电压源型高压直流输电
高压直流输电讲解
把直流功率输送给逆变站内的逆变器,逆变器姜直流功率变换成交流功率,
再经换流变压器2送入受端的交流电力系统Ⅱ。
直流输电系统接线示意图
P6 P5 P4 P3 P2 P1
ecb
eab
eac
ebc
eba
eca
ecb
eab
二、两端直流输电系统
指具有一个整流站和一个逆变站的输电系统
构成
单极 双极 无直流输电线路(也叫两侧换流器 背靠背地装设在一起
中国是一个发展中国家,中国电网无论从总体规模和技术水平方面 与发达国家相比,都有较大的差距。因此,为了中国大规模西电东 送和全国联网工程的实施,必须研究电力系统的安全、稳定和经济 性,并进而研究相应对策,防止在建成规模巨大的电力供应网络后 发生大面积停电事故。
高压直流输电具有明显的优势。直流输电是电力系统中近年来迅 速发展的一项新技术。将其与交流输电相互配合,构成了现代电 力传输系统,并随着电力系统技术经济需求的不断增长和提高, 直流输电受到广泛的注意并得到不断的发展。
据了解,目前世界上只有日本和俄罗斯两国拥有1000千伏特高 压交流电网,且都是短距离输电。正负800千伏直流输电技术国 际上尚无运行经验,关键技术和设备有待进一步研究开发。南方 电网采用特高压输电技术,可以有效缓解长距离“西电东送”输 电走廊资源紧张局面,提高电网安全稳定水平,输电能力也将明 显提高。
5、向孤立负荷点送电或从孤立电站向电网送电的直流工程
6、与交流输电并联的直流输电工电是将发电厂发出的交流电经过升压变压器后,又换流设备(整流器) 整成直流,通过直流线路送到受端,再经换流设备(逆变器)换成交流供给 交流系统。
按它与交流系统连接的节点数可分为
两端 多端
电压源换流器在高压直流输电系统中的应用研究
电压源换流器在高压直流输电系统中的应用研究随着能源消耗不断增加,能源供应的可靠性和可持续性已经成为了现代社会至关重要的问题。
高压直流输电系统作为一种高效、节能、环保的输电方式,越来越受到重视并广泛应用。
而电压源换流器作为高压直流输电系统的核心设备之一,发挥着举足轻重的作用。
本文将围绕着电压源换流器在高压直流输电系统中的应用展开研究。
一、电压源换流器的基本概念电压源换流器简称VSC,是一种电力电子装置,通过将交流电转换成所需要的直流电来完成直流输电。
它是由一个或者多个电压源组成的装置,通过控制电压源电压与频率来实现输出电压的控制。
二、电压源换流器的工作原理在高压直流输电系统中,电压源换流器采用高频调制产生波形控制信号,通过矢量合成技术,将所需要的交流电转换成为负载所需要的直流电。
它通过不断的调整输出电压的大小和频率,使输出电压和负载电压保持稳定的比例关系,从而达到稳定的输电效果。
三、电压源换流器技术的优势1.输电距离远:采用高压直流输电技术,克服了传统输电线路输送距离限制的问题,有效的将电力输送到更远的地方。
2.输电损耗小:由于采用高压直流输电技术,过程中会产生少量的能量损耗,远远低于传统输电线路的损耗。
3.调节稳定性强:电压源换流器的特点在于可以不断调节输出电压的大小和频率,保持与负载电压稳定的比例关系,从而确保输出电压和输电效果的稳定性。
4.环保性好:采用高压直流输电技术,对大气及周围环境污染较小。
四、电压源换流器的应用领域随着现代技术的不断进步,电压源换流器得到了广泛的应用与发展。
它的应用领域主要包括:1.电力系统中的直流输电系统,广泛应用于国内电力系统中。
2.工业电力中的高科技领域,如光伏、风能等。
3.交通领域,如高速铁路等。
4.电力系统中的灵活交流输电系统。
五、电压源换流器技术的创新目前,在电压源换流器技术的应用与发展中,采用了一系列的新技术来提高其性能。
1.可重构控制技术:这是一种基于自适应控制的新技术,通过对变换器的在线模型识别和参数匹配实现精确控制。
高压直流输电
第2篇高压直流输电高压直流输电工程自1954年在瑞典Gotland投入工业化运行以来,至今经历了汞弧阀换流和晶闸管换流时期,目前世界上已有60多项直流输电工程投入运行,在远距离大容量输电、海底电缆和地下电缆输电以及电力系统联网工程中得到了较大的发展。
特别是在20世纪80年代以后,大功率电力电子技术及微机控制技术等高科技的发展,进一步促进了直流输电技术的应用与发展。
比较明显的是,背靠背非同步联网和多端直流输电工程以及采用新型半导体器件的轻型直流输电工程,近年来发展很快。
到20世纪末已有26项背靠背和2项多端直流输电工程投入运行,另外还有2项直流工程具有多端直流输电的运行性能。
到2000年已有5项轻型直流输电工程投入运行。
高压直流输电在远距离大容量输电和电力系统联网方面具有明显的优点,它将在我国西电东送和全国联网工程中起到重要的作用。
到2005年我国已有8项高压直流输电工程相继投入运行。
本篇主要从直流输电换流技术、控制系统和保护装置、换流站主接线及主要设备、直流输电接地极、过电压及绝缘配合等方面,总结归纳了国内外高压直流输电工程的建设和运行经验。
第6章直流输电概论6.1 直流输电的发展6.1.1 国外直流输电的发展电力技术的发展是从直流电开始的,早期的直流输电是直接从直流电源送往直流负荷,不需要经过换流,如1882年在德国建成的2kV 、1.5kW 、57km向慕尼黑国际展览会的送电工程;1889年在法国用直流发电机串联而得到高电压,从毛梯埃斯(Mouties)到里昂(Lyon)的125kV、20MW、230km的直流输电工程等。
随着三相交流发电机、感应电动机和变压器的迅速发展,发电和用电领域很快被交流电所取代。
由于变压器可方便地改变交流电压,从而使交流输电和交流电网得到迅速的发展,并很快占据了统治地位。
但是直流还有交流所不能取代之处,如远距离电缆送电、不同频率电网之间的联网等。
采用直流输电,必须要解决换流问题。
高压直流输电
高压直流输电
上半桥/ 共阴极半桥
下半桥/共 阳极半桥
正极 共阴极 M
V1 V3 V5
A B C
V4 V6 V2
N
负极
共阳极
桥臂/ 阀臂/ 阀
桥交流端
图1.2 三相全波桥式换流电路原理图
单桥 高压直流输电
Graetz桥
M M
晶闸管 T thyristor
电压:5.5~9kV 电流:1.2~3.5kA
高压直流输电 HVDC
高压直流输电
HVDC的主要元件和基本原理
一、主要元件
换流站I
平波电抗器
换流站II
交流母线 换 流
变压器
Vd I
交流
断路器
系统 I
无功补 偿设备
交 流 桥I 滤波器
直流 滤波器
直流线路
Vd II 桥II
换流 变压器 交流母线
交流系 统I I
交流 滤波器
无功补 偿设备=熄弧超前角= -
=叠弧角=
-
=
-
高压直流输电
二、HVDC的基本原理
整流侧
换流方程
Vd 32Vl cos)(3XcId
逆变侧
Vd3 2Vlco)s(3XcId
高压直流输电
HVDC系统的控制
一、直流系统的控制要求具有下列基本功能: 1、减小由于交流系统电压的变化而引起的直流电流波动。 2、限制最大直流电流,防止换流器受到过载损害;限制 最小直流电流,避免电流间断而引起过电压。 3、尽量减小逆变器发生换相失败的概率。 4、适当地减小换流器所损耗的无功功率。 1.5、正常运行时,直流电压保持在额定值水平,使得当 输送给定功率时线路的功率损耗适当。
高压直流输电技术
徐亚涛 陈威 江克东
22:07
1
目
录
一、发展特高压电网的必要性 二、直流输电技术的发展 三、直流输电与交流输电的性
能比较 四、高压直流输电系统的结构 和元件
22:07 2
一、发展特高压电网的必要性
1、发展特高压电网是满足电力持续快速增长的
客观需要。
随着国民经济的持续快速发展,我国电力工 业呈现加速发展态势,近几年发展更加迅猛。按照在 建规模和合理开工计划,全国装机容量2010年达到9.5 亿千瓦,2020年达到14.7亿千瓦;用电量2010年达到 4.5万亿千瓦时,2020年达到7.4万亿千瓦时。电力需 求和电源建设空间巨大,电网面临持续增加输送能力 的艰巨任务。
交流系统 金属回路 可选择的)
交流系统
五、SPWM控制技术
一.SPWM逆变器的工作原理
SPWM逆变器:其期望输出电压波形
为正弦波的逆变器.
就目前的技术而言,还不能制造出功
率大、体积小、输出波形如同正弦 波发生器那样标准的可变频变压的 逆变器.
谢谢大家!
22:07
33
名 称 交 单回 线路(次/百 公里/年) 两端换流站 (次/年) 0.299 流 双回 0.054 单极 0.126 直 流 双极 0.055 交 单回 0.29 流 双回 0.054 直 单极 0.14 流 双极 0.01
0.560
0.120
4.80
0.20
0.6
0.06
1Hale Waihona Puke 40.25三、直流输电与交流输电的性能比较
8) 可隔离故障,有利于避免大面积停电。
三、直流输电与交流输电的性能比较
电压源换流器型高压直流输电技术PPT课件
5
工程
Eagle Pass 2000 36 ± 15.9 132/132 1100 0(B-B) 电力交易,系统 互联,电压控制
Cross Sound 2001 330 ± 150 345/138 1175 2×40 电力交易,urray Link 2002 200 ± 150 132/220 1400 2×180 电力交易,系统 互联,地下电缆
VTc1
ip p iL1
VTc2
C VTc3
udc1
io
O
udc
VTc4
udc2
in
iL2
n
_c1
_c2
_aa
1.00
0.50
0.00 -0.50 -1.00
_ 1.00 0.50
0.00
-0.50
-1.00 _ 0.31500.32000.32500.33000.33500.34000.34500
1010/58
11:19
VSC-HVDC的主要工程
TrollA Estlink
Valhall
投运 输送功 直流电 两侧交 直流电 电缆长
用途
年 率/MW 压/kV 流电压 流/A 度/km
2005 2×42 ±60 56/132 400 4×70 绿色环保, 海底电缆
2006 350 ±150 400/330 1230 2×72 电力交易, 系统互联,
三电平电压源换流器拓扑结构及其输出交流波形
6/568
11:19
电压源换流器常见拓扑结构
+ SM
SM 1
SM 1
SM 1
SM 2
SM 2
SM 2
SM n
SM n
电压源换流器型直流输电技术综述
电压源换流器型直流输电技术综述在当今社会,随着电力需求的不断增长和环境保护意识的提高,以及可再生能源的广泛应用,对于电力输电技术的要求也日益提高。
在这种背景下,电压源换流器型直流输电技术应运而生,并逐渐成为电力输电领域的热门话题。
本文将对电压源换流器型直流输电技术进行全面评估,并撰写一篇有价值的文章,以便更深入地了解这一技术的深度和广度。
一、电压源换流器型直流输电技术概述电压源换流器型直流输电技术是一种采用电压源换流器作为输电端装置的直流输电技术。
它通过电力电子器件实现了交流电到直流电的变换,并实现了各种功能的控制,例如功率流动的控制、电压的调节等。
相比传统的线性功率放大器直流输电技术,电压源换流器型直流输电技术具有输电能力大、损耗小、对系统的动态稳定性影响小等优点,成为了新一代直流输电技术的热门选择。
二、电压源换流器型直流输电技术的原理和特点电压源换流器型直流输电技术是基于电力电子器件的控制原理实现的。
其核心是电压源换流器,它能够对电压和电流进行灵活的控制,实现了高效的能量转换和输电控制。
电压源换流器型直流输电技术还具有灵活性高、成本低、占地面积小等特点,能够满足复杂电网结构和大容量输电的需求,因此在电力系统中具有广阔的应用前景。
三、电压源换流器型直流输电技术的应用领域电压源换流器型直流输电技术广泛应用于大容量远距离输电、海底电缆输电、电力系统互联、可再生能源接入等领域。
它能够有效解决传统交流输电技术在长距离输电、大容量输电和电网规划等方面面临的问题,成为了电力系统中不可或缺的一部分。
四、电压源换流器型直流输电技术的优势和未来发展趋势电压源换流器型直流输电技术相比传统的交流输电技术具有输电能力大、输电损耗小、对环境的干扰小等优势,未来的发展趋势主要体现在技术的不断创新和完善上。
随着电力系统的智能化和信息化程度不断提高,电压源换流器型直流输电技术将会更加智能化和高效化,以满足电力系统的需求。
五、个人观点和总结在我看来,电压源换流器型直流输电技术作为一种新型的电力输电技术,将会对未来的电力系统产生重要影响。
高压直流输电HVDC
2018年9月6日
11
直流输电工程的缺点
与高压交流输电相比较,直流输电具有以下
缺点: 1、换流站的设备较昂贵; 2、换流装置要消耗大量的无功功率; 3、产生谐波影响; 4、换流装置几乎没有过载能力,对直流系统 的运行不利; 5、缺乏高压直流开关;
2018年9月6日
12
6、直流输电利用大地或海水为回路带来了一
16
2018年9月6日
高压直流输电系统的经济优势:线损
2018年9月6日
17
高压直流输电系统的经济优势:环境
2018年9月6日
18
三、HVDC系统的组成
三相电源 换流站 输电电缆或者架空线 换流站 交流电网
2018年9月6日
19
HVDC系统的组成
高压直流输电的主要设备是两个换流站和直流输电 线。 两个换流站分别与两端的交流系统相连接。
HVDC的核心有两个:整流与逆变
2018年9月6日
20
HVDC系统的组成
换流站的主要设备包括换流器、换流变压器、平波 电抗器、交流滤波器、直流避雷器及控制保护设备 等。 换流器又称换流阀是换流站的关键设备,其功能是 实现整流和逆变。目前换流器多数采用晶闸管可控 硅整流管)组成三相桥式整流作为基本单元,称为换 流桥。一般由两个或多个换流桥组成换流系统,实 现交流变直流直流变交流的功能。
2018年9月6日
21
四、柔性直流输电
柔性直流输电的技术特点
柔性直流输电是以全控型电力电子器件、电压源换流器和新型调制
技术为突出标志的新一代直流输电技术,具有无需无功补偿和电网 支撑换相、占地面积和环境影响小等特点;
电压源型高压直流输电系统建模与仿真研究
Vo _1 l 7
第 2 期
No 2 .
重庆电力高等专科学校学报
Jun l f h n qn l t cP w r o ee o r a o o g i Ee r o e C l g C g ci l
21 0 2年 4月
Ap . 01 r2 2
电压源型高压直流输 电系统建模 与仿真研究
传统 高压直流输 电 ( V C 技 术 的优 点 , 其在 H D ) 使 远 距离大功率 输 电 、 海底 电缆送 电、 流 系统 之 间 的 交 非 同步联络 等方 面都 具有 广泛 的应用 前 景 。电压 源 型高压 直 流输 电 ( S — V C) 术 是 一 种 灵 活 、 V CH D 技 经 济、 环保 、 的输配 电技术 , 以 自关 断型 电力 电子 高效 它 器件 和脉 宽调制技术 ( WM,us dhMoua o ) P P l Wit e dli tn 为基础 , 其既可 以对 V C H D 使 S — V C传输 的有 功 、 功 无 功率实 现 四象 限独立 控制 , 又可 以在无源逆 变方式 下 工作 , 现 向无源 网络供 电 , 而 克 服 了传 统 H D 实 从 V C 无 法 向无 源 网络 供 电 的根本 缺 陷 ; 在潮 流 发 生反 转 时 , 流 电流方 向发 生反 转 而直 流 电压极 性 不 变 , 直 并 且换 流器之 间无需 通信 , 从而有利 于构 成多端 直流输 电系统 。因此 , S — V C在 向远 距 离 负荷 供 电、 V CH D 连 接分散小 型发 电厂 ( 如风 能 、 阳能 发 电等 ) 构 筑大 太 、 城市直流 配电 网等领域具有 很大 的应用 空间 。。 文献 [_] 出的数学模型是基 于静止 坐标 系建 34 提 立的, 其物 理模 型不 明确 , 法 实现 有 功功 率 和无 功 无 功率 的独 立控制 ; 而其提 出的控制策 略是一 种 问接 电 流控制 , 控制 策略存 在 交流 侧 电流 动态 响 应慢 、 该 对 系统参 数变化 过 于 灵 敏等 缺 点 。文 献 [ ] 出 了在 5提 d 0坐标 系下建立 V C H D q S . V C的稳 态模 型 , 并设计 了 相关 的 P 控制器 。上述文献对 V CH D I S — V C的研究均 未从 仿真 中验证 V CH D S — V C的具体优 势 。 本文在 同步 d q旋 转 坐 标 系 下 , 立 了 V C 建 S. HV C系统 的数学 模 型及外 环功 率 和 内环 电流控 制 D 器 , 针对 双端 供 电 系统 设 计 了整 流 端 和 逆 变端 相 并 关 控制 器 。最后 基 于暂态 仿 真软 件 P C D E D S A / MT C 建 立 了 V CH D S — V C双端 系统 仿 真模 型 , 过 潮 流发 通 生反转 时的仿 真结 果 , 证 了 所建 立 的数 学模 型及 验 相关控 制 器 的正确性 和有 效性 。
基于电压源换流器的高压直流输电技术研究综述
S p l u e u o u e o rGrd Co p r t n,W u a u p y B r a fH b i we i r o a i P o h n,Hu e 3 0 ,Chi a bi 01 4 3 n ;3.Di a c i g Co mu ia i n Bu e u o s th n m p nc t ra f o Hu a o r Grd Co p r to n n P we i r o a i n,Ch n s a a g h ,Hu a 1 0 7 n n 4 0 0 ,Ch n i a;4 c o l fElc rc P we ,S u h Ch n i e st f .S h o e t i o r o t i a Un v r iy o o Te h o o y,Gu n z o ,Gu n d n 6 0,Ch n ) c n lg a gh u a g o g5 4 1 0 i a
基 于 电压 源换 流 器 的高压 直 流 输 电技 术 研 究综 述
徐忻 ,胡靖 ,石辉。 ,张勇军
( . 南 电 网公 司红 河 供 电局 ,云 南 红 河 6 10 ;2 1云 6 1 0 .湖 北 电 网公 司武 汉供 电局 ,湖 北 武 汉 40 1 ;3 3 0 3 .湖 南 省 电 力公 司调 度 通 信 局 ,湖 南 长 沙 4 0 0 ;4 1 0 7 .华 南理 工 大 学 电力 学 院 ,广 东 广 州 5 0 4 ) 16 0
原 理 ,总 结 了其 基 本 控 制 方式 和 技 术 特 点 ,指 出 了该 技 术 的 应 用研 究 现 状 、 当前 存 在 的 问题 以及 今 后 的 研 究 方
向。V C HV S — DC的特点证 明,该技术在风电、输配电领域具有广 阔的发展 前景 。
HVDC技术简介
HVDC技术简介电能的传输和发电、变电、配电、用电一起,构成了电力系统的整体功能。
通过输电,把相距甚远的(可达数千千米)发电厂和负荷中心联系起来,使电能的开发和利用超越地域的限制。
输电按所送电流性质可分为直流输电和交流输电。
19世纪80年代首先成功地实现了直流输电,后因受电压提不高的限制(输电容量大体与输电电压的平方成比例)19世纪末为交流输电所取代。
交流输电的成功,迎来了20世纪电气化时代。
20世纪60年代以来,由于电力电子技术的发展,直流输电又有新发展,与交流输电相配合,形成交直流混合的电力系统。
HVDC(High Voltage Direct Current)全称为高压直流输电。
高压直流输电的主要设备是两个换流站和直流输电线。
两个换流站分别与两端的交流系统相连接。
HVDC的核心有两个:整流与逆变。
换流站的主要设备包括换流器、换流变压器、平波电抗器、交流滤波器、直流避雷器及控制保护设备等。
直流输电的发展与换流技术的发展有密切的联系,如下表所示:表1发展阶段特点描述汞弧阀换流时期大功率汞弧阀的问世使直流输电成为现实,汞弧阀制造技术复杂、价格昂贵、逆弧故障率高,可靠性低、运行维护不方便,这些使得直流输电的发展受到限制。
晶闸管(SCR)换流时期电力电子技术与微电子技术的发展,高压大功率晶闸管的问世,晶闸管换流阀和微机控制技术在直流输电工程中的应用,这些进步有效地促进了直流输电技术的发展新型半导体(IGBT,IGCT)换流时期此类器件电压高、通流能力强、损耗低、体积小、可靠性高,并且具有自关断能力换流器又称换流阀是换流站的关键设备,其功能是实现整流和逆变。
伴随着电力电子技术以及半导体器件的发展,HVDC技术的发展经历了两个阶段:1.传统直流输电(LCC-HVDC):基于电网换相,是电流源型的直流输电技术(Line Commutate Converter Based HVDC)。
采用晶闸管,只能控制导通时刻,电流反向后关闭,不能单独控制有功功率和无功功率;直流线路故障后,通过晶闸管的控制可以清除。
LCCHVDC和VSCHVDC输电系统的通用建模方法和运行特性分析
LCCHVDC和VSCHVDC输电系统的通用建模方法和运行特性分析一、本文概述随着可再生能源的快速发展和电网互联需求的增加,高压直流输电(HVDC)技术,特别是基于线换相换流器(LCC)和电压源换流器(VSC)的HVDC系统,已成为远距离大功率电力传输和电网互联的重要选择。
这两种输电系统在结构和控制策略上存在显著差异,给电网建模和运行特性分析带来了挑战。
本文旨在提出一种通用的建模方法,用于分析LCCHVDC和VSCHVDC输电系统的运行特性,以期为电网规划、设计和运行提供理论支持。
本文首先介绍了LCCHVDC和VSCHVDC输电系统的基本原理和关键技术,包括换流器的拓扑结构、控制策略以及相应的数学模型。
在此基础上,提出了一种通用的建模方法,该方法结合了两种输电系统的共同特点和差异,通过调整模型参数和控制策略,可实现对LCCHVDC 和VSCHVDC输电系统的统一建模。
本文利用所建立的通用模型,对LCCHVDC和VSCHVDC输电系统的运行特性进行了详细分析。
这包括稳态运行特性、动态响应特性以及故障穿越能力等方面。
通过对比分析,揭示了两种输电系统在运行特性上的共性和差异,为电网规划和运行提供了有益参考。
本文总结了LCCHVDC和VSCHVDC输电系统的通用建模方法和运行特性分析结果,并指出了未来研究的方向。
通过本文的研究,可以为电力系统工程师和研究人员提供一个全面、系统的视角,以深入了解和分析LCCHVDC和VSCHVDC输电系统的运行特性,推动高压直流输电技术的发展和应用。
二、和输电系统概述输电系统是电力系统中至关重要的组成部分,它负责将电力从发电站高效、安全地传输到各个用电区域。
在现代电力系统中,随着电力需求的不断增长和可再生能源的广泛接入,传统的输电技术面临着越来越多的挑战。
为了满足这些挑战,LCCHVDC(低损耗串联补偿高压直流输电)和VSCHVDC(电压源型高压直流输电)技术应运而生,它们在提高输电效率、增强系统稳定性和优化电网结构方面发挥着重要作用。
高压直流输电总结
高压直流输电总结一、高压直流输电概述:1.高压直流输电概念:高压直流输电是交流-直流—交流形式的电力电子换流电路,由将交流电变换为直流电的整流器、高压直流输电线路及将直流电变换为交流电的逆变器三部分组成。
注意:高压输电好处是在输送相同的视在功率S的前提下,高压输电能够降低输电线路流过的电流,减少线路损耗,提高输送效率(,)。
2.高压直流输电的特点:(1)换流器控制复杂,造价高;(2)直流输电线路造价低,输电距离越远越经济;(3)没有交流输电系统的功角稳定问题;(4)适合海底电缆(海岛供电、海上风电)和城市地下电缆输电;(5)能够非同步(同频不同相位,或不同频)连接两个交流电网,且不增加短路容量;(6)传输功率的可控性强,可有效支援交流系统;(7)换流器大量消耗无功,且产生谐波;(8)双极不对称大地回线运行时存在直流偏磁问题和电化学腐蚀问题;(9)不能向无源系统供电,构成多端直流系统困难。
3.对直流输电的基本要求:(1)能够灵活控制输送的(直流)电功率(大小可调;一般情况下,应能够正反双向传送电功率(功率方向可变);(2)维持直流线路电压在额定值附近;(3)尽可能降低对交流系统的谐波污染;(4)尽可能少地吸收交流系统中的无功功率;(5)尽可能降低流入大地的电流。
注意:大地电流的不利影响包括①不同接地点之间存在电位差,形成电解池,造成电化学腐蚀;②变压器接地中性点流过直流电流,造成变压器直流偏磁,使变压器噪声增加、损耗加大、振动加剧。
4.高压直流输电的适用范围:答:1.远距离大功率输电;2。
海底电缆送电;3.不同频率或同频率非周期运行的交流系统之间的联络;4。
用地下电缆向大城市供电;5。
交流系统互联或配电网增容时,作为限制短路电流的措施之一;6。
配合新能源供电。
二、高压直流输电系统的基本构成:1.双端直流输电的基本构成:(1)单极大地回线(相对于大地只有一个正极或者负极):图2- 错误!未定义书签。
高压直流输电(HVDC)
HVDC的发展
HVDC技术的 发展历史
悬挂式可控硅阀,150kV/914A 采用微型机的控制系统
第一个可控硅阀,50kV/200A
用作监控的显示器
汞弧整流器,50kV/200A 真空管控制装置
2018年9月19日 9
二、直流输电工程的特点
与高压交流输电相比较,直流输电具有以下
优点: 1、输送相同功率时,线路造价低; 2、线路损耗小; 3、适宜于海底输电; 4、没有系统稳定问题; 5、能限制系统的短路电流;
2018年9月19日 10
6、调节速度快,运行可靠;
7、实现交流系统的异步连接;
8、直流输电可方便的进行分期建设和增容扩
建,有利于发挥投资效益。
2018年9月19日 5
2、晶闸管换流时期
20世纪70年代以后,电力电子技术与微电子
技术的发展,高压大功率晶闸管的问世,晶 闸管换流阀和微机控制技术在直流输电工程 中的应用,这些进步有效地促进了直流输电 技术的发展。晶闸管换流阀比汞弧阀有明显 的优势,以后所建的直流工程均采用晶闸管 换流阀。
2018年9月19日 6
2018年9月19日
21
四、柔性直流输电
柔性直流输电的技术特点
柔性直流输电是以全控型电力电子器件、电压源换流器和新型调制
技术为突出标志的新一代直流输电技术,具有无需无功补偿和电网 支撑换相、占地面积和环境影响小等特点;
柔性直流输电系统适用于可再生能源发电并网、孤岛和城市供电等
方面,特别是在风力发电并网方面,柔性直流输电系统的综合优势 最为明显;
高压直流输电(HVDC)
刘战 硕研11-03班
高压直流输电
高压直流输电技术的研究现状
高压直流输电技术的研究现状在当今全球能源格局和电力需求不断变化的背景下,高压直流输电技术作为一种高效、可靠的电力传输方式,正经历着快速的发展和广泛的应用。
高压直流输电技术能够实现远距离、大容量的电力输送,对于优化能源资源配置、促进区域经济协调发展具有重要意义。
高压直流输电技术的基本原理是通过换流器将交流电转换为直流电进行传输,在接收端再通过换流器将直流电转换为交流电。
与传统的交流输电技术相比,高压直流输电具有许多显著的优势。
首先,在远距离输电方面,高压直流输电的线路损耗相对较低。
由于直流电没有电感和电容的影响,电流在导线中的分布更加均匀,从而减少了能量的损失。
这使得高压直流输电在跨越数千公里的输电距离时,仍然能够保持较高的输电效率。
其次,高压直流输电能够实现不同频率交流电网的互联。
在一些地区,由于历史原因或特殊需求,存在着不同频率的交流电网。
通过高压直流输电技术,可以将这些电网有效地连接起来,实现电力的互补和优化调配。
再者,高压直流输电对于提高电网的稳定性和可靠性也发挥着重要作用。
在交流电网中,故障容易迅速传播和扩散,而直流输电系统可以通过控制策略快速隔离故障,减少对整个电网的影响。
在高压直流输电技术的发展过程中,换流器技术的不断进步是关键之一。
早期的汞弧阀换流器由于存在诸多缺点,已经被淘汰。
目前,主流的换流器技术包括基于晶闸管的相控换流器(LCC)和基于全控型电力电子器件的电压源换流器(VSC)。
LCC 技术相对成熟,具有大容量、高效率的特点,但存在换相失败的风险,且对无功功率的需求较大。
VSC 技术则具有能够独立控制有功和无功功率、不存在换相失败问题、能够向无源网络供电等优点。
然而,VSC 技术在容量和成本方面目前还存在一定的局限性。
为了提高高压直流输电系统的性能,直流输电线路的设计和绝缘技术也在不断改进。
新型的架空输电线路和电缆技术能够降低线路的电阻和电晕损耗,提高输电容量和可靠性。
同时,对于直流线路的绝缘配合和防雷保护等方面的研究也在不断深入,以确保输电线路在复杂环境下的安全稳定运行。
VSC-HVDC_电压源换流器型高压直流输电技术
15:22
电压源换流器的应用领域
15:22
柔性直流输电的应用场合
非同步联网 连接分布电源 向城市中心送电 促进电力市场发展 提高配电网电能质量 向远方孤立负荷点送电 多端VSC-HVDC网络
10
方便地调节有功和无功,改善 系统的运行性能 风电场、小型水电厂、太阳能 电站及其它新能源发电系统 用电量急增, 线路走廊困难 构建地区电力供应商交换电力的可行性 平台,增加运行灵活性和可靠性 快速控制有功无功,使电压、电流满足 电能质量标准要求 如沿海小岛、海上钻井平台、偏僻 地区负荷等
§1.2 VSC-HVDC的基本原理
VSC
ቤተ መጻሕፍቲ ባይዱ
直流输电线
VSC
U S
电抗器
U C
电抗器 滤 波 器
滤 波 器
图1 两端接有源网络的VSC-HVDC系统原理图
P
U SU C sin X1
Q
U S (U S U C cos ) X1
§1.2 VSC-HVDC的基本原理(续)
• 直流侧并联大电容,起到为逆变器提供电压支 撑、缓冲桥臂关断时冲击电流、减小直流侧谐 波的作用 • 换流电抗器是VSC与交流侧能量交换的纽带同 时也有滤波的作用 • 交流滤波器的作用是滤去交流侧谐波 • 换流器中IGBT上并联反向二极管,除了作为主 回路以外,还起到保护和续流的作用
15:22
电压源换流器常见拓扑结构
ip p VTa1 Ps Qs Us ﮮδ A Xf is VTa3 VTa4 VTb3 VTb4 B VTc3 VTc4 in n C Ucﮮ0 VTa2 VTb1 VTb2 VTc1 VTc2 io O udc1 udc iL1
§1.2 VSC-HVDC的基本原理(续)
随笔之十二-高压直流输电系统
随笔之十二-高压直流输电系统严同· 1 个月前直流输电是我个人比较偏好的一种输电方式了,试作总结一二,主要是高压直流输电(HVDC)。
一、高压直流输电概述高压直流输电:将三相交流电通过换流站整流变成直流电,然后通过直流输电线路送往另一个换流站逆变成三相交流电的输电方式。
高压直流输电原理图如下:•换流器(整流或逆变):将交流电转换成直流电或将直流电转换成交流电的设备。
•换流变压器:向换流器提供适当等级的不接地三相电压源设备。
•平波电抗器:减小注入直流系统的谐波,减小换相失败的几率,防止轻载时直流电流间断,限制直流短路电流峰值。
•滤波器:减小注入交、直流系统谐波的设备。
•无功补偿设备:提供换流器所需要的无功功率,减小换流器与系统的无功交换。
高压直流输电对比交流输电:1)技术性•功率传输特性。
交流为了满足稳定问题,常需采用串补、静补等措施,有时甚至不得不提高输电电压。
将增加很多电气设备,代价昂贵。
直流输电没有相位和功角,无需考虑稳定问题,这是直流输电的重要特点,也是它的一大优势。
•线路故障时的自防护能力。
交流线路单相接地后,其消除过程一般约0.4~0.8秒,加上重合闸时间,约0.6~1秒恢复。
直流线路单极接地,整流、逆变两侧晶闸管阀立即闭锁,电压降为零,迫使直流电流降到零,故障电弧熄灭不存在电流无法过零的困难,直流线路单极故障的恢复时间一般在0.2~0.35秒。
•过负荷能力。
交流输电线路具有较高的持续运行能力,其最大输送容量往往受稳定极限控制。
直流线路也有一定的过负荷能力,受制约的往往是换流站。
通常分2小时过负荷能力、10秒钟过负荷能力和固有过负荷能力等。
前两者上直流工程分别为10%和25%,后者视环境温度而异。
就过负荷而言,交流有更大灵活性,直流如果需要更大过负荷能力,则在设备选型时要预先考虑,此时需增加投资。
•潮流和功率控制。
交流输电取决于网络参数、发电机与负荷的运行方式,值班人员需要进行调度,但又难于控制,直流输电则可全自动控制。
高压直流输电技术的研究进展
高压直流输电技术的研究进展在当今能源需求不断增长和能源分布不均衡的背景下,高压直流输电技术因其独特的优势,成为了电力传输领域的关键技术之一。
高压直流输电能够实现远距离、大容量的电能输送,并且具有更好的控制性能和经济性。
本文将对高压直流输电技术的研究进展进行详细的探讨。
高压直流输电技术的发展历程可以追溯到上世纪中叶。
早期的高压直流输电工程采用汞弧阀作为换流元件,但其存在造价高、运行维护复杂等问题,限制了其广泛应用。
随着电力电子技术的不断进步,晶闸管的出现为高压直流输电带来了新的机遇。
晶闸管换流器具有更高的可靠性和更低的成本,使得高压直流输电技术逐渐走向实用化。
近年来,绝缘栅双极型晶体管(IGBT)等新型电力电子器件的发展,为高压直流输电技术注入了新的活力。
基于 IGBT 的电压源换流器(VSC)高压直流输电技术,具有有功和无功功率独立控制、不存在换相失败、能够向无源网络供电等优点,在可再生能源接入、城市电网供电等领域展现出了广阔的应用前景。
在高压直流输电系统的拓扑结构方面,传统的两端直流输电系统已经得到了广泛的应用和成熟的发展。
在此基础上,多端直流输电系统(MTDC)成为了研究的热点。
MTDC 能够实现多个电源和负荷的灵活连接,提高了系统的可靠性和经济性。
例如,通过 MTDC 可以将多个风电场和太阳能电站连接起来,实现大规模可再生能源的整合和外送。
高压直流输电的控制策略是保证系统稳定运行和高效输电的关键。
目前,常见的控制策略包括定电流控制、定电压控制、功率控制等。
为了提高系统的动态性能和适应性,智能控制算法如模糊控制、神经网络控制等也被引入到高压直流输电控制中。
同时,考虑到高压直流输电系统与交流系统的相互作用,交直流混联系统的协调控制也是当前研究的重要方向。
在高压直流输电线路的设计和建设方面,随着电压等级的不断提高,对绝缘材料和杆塔结构提出了更高的要求。
新型的复合绝缘材料和紧凑型线路设计,有助于减少线路走廊占地,降低建设成本。
第五章电压源换流器型高压直流输电技术
第五章电压源换流器型高压直流输电技术1.引言2.VSC-HVDC的基本原理VSC-HVDC系统由电压源逆变器(Voltage Source Inverter,简称VSI)和电压源整流器(Voltage Source Rectifier,简称VSR)两个部分组成。
其中,VSI负责将直流电压转换成交流电压,VSR则负责将交流电压转换成直流电压。
VSI采用了现代功率半导体器件(如IGBT、GTO等),通过PWM技术控制开关管的导通时间,调节输出交流电压幅值和频率。
而VSR则通过调节开关管的导通时间和相位角来控制输出直流电压的幅值和方向。
VSC-HVDC系统通过控制VSI和VSR的开关管的导通时间和相位角,可以实现对电压和频率的精确控制,实现电压和频率的双向流动。
3.VSC-HVDC的主要设备VSC-HVDC系统由以下几个主要设备组成:(1)电压源逆变器(VSI):负责将直流电压转换成交流电压,通常由多个串联的功率模块组成。
(2)电压源整流器(VSR):负责将交流电压转换成直流电压,通常由多个并联的功率模块组成。
(3)滤波器:用于削弱逆变器和整流器输出电压的谐波成分,提高系统的功率因数。
(4)直流滤波器:用于平滑输电线路上的直流电压,减小电压脉动。
(5)直流电压互感器:用于检测和测量直流电压的幅值和方向。
(6)交流电流互感器:用于检测和测量交流电流的幅值和方向。
(7)控制系统:用于控制VSI和VSR的开关管的导通时间和相位角,实现对电压和频率的精确控制。
4.VSC-HVDC的控制策略VSC-HVDC系统的控制策略主要包括电压控制、功率控制和谐波抑制控制。
(1)电压控制:通过控制VSI和VSR的开关管的导通时间和相位角,实现对电压幅值和方向的精确控制。
(2)功率控制:通过控制VSI和VSR的开关管的导通时间和相位角,实现对电压和电流的控制,实现功率的调节和传输。
(3)谐波抑制控制:通过在VSI和VSR的输出侧加入滤波器,削弱谐波电压的成分,使输电线路上的谐波电流减小到可接受范围内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
是负载向直流侧反馈能量的通道并使负
载电流连续。换相电容的作用是为换流 器提供电压支持、缓冲桥臂关断时的冲 击电流和减少直流侧谐波并储备能U S 0 U S U S 0
2:稳态功率特性
图2表示用于计算交流系统与VSC之间基频 潮流的简化等值电路。 图中, U S U S 0 , U CON U CON , S P jQ 。 交流系统以换流变压器一次侧母线电压为电势的 电压源表示(为简化起见, 取该电压为参考电压, 其 相位角为零)换流器则以换流变压器二次侧母线电 压为电势的电压源表示, 而换流变压器用等值电抗 表示(假定换流变压器无损)。 设电流及功率(仅计及基频分量)流向如图2所示, 则有如下关系:
U SU CON P sin X T Q U S U S U CON cos XT
(1)
(2)
2:稳态功率特性
由式(1)可知, 当
时,P>0,VSC从交流系统吸收有功功率而运行于整流器状态;当
S
时,P<0,VSC向交流系统送出有功功率而运行于逆变器状态。由此可知通过控制U 与
电压源换流器型直流输电技术
引言
• 换流器是高压直流输电(HVDC)系统中最重要、最关键的设备。传 统HVDC采用基于晶闸管的自然换相的换流器技术,但该技术存在着 一些固有缺点。
1:由于触发延迟角 和换相角的存在以及波形的畸变,传统的 HVDC吸收的无功功率为传输直流功率的40%~60%,这就需要大量的 无功功率补偿及滤波设备;
通过控制调制正弦波形的幅值, 可以控制VSC发出/吸收无功功率;通过控制调制正弦波形的
频率和相位则可以控制VSC有功功率的输送方向及大小。因此, 通过SPWM可以实现VSC 同时且相互独立地对有功功率和无功功率的调节, 从而使控制更为灵活;并且在故障时, 如 果VSC容量允许,VSC-HVDC系统既可以向交流系统提供有功功率的紧急支援又可以提供无 功功率支持, 从而提高系统的稳定性。
• 根据运行原理,换流器可以分为两大类。第一类需要交流系统提 供换相电压;第二类不需要交流系统提供换相电压而被称为‘自换相 换流器’。 自换相换流器进一步可分为电流源型换流器(CSC)和电压源型 换流器(VSC)。二者的根本差别在于: (1):CSC在换流变压器每相二次侧绕组与换流桥之间串联电容连接, 而VSC中电容连接在换流桥直流侧正负极之间; (2):基于CSC的HVDC潮流反转是由系统的直流电压极性反转实现 的,而VSC-HVDC潮流反转是由系统的直流电流方向反转实现。
2:传统的HVDC不能向无源网络输送电能,而需要有源交流系统 为其提供相电压。 电压源型换流器(Voltage Source Converter,VSC)以全控型器 件为基础,电流可以自关断,可以工作在无源逆变方式,因此基于 VSC的HVDC除了具有传统HVDC的有点外,还具有许多独特的优点。
1:VSC结构
•
1:VSC结构
• 图(1)为1个VSC(可以是整流器也 可以是逆变器)的示意图。VSC主要是 由换流变压器、换流桥和换相电容等元
件构成。换流桥的桥阀有多个IGBT或
GTO等全控型器件串联组成,以达到所 需要的额定功率值,这些器件开关速度 快,频率高,且可以在无源逆变方式; 每个阀都有反向并联连接的二极管,其
偿装置。因此, 通过控制U CON 的模值 U CON 就可以控制VSC吸收或发出无功功率及其大小。可见, VSC不仅可以提高系统的功率因数, 而且还能起到静止同步补偿器的作用, 从而稳定交流母线电 压。
3:稳态控制
目前VSC中多使用正弦脉宽调制技术
(SPWM)以对电压模值、电压相位角和频率进
行控制。SPWM技术包括产生一个调制正弦波 和一个三角载波, 如图3 所示。其基本原理是: 用这两个波形的交点作为发送通断门脉冲给三相换流桥的每个桥臂的上半阀和下半阀的时 刻。通过改变调制正弦波形的幅值, 就可以成比例地改变,VSC输出电压的幅值;而通过改 变调制正弦波形的频率和相位则可以改变VSC输出电压的频率和相位。由前述的分析可知,
谢谢观赏
WPS Office
Make Presentation much more fun
@WPS官方微博 @kingsoftwps
U CON 之
间的相位角 即可控制有功功率的方向和大小(与传统交流系统中有功功率的控制类似)。 由式(2) 可知,系统中无功功率的传输方向由U 时,Q>0,VSC吸收无功功率;当 U S
S
U CON cos
决定, 当U
S
U CON cos 0
U CON cos 0
时,Q<0,VSC发出无功功率, 而相当于无功补