密度计算题分类练习
(完整版)密度计算专题
密度的计算专题类型一:鉴别问题例1 有一只金戒指,用量筒测得其体积为0.24cm 3,用天平称出其质量为4。
2g ,试问这只戒指是否是纯金制成的?(ρ金=⨯1931033./kg m )1.某非金属物质的质量是675千克,体积为250分米3,求该物质的密度?2.上体育课用的铅球,质量是4千克,体积是0。
57分米3,这种铅球是用纯铅做的吗?(铅的密度为11.3×103千克/米3)。
类型二:铸件问题思路与方法:在制造零件前先做一个等体积的模型,解题时抓住V 模=V例2 一个石蜡雕塑的质量为4。
5千克,现浇铸一个完全相同的铜雕塑,至少需要多少千克铜? ( ρ铜=8.9×103kg/m 3, 330.910/kg m ρ=⨯蜡)3.一个铁件质量395千克,若改用铝来浇铸,它的质量为多少千克。
(铁=7。
9×103kg/m 3,铝=2.7×103kg/m 3)4.铸造车间浇铸合金工件,已知所用木模质量为490 g,木料密度为0.7×103kg/m3.今称得每个合金工件的质量为4.9 kg,则该合金的密度是多少?5.某铜制机件的质量为0.445千克,如改用铝制品质量可减轻多少?(铜=8.9×103kg/m 3,铝=2。
7×103kg/m 3)6.机制造师为了减轻飞机的重量,将钢制零件改为铝制零件,使其质量减少了104千克,则所需铝的质量是多?(已知钢的密度是7900千克/立方米,铝的密度是2700千克/立方米)类型三:空心问题例 3 一个铜球的质量是178g,体积是403cm,试判断这个铜球是空心的还是实心的?(ρ铜=⨯891033./kg m)解:方法一:比较体积法方法二:比较密度法方法三:比较质量法说明:本题最好采用方法一,因为这样既可判断该球是空心的,还可进一步求出____________________ 7. 一个钢球,体积10cm3,质量63.2g,这个球是空心还是实心?如果是空心的,空心部分体积多大?(ρ钢=7.9×103kg/m3)8。
初中物理密度计算题练习(含答案)
初中物理密度计算题练习(含答案)1、有一只玻璃瓶,它的质量为0.1kg,当瓶内装满水时,瓶和水的总质量为0.4kg.在此空玻璃瓶中装入一些合金滚珠,瓶和金属颗粒的总质量为0.8kg,此时再往瓶中灌入水到瓶口止,瓶、金属颗粒和水的总质量为1kg,求:(1)玻璃瓶的容积;(2)金属颗粒的总质量;(3)金属颗粒的密度。
解:(1)空瓶装满水:m水=0.4kg-0.1kg=0.3kg=300g,空瓶容积:V=V水=m水/ρ水=300g/1g/cm3=300cm3,答:玻璃瓶的容积为300cm3;(2)金属粒的质量:m金=m总-m瓶=0.8kg-0.1kg=0.7kg=700g,答:合金滚珠的总质量为700g;(3)瓶中装了金属粒后再装满水,水的体积:V水′=m水'/ρ水=(1000g −800g)/g/cm3=200cm3,金属粒的体积:V金=V-V水=300cm3-200cm3=100cm3,金属粒的密度:ρ=m金V金m金=700g/100cm3=7g/cm3答:合金滚珠的密度为3.5g/cm3。
2、王慧同学利用所学知识,测量一件用合金制成的实心构件中铝所占比例。
她首先用天平测出构件质量为374g,用量杯测出构件的体积是100cm3.已知合金由铝与钢两种材料合成,且铝的密度为2.7×103kg/m3,钢的密度为7.9×103kg/m3.如果构件的体积等于原来两种金属体积之和。
求:(1)这种合金的平均密度;(2)这种合金中铝的质量。
解:(1)这种合金的平均密度:ρ=mv=3.74g/cm3=3.74×103kg/m3;答:这种合金的平均密度为3.74×103kg/m3;(2)设铝的质量为m铝,钢的质量为m钢,则m铝+m钢=374g﹣﹣﹣﹣﹣﹣﹣﹣①由ρ=mv可得V=mρ,且构件的体积等于原来两种金属体积之和,则m铝ρ铝+m钢ρ钢=100cm3,,即m铝2.7g/cm3+m钢7.9g/cm3=100cm3---------②联立①②式,解得m铝=216g.故答案为:这种合金中铝的质量为216g.3、如图所示,一个容积V0=500cm3、质量m=0.5kg的瓶子里装有水,乌鸦为了喝到瓶子里的水,就衔了很多的小石块填到瓶子里,让水面上升到瓶口。
质量和密度计算题归类
质量和密度计算题归类1、质量相等问题:(1)一块体积为100厘米3的冰块熔化成水后,体积多大?(2)甲乙两矿石质量相等,甲体积是乙体积的2倍,则ρ甲= ρ乙.2.体积相等问题:(1)一个瓶子能盛 1千克水,用这个瓶子能盛多少千克酒精?(2)有一空瓶子质量是50克,装满水后称得总质量为250克,装满另一种液体称得总质量为200克,求这种液体的密度.(0.75g/cm3)(3)某空瓶的质量为300 g,装满水后总质量为800g,若用该瓶装满某液体后总质量为850g,求瓶的容积与液体的密度。
(4)一个玻璃瓶的质量是0.2千克,玻璃瓶装满水时的总质量是0。
7千克,装满另一种液体时的总质量是0。
6千克,那么这种液体的密度是多少(5)工厂里要加工一种零件,先用木材制成零件的木模,现测得木模的质量为560g,那么要制成这样的金属零件20个需几千克这样的金属?(木模密度为0.7×103Kg/m3,金属密度为8。
9×103Kg/m3.)(6)某台拖拉机耕1m2的地需消耗柴油1.2g,若拖拉机的油箱容积为250升,问装满一箱柴油可以耕多少平方米的土地?(柴油的密度为0。
85×103Kg/m3)(7)某工程师为了减轻飞机的重量,将一刚制零件改成铝制零件,使其质量减少1。
56Kg,则所需铝的质量为多少?(钢的密度为7。
9×103Kg/cm3,铝的密度为2。
7×103Kg/cm3)3.密度相等问题:(1)有一节油车,装满了30米3的石油,为了估算这节油车所装石油的质量,从中取出了30厘米3石油,称得质量是24。
6克,问:这节油车所装石油质量是多少?(2)地质队员测得一块巨石的体积为20m3,现从巨石上取得20cm3的样品,测得样品的质量为52g,求这块巨石的质量. 4.判断物体是空心还是实心问题:(1)一体积为0.5dm3的铜球,其质量为2580g,,问它是空心的还是实心的?如果是空心的,空心部分体积多大?(提示:此题有三种方法解,但用比较体积的方法方便些)(2)有一质量为5.4千克的铝球,体积是3000厘米3,试求这个铝球是实心还是空心?如果是空心,则空心部分体积多大?如果给空心部分灌满水,则球的总质量是多大?(铝=2。
密度计算题分类练习
精酒
9
7、某铜制机件的质量为0.445千克,如改用铝制品质量可减轻多少?
8、如图3所示,一只容积为3
×10-4m3的瓶内盛有0.2kg的
水,一只口渴的乌鸦每次将一块
质量为0.01kg的小石块投入瓶中,当乌鸦投入了25块相同的小石块后,水面升到瓶口。
求:(1)瓶内石块的总体积;(2)石块的密度。
9、一个容器盛满水总质量为450g,若将150g小石子投入容器中,溢出水后再称量,其总质量为550g,求:
(1)小石子的体积为多大?
(2)小石子的密度为多少?
10、一空杯装满水的总质量为500克,把一小物块放入水中,水溢出后,杯的总质量为800克,最后把物块取出后,杯的总质量为200克,求此物块的密度是多少?
3
是
×。
密度常考的三个类型的计算题
1、测得一木块的质量是10.8g,体积是24cm3。
木块的密度是多少kg/m3?2、学校安装电路需要用铜线,现手头有一卷铜线,已知其质量是178kg,横截面积是2.5mm2,这卷铜线的长度是多少米?(ρ铜=8.9×103kg/m3)3、一个空瓶的质量为250g,装满水时的总质量为350g,装满某种液体时的总质量为330g,求该液体的密度为多大?可能是何种液体?4、一只空瓶质量是0.2kg,装满水后质量为1.0kg;倒掉水后再装另外一种液体,总质量变为1.64kg,求这种液体的密度是多少?5、我省富“硒”的矿泉水资源非常丰富.如果要将其开发为瓶装矿泉水,且每瓶净装500g,则:(1)每个矿泉水瓶的容积至少要多少ml?(2)若用该矿泉水瓶来装家庭常用的酱油,装满后至少能装多少g的酱油?(ρ矿泉水=1.0g/ml ,ρ酱油=1.1g/ml )6、.为了用铁浇铸一个机器零件,先用蜡做了一个该零件的模型,已知该模型质量 1800 g,蜡的密度为0.9 ×1 0 3kg /m 3,那么浇铸这样一个铁件需要多少kg铁?(ρ铁=7.9×103 kg/m3)7、一个容器盛满水总质量为450g,若将150g小石子投入容器中,溢出水后再称量,其总质量为550g,求:1.小石子的体积为多大? 2.小石子的密度为多少?8、一个长方体的金鱼缸,长30cm,宽20cm,浸没一个质量为2.5Kg的金属块时,液面上升了0.5cm,则此金属块的密度为多少Kg/m3?9、烧杯中盛满水称得质量为250克,再放入一个石子后称得质量是300克,然后把石子小心取出称得烧杯和水的质量为200克:求(1)石子的体积是多大?(2)石子的密度是多大?10、把一块金属放入盛满酒精(酒精=0.8g/cm3)的杯中时,从杯中溢出8g酒精。
若将该金属块放入盛满水的杯中时,从杯中溢出水的质量是多少?11、一只容积为3×10-4m3的瓶内盛有0.2kg的水,一只口渴的乌鸦每次将一质量为0.01kg的小石子投入水瓶中,当乌鸦投入了25块相同的小石子后,水面升到瓶口。
初一科学密度计算题
密度习题(一)一、是非题1.密度是物体的属性,不同物体一定有不同的密度.( )2.密度是物质的属性,不同物质制成的物体一定有不同的密度.( )3.同种物质组成的物体中,质量大的,体积一定大.( )4.质量相等的两个物体,密度小的体积一定大.( )5.密度相等、质量较大的物体,体积一定较小.( )二、填充题1.某液体的质量是110克,体积是100厘米3,它的密度是______克/厘米3,等于______千克/米3.2.两个物体质量之比为4∶1,体积之比为2∶3,则它们的密度之比为______.3.铁、铜、铅三种金属分别制成质量相等的立方体,其体积最大的为______,如分别制成体积相等的立方体,则质量最大的为______(已知ρ铁<ρ铜<ρ铅).三、选择题1.气体是很易被压缩的,一定质量的气体,当它的体积被压缩后,它的密度[ ]A.增大B.不变C.减小D.不确定2.甲、乙两个同种金属制成的金属实心球,甲球体积是乙球体积的4倍,那么甲球的质量是乙球质量的[ ]A.4倍B.1/4 C.缺少条件,无法判断3.已知铁的密度比铜的密度小,现用铁和铜各做一个实心球,则下列陈述中不正确是[ ]A.铁球的体积和质量都比铜球大B.铁球的体积和质量都比铜球小C.铁球的体积比铜球大,铁球的质量比铜球小D.铁球的体积比铜球小,铁球的质量比铜球大4.一只100厘米3的铜球,用天平测出它的质量为100克,那么这铜球的内部[ ]A.一定是实心的B.一定是空心的C.一定装满了水D.一定是装有其他金属[ ]A.同一种物质制成的物体,当体积增大到原来的2倍,密度就成为原来的1/2B.同一种物质制成的物体,当质量增大到原来的2倍,密度就成为原来的2倍C.同一种物质制成的物体,当质量增大到原来的2倍,体积也增大到原来的2倍D.同一种物质制成的物体,当质量增大到原来的2倍,体积和密度都增加到原来的2倍四、计算题能装500克水的瓶子,能够装某种液体400克,求这种液体的密度.答案(一):一、1.× 2.√ 3.√ 4.√ 5.×二、1.1.1,1.1×103 2.6∶1 3.铁,铅三、1.A 2.A 3.D 4.B 5.C四、0.8×103千克/米3密度习题(二)一、是非题1.体积相等的铜块和铁块,质量是不等的.( )2.质量相等的铁块和铝块,体积可以相等.( )3.一块铜块和一捆铜丝,质量不等,体积不等,但质量和体积的比值一定相等.( )4.质量相等的两个物体,它们的密度一定相等.( )5.密度相等的两个物体,体积一定相等.( )6.液体的密度一定比固体小.( )7.气体的密度比固体、液体的密度都小.( )8.铁块的密度比铁粉的密度大.( )9.盐水的密度与纯净水的密度相同.( )10.密度是物质的属性,一定温度、一定状态下,各种物质都有一定的密度.( )二、填充题1.单位体积的某种物质的______叫作这种物质的密度,水的密度是______.2.国际单位制中,质量的单位是______,体积的单位是______,密度的单位是______,读作______.3.酒精的密度是0.8×103千克/米3,表示的意义是______.把200克酒精倒掉150克,剩下酒精的密度为_______.4.密度的公式ρ=______.有一块金属质量是5400千克,体积是2米3,该金属的密度是_______.三、选择题1.下列物理量中表示物质属性的是[ ]A.质量B.体积C.温度D.密度2.把一根均匀的铁棒锯掉1/3,剩下2/3铁棒的密度[ ] A.是原来密度的1/3 B.是原来密度的2/3C.与原来密度相同D.是原来密度的3倍3.某金属块质量为m,体积为V,密度为ρ,现使金属块的质量成为3m,则下列说法中正确的是[ ]四、说理题水的密度是1.0×103千克/米3,而冰的密度是0.9×103千克/米3.根据水和冰的密度,又知冬天户外水缸常会破裂.请你说出冰的密度小的原因.答案(二):一、1.√ 2.× 3.√ 4.× 5.× 6.× 7.√ 8.× 9.× 10.√二、1.质量,1.0×103千克/米3 2.千克,米3,千克/米3,千克每立方米3.每立方米体积的酒精质量为0.8×103千克,0.8×三、1.D 2.C 3.D四、水结冰时体积变大。
密度计算题分类练习
密度计算题分类练习密度是物质的一种特性,描述了单位体积内的质量。
计算密度是物理学和化学实验中常见的一项基础实验。
掌握密度计算的方法对于理解和解决实际问题至关重要。
为了帮助学生更好地掌握密度计算,并熟练运用于各种题目的解答中,本练习将介绍密度计算的常见分类题目,并提供相应的解答方法。
1. 固体的密度计算题目固体的密度计算涉及到测量物体的质量和体积。
一般可以使用天平测量物体的质量,而体积则可以通过测量物体的尺寸以及相应的几何公式计算得到。
举例:问题:一个铁块的质量是250克,它的体积是25立方厘米。
求铁的密度。
解答:铁块的密度可以通过公式密度=质量/体积来计算。
根据题目给出的数值,将质量和体积代入计算公式,即可得到答案。
密度=250克/25立方厘米=10克/立方厘米。
2. 液体的密度计算题目液体的密度计算同样需要测量质量和体积。
然而,由于液体不是刚体,其体积随温度和压强的变化而变化。
因此,在实际计算时,需要考虑液体的温度和压力对密度的影响。
举例:问题:一个物体完全浸没在水中,物体的质量为50克,它所受到的浮力是30克。
求这个物体的密度。
解答:物体所受浮力等于物体的重力,根据题目可得:浮力=物体的质量-物体在液体中失重的质量。
将已知数值代入公式后,可以得到物体的重力。
然后,根据浮力和重力的关系,即可计算出物体的密度。
3. 气体的密度计算题目气体的密度常常被用来表示气体的质量和体积之间的关系。
在理论计算时,需要考虑气体的温度、压力和摩尔质量。
举例:。
密度十大类型计算题(含答案)
= 2.46 × 104kg
类型四:鉴别问题
有一只金戒指,用量筒测得其体积为 0.24������������3,用天平称出其质量为4.2g,试问 这只戒指是否是纯金制成的?
金 19.3 103 kg / m3
解:这个金戒指的密度 ������ 4.2������
������ = ������ = 0.24������������3 = 10 ������Τ������������3 = 10 × 103 ������������Τ������3 ∵ 10 × 103 ������������Τ������3 ≠ ������金 = 19.3 × 103 kgΤ������3 ∴ 这只戒指不是纯金制成的。
=
������金 ������金
540g = ������������������������������������
= ������. ������ ������������������������
= ������. ������ × ������������������������������Τ������������
类型十:配置问题
思路与方法:求两种物质的混合密度: 老板派小姚去订购酒精,合同上要求酒精的
密度小于或者是等于0.82g/cm3就算达标,小 姚在抽样检查时,取酒精的样本500ml,称得 的质量是420g. 请你通过计算说明小姚的结论 是 (A 达标 B 不达标,含水太多) 你认为小姚 该怎么办?如何配置500ml密度为0.82g/������������3的 酒精?(������酒=0.8×103 kg/m3 ρ水=1.0×103 kg/m3)
500cm3−������水
500������������3
密度计算题分类专题复习含详细答案
密度复习一.知识点回顾1、密度的定义式?变形式?2、密度的单位?它们的换算关系?3、对公式ρ=m/v的理解,正确的是()A.物体的质量越大,密度越大B.物体的体积越大,密度越小C.物体的密度越大,质量越大D.同种物质,质量与体积成正比二.密度的应用1.利用密度鉴别物质例1.体育锻炼用的实心“铅球”,质量为4kg,体积为0.57dm3,这个“铅球”是铅做的吗?解析方法一:查表知,铅的密度为ρ=11.34×103kg/m3。
ρ实=m/v=4kg/0.57dm3=4kg/0.57×10-3m3=7.01×103kg/m3∴ρ>ρ实即该铅球不是铅做的方法二:V’=m/ρ=4kg/11.34×103kg/m3=0.35dm3∴V>V’即该球不是铅做的方法三:m’=ρV=11.34×103kg/m3×0.57×10-3m3=6.46kg∴m’>m 即该球不是铅做的【强化练习】1.一顶金冠的质量是0.5kg,体积为30cm3。
试问它是否是纯金做的?为什么?。
金的密度是19. 3×103kg/m3 ,而金冠的密度16.7×103kg/m3 。
显然,该金冠不是用纯金做的2.某种金属的质量是1.88 ×103kg ,体积是0.4m3,密度是kg/m3,将其中用去一半,剩余部分的质量是kg ,密度是_______kg/m3。
4.7×103 0.94×103 4.7×1032.同密度问题例2.一节油罐车的体积4.5m3,装满了原油,从油车中取出10ml样品油,其质量为8g,则这种原油的密度是多少?这节油车中装有多少吨原油?解析ρ=m/v=8g/10ml=0.8g/cm3M’=v’ρ=4.5m3×0.8×103kg/m3=3.6×103kg=3.6t【强化练习】1.“金龙”牌食用油上标有“5L”字样,其密度为0.92 ×103kg/m3,则这瓶油的质量是多少?4.6kg2、某同学在“测液体的密度”的实验中,测得的数据如右下表。
初中物理密度计算题专题汇总
初中物理密度计算题专题汇总1、一块物质的体积为10cm3,质量为27g,求该物质的密度。
2、一块物质的质量为50g,体积为20cm3,求该物质的密度。
3、一块物质的密度为2.5g/cm3,体积为8cm3,求该物质的质量。
4、一块物质的密度为1.2g/cm3,质量为36g,求该物质的体积。
5、一块物质的密度为0.8g/cm3,体积为50cm3,求该物质的质量。
类型三:混合密度1、将100g的盐和200g的水混合,求混合液体的密度。
2、将50g的酒精和100g的水混合,求混合液体的密度。
3、将30g的糖和50g的水混合,求混合液体的密度。
4、将80g的铁和20g的铜混合,求混合物质的密度。
类型五:根据变化量求密度1、一块物质的质量为50g,体积为20cm3,将其压缩成10cm3,求压缩后该物质的密度。
2、一块物质的体积为10cm3,质量为27g,将其拉伸成20cm3,求拉伸后该物质的密度。
类型六:液化气问题1、一罐液化气的质量为15kg,体积为20L,求该液化气的密度。
2、一罐液化气的密度为0.6g/cm3,体积为30L,求该液化气的质量。
1、在能装1kg水的中,如果能装0.9kg某种液体,则这种液体的密度为900kg/m3.2、最多能装500克水的瓶子,最多能装400克某种液体,则这种液体的密度为800g/cm3.3、一个石蜡雕塑的质量为4.5千克,现浇铸一个完全相同的铜雕塑,至少需要多少千克铜?需要至少50.56千克铜。
4、铸铁翻砂工厂有的采用木模翻砂,当木模做好后要称一称它的质量,这是为了测算木模的体积,估算铸铁的质量,掌握投料数量。
现有一木模质量为3.0kg,求此铸件的质量为多少?此铸件的质量为21.6kg。
5、一个瓶子能盛1kg水,用这个瓶子能盛多少kg酒精?酒精的密度为0.8kg/L,所以这个瓶子能盛0.8kg酒精。
6、有一空瓶子质量是50g,装满水后称得总质量为250g,装满另一种液体称得总质量为200g,求这种液体的密度。
密度计算题分类练习
密度计算题分类练习密度是物质的一种特性,是指单位体积内物质的质量。
它是常用的物理量之一,在科学实验和日常生活中广泛应用。
通过对物质的密度进行计算,我们可以了解物质的性质或者进行分类。
在密度计算题中,我们常常需要计算物质的密度,给定物质的质量和体积,通过简单的公式计算得到结果。
在这篇文章中,我们将进行密度计算题的分类练习,通过不同类型的题目来帮助大家更好地理解密度的计算方法。
一、固体密度计算题固体是我们生活中常见的物质形态,它们可以有各种各样的形状和质量。
在计算固体的密度时,我们需要知道固体的质量和体积。
下面是一个固体密度计算题的示例:问题1:某种金属的质量为80克,体积为40立方厘米,求该金属的密度。
解答:根据密度的定义,密度等于质量除以体积。
所以,该金属的密度为80克/40立方厘米,即2克/立方厘米。
二、液体密度计算题液体的形状是流动的,在计算液体的密度时,我们常常需要知道液体的质量和体积。
下面是一个液体密度计算题的示例:问题2:某种溶液的质量为120克,体积为60毫升,求该溶液的密度。
解答:由于体积单位不同,我们需要将毫升转换成立方厘米,1毫升等于0.001立方厘米。
所以,该溶液的体积为60毫升×0.001=0.06立方厘米。
然后,根据密度的定义,该溶液的密度等于质量除以体积,即120克/0.06立方厘米,即2000克/立方厘米。
三、气体密度计算题气体是一种无固定形状和体积的物质,在计算气体的密度时,我们需要知道气体的质量和体积。
下面是一个气体密度计算题的示例:问题3:某种气体的质量为0.1克,体积为100毫升,求该气体的密度。
解答:由于气体的体积与压强和温度有关,而在这个题目中没有给出这些信息,所以无法直接计算气体的密度。
综上所述,密度计算题可以根据物质的形态(固体、液体、气体)分类。
通过这些练习题,我们可以巩固密度计算的基本概念和方法。
需要注意的是,密度的单位通常为克/立方厘米或千克/立方米。
6章 密度典型计算题(全)
密度典型计算题一、理解ρ=m/v(一)一杯水倒掉一半,它的密度、质量、体积变不变,为什么?(二)、氧气瓶的问题1.某钢瓶内所装氧气得密度为8 kg/m3,一次电焊用去其中的1/4,则剩余氧气的密度为多少?2、医院有一钢制氧气瓶,容积为10dm3,内有密度为2.5kg/m3的氧气,某次抢救病人用去了5g,则剩余气体的密度为多少?3、医院有一氧气瓶,容积为10dm3,内有密度为2.5kg/m3的氧气,现将活塞向下压缩,使其体积变为原来的1/2,则此时瓶内气体的密度为多少?4、某瓶氧气的密度是5kg/m3,给人供氧用去了氧气质量的一半,则瓶内剩余氧气的密度是 _;容积是10L的瓶子装满了煤油,已知煤油的密度是 0.8×103kg/m3,则瓶内煤油的质量是,将煤油倒去4kg后,瓶内剩余煤油的密度是。
(三)比例题:1、关于密度,下列说法正确的是()A.密度与物体的质量成正比,与物体的体枳成反比 B.密度是物质的特性,与物体的质量和体积无关C.密度与物体所处的状态无关 D.密度与物体的温度无关2、根据密度公式ρ=可知()A.密度与质量成正比B.密度与体积成反比C.同种物质的质量与体积成正比D.密度等于某种物质的质量与体积的比值3、质量相同的不同物质,它们的体积之比为2:3,求它们的密度之比?4、两个质量不同的同种物体,它们的质量之比为4:5,求它们的体积之比?5、甲、乙两物体,质量比为3:2,体积比为4:5,求它们的密度比。
6、甲乙两个正方体边长之比为2:1,质量之比为1:3,求它们的密度之比?7、甲乙两物体密度之比为1:2,体积之比为3:2,求它们的质量之比?密度比例专题训练1.一个铁锅的质量是300克,一个铁盒的质量是200克,它们的质量之比是;密度之比是______;体积之比是_______.2.有甲、乙两种物质,他们的质量之比是2:1,密度之比是1:2,那么他们的体积之比是_________.3.有甲、乙两种物质,他们的质量之比是2:1,体积之比是3:5,那么他们的密度之比是___________。
密度计算题-假期作业
密度计算题1、一钢瓶内装满氧气,用去1/3,则密度是原来的2、一氢气球,压缩之,则密度3、冰化水,不变,变大,变小。
4、小实验:(1)若砝码生锈,则测量结果偏。
(2)若砝码磨(缺)损,则测量结果偏(3)若指针偏左,在调节中应使天平横梁平衡;在称量中应使天平横梁平衡。
(4)某同学用天平称物体质量时,测得数据为36g,测完后发现物体放在右盘中,而砝码在左盘中,这时游码指在6g上,不重新测量,则该物体的实际质量为。
分类计算题练习1、质量相等问题(1)一块体积为100cm3的冰块熔化成水后,体积多大?()(2)甲乙两矿石质量相等,甲体积是乙体积的2倍,则ρ甲= ρ乙。
2、体积相等问题(1)一个瓶子能盛 1kg水,用这个瓶子能盛多少kg酒精?(2)有一空瓶子质量是50g,装满水后称得总质量为250g,装满另一种液体称得总质量为200g,求这种液体的密度。
(0.75g/cm3)(3)某空瓶的质量为300 g,装满水后总质量为800g,若用该瓶装满某液体后总质量为850g,求瓶的容积与液体的密度。
(4)一个玻璃瓶的质量是0.2kg,玻璃瓶装满水时的总质量是0.7kg,装满另一种液体时的总质量是0.6kg,那么这种液体的密度是多少?题型1:基础练习题1.一金属块的质量是386g,体积是20cm3,这种金属块的密度是多少kg/m3?2.求质量为100g、密度为0.8×103kg/m3酒精的体积?3.有一种食用油的瓶上标有“5L”字样,已知油的密度为0.92×103kg/m3,则该瓶油的质量是多少千克?4.一钢块的质量为35.8kg,切掉1/4后,求剩余的钢块质量、体积和密度分别是多少?(ρ钢=7.9×10³kg/m³)题型2固定容器问题1.有一个瓶子装满油时,总质量是1.2kg,装满水时总质量是1.44kg,水的质量是1.2kg,求油的密度.2.一个质量是50g的容器,装满水后质量是150g,装满某种液体后总质量是130g,求1)容器的容积。
密度计算题分层次,有答案
密度计算题1、有一块20m3的矿石,为了测出它的质量,从它上面取10cm3样品,测得样品的质量为26g,根据以上数据求出矿石的密度和质量?2、建筑工地上需要长1m、宽0.5m、高0.3m的花岗岩条石361块,用最大载货量为8t的卡车运送,请你根据计算数据并联系实际回答:卡车将这些花岗岩条石全部运到建筑工地需运多少趟?(已知花岗岩的密度为2.6g/cm3)3、假设钢瓶内储满9千克液化气,钢瓶容积为0.3m3,今用去一半,则钢瓶内剩下的液化气密度为多少?4、同体积的三种金属质量之比为m1:m2:m3=3.3:2.9:1.已知质量为m3的金属密度ρ3=2.7×103千克/米3,求三种金属密度之比是多少.5、将一质量是6g的金戒指缓慢浸没在盛满水的溢水杯中,称得溢出水的质量是0.4g,问:此戒指是纯金制成的吗?6、将质量为25g的石块投入装满水的烧杯内,溢出10g的水,求:(1)溢出水的体积为多少cm3?(2)石块的密度为多少kg/m3?7、小瓶内盛满水后称得质量为210g,若在瓶内先放一个45g的金属块后,再装满水,称得质量为251g,求金属块的密度.8、用一只玻璃杯、水和天平测定石子密度,实验记录如下:杯子装满水后的总质量m1=200g,放入石子后,杯子、水、石子总质量m2=215g,取出石子后,杯子和水的总质量为m3=190g,求石子密度.9、需要测一形状不规则木块的密度,先用天平称出木块的质量是15g,取一只量筒,并装有50ml水,将一铁块放进量筒的水中,水面升高到80ml刻线处,取出铁块跟木块拴在一起,再放进量筒中,水面上升到105ml刻度线处.则此木块的密度是多大?10、(2011•淮安)小华妈妈担心从市场买回的色拉油是地沟油,小华为消除妈妈的担扰,由网络查得优质色拉油的密度在0.91g/cm3~0.93g/cm3之间,地沟油的密度在0.94g/cm3~0.95g/cm3之间,并完成用测密度的方法鉴别油的品质的实验.(1)将托盘天平放于水平的桌面上,移动游码至标尺左端“0”刻度处,发现指针静止时指在分度盘中央的左侧,则应将平衡螺母向(选填“左”或“右”)调节,使横梁平衡.(2)往烧杯中倒入适量的色拉油,用天平称出烧杯和色拉油的总质量为70g,然后把烧杯中一部分色拉油倒入量筒,如图a所示,量筒内色拉油的体积是cm3;再称烧杯和剩下色拉油的总质量,加减砝码总不能使天平平衡时,应移动.天平再次平衡时所用砝码和游码的位置如图b所示,则倒入量筒的色拉油的质量为g.(3)该色拉油的密度为g/cm3,色拉油的品质是(选填“合格”或“不合格”).11、一枚奥运会的纪念币,它的质量为16.1g,体积为1.8cm3.试求制成这种纪念币的金属的密度.该金属是金币还是铜币?(ρ铜=8.9×103kg/m3,ρ金=19.3×103kg/m3)12、体积是30cm3的空心铜球质量m=178g,空心部分注满某种液体后,总质量m总=314g,问注入的是何种液体?13、用天平测得一铁球的质量是158克,把它浸没在盛满水的烧杯中时,从烧杯中溢出水的质量是40克,此球是实心的还是空心的?若小铁球是空心的,空心部分的体积是多大?(ρ铁=7.9×103kg/m3)14、体积为30cm3的空心铜球,它的质量为89g,现在用某种金属注满它的空心部分后球的质量变为245g.求这种金属的密度是多少?(ρ铜=8.9×103kg/m3)15、现有一金铜合金工艺品,售货员说其含金量为60%,现小红测得其质量为500g,体积为40cm3,①请根据小红测得结果计算工艺品的密度②请根据售货员的说法,计算工艺品的密度,并说明售货员的话是否可信③请计算工艺品的实际含金量.1、有一块20m 3的矿石,为了测出它的质量,从它上面取10cm 3样品,测得样品的质量为26g ,根据以上数据求出矿石的密度和质量?考点:密度的计算;密度公式的应用。
初二物理物质密度练习题
初二物理物质密度练习题题一:密度的计算材料:一个铁块,一个塑料块,一个不锈钢块,一个蜡块,一个测量密度的量筒1. 将量筒装满水,记录下水的刻度为V1(V1为水的体积)。
2. 将铁块放入量筒中,记录下水的刻度为V2。
3. 将塑料块放入量筒中,记录下水的刻度为V3。
4. 将不锈钢块放入量筒中,记录下水的刻度为V4。
5. 将蜡块放入量筒中,记录下水的刻度为V5。
6. 计算每个物体的密度,使用以下公式:密度 = 物体质量 / 物体体积,其中物体体积为V2 - V1。
7. 比较不同物质的密度大小。
题二:密度与浮力材料:一个木块,水槽,砝码1. 将水槽装满水。
2. 在水槽中放入木块,并记录下木块在水中的浸没深度。
3. 将砝码挂在木块上,使木块的浸没深度发生变化,并记录新的浸没深度。
4. 根据浸没深度的变化,推断出密度与浸没深度之间的关系。
题三:应用题一般情况下,玻璃比水重。
那么你能举出一个例子,将玻璃放入水中后浮在水面上的情况吗?请解释原因。
题四:石头与羽毛材料:一个装满水的瓶子,一块石头,一根羽毛1. 将瓶子倒立,将石头放入瓶口。
2. 将羽毛放入瓶口,观察石头和羽毛的情况。
题五:比较纯净水和海水的密度材料:一个量筒,纯净水,海水1. 将量筒装满纯净水,记录下水的刻度为V1。
2. 将量筒装满海水,记录下水的刻度为V2。
3. 计算纯净水的密度,使用公式:密度 = 物体质量 / 物体体积,其中物体体积为V2 - V1。
4. 比较纯净水和海水的密度,解释密度差异的原因。
题六:应用题放风筝时,通常会在风筝的框架中加入沙袋或石块。
请解释为什么需要加入沙袋或石块。
题七:汽车和船的浮力材料:一个用作汽车的模型,一个用作船的模型1. 将汽车模型放入水中,观察汽车在水中的情况。
2. 将船模型放入水中,观察船在水中的情况。
3. 解释汽车和船在水中不同的浮力原因。
请根据以上练习题进行实验,并认真记录实验数据。
在回答应用题时,请提供具体的解释和原因。
初二物理密度小练习题
初二物理密度小练习题密度是物体的一个重要性质,它描述了物体的质量和体积之间的关系。
在物理学中,密度通常用符号ρ表示,单位是千克每立方米(kg/m³)。
本文将提供一些初二物理密度小练习题,以帮助学生加深对密度概念的理解。
练习题一:某种金属的密度为7.8 g/cm³,请计算该金属的密度是多少kg/m³。
解答:由题可知,金属的密度为7.8 g/cm³。
根据单位换算关系,1 g/cm³ = 1000 kg/m³。
因此,该金属的密度为7.8 × 1000 = 7800 kg/m³。
练习题二:某物质的质量为150 g,体积为50 cm³,请计算该物质的密度是多少kg/m³。
解答:由题可知,物质的质量为150 g,体积为50 cm³。
根据密度的定义,密度等于质量除以体积。
将质量单位换算为千克,体积单位换算为立方米,即150 g = 0.15 kg,50 cm³ = 0.00005 m³。
所以,该物质的密度为0.15 kg / 0.00005 m³ = 3000 kg/m³。
练习题三:一个物体的质量为2 kg,密度为400 kg/m³,请计算该物体的体积是多少m³。
解答:由题可知,物体的质量为2 kg,密度为400 kg/m³。
根据密度的定义,密度等于质量除以体积。
将质量单位换算为千克,即2 kg = 2000 g。
设该物体的体积为V m³,则根据题意,密度等于质量除以体积:400 kg/m³ = 2000 g / V m³为了计算V,需要将质量单位统一换算成克,即将2 kg换算为2000 g。
将题目中的密度单位和质量单位统一换算为克和立方毫米,即400 kg/m³ = 400000 g / (1000 cm³)。
密度计算题归类
密度计算题一、瓶装液体、铸造零件问题=0.8×103kg/ m3)例题:一只瓶子最多能装1kg水,它能装多少kg酒精?(ρ酒练1、一只瓶子空瓶时质量为100g,装满水时的质量为500g,装满某种液体时质量为450g,求这种液体的密度?=0.8×103kg/ 练2、一只瓶子装满水是质量为500g,装满酒精时为450g,求瓶子的质量和容积?(ρ酒m3)(列方程)二、空、实心问题例题:体积为20cm3,质量为27g的铝球,它是实心的吗?若它是空心的,在空心部分灌满水,这时球的总质量是多少?练1、空心铝球27g,空心部分注入酒精后总质量59g,求铝球的体积.(铝的密度2.7×103Kg/m3)三、鉴别物质例题:某金属物质的质量为 675g,体积为250dm3,求该物质的密度?判断此物质是哪一种金属?若用该金属加工一个质量为 810g的水壶,用去这种金属多少cm3?练1、一只烧杯装满水后总质量为350g,放入一块石块且完全浸没后,溢出一些水,这时总质量为440g,取出石块后,烧杯和水的质量为300g,石块的密度?四、冰水问题例题:质量为9kg的冰块,(冰的密度为0.9×103千克/米3),(1)求冰块的体积(2)全部熔化成水的体积五、以小求大例题:一节运油车装30m3的石油,从车中取出30ml石油,称得它的质量为24.6g,求这节运油车所装石油的质量是多少千克?(同类型如利用小石块求大石块的问题)*六、合金或混合问题例题:在农业上要用盐水选出饱满的种子,要求盐水的密度为1.1g/cm3,现配制了0.5dm3的盐水,其质量为0.6kg。
这些盐水符合要求吗?若不符合,使加盐还是加水。
(同类型如泥沙问题)练1、有一件标明是纯金的工艺品,其质量是102g,体积是6cm3,请你判断它是否是纯金毛制成的?(金的密度是19.3×103千克/米3)如果体积是6cm3的这种工艺品是纯金做的,质量应为多少?练2、老板派小姚去订购酒精,合同上要求酒精的密度小于或者是等于0.82g/cm3就算达标,小姚在抽样检查时,取酒精的样本500ml,称得的质量是420g. 请你通过计算说明小姚的结论是(A :达标B :不达标,C:含水太多) 你认为小姚该怎么办?(ρ酒=0.8×103 kg/m3,ρ水=1.0×103 kg/m3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、同体积问题
1、一个容积为2.5升的塑料壶,用它装酒精,最多能装多少克?
2、一个瓶子能盛1千克水,用这个瓶子能盛多少千克酒精?
3、有一只玻璃瓶,它的质量为0.1kg,当瓶内装满水时,瓶和水的总质量为0.4kg,用此瓶装另一种液体,瓶和液体的质量为0.64kg,求这种液体的密度。
4. 把一块金属放入盛满酒精(ρ酒精=0.8g/cm3)的杯中时,从杯中溢出8g酒精。
若将该金属块放入盛满水的杯中时,从杯中溢出水的质量是多少?
5.铸造车间浇铸合金工件,已知所用木模质量为500 g,木料密度为0.7×103 kg/m3.今称得每个合金工件的质量为4.9 kg,则该合金的密度是多少?
6.假设钢瓶内储满9千克液化气,钢瓶容积为0.3m 3,今用去一半,则钢瓶内剩下的液化气密度为多少
7、某铜制机件的质量为0.445千克,如改用铝制品质量可减轻多少?8、如图3所示,一只容积为3×10-4m3的
瓶内盛有0.2kg的水,一只口渴的乌鸦每
次将一块质量为0.01kg的小石块投入瓶
中,当乌鸦投入了25块相同的小石块后,
水面升到瓶口。
求:(1)瓶内石块的总体
积;(2)石块的密度。
9、一个容器盛满水总质量为450g,若将150g小石子投入容器中,溢出水后再称量,其总质量为550g,求:
(1)小石子的体积为多大?
(2)小石子的密度为多少?
10、一空杯装满水的总质量为500克,把一小物块放入水中,水溢出后,杯的总质量为800克,最后把物块取出后,杯的总质量为200克,求此物块的密度是多少?
11.某同学没有利用量筒也测出了一满杯牛奶的密度.他的方法是这样的:先用天平测出一满杯牛奶的总质量是120 g,然后测得空杯子的质量是50 g,最后他将该杯装满水,又用天平测得水和杯子的总质量是100 g.请你帮该同学算一算此杯牛奶的密度是多少?
二、同质量问题
1、体积为1 m3的冰化成水的体积多大?(ρ冰=0.9×10³kg/m³)
.
铝
木
求
3,
泥。