点2.抛物线与a 、b 、c 的关系抛物线y=ax 2+bx+c 中,当a>0时,开口向上,在对称轴x=-2ba的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限考点3.二次函数的平移当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0)的图象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到.例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2 专题练习一 1.对于抛物线y=13-x 2+103x 163-,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3) C.开口向下,顶点坐标为(-5,3) D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4D.抛物线与x 轴交点为(-1,0),(3,0)3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________.4.小明从图2所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号)图2图1专题复习二:二次函数表达式的确定本专题主要涉及二次函数的三种表示方法以及根据题目的特点灵活选用方法确定二次函数的表达式.题型多以解答题为主.考点1.根据实际问题模型确定二次函数表达式例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB边长为x米,则菜园的面积y(单位:米2)与x(单位:米)的函数关系式为(不要求写出自变量x的取值范围).考点2.根据抛物线上点的坐标确定二次函数表达式1.若已知抛物线上三点的坐标,则可用一般式:y=ax2+bx+c(a≠0);2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a(x-h)2+k(a≠0);3.若已知抛物线与x轴的两个交点坐标及另一个点,则可用交点式:y=a(x-x1)(x-x2)(a≠0).例2 已知抛物线的图象以A(-1,4)为顶点,且过点B(2,-5),求该抛物线的表达式.例3 已知一抛物线与x轴的交点是A(-2,0)、B(1,0),且经过点C(2,8).(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标.专项练习二1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x,降价后的价格为y元,原价为a元,则y与x之间的函数表达式为()A.y=2a(x-1)B.y=2a(1-x)C.y=a(1-x2)D.y=a(1-x)22.如图2,在平而直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,点A在x轴负半轴,点B在x轴正半轴,与y轴交于点C,且AOOC=12,CO=BO,AB=3,则这条抛物线的函数解析式是.A BC D图1菜园墙图23.对称轴平行于y 轴的抛物线与y 轴交于点(0,-2),且x=1时,y=3;x=-1时y=1, 求此抛物线的关系式.4.推理运算:二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式; (2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点.专题三:二次函数与一元二次方程的关系本专题主要涉及根据二次函数的图象求一元二次方程的近似根,由图象判断一元二次方程根的情况,由一元二次方程根的情况判断抛物线与x 轴的交点个数等,题型主要填空题、选择题和解答题.考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况. 例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )A.6 6.17x <<B.6.17 6.18x << C.6.18 6.19x <<D.6.19 6.20x <<考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.图1考点3.抛物线的交点个数与一元二次方程的根的情况当二次函数y=ax 2+bx+c 的图象与x 轴有两个交点时,则一元二次方程ax 2+bx+c=0有两个不相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴有一个交点时,则一元二次方程ax 2+bx+c=0有两个相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴没有交点时,则一元二次方程ax 2+bx+c=0没有实数根.反之亦然.例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A.3B.2C.1D.0专项练习三1.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k 的取值范围是________.2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .3.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根. (2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.专题四:利用二次函数解决实际问题:本专题主要涉及从实际问题中建立二次函数模型,根据二次函数的最值解决实际问题,能根据图象学习建立二次函数模型解决实际问题.解决实际问题的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.例:某商场将进价2000元的冰箱以2400元售出,平均每天能售出8台,为配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?专题训练四1.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)当x是多少时,矩形场地面积S最大?最大面积是多少?2.某旅行社有客房120间,每间客房的日租金为50元,每天都客满.旅社装修后要提高租金,经市场调查发现,如果每间客房的日租金每增加5元时,则客房每天出租数就会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?3.一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式;(2)求支柱EF的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.三、典型例题题型 1 二次函数的概念例1(基础).二次函数2365y x x =--+的图像的顶点坐标是( )A .(-1,8) B.(1,8) C (-1,2) D (1,-4)点拨:本题主要考察二次函数的顶点坐标公式例2.(拓展,2008年武汉市中考题,12)下列命题中正确的是( )○1若b 2-4ac >0,则二次函数y=ax 2+bx+c 的图象与坐标轴的公共点的个数是2或3 ○2若b 2-4ac=0,则二次函数y=ax 2+bx+c 的图象与x 轴只有一个交点,且这个交点就是抛物线顶点。

(完整版)初三数学二次函数知识点总结及经典习题含答案

(完整版)初三数学二次函数知识点总结及经典习题含答案

初三数学 二次函数 知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a<-时,y 随x 的增大而减小; 当2bx a>-时,y 随x 的增大而增大; 当2bx a=-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式(交点式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.(同左异右 b 为0对称轴为y 轴) 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.. ② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;二次函数对应练习试题一、选择题1. 二次函数247y x x =--的顶点坐标是( )A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3) 2. 把抛物线22y x =-向上平移1个单位,得到的抛物线是( )A. 22(1)y x =-+B. 22(1)y x =--C. 221y x =-+D. 221y x =-- 3.函数2y kx k =-和(0)ky k x=≠在同一直角坐标系中图象可能是图中的( )4.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是( )A.1个B.2个C. 3个D. 4个5.已知二次函数2(0)y ax bx c a =++≠的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别是121.3x x ==和( )A.-1.3 B.-2.3 C.-0.3 D.-3.36. 已知二次函数2y ax bx c =++的图象如图所示,则点(,)ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.方程222x x x-=的正根的个数为( ) A.0个 B.1个 C.2个. 3 个8.已知抛物线过点A(2,0),B(-1,0),与y 轴交于点C,且OC=2.则这条抛物线的解析式为A. 22y x x =-- B. 22y x x =-++C. 22y x x =--或22y x x =-++ D. 22y x x =---或22y x x =++二、填空题9.二次函数23y x bx =++的对称轴是2x =,则b =_______。

二次函数知识点总结及典型例题和练习(极好)

二次函数知识点总结及典型例题和练习(极好)

二次函数知识点总结及典型例题和练习(极好)知识点一:二次函数的概念和图像 1、二次函数的概念一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零,那么y 叫做x 的二次函数。

)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

2、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。

抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。

3、二次函数图像的画法--------五点作图法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴(2)求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。

将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。

由C 、M 、D 三点可粗略地画出二次函数的草图。

如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。

【例1】 已知函数y=x 2-2x-3,(1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。

然后画出函数图象的草图;(2)求图象与坐标轴交点构成的三角形的面积:(3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y<0;③ y>0二次函数的解析式有三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数,(2) 交点式:当抛物线c bx ax y ++=2与x 轴有交点时,即对应的一元二次方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。

九年级数学 二次函数知识点、考点、典型例题及练习(附解析)

九年级数学 二次函数知识点、考点、典型例题及练习(附解析)

二次函数知识点、考点、典型例题及练习(附解析)一、二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 3. 关于原点对称2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y a x b x c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的二、专题与考点专题一:二次函数的图象与性质本专题涉及二次函数概念,二次函数的图象性质,抛物线平移后的表达式等.试题多以填空题、选择题为主,也有少量的解答题出现.考点1.二次函数图象的对称轴和顶点坐标二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a ,顶点坐标是(-2b a,244ac b a-). 例 1 已知,在同一直角坐标系中,反比例函数5y x=与二次函数22y x x c =-++的图像交于点(1)A m -,. (1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标.考点2.抛物线与a 、b 、c 的关系抛物线y=ax 2+bx+c 中,当a>0时,开口向上,在对称轴x=-2ba的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限考点3.二次函数的平移当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0)的图象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到.例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2 专题练习一 1.对于抛物线y=13-x 2+103x 163-,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3) C.开口向下,顶点坐标为(-5,3) D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4D.抛物线与x 轴交点为(-1,0),(3,0)3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________.4.小明从图2所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号)图2图1专题复习二:二次函数表达式的确定本专题主要涉及二次函数的三种表示方法以及根据题目的特点灵活选用方法确定二次函数的表达式.题型多以解答题为主.考点1.根据实际问题模型确定二次函数表达式例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB边长为x米,则菜园的面积y(单位:米2)与x(单位:米)的函数关系式为(不要求写出自变量x的取值范围).考点2.根据抛物线上点的坐标确定二次函数表达式1.若已知抛物线上三点的坐标,则可用一般式:y=ax2+bx+c(a≠0);2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a(x-h)2+k(a≠0);3.若已知抛物线与x轴的两个交点坐标及另一个点,则可用交点式:y=a(x-x1)(x-x2)(a≠0).例2 已知抛物线的图象以A(-1,4)为顶点,且过点B(2,-5),求该抛物线的表达式.例3 已知一抛物线与x轴的交点是A(-2,0)、B(1,0),且经过点C(2,8).(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标.专项练习二1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x,降价后的价格为y元,原价为a元,则y与x之间的函数表达式为()A.y=2a(x-1)B.y=2a(1-x)C.y=a(1-x2)D.y=a(1-x)22.如图2,在平而直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,点A在x轴负半轴,点B在x轴正半轴,与y轴交于点C,且AOOC=12,CO=BO,AB=3,则这条抛物线的函数解析式是.A BC D图1菜园墙图23.对称轴平行于y 轴的抛物线与y 轴交于点(0,-2),且x=1时,y=3;x=-1时y=1, 求此抛物线的关系式.4.推理运算:二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式; (2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点.专题三:二次函数与一元二次方程的关系本专题主要涉及根据二次函数的图象求一元二次方程的近似根,由图象判断一元二次方程根的情况,由一元二次方程根的情况判断抛物线与x 轴的交点个数等,题型主要填空题、选择题和解答题.考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况. 例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )A.6 6.17x <<B.6.17 6.18x << C.6.18 6.19x <<D.6.19 6.20x <<考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.图1考点3.抛物线的交点个数与一元二次方程的根的情况当二次函数y=ax 2+bx+c 的图象与x 轴有两个交点时,则一元二次方程ax 2+bx+c=0有两个不相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴有一个交点时,则一元二次方程ax 2+bx+c=0有两个相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴没有交点时,则一元二次方程ax 2+bx+c=0没有实数根.反之亦然.例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A.3B.2C.1D.0专项练习三1.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k 的取值范围是________.2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .3.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根. (2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.专题四:利用二次函数解决实际问题:本专题主要涉及从实际问题中建立二次函数模型,根据二次函数的最值解决实际问题,能根据图象学习建立二次函数模型解决实际问题.解决实际问题的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.例:某商场将进价2000元的冰箱以2400元售出,平均每天能售出8台,为配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?专题训练四1.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)当x是多少时,矩形场地面积S最大?最大面积是多少?2.某旅行社有客房120间,每间客房的日租金为50元,每天都客满.旅社装修后要提高租金,经市场调查发现,如果每间客房的日租金每增加5元时,则客房每天出租数就会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?3.一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式;(2)求支柱EF的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.三、典型例题题型 1 二次函数的概念例1(基础).二次函数2365y x x =--+的图像的顶点坐标是( ) A .(-1,8) B.(1,8) C (-1,2) D (1,-4) 点拨:本题主要考察二次函数的顶点坐标公式例2.(拓展,2008年武汉市中考题,12)下列命题中正确的是( ) ○1若b 2-4ac >0,则二次函数y=ax 2+bx+c 的图象与坐标轴的公共点的个数是2或3 ○2若b 2-4ac=0,则二次函数y=ax 2+bx+c 的图象与x 轴只有一个交点,且这个交点就是抛物线顶点。

二次函数基础知识详细讲解(附例题与答案)

二次函数基础知识详细讲解(附例题与答案)

二次函数基础知识详细讲解(附例题与答案)一、什么是二次函数?【引例】一个正方体的棱长为a,它的表面积为S,于是我们可以得到函数关系式:S=6a²,这里a是自变量,S是a的函数,因为这里自变量的最高次数是2,所以我们把它称为二次函数我们可以以图表的形式把对应关系表示出来(不考虑实际意义):我们根据列表绘制出它的图像:我们发现:二次函数的图像是一条抛物线二、二次函数的图象研究刚才我们已经知道二次函数的图像是一条抛物线,那么这条抛物线有什么特点那?二次函数的一般形式:y=ax²+bx+c(a≠0)(1)我们先来研究a与抛物线y=ax²+bx+c图像的联系我们发现:当a>0时,抛物线开口向上;当a<>观察上面的抛物线我们发现:当a>0,a越大,开口越小当a<>即|a|越大,开口越小(2)抛物线与y轴的交点对于y=ax²+bx+c,令x=0,得y=c,即抛物线与y轴的交点为(0,c)(3)抛物线与x轴的交点对于y=ax²+bx+c,令y=0,就转化成了一元二次方程ax²+bx+c=0我们知道这个方程根的个数可以用判别式△=b²-4ac来判断,①当△>0时,方程有两个不相等的实根②当△=0时,方程有两个相等的实根③当△<>而一元二次方程ax²+bx+c=0的实根个数和抛物线y=ax²+bx+c 与x轴的交点个数是相对应的①当△>0时,抛物线与x轴有两个交点所以,当给出两个交点时,我们也可以把函数关系式写成:我们也把这个关系式叫做交点式②当△=0时,抛物线与x轴有一个交点③当△<>(4)抛物线的顶点及对称性不难发现,抛物线是个轴对称图形,那么它的对称轴是什么那?我们随便找一个二次函数y=2x²-4x+1,我们对它进行配方,得到y=2(x-1)²-1我们利用列表法描点:根据图像我们发现:此函数图像的对称轴为x=1当x<>当x>1,即在对称轴右侧时,抛物线呈增强趋势;当x=1,即在对称轴上时,y=-1,而(1,-1)即为抛物线y=2(x-1)²-1的顶点下面我们对一般情况进行分析:对二次函数一般形式y=ax²+bx+c进行配方得:因此抛物线y=ax²+bx+c的对称轴:顶点坐标:所以我们也把称为顶点式(5)抛物线的增减性与最值观察图像,我们发现:①若a>0②若a<>三、二次函数图象分析常用图四、二次函数题型归纳及做题技巧类型一二次函数的概念【知识点】判断二次函数解析式的三个特征:①整式;②a≠0;③化简后x的最高次数是2 例题1 下列函数中属于二次函数的是()A. y = 2x + 1 B. y = (x - 1)² - x²C. y = 2x²D.【提示】根据二次函数解析式三个特征例题2 已知是y关于x的二次函数,那么m的值为()A. -2 B. 2 C. ±2 D. 0【提示】根据二次函数解析式三个特征类型二二次函数的图像和性质【知识点】二次函数y=ax²+bx+c图像性质1、根据a判断开口方向,|a|判断开口大小①a>0,开口向上;a<>②|a|越大开口越小,|a|相等,抛物线的开口大小,形状相同2、根据c判断与y轴的交点位置①c>0,交于y轴正半轴②c<>③c=0,抛物线经过原点3、根据△判断交点个数①△>0,与x轴有2个交点②△=0,与x轴有1个交点③△<>4、对称轴对称轴是直线x = -b/2a①b=0时,对称轴为y轴②b/a>0(即a、b同号),对称轴在y轴左侧③b/a<>5、根据开口方向和对称轴判断增减性①a>0,对称轴左侧递减,右侧递增②a<>6、看图象判定代数式的值或范围①判断a,b,c的符号和取值根据开口方向及大小,对称轴在y轴哪侧,与y轴交点判断②如何得到a±b+c的值或范围x取±1时可得出③如何得到2a±b的值或范围比较对称轴-b/2a与±1的大小关系得出④如何得到b²-4ac的大小根据图象与x轴的交点个数⑤如何得到a,b,c的关系式试试经过的点代入⑥碰到特殊的技巧和规律就积累下来例题3 函数y= - x² + 1的图象大致为()【提示】根据二次函数的开口方向、对称轴和y轴的交点可得相关图象例题4 关于抛物线y = x² - 2x +1,下列说法错误的是()A. 开口向上B. 与x轴有两个重合的交点C. 对称轴是直线x = 1D. 当x>1时,y随x的增大而减小【提示】根据二次函数的开口方向、对称轴和y轴的交点可得相关图像,或直接画出图象例题5 下列图像中,有一个可能是函数y = ax² + bx + a + b (a≠0)的图象,它是()【提示】根据y = ax² + bx + a + b(a≠0),对a,b的正负进行分类讨论,把一定错误的排除掉即可得到正确选项例题6 已知函数y = ax² + bx +a + c,当y > 0时,-1/3 < x="">< 1/2,则函数y="cx²" -="" bx="" +="">【提示】根据a,b,c分别对图象的影响或利用根与系数的关系例题7 如图,已知二次函数y = ax² + bx + c(a≠0)的图像与x 轴交于点A(-1,0),与y轴的交点B在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x = 1.下列结论:①abc>0 ②4a+2b+c>0 ③4ac-b²<8a ④1/3 < a="">< 2/3="" ="">其中含所有正确结论的选项是()A. ①③B. ①③④C. ②④⑤D. ①③④⑤【提示】根据对称轴及图象开口方向向上可判断出a,b,c的符号,从而判断①;根据对称轴得到函数图象经过(3,0),从而判断②;根据图像经过(-1,0)可得到a,b,c之间的关系,从而判断③⑤;从图像与y轴的交点B在(0,-2)和(0,-1)之间,从而判断c的大小,进而判断④类型三利用二次函数的对称性解题【知识点】1、若抛物线上的点,纵坐标相同,它们一定关于对称轴对称如上图,经过抛物线的A、B两点的纵坐标都是2,那么它们一定关于对称轴对称2、若抛物线上A、B两点关于对称轴对称,且它们的横坐标分别为m、n,则对称轴为x=(m+n)/2例题8 二次函数y = ax² + bx +c,自变量x与函数y的对应值如表:下列说法正确的是()A. 抛物线开口向下B. 当x>-3时,y随x的增大而增大C. 二次函数的最小值是-2D. 抛物线的对称轴是x=-5/2【提示】注意表格中给出的y值,有三对相同的数字,而它们都是图象上点的纵坐标,抛物线上的点,纵坐标相同,它们一定关于对称轴对称,再根据二次函数的性质逐项判断例题9【提示】根据函数解析式的特点,其对称轴为x=1,图象开口向下,在对称轴的右侧,y随x的增大而减小,根据二次函数图象的对称性可知,关于对称轴对称,即可判断例题10 如图,抛物线y = x² - bx + c交x轴于点A(1,0),交y轴于点B,对称轴是x = 2(1)求抛物线的解析式(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB 的周长最小?若存在,求出点P的坐标;若不存在,请说明理由【提示】(1)根据抛物线经过点A(1,0),对称轴是x=2列出方程组,求出b,c即可;(2)因为点A与点C关于x=2对称,根据轴对称的性质连接BC 与x=2交于点P,点P即为所求,求出直线BC与x=2的交点即可类型四根据条件确定二次函数的解析式【知识点】注:有顶点信息用顶点式,有交点信息用交点式,没特殊信息用一般式例题11 已知某二次函数的图象如图,则这个二次函数的解析式为()A. y = - 3(x - 1)² + 3B. y = 3(x - 1)² + 3C. y = - 3(x + 1)² + 3D. y = 3(x + 1)² + 3【提示】有顶点信息,用顶点式例题12 已知二次函数的图象经过(-1,-5),(0,-4),(1,1),则这个二次函数的表达式为()A. y = - 6x² + 3x + 4B. y = - 2x² + 3x - 4C. y = x² + 2x - 4D. y = 2x² + 3x - 4【提示】无特殊信息,用一般式例题13 已知二次函数图象经过(1,0),(2,0),(0,2)三点,则该函数图象的关系式是_____________________.【提示】有交点信息,用交点式类型五利用二次函数解决实际问题例题14 在一幅长60cm,宽40cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图,如果要使整个挂图的面积是y cm²,设金色纸边的宽度为x cm,那么y关于x的函数是()A. y = (60+2x)(40+2x)B. y = (60+x)(40+x)C. y = (60+2x)(40+x)D. y = (60+x)(40+2x)【提示】挂图面积 = 长×宽 =(60+2x)(40+2x)例题15 某商店进了一批服装,每件成本50元,如果按每件60元出售,可销售800件,如果每件提价5元出售,其销量将减少100件.(1)求售价为70元时的销售量及销售利润(2)求销售利润y(元)与售价x(元)之间的函数关系,并求售价为多少元时获得最大利润;(3)如果商店销售这批服装想获利12000元,那么这批服装的定价是多少元?【提示】可参考(九年级第5讲)一元二次方程的实际应用【参考答案】例题1:C例题2:A例题3:B例题4:D例题5:C例题6:D例题7:D例题8:D例题9:D例题10:(1)解析式为:y=x²- 4x + 3(2)点P的坐标为(2,1)例题11:A例题12:D例题13:y= x² - 3x + 2例题14:A例题15:(1)销售量:600(件),销售利润:12000(元)(2)关系式:y= -20(x-75)² + 12500最大利润:12500元(3)定价为70元或80元时这批服装可获利12000元。

二次函数知识点总结及典型例题和练习

二次函数知识点总结及典型例题和练习

二次函数知识点总结及典型例题和练习(极好)知识点一:二次函数的概念和图像 1、二次函数的概念一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零,那么y 叫做x 的二次函数。

)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

2、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。

抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。

3、二次函数图像的画法--------五点作图法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴(2)求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。

将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。

由C 、M 、D 三点可粗略地画出二次函数的草图。

如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。

【例1】 已知函数y=x 2-2x-3,(1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。

然后画出函数图象的草图;(2)求图象与坐标轴交点构成的三角形的面积:(3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y<0;③ y>0二次函数的解析式有三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数,(2) 交点式:当抛物线c bx ax y ++=2与x 轴有交点时,即对应的一元二次方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。

二次函数各知识点、考点、典型例题与练习试题

二次函数各知识点、考点、典型例题与练习试题

二次函数各知识点、考点、典型例题及对应练习(超全)【典型例题】题型1二次函数的概念例1 (基础)•二次函数y二-3x2 -6x 5的图像的顶点坐标是()A • (-1 , 8) B. (1 , 8) C (-1 , 2) D (1,-4 )点拨:本题主要考察二次函数的顶点坐标公式例2.(拓展,2008年武汉市中考题,12) 下列命题中正确的是①若b2-4ac>0,则二次函数y=ax2+bx+c的图象与坐标轴的公共点的个数是2或3②若b2—4ac=0 ,则二次函数y=ax2+bx+c的图象与x轴只有一个交点,且这个交点就是抛物线顶点。

③当c=—5时,不论b为何值,抛物线y=ax?+bx+c —定过y轴上一定点。

④若抛物线y=ax2+bx+c与x轴有唯一公共点,则方程ax2+bx+c=0有两个相等的实数根。

③若抛物线y=ax2+bx+c与x轴有两个交点A、B,与y轴交于c点,c=4, S^ABC=6,则抛物线解析式为y=x2 —5x+4。

③若抛物线y=ax?+bx+c (a* 0)的顶点在x轴下方,则一元二次方程ax2+bx+c=0有两个不相等的实数根。

⑦若抛物线y=ax2+bx+c (a* 0)经过原点,则一元二次方程ax2+bx+c=0必有一根为0。

③若a—b+c=2,则抛物线y=ax2+bx+c (a * 0)必过一定点。

⑦若b2v 3ac,则抛物线y=ax2+bx+c与x轴一定没有交点。

③若一元二次方程ax2+bx+c=0有两个不相等的实数根,则函数y=cx2+bx+a的图象与x轴必有两个交点。

③若b=0,则抛物线y=ax2+bx+c与x轴的两个交点一个在原点左边,一个在原点右边。

点拨:本题主要考查二次函数图象及其性质,一元二次方程根与系数的关系,及二次函数和一元二次方程二者之间的联系。

复习时,抓住系数a、b、c对图形的影响的基本特点,提升学生的数形结合能力,抓住抛物线的四点一轴与方程的关系,训练学生对函数、方程的数学思想的运用。

二次函数各知识点、考点、典型例题及练习

二次函数各知识点、考点、典型例题及练习

二次函数各知识点、考点、典型例题与对应练习(超全)【典型例题】题型 1 二次函数的概念例1(基础).二次函数2365y x x =--+的图像的顶点坐标是( ) A .(-1,8) B.(1,8) C (-1,2) D (1,-4) 点拨:本题主要考察二次函数的顶点坐标公式 例2.(拓展,2008年XX 市中考题,12) 下列命题中正确的是○1若b 2-4ac >0,则二次函数y=ax 2+bx+c 的图象与坐标轴的公共点的个数是2或3 ○2若b 2-4ac=0,则二次函数y=ax 2+bx+c 的图象与x 轴只有一个交点,且这个交点就是抛物线顶点。

○3当c=-5时,不论b 为何值,抛物线y=ax 2+bx+c 一定过y 轴上一定点。

○4若抛物线y=ax 2+bx+c 与x 轴有唯一公共点,则方程ax 2+bx+c=0有两个相等的实数根。

○5若抛物线y=ax 2+bx+c 与x 轴有两个交点A 、B ,与y 轴交于c 点,c=4,S △ABC=6,则抛物线解析式为y=x 2-5x+4。

○6若抛物线y=ax 2+bx+c (a ≠0)的顶点在x 轴下方,则一元二次方程ax 2+bx+c=0有两个不相等的实数根。

○7若抛物线y=ax 2+bx+c (a ≠0)经过原点,则一元二次方程ax 2+bx+c=0必有一根为0。

○8若a -b+c=2,则抛物线y=ax 2+bx+c (a ≠0)必过一定点。

○9若b 2<3ac ,则抛物线y=ax 2+bx+c 与x 轴一定没有交点。

○10若一元二次方程ax 2+bx+c=0有两个不相等的实数根,则函数y=cx 2+bx+a 的图象与x 轴必有两个交点。

○11若b=0,则抛物线y=ax 2+bx+c 与x 轴的两个交点一个在原点左边,一个在原点右边。

点拨:本题主要考查二次函数图象与其性质,一元二次方程根与系数的关系,与二次函数和一元二次方程二者之间的联系。

二次函数知识点及重点题练习答案解析

二次函数知识点及重点题练习答案解析
在第一象限内,图象都下凹.
答案
基础训练
1
3
1.函数 y= 的大致图象是( B ).
【解析】取值验证可知,函数
1
y= 3 的大致图象是选项
B 中的图象.
答案
解析
2
2.若二次函数 y=-2x -4x+t 的图象的顶点在 x 轴上,则 t 的值是( C ).
A.-4
B.4
C.-2
D.2
【解析】∵二次函数的图象的顶点在 x 轴上,∴Δ=16+8t=0,可
2.五种常见幂函数的图象
答案
3.幂函数的性质
(1)当 α>0 时,幂函数 y=xα 的图象过点 (0,0) 和 (1,1) ,在(0,+∞)上
是 增函数 .在第一象限内,当 α>1 时,图象下凹,当 0<α<1 时,图象上凸.
(2)当 α<0 时,幂函数 y=xα 的图象过点 (1,1) ,在(0,+∞)上是 减函数 .
4
2
∴h(m)=
-2m +
2
17 3
4
, < m ≤ 1,
4
3
-3 + 4m + 2,0 < m ≤ .
4
点拨:解决二次函数最值问题的关键是抓住“三点一轴”,其中“三点”
是指区间的两个端点和抛物线的顶点,“一轴”指的是对称轴,结合配方法,
根据函数的单调性及分类讨论思想即可解题.
点拨
【追踪训练 2】已知函数 f(x)=-x2+2ax+1-a 在[0,1]上的最大值为 2,求
当 a≠0 时,f(x)图象的对称轴为直线
3-
x= ,

二次函数知识点及例题详解最终

二次函数知识点及例题详解最终

二次函数知识点总结及经典习题一、二次函数概念:1.二次函数的概念:一般地,形如y ax bx c a ,b,c是常数, a 0 的函数,叫做二次函数;这里需要强调:和一元二次方程类似,二次项系数a 0 ,而b ,c可以为零.二次函数的定义域是全体实数.2. 二次函数y ax bx c 的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式, x 的最高次数是2.⑵ a ,b ,c 是常数, a 是二次项系数, b 是一次项系数, c 是常数项.二、二次函数的基本形式1.二次函数基本形式:y ax的性质:a 的绝对值越大,抛物线的开口越小;2.y ax c 的性质:上加下减;3.y a x h的性质:左加右减;4.y a x h k的性质:三、二次函数图象的平移1.平移步骤:⑴将抛物线解析式转化成顶点式y a x h k,确定其顶点坐标h,k;⑵ 保持抛物线y ax的形状不变,将其顶点平移到h ,k 处,具体平移方法如下:2.平移规律在原有函数的基础上“ h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.四、二次函数y a x h k与y ax bx c的比较从解析式上看,y a x h k与y ax bx c是两种不同的表达形式,后者通过配方可以得到前者,即y a(x+2a )24ac− b24a,其中h= -b2a,k4ac− b24a五、二次函数y ax bx c 的性质当a 0 时,抛物线开口向上,对称轴为x -b2a (−b2a,4ac− b24a).当x-b2a时,y随x的增大而减小;当x b2a时,y随x的增大而增大;当x= b2a 时,y有最小值4ac− b24a.当时,抛物线开口向下,对称轴为x-b2a , 顶点坐标为(−b2a,4ac− b24a).当x-b2a 时, y 随x 的大而增大y;当随x b2a时,y随 x 的增大而减小;当x=b2a时 , y有最大值4ac− b24a.六、二次函数解析式的表示方法1.一般式:y ax bx c a,b,c为常数,a0;2.顶点式:y ax h k a,h,k为常数,a0;3.两根式交点式:y ax xx x a0,x,x是抛物线与x轴两交点的横坐标.注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即b 4ac 0 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1.二次项系数a⑴ 当a 0 时,抛物线开口向上, a 的值越大,开口越小,反之 a 的值越小,开口越大;⑵ 当a 0 时,抛物线开口向下, a 的值越小,开口越小,反之 a 的值越大,开口越大.2.一次项系数b在二次项系数a确定的前提下,b决定了抛物线的对称轴.同左异右b为0对称轴为y轴3.常数项c⑴ 当c 0 时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当c 0 时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0 ;⑶ 当c 0 时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来, c 决定了抛物线与y 轴交点的位置.八、二次函数与一元二次方程:1.二次函数与一元二次方程的关系二次函数与x 轴交点情况:一元二次方程ax bx c 0 是二次函数y ax bx c 当函数值y 0 时的特殊情况. 图象与x 轴的交点个数:① 当b 4ac 0 时,图象与x 轴交于两点Ax1,0,B x2,0x1x2,其中的x1,x 2是一元二次方程ax bx c 0a 0的两根.② 当 0 时,图象与x 轴只有一个交点;③ 当 0 时,图象与x 轴没有交点.1' 当a 0 时,图象落在x 轴的上方,无论x 为任何实数,都有y 0 ;2 ' 当a 0 时,图象落在x 轴的下方,无论x 为任何实数,都有y 0 .2.抛物线y ax bx c 的图象与y 轴一定相交,交点坐标为0 ,c;中考题型例析1. 二次函数解析式的确定例 1 求满足下列条件的二次函数的解析式 1图象经过 A-1,3、B1,3、C2,6;2图象经过 A-1,0、B3,0,函数有最小值-8;3图象顶点坐标是-1,9,与 x 轴两交点间的距离是 6.分析:此题主要考查用待定系数法来确定二次函数解析式.可根据已知条件中的不同条件分别设出函数解析式,列出方程或方程组来求解. 1解:设解析式为 y=ax 2+bx+c,把 A-1,3、B1,3、C2,6各点代入上式得{3=a −b +c3=a +b +c 6=4a +2b +c 解得 {a =1b =0c =2∴解析式为 y=x 2+2.2解法1:由 A-1,0、B3,0得抛物线对称轴为 x=1,所以顶点为1,-8. 设解析式为 y=ax-h 2+k,即 y=ax-12-8.把 x=-1,y=0 代入上式得 0=a-22-8, ∴a=2. 即解析式为 y=2x-12-8,即 y=2x 2-4x-6.解法2:设解析式为 y=ax+1x-3,确定顶点为1,-8同上, 把 x=1,y=-8 代入上式得-8=a1+11-3.解得 a=2, ∴解析式为 y=2x 2-4x-6. 解法 3:∵图象过 A-1,0,B3,0两点,可设解析式为:y=ax+1x-3=ax 2-2ax-3a. ∵函数有最小值-8.∴4a (−3a )−(2a)24a=-8.又∵a≠0,∴a=2.∴解析式为 y=2x+1x-3=2x 2-4x-6.3解:由顶点坐标-1,9可知抛物线对称轴方程是 x=-1, 又∵图象与 x 轴两交点的距离为 6,即 AB=6. 由抛物线的对称性可得 A 、B 两点坐标分别为 A-4,0,B2,0, 设出两根式 y=ax-x 1·x -x 2,将 A-4,0,B2,0代入上式求得函数解析式为 y=-x 2-2x+8.点评:一般地,已知三个条件是抛物线上任意三点或任意 3 对 x,y 的值可设表达式为y=ax 2+bx+c,组成三元一次方程组来求解; 如果三个已知条件中有顶点坐标或对称轴或最值,可选用 y=ax-h 2+k 来求解;若三个条件中已知抛物线与 x 轴两交点坐标,则一般设解析式为 y=ax-x 1x-x 2. 2. 二次函数的图象例 2 y=ax 2+bx+ca≠0的图象如图所示,则点 Ma,bc 在 . A.第一象限 B.第二象限C.第三象限D.第四象限分析:由图可知: 抛物线开口向上 a>0.抛物线与y 轴负半轴相交 c 0b bc>0. 对称轴x2a在y 轴右侧 b 0∴点 Ma,bc 在第一象限. 答案:A.点评:本题主要考查由抛物线图象会确定 a 、b 、c 的符号.例 3 已知一次函数 y=ax+c 二次函数 y=ax 2+bx+ca≠0,它们在同一坐标系中的大致图象是 .分析:一次函数 y=ax+c,当 a>0 时,图象过一、三象限;当 a<0 时,图象过二、 四象限;c>0 时, 直线交 y 轴于正半轴; 当 c<0 时, 直线交 y 轴于负半轴; 对于二次函数y= ax 2+bx+ca≠0来讲:开口上下决定a 的正负左同右异即对称轴在y 轴左侧,b 的符号与a 的符号相同;来判别b 的符号 抛物线与y 轴的正半轴或负半轴相交确定2c 的正负解:可用排除法,设当 a>0 时,二次函数 y=ax 2+bx+c 的开口向上,而一次函数 y= ax+c 应过一、三象限,故排除 C;当 a<0 时,用同样方法可排除 A;c 决定直线与 y 轴交点;也在抛物线中决定抛物线与y 轴交点,本题中c 相同则两函数图象在y 轴上有相同的交点,故排除B.答案:D. 3. 二次函数的性质例 4 对于反比例函数 y=- 2x与二次函数 y=-x 2+3, 请说出他们的两个相同点:①, ②; 再说出它们的两个不同点:① ,②.分析:本小题是个开放性题目,可以从以下几点性质来考虑①增减性②图象的形状③ 最值④自变量取值范围⑤交点等.解:相同点:①图象都是曲线,②都经过-1,2或都经过2,-1;不同点:①图象形状不同,②自变量取值范围不同,③一个有最大值,一个没有最大值. 点评:本题主要考查二次函数和反比例函数的性质,有关函数开放性题目是近几年命 题的热点.4. 二次函数的应用例 5 已知抛物线 y=x 2+2k+1x-k 2+k,1求证:此抛物线与 x 轴总有两个不同的交点.2设 x 1、x 2 是此抛物线与 x 轴两个交点的横坐标,且满足 x 12+x 2=-2k 2+2k+1.①求抛物线的解析式.②设点 P m 1,n 1、Qm 2,n 2是抛物线上两个不同的点, 且关于此抛物线的对称轴对称. 求 m+m 的值.分析:1欲证抛物线与 x 轴有两个不同交点,可将问题转化为证一元二次方程有两个不相等实数根,故令 y=0,证△>0 即可.2①根据二次函数的图象与x 轴交点的横坐标即是一元二次方程的根.由根与系数的关系,求出 k 的值,可确定抛物线解析式;2 2 ②由 P 、Q 关于此抛物线的对称轴对称得 n 1=n 2, 由 n 1=m 12+m 1,n 2=m 22+m 2得 m 12+m 1=m 22+m 2,即m 1-m 2m 1+m 2+1=0 可求得 m 1+m 2= - 1.解:1证明:△=2k+12-4-k 2+k=4k 2+4k+1+4k 2-4k=8k 2+1. ∵8k 2+1>0,即△>0,∴抛物线与 x 轴总有两个不同的交点.2 ①由题意得 x 1+x 2=-2k+1, x 1· x 2=-k 2+k. ∵x 1 2+x 2 2=-2k 2+2k+1,∴x 1+x 22-2x 1x 2=- 2k 2+2k+1, 即2k+12-2-k 2+k=-2k 2+k+1, 4k 2+4k+1+2k 2-2k= - 2k 2+2k+1. ∴8k 2=0, ∴k=0,∴抛物线的解析式是 y=x 2+x.②∵点 P 、Q 关于此抛物线的对称轴对称, ∴n 1=n 2.又 n 1=m 12+m 1,n2=m 2+m 2. ∴m 12+m 1=m 2+m 2,即m 1-m 2m 1+m 2+1=0. ∵P 、Q 是抛物上不同的点, ∴m 1≠m 2,即 m 1-m 2≠0. ∴m 1+m 2+1=0 即 m 1+m 2=-1.点评:本题考查二次函数的图象即抛物线与 x 轴交点的坐标与一元二次方程根与系数的关系.二次函数经常与一元二次方程相联系并联合命题是中考的热点.二次函数对应练习试题一、选择题1.二次函数y x2 4x 7 的顶点坐标是A.2,-11B.-2,7C.2,11D. 2,-32.把抛物线y 2x2 向上平移1 个单位,得到的抛物线是A. y 2x 12B. y 2x 12C. y 2x2 1D. y 2x2 13.函数y kx2 k 和y kk 0 在同一直角坐标系中图象可能是图中的x4.已知二次函数y ax2 bx ca 0 的图象如图所示,则下列结论: ①a,b 同号;② 当x 1和x 3时,函数值相等;③ 4a b 0 ④当y 2时, x 的值只能取 0.其中正确的个数是个个 C. 3 个个5.已知二次函数y ax2 bx ca 0 的顶点坐标-1,及部分图象如图,由图象可知关于x 的一元二次方程ax2 bx c 0 的两个根分别是x1和x2A.已知二次函数y ax2 bx c 的图象如图所示,则点ac, bc在A.第一象限B.第二象限C.第三象限D.第四象限7.方程2x x2=2x的正根的个数为个个个. 3 个8.已知抛物线过点 A2,0,B-1,0,与y 轴交于点 C,且 OC=2.则这条抛物线的解析式为A. y x2 x 2B. y x2 x 2C. y x2 x 2 或y x2 x 2D. y x2 x 2 或y x2 x 2二、填空题9.二次函数y x2 bx 3 的对称轴是x 2 ,则b ;10.已知抛物线y=-2x+32+5,如果y 随x 的增大而减小,那么x 的取值范围是11.一个函数具有下列性质:①图象过点-1,2,②当x<0时,函数值y随自变量x 的增大而增大;满足上述两条性质的函数的解析式是只写一个即可;12.抛物线y 2x 22 6 的顶点为C,已知直线y kx 3过点C,则这条直线与两坐标轴所围成的三角形面积为;13. 二次函数y 2x2 4x 1的图象是由y 2x2 bx c 的图象向左平移1 个单位,再向下平移2个单位得到的,则b= ,c= ;14.如图,一桥拱呈抛物线状,桥的最大高度是 16 米,跨度是 40 米,在线段 AB 上离中心 M 处 5 米的地方,桥的高度是π取.三、解答题:15.已知二次函数图象的对称轴是x 3 0 ,图象经过1,-6,且与y 轴的交点为0, 52.1求这个二次函数的解析式;2当 x 为何值时,这个函数的函数值为 03当 x 在什么范围内变化时,这个函数的函数值y 随 x 的增大而增大16.某种爆竹点燃后,其上升高度 h米和时间 t秒符合关系式h=v0t- 12gt20<t≤2,其中重力加速度 g 以10 米/秒2计算.这种爆竹点燃后以 v=20 米/秒的初速度上升,1这种爆竹在地面上点燃后,经过多少时间离地 15 米2在爆竹点燃后的秒至秒这段时间内,判断爆竹是上升,或是下降,并说明理由.17.如图,抛物线y x2 bx c 经过直线y x 3 与坐标轴的两个交点A、B,此抛物线与x 轴的另一个交点为 C,抛物线顶点为 D.1求此抛物线的解析式;2点 P 为抛物线上的一个动点,求使SAPC :SACD5:4 的点 P的坐标;18. 红星建材店为某工厂代销一种建筑材料这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理.当每吨售价为260元时,月销售量为45吨.该建材店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降 10元时,月销售量就会增加 7. 5 吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用 100 元.设每吨材料售价为x元,该经销店的月利润为y元.1当每吨售价是 240 元时,计算此时的月销售量;2求出y与x的函数关系式不要求写出x的取值范围;3该建材店要获得最大月利润,售价应定为每吨多少元4小静说:“当月利润最大时,月销售额也最大.”你认为对吗请说明理由.二次函数应用题训练1、心理学家发现,学生对概念的接受能力 y 与提出概念所用的时间 x 分之间满足函数关系:y = + + 43 0≤x ≤30. 1当 x 在什么范围内时,学生的接受能力逐步增强当 x 在什么范围内时,学生的接受能力逐步减弱 2第 10 分钟时,学生的接受能力是多少 3第几分钟时,学生的接受能力最强2、如图,已知△ABC 是一等腰三角形铁板余料,其中 AB=AC=20cm,BC=24cm.若在△ABC 上截出一矩形零件 DEFG,使 EF 在 BC 上,点 D 、G 分别在边 AB 、AC 上. 问矩形DEFG 的最大面积是多少3、如图,△ABC 中,∠B=90°,AB=6cm,BC=12cm.点 P 从点 A 开始,沿 AB 边向点 B 以每秒1cm 的速度移动;点Q 从点B 开始,沿着BC 边向点C 以每秒2cm 的速度移动.如果P,Q 同时出发,问经过几秒钟△PBQ 的面积最大最大面积是多少 CQ A P B4、如图,一位运动员在距篮下 4 米处跳起投篮,球运行的路线是抛物线,当球运行 的水平距离为 米时,达到最大高度 米,然后准确落入篮圈.已知篮圈中心到地面的距离为 米.1建立如图所示的直角坐标系,求抛物线的表达式;2该运动员身高 米,在这次跳投中,球在头顶上方 米处出手,问:球出手时, 他跳离地面的高度是多少.0,0BCDEFGA4my x5、如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x m.1要使鸡场面积最大,鸡场的长度应为多少mX↔2如果中间有nn 是大于1 的整数道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少m比较12的结果,你能得到什么结论6、某商场以每件20 元的价格购进一种商品,试销中发现,这种商品每天的销售量m件与每件的销售价x元满足关系:m=140-2x.1写出商场卖这种商品每天的销售利润y 与每件的销售价x 间的函数关系式;2如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适最大销售利润为多少二次函数对应练习试题参考答案一,选择题、1.A 2.C 3.A 4.B 5.D 6.B 7.C 8.C 二、填空题、9.b 4 10.x<-3 11.如y 2x2 4, y 2x 4 等答案不唯一12.1 13.-8 7 14.15三、解答题15.1设抛物线的解析式为y ax bx c ,由题意可得{−b2a=−3a+b+c=−6c=−52解得a12, b 3, c 52所以y12x2 3x 522 x 1或-5 2 x 316.1由已知得,1520t1210t2,解得t13, t2 1当t 3 时不合题意,舍去;所以当爆竹点燃后1秒离地15米.2由题意得,h5t220t=5t2220,可知顶点的横坐标t2,又抛物线开口向下,所以在爆竹点燃后的秒至108 秒这段时间内,爆竹在上升.17.1直线y x 3 与坐标轴的交点A3,0,B0,-3.则{9+3b−c=0−c=−3 解得{b=−2c=3所以此抛物线解析式为y x22x3.2抛物线的顶点D1,-4,与x轴的另一个交点C-1,0.设P a, a2 2a 3 ,则12×4×|a2−2a−3|:12×4×4 5 : 4 ,化简得|a2−2a−−3 | 5 .当a2 2a 3>0 时,a2 2a 3 5得a 4, a 2 ∴P4,5或 P-2,5当a2 2a 3<0 时,a2 2a 3 5 即a2 2a 2 0 ,此方程无解.综上所述,满足条件的点的坐标为4,5或-2,5.18.1=60吨.2y x10045260−x10,化简得:y34x315x24000.3y 34x 2 315x 2400034x2109075.红星经销店要获得最大月利润,材料的售价应定为每吨 210 元.4我认为,小静说的不对.理由:方法一:当月利润最大时,x 为210 元,而对于月销售额W x45 260−x1034x 16019200 来说,当x 为160 元时,月销售额 W 最大.∴当 x 为210 元时,月销售额 W 不是最大.∴小静说的不对.方法二:当月利润最大时,x 为210 元,此时,月销售额为 17325 元;而当 x 为200 元时,月销售额为 18000 元.∵ 17325<18000,∴当月利润最大时,月销售额 W 不是最大.∴小静说的不对.二次函数应用题训练参考答案1、10≤x≤13,13<x≤30;259;313.2、解:过A 作AM⊥BC 于M,交DG 于N,则AM=√202−122=16cm.设DE=xcm, S 矩形=ycm2, 则由△ADG∽△ABC,故ANAM DGBC,即16−x16,故DG24= 3216-x.∴y=DG·DE= 3216-xx=- 32x2-16x=- 32x-82+96,从而当x=8 时,y 有最大值96.即矩形DEFG 的最大面积是96cm2.3、设第t 秒时,△PBQ 的面积为ycm2.则∵AP=tcm,∴PB=6-tcm;又 BQ=2t.∴y= 12PB ·BQ= 126-t ·2 t=6- t t= - t 2+6t= - t-32+9,当 t=3 时,y 有最大值 9.故第 3 秒钟时△PBQ 的面积最大,最大值是 9cm 2. 4、解:1设抛物线的表达式为 y =ax 2+bx +c .由图知图象过以下点:0,,,.{−b2a =0 c =3.5 3.05=1.52a +1.5b +c 得 {a =−0.2b =0c =3.5 ∴抛物线的表达式为 y=-+.2设球出手时,他跳离地面的高度为 h m,则球出手时,球的高度为h ++=h + m, ∴h+=-×-2+, ∴h=m.5、解:1依题意得鸡场面积 y =- 13 x 2 503x .∵y =-13x 2+ 503x = 13x 2-50x =-13 x -252+6253,∴当 x =25 时,y 最大 =6253,即鸡场的长度为 25 m 时,其面积最大为6253m 2. 2如中间有几道隔墙,则隔墙长为50−x nm. ∴y =50−x n ·x =-1n x 2+ 50n x =-1n x 2-50x =-1nx -252+ 625n ,当 x =25 时,y =625n即鸡场的长度为 25 m 时,鸡场面积为625nm 2. 结论:无论鸡场中间有多少道篱笆隔墙,要使鸡场面积最大,其长都是 25 m. 6、解:1y =-2x 2+180x -2800. 2y =-2x 2+180x -2800=-2x 2-90x -2800=-2x -452+1250.当x=45 时, y=1250.最大∴每件商品售价定为45 元最合适,此销售利润最大,为1250 元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数
专题一:二次函数的图象与性质
考点1.二次函数图象的对称轴和顶点坐标
二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a ,顶点坐标是(-2b
a
,244ac b a -).
例 1 已知,在同一直角坐标系中,反比例函数5
y x
=与二次函数22y x x c =-++的图像交于点(1)A m -,.
(1)求m 、c 的值;
(2)求二次函数图像的对称轴和顶点坐标.
考点2.抛物线与a 、b 、c 的关系
抛物线y=ax 2
+bx+c 中,当a>0时,开口向上,在对称轴x=-2b
a
的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.
例2 已知2
y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( )
A .第一、二、三象限
B .第一、二、四象限
C .第二、三、四象限
D .第一、三、四象限
考点3.二次函数的平移
当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0)的图象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到.
例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2
-2
图1
专题练习一
1.对于抛物线y=13-x 2+
103x 163
-,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3) C.开口向下,顶点坐标为(-5,3) D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4
D.抛物线与x 轴交点为(-1,0),(3,0)
3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________.
4.小明从图2所示的二次函数2
y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号)
专题复习二:二次函数表达式的确定 考点1.根据实际问题模型确定二次函数表达式
例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙
的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2
)与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围).
考点2.根据抛物线上点的坐标确定二次函数表达式
1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+c (a ≠0);
2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a (x-h )2+k (a ≠0);
3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=a (x-x 1)(x-x 2)(a ≠0). 例2 已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式.
图2
A
B
C
D
图1
菜园

例3 已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标. 专项练习二
1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数表达式为( )
A.y=2a (x-1)
B.y=2a (1-x )
C.y=a (1-x 2)
D.y=a (1-x )2
2.如图2,在平而直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C ,且tan ∠ACO=1
2
,CO=BO ,AB=3,则这条抛物线的函数解析式是 .
3.对称轴平行于y 轴的抛物线与y 轴交于点(0,-2),且x=1时,y=3;x=-1时y=1, 求此抛物线的关系式.
4.推理运算:二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式; (2)求此二次函数图象的顶点坐标;
(3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点. 专题三:二次函数与一元二次方程的关系
考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围
一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况.
例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )
x
6.17 6.18 6.19 6.20
2y ax bx c =++
0.03- 0.01- 0.02 0.04
A.6 6.17x <<
B.6.17 6.18x << C.6.18 6.19x <<
D.6.19 6.20x <<
图2
考点2.根据二次函数的图象确定所对应的一元二次方程的根.
二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.
例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.
考点3.抛物线的交点个数与一元二次方程的根的情况
当二次函数y=ax 2+bx+c 的图象与x 轴有两个交点时,则一元二次方程ax 2+bx+c=0有两个不相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴有一个交点时,则一元二次方程ax 2+bx+c=0有两个相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴没有交点时,则一元二次方程ax 2+bx+c=0没有实数根.反之亦然.
例3 在平面直角坐标系中,抛物线2
1y x =-与x 轴的交点的个数是( ) A.3
B.2
C.1
D.0
专项练习三
1.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k 的取值范围是________.
2.已知二次函数2
2y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .
3.已知函数2
y ax bx c =++的图象如图3所示,那么关于x 的方程
220ax bx c +++= 的根的情况是( )
A.无实数根
B.有两个相等实数根
C.有两个异号实数根
D.有两个同号不等实数根
4. 二次函数2
(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题:
(1)写出方程2
0ax bx c ++=的两个根.
(2)写出不等式2
0ax bx c ++>的解集.
(3)写出y 随x 的增大而减小的自变量x 的取值范围.
(4)若方程2
ax bx c k ++=有两个不相等的实数根,求k 的取值范围.
图1。

相关文档
最新文档