中考数学压轴题复习几何变换压轴题(共64张)

合集下载

2023年 九年级数学中考复习 几何图形变换综合压轴题 专题训练(含答案)

2023年 九年级数学中考复习 几何图形变换综合压轴题 专题训练(含答案)

2023年春九年级数学中考复习《几何图形变换综合压轴题》专题训练(附答案)1.如图,△ABC和△ECD都是等边三角形,直线AE,BD交于点F.(1)如图1,当A,C,D三点在同一直线上时,∠AFB的度数为,线段AE与BD的数量关系为.(2)如图2,当△ECD绕点C顺时针旋转α(0°≤α<360°)时,(1)中的结论是否还成立?若不成立,请说明理由;若成立,请就图2给予证明.(3)若AC=4,CD=3,当△ECD绕点C顺时针旋转一周时,请直接写出BD长的取值范围.2.如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D、E两点分别在AC、BC上,且DE∥AB,将△CDE绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现:当α=0°时,的值为;(2)拓展探究:当0°≤α<360°时,若△EDC旋转到如图2的情况时,求出的值;(3)问题解决:当△EDC旋转至A、B、E三点共线时,若CE=5,AC=4,直接写出线段AD的长.3.已知:如图1,线段AD=5,点B从点A出发沿射线AD方向运动,以AB为底作等腰△ABC,使得AC=BC=AB.(1)如图2,当AB=10时,求证:CD⊥AB;(2)当△BCD是以BC为腰的等腰三角形时,求BC的长;(3)当AB>5时,在线段BC上是否存在点E,使得△BDE与△ACD全等,若存在,求出BC的长;若不存在,请说明理由;(4)作点A关于直线CD的对称点A′,连接CA′当CA′∥AB时,CA′=(请直接写出答案).4.如图1,在△ABC中,AE⊥BC于点E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系是:;数量关系是:;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.①试猜想BD与AC的数量关系为:;②你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.5.如图,平面直角坐标系中O为原点,Rt△ABC的直角顶点A在y轴正半轴上,斜边BC 在x轴上,已知B、C两点关于y轴对称,且C(﹣8,0).(1)请直接写出A、B两点坐标;(2)动点P在线段AB上,横坐标为t,连接OP,请用含t的式子表示△POB的面积;(3)在(2)的条件下,当△POB的面积为24时,延长OP到Q,使得PQ=OP,在第一象限内是否存在点D,使得△OQD是等腰直角三角形,如果存在,求出D点坐标;如果不存在,请说明理由.6.如图1,已知△ABC中,∠ACB=90°,AC=BC=6,点D在AB边的延长线上,且CD =AB.(Ⅰ)求BD的长度;(Ⅱ)如图2,将△ACD绕点C逆时针旋转α(0°<α<360°)得到△A'CD'.①若α=30°,A'D'与CD相交于点E,求DE的长度;②连接A'D、BD',若旋转过程中A'D=BD'时,求满足条件的α的度数.(Ⅲ)如图3,将△ACD绕点C逆时针旋转α(0°<α<360°)得到△A'CD',若点M 为AC的中点,点N为线段A'D'上任意一点,直接写出旋转过程中线段MN长度的取值范围.7.如图①,将两个等腰直角三角形纸片OAB和OCD放置在平面直角坐标系中,点O(0,0),点A(0,+1),点B(+1,0),点C(0,1),点D(1,0).(Ⅰ)求证:AC=BD;(Ⅱ)如图②,现将△OCD绕点O顺时针方向旋转,旋转角为α(0°<α<180°),连接AC,BD,这一过程中AC和BD是否仍然保持相等?说明理由;当旋转角α的度数为时,AC所在直线能够垂直平分BD;(Ⅲ)在(Ⅱ)的情况下,将旋转角α的范围扩大为0°<α<360°,那么在旋转过程中,求△BAD的面积的最大值,并写出此时旋转角α的度数.(直接写出结果即可)8.在△ABC中,AB=AC,∠BAC=α,过点A作直线l平行于BC,点D是直线l上一动点,连接CD,射线DC绕点D顺时针旋转α交直线AB于点E.(1)如图1,若α=60°,当点E在线段AB上时,请直接写出线段AC,AD,AE之间的数量关系,不用证明;(2)如图2,若α=60°,当点E在线段BA的延长线上时,(1)中的结论是否成立?若成立,请证明;若不成立,请写出正确结论,并证明.(3)如图3,若α=90°,BC=6,AD=,请直接写出AE的长.9.有一根直尺短边长4cm,长边长10cm,还有一块锐角为45°的直角三角形纸板,它的斜边长为16cm,如图甲,将直尺的短边DE与直角三角形纸板的斜边AB重合,且点D 与点A重合.将直尺沿射线AB方向平移,如图乙,设平移的长度为xcm,且满足0≤x ≤12,直尺和三角形纸板重叠部分的面积为Scm2.(1)当x=0cm时,S=;当x=12cm时,S=.(2)当0<x<8(如图乙、图丙),请用含x的代数式表示S.(3)是否存在一个位置,使重叠部分面积为28cm2?若存在求出此时x的值.10.如图①,C为线段BD上的一点,BC≠CD,分别以BC,BD为边在BD的上方作等边△ABC和等边△CDE,连接AE,F,G,H分别是BC,AE,CD的中点,连接FG,GH,FH.(1)△FGH的形状是;(2)将图①中的△CDE绕点C顺时针旋转,其他条件不变,(1)的结论是否成立?结合图②说明理由;(3)若BC=2,CD=4,将△CDE绕点C旋转一周,当A,E,D三点共线时,直接写出△FGH的周长.11.已知,射线AB∥CD,P是直线AC右侧一动点,连接AP,CP,E是射线AB上一动点,过点E的直线分别与AP,CP交于点M,N,与射线CD交于点F,设∠BAP=∠1,∠DCP=∠2.(1)如图1,当点P在AB,CD之间时,求证:∠P=∠1+∠2;(2)如图2,在(1)的条件下,作△PMN关于直线EF对称的△P'MN,求证:∠3+∠4=2(∠1+∠2);(3)如图3,当点P在AB上方时,作△PMN关于直线EF对称的△P'MN,(1)(2)的结论是否仍然成立,若成立,请说明理由;若不成立,请直接写出∠P,∠1,∠2之间数量关系,以及∠3,∠4与∠1,∠2之间数量关系.12.(1)如图1,平面直角坐标系中A(0,a),B(a,0)(a>0).C为线段AB的中点,CD⊥x轴于D,若△AOB的面积为2,则△CDB的面积为.(2)如图2,△AOB为等腰直角三角形,O为直角顶点,点E为线段OB上一点,且OB=3OE,C与E关于原点对称,线段AB交x轴于点D,连CD,若CD⊥AE,试求的值.(3)如图3,点C、E在x轴上,B在y轴上,OB=OC,△BDE是以B为直角顶点的等腰直角三角形,直线CB、ED交于点A,CD交y轴于点F,试探究:是否为定值?如果是定值,请求出该定值;如果不是,请求出其取值范围.13.在△ABC中,AB=AC,∠BAC=90°.(1)如图1,点P,Q在线段BC上,AP=AQ,∠BAP=15°,求∠AQB的度数;(2)点P,Q在线段BC上(不与点B,C重合),AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②用等式表示线段BP,AP,PC之间的数量关系,并证明.14.【问题背景】如图1,在Rt△ABC中,AB=AC,D是直线BC上的一点,将线段AD绕点A逆时针旋转90°至AE,连接CE,求证:△ABD≌△ACE;【尝试应用】如图2,在图1的条件下,延长DE,AC交于点G,BF⊥AB交DE于点F,求证:FG=AE;【拓展创新】如图3,A是△BDC内一点,∠ABC=∠ADB=45°,∠BAC=90°,BD =,直接写出△BDC的面积为.15.在平面直角坐标系中,A(a,0),B(0,b)分别是x轴负半轴和y轴正半轴上一点,点C与点A关于y轴对称,点P是x轴正半轴上C点右侧一动点.(1)当2a2+4ab+4b2+2a+1=0时,求A,B的坐标;(2)当a+b=0时,①如图1,若D与P关于y轴对称,PE⊥DB并交DB延长线于E,交AB的延长线于F,求证:PB=PF;②如图2,把射线BP绕点B顺时针旋转45o,交x轴于点Q,当CP=AQ时,求∠APB的大小.16.已知:在Rt△ABC中,∠C=90°,∠B=30°,BC=6,左右作平行移动的等边三角形DEF的两个顶点E、F始终在边BC上,DE、DF分别与AB相交于点G、H.(1)如图1,当点F与点C重合时,点D恰好在斜边AB上,求△DEF的周长;(2)如图2,在△DEF作平行移动的过程中,图中是否存在与线段CF始终相等的线段?如果存在,请指出这条线段,并加以证明;如果不存在,请说明理由;(3)假设C点与F点的距离为x,△DEF与△ABC的重叠部分的面积为y,求y与x的函数关系式,并写出定义域.17.在△ABC中,∠C=90°,AC=2,BC=2,点D为边AC的中点(如图),点P、Q 分别是射线BC、BA上的动点,且BQ=BP,联结PQ、QD、DP.(1)求证:PQ⊥AB;(2)如果点P在线段BC上,当△PQD是直角三角形时,求BP的长;(3)将△PQD沿直线QP翻折,点D的对应点为点D',如果点D'位于△ABC内,请直接写出BP的取值范围.18.定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3,求BN的长.(2)如图2,在等腰直角△ABC中,AC=BC,∠ACB=90°,点M,N为边AB上两点满足∠MCN=45°,求证:点M,N是线段AB的勾股分割点;阳阳同学在解决第(2)小题时遇到了困难,陈老师对阳阳说:要证明勾股分割点,则需设法构造直角三角形,你可以把△CBN绕点C逆时针旋转90°试一试.请根据陈老师的提示完成第(2)小题的证明过程.19.问题背景如图(1),△ABD,△AEC都是等边三角形,△ACD可以由△AEB通过旋转变换得到,请写出旋转中心、旋转方向及旋转角的大小.尝试应用如图(2),在Rt△ABC中,∠ACB=90°,分别以AC,AB为边,作等边△ACD和等边△ABE,连接ED,并延长交BC于点F,连接BD.若BD⊥BC,求的值.拓展创新如图(3),在Rt△ABC中,∠ACB=90°,AB=2,将线段AC绕点A顺时针旋转90°得到线段AP,连接PB,直接写出PB的最大值.20.【教材呈现】如图是苏科版九年级下册数学教材第92页的第17题.一块直角三角形木板,它的一条直角边AC长为1.5m,面积为1.5m2.甲乙两人分别按图1、图2把它加工成一个正方形的桌面,请说明哪个正方形的面积较大.【解决问题】(1)记图1、图2中的正方形面积分别为S1,S2,则S1S2.(填“>”、“<”或“=”).【问题变式】若木板形状是锐角三角形A1B1C1.某数学兴趣小组继续思考:按图3、图4、图5三种方式加工,分别记所得的正方形面积为S3、S4、S5,哪一个正方形的面积最大呢?(2)若木板的面积S仍为1.5m2.小明:记图3中的正方形为“沿B1C1边的内接正方形”,图4中的正方形为“沿A1C1边的内接正方形”,依此类推.以图3为例,求“沿B1C1边的内接正方形DEFG”的面积.设EF =x ,B 1C 1=a ,B 1C 1边上的高A 1H =h ,则S =ah .由“相似三角形对应高的比等于相似比”易得x =;同理可得图4、图5中正方形边长,再比较大小即可.小红:若要内接正方形面积最大,则x 最大即可;小莉:同一块木板,面积相同,即S 为定值,本题中S =1.5,因此,只需要a +h 最小即可.我们可以借鉴以前研究函数的经验,令y =a +h =a +=a +(a >0).下面来探索函数y =a +(a >0)的图象和性质.①根据如表,画出函数的图象:(如图6)a… 1 2 3 4 … y … 12 9 6 4 3 3 4 4…②观察图象,发现该函数有最小值,此时a 的取值 ;A .等于2;B .在1~之间;C .在~之间;D .在~2之间.(3)若在△A 1B 1C 1中(如图7),A 1B 1=5,A 1C 1=,高A 1H =4.①结合你的发现,得到S 3、S 4、S 5的大小关系是 (用“<”连接). ②小明不小心打翻了墨水瓶,已画出最大面积的内接正方形的△A 1B 1C 1原图遭到了污损,请用直尺和圆规帮他复原△A 1B 1C 1.(保留作图痕迹,不写作法)参考答案1.解:(1)∵△ABC是等边三角形,∴AC=BC,∠BAC=∠ACB=60°,∵△ECD是等边三角形,∴CE=CD,∠DCE=60°,∴∠ACB=∠DCE=60°,∴∠ACB+∠BCE=∠DCE+∠BCE,即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,在△ABF中,∠AFB=180°﹣(∠BAF+∠ABF)=180°﹣(∠BAF+∠CBF+∠ABC)=180°﹣(∠BAC+∠ABC)=180°﹣(60°+60°)=60°,∴∠AFB=60°,故答案为:∠AFB=60°,AE=BD;(2)(1)中结论仍成立,证明:∵△ABC是等边三角形,∴AC=BC,∠BAC=∠ACB=60°,∵△ECD是等边三角形,∴CE=CD,∠DCE=60°,∴∠ACB=∠DCE=60°,∴∠ACB+∠BCE=∠DCE+∠BCE,即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,∵∠AFB+∠CBD=∠ACB+∠CAE,∴∠AFB=∠ACB,∵∠ACB=60°,∴∠AFB=60°;(3)在△BCD中,BC+CD>BD,BC﹣CD<BD,∴点D在BC的延长线上时,BD最大,最大为4+3=7,当点D在线段BC上时,BD最小,最小为4﹣3=1,∴1≤BD≤7,即BD长的取值范围为1≤BD≤7.2.解:(1)∵∠BAC=90°,AB=AC,∴△ABC为等腰直角三角形,∠B=45°,∵DE∥AB,∴∠DEC=∠B=45°,∠CDE=∠A=90°,∴△DEC为等腰直角三角形,∴cos∠C==,∵DE∥AB,∴==,故答案为:;(2)由(1)知,△BAC和△CDE均为等腰直角三角形,∴==,又∠BCE=∠ACD=α,∴△BCE∽△ACD,∴==,即=;(3)①如图3﹣1,当点E在线段BA的延长线上时,∵∠BAC=90°,∴∠CAE=90°,∴AE===3,∴BE=BA+AE=4+3=7;由(2)知,=.故AD=.②如图3﹣2,当点E在线段BA上时,AE===3,∴BE=BA﹣AE=4﹣3=1,由(2)知,=.故AD=.综上所述,AD的长为或,故答案为:或.3.解:(1)如图2中,∵AB=10,AD=5,∴AD=DB,∵CA=CB,AD=DB,∴CD⊥AB.(2)如图1中,当AB<AD时,BC=BD.设AB=10k,则AC=BC=6k,∵AD=5,∴10k+6k=5,∴k=,∴BC=6k=.如图1﹣1中,当AB>AD时,BC=BD,同法可得10k﹣6k=5,解得k=,∴BC=6k=,综上所述,BC的值为或.(3)如图3﹣1中,当△ADC≌△BED时,BD=AC=BC,由(2)可知,BC=.如图3﹣2中,当△ADC≌△BCE时,点E与C重合,此时AB=10k=10,∴k=1,BC=6k=6.综上所述,BC的值为或6.(4)如图3中,当CA′∥AB时,∵CA′∥AB,∴∠ADC=∠A′CD,由翻折可知,∠A′CD=∠ACD,∴∠ACD=∠ADC,∴AC=AD=5,∴CA′=CA=5.故答案为5.4.解:(1)结论:BD=AC,BD⊥AC.理由:延长BD交AC于F.∵AE⊥CB,∴∠AEC=∠BED=90°.在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD,∠CAE=∠EBD,∵∠AEC=90°,∴∠ACB+∠CAE=90°,∴∠CBF+∠ACB=90°,∴∠BFC=90°,∴AC⊥BD,故答案为:BD⊥AC,BD=AC.(2)如图2中,不发生变化,设DE与AC交于点O,BD与AC交于点F.理由是:∵∠BEA=∠DEC=90°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC(SAS),∴BD=AC,∠BDE=∠ACE,∵∠DEC=90°,∴∠ACE+∠EOC=90°,∵∠EOC=∠DOF,∴∠BDE+∠DOF=90°,∴∠DFO=180°﹣90°=90°,∴BD⊥AC;(3)①如图3中,结论:BD=AC,理由是:∵△ABE和△DEC是等边三角形,∴AE=BE,DE=EC,∠BEA=∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC(SAS),∴BD=AC,故答案为:BD=AC.②能;设BD与AC交于点F,由①知,△BED≌△AEC,∴∠BDE=∠ACE,∴∠DFC=180°﹣(∠BDE+∠EDC+∠DCF)=180°﹣(∠ACE+∠EDC+∠DCF)=180°﹣(60°+60°)=60°,即BD与AC的夹角中的锐角的度数为60°.5.解:(1)∵B、C两点关于y轴对称,且C(﹣8,0),∴点B(8,0),BO=CO,又∵AO⊥BC,∴AC=AB,∵∠CAB=90°,AC=AB,CO=BO,∴AO=CO=BO=8,∴点A(0,8);(2)如图1,过点P作PM⊥OB于M,∵点P的横坐标为t,∴OM=t,∴MB=8﹣t,∵∠CAB=90°,AC=AB,∴∠ABO=45°,∴∠BPM=∠ABO=45°,∴PM=MB=8﹣t,∴S△POB=×OB×PM=×8×(8﹣t)=32﹣4t;(3)∵△POB的面积为24,∴32﹣4t=24,∴t=2,∴点P(2,6),如图2,当点Q为直角顶点时,过点Q作HG⊥y轴,过点D作DG⊥HG于点G,∵PQ=OP,点P(2,6),∴点Q(4,12),∵∠OQD=90°=∠OHQ=∠QGD,∴∠OQH+∠DQG=90°=∠OQH+∠HOQ,∴∠HOQ=∠GQD,又∵OQ=QD,∴△OHQ≌△QGD(AAS),∴OH=QG=12,HQ=GD=4,∴HG=16,∴点D(16,8);当点D为直角顶点时,过点Q作HG⊥y轴,过点D作DG⊥HG于点G,过点D作DN ⊥y轴于N,同理可求△QDG≌△ODN,∴ON=QG,DN=DG,∵DN=QG+HQ=4+QG,DG=HN=12﹣ON,∴ON=QG=4,DN=DG=8,∴点D(8,4),综上所述:点D(16,8)或(8,4).6.解:(Ⅰ)如图1,过点C作CH⊥AB于H,∵∠ACB=90°,AC=BC=6,CH⊥AB,∴AB=CD=6,CH=BH=AB=3,∠CAB=∠CBA=45°,∴DH===3,∴BD=DH﹣BH=3﹣3;(Ⅱ)①如图2,过点E作EF⊥CD'于F,∵将△ACD绕点C逆时针旋转α(0°<α<360°)得到△A′CD′,∴CD=CD'=6,∠DCD'=30°=∠CDA=∠CD'A',∴CE=D'E,又∵EF⊥CD',∴CF=D'F=3,EF=,CE=2EF=2,∴DE=DC﹣CE=6﹣2;②如图2﹣1,∵∠ABC=45°,∠ADC=30°,∴∠BCD=15°,∴∠ACD=105°,∵将△ACD绕点C逆时针旋转α(0°<α<360°)得到△A′CD′,∴AC=A'C,CD=CD',∠ACA'=∠DCD'=α,∴CB=CA',又∵A′D=BD′,∴△A'CD≌△BCD'(SSS),∴∠A'CD=∠BCD',∴105°﹣α=15°+α,∴α=45°;如图2﹣2,同理可证:△A'CD≌△BCD',∴∠A'CD=∠BCD',∴α﹣105°=360°﹣α﹣15°,∴α=225°,综上所述:满足条件的α的度数为45°或225°;(Ⅲ)如图3,当A'D'⊥AC时,N是AC与A'D'的交点时,MN的长度最小,∵∠A'=45°,A'D'⊥AC,∴∠A'=∠NCA'=45°,∴CN=A'N=3,∵点M为AC的中点,∴CM=AC=3,∴MN的最小值=NC﹣CM=3﹣3;如图4,当点A,点C,点D'共线,且点N与点D'重合时,MN有最大值,此时MN=CM+CN=6+3,∴线段MN的取值范围是3﹣3≤MN≤6+3.7.解:(Ⅰ)∵点A(0,+1),点B(+1,0),点C(0,1),点D(1,0),∴OA=+1,OB=+1,OC=1,OD=1,∴AC=OA﹣OC=+1﹣1=,BD=+1﹣1=,∴AC=BD;(Ⅱ)由题意知,OA=OB,OC=OD,∠AOB=∠COD=90°,∴∠AOC=∠AOB﹣∠COB=90°﹣∠COB,∠BOD=∠COD﹣∠COB=90°﹣∠COB,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,如图1(注:点C在x轴上,为了不要出现误解,点C没画在x轴上),延长AC交BD 于D,连接BC,在Rt△AOB中,OA=OB,∴∠OAB=∠OBA=45°,∴∠CAB+∠ABD=∠OAB﹣∠OAC+∠ABO+∠BOD=∠OAB+∠OBA=90°,∴AC⊥BD,∵AC垂直平分BD,∴CD=BC,设点C的坐标为(m,n),∴m2+n2=1①,由旋转知,CD==,∵B(+1,0),[m﹣(+1)]2+n2=2②,联立①②解得,m=1,n=0,∴点C在x轴上,∴旋转角为∠AOC=90°,故答案为:90°;(Ⅲ)如图2,∵OA=OB=+1,∴AB=OA=2+,过点O作OH⊥AB于H,∴S△AOB=OA•OB=AB•OH,∴OH====,过点D作DG⊥AB于G,S△ABD=AB•DG=(2+)DG,要使△ABD的面积最大,则DG最大,由旋转知,点D是以O为圆心,1为半径的圆上,∴点D在HO的延长线上时,DG最大,即DG的最大值为D'H=OD'+OH=1+=,∴S△ABD最大=AB•D'H=(2+)×=,在Rt△AOB中,OA=OB,OH⊥AB,∴∠BOH=45°,∴旋转角∠BOD'=180°﹣45°=135°.8.解:(1)AC=AE+AD.证明:连接CE,∵线段DC绕点D顺时针旋转α交直线AB于点E,α=60°,∵AB=AC,∠BAC=60°,∴CB=CA=AB,∠ACB=60°,∵AD∥BC,∴∠DAF=∠ACB=60°,∵∠FDC=∠EAF=60°,∠AFE=∠DFC,∴△AFE∽△DFC,∴,∴,∵∠AFD=∠EFC,∴△AFD∽△EFC,∴∠DAF=∠FEC=60°,∴△DEC是等边三角形,∴CD=CE,∠ECD=60°,∴∠BCE=∠ACD,∴△BCE≌△ACD(SAS),∴BE=AD,∴AB=AE+BE=AE+AD,∴AC=AE+AD;(2)不成立,AD=AC+AE.理由如下:在AC的延长线上取点F,使AF=AD,连接DF,当α=60°时,∠BAC=∠EDC=60°,∵AB=AC,∴△ABC是等边三角形,∴AB=AC=BC∠BCA=60°,∵l∥BC,∴∠DAC=∠BCA=60°,∠EAD=∠ABC=60°,∵AF=AD,∴∠ADF=∠AFD=60°,AD=FD=AF,∴∠EDC=∠ADF=60°,∴∠EDC﹣∠ADC=∠ADF﹣∠ADC,即∠EDA=∠CDF,∵AD=FD,∠EAD=∠AFD=60°,∴△EAD≌△CFD(ASA),∴AE=CF,∴AD=AF=AC+CF=AC+AE;(3)AE的长为或.当点E在线段AB上,过点D作直线l的垂线,交AC于点F,如图3所示.∵△ABC中,∠BAC=90°,AC=AB,∴∠ACB=∠B=45°.∵直线l∥BC,∴∠DAF=∠ACB=45°.∵FD⊥直线l,∴∠DAF=∠DF A=45°.∴AD=FD.∵∠EDC=∠ADF=90°,∴∠ADE=∠FDC.由(1)可知DC=DE,∴△ADE≌△FDC(SAS),∴AE=CF.∵AD=,∴AF=2,∵BC=6,∴AC=AB=3,∴AE=AC﹣AF=3﹣2.当点E在线段AB的延长线上时,如图4所示.过点D作直线l的垂线,交AB于点M,同理可证得△ADC≌△MDE(SAS),∴AC=EM=3,∵AD=,∴AM=2,∴EM+AM=3+2.综合以上可得AE的长为3+2或3﹣2.9.解:(1)当x=0cm时,S=4×4÷2=8cm2;当x=12cm时,S=4×4÷2=8cm2.故答案为:8cm2;8cm2.(2)①当0<x<4时,∵△CAB为等腰直角三角形,∴∠CAB=45°,∴△ADG和△AEF都是等腰直角三角形,∴AD=DG=x,AE=EF=x+4,∴梯形GDEF的面积=×(GD+EF)×DE=×(x+x+4)×4=4x+8.②如图所示:过点C作CM⊥AB于点M.当4<x<8时,梯形GDMC的面积=(GD+CM)×DM=(x+8)(8﹣x)=﹣x2+32,梯形CMEF的面积=(EF+CM)×ME=[16﹣(x+4)+8][(x+4)﹣8]=(20﹣x)(x﹣4)=﹣x2+12x﹣40,S=梯形GDMC的面积+梯形CMEF的面积=(﹣x2+32)+(﹣x2+12x﹣40)=﹣x2+12x ﹣8.综合以上可得,S=.(3)当0<x<4时s最大值小于24,当x=4时,S=24cm2,所以当S=28cm2时,x必然大于4,即﹣x2+12x﹣8=28,解得x1=x2=6,当x=6cm时,阴影部分面积为28cm2.当8<≤12时,由对称性可知s的最大值也是小于24,不合题意舍去.∴当x=6cm时,阴影部分面积为28cm2.10.解:(1)∵△ABC和△CDE都是等边三角形,∴∠B=∠DCE=60°,AB=BC,CE=CD,∴CE∥AB,∵BC≠CD,∴CE≠AB,∴四边形ABCE是梯形,∵点F,G分别是BC,AE的中点,∴FG是梯形ABCE的中位线,∴FG∥AB,∴∠GFC=60°,同理:∠GHB=60°,∴∠FGH=180°﹣∠GFC﹣∠GHB=60°=∠GFC=∠GHB,∴△FGH是等边三角形,故答案为:等边三角形;(2)成立,理由如下:如图1,取AC的中点P,连接PF,PG,∵△ABC和△CDE都是等边三角形,∴AB=BC,CE=CD,∠BAC=∠ACB=∠ECD=∠B=60°,又F,G,H分别是BC,AE,CD的中点,∴FP=AB,FC=BC,CH=CD,PG=CE,PG∥CE,PF∥AB,∴FP=FC,PG=CH,∠GPC+∠PCE=180°,∠FPC=∠BAC=60°,∠PFC=∠B=60°,∴∠FPG=∠FPC+∠GPC=60°+∠GPC,∠GPC=180°﹣∠PCE,∴∠FCH=360°﹣∠ACB﹣∠ECD﹣∠PCE=360°﹣60°﹣60°﹣(180°﹣∠GPC)=60°+∠GPC,∴∠FPG=∠FCH,∴△FPG≌△FCH(SAS),∴FG=FH,∠PFG=∠CFH,∴∠GFH=∠GFC+∠CFH=∠GFC+∠PFG=∠PFC=60°,∴△FGH为等边三角形;(3)①当点D在AE上时,如图2,∵△ABC是等边三角形,∴∠ACB=60°,AC=BC=2,∵△CDE是等边三角形,∴∠CED=∠CDE=60°,CE=CD=DE=4,过点C作CM⊥AE于M,∴DM=EM=DE=2,在Rt△CME中,根据勾股定理得,CM===2,在Rt△AMC中,根据勾股定理得,AM===4,∴AD=AM﹣DM=4﹣2=2,∵∠ACB=∠DCE=60°,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,∴∠ACD=∠BCE,连接BE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD=2,∠ADC=∠BEC,∵∠ADC=180°﹣∠CDE=120°,∴∠BEC=120°,∴∠BEA=∠BEC﹣∠CED=60°,过点B作BN⊥AE于N,∴∠BNE=90°,在Rt△BNE中,∠EBN=90°﹣∠BEA=30°,∴EN=BE=1,∴BN=EN=,DN=DE﹣EN=3,连接BD,根据勾股定理得,BD===2,∵点H是CD的中点,点F是BC的中点,∴FH是△BCD的中位线,∴FH=BD=,由(2)知,△FGH是等边三角形,∴△FGH的周长为3FH=3,②当点D在AE的延长线上时,如图3,同①的方法得,FH=,∴△FGH的周长为3FH=3,即满足条件的△FGH的周长为3或3.11.(1)证明:如图1中,过点P作PT∥AB.∵AB∥CD,AB∥PT,∴AB∥PT∥CD,∴∠1=∠APT,∠2=∠CPT,∴∠APC=∠APT+∠CPT=∠1+∠2.(2)证明:如图2中,连接PP′.∵∠3=∠MPP′+∠MP′P,∠4=∠NPP′+∠NP′P,∠APC=∠MP′N,∴∠3+∠4=2∠APC,∵∠APC=∠1+∠2,∴∠3+∠4=2(∠1+∠2).(3)结论不成立.结论是:∠P=∠2﹣∠1,∠4﹣∠3=2(∠2﹣∠1).理由:如图3中,设PC交AB于E,AP交NP′于F.∵AB∥CD,∴∠PEB=∠2,∵∠PEB=∠1+∠P,∴∠2=∠P+∠1,∴∠P=∠2﹣∠1.∵∠4=∠P+∠PFN,∠PFN=∠3+∠P′,∠P=∠P′,∴∠4=∠P+∠3+∠P,∴∠4﹣∠3=2∠P=2(∠2﹣∠1),∴∠4﹣∠3=2(∠2﹣∠1).12.解:(1)∵A(0,a),B(a,0)(a>0),∴OA=a,OB=a,∵△AOB的面积为2,∴S△AOB=×a×a=2,∴a=2(负值舍去),∴A(0,2),B(2,0),∵C为线段AB的中点,∴C(1,1),∴OD=BD=CD=1,∴S△CDB=×1×1=.故答案为:.(2)连AC,过点D作DM⊥BC于M,∵△AOB是等腰直角三角形,∴AO⊥BO,AO=BO,∠B=∠OAB=45°,又CO=EO,∴AO是CE的垂直平分线,∴AE=AC,不妨设AE、CD交于F,AO、CD交于G,∴∠CGA=∠OAE+∠AFC=∠OCD+∠COA,∵∠AFC=∠COA=90°,∴∠OAE=∠OCD=∠OAC,又∵∠CAD=∠CAO+∠OAB=∠OCD+∠B=∠CDA,∴CD=CA=EA,∴△AOE≌△CMD(AAS),∴OE=DM,∴===3,∴=2;(3)=2,理由如下:作点C关于y轴的对称点N,连接BN,作DM∥BC交y轴于M,∵OB=OC=ON,∠BON=90°,∴△BON等腰直角三角形,∴∠BNO=∠BMD=45°,∴∠MBD=∠OBE+∠DBE=∠OBE+∠BOE=∠BEN,又∵BD=BE,∴△BMD≌△ENB(AAS),∴EN=BM,BN=DM=BC,又∵∠BFC=∠DFM,∠BCF=∠FDM,∴△BCF≌△MDF(AAS),∴BF=MF,∴CO﹣EO=NO﹣EO=NE=BM=2BF,即=2.13.解:(1)∵在△ABC中,AB=AC,∠BAC=90°,∴∠B=∠C=45°,∵∠APQ是△ABC的一个外角,∴∠APQ=∠B+∠BAP,∵∠BAP=15°,∴∠APQ=60°,∵AP=AQ,∴∠APQ=∠AQB=60°.(2)①图形如图2所示.②解:结论:PC2+BP2=2AP2.理由:连接MC.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵AP=AQ,∴∠APQ=∠AQP,∴∠BAP=∠CAQ,∴△ABP≌△ACQ(SAS),∴BP=CQ,∵点Q关于直线AC的对称点为M,∴AQ=AM,CQ=CM,∠CAM=∠CAQ,∠ACM=∠ACQ=45°,∴AP=AM,∠B=∠ACM=45°,∠BAP=∠CAM,BP=CM,∴∠BAC=∠P AM=90°,在Rt△APM中,AP=AM,∠P AM=90°,∴PM=,∵∠ACQ=∠ACM=45°,∴∠PCM=90°,在Rt△PCM中,∠PCM=90°,∴PC2+CM2=PM2,∴PC2+BP2=2AP2.14.【问题背景】证明:如图1,∵∠BAC=∠DAE=90°,∴∠DAB=∠EAC,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).【尝试应用】证明:如图2,过点D作DK⊥DC交FB的延长线于K.∵DK⊥CD,BF⊥AB,∴∠BDK=∠ABK=90°,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠DBK=∠K=45°,∴DK=DB,∵△ABD≌△ACE,∴∠ABD=∠ACE=135°,DB=EC=DK,∴∠ECG=45°,∵BF⊥AB,CA⊥AB,∴AG∥BF,∴∠G=∠DFK,在△ECG和△DKF中,,∴△ECG≌△DKF(AAS),∴DF=EG,∵DE=AE,∴DF+EF=AE,∴EG+EF=AE,即FG=AE.【拓展创新】解:如图3中,过点A作AE⊥AD交BD于E,连接CE..∵∠ADB=45°,∠DAE=90°,∴△ADE与△ABC都是等腰直角三角形,同法可证△ABD≌△ACE,∴CE=BD=2,∵∠AEC=∠ADB=45°,∴∠CED=∠CEB=90°,∴S△BDC=•BD•CE=×2×2=6.故答案为:6.15.解:(1)∵2a2+4ab+4b2+2a+1=0,∴(a+2b)2+(a+1)2=0,∵(a+2b)2≥0 (a+1)2≥0,∴a+2b=0,a+1=0,∴a=﹣1,b=,∴A(﹣1,0)B(0,).(2)①证明:如图1中,∵a+b=0,∴a=﹣b,∴OA=OB,又∵∠AOB=90°,∴∠BAO=∠ABO=45°,∵D与P关于y轴对称,∴BD=BP,∴∠BDP=∠BPD,设∠BDP=∠BPD=α,则∠PBF=∠BAP+∠BP A=45°+α,∵PE⊥DB,∴∠BEF=90°,∴∠F=90o﹣∠EBF,又∠EBF=∠ABD=∠BAO﹣∠BDP=45°﹣α,∴∠F=45o+α,∴∠PBF=∠F,∴PB=PF.②解:如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴于H.可得等腰直角△BQF,∵∠BOQ=∠BQF=∠FHQ=90°,∴∠BQO+∠FQH=90°,∠FQH+∠QFH=90°,∴∠BQO=∠QFH,∵QB=QF,∴△FQH≌△QBO(AAS),∴HQ=OB=OA,∴HO=AQ=PC,∴PH=OC=OB=QH,∴FQ=FP,又∠BFQ=45°∴∠APB=22.5°.16.解:(1)在Rt△ABC中,∠C=90°,∠B=30°,BC=6,∴AC=2,∠A=60°,∵△DEF是等边三角形,∴∠DCE=60°,∴∠ACD=30°,∴∠ADC=90°,∴CD=AC=3,∴△DEF的周长=9;(2)解:结论:CF=DG.理由:∵BC=6,EF=DF=DE=3,∴CF+BE=BC﹣EF=6﹣3=3,∵△DEF是等边三角形,∴∠DEF=60°,∵∠DEF=∠B+∠EGB,∴∠B=∠EGB=∠DGE=30°,∴EG=BE,∵EG+DG=CF+BE=3,∴CF=DG;(3)∵S△DEF=×32=,S△DGH=•GH•DH=•x•x=x2,y=S△DFE﹣S△DHG=﹣x2(0≤x≤3).17.解:(1)在Rt△ABC中,AC=2,BC=2,根据勾股定理得,AB===4,∴=,∵BQ=BP,∴=,∴,∵∠QBP=∠CBA,∴△BPQ∽△BAC,∴∠BQP=∠ACB=90°,∴PQ⊥AB;(2)∵点D是AC的中点,∴AD=CD=AC=1,由(1)知,PQ⊥AB,∴∠AQP=90°,∴∠PQD<90°,∵△PQD是直角三角形,∴①当∠DPQ=90°时,如图1,在Rt△ABC中,AC=2,AB=4,∴sin∠ABC==,∴∠ABC=30°,∴∠QPB=90°﹣∠ABC=60°,∴∠DPC=90°﹣∠BPQ=30°,∴CP===,∴BP=BC﹣CP=,②当∠PDQ=90°时,∴∠ADQ+∠PDC=90°,如图2,过Q作QE⊥AC于E,∴∠DEQ=90°=∠ACB,∴∠ADQ+∠DQE=90°,∴∠DQE=∠PDC,∴△EQD∽△CDP,∴,∴,设BP=t,则CP=BC﹣BP=2﹣t,在Rt△BQP中,BQ=BP cos30°=t,∴AQ=AB﹣BQ=4﹣t,在Rt△AEQ中,QE=AQ cos30°=(4﹣t)•=2﹣t,AE=AQ=2﹣t,∴DE=AD﹣AE=t﹣1,∴,∴t=或t=(大于2,舍去)∴BP=;即BP=或;(3);理由:如图3,①当点D'恰好落在边BC上时,由折叠知,PD'=PD,PQ⊥DD',由(1)知,PQ⊥AB,∴DD'∥AB,∴∠DD'C=∠ABC=30°,∴CD'=CD=,设BP=m,则CP=BC﹣BP=2﹣m,∴DP=D'P=CD'﹣CP=m﹣,在Rt△CDP中,根据勾股定理得,DP2=CP2+CD2,∴(m﹣)2=(2﹣m)2+1,∴m=,②当点D'落在D时,即PQ过点D,在Rt△CDP'中,∠P'=90°﹣∠DD'P'=30°,∴CP'===,∴BP'=BC+CP'=,综上:.18.(1)解:当MN最长时,BN===;当BN最长时,BN===,综合以上可得BN的长为或;(2)证明:如图,把△CBN绕点C逆时针旋转90°,得到△CAN',连接MN',∴△AN'C≌△BNC,∴CN'=CN,∠ACN'=∠BCN,∠CBN=∠CAN',∵∠MCN=45°,∴∠N'CA+∠ACM=∠ACM+∠BCN=45°,∴∠MCN'=∠BCM,∴△MN'C≌△MNC(SAS),∴MN'=MN,∵AC=BC,∠ACB=90°,∴∠B=∠CAM=45°,∴∠CAN'=45°,∴∠MAN'=∠CAN'+∠CAM=45°+45°=90°,在Rt△MN'A中,AN'2+AM2=N'M2,∴BN2+AM2=MN2,∴点M,N是线段AB的勾股分割点.19.问题背景解:∵△ABD,△AEC都是等边三角形,∴∠BAD=60°,∠CAE=60°,AD=AB,AC=AE,∴∠BAD+∠BAC=∠CAE+∠BAC,∴∠DAC=∠BAE,∴△ACD≌△AEB(SAS),∴△ACD可以由△AEB绕点A顺时针旋转60°得到,即旋转中心是点A,旋转方向是顺时针,旋转角是60°;尝试应用∵△ACD和△ABE都是等边三角形,∴AC=AD,AB=AE,∠CAD=∠BAE=60°,∴∠CAB=∠DAE,∴△ADE≌△ACB(SAS),∴∠ADE=∠ACB=90°,DE=CB,∵∠ADE=90°,∴∠ADF=90°,∵∠ADC=∠ACD=60°,∴∠DCF=∠CDF=30°,∴CF=DF,∵BD⊥BC,∴∠BDF=30°,∴BF=DF,设BF=x,则CF=DF=2x,DE=3x,∴;拓展创新∵∠ACB=90°,∴点C在以AB为直径的圆上运动,取AB的中点D,连接CD,∴CD=AB=1,如图,过点A作AE⊥AB,且使AE=AD,连接PE,BE,∵将线段AC绕点A顺时针旋转90°得到线段AP,∴∠P AC=90°,P A=AC,∵∠EAD=90°,∴∠P AE=∠CAD,∴△CAD≌△P AE(SAS),∴PE=CD=1,∵AB=2,AE=AD=1,∴BE===,∴BP≤BE+PE=+1,当且仅当P、E、B三点共线时取等号,∴BP的最大值为+1.20.解:(1)由AC长为1.5m,△ABC的面积为1.5m2,可得BC=2m,如图①,设加工桌面的边长为xcm,∵DE∥CB,∴△ADE∽△ACB,∴=,即=,解得:x=;如图②,设加工桌面的边长为ym,过点C作CM⊥AB,分别交DE、AB于点N、M,∵AC=1.5m,BC=2m,∴AB===2.5(m),∵△ABC的面积为1.5m2,∴CM=m,∵DE∥AB,∴△CDE∽△CAB,∴=,即=,解得:y=,∴x>y,即S1>S2,故答案为:>.(2)①函数图象如图6所示:②观察图象,发现该函数有最小值,此时a的取值~2之间.故选D.(3)①由(2)可知,S5<S4<S3.故答案为:S5<S4<S3.②如图7,△A1B1C1即为所求作.。

2022-2023学年九年级数学中考复习《几何图形变换综合压轴题》专题提升训练(附答案)

2022-2023学年九年级数学中考复习《几何图形变换综合压轴题》专题提升训练(附答案)

2022-2023学年九年级数学中考复习《几何图形变换综合压轴题》专题提升训练(附答案)1.如图,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连接CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连接QB并延长交直线AD于E.(1)如图1,猜想∠QEP=;(2)如图2,若当∠DAC是锐角时,其他条件不变,猜想∠QEP的度数,并证明;(3)如图3,若∠DAC=135°,∠ACP=15°,且AC=6,求BQ的长.2.如图1,在等腰△ABC中,AB=AC,AD为中线,将线段AC绕点A逆时针旋转90°,得到线段AE,连接BE交直线AD于点F,连接CF.(1)若∠BAC=30°,则∠FBC=°;(2)若∠BAC是钝角时,①请在图2中依题意补全图形,并标出对应字母;②探究图2中△BCF的形状,并说明理由;③若AB=5,BC=8,则EF=.3.在△ABC中,AB=AC,∠BAC=90°,点D在射线BC上(不与点B、点C重合),将线段AD绕A逆时针旋转90°得到线段AE,作射线BA与射线CE,两射线交于点F.(1)若点D在线段BC上,如图1,请直接写出CD与EF的关系.(2)若点D在线段BC的延长线上,如图2,(1)中的结论还成立吗?请说明理由.(3)在(2)的条件下,连接DE,G为DE的中点,连接GF,若tan∠AEC=,AB=,求GF的长.4.已知△ABC中,∠ABC=90°,将△ABC绕点B逆时针旋转90°后,点A的对应点为点D,点C的对应点为点E,直线DE与直线AC交于点F,连接FB.(1)如图1,当∠BAC<45°时,①求证:DF⊥AC;②求∠DFB的度数;(2)如图2,当∠BAC>45°时,①请依意补全图2;②用等式表示线段FC,FB,FE之间的数量关系,并证明.5.实验探究:如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,BD、CE延长线交于点P.【问题发现】(1)把△ABC绕点A旋转到图1,BD、CE的关系是(“相等”或“不相等”),请直接写出答案;【类比探究】(2)若AB=3,AD=5,把△ABC绕点A旋转,当∠EAC=90°时,在图中作出旋转后的图形,并求出此时PD的长;【拓展延伸】(3)在(2)的条件下,请直接写出旋转过程中线段PD的最小值为.6.如图,在平面直角坐标系中,点O为坐标原点,点A(0,3)与点B关于x轴对称,点C(n,0)为x轴的正半轴上一动点.以AC为边作等腰直角三角形ACD,∠ACD=90°,点D在第一象限内.连接BD,交x轴于点F.(1)如果∠OAC=38°,求∠DCF的度数;(2)用含n的式子表示点D的坐标;(3)在点C运动的过程中,判断OF的长是否发生变化?若不变求出其值,若变化请说明理由.7.[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连接AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连接EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC交直线BC于F,如图2所示,通过证明△DEF≌△,可推证△CEF是三角形,从而求得∠DCE=°.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.8.如图,在等边△ABC中,点D为BC的中点,点E为AD上一点,连EB、EC,将线段EB绕点E顺时针旋转至EF,使点F落在BA的延长线上.(1)在图1中画出图形:①求∠CEF的度数;②探究线段AB,AE,AF之间的数量关系,并加以证明;(2)如图2,若AB=4,点G为AC的中点,连DG,将△CDG绕点C顺时针旋转得到△CMN,直线BM、AN交于点P,连CP,在△CDG旋转一周过程中,请直接写出△BCP 的面积最大值为.9.在△ABC中,点P为BC边中点,直线a绕顶点A旋转,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.(1)如图1,若点B,P在直线a的异侧,延长MP交CN于点E.求证:PM=PE;(2)若直线a绕点A旋转到图2的位置时,点B,P在直线a的同侧,其它条件不变,此时S△BMP+S△CNP=7,BM=1,CN=3,求MN的长度.(3)若过P点作PG⊥直线a于点G,试探究线段PG、BM和CN的数量关系.10.在Rt△ABC中与Rt△DCE中,∠ACB=∠DCE=90°,∠BAC=∠DEC=30°,AC=DC=,将Rt△DCE绕点C顺时针旋转,连接BD,AE,点F,G分别是BD,AE的中点,连接CF,CG.(1)观察猜想如图1,当点D与点A重合时,CF与CG的数量关系是,位置关系是;(2)类比探究当点D与点A不重合时,(1)中的结论是否成立?如果成立,请仅就图2的情形给出证明;如果不成立,请说明理由.(3)问题解决在Rt△DCE旋转过程中,请直接写出△CFG的面积的最大值与最小值.11.如图1,Rt△ABC中,∠C=90°,点E是AB边上一点,且点E不与A、B重合,ED ⊥AC于点D.(1)当sin B=时,①求证:BE=2CD;②当△ADE绕点A旋转到如图2的位置时(60°<∠CAD<90°),BE=2CD是否成立?若成立,请给出证明;若不成立,请说明理由.(2)当sin B=时,将△ADE绕点A旋转到∠DEB=90°,若AC=10,AD=2,请直接写出线段CD的长.12.如图,已知点A(0,8),B(16,0),点P是x轴上的一个动点(不与原点O重合),连接AP,把△OAP沿着AP折叠后,点O落在点C处,连接PC,BC,设P(t,0).(1)如图1,当AP∥BC时,试判断△BCP的形状,并说明理由.(2)在点P的运动过程中,当∠PCB=90°时,求t的值.(3)如图2,过点B作BH⊥直线CP,垂足为点H,连接AH,在点P的运动过程中,是否存在AH=BC?若存在,求出t的值:若不存在,请说明理由.13.如图,点B,C,D在同一条直线上,△BCF和△ACD都是等腰直角三角形.连接AB,DF,延长DF交AB于点E.(1)如图1,若AD=BD,DE是△ABD的平分线,BC=1,求CD的长度;(2)如图2,连接CE,求证:DE=CE+AE;(3)如图3,改变△BCF的大小,始终保持点F在线段AC上(点F与点A,C不重合).将ED绕点E顺时针旋转90°得到EP.取AD的中点O,连接OP.当AC=2时,直接写出OP长度的最大值.14.综合与实践问题情境从“特殊到一般”是数学探究的常用方法之一,类比特殊图形中的数量关系和探究方法可以发现一般图形具有的普遍规律.如图1,在△ABC中,∠ACB=90°,AC=BC,AD为BC边上的中线,E为AD上一点,将△AEC以点C为旋转中心,逆时针旋转90°得到△BFC,AD的延长线交线段BF于点P.探究线段EP,FP,BP之间的数量关系.数学思考(1)请你在图1中证明AP⊥BF;特例探究(2)如图2,当CE垂直于AD时,求证:EP+FP=2BP;类比再探(3)请判断(2)的结论在图1中是否仍然成立?若成立,请证明;若不成立,请说明理由.15.在Rt△ABC中,AB=AC,OB=OC,∠A=90°,∠MON=α,分别交直线AB、AC于点M、N.(1)如图1,当α=90°时,求证:AM=CN;(2)如图2,当α=45°时,求证:BM=AN+MN;(3)当α=45°时,旋转∠MON至图3位置,请你直接写出线段BM、MN、AN之间的数量关系.16.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴.如图,直线MN 是线段AB的垂直平分线,P是MN上任一点,连接P A、PB.将线段AB沿直线MN对折,我们发现P A与PB完全重合.由此即有:线段垂直平分线的性质定理线段:垂直平分线上的点到线段两端的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点求证:P A=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证得P A =PB.(1)请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程;(2)如图②,在△ABC中,直线l,m,n分别是边AB,BC,AC的垂直平分线.求证:直线l、m、n交于一点;(请将下面的证明过程补充完整)证明:设直线l,m相交于点O.(3)如图③,在△ABC中,AB=BC,边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,若∠ABC=120°,AC=15,则DE的长为.17.如图,在平面直角坐标系中,点O为坐标原点,点A(x,y)中的横坐标x与纵坐标y 满足+|y﹣8|=0,过点A作x轴的垂线,垂足为点D,点E在x轴的负半轴上,且满足AD﹣OD=OE,线段AE与y轴相交于点F,将线段AD向右平移8个单位长度,得到线段BC.(1)直接写出点A和点E的坐标;(2)在线段BC上有一点G,连接DF,FG,DG,若点G的纵坐标为m,三角形DFG 的面积为S,请用含m的式子表示S(不要求写m的取值范围);(3)在(2)的条件下,当S=26时,动点P从D出发,以每秒1个单位的速度沿着线段DA向终点A运动,动点Q从A出发,以每秒2个单位的速度沿着折线AB→BC向终点C运动,P,Q两点同时出发,当三角形FGP的面积是三角形AGQ面积的2倍时,求出P点坐标18.如图1,在Rt△ACB中,AC=BC,过B点作BD⊥CD于D点,AB交CD于E.(1)如图1,若AC=6,tan∠ACD=2,求DE的长;(2)如图2,若CE=2BD,连接AD,在AD上找一点F,使CF=DF,在FD上取一点G,使∠EGF=∠CFG,求证:AF=EG;(3)如图3,D为线段BC上方一点,且∠BDC=90°,AC=6,连接AD,将AD绕A 点逆时针旋转90°,D点对应点为E点,H为DE中点,求当AH有最小值时,直接写出△ACH的面积.19.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE.则:①∠AEB的度数为°;②线段AD、BE之间的数量关系是.(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若AD=a,AE=b,AB=c,求a、b、c之间的数量关系.(3)探究发现:图1中的△ACB和△DCE,在△DCE旋转过程中,当点A,D,E不在同一直线上时,设直线AD与BE相交于点O,试在备用图中探索∠AOE的度数,直接写出结果,不必说明理由.20.类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到.小明在数学学习中遇到了这样一个问题:“如图1,Rt△ABC中,∠ACB=90°,∠CAB=α,点P在AB边上,过点P作PQ⊥AC于点Q,△APQ绕点A逆时针方向旋转,如图2,连接CQ.O 为BC边的中点,连接PO并延长到点M,使OM=OP,连接CM.探究在△APQ的旋转过程中,线段CM,CQ之间的数量关系和位置关系”小明计划采用从特殊到一般的方法探究这个问题.特例探究:(1)填空:如图3,当α=30°时,=,直线CQ与CM所夹锐角的度数为;如图4,当α=45°时,=,直线CQ与CM所夹锐角的度数为;一般结论:(2)将△APQ绕点A逆时针方向旋转的过程中,线段CQ,CM之间的数量关系如何(用含α的式子表示)?直线CQ与CM所夹锐角的度数是多少?请仅就图2所示情况说明理由;问题解决(3)如图4,在Rt△ABC中,若AB=4,α=45°,AP=3,将△APQ由初始位置绕点A逆时针方向旋转β角(0°<β<180°),当点Q到直线AC的距离为2时,请直接写出线段CM的值.参考答案1.解:(1)∠QEP=60°;证明:如图1,QE与CP的交点记为M,∵PC=CQ,且∠PCQ=60°,∴∠PCQ=∠ACB=60°,∴∠BCQ=∠ACP,则△CQB和△CP A中,,∴△CQB≌△CP A(SAS),∴∠CQB=∠CP A,在△PEM和△CQM中,∠EMP=∠CMQ,∴∠QEP=∠QCP=60°.故答案为:60°;(2)∠QEP=60°.理由如下:如图2,∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∵线段CP绕点C顺时针旋转60°得到线段CQ,∴CP=CQ,∠PCQ=6O°,∴∠ACB+∠BCP=∠BCP+∠PCQ,即∠ACP=∠BCQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴∠APC=∠Q,∵∠BOP=∠COQ,∴∠QEP=∠PCQ=60°;(3)作CH⊥AD于H,如图3,与(2)一样可证明△ACP≌△BCQ,∴AP=BQ,∵∠DAC=135°,∠ACP=15°,∴∠APC=30°,∠PCB=45°,∴∠HAC=45°,∴△ACH为等腰直角三角形,∴AH=CH=AC=3,在Rt△PHC中,PH=CH=3,∴P A=PH﹣AH=3﹣3,∴BQ=3﹣3.2.解:(1)如图1中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=(180°﹣30°)=75°,∵AE⊥AC,∴∠EAC=90°,∴∠BAE=30°+90°=120°,∵AB=AE,∴∠ABE=∠E=(180°﹣120°)=30°,∴∠FBC=∠ABC﹣∠ABF=75°﹣30°=45°.故答案为:45.(2)①图形如图2所示.②结论:△BCF是等腰直角三角形理由如下:如图2中,∵AB=AC,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线,∴FB=FC,又AB=AC,AF=AF,∴△ABF≌△ACF(SSS),∴∠1=∠2,由旋转可知AE=AC,又AB=AC,∴AB=AE,∴∠1=∠3,∴∠2=∠3.又∠4=∠5,∴∠CFE=∠CAE=90°即∠CFB=90°,又FB=FC,∴△BCF为等腰直角三角形.③如图3中,作EH⊥DF交DF的延长线于H.∵AB=AC=5,BD=CD=4,∴AD⊥BC,∴∠ADB=90°,∴AD===3,∵∠ADC=∠EAC=∠H=90°,∴∠DAC+∠ACD=90°,∠DAC+∠HAE=90°,∴∠ACD=∠HAE,∵AE=AC,∴△ADC≌△EHA(AAS),∴EH=AD=3,∵△BDF是等腰直角三角形,FD⊥BC,∴∠DFB=∠BFC=45°,∴∠HEF=∠HFE=45°,∵∠H=90°,∴∠EHF=∠HFE=45°,∴EH=FH=3,∴EF=EH=,故答案为:3.3.解:(1)CD=EF,CD⊥EF,理由如下:∵AB=AC,∠BAC=90°,∴∠ABC∠ACB=45°,∵将线段AD绕A逆时针旋转90°得到线段AE,∴AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴BD=CE,∠ABD=∠ACE=45°,∴∠BCF=∠ACB+∠ACE=90°,∴CD⊥EF,又∵∠ABC=45°,∴∠BFC=∠ABC,∴BC=CF,∴CD=EF;(2)结论仍然成立,理由如下:∵AB=AC,∠BAC=90°,∴∠ABC∠ACB=45°,∵将线段AD绕A逆时针旋转90°得到线段AE,∴AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴BD=CE,∠ABD=∠ACE=45°,∴∠BCF=∠ACB+∠ACE=90°,∴CD⊥EF,又∵∠ABC=45°,∴∠BFC=∠ABC,∴BC=CF,∴CD=EF;(3)如图,过点A作AN⊥CE于点N,过点G作GH⊥CE于H,∵AB=AC=,∴BC=CF=2,∵AN⊥CE,∠ACF=45°,∴AN=CN=1,∵tan∠AEC==,∴EN=2,∴EC=CN+EN=3,∴EF=EC﹣CF=1=CD,∵GH⊥CE,∠ECD=90°,∴HG∥CD,∴==,且EG=DG,∴HG=,EH=,∴FH=EH﹣EF=∴GF===4.解(1)①由旋转知,∠ABD=∠ABC=90°,∠D=∠A,∴∠D+∠BED=90°,∴∠A+∠BED=90°,∵∠BED=∠AEF,∴∠A+∠AEF=90°,∴∠AFE=90°,∴DF⊥AC;②如图1,过点B作BG⊥BF交DF于G,∴∠FBG=90°,由旋转知,∠D=∠A,BD=AB,∠ABD=90°,∴∠FBG=∠ABD,∴∠DBG=∠ABF,∴△BDG≌△BAF(ASA),∴BG=BF,∵∠FBG=90°,∴∠BFD=45°;(2)①如图2所示,②CF﹣EF=BF.过点B作BG⊥BF交AC于G,∴∠FBG=90°,由旋转知,∠C=∠E,BC=BE,∵∠ABC=90°,∴∠FBG=∠ABC,∴∠CBG=∠EBF,∴△BCG≌△BEF(ASA),∴CG=EF,BG=BF,∵∠FBG=90°,∴∠BFD=45°,∴FG=BF,∵CF=FG+CG,∴FG=CF﹣CG=CF﹣EF=BF,即:CF﹣EF=BF.5.解:(1)BD、CE的关系是相等.理由:∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,∠BAD=∠CAE,DA=EA,∴△ABD≌△ACE(SAS)∴BD=CE.故答案为:相等.(2)如图2,3即为旋转后的图形.①如图2,当C在AD上时,由(1)知△ABD≌△ACE,∴∠ADB=∠AEC又∵∠PCD=∠ACE,∴△PCD∽△ACE,∴又∵CE===CD=AD﹣AC=5﹣3=2∴,解得;如图3,当C在AD反向延长线上时,同理△PEB∽△ABD=∵BD=BE=AE﹣AB=5﹣3=2∴=解得PB=∴PD=DB+PB=+=.答:此时PD的长为或.(3)如图4所示,以点A为圆心,AC长为半径画圆,当CE在圆A下方与圆A相切时,PD的值最小.在Rt△ACE中,CE===4在Rt△ADE中,DE===5∵四边形ABPC是正方形,∴PC=AB=3∴PE=PC+CE=3+4=7在Rt△DEP中,PD===1∴线段PD的最小值为1.故答案为:1.6.解:(1)∵∠AOC=90°,∴∠OAC+∠ACO=90°,∵∠ACD=90°,∴∠DCF+∠ACO=90°,∴∠DCF=∠OAC,∵∠OAC=38°,∴∠DCF=38°;(2)如图,过点D作DH⊥x轴于H,∴∠CHD=90°∴∠AOC=∠CHD=90°,∵等腰直角三角形ACD,∠ACD=90°∴AC=CD,由(1)知,∠DCF=∠OAC,∴△AOC≌△CHD(AAS),∴OC=DH=n,AO=CH=3,∴点D的坐标(n+3,n);(3)不会变化,理由:∵点A(0,3)与点B关于x轴对称,∴AO=BO,又∵OC⊥AB,∴x轴是AB垂直平分线,∴AC=BC,∴∠BAC=∠ABC,又∵AC=CD,∴BC=CD,∴∠CBD=∠CDB,∵∠ACD=90°,∴∠ACB+∠DCB=270°,∴∠BAC+∠ABC+∠CBD+∠CDB=90°,∴∠ABC+∠CBD=45°,∵∠BOF=90°,∴∠OFB=45°,∴∠OBF=∠OFB=45°,∴OB=OF=3,∴OF的长不会变化.7.解:[问题初探]如图2,过点E作EF⊥BC交直线BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEF是等腰直角三角形,∴∠ECF=45°,∴∠DCE=135°,故答案为:ADB,等腰直角,135;[继续探究]如图3,过点E作EF⊥BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEF是等腰直角三角形,∴∠ECF=45°,∴∠DCE=45°;[拓展延伸]如图4,在△ABC中,∠ABC=90°,AB=BC=,∴∠ACB=45°当点D在射线BC上时,由[问题初探]知,∠BCM=135°,∴∠ACM=∠BCM﹣∠ACB=90°,当点D在线段CB的延长线上时,由[继续探究]知,∠BCE=45°,∴∠ACN=∠ACB+∠BCM=90°,∴点E是过点C垂直于AC的直线上的点,∴当BE⊥MN时,BE最小,∵∠BCE=45°,∴∠CBE=45°=∠BCE,∴BE=CE,∴BE最小=BC=,即:BE的最小值为.8.解:(1)如图1所示:延长BE,①∵等边△ABC中,点D为BC的中点,∴AD是BC的垂直平分线,∠BAD=∠CAD=30°,∴BE=CE,∴∠EBC=∠ECB,∵将线段EB绕点E顺时针旋转至EF,∴BE=EF,∴∠EBF=∠EFB,∵∠CEF=∠FEH+∠HEC=∠EBF+∠BFE+∠EBC+∠ECB=2∠ABE+2∠EBC,∴∠CEF=2∠ABC=120°;②AB=AF+AE,理由如下:如图1﹣1,在AB上截取BM=AF,连接ME,过点E作EN⊥AB于N,∵BM=AF,∠AFE=∠EBM,BE=EF,∴△BME≌△F AE(SAS),∴AE=EM,又∵EN⊥AB,∴AN=MN=AM,∵∠BAD=30°,∴AE=2NE,AN=NE,∴AN=AE,∴AM=AE,∴AB=BM+AM=AF+AE;(3)如图2,∵△ABC是等边三角形,AB=4,点G为AC的中点,∴AC=BC,∠ACB=60°,CG=CD=2,∵将△CDG绕点C顺时针旋转得到△CMN,∴CM=CN=CG=CD=2,∠MCN=∠ACB=60°,∴∠ACN=∠BCM,∴△BCM≌△ACN(SAS),∴∠CAN=∠CBM,∴点A,点B,点C,点P四点共圆,∴∠BPC=∠BAC=60°,∵将△CDG绕点C顺时针旋转得到△CMN,∴点M在以点C为圆心,CM为半径的圆上,∴当BM与⊙C相切于点M时,△BCP的面积有最大值,如图所示,过点P作PH⊥BC 于H,∵BM是⊙C的切线,∴∠BMC=90°=∠PMC,又∵∠BPC=60°,∴∠PCM=30°,∴CM=PM=2,∴MP=,∵BM===2,∴BP=BM+MP=,∵sin∠PBC=,∴PH==,∴△BCP的面积最大值=×4×=,故答案为.9.(1)证明:如图1中,∵BM⊥直线a于点M,CN⊥直线a于点N,∴∠BMA=∠CNM=90°,∴BM∥CN,∴∠MBP=∠ECP,又∵P为BC边中点,∴BP=CP,又∵∠BPM=∠CPE,∴△BPM≌△CPE(ASA),∴PM=PE(2)解:延长MP与NC的延长线相交于点E.∵BM⊥直线a于点M,CN⊥直线a于点N,∴∠BMN=∠CNM=90°∴∠BMN+∠CNM=180°,∴BM∥CN∴∠MBP=∠ECP,又∵P为BC中点,∴BP=CP,又∵∠BPM=∠CPE,∴△BPM≌△CPE(ASA),∴PM=PE,S△PBM=S△PCE,∴AE=CN+CE=4,∵S△BMP+S△CNP=7,∴S△PNE=7,∴S△MNE=2S△PNE=14,∴×MN×4=14,∴MN=7.(3)解:如图1﹣1中,当点B,P在直线a的异侧时,∵PG⊥a,CN⊥a,∴PG∥CN,∵PM=PE,∴MG=GN,∴PG=EN=(CN﹣EC),∵EC=BM,∴PG=(CN﹣BM).如图2﹣2中,当点B,P在直线a的同侧时,延长MP交NC的延长线于Q.∵PG⊥a,CN⊥a,∴PG∥CN,∵BM∥CQ,∴∠BMP=∠Q,∵∠BPM=∠CPQ,BP=CP,∴△PMB≌△PQC(AAS),∴PM=PQ,BM=CQ,∴MG=GN,∴PG=AQ=(CN+BM).综上所述,PG=(CN﹣BM)或PG=(CN+BM).10.解:(1)观察猜想∵在Rt△ABC中与Rt△DCE中,∠ACB=∠DCE=90°,∠BAC=∠DEC=30°,AC =DC=,∴AE=2DC=2,AC=BC=,AB=2BC,∠CDE=60°,∴BC=1,AB=2,∵点F,G分别是BD,AE的中点,∴CG=AE=,CG=AG,CF=AB=1,CF=AF,∴CG=CF,∠GDC=∠GCD=60°,∠ACF=∠F AC=30°,∴∠FCG=90°,∴CF⊥CG,故答案为:CG=CF,CF⊥CG;(2)类比探究仍然成立,理由如下:∵∠ACB=∠DCE=90°,∠BAC=∠DEC=30°,AC=DC=,∴∠BCD=∠ACE,AC=BC,CE=CD,∴=,∴△BCD∽△ACE,∴,∠CAE=∠CBD,∵点F,G分别是BD,AE的中点,∴BF=BD,AG=AE,∴∴△ACG∽△BCF,∴,∠BCF=∠ACG,∴CG=CF,∠ACB=∠FCG=90°,∴CF⊥CG;(3)问题解决如图,延长BC至H,使BC=CH=1,连接DH,∵点F是BD中点,BC=CH=1,∴CF=DH,由(2)可知,CF⊥CG,∴△CFG的面积=×CF×CG=CF2,∴△CFG的面积=DH2,∴当DH取最大值时,△CFG的面积有最大值,当DH取最小值时,△CFG的面积有最小值,∵CD=,∴点D在以点C为圆心,为半径的圆上,∴当点D在射线HC的延长线上时,DH有最大值为+1,∴△CFG的面积最大值=(+1)2=,当点D在射线CH的延长线上时,DH有最小值为﹣1,∴△CFG的面积最小值=(﹣1)2=.11.解:(1)∵Rt△ABC中,∠C=90°,sin B=,∴∠B=30°,∴∠A=60°,①如图1,过点E作EH⊥BC于点H,∵ED⊥AC∴∠ADE=∠C=90°,∴四边形CDEH是矩形,即EH=CD,∴在Rt△BEH中,∠B=30°,∴BE=2EH∴BE=2CD;②BE=2CD成立,理由:∵△ABC和△ADE都是直角三角形,∴∠BAC=∠EAD=60°,∴∠CAD=∠BAE,又∵,,∴,∴△ACD∽△ABE,∴,又∵Rt△ABC中,=2,∴=2,即BE=2CD;(2)∵sin B=,∴∠ABC=∠BAC=∠DAE=45°,∵ED⊥AD,∴∠AED=∠BAC=45°,∴AD=DE,AC=BC,将△ADE绕点A旋转∠DEB=90°,分两种情况:①如图3所示,过A作AF⊥BE交BE的延长线于F,则∠F=90°,当∠DEB=90°时,∠ADE=∠DEF=90°,又∵AD=DE,∴四边形ADEF是正方形,∴AD=AF=EF=2,∵AC=10=BC,根据勾股定理得,AB=10,在Rt△ABF中,BF==6,∴BE=BF﹣EF=4,又∵△ABC和△ADE都是直角三角形,且∠BAC=∠EAD=45°,∴∠CAD=∠BAE,∵,,∴,∴△ACD∽△ABE,∴=,即=,∴CD=2;②如图4所示,过A作AF⊥BE于F,则∠AFE=∠AFB=90°,当∠DEB=90°时,∠DEB=∠ADE=90°,又∵AD=ED,∴四边形ADEF是正方形,∴AD=EF=AF=2,又∵AC=10=BC,∴AB=10,在Rt△ABF中,BF==6,∴BE=BF+EF=8,又∵△ACD∽△ABE,∴=,即=,∴CD=4,综上所述,线段CD的长为2或4.12.解:(1)等腰直角三角形,理由如下:∵AP∥BC,∴∠APC=∠BCP,∠APO=∠CBP,∵△OAP沿着AP折叠,∴∠APO=∠APC,OP=PC,∴∠PCB=∠PBC,∴PC=PB=OP=8,∴△BCP是等腰三角形,∵OA=OP=8,∴∠OP A=∠APC=45°,∴∠OPC=90°,∴△BCP是等腰直角三角形;(2)当t>0时,如图,∵△OAP沿着AP折叠,∴∠AOP=∠ACP=90°,OP=PC=t,∴∠ACP+∠BCP=180°,∴点A,点C,点B三点共线,∵点A(0,8),B(16,0),∴OA=8,OB=16,∴AB===8,∵tan∠ABO=,∴,∴t=4﹣4;当t<0时,如图,同理可求:t=﹣4﹣4;(3)∵△OAP沿着AP折叠,∴AC=AO=8,∠ACP=∠AOP=90°,∵BH⊥CP,∴∠ACP=∠BHC=90°,∵AH=BC,CH=CH,∴Rt△ACH≌Rt△BHC(HL)∴AC=BH,∴四边形AHBC是平行四边形,如图2,当0≤t≤16时,点H在PC上时,连接AB交CH于G,∵四边形AHBC是平行四边形,∴AG=BG=4,HG=CG,AC=BH=8,∴HG===4,在Rt△PHB中,PB2=BH2+PH2,∴(16﹣t)2=64+(t﹣8)2,∴t=8;如图3,当0≤t≤16时,点H在PC的延长线上时,∵四边形AHBC是平行四边形,∴AG=BG=4,HG=CG,AC=BH=8,∴HG===4,在Rt△PHB中,PB2=BH2+PH2,∴(16﹣t)2=64+(t+8)2,∴t=;如图4,当t<0时,同理可证:四边形ABHC是平行四边形,又∵AH=BC,∴四边形ABHC是矩形,∴AC=BH=8,AB=CH=8,在Rt△PHB中,PB2=BH2+PH2,∴(16﹣t)2=64+(t+8)2,∴t=16﹣8;当t>16时,如图5,∵四边形ABHC是矩形,∴AC=BH=8,AB=CH=8,CP=OP=t,在Rt△PHB中,PB2=BH2+PH2,∴(t﹣16)2=64+(t﹣8)2,∴t=16+8.综上所述:当t=8或或16﹣8或16+8时,存在AH=BC.13.(1)解:∵△BCF和△ACD都是等腰直角三角形,∴AC=CD,FC=BC=1,FB=,∵AD=BD,DE是△ABD的平分线,∴DE垂直平分AB,∴F A=FB=,∴AC=F A+FC=,∴CD=;(2)证明:如图2,过点C作CH⊥CE交ED于点H,∵△BCF和△ACD都是等腰直角三角形,∴AC=DC,FC=BC,∠ACB=∠DCF=90°;∴△ABC≌△DFC(SAS),∴∠BAC=∠CDF,∵∠ECH=90°,∴∠ACE+∠ACH=90°,∵∠ACD=90°,∴∠DCH+∠ACH=90°,∴∠ACE=∠DCH.在△ACE和△DCH中,,∴△ACE≌△DCH(ASA),∴AE=DH,CE=CH,∴EH=CE.∵DE=EH+DH=CE+AE;(3)解:如图3,连接OE,将OE绕点E顺时针旋转90°得到EQ,连接OQ,PQ,则OQ=OE.由(2)知,∠AED=∠ABC+∠CDF=∠ABC+∠BAC=90°,在Rt△AED中,点O是斜边AD的中点,∴OE=OD=AD=AC=,∴OQ=OE=,在△OED和△QEP中,,∴△OED≌△QEP(SAS),∴PQ=OD=.∵OP≤OQ+PQ=,当且仅当O、P、Q三点共线时,取“=”号,∴OP的最大值是.14.证明:(1)如图1,∵将△AEC以点C为旋转中心,逆时针旋转90°得到△BFC,∴△AEC≌△BFC,∴∠CAE=∠CBF,∵∠ACB=90°,∴∠CAE+∠EAB+∠CBA=90°,∴∠CBF+∠EAB+∠CBA=90°,∴∠APB=90°,∴AP⊥BF;(2)如图2,∵CE⊥AD,∴∠AEC=90°=∠CEP,∵将△AEC以点C为旋转中心,逆时针旋转90°得到△BFC,∴△AEC≌△BFC,∠ECF=90°,∴∠AEC=∠BFC=90°,CE=CF,∴四边形CEPF是正方形,∴EP=PF=CE=CF,∠EPF=90°,∵AD为BC边上的中线,∴CD=BD,又∵∠CDE=∠BDP,∠CED=∠BPD=90°,∴△CDE≌△BDP(AAS),∴CE=BP,∴EP=PF=BP,∴EP+FP=2BP;(3)结论仍然成立,理由如下:如图1,过点C作CN⊥AD于N,作CM⊥BF,交BF的延长线于M,∵将△AEC以点C为旋转中心,逆时针旋转90°得到△BFC,∴∠CAE=∠CBF,CE=CF,∵∠ACB=90°,∴∠CAE+∠EAB+∠CBA=90°,∴∠CBF+∠EAB+∠CBA=90°,∴∠APB=90°,又∵CN⊥AD,CM⊥BM,∴四边形CNPM是矩形,∵∠CAE=∠CBF,∠ANC=∠BMC=90°,AC=BC,∴△ACN≌△BCM(AAS),∴CM=CN,∴四边形CNPM是正方形,∴CN=CM=NP=MP,∵AD为BC边上的中线,∴CD=BD,又∵∠CDN=∠BDP,∠CND=∠BPD=90°,∴△CDN≌△BDP(AAS),∴CN=BP,∴CN=BP=NP=MP,∴EP+FP=EN+NP+FP=NP+MF+PF=NP+MP=2BP.15.证明:(1)如图1,连接OA,∵AB=AC,∠BAC=90°,OB=OC,∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,∴∠MON=∠AOC=90°,∴∠AOM=∠CON,且AO=CO,∠BAO=∠ACO=45°,∴△AOM≌△CON(ASA)∴AM=CN;(2)证明:如图2,在BA上截取BG=AN,连接GO,AO,∵AB=AC,∠BAC=90°,OB=OC,∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,∵BG=AN,∠ABO=∠NAO=45°,AO=BO,∴△BGO≌△AON(SAS),∴OG=ON,∠BOG=∠AON,∵∠MON=45°=∠AOM+∠AON,∴∠AOM+∠BOG=45°,∵∠AOB=90°,∴∠MOG=∠MON=45°,∵MO=MO,GO=NO,∴△GMO≌△NMO(SAS),∴GM=MN,∴BM=BG+GM=AN+MN;(3)MN=AN+BM,理由如下:如图3,过点O作OG⊥ON,连接AO,∵AB=AC,∠BAC=90°,OB=OC,∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,∴∠GBO=∠NAO=135°,∵MO⊥GO,∴∠NOG=90°=∠AOB,∴∠BOG=∠AON,且AO=BO,∠NAO=∠GBO,∴△NAO≌△GBO(ASA),∴AN=GB,GO=ON,∵MO=MO,∠MON=∠GOM=45°,GO=NO,∴△MON≌△MOG(SAS),∴MN=MG,∵MG=MB+BG,∴MN=AN+BM.16.证明:(1)如图①中,∵MN⊥AB,∴∠PCA=∠PCB=90°.在△P AC和△PBC中,,∴△P AC≌△PBC(SAS),∴P A=PB.(2)如图②中,设直线l、m交于点O,连接AO、BO、CO.∵直线l是边AB的垂直平分线,又∵直线m是边BC的垂直平分线,∴OB=OC,∴OA=OC,∴点O在边AC的垂直平分线n上,∴直线l、m、n交于点O.(3)解:如图③中,连接BD,BE.∵BA=BC,∠ABC=120°,∴∠A=∠C=30°,∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,∴DA=DB,EB=EC,∴∠A=∠DBA=30°,∠C=∠EBC=30°,∴∠BDE=∠A+∠DBA=60°,∠BED=∠C+∠EBC=60°,∴△BDE是等边三角形,∴AD=BD=DE=BE=EC,∵AC=15,∴DE=AC=5.故答案为5.17.解:(1)∵+|y﹣8|=0,又∵≥0,|y﹣8|≥0,∴x=2,y=8,∴A(2,8),∵AD⊥x轴,∴OD=2,AD=8,∵AD﹣OD=OE,∴E(﹣6,0).(2)如图1中,连接OG.由题意G(10,m).∵AD=DE=8,∠ADE=90°,∴∠AED=45°,∴∠OEF=∠OFE=45°,∴OE=OF=6,∴F(0,6),∴S=S△ODG+S△OFG﹣S△OFD=×2×m+×6×10﹣×2×6=m+24(0≤m≤8).(3)如图2中,设FG交AD于J,P(2,t),当点P在DJ上,点Q在AB上时,当S=26时,m=2,∴G(10,2),∴直线FG的解析式为y=﹣x+6,∴J(2,),由题意,•(﹣t)×10=2××2t×6,解得t=,∴P(2,),当点P在AJ上,点Q在BG上时,同法可得,•(t﹣)×10=2××(14﹣2t)×8,解得t=,∴P(2,).综上所述,满足条件的点P的坐标为(2,)或(2,).18.解:(1)如图1中,过点E作EH⊥BC于H.∵BD⊥CD,∴∠D=90°,∵∠ACB=90°,∴∠ACD+∠DCB=90°,∠DCB+∠DBC=90°,∴∠ACD=∠DBC,∴tan∠DBC=tan∠ACD=2,∴=2,∵AC=BC=6,∴BD=,CD=,∵EH⊥BC,∠EBH=45°,∴∠EHB=90°,∠EHB=∠HBE=45°,∴EH=BH,设EH=BH=m,则HC=2EH=2m,∴3m=6,∴m=2,∴EH=2,CH=4,∴EC===2,∴DE=CD﹣CE=﹣2=.(2)如图2中,过点A作AT⊥CE于T,在AG上取一点J,使得EJ=EG.∵EJ=EG,∴∠EJG=∠EGJ,∵∠CFG=EGJ,∴∠CFG=∠EJG,∴∠AFC=∠AJE,∵∠ATC=∠CDB=∠ACB=90°,∴∠ACT+∠DCB=90°,∠DCB+∠CBD=90°,∴∠ACT=∠CBD,∵AC=BC,∴△ATC≌△CDB(AAS),∴CT=BD,∵EC=2BD,∴CT=ET,∵AT⊥EC,∴AC=AE,∴∠ACT=∠AEC,∴∠ACF+∠FCD=∠EAJ+∠FDC,∵FC=FD,∴∠FCD=∠FDC,∴∠ACF=∠EAJ,∴△ACF≌△EAJ(AAS),∴AF=EJ=EG.(3)如图3中,取BC的中点T,连接DT,AT.∵AC=BC=6,∠ACT=90°,CT=TB=3,∴AT===3,∵CD⊥BD,∴∠CDB=90°,∴DT=BC=3,∴AD≥AT﹣DT,∴AD≥3﹣3,∴AD的最小值为3﹣3,∵△ADE是等腰直角三角形,AH⊥DE,∴DH=EH,∴AH=DE=AD,∴AH的最小值为﹣,此时,A,D,T共线,如图3﹣1中,过点D作DQ⊥AC于Q,过点E作EP⊥CA交CA 的延长线于P,过点H作HJ⊥AC于J.∵DQ∥CT,∴==,∴==,∴DQ=,AQ=,由△AQD≌△EPQ,可得PE=AQ=,∵EP∥HJ∥DQ,EH=HD,∴PJ=JQ,∴JH=(PE+DQ)=∴△ACH的面积=×6×=.19.解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°,∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°,∴∠AEB=∠BEC﹣∠CED=60°,故答案为:60;②∵△ACD≌△BCE,∴AD=BE,故答案为:AD=BE;(2)∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴BE=AD,∠ADC=∠BEC,∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°,∴∠AEB=∠BEC﹣∠CED=90°,∴AD2+AE2=AB2,∵AD=a,AE=b,AB=c,∴a2+b2=c2;(3)如图3,由(1)知△ACD≌△BCE,∴∠CAD=∠CBE,∵∠CAB=∠CBA=60°,∴∠OAB+∠OBA=120°,∴∠AOE=180°﹣120°=60°,如图4,同理求得∠AOB=60°,∴∠AOE=120°,∴∠AOE的度数是60°或120°.20.解:(1)如图3中,连接PB,延长BP交CQ的延长线于J,延长QC到R,设AC交BJ于点K.∵∠P AQ=∠BAC,∴∠CAQ=∠BAP,∵==cos30°=,∴△QAC∽△P AB,。

几何图形变换中考数学压轴题

几何图形变换中考数学压轴题

几何图形变换压轴题中考整理1(黑龙江省哈尔滨市)已知:△ABC的高AD所在直线与高BE所在直线相交于点F.(1)如图l,若△ABC为锐角三角形,且∠ABC=45°,过点F作FG∥BC,交直线AB于点G,求证:FG+DC=AD;(2)如图2,若∠ABC=135°,过点F作FG∥BC,交直线AB于点G,则FG、DC、AD之间满足的数量关系是____________________________________;(3)在(2)的条件下,若AG=25,DC=3,将一个45°角的顶点与点B重合并绕点B旋转,这个角的两边分别交线段FG于M、N两点(如图3),连接CF,线段CF分别3,求线段PQ的长.与线段BM、线段BN相交于P、Q两点,若NG=2(湖北省随州市)如图①,已知△ABC是等腰三直角角形,∠BAC=90°,点D是BC 的中点.作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG.(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论.(2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图②,通过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.(3)若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,求AF的值.3、如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转.(1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想;(2)若三角尺GEF 旋转到如图13-3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.3.在△ABC 中,点P 为BC 的中点.(1)如图1,求证:AP <21(AB +BC ); (2)延长AB 到D ,使得BD =AC ,延长AC 到E ,使得CE =AB ,连结DE .①如图2,连结BE ,若∠BAC =60°,请你探究线段BE 与线段AP 之间的数量关系.写出你的结论,并加以证明; ②请在图3中证明:BC ≥21DE .图13-2图13-3图13-1 A( B ( E )4.我们给出如下定义:有一组相邻内角相等的四边形叫做等邻角四边形.请解答下列问题: (1)写出一个你所学过的特殊四边形中是等邻角四边形的图形的名称;(2)如图1,在ABC △中,AB=AC ,点D 在BC 上,且CD=CA ,点E 、F 分别为BC 、AD 的中点,连接EF 并延长交AB 于点G .求证:四边形AGEC 是等邻角四边形; (3)如图2,若点D 在ABC △的内部,(2)中的其他条件不变,EF 与CD 交于点H .图中是否存在等邻角四边形,若存在,指出是哪个四边形,不必证明;若不存在,请说明理由.图2图1H GF DE CBAGFE DCBA5.(1)已知:如图1,Rt △ABC 中,︒=∠90ACB ,︒=∠60BAC ,CD 平分ACB ∠,点E 为AB 中点,AB PE ⊥交CD 的延长线于P ,猜想:PBC PAC ∠+∠= °(直接写出结论,不需证明).(2)已知:如图2,Rt △ABC 中,︒=∠90ACB ,︒≠∠45BAC ,CD 平分ACB ∠,点E 为AB 中点,AB PE ⊥交CD 的延长线于P ,(1)中结论是否成立,若成立,请证明;若不成立请说明理由.7.如图1,一张三角形纸片ABC ,∠ACB =90︒,AC =8,BC =6.沿斜边AB 的中线CD把这张纸片剪成1122AC D BC D ∆∆和两个三角形(如图2).将11AC D ∆沿直线2D B (AB )方向平移(点12,A D D B ,,始终在同一直线上),当点1D 与点B 重合时停止平移.在平移的过程中,112C D BC 与交于点E ,1AC 与222C D C B 、分别交于点F 、P .(1)当11AC D ∆平移到如图3所示位置时,猜想12D E D F 与的数量关系,并证明你的猜想;(2)设平移距离21D D 为x ,1122AC D BC D ∆∆和重叠(阴影)部分面积为y ,试求yABCD EPPED CBA与x 的函数关系式,并写出自变量x 的取值范围. 10. 如图17、18是两个相似比为1:2的等腰直角△DMN 和△ABC ,将这两个三角形如图19放置,△DMN 的斜边MN 与△ABC 的一直角边AC 重合.⑴ 在图19中,绕点D 旋转△DMN ,使两直角边DM 、DN 分别与BC AC 、交于点F E ,,如图20. 求证:222EF BF AE =+;⑵ 在图19中,绕点C 旋转△DMN ,使它的斜边CM 、直角边CD 的延长线分别与AB 交于点F E 、,如图21,此时结论222EF BF AE =+是否仍然成立?若成立,请给出证明;若不成立,请说明理由.⑶ 如图22,在正方形ABCD 中,F E 、分别是边CD BC 、上的点且满足CEF ∆的周长等于正方形ABCD 的周长的一半,AF AE 、分别与对角线BD 交于点N M 、. 线段BM 、MN 、DN 恰能构成三角形. 请指出线段BM 、MN 、DN 所构成的三角形的形状,并给出证明.11.(1)如图1,BP 为ABC ∆的角平分线,PM AB ⊥于M ,PN BC ⊥于N ,30,23AB BC ==,请补全图形,并求ABP ∆与BPC ∆的面积的比值;(2)如图2,分别以ABC ∆的边AB 、AC 为边向外作等边三角形ABD 和等边三角形ACE ,CD 与BE 相交于点O ,判断AOD ∠与AOE ∠的数量关系,并证明; (3)在四边形ABCD 中,已知BC DC =,且AB AD ≠,对角线AC 平分BAD ∠,请直接写出B ∠和D ∠的数量关系.OABC图1图2PCM EBAD12.如图1,四边形ABCD ,将顶点为A 的角绕着顶点A 顺时针旋转,若角的一条边与DC 的延长线交于点F ,角的另一条边与CB 的延长线交于点E ,连接EF .(1)若四边形ABCD 为正方形,当∠EAF=45°时,有EF=DF -BE .请你思考如何证明这个结论(只思考,不必写出证明过程);(2)如图2,如果在四边形ABCD 中,AB=AD ,∠ABC=∠ADC=90°,当∠EAF=21∠BAD 时,EF 与DF 、BE 之间有怎样的数量关系?请写出它们之间的关系式(只需写出结论); (3)如图3,如果四边形ABCD 中,AB=AD ,∠ABC 与∠ADC 互补,当∠EAF=21∠BAD 时,EF 与DF 、BE 之间有怎样的数量关系?请写出它们之间的关系式并给予证明. (4)在(3)中,若BC=4,DC=7,CF=2,求△CEF 的周长(直接写出结果即可).CD 13. (1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC于点G,CH⊥BD于点H,试证明CH=EF+EG;图1D(2) 若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH⊥BD于点H,则EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想;(3) 如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC, 连结CL,点E是CL上任一点, EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;(4) 观察图1、图2、图3的特性,请你根据这一特性构造一个图形,使它仍然具有EF、EG、CH这样的线段,并满足(1)或(2)的结论,写出相关题设的条件和结论.。

2019-2020届中考数学复习专题四几何变换压轴题课件

2019-2020届中考数学复习专题四几何变换压轴题课件
专题四 几何变换压轴 题
几何变换压轴题多以三角形、四边形为主,结合平移、 旋转、翻折、相似等变换,而四边形的问题常要转化成三角 形的问题来解决,通过证明三角形的全等或相似得到相等 的角、相等的边或成比例的边,通过勾股定理计算边长. 要熟练掌握特殊四边形的判定定理和性质定理,灵活选择
解题方法,注意区分各种四边形之间的关系,正确认识特 殊与一般的关系,注意方程思想、对称思想以及转化思想 的相互渗透.
2019/6/8
最新中小学教学课件8
最新中小学教学课件
6
编后语
做笔记不是要将所有东西都写下,我们需要的只是“详略得当“的笔记。做笔记究竟应该完整到什么程度,才能算详略得当呢?对此很难作出简单回答。 课堂笔记,最祥可逐字逐句,有言必录;最略则廖廖数笔,提纲挈领。做笔记的详略要依下面这些条件而定。
讲课内容——对实际材料的讲解课可能需要做大量的笔记。 最讲授的主题是否熟悉——越不熟悉的学科,笔记就越需要完整。 所讲授的知识材料在教科书或别的书刊上是否能够很容易看到——如果很难从别的来源得到这些知识,那么就必须做完整的笔记。 有的同学一味追求课堂笔记做得“漂亮”,把主要精力放在做笔记上,常常为看不清黑板上一个字或一句话,不断向四周同学询问。特意把笔记做得很
全的人,主要是担心漏掉重要内容,影响以后的复习与思考.,这样不仅失去了做笔记的意义,也将课堂“听”与“记”的关系本末倒置了﹙太忙于记录, 便无暇紧跟老师的思路﹚。 如果只是零星记下一些突出的短语或使你感兴趣的内容,那你的笔记就可能显得有些凌乱。 做提纲式笔记因不是自始至终全都埋头做笔记,故可在听课时把时间更多地用于理解所听到的内容.事实上,理解正是做好提纲式笔记的关键。 课堂笔记要注意这五种方法:一是简明扼要,纲目清楚,首先要记下所讲章节的标题、副标题,按要点进行分段;二是要选择笔记语句,利用短语、数 字、图表、缩写或符号进行速记;三是英语、语文课的重点词汇、句型可直接记在书页边,这样便于复习时查找﹙当然也可以记在笔记本上,前提是你 能听懂﹚;四是数理化生等,主要记老师解题的新思路、补充的定义、定理、公式及例题;五是政治、历史等,着重记下老师对问题的综合阐述。

中考数学-几何综合压轴问题(共40题)(学生版)

中考数学-几何综合压轴问题(共40题)(学生版)

几何综合压轴问题(40题)1(2023·四川自贡·统考中考真题)如图1,一大一小两个等腰直角三角形叠放在一起,M,N分别是斜边DE,AB的中点,DE=2,AB=4.(1)将△CDE绕顶点C旋转一周,请直接写出点M,N距离的最大值和最小值;(2)将△CDE绕顶点C逆时针旋转120°(如图2),求MN的长.2(2023·山东烟台·统考中考真题)如图,点C为线段AB上一点,分别以AC,BC为等腰三角形的底边,在AB的同侧作等腰△ACD和等腰△BCE,且∠A=∠CBE.在线段EC上取一点F,使EF=AD,连接BF,DE.(1)如图1,求证:DE=BF;(2)如图2,若AD=2,BF的延长线恰好经过DE的中点G,求BE的长.3(2023·浙江绍兴·统考中考真题)在平行四边形ABCD中(顶点A,B,C,D按逆时针方向排列),AB= 12,AD=10,∠B为锐角,且sin B=45.(1)如图1,求AB边上的高CH的长.(2)P是边AB上的一动点,点C,D同时绕点P按逆时针方向旋转90°得点C ,D .①如图2,当点C 落在射线CA上时,求BP的长.②当△AC D 是直角三角形时,求BP的长.4(2023·甘肃武威·统考中考真题)【模型建立】(1)如图1,△ABC和△BDE都是等边三角形,点C关于AD的对称点F在BD边上.①求证:AE=CD;②用等式写出线段AD,BD,DF的数量关系,并说明理由.【模型应用】(2)如图2,△ABC是直角三角形,AB=AC,CD⊥BD,垂足为D,点C关于AD的对称点F在BD边上.用等式写出线段AD,BD,DF的数量关系,并说明理由.【模型迁移】(3)在(2)的条件下,若AD=42,BD=3CD,求cos∠AFB的值.5(2023·江西·统考中考真题)课本再现思考我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形的一个判定定理;对角线互相垂直的平行四边形是菱形.(1)定理证明:为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.己知:在▱ABCD中,对角线BD⊥AC,垂足为O.求证:▱ABCD是菱形.(2)知识应用:如图2,在▱ABCD中,对角线AC和BD相交于点O,AD=5,AC=8,BD=6.①求证:▱ABCD是菱形;②延长BC至点E,连接OE交CD于点F,若∠E=12∠ACD,求OFEF的值.6(2023·湖北随州·统考中考真题)1643年,法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最小的点的位置,意大利数学家和物理学家托里拆利给出了分析和证明,该点也被称为“费马点”或“托里拆利点”,该问题也被称为“将军巡营”问题.(1)下面是该问题的一种常见的解决方法,请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空,②处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空,③处填写角度数,④处填写该三角形的某个顶点)当△ABC的三个内角均小于120°时,如图1,将△APC绕,点C顺时针旋转60°得到△A P C,连接PP ,由PC=P C,∠PCP =60°,可知△PCP 为三角形,故PP =PC,又P A =PA,故PA+PB+PC =PA +PB+PP ≥A B,由可知,当B,P,P ,A在同一条直线上时,PA+PB+PC取最小值,如图2,最小值为A B,此时的P点为该三角形的“费马点”,且有∠APC=∠BPC=∠APB=;已知当△ABC有一个内角大于或等于120°时,“费马点”为该三角形的某个顶点.如图3,若∠BAC≥120°,则该三角形的“费马点”为点.(2)如图4,在△ABC中,三个内角均小于120°,且AC=3,BC=4,∠ACB=30°,已知点P为△ABC的“费马点”,求PA+PB+PC的值;(3)如图5,设村庄A,B,C的连线构成一个三角形,且已知AC=4km,BC=23km,∠ACB=60°.现欲建一中转站P沿直线向A,B,C三个村庄铺设电缆,已知由中转站P到村庄A,B,C的铺设成本分别为a 元/km,a元/km,2a元/km,选取合适的P的位置,可以使总的铺设成本最低为元.(结果用含a的式子表示)7(2023·山东枣庄·统考中考真题)问题情境:如图1,在△ABC中,AB=AC=17,BC=30,AD是BC边上的中线.如图2,将△ABC的两个顶点B,C分别沿EF,GH折叠后均与点D重合,折痕分别交AB,AC,BC于点E,G,F,H.猜想证明:(1)如图2,试判断四边形AEDG的形状,并说明理由.问题解决;(2)如图3,将图2中左侧折叠的三角形展开后,重新沿MN折叠,使得顶点B与点H重合,折痕分别交AB, BC于点M,N,BM的对应线段交DG于点K,求四边形MKGA的面积.8(2023·湖南·统考中考真题)(1)[问题探究]如图1,在正方形ABCD中,对角线AC、BD相交于点O.在线段AO上任取一点P(端点除外),连接PD、PB.①求证:PD=PB;②将线段DP绕点P逆时针旋转,使点D落在BA的延长线上的点Q处.当点P在线段AO上的位置发生变化时,∠DPQ的大小是否发生变化?请说明理由;③探究AQ与OP的数量关系,并说明理由.(2)[迁移探究]如图2,将正方形ABCD换成菱形ABCD,且∠ABC=60°,其他条件不变.试探究AQ与CP的数量关系,并说明理由.9(2023·湖南岳阳·统考中考真题)如图1,在△ABC中,AB=AC,点M,N分别为边AB,BC的中点,连接MN.初步尝试:(1)MN与AC的数量关系是,MN与AC的位置关系是.特例研讨:(2)如图2,若∠BAC=90°,BC=42,先将△BMN绕点B顺时针旋转α(α为锐角),得到△BEF,当点A,E,F在同一直线上时,AE与BC相交于点D,连接CF.(1)求∠BCF的度数;(2)求CD的长.深入探究:(3)若∠BAC<90°,将△BMN绕点B顺时针旋转α,得到△BEF,连接AE,CF.当旋转角α满足0°<α<360°,点C,E,F在同一直线上时,利用所提供的备用图探究∠BAE与∠ABF的数量关系,并说明理由.10(2023·湖北黄冈·统考中考真题)【问题呈现】△CAB和△CDE都是直角三角形,∠ACB=∠DCE=90°,CB=mCA,CE=mCD,连接AD,BE,探究AD,BE的位置关系.(1)如图1,当m=1时,直接写出AD,BE的位置关系:;(2)如图2,当m≠1时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.【拓展应用】(3)当m=3,AB=47,DE=4时,将△CDE绕点C旋转,使A,D,E三点恰好在同一直线上,求BE的长.11(2023·河北·统考中考真题)如图1和图2,平面上,四边形ABCD中,AB=8,BC=211,CD=12, DA=6,∠A=90°,点M在AD边上,且DM=2.将线段MA绕点M顺时针旋转n°(0<n≤180)到MA ,∠A MA的平分线MP所在直线交折线AB-BC于点P,设点P在该折线上运动的路径长为x(x>0),连接A P.(1)若点P在AB上,求证:A P=AP;(2)如图2.连接BD.①求∠CBD的度数,并直接写出当n=180时,x的值;②若点P到BD的距离为2,求tan∠A MP的值;(3)当0<x≤8时,请直接写出点A 到直线AB的距离.(用含x的式子表示).12(2023·四川达州·统考中考真题)(1)如图①,在矩形ABCD的AB边上取一点E,将△ADE沿DE翻折,使点A落在BC上A 处,若AB=6,BC=10,求AEEB的值;(2)如图②,在矩形ABCD 的BC 边上取一点E ,将四边形ABED 沿DE 翻折,使点B 落在DC 的延长线上B 处,若BC ⋅CE =24,AB =6,求BE 的值;(3)如图③,在△ABC 中,∠BAC =45°,AD ⊥BC ,垂足为点D ,AD =10,AE =6,过点E 作EF ⊥AD 交AC 于点F ,连接DF ,且满足∠DFE =2∠DAC ,直接写出BD +53EF 的值.13(2023·湖南郴州·统考中考真题)已知△ABC 是等边三角形,点D 是射线AB 上的一个动点,延长BC 至点E ,使CE =AD ,连接DE 交射线AC 于点F .(1)如图1,当点D 在线段AB 上时,猜测线段CF 与BD 的数量关系并说明理由;(2)如图2,当点D 在线段AB 的延长线上时,①线段CF 与BD 的数量关系是否仍然成立?请说明理由;②如图3,连接AE .设AB =4,若∠AEB =∠DEB ,求四边形BDFC 的面积.14(2023·湖北宜昌·统考中考真题)如图,在正方形ABCD 中,E ,F 分别是边AD ,AB 上的点,连接CE ,EF ,CF .(1)若正方形ABCD 的边长为2,E 是AD 的中点.①如图1,当∠FEC =90°时,求证:△AEF ∽△DCE ;②如图2,当tan ∠FCE =23时,求AF 的长;(2)如图3,延长CF ,DA 交于点G ,当GE =DE ,sin ∠FCE =13时,求证:AE =AF .15(2023·湖北武汉·统考中考真题)问题提出:如图(1),E 是菱形ABCD 边BC 上一点,△AEF 是等腰三角形,AE =EF ,∠AEF =∠ABC =αa ≥90° ,AF 交CD 于点G ,探究∠GCF 与α的数量关系.问题探究:(1)先将问题特殊化,如图(2),当α=90°时,直接写出∠GCF 的大小;(2)再探究一般情形,如图(1),求∠GCF 与α的数量关系.问题拓展:(3)将图(1)特殊化,如图(3),当α=120°时,若DG CG =12,求BECE的值.16(2023·山西·统考中考真题)问题情境:“综合与实践”课上,老师提出如下问题:将图1中的矩形纸片沿对角线剪开,得到两个全等的三角形纸片,表示为△ABC 和△DFE ,其中∠ACB =∠DEF =90°,∠A =∠D .将△ABC 和△DFE 按图2所示方式摆放,其中点B 与点F 重合(标记为点B ).当∠ABE =∠A 时,延长DE 交AC 于点G .试判断四边形BCGE 的形状,并说明理由.(1)数学思考:谈你解答老师提出的问题;(2)深入探究:老师将图2中的△DBE 绕点B 逆时针方向旋转,使点E 落在△ABC 内部,并让同学们提出新的问题.①“善思小组”提出问题:如图3,当∠ABE =∠BAC 时,过点A 作AM ⊥BE 交BE 的延长线于点M ,BM 与AC 交于点N .试猜想线段AM 和BE 的数量关系,并加以证明.请你解答此问题;②“智慧小组”提出问题:如图4,当∠CBE=∠BAC时,过点A作AH⊥DE于点H,若BC=9,AC=12,求AH的长.请你思考此问题,直接写出结果.17(2023·湖北十堰·统考中考真题)过正方形ABCD的顶点D作直线DP,点C关于直线DP的对称点为点E,连接AE,直线AE交直线DP于点F.(1)如图1,若∠CDP=25°,则∠DAF=°;(2)如图1,请探究线段CD,EF,AF之间的数量关系,并证明你的结论;(3)在DP绕点D转动的过程中,设AF=a,EF=b请直接用含a,b的式子表示DF的长.18(2023·辽宁大连·统考中考真题)综合与实践问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知AB=AC,∠A>90°,点E为AC上一动点,将△ABE以BE为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时,∠EDC=2∠ACB.”小红:“若点E为AC中点,给出AC与DC的长,就可求出BE的长.”实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:问题1:在等腰△ABC中,AB=AC,∠A>90°,△BDE由△ABE翻折得到.(1)如图1,当点D落在BC上时,求证:∠EDC=2∠ACB;(2)如图2,若点E为AC中点,AC=4,CD=3,求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形,可以将问题进一步拓展.问题2:如图3,在等腰△ABC中,∠A<90°,AB=AC=BD=4,2∠D=∠ABD.若CD=1,则求BC的长.19(2023·山东·统考中考真题)(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF 的长.20(2023·福建·统考中考真题)如图1,在△ABC中,∠BAC=90°,AB=AC,D是AB边上不与A,B重合的一个定点.AO⊥BC于点O,交CD于点E.DF是由线段DC绕点D顺时针旋转90°得到的,FD,CA的延长线相交于点M.(1)求证:△ADE∽△FMC;(2)求∠ABF的度数;(3)若N是AF的中点,如图2.求证:ND=NO.21(2023·四川·统考中考真题)如图1,已知线段AB,AC,线段AC绕点A在直线AB上方旋转,连接BC,以BC为边在BC上方作Rt△BDC,且∠DBC=30°.(1)若∠BDC=90°,以AB为边在AB上方作Rt△BAE,且∠AEB=90°,∠EBA=30°,连接DE,用等式表示线段AC与DE的数量关系是;(2)如图2,在(1)的条件下,若DE⊥AB,AB=4,AC=2,求BC的长;(3)如图3,若∠BCD=90°,AB=4,AC=2,当AD的值最大时,求此时tan∠CBA的值.22(2023·广西·统考中考真题)【探究与证明】折纸,操作简单,富有数学趣味,我们可以通过折纸开展数学探究,探索数学奥秘.【动手操作】如图1,将矩形纸片ABCD对折,使AD与BC重合,展平纸片,得到折痕EF;折叠纸片,使点B 落在EF上,并使折痕经过点A,得到折痕AM,点B,E的对应点分别为B ,E ,展平纸片,连接AB ,BB ,BE .请完成:(1)观察图1中∠1,∠2和∠3,试猜想这三个角的大小关系;(2)证明(1)中的猜想;【类比操作】如图2,N为矩形纸片ABCD的边AD上的一点,连接BN,在AB上取一点P,折叠纸片,使B ,P 两点重合,展平纸片,得到折痕EF ;折叠纸片,使点B ,P 分别落在EF ,BN 上,得到折痕l ,点B ,P 的对应点分别为B ,P ,展平纸片,连接,P B .请完成:(3)证明BB 是∠NBC 的一条三等分线.23(2023·重庆·统考中考真题)在Rt △ABC 中,∠ACB =90°,∠B =60°,点D 为线段AB 上一动点,连接CD .(1)如图1,若AC =9,BD =3,求线段AD 的长.(2)如图2,以CD 为边在CD 上方作等边△CDE ,点F 是DE 的中点,连接BF 并延长,交CD 的延长线于点G .若∠G =∠BCE ,求证:GF =BF +BE .(3)在CD 取得最小值的条件下,以CD 为边在CD 右侧作等边△CDE .点M 为CD 所在直线上一点,将△BEM 沿BM 所在直线翻折至△ABC 所在平面内得到△BNM .连接AN ,点P 为AN 的中点,连接CP ,当CP 取最大值时,连接BP ,将△BCP 沿BC 所在直线翻折至△ABC 所在平面内得到△BCQ ,请直接写出此时NQ CP的值.24(2023·湖南·统考中考真题)如图,在等边三角形ABC 中,D 为AB 上的一点,过点D 作BC 的平行线DE 交AC 于点E ,点P 是线段DE 上的动点(点P 不与D 、E 重合).将△ABP 绕点A 逆时针方向旋转60°,得到△ACQ ,连接EQ 、PQ ,PQ 交AC 于F .(1)证明:在点P 的运动过程中,总有∠PEQ =120°.(2)当AP DP为何值时,△AQF 是直角三角形?25(2023·黑龙江·统考中考真题)如图①,△ABC和△ADE是等边三角形,连接DC,点F,G,H分别是DE,DC和BC的中点,连接FG,FH.易证:FH=3FG.若△ABC和△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°,如图②:若△ABC和△ADE都是等腰三角形,且∠BAC=∠DAE=120°,如图③:其他条件不变,判断FH和FG之间的数量关系,写出你的猜想,并利用图②或图③进行证明.26(2023·黑龙江齐齐哈尔·统考中考真题)综合与实践数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.(1)发现问题:如图1,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=30°,连接BE,CF,延长BE交CF于点D.则BE与CF的数量关系:,∠BDC=°;(2)类比探究:如图2,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=120°,连接BE,CF,延长BE,FC交于点D.请猜想BE与CF的数量关系及∠BDC的度数,并说明理由;(3)拓展延伸:如图3,△ABC和△AEF均为等腰直角三角形,∠BAC=∠EAF=90°,连接BE,CF,且点B,E,F在一条直线上,过点A作AM⊥BF,垂足为点M.则BF,CF,AM之间的数量关系:;(4)实践应用:正方形ABCD中,AB=2,若平面内存在点P满足∠BPD=90°,PD=1,则S△ABP=.27(2023·广东深圳·统考中考真题)(1)如图,在矩形ABCD中,E为AD边上一点,连接BE,①若BE=BC,过C作CF⊥BE交BE于点F,求证:△ABE≌△FCB;=20时,则BE⋅CF=.②若S矩形ABCD(2)如图,在菱形ABCD中,cos A=13,过C作CE⊥AB交AB的延长线于点E,过E作EF⊥AD交AD =24时,求EF⋅BC的值.于点F,若S菱形ABCD(3)如图,在平行四边形ABCD中,∠A=60°,AB=6,AD=5,点E在CD上,且CE=2,点F为BC上一点,连接EF,过E作EG⊥EF交平行四边形ABCD的边于点G,若EF⋅EG=73时,请直接写出AG的长.28(2023·内蒙古·统考中考真题)如图,在菱形ABCD中,对角线AC,BD相交于点O,点P,Q分别是边BC,线段OD上的点,连接AP,QP,AP与OB相交于点E.(1)如图1,连接QA.当QA=QP时,试判断点Q是否在线段PC的垂直平分线上,并说明理由;(2)如图2,若∠APB=90°,且∠BAP=∠ADB,①求证:AE=2EP;②当OQ=OE时,设EP=a,求PQ的长(用含a的代数式表示).29(2023·内蒙古赤峰·统考中考真题)数学兴趣小组探究了以下几何图形.如图①,把一个含有45°角的三角尺放在正方形ABCD中,使45°角的顶点始终与正方形的顶点C重合,绕点C旋转三角尺时,45°角的两边CM ,CN 始终与正方形的边AD ,AB 所在直线分别相交于点M ,N ,连接MN ,可得△CMN .【探究一】如图②,把△CDM 绕点C 逆时针旋转90°得到△CBH ,同时得到点H 在直线AB 上.求证:∠CNM =∠CNH ;【探究二】在图②中,连接BD ,分别交CM ,CN 于点E ,F .求证:△CEF ∽△CNM ;【探究三】把三角尺旋转到如图③所示位置,直线BD 与三角尺45°角两边CM ,CN 分别交于点E ,F .连接AC 交BD 于点O ,求EFNM的值.30(2023·山东东营·统考中考真题)(1)用数学的眼光观察.如图,在四边形ABCD 中,AD =BC ,P 是对角线BD 的中点,M 是AB 的中点,N 是DC 的中点,求证:∠PMN =∠PNM .(2)用数学的思维思考.如图,延长图中的线段AD 交MN 的延长线于点E ,延长线段BC 交MN 的延长线于点F ,求证:∠AEM =∠F .(3)用数学的语言表达.如图,在△ABC 中,AC <AB ,点D 在AC 上,AD =BC ,M 是AB 的中点,N 是DC 的中点,连接MN 并延长,与BC 的延长线交于点G ,连接GD ,若∠ANM =60°,试判断△CGD 的形状,并进行证明.31(2023·甘肃兰州·统考中考真题)综合与实践【思考尝试】(1)数学活动课上,老师出示了一个问题:如图1,在矩形ABCD中,E是边AB上一点,DF⊥CE于点F,GD⊥DF,AG⊥DG,AG=CF.试猜想四边形ABCD的形状,并说明理由;【实践探究】(2)小睿受此问题启发,逆向思考并提出新的问题:如图2,在正方形ABCD中,E是边AB上一点,DF⊥CE于点F,AH⊥CE于点H,GD⊥DF交AH于点G,可以用等式表示线段FH,AH,CF的数量关系,请你思考并解答这个问题;【拓展迁移】(3)小博深入研究小睿提出的这个问题,发现并提出新的探究点:如图3,在正方形ABCD中,E是边AB上一点,AH⊥CE于点H,点M在CH上,且AH=HM,连接AM,BH,可以用等式表示线段CM,BH的数量关系,请你思考并解答这个问题.32(2023·贵州·统考中考真题)如图①,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形ABC中,CA=CB,∠C=90°,过点B作射线BD⊥AB,垂足为B,点P在CB上.(1)【动手操作】如图②,若点P在线段CB上,画出射线PA,并将射线PA绕点P逆时针旋转90°与BD交于点E,根据题意在图中画出图形,图中∠PBE的度数为度;(2)【问题探究】根据(1)所画图形,探究线段PA与PE的数量关系,并说明理由;(3)【拓展延伸】如图③,若点P在射线CB上移动,将射线PA绕点P逆时针旋转90°与BD交于点E,探究线段BA,BP, BE之间的数量关系,并说明理由.33(2023·辽宁·统考中考真题)在RtΔABC中,∠ACB=90°,CA=CB,点O为AB的中点,点D在直线AB上(不与点A,B重合),连接CD,线段CD绕点C逆时针旋转90°,得到线段CE,过点B作直线l⊥BC,过点E作EF⊥l,垂足为点F,直线EF交直线OC于点G.(1)如图,当点D与点O重合时,请直接写出线段AD与线段EF的数量关系;(2)如图,当点D在线段AB上时,求证:CG+BD=2BC;(3)连接DE,△CDE的面积记为S1,△ABC的面积记为S2,当EF:BC=1:3时,请直接写出S1S2的值.34(2023·四川成都·统考中考真题)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.在Rt△ABC中,∠C=90°,AC=BC,D是AB边上一点,且ADBD=1n(n为正整数),E是AC边上的动点,过点D作DE的垂线交直线BC于点F.【初步感知】(1)如图1,当n=1时,兴趣小组探究得出结论:AE+BF=22AB,请写出证明过程.【深入探究】(2)①如图2,当n=2,且点F在线段BC上时,试探究线段AE,BF,AB之间的数量关系,请写出结论并证明;②请通过类比、归纳、猜想,探究出线段AE,BF,AB之间数量关系的一般结论(直接写出结论,不必证明)【拓展运用】(3)如图3,连接EF,设EF的中点为M.若AB=22,求点E从点A运动到点C的过程中,点M运动的路径长(用含n的代数式表示).35(2023·江苏徐州·统考中考真题)【阅读理解】如图1,在矩形ABCD中,若AB=a,BC=b,由勾股定理,得AC2=a2+b2,同理BD2=a2+b2,故AC2+BD2=2a2+b2.【探究发现】如图2,四边形ABCD为平行四边形,若AB=a,BC=b,则上述结论是否依然成立?请加以判断,并说明理由.【拓展提升】如图3,已知BO为△ABC的一条中线,AB=a,BC=b,AC=c.求证:BO2=a2+b22-c24.【尝试应用】如图4,在矩形ABCD中,若AB=8,BC=12,点P在边AD上,则PB2+PC2的最小值为.36(2023·四川南充·统考中考真题)如图,正方形ABCD中,点M在边BC上,点E是AM的中点,连接ED,EC.(1)求证:ED=EC;(2)将BE绕点E逆时针旋转,使点B的对应点B 落在AC上,连接MB′.当点M在边BC上运动时(点M 不与B,C重合),判断△CMB′的形状,并说明理由.(3)在(2)的条件下,已知AB=1,当∠DEB′=45°时,求BM的长.37(2023·安徽·统考中考真题)在Rt△ABC中,M是斜边AB的中点,将线段MA绕点M旋转至MD 位置,点D在直线AB外,连接AD,BD.(1)如图1,求∠ADB的大小;(2)已知点D和边AC上的点E满足ME⊥AD,DE∥AB.(ⅰ)如图2,连接CD,求证:BD=CD;(ⅱ)如图3,连接BE,若AC=8,BC=6,求tan∠ABE的值.38(2023·浙江宁波·统考中考真题)定义:有两个相邻的内角是直角,并且有两条邻边相等的四边形称为邻等四边形,相等两邻边的夹角称为邻等角.(1)如图1,在四边形ABCD中,AD∥BC,∠A=90°,对角线BD平分∠ADC.求证:四边形ABCD为邻等四边形.(2)如图2,在6×5的方格纸中,A,B,C三点均在格点上,若四边形ABCD是邻等四边形,请画出所有符合条件的格点D.(3)如图3,四边形ABCD是邻等四边形,∠DAB=∠ABC=90°,∠BCD为邻等角,连接AC,过B作BE∥AC交DA的延长线于点E.若AC=8,DE=10,求四边形EBCD的周长.39(2023·江苏扬州·统考中考真题)【问题情境】在综合实践活动课上,李老师让同桌两位同学用相同的两块含30°的三角板开展数学探究活动,两块三角板分别记作△ADB和△A D C,∠ADB=∠A D C=90°,∠B=∠C=30°,设AB=2.【操作探究】如图1,先将△ADB和△A D C的边AD、A D 重合,再将△A D C绕着点A按顺时针方向旋转,旋转角为α0°≤α≤360°,旋转过程中△ADB保持不动,连接BC.(1)当α=60°时,BC=;当BC=22时,α=°;(2)当α=90°时,画出图形,并求两块三角板重叠部分图形的面积;(3)如图2,取BC的中点F,将△A D C绕着点A旋转一周,点F的运动路径长为.40(2023·四川乐山·统考中考真题)在学习完《图形的旋转》后,刘老师带领学生开展了一次数学探究活动【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:如图,将一个三角形纸板△ABC绕点A逆时针旋转θ到达△AB C 的位置,那么可以得到:AB=AB ,AC =AC ,BC=B C ;∠BAC=∠B AC ,∠ABC=∠AB C ,∠ACB=∠AC B ()刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中,即“变”中蕴含着“不变”,这是我们解决图形旋转的关键;故数学就是一门哲学.【问题解决】(1)上述问题情境中“( )”处应填理由:;(2)如图,小王将一个半径为4cm,圆心角为60°的扇形纸板ABC绕点O逆时针旋转90°到达扇形纸板A BC 的位置.①请在图中作出点O;②如果BB =6cm,则在旋转过程中,点B经过的路径长为;【问题拓展】小李突发奇想,将与(2)中完全相同的两个扇形纸板重叠,一个固定在墙上,使得一边位于水平位置,另一个在弧的中点处固定,然后放开纸板,使其摆动到竖直位置时静止,此时,两个纸板重叠部分的面积是多少呢?如图所示,请你帮助小李解决这个问题.。

2023年九年级数学中考复习《几何图形变换综合压轴题》专题训练+

2023年九年级数学中考复习《几何图形变换综合压轴题》专题训练+

2022-2023学年九年级数学中考复习《几何图形变换综合压轴题》专题训练(附答案)1.△ABC≌△ADE,AB=1,BC=2,∠B=120°,将两个三角形完全重合,保持△ABC 不动,将△ADE绕点A逆时针方向旋转角α.(1)如图1,ED的延长线交BC于G点,求∠DGB(用含α的式子表示).(2)如图2,若α=60°,连接CD,求∠ADC的度数.(3)如图3,若α=90°,连接CD,EC,求△EDC的面积.2.如图,在△ABC中,∠ABC=90°,AB=4,BC=3.点P从点A出发,沿折线AB﹣BC 以每秒5单位长度的速度向点C运动,同时点D从点C出发,沿CA以每秒2个单位长度的速度向点A运动,点P到达点C时,点P、D同时停止运动.当点P不与点A、C 重合时,作点P关于直线AC的对称点Q,连结PQ交AC于点E,连结DP、DQ.设点P的运动时间为t秒.(1)当点D与点E重合时,求t的值.(2)用含t的代数式表示线段CE的长.(3)当△PDQ为直角三角形时,求△PDQ与△ABC重叠部分的面积.(4)连结BE,当BE将△ABC的面积分成1:3两部分时,直接写出t的值.3.如图,在平面直角坐标系中,已知A(a,0),B(0,b)两点,且a、b满足+(a+2b﹣1)2=0,点C(m,0)在射线AO上(不与原点重合).将线段AB平移到DC,点D与点A对应,点C与点B对应,连接BC,直线AD交y轴于点E.请回答下列问题:(1)求A、B两点的坐标;(2)设三角形ABC面积为S△ABC,若4<S△ABC≤7,求m的取值范围;(3)设∠BCA=α,∠AEB=β,请给出α,β满足的数量关系式,并说明理由.4.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示)为;(2)如图2,连接BE,若∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)如图3,在(2)的条件下,连接DE,若∠DEC=45°,求α的值.5.在平面直角坐标系中,O为原点,四边形OABC是矩形,点A,C的坐标分别为(3,0),(0,1).点D是边BC上的动点(与端点B,C不重合),过点D作直线y=﹣x+b交边OA于点E.(Ⅰ)如图①,求点D和点E的坐标(用含b的式子表示);(Ⅱ)如图②,若矩形OABC关于直线DE的对称图形为矩形O1A1B1C1,试探究矩形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由;(Ⅲ)矩形OABC绕着它的对称中心旋转,如果重叠部分的形状是菱形,请直接写出这个菱形的面积的最小值和最大值.6.如图①,将▱ABCD置于直角坐标系中,其中BC边在x轴上(B在C的左边),点D坐标为(0,4),直线MN:y=x﹣6沿着x轴的负方向以每秒1个单位的长度平移,设在平移过程中该直线被▱ABCD截得的线段长度为m,平移时间为t,m与t的函数图象如图②所示.(1)填空:点C的坐标为;在平移过程中,该直线先经过B、D中的哪一点?;(填“B”或“D”)(2)点B的坐标为,n=,a=;(3)在平移过程中,求该直线扫过▱ABCD的面积y与t的函数关系式.7.已知,△ABC中,AB=AC=2,BC=2,∠A=90°.取一块含45°角的直角三角尺,将直角顶点放在斜边BC边的中点O处,一条直角边过A点(如图1).三角尺绕O点顺时针方向旋转,使90°角的两边与Rt△ABC的两边AB,AC分别相交于点E,F(如图2).设BE=x,CF=y.(1)探究:在图2中,线段AE与CF有怎样的大小关系?证明你的结论;(2)求在上述旋转过程中y与x的函数关系式,并写出x的取值范围;(3)若将直角三角尺45°角的顶点放在斜边BC边的中点O处,一条直角边过A点(如图3).三角尺绕O点顺时针方向旋转,使45°角的两边与Rt△ABC的两边AB,AC分别相交于点E,F(如图4).在三角尺绕O点旋转的过程中,△OEF是否能成为等腰三角形?若能,直接写出△OEF为等腰三角形时x的值;若不能,请说明理由.8.如图1,E、F为正方形ABCD对角线AC上两点,∠ABE+∠FBC=45°,将△BEA绕点B逆时针旋转90°得到△BGC,连接FG,△FGC周长为.(1)若F与G关于BC对称,求∠BEF度数;(2)求AC的长;(3)若图1中∠CBG=30°,将△BGC从起始位置绕点B顺时针旋转n°(0<n<360),设点G在运动过程中到AB的距离为d,当△BGC中的两顶点以及A点成共线且不重合三点时,求n°以及(+1)d值.9.在△ABC中,AB=AC,∠ABC=α,过点A作直线MN,使MN∥BC,点D在直线MN 上,作射线BD,将射线BD绕点B顺时针旋转角α后交直线AC于点E.(1)如图1,当α=60°,且点D在射线AN上时,探究线段AB,AD,AE的数量关系,并说明理由.(2)如图2,当α=45°,且点D在射线AN上时,请直接写出线段AB,AD,AE的数量关系.(3)当α=30°时,若点D在射线AM上,∠ABE=15°,AD=3﹣,请直接写出线段AE的长度.10.学习了旋转后,老师对教材的习题进行了改编,得到了下面的问题:已知:如图,△ACB和△DCE都是等边三角形,连接AE,BD交于点O.(1)用旋转的角度观察,图中△ACE以点C为旋转中心,逆时针方向旋转60°后得到的图形是:.(2)试判断线段AE与BD的数量关系,并说明理由.(3)∠AOB=.11.△ABC是等边三角形,AC=2,点C关于AB对称的点为C',点P是直线C'B上的一个动点,连接AP,作∠APD=60°交射线BC于点D.(1)若点P在线段C'B上(不与点C',点B重合).①如图1,若点P是线段C'B的中点,则BP的长为;②如图2,点P是线段C'B上任意一点,求证:PD=P A;(2)若点P在线段C'B的延长线上.①依题意补全图3;②直接写出线段BD,AB,BP之间的数量关系为:.12.如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.①试猜想BD与AC的数量关系,并说明理由;②你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.13.在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F.(1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长;(2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.求证:BE+CF=AB.(3)如图3,若∠EDF的两边分别交AB、AC的延长线于E、F两点,(2)中的结论还成立吗?如果成立,请证明;如果不成立,请直接写出线段BE、AB、CF之间的数量关系.14.将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)连接BF,求证:CF=EF.(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,如图②,求证:AF+EF=DE.(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③,你认为(2)中的结论还成立吗?若成立,写出证明过程;若不成立,请直接写出AF、EF与DE之间的数量关系.15.在平面直角坐标系中,点A、B的坐标分别为(a,0),(0,b),其中a,b满足+|2a﹣5b﹣30|=0.将点B向右平移26个单位长度得到点C,如图①所示.(1)求点A,B,C的坐标;(2)点M,N分别为线段BC,OA上的两个动点,点M从点C向左以1.5个单位长度/秒运动,同时点N从点O向点A以2个单位长度/秒运动,如图②所示,设运动时间为t 秒(0<t<15).①当CM<AN时,求t的取值范围;②是否存在一段时间,使得S四边形MNOB>2S四边形MNAC?若存在,求出t的取值范围;若不存在,说明理由.16.已知△ABC是等边三角形,AB=6,将一块含有30°角的直角三角板DEF如图所示放置,让等边△ABC向右平移(BC只能在EF上移动).如图1,当点E与点B重合时,点A恰好落在三角板DEF的斜边DF上.(1)若点C平移到与点F重合,求等边△ABC平移的距离;(2)在等边△ABC向右平移的过程中,AB,AC与三角板斜边的交点分别为G,H,连接EH交AB于点P,如图2.①求证:EB=AH;②若∠HEF=30°,求EH的长;③判断PG的长度在等边△ABC平移的过程中是否会发生变化?如果不变,请求出PG的长;如果变化,请说明理由.17.如图,在矩形ABCD中,AB=6cm,AD=8cm,连接BD,将△ABD绕B点作顺时针方向旋转得到△A′B′D′(B′与B重合),且点D′刚好落在BC的延长线上,A′D′与CD相交于点E.(1)求矩形ABCD与△A′B′D′重叠部分(如图1中阴影部分A′B′CE)的面积;(2)将△A′B′D′以每秒2cm的速度沿直线BC向右平移,如图2,当B′移动到C 点时停止移动.设矩形ABCD与△A′B′D′重叠部分的面积为y,移动的时间为x,请你直接写出y关于x的函数关系式,并指出自变量x的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x,使得△AA′B′成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.18.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处,(直角三角板只能在直线AB上方旋转)(1)如图1,将三角板MON的一边ON与射线OB重合,则∠MOC=;(2)如图2,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON=;∠CON=.(3)将三角板MON绕点O逆时针旋转至∠NOC=5°,求∠AOM的度数.19.如图1,点O是弹力墙MN上一点,魔法棒从OM的位置开始绕点O向ON的位置顺时针旋转,当转到ON位置时,则从ON位置弹回,继续向OM位置旋转;当转到OM 位置时,再从OM的位置弹回,继续转向ON位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA0(OA0在OM上)开始旋转α至OA1;第2步,从OA1开始继续旋转2α至OA2;第3步,从OA2开始继续旋转3α至OA3,….例如:当α=30°时,OA1,OA2,OA3,OA4的位置如图2所示,其中OA3恰好落在ON 上,∠A3OA4=120°;当α=20°时,OA1,OA2,OA3,OA4,OA3的位置如图3所示,中第4步旋转到ON后弹回,即∠A3ON+∠NOA4=80°,而OA5恰好与OA2重合.解决如下问题:(1)若α=35°,在图4中借助量角器画出OA2,OA3,其中∠A3OA2的度数是;(2)若α<30°,且OA4所在的射线平分∠A2OA3,在如图5中画出OA1,OA2,OA3,OA4并求出α的值;(3)若α<30°,且∠A2OA4=20°,求对应的α值.20.定义:连接三角形两边中点的线段叫做三角形的中位线.性质:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.理解:如图①,在△ABC中,点D,E分别是AB,AC的中点,那么DE为△ABC的一条中位线.可得DE∥BC且DE=BC.应用:如图②,在△ABC中,AB=AC,点D,E分别在边AB,AC上,且AD=AE.点M,N,P分别是DE,BC和CD的中点.已知∠BAC=α.(1)当α=90°时,①请直接写出:PM与PN的数量关系;∠MPN=.②是否存在点D,使得以P,M,N为顶点的三角形与△ADE全等?若存在,请求出点D的位置;若不存在,请说明理由.(2)将△ADE绕点A旋转,当点D在△ABC内时(如图③),①试说明PM与PN的数量关系,并求出∠MPN的度数(用含α的式子表示);②连接BD,MN,若AD=BD,直接写出△ADE和△PMN的面积关系:.参考答案1.解:(1)设AC与EG交于点O,∵将△ADE绕点A逆时针方向旋转角α,∴∠EAC=α,∵△ABC≌△ADE,∴∠C=∠E,又∵∠AOE=∠GOC,∴∠EAO=∠OGC=α,∴∠DGB=180°﹣∠EAO=180°﹣α;(2)连接BD,∵将△ADE绕点A逆时针方向旋转角α,∴∠DAB=60°,DA=AB,∴△ABD为等边三角形,∴∠ADB=∠ABD=60°,BD=AB=1,∵∠ABC=120°,∴∠DBC=∠ABC﹣∠ABD=60°,在BC上截取BF=BD,∴△BFD为等边三角形,∴∠BFD=60°,DF=BF=1,又∵BC=2,∴CF=1,∴DF=CF,∴∠FDC=∠DCF=30°,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=60°+90°=150°;(3)过点E作EM⊥AD交AD的延长线于M,过点C作CN⊥AD交AD的延长线于N,∵将△ADE绕点A逆时针方向旋转角α,∴AC=AE,∠EAC=90°,∵∠EAM+∠NAC=90°,∠NAC+∠ACN=90°,∴∠EAM=∠ACN,又∵∠AME=∠ANC,∴△AME≌△CNA(AAS),∴AM=CN,∵∠ABC=∠ADE=120°,∴∠EDM=60°,∴∠DEM=30°,∵DE=AB=1,∴DM=1,EM=,∴AM=2,∴CN=2,AE==,∴S△AEC==7,S△ADE+S△ADC=AD•EM+AD•CN=,∴S△EDC=S△AEC﹣(S△ADE+S△ADC)=7﹣=.2.解:(1)在Rt△ABC中,∠B=90°,AB=4,BC=3,∴AC===5,∴sin A=,cos A=,当点D与E重合时,AE+CD=5,∴3t+2t=5,解得t=;(2)如图①中,当点P在线段AB上时,在Rt△APE中,AE=AP•cos A=4t,∴EC=5﹣4t.如图②中,当点P在线段BC上时,在Rt△PEC中,PC=7﹣5t,cos C=,∴EC=PC•cos C=(7﹣5t)=﹣3t.综上所述,EC=;(3)当△PDQ是直角三角形时,∵DP=DQ,∠PDQ=90°,DE⊥PQ,∴PE=EQ=DE,如图③中,当点P在线段AB上时,在Rt△APE中,PE=P A•sin A=3t,∵DE=AC﹣AE﹣CD=5﹣4t﹣2t=5﹣6t,∵PE=DE,∴3t=5﹣6t,∴t=,∴PE=DE=,∴△PDQ与△ABC重叠部分的面积=××=.如图⑤中,当点P在线段BC上时,在Rt△PCE中,PE=PC•sin C=(7﹣5t)=﹣4t,∵DE=CD﹣CE=2t﹣(7﹣5t)=5t﹣,∴﹣4t=5t﹣,解得t=,∴PE=DE=,∴△PDQ与△ABC重叠部分的面积=××=.综上所述:△PDQ与△ABC重叠部分的面积为或;(4)如图①中,当AE=AB时,即AE=,满足条件,此时AP=AE=,∴t=.如图②中,当CE=AC,即EC=时,满足条件,此时PC=EC=,∴AB+PB=7﹣=,∴t=,综上所述,满足条件的t的值为和.3.解:(1)∵+(a+2b﹣1)2=0,又∵≥0,(a+2b﹣1)2≥0,∴,解得,∴A(﹣3,0),B(0,2);(2)三角形的面积为,由4<S△ABC≤7,可得,4<m+3≤7,∴1<m≤4;(3)如图1中,当点C在线段OA上时,作ON∥BC,∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∴BC∥AD,∵ON∥BC,∴ON∥AD,∴∠ACB=∠AON,∠AEB=∠BON,∴α﹣β=∠BCA﹣∠AEB=∠NOA﹣∠NOB=∠AOB=90°.如图2中,当点C在AO的延长线上时,ON∥BC,∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∴BC∥AD,∵ON∥BC,∴ON∥AD,∴∠ACB=∠AON,∠AEB=∠BON,∴α+β=∠BCA+∠AEB=∠FOA+∠FOB=∠AOB=90°.综上所述,α﹣β=90°或α+β=90°.4.解:(1)∵AB=AC,∠BAC=α,∴∠ABC=∠ACB=(180°﹣α),∵∠CBD=60°,∴∠ABD=(180°﹣α)﹣60°=30°﹣α.故答案为:∠ABD=30°−α;(2)结论:△ABE是等边三角形.理由:如图2,连接AD,CD,∵线段BC绕B逆时针旋转60°得到线段BD,则BC=BD,∠DBC=60°,∴△BCD为等边三角形,∵∠ABE=∠DBC=60°,∴∠ABD=∠EBC=30°−α,∴BD=CD,在△ABD与△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD=α,∵∠BCE=150°,∴∠BEC=180°−∠BCE﹣∠EBC=α,∴∠BAD=∠BEC=α,在△EBC和△ABD中,,∴△EBC≌△ABD(AAS),∴BE=AB,∵∠ABE=60°,∴△ABE是等边三角形;(3)由△BCD为等边三角形,∴∠BCD=60°,∵∠BCE=150°,∴∠DCE=150°−60°=90°,∵∠DEC=45°,∴△DEC为等腰直角三角形,∴DC=CE=BC,∵∠BCE=150°,∴∠EBC=(180°−150°)=15°,∵∠EBC=30°−α=15°,∴α=30°.5.解:(1)∵四边形OABC是矩形,∴CB∥x轴,由点A,C的坐标分别为(3,0),(0,1).可得点D的纵坐标为1,当y=1时,y=+b,解得:x=2b﹣2,∴D的坐标为(2b﹣2,1)当y=0时,y=+b,解得:x=2b,∴E的坐标为(2b,0)(Ⅱ)CB与O1A1的交点为M,C1B1与OA的交点为N,如图:∵四边形OABC,四边形O1A1B1C1是矩形,∴CB∥OA,C1B1∥O1A1,∴四边形DMEN是平行四边形,∵矩形OABC关于直线DE的对称图形为矩形O1A1B1C1,∴∠1=∠2,∵CB∥OA,∴∠2=∠3,∴∠1=∠3,∴DM=ME,∴平行四边形DMEN是菱形,过点D作DH⊥OA于点H,由D(2b﹣2,1),E(2b,0),可知CD=2b﹣2,OE=2b,OH=CD=2b﹣2,∴EH=OE﹣OH=2b﹣(2b﹣2)=2,设菱形DMEN的边长为m,在Rt△DHN中,DH=1,HN=EH﹣NE=2﹣m,DN=m,由DH2+HN2=DN2,得12+(2﹣m)2=m2,解得:m=,∴,所以重叠部分菱形DMEN的面积不变,为;(Ⅲ)当NE=1时,菱形面积的最小值是1;当NE=时,菱形面积的最大值是.(D与C重合,A与E重合,设DN=AN=x,在Rt△DNO中利用勾股定理列出方程计算)6.解:(1)令y=0,则x﹣6=0,解得x=8,令x=0,则y=﹣6,∴点M(8,0),N(0,﹣6)∴OM=8,ON=6,由图2可知5秒后直线经过点C,∴CM=5,OC=OM﹣CM=8﹣5=3,∴C(3,0),∵10秒~a秒被截线段长度不变,∴先经过点B;故填:(3,0);B(2)由图2可知BM=10,∴OB=BM﹣OM=10﹣8=2,∴B(﹣2,0),在Rt△OCD中,由勾股定理得,CD==5,∴BC=CD=5,∴▱ABCD是菱形,∵,∴MN⊥CD,∴n=DO=4∵设直线MN向x轴负方向平移的速度为每秒1个单位的长度,平移后的直线解析式为y=(x+t)﹣6,把点D(0,4)代入得,(0+t)﹣6=4,解得t=,∴a=;故答案为:(1)(3,0),B;(2)(﹣2,0),4,;(3)当0≤t≤5时,y=0;当5<t≤10,如图1,该直线与BC、CD分别交于F、E,FC=t﹣5,∵直线CD的解析式为:y=﹣x+4,∴EF⊥CD,∴△CEF∽△COD,∴,∴,∴EF=,CE=,∴y=××==t2﹣t+6,当10<t≤,如图2,直线与AB、CD分别交于G、E,与射线CB交于F,FB=t﹣10,∵△BGF∽△COD,∴∴FG=,BG=,y=S△CEF﹣S△BGF=﹣=(10t﹣75)=t﹣18,当时,如图3,BG=,AG=5﹣,∵△EAG∽△DCO,∵=,∴DG=×(5﹣),∴y=20﹣(5﹣)××(5﹣)=﹣+t﹣,当t≥时y=20.综上所述:y=.7.解:(1)AE=CF.理由:连接AO.如图2,∵AB=AC,点O为BC的中点,∠BAC=90°,∴∠AOC=90°,∠EAO=∠C=45°,AO=OC.∵∠EOF=90°,∠EOA+∠AOF=90°,∠COF+∠AOF=90°,∴∠EOA=∠FOC,在△EOA和△FOC中,∴△EOA≌△FOC(ASA),∴AE=CF.(2)∵AE=CF,∴BE+CF=BE+AE=AB=2,即x+y=2,∴y与x的函数关系式:y=2﹣x.x的取值范围是:0≤x≤2.(3)△OEF能构成等腰三角形.当OE=EF时,如图3,点E为AB中点,点F与点A重合,BE=AE=1,即x=1,当OE=OF时,如图4,BE=BO=CO=CF=,即x=,当EF=OF时,如图5,点E与点A重合,点F为AC中点,即x=2,综上所述:△OEF为等腰三角形时x的值为1或或2.8.解:(1)∵F与G关于BC对称,∴BF=BG,∵将△BEA绕点B逆时针旋转90°得到△BGC,∴BE=BG,∴BE=BF,∵∠ABE+∠FBC=45°,∴∠EBF=45°,∴∠BEF=67.5°;(2)∵将△BEA绕点B逆时针旋转90°得到△BGC,∴AE=CG,∠ABE=∠CBG,BE=BG,∵∠ABE+∠FBC=45°,∴∠EBF=45°,∠FBC+∠CBG=45°,∴∠EBF=∠FBG,又∵BF=BF,∴△BFE≌△BFG(SAS),∴EF=FG,∵△FGC周长为a,∴FG+GC+FC=a=AE+EF+FC,∴AC=a;(3)如图,当点G,点A,点B共线时,当点G'在线段AB的延长线上时,∵∠CBG=30°,∴n°=60°,d=0,∴(+1)d=0,当点G''在线段AB上时,∵∠CBG=30°,∴n°=240°,d=0,∴(+1)d=0,如图,当点C,点A,点B共线时,过点G'''作G'''H⊥BC'''于H,∴n°=90°,在如图1,将△BEA绕点B逆时针旋转90°得到△BGC,∴∠BAC=∠BCG=45°,∵AC=a,∴AB=BC=a,∵将△BGC从起始位置绕点B顺时针旋转,∴BC=BC'''=a,∠BC'''G'''=45°,∠G'''BC'''=30°,∵G'''H⊥BC''',∴G'''H=C'''H=d,BH=G'''H=d,∴BH+HC'''=d+d=(+1)d=a,综上所述:n°的值为60°或90°或240°,(+1)d的值为0或a.9.解:(1)结论:AE=AB+AD.理由:∵当α=60°时,∠ABC=∠DBE=60°,∴∠ABD=∠CBE,又∵AB=AC,∴△ABC是等边三角形,∴AB=CB,∠ACB=60°,∴∠BCE=120°,∵MN∥BC,∴∠BAD=180°﹣∠ABC=120°,∴∠BAD=∠BCE,∴△BAD≌△BCE,∴AD=CE,∴AE=AC+CE=AB+AD;(2)结论:AE=AB+AD.理由:当α=45°时,∠ABC=∠DBE=45°,∴∠ABD=∠CBE,∵AB=AC,∴∠ABC=∠ACB=45°,∠BAC=90°,∴△ABC是等腰直角三角形,∴BC=AB,∵MN∥BC,∴∠BAD=180°﹣∠ABC=135°,∵∠BCE=180°﹣∠ACB=135°,∴∠BAD=∠BCE,∴△BAD∽△BCE,∴==,∴CE=AD,∴AE=AC+CE=AB+AD;(3)由题可得,∠ABC=∠DBE=∠BAD=30°,分两种情况:①如图所示,当点E在线段AC上时,∵∠ABE=15°=∠ABC=∠DBE,∴∠ABD=∠ABE=15°,在BE上截取BF=BD,易得△ABD≌△ABF,∴AD=AF=3﹣,∠ABC=∠BAD=∠BAF=30°,∴∠AFE=∠ABF+∠BAF=15°+30°=45°,又∵∠AEF=∠CBE+∠C=15°+30°=45°,∴∠AFE=∠AEF,∴AE=AF=3﹣;②如图所示,当点E在CA的延长线上时,过D作DF⊥AB于F,过E作EG⊥BC于G,∵AD=3﹣,∠DAF=30°,∴DF=,AF=,∵∠DBF=15°+30°=45°,∴∠DBF=∠BDF,∴BF=DF=,AB=+==AC,∴BC=3,∵∠EBG=15°+30°=45°,∴∠BEG=∠EBG,设BG=EG=x,则CG=3﹣x,∵Rt△CEG中,tan C=,即=,∴x==EG,∴CE=2EG=3﹣3,∴AE=CE﹣AC=3﹣3﹣=2﹣3,综上所述所,线段AE的长度为3﹣或2﹣3.10.解:(1)中△ACE以点C为旋转中心,逆时针方向旋转60°后得到的图形是△BCD.故答案为:△BCD;(2)解:结论:AE=BD.理由:∵△ABC和△DEC都是等边三角形,∴AC=BC,DC=EC,∠ACB=∠ECD=60°,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD;(3)如图,设DB交AC于点J.∵△ACE≌△BCD,∴∠CAE=∠CBD,∵∠AJO=∠BJC,∴∠AOB=∠ACB=60°,故答案为:60°.11.(1)①解:如图1,连接AC′,∵△ABC是等边三角形,∴∠ABC=60°,AB=AC=2,∵点C'与点C关于对称,∴∠C'BA=∠CBA=60°,BC'=BC=BA,∴△ABC'是等边三角形,∵PB=PC',∴PB=1,故答案为:1;②证明:如图2,作∠BPE=60°交射线AB于点E,∵△ABC是等边三角形,∴∠ABC=60°,∵点C'与点C关于对称,∴∠C'BA=∠CBA=60°,∴∠PEB=60°,∴△PBE是等边三角形,∴PB=PE,∠AEP=∠PBD=120°,∵∠BPD+∠DPE=60°,∠APE+∠DPE=60°,∴∠BPD=∠APE,在△PBD和△PEA中,,∴△PBD≌△PEA(ASA),∴PD=P A;(2)解:①补全图3如图3所示,②BD=BP+AB,理由如下:如图3,在BD上取一点E,使BE=BP,连接PE,∵∠EBP=60°,BE=BP,∴△EBP是等边三角形,∴∠BPE=∠APD=60°,∴∠APB=∠DPE,在△BP A和△EPD中,,∴△BP A≌△EPD(SAS),∴AB=DE,∴BD=BE+ED=BP+AB,故答案为:BD=BP+AB.12.解:(1)BD=AC,BD⊥AC,理由:延长BD交AC于F.∵AE⊥BC,∴∠AEB=∠AEC=90°,在△BED和△AEC中∴△BED≌△AEC,∴BD=AC,∠DBE=∠CAE,∵∠BED=90°,∴∠EBD+∠BDE=90°,∵∠BDE=∠ADF,∴∠ADF+∠CAE=90°,∴∠AFD=180°﹣90°=90°,∴BD⊥AC;(2)不发生变化,理由是:∵∠BEA=∠DEC=90°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,∴△BED≌△AEC(SAS),∴BD=AC,∠BDE=∠ACE,∵∠DEC=90°,∴∠ACE+∠EOC=90°,∵∠EOC=∠DOF,∴∠BDE+∠DOF=90°,∴∠DFO=180°﹣90°=90°,∴BD⊥AC;(3)①∵∠BEA=∠DEC=90°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,∴△BED≌△AEC(SAS),∴BD=AC,②能.理由:∵△ABE和△DEC是等边三角形,∴AE=BE,DE=EC,∠EDC=∠DCE=60°,∠BEA=∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC(SAS),∴∠BDE=∠ACE,BD=AC.∴∠DFC=180°﹣(∠BDE+∠EDC+∠DCF)=180°﹣(∠ACE+∠EDC+∠DCF)=180°﹣(60°+60°)=60°,即BD与AC所成的角的度数为60°或120°.13.解:(1)如图1中,∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠B=∠C=60°,BC=AC=AB=4,∵点D是线段BC的中点,∴BD=DC=BC=2,∵DF⊥AC,即∠CFD=90°,∴∠CDF=30°,又∵∠EDF=120°,∴∠EDB=30°,∴∠BED=90°∴BE=BD=1.(2)如图2中,过点D作DM⊥AB于M,作DN⊥AC于N.∵∠B=∠C=60°,BD=DC,∠BDM=∠CDN=30°,∴△BDM≌△CDN,∴BM=CN,DM=DN,又∵∠EDF=120°=∠MDN,∴∠EDM=∠NDF,又∵∠EMD=∠FND=90°,∴△EDM≌△FDN,∴ME=NF,∴BE+CF=BM+EM+NC﹣FN=2BM=BD=AB.(3)结论不成立.结论:BE﹣CF=AB.∵∠B=∠C=60°,BD=DC,∠BDM=∠CDN=30°,∴△BDM≌△CDN,∴BM=CN,DM=DN,又∵∠EDF=120°=∠MDN,∴∠EDM=∠NDF,又∵∠EMD=∠FND=90°,∴△EDM≌△FDN,∴ME=NF,∴BE﹣CF=BM+EM﹣(FN﹣CN)=2BM=BD=AB.14.(1)证明:如图1,连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,在Rt△BCF和Rt△BEF中,,∴Rt△BCF≌Rt△BEF(HL),∴CF=EF;(2)如图2,连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,在Rt△BCF和Rt△BEF中,,∴Rt△BCF≌Rt△BEF(HL),∴EF=CF,∴AF+EF=AF+CF=AC=DE;(3)如图3,连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,∴△BCF和△BEF是直角三角形,在Rt△BCF和Rt△BEF中,,∴Rt△BCF≌Rt△BEF(HL),∴CF=EF,∵AC=DE,∴AF=AC+FC=DE+EF.15.解:(1)∵+|2a﹣5b﹣30=0,且≥0,|2a﹣5b﹣30|≥0,∴,解得:,∴A(30,0),B(0,6),又∵点C是由点B向右平移26个单位长度得到,∴C(26,6);(2)①由(1)可知:OA=30,∵点M从点C向右以1.5个单位长度/秒运动,点N从点O向点A以2个单位长度/秒运动,∴CM=1.5t,ON=2t,∴AN=30﹣2t∵CM<AN,∴1.5t<30﹣2t,解得t<,而0<t<15,∴0<t<;②由题意可知CM=1.5t,ON=2t,∴BM=BC﹣CM=26﹣1.5t,AN=30﹣2t,又B(0,6),∴OB=6,∴S四边形MNOB=OB(BM+ON)=3(26﹣1.5t+2t)=3(26+0.5t),S四边形MNAC=OB (AN+CM)=3(30﹣2t+1.5t)=3(30﹣0.5t),当S四边形MNOB>2S四边形MNAC时,则有3(26+0.5t)>2×3(30﹣0.5t),解得t>>15,∴不存在使S四边形MNOB>2S四边形MNAC的时间段.16.解:(1)等边△ABC未平移时,如图1,∵∠ABC=60°,BD⊥BF,∴∠DBA=30°,∵∠BDF=60°,∴BA⊥DF,∴2AB=BF=BC+CF,∵AB=BC,∴CF=AB=6,即:点C平移到与点F重合时,等边△ABC平移的距离为6;(2)①作EM⊥DF于点M,EN⊥AB于点N,如图2,由(1)知AB⊥DF,∴MENG是矩形,∴GN=EM=AB,∵∠ACB=60°,∠DFE=30°,∴∠CHF=30°,∴∠AHG=30°,∵EN∥DF,∴∠BEN=30°=∠AHG,∵AG+GB=AB,BN+GB=NG=AB,∴BN=AG,在△EBN和△HAG中,,∴△EBN≌△HAG(AAS),∴EB=AH;②如图3,作HI⊥EF于点I,∵∠HEF=30°=∠HFE,∴IE=IF,由(1)知EF=2AB=12,∴IE=6,∴IH=,∴EH=4;③不变.如图2,∵△EBN≌△HAG,∴GH=NE,在△ENP和△HGP中,,∴△ENP≌△HGP(AAS),∴GP=NP=NG==3.17.解:(1)∵AB=6cm,AD=8cm,∴BD=10cm,根据旋转的性质可知B′D′=BD=10cm,CD′=B′D′﹣BC=2cm,∵tan∠B′D′A′=,∴,∴CE=cm,∴S A′B′CE=S A′B′D′﹣S CED′=(cm2);(2)①当0≤x<时,CD′=2x+2,CE=(x+1),∴S△CD′E=x2+3x+,∴y=×6×8﹣x2﹣3x﹣=﹣x2﹣3x+;②当≤x≤4时,B′C=8﹣2x,CE=(8﹣2x)∴y=×(8﹣2x)2=x2﹣x+.(3)①如图1,当AB′=A′B′时,x=0秒;②如图2,当AA′=A′B′时,A′N=BM=BB′+B′M=2x+,A′M=NB=,∵AN2+A′N2=36,∴(6﹣)2+(2x+)2=36,解得:x=,x=(舍去);③如图2,当AB′=AA′时,A′N=BM=BB′+B′M=2x+,A′M=NB=,∵AB2+BB′2=AN2+A′N2∴36+4x2=(6﹣)2+(2x+)2解得:x=.综上所述,使得△AA′B′成为等腰三角形的x的值有:0秒、秒、.18.解:(1)∵∠MON=90°,∴∠MOC=∠MON﹣∠BOC=90°﹣65°=25°;故答案为:25°;(2)∵OC是∠MOB的角平分线,∴∠MOB=2∠BOC=2×65°=130°,∴旋转角∠BON=∠MOB﹣∠MON=130°﹣90°=40°,∠CON=∠BOC﹣∠BON=65°﹣40°=25°;故答案为:40°,25°;(3)由直角三角板只能在直线AB上方旋转可知:如图2,当ON在∠BOC内部时,∵∠NOC=5°,∠BOC=65°,∴∠BON=∠BOC﹣∠NOC=60°,∵点O为直线AB上一点,∴∠AOB=180°,∵∠MON=90°,∴∠AOM=∠AOB﹣∠MON﹣∠BON,=180°﹣90°﹣60°,=30°;如备用图,当ON在∠AOC内部时,∵∠NOC=5°,∠BOC=65°,∴∠BON=∠NOC+∠BOC=70°,∵点O为直线AB上一点,∴∠AOB=180°,∵∠MON=90°,∴∠AOM=∠AOB﹣∠MON﹣∠BON,=180°﹣90°﹣70°,=20°.综上所述:∠AOM的度数为30°或20°.19.解:(1)如图1所示.∠a=45°,故答案为:45°;(2)解:如图1.1所示.∵α<30°,∴∠A0OA3<180°,4α<180°.∵OA4平分∠A2OA3,∴2(180°﹣6α)+α=4α,解得:α=()°;(3)分四种情况:①当魔法棒从OM位置绕点O顺时旋转到OA4位置(不到ON位置),即OA4和OA3都不从ON回弹时,如图2,3α+4α=20,α=()°;②当魔法棒从OM位置绕点O顺时旋转到ON被弹回到OA4位置(在ON与OA3之间),(180°﹣6α)+180°﹣20°﹣3α)=4α,解得α=()°(不合实际);③当魔法棒从OM位置绕点O顺时旋转到ON被弹回到OA4位置(在OA2与OA3之间),如图3,根据题意得:4α﹣(180﹣6α)+20=3α,α=()°;或者2(180°﹣6α)+(3α﹣20°)=4α,解得,α=()°;④当魔法棒从OM位置绕点O顺时旋转到ON被弹回到OA4位置(在OA1与OA2之间),即OA4在OA2的左边时,如图4,根据题意得:4α﹣(180﹣6α)=3α+20,α=()°;或者2(180°﹣6α)+(3α+20°)=4α,解得,α=()°,综上,对应的α值是()°或()°或()°.20.解:(1)①如图:∵AB=AC,AD=AE,∴AB﹣AD=AC﹣AE,即BD=CE,∵点M,N,P分别是DE,BC和CD的中点,∴MP是△CDE的中位线,PN是△BCD的中位线,∴PM=CE,PN=BD,PM∥CE,PN∥BD,∴PM=PN,∠DPM=∠DCA,∠DPN=∠ADC,∵α=90°,即∠A=90°,∴∠DCA+∠ADC=90°,∴∠DPM+∠DPN=90°,即∠MPN=90°,故答案为:PM=PN,90°;②存在点D,使得以P,M,N为顶点的三角形与△ADE全等,理由如下:连接MN,如图:由①知△PMN是等腰直角三角形,若△PMN≌△ADE,则PN=PM=AD=AE,∵PN=BD,∴AD=BD,∴AD=AB,∴D是AB靠近A的三等分点;(2)连接CE,BD,如图:由旋转可得∠CAE=∠BAD,∵AC=AB,AE=AD,∴△ACE≌△ABD(SAS),∴CE=BD,∠AEC=∠ADB,∵点M,N,P分别是DE,BC和CD的中点,∴MP是△CDE的中位线,PN是△BCD的中位线,∴PM=CE,PN=BD,PM∥CE,PN∥BD,∴PM=PN,∠DPM=∠DCE,∠DPN=180°﹣∠BDP,∴∠MPN=∠DPM+∠DPN=∠DCE+180°﹣∠BDP=∠DCE+180°﹣(360°﹣∠ADB﹣∠ADE﹣∠EDC)=∠DCE+∠AEC+∠ADE+∠EDC﹣180°=∠DCE+∠AED+∠DEC+∠ADE+∠EDC﹣180°,∵∠DCE+∠DEC+∠EDC=180°,∴∠MPN=∠AED+∠ADE,∵∠AED+∠ADE=180°﹣∠EAC﹣∠CAD==180°﹣∠BAD﹣∠CAD=180°﹣∠BAC=180°﹣α,∴∠MPN=180°﹣α;②过E作EG⊥AD于G,过N作NH⊥MP,交MP的延长线于H,如图:由①知PM=PN=BD,∠MPN=180°﹣α,∵AD=BD,∴PM=PN=AD=AE,∵∠HPN=180°﹣∠MPN,∴∠HPN=α=∠BAC=∠DAE,设PM=PN=m,则AE=AD=2m,在Rt△AEG中,EG=AE•sinα=2m•sinα,在Rt△PHN中,HN=PN•sinα=m•sinα,∴S△ADE=×2m×2m•sinα=2m2sinα,S△PMN=×m×m•sinα=m2sinα,∴S△ADE=4S△PMN,∴△ADE和△PMN的面积关系为S△ADE=4S△PMN.。

德州市中考数学一轮复习课件专题四:几何变换压轴题

德州市中考数学一轮复习课件专题四:几何变换压轴题
几何变换是德州市中考的常考点,多与三角形、四边 形、圆相结合,考查形式多样化.德州市近五年中考对此 问题的考查:2017年中考试题第11题考查了旋转变换,第 23题考查了翻折变换;2016年中考试题第12题考查了旋转
变换,第23题考查了类比变换;2015年中考试题第6题考查 了旋转变换,第23题考查了类比变换;2014年中考试题第 12题考查了翻折变换,第23题考查了类比变换;2013年中 考试题第23题考查了类比变换.
(3)
6.我们把两条中线互相垂直的三角形称为“中垂三角形”. 例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂 足为P,像△ABC这样的三角形均为“中垂三角形”.设BC= a,AC=b,AB=c. 【特例探索】 (1)如图1,当∠ABE=45°,c=2 2 时,a= ,b= ; 如图2,当∠ABE=30°,c=4时,a= ,b= ;
类型一 图形的旋转变换 几何图形的旋转变换是近年来中考中的常考点,多与
三角形、四边形相结合.解决旋转变换问题,首先要明确 旋转中心、旋转方向和旋转角,关键是找出旋转前后的对 应点,利用旋转前后两图形全等等性质解题.
例1 如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,
将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,
4.(2017·淄博)如图,将矩形纸片ABCD沿直线MN折叠,顶 点B恰好与CD边上的动点P重合(点P不与点C,D重合),折痕 为MN,点M,N分别在边AD,BC上.连接MB,MP,BP,BP与 MN相交于点F. (1)求证:△BFN∽△BCP; (2)①在图2中,作出经过M,D,P三点的⊙O(要求保留作图 痕迹,不写作法);
【分析】 作DF⊥B′E于点F,B′G⊥AD于点G,由∠B= 60°,BD=BE,得到△BDE是等边三角形,由对称的性质得 到△B′DE也是等边三角形,从而GD=B′F,然后利用勾股 定理求解. 【自主解答】 如图,作DF⊥B′E于点F,B′G⊥AD于点G, ∵∠B=60°,BD=BE=4, ∴△BDE是边长为4的等边三角形.

九年级中考数学图形变换压轴题专题练习

九年级中考数学图形变换压轴题专题练习

九年级中考数学图形变换压轴题专题练习1、在图1-3中,四边形ABCD和CGEF都是正方形,M是AE的中点.(1)如图1,点F在BC延长线上,求证:DM=MG;(2)在图1的基础上,将正方形CGEF绕点C顺时针旋转到图2位置,此时点E在BC延长线上.求证:DM=MG;(3)在图2的基础上,将正方形CGEF绕点C在任一旋转一个角度到如图3位置,此时DM和MG还相等吗?请证明。

2、已知线段AB的长为2a,点P是AB上的动点(P不与A,B重合),分别以AP、PB 为边向线段AB的同一侧作正△APC和正△PBD.(1)连结AD、BC,相交于点Q,设∠AQC=α,那么α的大小是否会随点P的移动而变化?请说明理由;(2)如图2,若点P固定,将△PBD绕点P按顺时针方向旋转(旋转角小于180°),此时α的大小是否发生变化?3、已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在DC边所在直线上,且随着点P的运动而运动,PE=PD总成立.(1)如图(1),当点P在对角线AC上时,请你通过测量、观察,猜想PE与PB有怎样的关系?(直接写出结论不必证明);(2)如图(2),当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;(3)如图(3),当点P运动到CA的反向延长线上时,请你利用图(3)画出满足条件的图形,并判断此时PE与PB有怎样的关系?(直接写出结论不必证明)4、如图(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F(1)求证:CE=CF.(2)将图(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图(2)所示.试猜想:BE′与CF有怎样的数量关系?请证明你的结论.5、如图1,O为正方形ABCD的中心,分别延长OA、OD到点F、E,使OF=2OA,OE =2OD,连接EF.将△EOF绕点O逆时针旋转α角得到△E1OF1(如图2).(1)探究AE1与BF1的数量关系,并给予证明;(2)当α=30°时,求证:△AOE1为直角三角形.6、如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点.(1)求证:△MDC是等边三角形;(2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD交于一点F时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.7、如图(1),在△ABC中,∠ACB=90°,AC=BC=2,点D在AC上,点E在BC上,且CD=CE,连接DE.(1)线段BE与AD的数量关系是________,位置关系是________.(2)如图(2),当△CDE绕点C顺时针旋转一定角度α后,(1)中的结论是否仍然成立?如果成立,请给予证明;如果不成立,请说明理由.(3)绕点C继续顺时针旋转△CDE,当90°<α<180°时,延长DC交AB于点F,请在图(3)时,旋转角α的度数.中补全图形,并求出当AF=1+338、已知菱形ABCD的边长为5,∠DAB=60°.将菱形ABCD绕着A逆时针旋转得到菱形AEFG,设∠EAB=α,且0°<α<90°,连接DG、BE、CE、CF.(1)如图(1),求证:△AGD≌△AEB;(2)当α=60°时,在图(2)中画出图形并求出线段CF的长;(3)若∠CEF=90°,在图(3)中画出图形并求出△CEF的面积.(1)(2)9、已知,点O为矩形ABCD的对称中心,过O点的直线L交直线AD于M,ON⊥OM交直线DC于N,连MN,现将直线L绕点O顺时针旋转。

中考数学总复习《图形变换综合压轴题》专题测试卷(附答案)

中考数学总复习《图形变换综合压轴题》专题测试卷(附答案)

中考数学总复习《图形变换综合压轴题》专题测试卷(附答案)1.线段AB与CD的位置关系如图1所示AB=CD=m,AB与CD的交点为O,且∠AOC=60°,分别将AB和AC平移到CE,BE的位置(如图2).(1)求CE的长和∠DCE的度数;(2)在图2中求证:AC+BD>m.2.如图,在Rt△ABC中∠ACB=90°,∠B=30°将Rt△ABC绕点C顺时针旋转得到Rt△A′B′C,且点B′、A′、B在同一直线上.请仅用无刻度的直尺完成以下作图.(1)在图1中,作出一个以AB为边的等边三角形;(2)在图2中,作出一个菱形.3.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别A(1,4),B(2,0),C(3,2)(1)画出将△ABC沿AC翻折得到的△AB1C1;(2)画出将△ABC沿x轴翻折得到的△A2BC2;(3)观察发现:△A2BC2可由△AB1C绕点(填写坐标)旋转得到(4)在旋转过程中,点B1经过的路径长为.∠ABC.以点B为旋转中心,4.如图1,在△ABC中BA=BC,D、E是AC边上的两点,且满足∠DBE=12将△CBE按逆时针方向旋转得到△ABF,连接DF.(1)求证:DF=DE;(2)如图2,若AB⊥BC,其他条件不变.求证:DE2=AD2+EC2.5.如图,将矩形ABCD绕着点B逆时针旋转得到矩形GBEF,使点C恰好落到线段AD上的E点处,连接CE,连接CG交BE于点H.(1)求证:CE平分∠BED;(2)取BC的中点M,连接MH,求证:MH∥BG;(3)若BC=2AB=4,求CG的长.6.已知,△ABC为等边三角形,点D,E为直线BC上两动点,且BD=CE.点F,点E关于直线AC成轴对称,连接AE,顺次连接A,D,F.(1)如图1,若点D,点E在边BC上,试判断△ADF的形状并说明理由;(2)如图2,若点D,点E在边BC外,求证:∠BAD=∠FDC.7.如图,正方形ABCD中∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交BC、DC(或它们的延长线)于点M、N.(1)如图1,求证:MN=BM+DN;(2)当AB=6,MN=5时,求△CMN的面积;(3)当∠MAN绕点A旋转到如图2位置时线段BM、DN和MN之间有怎样的数量关系?请写出你的猜想并证明.8.如图1 在△ABC中AB=AC点DE、分别在边AB、AC上AD=AE连接DC点P、Q、M分别为DE、BC、DC的中点连接MQ、PM.(1)求证:PM=MQ;(2)当∠A=50°时求 PMQ的度数;(3)将△ADE绕点A沿逆时针方向旋转到图2的位置若∠PMQ=120°判断△ADE的形状并说明理由.9.已知△ABC∠ACB=90°AC=BC=4D是射线CB上一点连接AD将AD绕点A逆时针旋转90°点D落在点E处连接BE交射线AC于点F.(1)如图1当点D与点C重合时求AF的长;(2)如图2当点D在线段BC上时连接CE在点D的运动过程中请问△AEC的面积是否会发生变化?如果不会求出它的面积;如果会请说明理由;(3)当BD=1时求AF的长.10.在等边△BCD中DF⊥BC于点F点A为直线DF上一动点以点B为旋转中心把BA顺时针旋转60°至BE.(1)如图1 点A在线段DF上连接CE求证:CE=DA;(2)如图2 点A在线段FD的延长线上请在图中画出BE并连接CE当∠DEC=45°时连接AC求出∠BAC的度数;(3)在点A的运动过程中若BD=6求EF的最小值11.如图一个含60°角的纸片顶点与等边△ABC的点B重合将该纸片绕点B旋转使纸片60°角的一边交直线AC于点D在另一边上截取点E使BE=BD连接AE.(1)当点D在边AC上时如图① 求证:AC=AD+AE;(2)当点D在边AC所在直线上如图②、如图③时线段AD,AC,AE之间又有怎样的数量关系?请直接写出结论.(3)在图③中AD、BE交于点K若AE=4,BC=6则AD=_______ DK=______.12.已知四边形ABCD中AB⊥AD,BC⊥CD AB=BC,∠ABC=120°∠MBN=60°,∠MBN绕B点旋转它的两边分别交AD,DC(或它们的延长线)于E、F.(1)当∠MBN绕B点旋转到AE=CF时(如图1)求证:AE+CF=EF.(2)当∠MBN绕B点旋转到AE≠CF时在图2种情况下求证:AE+CF=EF.(3)当∠MBN绕B点旋转到AE≠CF时在图3种情况下上述结论是否成立?若成立请给予证明;若不成立线段AE,CF EF又有怎样的数量关系?请写出你的猜想不需证明.13.如图在平行四边形ABCD中AC是对角线AB=AC点E是BC边上一点连接AE将AE绕着点A 顺时针旋转α得到线段AF.(1)如图1 若α=∠BAC=90°连接BF BF=3BC=8求△ABE的面积;(2)如图2 若α=2∠BAC=120°连接CF交AB于H求证:2AH+CE=AD;(3)若在(2)的条件下3CE=BC=9点P为AB边上一动点连接EP将线段EP绕着点E顺时针旋转60°得到线段EQ连接CQ当线段CQ取得最小值时直接写出四边形BHQE的面积.14.已知:正方形ABCD以A为旋转中心旋转AD至AP连接BP、DP.(1)若将AD顺时针旋转30°至AP如图1所示求∠BPD的度数?(2)若将AD顺时针旋转α度(0°<α<90°)至AP求∠BPD的度数?(3)若将AD逆时针旋转α度(0°<α<180°)至AP请分别求出0°<α<90°、α=90°、90°<α<180°三种情况下的∠BPD的度数(图2、图3、图4).15.已知如图1正方形ABCD的边长为5点E、F分别在边AB、AD的延长线上且BE=DF连接EF.(1)证明:EF⊥AC;(2)将△AEF绕点A顺时针方向旋转当旋转角α满足0°<α<45°时设EF与射线AB交于点G与AC交于点H如图所示试判断线段FH、HG、GE的数量关系并说明理由.(3)若将△AEF绕点A旋转一周连接DF、BE并延长EB交直线DF于点P连接PC试说明点P的运动路径并求线段PC的取值范围.16.【问题思考】如图1 点E是正方形ABCD内的一点过点E的直线AQ以DE为边向右侧作正方形DEFG 连接GC直线GC与直线AQ交于点P则线段AE与GC之间的关系为______.【问题类比】如图2 当点E是正方形ABCD外的一点时【问题思考】中的结论还成立吗?若成立请证明你的结论;若不成立请说明理由;【拓展延伸】如图3 点E是边长为6的正方形ABCD所在平面内一动点【问题思考】中其他条件不变则动点P到边AD的最大距离为______(直接写出结果).17.(1)【问题发现】如图1 在Rt△ABC中AB=AC∠BAC=90°点D为BC的中点以BD为一边作正方形BDFE点F恰好与点A重合则线段CF与AE的数量关系为_______;(2)【拓展探究】在(1)的条件下如果正方形BDFE绕点B顺时针旋转连接CF AE BF线段CF与AE 的数量关系有无变化?请仅就图2的情形给出证明;(3)【问题解决】当AB=AC=6且(2)中的正方形BDFE绕点B顺时针旋转到E F C三点共线时求出线段AE的长.18.综合与实践:问题情景:如图1、正方形ABCD与正方形AEFG的边AB AE(AB<AE)在一条直线上正方形AEFG以点A为旋转中心逆时针旋转设旋转角为α在旋转过程中两个正方形只有点A重合其它顶点均不重合连接BE DG.(1)操作发现:当正方形AEFG旋转至如图2所示的位置时求证:BE=DG;(2)操作发现:如图3 当点E在BC延长线上时连接FC求∠FCE的度数;(3)问题解决:如图4 如果α=45°AB=2AE=4√2请直接写出点G到BE的距离.19.如图①在正方形ABCD中连接BD点E是边AB上的一点EF⊥AB交BD于点F点P是FD的中点连接EP、CP.(1)如图① 探究EP与CP有何关系并说明理由;(2)若将△BEF绕点B顺时针旋转90° 得到图② 连接FD取FD的中点P连接EP、CP请问在该条件下①中的结论是否成立并说明理由;(3)如果把△BEF绕点B顺时针旋转180° 得到图③ 同样连接FD取FD的中点P连接EP、CP请你直接写出EP与CP的关系.20.综合与实践问题情境:数学活动课上老师向大家展示了一个图形变换的问题.如图1.将正方形纸片ABCD折叠使边AB AD都落在对角线AC上展开得折痕AE AF连接EF.试判断△AEF的形状.独立思考:(1)请解答问题情境提出的问题并写出证明过程.实践探究:(2)如图2.将图1中的∠EAF绕点A旋转使它的两边分别交边BC CD于点P Q连接PQ.请猜想线段BP PQ DQ之间的数量关系并加以证明.问题解决:(3)如图3.连接正方形对角线BD若图2中的∠PAQ的边AP AQ分别交对角线BD于点M N将图3中的正方形纸片沿对角线BD剪开如图4所示.若BM=7DN=24求MN的长.参考答案1.(1)解:∵将AB和AC平移到CE,BE的位置∵AB=CE,AB∥CE∵∠AOC=∠DCE∵∠AOC=60°AB=CD=m∵∠DCE=60°CE=AB=m;(2)证明:如图连接DE由(1)得:∠DCE=60°CE=AB=m∵AB=CD=m∵CD=CE∵△CDE是等边三角形∵DE=CD=m∵将AB和AC平移到CE,BE的位置∵AC=BE在△BDE中BD+BE>DE即AC+BD>m.2.(1)解:△ADB是等边三角形即为所求理由如下:如图延长AC交BB′于一点D∵∠ACB=90°∠CBA=30°将Rt△ABC绕点C顺时针旋转得到Rt△A′B′C ∵∠A=60°,∠B′=30°,BC=B′C∵∠B′BC=30°,∠ABD=60°∵∠BDA=180°−60°−60°=60°∵△ADB是等边三角形;(2)解:四边形ABDE是菱形即为所求理由如下:过点D作DE平行于AB交BC的延长线于一点即为点E连接AE如图:由(1)知△ADB是等边三角形且∠ACB=90°∵BC⊥AD∵DC=AC∵∠DEB =∠ABC∵∠DCE =∠ACB∵△DCE ≌△ACB∵BC =EC∵四边形ABDE 是菱形.3.解:(1)如图:(2)如图:(3)(5 0)(4)B 1经过的路径是以(5 0)为圆心 BB 1为半径的圆弧∵C =14×2×π×3=32π;4.(1)证明:∵∠DBE =12∠ABC∵∠ABD +∠CBE =∠DBE =12∠ABC∵△ABF 由△CBE 旋转而成∵BE =BF ∠ABF =∠CBE∵∠DBF =∠DBE在△DBE 与△DBF 中{BE =BF ∠DBE =∠DBF BD =BD∵△DBE ≌△DBF (SAS )(2)证明:∵将△CBE按逆时针方向旋转得到△ABF∵BA=BC∠ABC=90°∵∠BAC=∠BCE=45°∵图形旋转后点C与点A重合CE与AF重合∵AF=EC∵∠FAB=∠BCE=45°∵∠DAF=90°在Rt△ADF中DF2=AF2+AD2∵AF=EC∵DF2=EC2+AD2同(1)可得DE=DF∵DE2=AD2+EC2.5.(1)证明:∵将矩形ABCD绕着点B逆时针旋转得到矩形GBEF使点C恰好落到线段AD上的E点处∴BE=BC∴∠BEC=∠BCE∵AD∥BC∴∠BCE=∠DEC∴∠BEC=∠DEC∴CE平分∠BED;(2)证明:过点C作CN⊥BE于N如图:∵CE平分∠BED CD⊥DE CN⊥BE∴CD=CN∴BG=AB=CD=CN∵∠BHG=∠NHC∠GBH=∠CNH=90°BG=CN∴△BHG≌△NHC(AAS)∴GH=CH即点H是CG中点∵点M是BC中点∴MH是△BCG的中位线∵MH∥BG;(3)解:过点C作CN⊥BE于N过G作GR⊥BC于R如图:∵BC=2AB=4∴BG=AB=CD=CN=2∴CN=12 BC∴∠NBC=30°∵∠GBE=90°∴∠GBR=60°∴BR=12BG=1GR=√3BR=√3在Rt△GRC中CG=√GR2+CR2=√(√3)2+(1+4)2=2√7∴CG的长为2√7.6.解:(1)△ADF为等边三角形理由如下:∵△ABC为等边三角形∵AB=AC,∠ABC=∠ACB=60°.在△ABD和△ACE中{AB=AC∠ABC=∠ACBBD=CE∴△ABD≅△ACE(SAS)∴AD=AE,∠BAD=∠CAE.∵点F 点E关于直线AC成轴对称∴AF=AE,∠CAF=∠CAE ∴AD=AF,∠CAF=∠BAD.∵∠BAD+∠DAC=60°∴∠CAF+∠DAC=60°即∠DAF=60°,∵△ADF为等边三角形.(2)∵△ABC为等边三角形∵AB=AC,∠ABC=∠ACB=60°.在△ABD和△ACE中{AB=AC∠ABC=∠ACBBD=CE∴△ABD≅△ACE(SAS)∴AD=AE,∠BAD=∠CAE.∵点F 点E关于直线AC成轴对称∴AF=AE,∠CAF=∠CAE ∴AD=AF,∠CAF=∠BAD.∵∠BAD+∠DAC=60°∴∠CAF+∠DAC=60°∵△ADF为等边三角形.∴∠ADF=∠FDC+∠ADC=60°∵∠BAD+∠ADC=∠ABC=60°∵∠BAD=∠FDC7.(1)解:如图将△ABM绕点A逆时针旋转90°得到△ADM′则:△ABM≌△ADM′∵AM=AM′,BM=DM′,∠BAM=∠DAM′∵四边形ABCD为正方形∵∠BAD=90°∵∠MAN=45°∵∠MAB+∠NAD=45°∵∠M′AD+∠NAD=∠M′AN=45°∵∠MAN=∠M′AN又∵AM=AM′,AN=AN∵△AMN≌△AM′N(SAS)∵MN=M′N=M′D+DN=BM+DN;(2)解:∵四边形ABCD为正方形∵AD=AB=6S正方形=62=36∵△AMN≌△AM′N∵MN′=MN=5∵S△AMN=S△AM′N=12M′N⋅AD=12×5×6=15∵△ABM≌△ADM′∵S△ABM+S△ADN=S△ABM′+S△ADN=S△AM′N=15∵S△CMN=S正方形−S△AMN−S△ADN−S△AMB=36−15−15=6;(3)解:DN=BM+MN理由如下:如图将△ABM绕点A逆时针旋转90°得到△ADM′连接MN 则:∠MAM′=90°△ABM≌△ADM′∵AM=AM′,BM=DM′,∠BAM=∠DAM′∵∠MAN=45°∵∠M′AN=∠M′AM−∠MAN=90°−45°=45°∵∠MAN=∠M′AN又∵AM=AM′,AN=AN∵△AMN≌△AM′N(SAS)∵MN=M′N∵DN=M′D+M′N=BM+MN.8.(1)证明:∵AB=AC AD=AE∵BD=CE∵P M分别为DE DC的中点∵PM=12CE PM∥CE∵M Q分别为DC CB的中点∵MQ=12DB MQ∥OB∵PM=MQ;(2)解:∵点P、Q、M分别为DE、BC、DC的中点∵MQ∥DB PM∥AC∵∠MQC=∠B∵∠PMQ=∠DMP+∠DMQ=∠ACD+∠BCD+∠MQC=∠ACD+∠BCD+∠B =180°−50°=130°;(3)解:∵ADE是等边三角形理由如下:由旋转的性质可知∠BAC=∠DAE∵∠BAD=∠CAE在△BAD和△CAE中{AB=AC ∠BAD=∠CAE AD=AE∵∵BAD∵∵CAE(SAS)∵BD=CE∠ABD=∠ACE ∵P M为DE DC的中点∵PM∥EC∵∠PMD=∠ECD∵M Q为DC BC的中点∵MQ∥DB∵∠MQC=∠DBC∵∠MPQ=∠DMP+∠DMQ=∠DCE+∠MQC+∠MCQ=∠ACD+∠ACE+∠DBC+∠MCQ=∠ACD+∠MCQ+∠DBC+∠ABD=∠ACB+∠ABC=120°∵∠BAC=180°−120°=60°∵∠DAE=∠BAC=60°又∵AD=AE∵∵ADE是等边三角形.9.(1)解:∵将AD绕点A逆时针旋转90°∵AD=AE,∠DAE=90°∵点D与点C重合∵AC=AE∵BC=AC=AE又∵∠AFE=∠BFC∠EAF=∠BCF=90°∵△BCF≌△EAF(AAS)∵AF=CF∵AC=BC=4∵AF=CF=2;(2)解:△AEC的面积不会变化理由如下:如图过点E作EH⊥AC于H∵将AD绕点A逆时针旋转90°∵AD=AE,∠DAE=90°=∠ACB∵∠DAC+∠CAE=90°=∠DAC+∠ADC∵∠ADC=∠CAE∵△ADC≌△EAH(AAS)∵EH =AC =4∵S △ACE =12×AC ⋅EH =8;(3)解:当点D 在线段BC 上时∵BD =1,BC =4∵CD =3∵△ADC ≌△EAH∵CD =AH =3∵CH =1∵∠EHF =∠ACB =90° ∠AFE =∠BFC ,AC =EH =BC∵△EFH ≌△BFC(AAS)∵FH =FC =12 ∵AF =AF +FH =72;当点D 在线段CB 的延长线时 过点E 作EH ⊥直线AC 于H∵BD =1,BC =4∵CD =5同理可证△ACD ≌△EHA∵CD =AH =5∵CH =1同理可证:△BCF ≌△EHF∵FH =FC =12 ∵AF =AC +FC =92综上所述:AF 的长为72或92.10.(1)解:由旋转得 BA =BE ∠ABE =60°∵△BCD 是等边三角形∵BD=BC∠DBC=60°∵∠ABE=∠DBC∵∠DBA+∠ABC=∠ABC+∠CBE ∵∠DBA=∠CBE在△DBA与△CBE中{BD=BC ∠DBA=∠CBE BA=BE∵△DBA≌△CBE(SAS)∵DA=CE.(2)解:如图3由(1)可知△DBA≌△CBE∵DA=CE∠BDA=∠BCE又∵△BCD是等边三角形∵∠BDC=∠BCD=60°DB=DC∵DB=DC∵∵BCD是等腰三角形∵DF⊥BC∵∠BDF=12∠BDC=30°∵∠BDA=180°−∠BDF=150°∵∠BCE=150°∠CDA=360°−∠BDA−∠BDC=150°∵∠DCE=∠BCE−∠BCD=90°∵∠DEC=45°∵∠EDC=45°∵∠DEC=∠EDC ∵CE=CD∵DB=DC=DA∵∠BAD=180°−∠BDA2=15°∠CAD=180°−∠CDA2=15°∵∠BAC=∠BAD+∠CAD=30°.(3)解:∵由图1可知当点A在线段DF上时∠BCE=∠BDA=30°;由图3可知当点A在线段FD的延长线上时∠BCE=∠BDA=150°;由图4可知当点A在线段DF的延长线上时∠BCE=∠BDA=30°;∵综上所述当点A在直线DF上运动时直线CE与直线BC的夹角始终为30°即点E的运动轨迹为一条直线过点F作FE′⊥EC于点E′则当点E运动到点E′时此时EF的长度最短∵BD=CD=BC=6DF⊥BC∵CF=12BC=3又∵FE′⊥EC∠BCE=30°∵FE′=12CF=32∵EF的最小值为32.11.((1)证明:∵△ABC是等边三角形∵AB=BC∠ABC=60°.∵∠EBD=60°∵∠EBA+∠ABD=∠CBD+∠ABD即:∠ABE=∠CBD∵BD=BE∵△ABE≌△CBD(SAS)∵AE=CD.∵AC=AD+CD∵AC=AD+AE.(2)如图2 当点D在CA的延长线时∵∵DBE=∵ABC=60°∵∵DBE+∵ABD=∵ABC+∵ABD即∵ABE=∵CBD∵AB=BC BE=BD∵∵ABE∵△CBD(SAS)∵AE=CD=AC+AD∵AD=AE-AC;如图3 当点D在AC的延长线上时∵∵ABC=∵DBE=60°∵∵ABC-∵CBE=∵DBE-∵CBE即∵ABE=∵CBD∵AB=BC BD=BE∵△ABE∵△CBD(SAS)∵AE=CD=AD-AC∵AC=AD-AE;综上当点D在CA延长线时AD=AE-AC;当点D在AC的延长线上时AC=AC-AE;(3)解:由(2)得∵ABE∵∵CBD∵CD=AE=4 ∵BAE=∵BCD=180°-∵ACB=120°∵AD=AC+CD=6+4=10 ∵CAE=∵BAE-∵BAC=60°∵∵CAE=∵ACB∵AE∵BC∵∵AKE∵∵CKB∵AK CK =AEBC=46∵AK =23CK又∵AK +CK =AC =BC =6∵53 CK =6∵CK =185∵DK =CK +CD =185+4=385.12.解:(1)∵AB ⊥AD,BC ⊥CD,∵∠A =∠C ,在△ABE 与△CBF 中{AB =BC ∠A =∠C AE =CF ∵△ABE ≅△CBF(SAS),∵∠ABE =∠CBF,BE =BF,∵∠ABC =120°,∠MBN =60°,∵∠ABE =∠CBF =30°,∵AE =12BE,CF =12BF,∵∠MBN =60°,BE =BF∵△BEF 为等边三角形∵BE =BF =EF,∵AE =CF =12EF,∵AE +CF =EF;(2)如图 将Rt △ABE 顺时针旋转120°得△BCG∵BE=BG,AE=CG,∠A=∠BCG,∵AB=BC,∠ABC=120°,∵点A与点C重合∵∠A=∠BCF=90°,∵∠BCG+∠BCF=180°,∵点G、C、F三点共线∵∠ABC=120°,∠MBN=60°,∠ABE=∠CBG,∵∠GBF=60°,在△GBF与△EBF中{BG=BE∠GBF=∠EBFBF=BF∵△GBF≅△EBF(SAS),∵FG=EF,∵EF=AE+CF;(3)不成立EF=AE−CF理由如下:如图将RtΔABE顺时针旋转120° 得ΔBCG∵AE=CG由(2)同理得点C、F、G三点共线∵AB=BC,∠ABC=120°,∵点A与点C重合∵BG=BE,∵∠ABC=∠ABE+∠CBE=120°,∵∠CBG+∠CBE=∠GBE=120°,∵∠MBN=60°,∵∠GBF=60°,在ΔBFG与ΔBFE中{BG=BE∠GBF=∠EBFBF=BF∵△BFG≅△BFE(SAS)∵GF=EF,∵EF=AE−CF.13.(1)解:如图:过点A作BC的垂线交BC于点M∵α=∠BAC=90°∴∠FAB=∠EAC在△FAB和△EAC{FA=EA ∠FAB=∠EAC BA=CA∴△FAB≅△EAC(SAS)∴FB=CE又∵BF=3BC=8∴BE=BC−CE=8−3=5又∵∠BAC=90°AB=AC ∴AM=12BC=4∴S△ABE=12BE×AM=12×5×4=10.(2)解:在BH上截取BP=CE连接CP∵α=2∠BAC=120°∵∠BAC=60°∵AB=AC∵△ABC是等边三角形∵∠B=∠ACB=60°BC=AC 在△CBP和△ACE中{BP=CE∠B=∠ACB=60°BC=AC∴△CBP≅△ACE∴CP=AE=AF∠BPC=∠AEC=60°+∠BAE ∴∠APC=180°−(∠BAE+60°)∵∠FAB=120°−∠BAE∴∠APC=∠FAB在△AHF和△CPH中{∠APC=∠FAB ∠AHF=∠PHC CP=AF∵△AHF≅△PHC(AAS)∴AH=PH∵BP=CE∴AB=BC=AD=AH+PH+CE=2AH+CE.(3)解:如图:∵3CE=BC=9∵CE=3BE=BC−CE=6,连接EH由(2)可知∠BAC=∠ABC=60°∵△BHE是等边三角形∵∠BEH=60°,BE=HE∵将线段EP绕着点E顺时针旋转60°得到线段EP1∵PE=P1E∠PEP1=60°即∠HEP1=∠BEP,在△BPE和△HEP1中{PE=P1E∠HEP1=∠BEPBE=HE,∵△BEP≅△HEP1(SAS),∵∠B=∠EHP1=60°,∵∠BEH=60°∵∠BEH=∠EHP1=60°,∵HP1∥BC点P1的轨迹为过点H且平行BC的直线过H作HP1∥BC其延长线角CD于M过C作CQ⊥BP1于Q由点到直线的距离垂线段最短可知:当CQ⊥MH时即CQ有最小值∵BH∥CM,BC∥HM∵四边形BHMC是平行四边形∵CM=BH=6∠HMC=∠B=60°∵∠QCM=30°∵MQ=12CM=3∵CQ=√CM2−MQ2=3√3∵边形BHQE的面积为BE⋅CQ=6×3√3=18√3.14.(1)解:∵AD顺时针旋转30°至AP∵AD=AP∠PAD=30°∵∠APD=12(180°−30°)=75°∵四边形ABCD为正方形∵AB=AD=AP∠BAD=90°∵∠BAP=90°−30°=60°∵∠BPA=12(180°−60°)=60°∵∠BPD=60°+75°=135°.(2)∵AD顺时针旋转α至AP ∵AD=AP∠PAD=α∵∠APD=12(180°−α)=90°−α2∵四边形ABCD为正方形∵AB=AD=AP∠BAD=90°∵∠BAP=90°−α∵∠BPA=12[180°−(90−α)]=45°+α2∵∠BPD=(90°−α2)+(45°+α2)=135°.(3)①当0°<α<90°时∵AD逆时针旋转α至AP∵AD=AP∠PAD=α∵∠APD=12(180°−α)=90°−α2∵四边形ABCD为正方形∵AB=AD=AP∠BAD=90°∵∠BAP=90°+α∵∠BPA=12[180°−(90+α)]=45°−α2∵∠BPD=(90°−α2)−(45°−α2)=45°.②当α=90°时∵AD逆时针旋转90°至AP∵AD=AP∠PAD=90°∵四边形ABCD为正方形∵AB=AD=AP∠BAD=90°∵∠BAP=90°+90°=180°即点P、A、B三点共线∵∠BPD=∠APD=12(180°−90°)=45°.③当90°<α<180°时∵AD逆时针旋转α至AP∵AD=AP∠PAD=α∵∠APD=12(180°−α)=90°−α2∵四边形ABCD为正方形∵AB=AD=AP∠BAD=90°∵∠BAP=360°−90°+α=270°−α∵∠BPA=12[180°−(270°−α)]=α2−45°∵∠BPD=(90°−α2)+(α2−45°)=45°.15.(1)证明:如图1:∵四边形ABCD是正方形∴AD=AB∠DAC=∠BAC∵BE=DF ∴AD+DF=AB+BE即AF=AE∴AC⊥EF.(2)解:FH2+GE2=HG2理由如下:如图2过A作AK⊥AC截取AK=AH连接GK、EK∵∠CAB=45°∴∠CAB=∠KAB=45°∵AG=AG∴△AGH≅△AGK(SAS)∴GH=GK由旋转得:∠FAE=90°AF=AE∵∠HAK=90°∴∠FAH=∠KAE∴△AFH≅△AEK(SAS)∴∠AEK=∠AFH=45°FH=EK∵∠AEH=45°∴∠KEG=45°+45°=90°Rt△GKE中KG2=EG2+EK2即:FH2+GE2=HG2.(3)解:如图3∵AD=AB∠DAF=∠BAE AE=AF∴△DAF≅△BAE(SAS)∴∠DFA=∠BEA∵∠PNF=∠ANE∴∠FPE=∠FAE=90°∴将△AEF绕点A旋转一周总存在直线EB与直线DF垂直∴点P的运动路径是:以BD为直径的圆如图4当P与C重合时PC最小PC=0当P与A重合时PC最大为5√2.∴线段PC的取值范围是:0≤PC≤5√2.16.解:问题思考:设AQ和BC交于点H∵四边形ABCD和四边形DEFG都为正方形∵∠ADC=∠EDG=90°DA=DC,DE=DG ∵∠ADC−∠EDC=∠EDG−∠EDC即∠ADE=∠CDG∵△DAE≌△DCG(SAS)∵AE=CG∠DAE=∠DCG∵∠DAB=∠DCB=90°∵∠DAE+∠HAB=∠DCG+∠PCH即∠BAH=∠PCH∵∠AHB=∠CHP∵∠B=∠CPA=90°即AE⊥CG故答案为:AE=GC AE⊥GC;问题类比:问题思考中的结论仍然成立理由如下:设AQ和BC交于点H∵四边形ABCD和四边形DEFG都为正方形∵∠ADC=∠EDG=90°DA=DC,DE=DG ∵∠ADC−∠EDC=∠EDG−∠EDC即∠ADE=∠CDG∵△DAE≌△DCG(SAS)∵AE=CG∠DAE=∠DCG∵∠DAB=∠DCB=90°∵∠DAE+∠HAB=∠DCG+∠PCH即∠BAH=∠PCH∵∠AHB=∠CHP∵∠B=∠CPA=90°即AE⊥CG故答案为:AE=GC AE⊥GC;拓展应用:∵∠CPA=90°∵点P的运用轨迹即为以AC为直径的⊙O上如图:当点P位于AD右侧PH⊥AD且经过圆心O时动点P到边AD的距离最大∵正方形的边长为6∵AC=6√2OH=3∵OP=OC=12AC=3√2∵PH=OH+OP=3+3√2即动点P到边AD的最大距离为3+3√2故答案为:3+3√2.17.(1)解:如图1 ∵四边形BDFE是正方形∵FE=BE∠E=90°∵BF=√BE2+FE2=√2FE2=√2FE∵点F与点A重合AB=AC∵CF=AC=AB=BF FE=AE∵CF=√2AE故答案为:CF=√2AE;(2)无变化理由如下:证:如图2 ∵EB=EF∠BEF=90°∵∠EBF=∠EFB=45°BF=√EB2+EF2=√2EB2=√2EB∵AB=AC∠BAC=90°∵∠ABC=∠ACB=45°BC=√AB2+AC2=√2AB2=√2AB∵BF EB =BCAB=√2∠CBF=∠ABE=45°−∠ABF∵△CBF∽△ABE∵CF AE =BCAB=√2∵CF=√2AE;(3)如图2 E F C三点共线且点F在线段CE上∵BC=√2AB AB=AC=6∵BC=√2×6=6√2由(1)得BD=12BC∵BE=EF=BD=12×6√2=3√2∵∠BEC=90°∵CE=√BC2−BE2=√(6√2)2−(3√2)2=3√6∵CF=CE−EF=3√6−3√2∵CF=√2AE∵AE=√22CF=√22×(3√6−3√2)=3√3−3;如图3 E F C三点共线且点F在线段CE的延长线上∵BF EB =BCAB=√2∠CBF=∠ABE=45°+∠CBE∵△CBF∽△ABE∵CF AE =BCAB=√2∵CF=√2AE∵∠BEF=90°∵∠BEC=180°−∠BEF=90°∵CE=√BC2−BE2=√(6√2)2−(3√2)2=3√6∵CF=CE+EF=3√6+3√2∵AE=√22CF=√22×(3√6+3√2)=3√3+3综上所述线段AE的长为3√3−3或3√3+3.18.(1)证明:∵四边形ABCD是正方形∵AB =AD ∠BAE +∠EAD =90°又∵四边形AEFG 是正方形∵AE =AG ∠EAD +∠DAG =90°∵∠BAE =∠DAG .在△ABE 与△ADG 中{AB =AD,∠BAE =∠DAG AE =AG,∵△ABE ≅△ADG (SAS )∵BE =DG ;(2)解;过F 作FH ⊥BE 垂足为H∵∠AEF =∠ABE =∠EHF =90°∵∠AEB +∠FEH =90° ∠FEH +∠EFH =90°∵∠AEB =∠EFH∵四边形AEFG 是正方形∵AE =EF在△ABE 与△EHF 中{∠ABE =∠EHF ∠AEB =EFH AE =EF∵△ABE≌△EHF (AAS )∵AB =EH BE =FH∵AB =BC =EH∵BC +EC =EH +EC∵BE =CH =FH又∵∠EHF =90°∵∠FCE=45°(3)解:如图连接GB GE过点B作BH⊥AE于点H ∵GE是正方形AEFG的对角线∵∠AEG=45°∵∠EAB=45°∵AB∥GE∵S△BEG=S△AEG=12S正方形AEFG=12×4√2×4√2=16∵AB=2∵BH=AH=√2∵HE=4√2−√2=3√2在Rt△BHE中BE=√(√2)2+(3√2)2=2√5设点G到BE的距离为h∵S△BEG=12×BE×ℎ∵1 2×2√5×ℎ=16解得:ℎ=16√55∵点G到BE的距离为16√55.19.解:(1)EP=CP且EP⊥CP.证明:过PH⊥AB于点H延长HP交CD于点I作PK⊥AD于点K.则四边形PIDK是正方形四边形AKPH是矩形∴AK=HP KD=DI=PI=AH∵AD=CD∴IC=HP ∵AD∥PH∥EF P是DF的中点∴HA=HE∴HE=PI 在Rt△HPE和Rt△ICP中{HE=PI ∠PHE=∠CIP HP=IC∴Rt△HPE≌Rt△ICP(SAS)∴EP=CP∠HPE=∠PCI∠HEP=∠CPI∴∠HPE+∠CPI=90°∴∠EPC=90°∴EP⊥CP;(2)成立.证明:图2中作PH⊥BC则EF∥PH∥CD又∵P是DF的中点∴EH=CH 则PH是EC的中垂线∴PE=CP∵EF=EB∴EF+CD=EC ∵P是DF的中点EH=CH则PH=12(EF+CD)∴PH=12 EC∴△EPC是等腰直角三角形∴EP=CP且EP⊥CP;(3)图3中延长FE交DC延长线于M连MP.∵∠AEM=90°∠EBC=90°∠BCM=90°∴四边形BEMC是矩形.∴BE=CM∠EMC=90°由图(2)可知∵BD平分∠ABC∠ABC=90°∴∠EBF=45°又∵EF⊥AB∴△BEF为等腰直角三角形∴BE=EF∠F=45°.∴EF=CM.∵∠EMC=90°∴MP=12FD=FP.∵BC=EM BC=CD∴EM=CD.∵EF=CM∴EF+EM=CM+DC 即FM=DM又∵FP=DP∠CMP=12∠EMC=45°∴∠F=∠PMC.在△PFE和△PMC中{FP=MP ∠F=∠PMC EF=CM∴△PFE≌△PMC(SAS).∴EP=CP∠FPE=∠MPC.∵∠FMC=90°MF=MD FP=DP∴MP⊥FD∴∠FPE+∠EPM=90°∴∠MPC+∠EPM=90°即∠EPC=90°∴EP⊥CP.20.(1)解∵ ∵AEF是等腰三角形理由如下∵∵四边形ABCD是正方形∵AB=AD=BC=CD∵BAD=∵B=∵D=90°∵∵ABC∵ADC都是等腰三角形∵∵BAC=∵DAC=45°根据题意得∵∵BAE=∵CAE=22.5° ∵DAF=∵CAF=22.5°(∠BAC+∠DAC)=45°∵BAE=∵DAF=22.5°∵∠EAF=12∵∵B=∵D=90° AB=AD∵∵BAE∵∵DAF(ASA)∵AE=AF∵∵AEF是等腰三角形;(2)解∵ PQ=BP+DQ理由如下∵如图延长CB到T使得BT=DQ.∵AD=AB∵ADQ=∵ABT=90° DQ=BT∵∵ADQ∵∵ABT(SAS)∵AT=AQ∵DAQ=∵BAT由(1)得∵∵P AQ=45°∵∵P AT=∵BAP+∵BAT=∵BAP+∵DAQ=45°∵∵P AT=∵P AQ=45°∵AP=AP∵∵P AT∵∵P AQ(SAS)∵PQ=PT∵PT=PB+BT=PB+DQ∵PQ=BP+DQ;(3)解:如图将∵ADN绕点A顺时针旋转90°得到∵ABR连接RM.∵∵BAD=90° ∵MAN=45°∵∵DAN+∵BAM=45°∵∵DAN=∵BAR∵∵BAM+∵BAR=45°∵∵MAR=∵MAN=45°∵AR=AN AM=AM∵∵AMR∵∵AMN(SAS)∵ RM=MN∵∵D=∵ABR=∵ABD=45°∵∵RBM=90°∵RM2=BR2+BM2∵ DN=BR MN=RM∵BM2+DN2=MN2.∵BM=7DN=24∵MN=√72+242=25.。

2023年春九年级数学中考复习《几何图形变换综合压轴题》专题提升训练(附答案)

2023年春九年级数学中考复习《几何图形变换综合压轴题》专题提升训练(附答案)

2023年春九年级数学中考复习《几何图形变换综合压轴题》专题提升训练(附答案)1.如图,在△ABC中,∠BAC=90°,AB=AC,点D为线段AB上一点,线段CD绕点C 逆时针旋转90°能与线段CE重合,点F为AC与BE的交点.(1)若BC=5,CE=4,求线段BD的长;(2)猜想BD与AF的数量关系,并证明你猜想的结论;(3)设CA=3DA=6,点M在线段CD上运动,点N在线段CA上运动,运动过程中,DN+MN的值是否有最小值,如果有,请直接写出这个最小值;如果没有,请说明理由.2.阅读下列材料,并完成相应的学习任务:图形旋转的应用图形的旋转是全等变换(平移、轴对称、旋转)中重要的变换之一,利用图形旋转中的对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变等性质,可以将一般图形转化成特殊图形,从而达到解决问题的目的.如图1,在Rt△ABC中,∠ACB=90°,CE平分∠ACB,且AC=4,BC=3.过点E作互相垂直的两条直线,即EF⊥ED,EF交AC于点F,ED交BC于点D,求四边形EFCD 的面积.分析:将∠FED以点E为旋转中心顺时针旋转,使得旋转后EF的对应线段所在直线垂直于AC,并且交AC于点M,旋转后ED的对应线段所在直线交BC于点N.则容易证明四边形MENC为正方形.因为∠EMF=∠END=90°,ME=NE,∠MEF=∠NED,所以△MEF≌△NED,所以S四边形EFCD=S正方形MENC.学习任务:(1)四边形EFCD的面积等于;(2)如图2,在Rt△ABC中,∠ACB=90°,①作出△ABC的外接圆O;②作∠ACB的平分线,与⊙O交于点D.要求:尺规作图,不写作法,但保留作图痕迹.(3)在(2)的基础上,若BC+AC=14,则四边形ACBD的面积等于.3.△ABC为等边三角形,AB=4,AD⊥BC于点D,点E为AD的中点.(1)如图1,将AE绕点A顺时针旋转60°至AF,连接EF交AB于点G,求证:G为EF中点.(2)如图2,在(1)的条件下,将△AEF绕点A顺时针旋转,旋转角为α,连接BE,H为BE的中点,连接DH,GH.当30°<α<120°时,猜想∠DHG的大小是否为定值,并证明你的结论.(3)在△AEF绕点A顺时针旋转过程中,H为BE的中点,连接CH,问线段CH何时取得最大值,请说明理由,并直接写出此时△ADH的面积.4.如图,已知△ABC中,∠ABC=45°,CD是边AB上的高线,E是AC上一点,连接BE,交CD于点F.(1)如图1,若∠ABE=15°,BC=+1,求DF的长;(2)如图2,若BF=AC,过点D作DG⊥BE于点G,求证:BE=CE+2DG;(3)如图3,若R为射线BA上的一个动点,以BR为斜边向外作等腰直角△BRH,M 为RH的中点.在(2)的条件下,将△CEF绕点C旋转,得到△CE'F',E,F的对应点分别为E',F',直线MF'与直线AB交于点P,tan∠ACD=,直接写出当MF'取最小值时的值.5.如图1,已知△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点B逆时针旋转一定的角度α得到△A1BC1.(1)若α=90°,则AA1的长为.(2)如图2,若0°<α<90°,直线A1C1分别交AB,AC于点G,H,当△AGH为等腰三角形时,求CH的长.(3)如图3,若0°<α<360°,M为边A1C1的中点,N为AM的中点,请直接写出CN的最大值.6.问题发现:(1)如图1,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点D为AB上一点,且AD=2DB,过点D作DE∥BC,填空:=,=;类比探究:(2)如图2,在(1)的条件下将△ADE绕点A逆时针旋转得到△AMN,连接DM,BM,EN,CN,请求出,的值;拓展延伸:(3)如图3,△ABC和△DEF同为等边三角形,且AB=3EF=6,连接AD,BE,将△DEF绕AC(DF)的中点O逆时针自由旋转,请直接写出在旋转过程中BE﹣AD的最大值.7.【问题提出】如图1,在等边三角形ABC内部有一点P,P A=3,PB=4,PC=5.求∠APB的度数.【数学思考】当图形中有一组邻边相等时,通过旋转可以将分散的条件集中起来解决问题.【尝试解决】(1)将△APC绕点A逆时针旋转60°,得到△AP'B,连接PP',则△APP'为等边三角形.∵P'P=P A=3,PB=4,P'B=PC=5,∴P'P2+PB2=P'B2,△BPP'为三角形,∴∠APB的度数为.(2)如图2,在等边三角形ABC外部有一点P,若∠BP A=30°,求证:P A2+PB2【类比探究】=PC2.【联想拓展】(3)如图3,在△ABC中,∠BAC=90°,AB=AC.点P在直线BC上方且∠APB=45°,PC=BC=2,求P A的长.8.如图(1),已知△ABC中,∠BAC=90°,AB=AC;AE是过A的一条直线,且B,C 在AE的异侧,BD⊥AE于D,CE⊥AE于E.(1)求证:BD=DE+CE;(2)若直线AE绕A点旋转到图(2)位置时(BD<CE),其余条件不变,问BD与DE,CE的数量关系如何?请给予证明.(3)若直线AE绕A点旋转到图(3)位置时(BD>CE),其余条件不变,问BD与DE,CE的数量关系如何?请直接写出结果,不需证明;(4)根据以上的讨论,请用简洁的语言表达直线AE在不同位置时BD与DE,CE的数量关系.9.(1)如图1,等腰直角△ABC,∠B=90°,点D为AC的中点,点E为边AB上的一点,作DE垂直DF交BC于点F,求证:DE=DF.(2)如图2,等腰直角△ABC,∠B=90°,点D为AC的中点,点E为边AB上的一点,线段DE绕着点D逆时针旋转90°得到线段DF,求证:点F在线段BC上;(3)如图3,直角△ABC,点D为AC的中点,点E为边AB上的一点,线段DE绕着点D逆时针旋转90°得到线段DF,若AB=6,BC=8,①直接写出线段EF=时,BE的长;②直接写出△ACF是等腰三角形时,BE的长;③直接写出△BEF面积的最大值.10.在平面直角坐标系中,O为原点,点A(﹣4,0),点B(0,3),△ABO绕点B顺时针旋转,得△A'BO',点A、O旋转后的对应点为A'、O',记旋转角为α.(1)如图①,α=90°,边OA上的一点M旋转后的对应点为N,当OM=1时,点N 的坐标为;(2)在(1)的条件下,当O'M+BN取得最小值时,在图②中画出点M的位置,并求出点N的坐标.(3)如图③,P为AB上一点,且P A:PB=2:1,连接PO'、P A',在△ABO绕点B顺时针旋转一周的过程中,△PO'A'的面积是否存在最大值和最小值,若存在,请求出;若不存在,请说明理由.11.如图①,△ABC为直角三角形,∠ACB=90°,∠BAC=30°,点D在AB边上,过点D作DE⊥AC于点E,取BC边的中点F,连接DF并延长到点G,使FG=DF,连接CG.(如需作图或作辅助线,请先将原题草图画在对应题目的答题区域后再作答.)问题发现:(1)填空:CE与CG的数量关系是,直线CE与CG所夹的锐角的度数为.探究证明:(2)将△ADE绕点A逆时针旋转,(1)中的结论是否仍然成立,若成立,请仅就图②所示情况给出证明,若不成立,请说明理由;问题解决:(3)若AB=4,AD=3,将△ADE由图①位置绕点A逆时针旋转α(0°<α<180°),当△ACE是直角三角形时,请直接写出CG的值.12.如图,两直角三角形ABC和DEF有一条边BC与EF在同一直线上,且∠DFE=∠ACB =60°,BC=1,EF=2.设EC=m(0≤m≤4),点M在线段AD上,且∠MEB=60°.(1)如图1,当点C和点F重合时,=;(2)如图2,将图1中的△ABC绕点C逆时针旋转,当点A落在DF边上时,求的值;(3)当点C在线段EF上时,△ABC绕点C逆时针旋转α度(0<α<90°),原题中其他条件不变,则=.13.在△ABC中,∠ABC=45°,AD⊥BC于点D,BE⊥AC于点E,连接DE,将△AED 沿直线AE翻折得到△AEF(点D与点F为对应点),连接DF,过点D作DG⊥DE交BE于点G.(1)如图1,求证:四边形DFEG为平行四边形;(2)如图2,连接CF,若tan∠ABE=,在不添加任何辅助线与字母的情况下,请直接写出图2中所有正切值等于2的角.14.在△ABC中,∠BAC=90°,点E为AC上一点,AB=AE,AG⊥BE,交BE于点H,交BC于点G,点M是BC边上的点.(1)如图1,若点M与点G重合,AH=2,BC=,求CE的长;(2)如图2,若AB=BM,连接MH,∠HMG=∠MAH,求证:AM=2HM;(3)如图3,若点M为BC的中点,作点B关于AM的对称点N,连接AN、MN、EN,请直接写出∠AMH、∠NAE、∠MNE之间的角度关系.15.(1)如图1.在Rt△ACB中,∠ACB=90°,CA=8,BC=6,点D、E分别在边CA,CB上,且CD=3,CE=4,连接AE,BD,F为AE的中点,连接CF交BD于点G,则线段CG所在直线与线段BD所在直线的位置关系是.(提示:延长CF到点M,使FM=CF,连接AM)(2)将△DCE绕点C逆时针旋转至图2所示位置时,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将△DCE绕点C逆时针在平面内旋转,在旋转过程中,当B,D,E三点在同一条直线上时,CF的长为.16.在△ABC和△AEF中,∠AFE=∠ABC=90°,∠AEF=∠ACB=30°,AE=AC,连接EC,点G是EC中点,将△AEF绕点A顺时针旋转.(1)如图1,若E恰好在线段AC上,AB=2,连接FG,求FG的长度;(2)如图2,若点F恰好落在射线CE上,连接BG,证明:GB=AB+GC;(3)如图3,若AB=3,在△AEF旋转过程中,当GB﹣GC最大时,直接写出直线AB,AC,BG所围成三角形的面积.17.如图,在等腰Rt△ABC中,∠ACB=90°,点D,E分别在AB,BC上运动,将线段DE绕点E按顺时针方向旋转90°得到线段EF.(1)如图1,若D为AB中点,点E与点C重合,AF与DC相交于点O,求证:OE=OD;(2)如图2,若点E不与C,B重合,点D为AB中点,点G为AF的中点,连接DG,连接BF,判断线段BF,CE,AD的数量关系并说明理由;(3)如图3,若AB=4,AD=3BD,点G为AF的中点,连接CG,∠GDE=90°,请直接写出CE的长.18.如图,在平面直角坐标系中,点O为坐标原点,点A(x,y)中的横坐标x与纵坐标y 满足+|y﹣8|=0,过点A作x轴的垂线,垂足为点D,点E在x轴的负半轴上,且满足AD﹣OD=OE,线段AE与y轴相交于点F,将线段AD向右平移8个单位长度,得到线段BC.(1)直接写出点A和点E的坐标;(2)在线段BC上有一点G,连接DF,FG,DG,若点G的纵坐标为m,三角形DFG 的面积为S,请用含m的式子表示S(不要求写m的取值范围);(3)在(2)的条件下,当S=26时,动点P从D出发,以每秒1个单位的速度沿着线段DA向终点A运动,动点Q从A出发,以每秒2个单位的速度沿着折线AB→BC向终点C运动,P,Q两点同时出发,当三角形FGP的面积是三角形AGQ面积的2倍时,求出P点坐标19.如图:直线l1:y=﹣x+6与x轴交于点A,与y轴交于点B,将△AOB沿直线l1翻折后,设点O的对应点为点C,已知双曲线y=(x>0)经过点C.(1)求点A,B的坐标.(2)求k的值.(3)将直线l1绕着点A逆时针旋转得到直线l2.直线l2与y轴交于点B′,将△AOB′沿直线l2翻折得到△AB′C',当四边形OAC′B′为正方形时停止转动,求转动过程中点C运动到点C′的路径长.20.图形的旋转变换是研究数学相关问题的重要手段之一.小华和小芳对等腰直角三角形的旋转变换进行研究.如图(1),已知△ABC和△ADE均为等腰直角三角形,点D,E分别在线段AB,AC上,且∠C=∠AED=90°.(1)观察猜想小华将△ADE绕点A逆时针旋转,连接BD,CE,如图(2),当BD的延长线恰好经过点E时,①的值为;②∠BEC的度数为度;(2)类比探究如图(3),小芳在小华的基础上,继续旋转△ADE,连接BD,CE,设BD的延长线交CE于点F,请求出的值及∠BFC的度数,并说明理由.(3)拓展延伸若AE=DE=,AC=BC=,当CE所在的直线垂直于AD时,请你直接写出BD 的长.参考答案1.解:(1)在Rt△ABC中,AB=AC,BC=5,∴AB=AC=BC=5,由旋转知,CD=CE=4,在Rt△ADC中,AD===,∴BD=AB﹣AD=5﹣;(2)猜想:BD=2AF,理由:如图1,延长BA至G,使AG=AB,连接EG,则CG=CB,∴∠ABC=∠AGC,在Rt△ABC中,AB=AC,∴∠ABC=45°,∴∠AGC=45°,∴∠BCG=90°,由旋转知,CD=CE,∠DCE=90°=∠BCG,∴∠BCD=∠GCE,∴△BCD≌△GCE(SAS),∴BD=GE,∠CBD=∠CGE=45°,∴∠BGE=∠CGB+∠CGE=90°=∠BAC,∴AC∥GE,∴,∴=,∴EG=2AF,∴BD=2AF;(3)存在,如图2,延长DA至P,使AP=AD,∵∠BAC=90°,∴点P,点D关于AC对称,∴MN+DN=MH+PN,过点P作PH⊥CD于H,要使MN+DN最小,则点P,N,M在同一条线上,且PM⊥CD,即MN+DN的最小值为PH,∵CA=3DA=6,∴AD=2,∴DP=2AD=4,CD===2,连接CP,∴S△CDP=DP•AC=CD•PH,∴PH===,即DN+MN的最小值为.2.解:(1)如图1中,∵EC平分∠ACB,EM⊥AC,EN⊥BC,∴EM=EN,∵∠EMC=∠DNC=∠MCN=90°,∴四边形EMCN是矩形,∵EM=EN,∴四边形EMCN是正方形,设正方形的边长为m,则×AC×BC=×AC×m+×BC×m,解得m=,∵EF⊥ED∴∠MEN=∠FED=90°,∴∠MEF=∠NDF,∵∠EMF=∠END=90°,∴△EMF≌△END(AAS),∴S四边形EFCD=S正方形EMCN=,故答案为:;(2)①如图2中,⊙O即为所求作.②如图2中,射线CD即为所求作.(3)如图2中,过点D作DM⊥CB交CB的延长线于M,DN⊥AC于N.∵∠DMC=∠DNC=∠MCN=90°,∴四边形DMCN是矩形,∵DC平分∠ACB,DM⊥CB,DN⊥AC,∴DM=DN,∴四边形DMCN是正方形,∴CM=CN,∵∠ACD=∠BCD,∴=,∴DB=DA,∵DM=DN,∠DMB=∠DNA=90°,∴Rt△DMB≌Rt△DNA(HL),∴BM=AN,S四边形ACBD=S正方形DMCN,∴AC+BC=CM﹣BM+CN﹣AN=2CM=14,∴CM=7,∴S四边形ACBD=49.故答案为:49.3.(1)证明:∵△ABC是等边三角形,AD⊥BC,∴∠BAD=∠CAD=∠BAC=30°,∵∠EAF=60°,∴∠GAE=∠GAF=30°,∵AE=AF,∴FG=EG.(2)解:结论:∠EHD=120°,是定值.理由:如图2中,连接BF,CE.∵AB=AC,AD⊥BC,∴BD=CD,∵BH=EH,∴DH∥EC,∴∠HDB=∠ECB,∵FG=GE,EH=HB,∴GH∥BF,∴∠EHG=∠EBF,∵∠EAF=∠BAC=60°,∴∠BAF=∠CAE,∵AF=AE,AB=AC,∴△BAF≌△CAE(SAS),∴∠ACE=∠ABF,∵∠EHD=∠HDB+∠HBD,∴∠DHG=∠EHG+∠EHD=∠EBF+∠HDB+∠HBD=∠ABF﹣∠ABE+∠ECB+∠ABD+∠ABE=∠ACE+∠ECB+∠ABD=∠ACB+∠ABC=120°.(3)解:如图3中,取AB的中点N,连接AH,HN,CH,CH交AD于M,过点H作HT⊥AD于T.∵EH=BH,AN=BN,∴NH为△ABE的中位线,∴HN=AE=,∴点H在以N为圆心,为半径的圆上,当C,N,H共线时,CH的值最大,∵△ABC是等边三角形,∴CN⊥AB,∴∠ACM=∠MCB=30°,∵AD=2,∴CN=AD=2,在Rt△CMD中,CD=2,∠MCD=30°,∴CM==,∴MN=CN﹣CM=,∴HM=HN+MN=+=,∴HT=HM•sin60°=,∴S△ADH=•AD•HT=.4.(1)解:如图1中,过点F作FH⊥BC于H.∵CD⊥AB,∴∠BDC=90°,∵∠DBC=45°,∴∠DCB=90°﹣45°=45°,∵FH⊥CH,∴∠FHC=90°,∴∠HFC=∠HCF=45°,∴CH=FH,设FH=CH=m,∵∠ABE=15°,∴∠FBC=45°﹣15°=30°,∴BH=HF=m,∴m+m=+1,∴m=1,∴CF=CH=,∵CD=BC=,∴DF=CD﹣CF=﹣=.(2)证明:如图2中,连接DE,过点D作DH⊥DE交BE于H.∵∠ADC=∠FDB=90°,DB=DC,BF=AC,∴Rt△BDF≌Rt△CDA(HL),∴∠DBF=∠ACD,∵∠BFD=∠CFE,∴△BFD∽△CFE,∴=,∴=,∵∠DFE=∠BFC,∴△DFE∽△BFC,∴∠DEF=∠BCF=45°,∵DH⊥DE,∴∠HDE=90°,∴∠DHE=∠DEH=45°,∴DH=DE,∵∠BDC=∠EDH=90°,∴∠BDH=∠CDE,∵DB=DC,DH=DE,∴△BDH≌△CDE(SAS),∴BH=EC,∵DH=DE,DG⊥EH,∴GH=EG,∴DG=EH,∴BE=BH+HE=EC+2DG.(3)解:如图3中,过点M作MJ⊥BC于J,过点P作PK⊥BC于K.∵△BHR,△DBC都是等腰直角三角形,∴∠DBC=∠HBR=45°,∴∠HBC=90°,∵∠H=∠HBJ=∠MJB=90°,∴四边形BHMJ是矩形,∴BH=MJ,HM=BJ,∵BH=HR,HM=MR,∴MJ=2BJ,∴tan∠MBJ==2,∴点M的在射线BM上运动,∴当C,F′,M共线,且CM⊥BM时,F′M的值最小.设AD=m,∵tan∠ACD==,∴CD=BD=3m,DF=AD=m,CF=CF′=2m,BC=3m,∵∠CMB=90°,tan∠CBM==2,∴BM=m,CM=m,∴BJ=HM=m,JM﹣BH=HR=m,∴MR=m,设BK=PK=n,CK=2n,∴n=m,∴BK=PK=m,CK=2m,PC=m,∴PF′=PC﹣CF′=m﹣2m,∴==.5.解:(1)∵∠C=90°,AC=4,CB=3,∴AB===5,∵α=90°,∴△ABA1是等腰直角三角形,AA1=AB=5.故答案为:5.(2)如图2﹣1中,当AG=AH时,∵AG=AH,∴∠AHG=∠AGH,∵∠A=∠A1,∠AGH=∠A1GB,∴∠AHG=∠A1BG,∴∠A1GB=∠A1BG,∴AB=AG=5,∴GC1=A1G﹣C1G=1,∵∠BC1G=90°,∴BG===,∴AH=AG=AB﹣BG=5﹣,∴CH=AC﹣AH=4﹣(5﹣)=﹣1.如图2﹣2中,当GA=GH时,过点G作GM⊥AH于M.同法可证,GB=GA1,设GB=GA1=x,则有x2=32+(4﹣x)2,解得x=,∴BG=,AG=5﹣=,∵GM∥BC,∴=,∴=,∴AM=,∵GA=GH,GM⊥AH,∴AM=HM,∴AH=3,∴CH=AC﹣AM=1.综上所述,满足条件的CH的值为﹣1或1.(3)如图3中,取AB的中点J,连接BM,CJ,JN.∵AJ=BJ,∠ACB=90°,∴CJ=AB=,∵BC1=BC=3,MC1=MA1=2,∠BC1M=90°,∴BM===,∵AJ=BJ,AN=NM,∴JN=BM=,∵CN≤CJ+JN,∴CN≤,∴CN的最大值为.6.解:(1)如图1中,在Rt△ABC中,,∵AD=2DB,∴AB=AD+DB=3DB,∵DE∥BC,∴,∵,∴,即,∴,故答案为:,.(2)由旋转性质可知:AD=AM,AE=AN,∠BAM=∠CAN,∵,∠BAM=∠CAN,∴△ABM∽△ACN,∴,∠ABM=∠ACN,∵,∠ABM=∠ACN,∴△DBM∽△ECN,∴.(3)如图3中,连接OB,OE,由三线合一性质可知∠BOC=∠DOE=90°,∴∠BOD=∠COE,∴∠AOB+∠BOD=∠BOC+∠COE,即∠AOD=∠BOE,∵,∠AOD=∠BOE,∴△AOD∽△BOE,∴,∵AB=3EF=6,∴,,在△BOE中,由三边关系可得,BE<BO+OE,当B、O、E三点共线时,BE存在最大值为,∵,∴当BE存在最大值时,BE﹣AD的最大值=.7.(1)解:如图1,将△APC绕点A逆时针旋转60°,得到△AP′B,连接PP′,则△APP′为等边三角形.∵PP′=P A=3,PB=4,P′B=PC=5,∴P′P2+PB2=P′B2.∴△BPP′为直角三角形.∴∠APB的度数为90°+60°=150°.故答案为:直角;150°.(2)证明:如图2中,将△P AB绕点B逆时针旋转60°得到△TCB,连接PT.∵BP=BT,∠PBT=60°,∴△PBT是等边三角形,∴PT=PB,∠PTB=60°,由旋转的性质可知:△P AB≌△TCB,∴∠APB=∠CTB=30°,P A=CT,∴∠PTC=∠PTB+∠CTB=60°+30°=90°,∴PC2=PT2+CT2,∵PB=PT,P A=CT,∴P A2+PB2=PC2.(3)解:过点C作CT⊥PB于T,连接AT,设CT交AB于O.∵PC=BC=2,CT⊥PB,∴PT=BT,∵∠CAO=∠BTO=90°,∠AOC=∠BOT,∴∠ACT=∠ABP,∠ATC=∠ABC=45°,∵∠CTB=90°,∴∠ATP=∠CTA=∠APT=45°∵AC=AB,∴△CAT≌△BAP(AAS),∴CT=PB=2PT,∵PC2=PT2+CT2,∴(2)2=m2+(2m)2,解得m=2或﹣2(舍弃),∴PT=2,∴P A=PT=.8.解:(1)∵BD⊥AE,CE⊥AE,∴∠ADB=∠CEA=90°,∴∠ABD+∠BAD=90°,又∵∠BAC=90°,∴∠EAC+∠BAD=90°,∴∠ABD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(AAS),∴BD=AE,AD=EC,∴BD=DE+CE.(2)∵BD⊥AE,CE⊥AE,∴∠ADB=∠CEA=90°,∴∠ABD+∠BAD=90°,又∵∠BAC=90°,∴∠EAC+∠BAD=90°,∴∠ABD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(AAS),∴BD=DE﹣CE.(3)同(2)的方法得出,BD=DE﹣CE.(4)归纳:由(1)(2)(3)可知:当B,C在AE的同侧时,BD=DE﹣CE.当B,C在AE的异侧时,BD=DE+CE.9.(1)证明:如图1中,连接BD.∵△ABC是等腰直角三角形,AD=DC,∴BD⊥AC,BD=DA=DC,∴BD⊥AC,∵ED⊥DF,∴∠EDF=∠BDC=90°,∴∠EDB=∠FDC,∵∠DBE=∠C=45°,∴△EDB≌△FDC(ASA),∴DE=DF.(2)证明:如图2中,连接DB,CF.∵∠BDC=∠EDF=90°,∴∠BDE=∠CDF,∵DB=DC,DE=DF,∴△EDB≌△FDC(SAS),∴∠DBE=∠DCF=45°,∴点F在线段BC上.(3)①如图3﹣1中,过点D作DT⊥AB于T.∵∠ATD=∠ABC=90°,∴DT∥CB,∵AD=DC,∴AT=TB=3,∴DT=BC=4,∵△DEF是等腰直角三角形,EF=,∴DE=DF=,∴ET===1,∴BE=TB+ET=3+1=4,当点E在点T的下方时,BE=3﹣1=2,综上所述,满足条件的BE的值为4或2.②如图3﹣2中,∵△ACF是等腰三角形,又∵AD=DC=DF,∴∠AFC=90°,∴△AFC是等腰直角三角形,∴点E与A重合,∴BE=6.③如图3﹣3中,过点D作DT⊥AB于T,过点F作FR⊥DT于R.∵∠DTE=∠FRD=90°,∠EDT=∠DFR,DE=DF,∴△DTE≌△FRD(AAS),∴ET=DR,DT=FR=4,设ET=DR=m,则RT=4﹣m,∴S△EFB=(3+m)(4﹣m)=(﹣m2+m+12)=﹣(m﹣)2+,∵﹣<0,∴△BEF的面积有最大值,最大值为.10.解:(1)∵点A(﹣4,0),点B(0,3),∴OA=4,OB=3,由旋转的性质可知,BO=BO′=3,OM=O′N=1,∠OBO′=90°,∴N(﹣3,4).故答案为:(﹣3,4).(2)如图②中,∵BM=BN,∴O′M+BN=O′M+BM,作点B关于OA的对称点B′,连接O′B′交OA于M,连接BM,O′M+BM的值最小.∵O′(﹣3,3),B′(0,﹣3),∴直线O′B′的解析式为y=﹣2x﹣3,∴M(﹣,0),∴O′N=OM=,∴N(﹣3,).(3)存在.理由:如图③﹣1中,当点O′落在AB的延长线上时,△PO′A′的面积最大.由题意,OA=4,OB=3,∴AB===5,∴P A:PB=2:1,∴PB=,∴PO′=PB+PO′=,∴△PO′A′的面积的最大值=×4×=.如图③﹣2中,当点O′落在AB上时,△PO′A′的面积最小,最小值为×4×(3﹣)=.11.解:(1)如图①中,过点D作DT⊥BC于T.∵DE⊥AC,∴∠DEC=∠ECT=∠DTC=90°,∴四边形ECTD是矩形,∴DT=EC,DT∥AC,∴∠TDB=∠A=30°,∴DT=BD,∵FC=FB,∠CFG=∠BFD,FG=FD,∴△CFG≌△BFD(SAS),∴CG=BD,∠FCG=∠B=60°,∴EC=CG,∴∠ACG=90°+60°=150°,∴直线CE与CG所夹的锐角的度数为30°,故答案为:EC=CG,30°.(2)成立.理由如下:连接CD,BG,延长BD交CE的延长线于H,设BH交AC于点O.在Rt△ABC和Rt△ADE中,∠BAC=∠DAE=30°,∴cos∠BAC==,cos∠EAD==,∠EAC=∠DAB,∴==,∴△ACE∽△ABD,∴==,∠ACE=∠ABD,∵∠HOC=∠AOB,∴∠H=∠OAB=30°,∵CF=FB,DF=FG,∴四边形DCGB是平行四边形,∴CG=BD,CG∥BH,∴∠1=∠H=30°,∴EC=CG,直线CE与CG所夹的锐角的度数为30°.(3)如图③﹣1中,当∠AEC=90°时,由题意AC=AB=2,AE=AD=,∴EC===,∴CG=EC=,如图③﹣2中,当∠EAC=90°时,可得EC==,∴CG=EC=5.综上所述,CG的值为或5.12.解:(1)由题意得,在Rt△ABC中,∠ABC=90°,∠ACB=60°,BC=1,∴AC=2,BC=,在Rt△DEC中,∠DEC=90°,∠DCE=60°,EF=2,∴DC=4,DE=2,∴∠DCA=180°﹣∠DCE﹣∠ACB=60°,∴AC=EF,∠DCE=∠DCA,DC=DC,∴△DEF≌△DAC(SAS),∴AD=DE=2,∠EDC=∠CDA=30°,∵∠MEC=60°,∴∠DEM=30°,∴∠DME=180°﹣∠DEM﹣∠EDM=180°﹣∠DEM﹣2∠EDC=90°,∴DM=DE=,∴AM=AD﹣DM=,∴=1,故答案为:1;(2)如图2,连接AE,∵AC=EF=2,∠ACE=60°,∴△AEC是等边三角形,∴AE=2,∠EAC=∠AEC=60°,∴∠AEB+∠BEC=∠AEC=60°,∵∠MEB=60°,∴∠AEB+∠MEA=60°,∴∠BEC=∠MEA,∵∠DAE=∠ECB=120°,AE=EC,∴△AME≌△CBE(ASA),∴AM=BC=1,∵AD=DC﹣AC=2,∴DM=AD﹣AM=1,∴=1;(3)如图3,过点B作BG⊥BE交EM延长线于点G,连接AG,BG,∵∠CBA=∠EBG=90°,∴∠EBC=∠GBA,∵∠MEB=∠ACB=60°,∴,∴△ECB∽△GAB,∴,∠AGB=∠CEB,∴AG=m,∵∠CEB+∠DEG=30°,∠AGB+∠EGA=30°,∴∠AGM=∠DEM,∴AG∥DE,∴△AGM∽△DEM,∴,∵DE=EF=2,∴==.故答案为:.13.(1)证明:如图1中,∵∠ABC=45°,AD⊥BC于点D,∴∠BAD=90°﹣∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,∴∠GBD+∠C=90°,∵∠EAD+∠C=90°,∴∠GBD=∠EAD,∵∠ADB=∠EDG=90°,∴∠ADB﹣∠ADG=∠EDG﹣∠ADG,即∠BDG=∠ADE,∴△BDG≌△ADE(ASA),∴BG=AE,DG=DE,∵∠EDG=90°,∴△EDG为等腰直角三角形,∴∠AED=∠AEB+∠DEG=90°+45°=135°,∵△AED沿直线AE翻折得△AEF,∴△AED≌△AEF,∴∠AED=∠AEF=135°,ED=EF,∴∠DEF=360°﹣∠AED﹣∠AEF=90°,∴△DEF为等腰直角三角形,∴∠GDE=∠DEF=90°,DG=DE=EF,∴DG∥EF,∴四边形DFEG是平行四边形.(2)解:如图2中,设AD交BE于P,过点P作PT⊥AB于T.∵tan∠ABE==,∴可以假设PT=a,BT=3a,∵△ABD是等腰直角三角形,∴∠P AT=45°,∵PT⊥AB,∴∠ATP=90°,∴∠P AT=∠APT=45°,∴AT=PT=a,∴P A=a,AB=4a,AD=BD=2a,∴P A=PD=a,∴tan∠BPD==2,∵BE⊥AC,∴∠ADC=∠PEC=90°,∴∠EPD+∠ACD=180°,∵∠EPD+∠BPD=180°,∴∠BPD=∠ACD,根据对称性可知,∠ACD=∠ACF,∠ADF=∠AFD,AC⊥DF,∴∠ACD=∠ACF=∠BPD,∵∠ADF+∠CDF=90°,∠CDF+∠ACD=90°,∴∠ADF=∠ACD,∴∠ACD=∠ACF=∠ADF=∠AFD=∠BPD,∴正切值等于2的角有:∠ACD,∠ACF,∠ADF,∠AFD.14.解:(1)∵∠BAC=90°,AB=AE,∴△BAE为等腰直角三角形,∵AG⊥BE,∴AH是△BAE的中线,∴BE=2AH=4,∵∠BEA=45°,∴∠BEC=135°,在△BCE中,过点C作CD⊥BE交BE的延长线于点D,如图1,∵∠DEC=45°,∴△DEC是等腰直角三角形,设ED=x,则DC=x,CE=x,在Rt△BCD中,BC2=BD2+DC2,即,∴x1=1或x2=﹣5(舍去),∴CE=;(2)如图2,过H作HD⊥HM交AM于点D,连接BD,∵AB=AE,∠BAC=90°,∴△ABE是等腰直角三角形,∵AG⊥BE,∴△ABH为等腰直角三角形,∴BH=AH,∠BAN=45°,∠BHA=90°,∵AB=BM,∴∠BAM=∠BMA,∵∠HMG=∠MAH,∴∠BAM﹣∠MAH=∠BMA﹣∠HMG,即∠BAH=∠AMH=45°,∵HD⊥HM,∴△DHM为等腰直角三角形,∴DH=HM,∠DHM=90°,∵∠BHD=∠BHA+∠AHD,∠AHM=∠DHM+∠AHD,∴∠BHD=∠AHM,在△BHD与△AHM中,,∴△BHD≌△AHM(SAS),∴∠DBH=∠MAH,BD=AM,∴∠BHA=∠BDA=90°,∵BA=BM,∴D是AM的中点,∴AM=2DM=2HM,即AM=2HM;(3)∵H是BE的中点,M是BC的中点,∴MH是△BCE的中位线,∴MH∥CE,∴∠AMH=∠MAC,∵∠BAC=90°,∴AM=BM,∴∠MAB=∠ABM,∵点B与点N关于线段AM对称,∴∠ABM=∠ANM,AB=AN,∴AE=AN,∴∠AEN=∠ANE,在△AEN中,∠NAE+2∠ANE=180°①,∵∠ANE=∠ANM+∠MNE,∠ABM=∠ANM=∠MAB=90°﹣∠MAC,∴∠ANE=90°﹣∠MAC+∠MNE,∴∠ANE=90°﹣∠AMH+∠MNE②,将②代入①,得:∠NAE+2×(90°﹣∠AMH+∠MNE)=180°,∴∠NAE+180°﹣2∠AMH+2∠MNE=180°,∴∠NAE+2∠MNE=2∠AMH.15.解:(1)结论:CG⊥BD.理由:延长CF到点M,使得FM=CF,连接AM.∵F A=FE,∠AFM=∠EFC,FM=FC,∴△AMF≌△ECF(SAS),∴AM=CE=4,∠AMF=∠ECF,∴AM∥CE,∴∠MAC=∠DCB=90°,∵==,∴△MAC∽△DCB,∴∠DBC=∠ACM,∵∠ACM+∠GCB=90°,∴∠DBC+∠GCB=90°,∴∠CGB=90°,∴CG⊥BD.故答案为:CG⊥BD.(2)结论仍然成立.理由:延长CF到点M,使得FM=CF,连接AM.∵F A=FE,∠AFM=∠EFC,FM=FC,∴△AMF≌△ECF(SAS),∴AM=CE=4,∠AMF=∠ECF,∴AM∥CE,∴∠MAC+∠ACE=180°,∴∠MAC=180°﹣∠ACE,∵∠DCB=∠DCE+∠ACB﹣∠ACE=90°+90°﹣∠ACE=180°﹣∠ACE,∴∠MAC=∠DCB,∵==,∴△MAC∽△DCB,∴∠DBC=∠ACM,∵∠ACM+∠GCB=90°,∴∠DBC+∠GCB=90°,∴∠CGB=90°,∴CG⊥BD.(3)如图3中,当点E在线段BD上时,∵△AMC∽△CDB,∴==,在Rt△DCE中,CD=3,CE=4,∴DE===5,∵CG⊥DE,∴CG==,在Rt△CGB中,CB=6,CG=中,∴BG===,在Rt△DCG中,DG===,∴BD=BG+DG=,∴CM=BD=,∴CF=CM=如图4中,当点E在线段BD的延长线上时,同法可得CF=CM=.综上所述,满足条件的CF的值为或.16.(1)解:如图1中,过点F作FH⊥AE于H.在Rt△ABC中,∠ACB=90°,AB=2,∠C=30°,∴AC=2AB=4,BC=AB=2,∵AE=EC=AC=2,EG=GC,∴EG=CG=1,∵∠AFE=90°,∠AEF=30°,∴EF=AE•cos30°=,∴FH=EF=,HE=FH=,∴GH=HE+EG=,∴FG===.(2)证明:如图2中,取AC的中点M,连接BM,GM,BF.∵AM=MC,∠ABC=90°,∴BM=AM=CM,∵AC=2AB,∴AB=AM=BM,∴∠BAM=∠AMB=∠ABM=60°,∴∠BMC=120°,∵AE=2AF,∠EAF=60°,∴∠BAF=120°+∠EAC,∵AM=MC,EG=GC,∴GM=AE=AF,GM∥AE,∴∠CMG=∠EAC,∴∠BMG=120°+∠CMG=120°+∠EAC=∠BAF,∴△BAF≌△BMG(SAS),∴∠ABF=∠MBG,BF=BG,∴∠FBG=∠ABM=60°,∴△BFG是等边三角形,∴BG=FG,∴BG=EF+EG=AE+CG=AB+CG.(3)解:如图3中,取AC的中点M,连接BM,GM,BF.在MC上取一点D,使得MD=MG,连接DG,BD.同法可证:△BAF≌△BMG(SAS),∴∠ABF=∠MBG,BF=BG,∴∠FBG=∠ABM=60°,∴△BFG是等边三角形,∴BG=FG,∵AM=CM,EG=CG,∴MG=AE,∵AB=3,∠ABC=90°,∠ACB=30°,∴AC=2AB=6,AM=CM=3,∵AE=AC=3,MG=,∴MD=MG=,∵==,∠DMG=∠GMC,∴△MDG∽△MGC,∴==,∴DG=CG,∴GB﹣CG=GB﹣DG≤BD,∴当B,D,G共线时,BG﹣CG的值最大,最大值为BD的长,∴直线AB,AC,BG围成的三角形为△ABD,∵AD=AM+DM=3+=,∴S△ABD=××=,∴当GB﹣GC最大时,直线AB,AC,BG所围成三角形的面积为.17.(1)证明:如图1中,∵CA=CB,∠ACB=90°,AD=DB,∴CD⊥AB,CD=AD=DB,∵∠DEF=∠ADC=90°,DE=EF,∴AD=EF,∵∠AOD=∠EOF,∴△AOD≌△FOE(AAS),∴OE=OD.(2)解:结论:AD﹣BF=CE.理由:如图2中,过点E作ET⊥BC交AB于T,过点T作TR⊥AC于R.则四边形ECRT 是矩形,△ART,△EBT都是等腰直角三角形,可得EC=RT,AT=RT=EC.∵∠TEB=∠DEF=90°,∴∠TED=∠BEF,∵ET=EB,ED=EF,∴△TED≌△BEF(SAS),∴DT=BF,∵AD﹣DT=AT,∴AD﹣BF=CE.(3)解:如图3中,取AB的中点R,连接GR,BF,过点E作EM⊥AB于M.设GR =x,EM=BM=y.由(2)可知,△TED≌△BEF(SAS),∴∠ETD=∠EBF=45°,∴∠ABC=45°,∴∠FBA=90°,∵AG=GF,AR=RB=2,∴GR∥BF,BF=2GR=2x,∴∠GRA=∠FBA=90°,∵GR⊥AB,∵AB=4,AD=3BD,∴AD=3,BD=,∴DR=AD﹣AR=3﹣2=,∵∠GRD=∠EMD=∠EDG=90°,∴∠GDR+∠DGR=90°,∠GDR+∠EDM=90°,∴∠DGR=∠EDM,∴△DRG∽△EMD,∴=,∴=①又∵AD﹣BF=CE,∴3﹣2x=(4﹣y)②,由①②可得y=(不合题意的解已经舍弃).∴EC=4﹣()=.18.解:(1)∵+|y﹣8|=0,又∵≥0,|y﹣8|≥0,∴x=2,y=8,∴A(2,8),∵AD⊥x轴,∴OD=2,AD=8,∵AD﹣OD=OE,∴OE=6,∴E(﹣6,0).(2)如图1中,连接OG.由题意G(10,m).∵AD=DE=8,∠ADE=90°,∴∠AED=45°,∴∠OEF=∠OFE=45°,∴OE=OF=6,∴F(0,6),∴S=S△ODG+S△OFG﹣S△OFD=×2×m+×6×10﹣×2×6=m+24(0≤m≤8).(3)如图2中,设FG交AD于J,P(2,t),当点P在DJ上,点Q在AB上时,当S=26时,m=2,∴G(10,2),∵F(0,6),∴直线FG的解析式为y=﹣x+6,∴J(2,),由题意,•(﹣t)×10=2××2t×6,解得t=,∴P(2,),当点P在AJ上,点Q在BG上时,同法可得,•(t﹣)×10=2××(14﹣2t)×8,解得t=,∴P(2,).综上所述,满足条件的点P的坐标为(2,)或(2,).19.解:(1)当x=0时,y=6,∴B(0,6),当y=0时,﹣x+6=0,∴x=6,∴A(6,0);(2)如图1,过点C作CM⊥x轴于M,Rt△ABO中,OA=6,OB=6,∴AB==12,∴∠ABO=30°,由翻折得:∠ABC=∠ABO=30°,∠AOB=∠ACB=90°,AC=OA=6,∴∠CAM=60°,∴∠ACM=90°﹣60°=30°,∴AM=AC=3,CM=3,∴C(9,3),∴k=9×3=27;(3)分两种情况:①如图2,当点B'在y轴的负半轴上时,。

中考专题1 【原创】2019年中考数学图形变换压轴题汇总(28道题)后附答案详解(word)

中考专题1 【原创】2019年中考数学图形变换压轴题汇总(28道题)后附答案详解(word)

中考专题1 图形变换压轴题汇总(28道题)后附答案详解1.(2017•黑龙江)已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°.连接AD,BC,点H为BC中点,连接OH.(1)如图1所示,易证:OH=AD且OH⊥AD(不需证明)(2)将△COD绕点O旋转到图2,图3所示位置时,线段OH与AD又有怎样的关系,并选择一个图形证明你的结论.2.(2017•连云港四模)阅读与理解:图1是边长分别为a和b(a>b)的两个等边三角形纸片ABC和C′DE叠放在一起(C与C′重合)的图形.操作与证明:(1)操作:固定△ABC,将△C′DE绕点C按顺时针方向旋转30°,连接AD,BE,如图2;在图2中,线段BE与AD之间具有怎样的大小关系?证明你的结论;(2)操作:若将图1中的△C′DE,绕点C按顺时针方向任意旋转一个角度α,连接AD,BE,如图3;在图3中,线段BE与AD之间具有怎样的大小关系?证明你的结论;猜想与发现:根据上面的操作过程,请你猜想当α为多少度时,线段AD的长度最大是多少?当α为多少度时,线段AD的长度最小是多少?3.(2017•金乡县模拟)请阅读下列材料:问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1、求∠BPC度数的大小和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PC是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,进而求出等边△ABC的边长为,问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=,BP=,PC=1.求∠BPC度数的大小和正方形ABCD的边长.4.(2017•滦县模拟)两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为和位置关系为;(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.5.(2017•路北区三模)如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.6.(2017•平房区二模)如图,正方形ABCD,点E在AD上,将△CDE绕点C顺时针旋转90°至△CFG,点F,G分别为点D,E旋转后的对应点,连接EG,DB,DF,DB与CE交于点M,DF与CG交于点N.(1)求证BM=DN;(2)直接写出图中已经存在的所有等腰直角三角形.7.(2017•路南区一模)如图①,△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.(1)求∠BCD的度数;(2)将图①中的△BCD绕点B顺时针旋转得到△BC′D′.当点D′恰好落在BC边上时,如图②所示,连接C′C并延长交AB于点E.①求∠C′CB的度数;②求证:△C′BD'≌△CAE.8.(2017•沙坪坝区一模)已知△ABC和△DEB都是等腰直角三角形,∠BAC=∠EDB=90°.(1)如图1,若点E,B,C在同一直线上,连接AE,当∠AEC=30°,BC=4时,求EB的长;(2)如图2,将图1中的△DEB绕点B顺时针旋转,当点C在ED的延长线上时,EC交AB 于点H,求证:∠EAH=2∠HCB.9.(2017•重庆模拟)已知等腰Rt△ABC与等腰Rt△CDE,∠ACB=∠DCE=90°,把Rt△ABC 绕点C旋转.(1)如图1,当点A旋转到ED的延长线时,若BC=,BE=5,求CD的长;(2)当Rt△ABC旋转到如图2所示的位置时,过点C作BD的垂线交BD于点F,交AE于点G,求证:BD=2CG.10.(2017•河北区模拟)如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M,N分别是斜边AB,DE的中点,点P为AD的中点,连接AE、BD、MN.(1)求证:△PMN为等腰直角三角形;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP,BD 分别交于点G、H,请判断①中的结论是否成立,若成立,请证明;若不成立,请说明理由.11.(2017•吉安模拟)两块全等的三角板ABC和EDC如图(1)放置,AC=CB,CE=CD,∠ACB=∠ECD=90°,且AB与CE交于F,ED与AB、BC分别交于M、H,△ABC不动,将△EDC 绕点C旋转到如图(2),当∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论.12.(2017•江津区校级三模)如图,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接CF,DF.(1)如图①,当点D在AB上,点E在AC上时,请判断线段CF,DF有怎样的数量关系和位置关系?为什么?(2)如图②,将图①中的△ADE绕点A旋转到图②位置时,请判断(1)中的结论是否仍然成立?并证明你的判断.13.(2017•济宁二模)将两块全等的三角板如图1摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图1中△A1B1C绕点C顺时针旋转45°得图2,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图2中,若AP1=a,则CQ等于多少?(3)将图2中△A1B1C绕点C顺时针旋转到△A2B2C(如图3),点P2是A2C与AP1的交点.当旋转角为多少度时,有△AP1C∽△CP1P2?这时线段CP1与P1P2之间存在一个怎样的数量关系?.14.(2017•常德)如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.(1)如图1,若BD=BA,求证:△ABE≌△DBE;(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AF•AC.15.(2017•杭州)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.16.(2017•天水)△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF 的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.17.(2017•深圳模拟)如图1,边长为2的正方形ABCD中,E是BA延长线上一点,且AE=AB,点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,直线EP交AD于点F,过点F作直线FG⊥DE于点G,交AB于点R.(1)求证:AF=AR;(2)设点P运动的时间为t,①求当t为何值时,四边形PRBC是矩形?②如图2,连接PB.请直接写出使△PRB是等腰三角形时t的值.18.(2017•惠阳区模拟)把Rt△ABC和Rt△DEF按如图(1)摆放(点C与E重合),点B、C(E)、F在同一条直线上.已知:∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=10cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF 移动的同时,点P从△ABC的顶点A出发,以2cm/s的速度沿AB向点B匀速移动;当点P 移动到点B时,点P停止移动,△DEF也随之停止移动.DE与AC交于点Q,连接PQ,设移动时间为t(s).(1)用含t的代数式表示线段AP和AQ的长,并写出t的取值范围;(2)连接PE,设四边形APEQ的面积为y(cm2),试探究y的最大值;(3)当t为何值时,△APQ是等腰三角形.19.(2017•蜀山区二模)如图,在△ABC中,D、E分别为AB、AC上的点,线段BE、CD相交于点O,且∠DCB=∠EBC=∠A.(1)求证:△BOD∽△BAE;(2)求证:BD=CE;(3)若M、N分别是BE、CE的中点,过MN的直线交AB于P,交AC于Q,线段AP、AQ 相等吗?为什么?20.(2017•安徽模拟)如图,已知△ABC中,AC=BC,点D、E、F分别是线段AC、BC、AD 的中点,BF、ED的延长线交于点G,连接GC.(1)求证:AB=GD;(2)如图2,当CG=EG时,求的值.21.(2017•肥城市三模)如图,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1)点G在BE上,且∠BDG=∠C,求证:DG•CF=DM•EG;(2)在图中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.22.(2017•石家庄二模)如图,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE 与AC交于点M,EF与AC交于点N,动点P从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,伴随点P的运动,矩形PEFG在射线AB上滑动;动点K从点P出发沿折线PE﹣﹣EF以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K到达点F时停止运动,点P也随之停止.设点P、K运动的时间是t秒(t>0).(1)当t=1时,KE=,EN=;(2)当t为何值时,△APM的面积与△MNE的面积相等?(3)当点K到达点N时,求出t的值;(4)当t为何值时,△PKB是直角三角形?23.(2017•岱岳区二模)如图,C为线段BD上一动点,过B、D分别作BD的垂线,使AB=BC,DE=DB,连接AD、AC、BE,过B作AD的垂线,垂足为F,连接CE、EF.(1)求证:AC•DF=BF•BD;(2)点C运动的过程中,∠CFE的度数保持不变,求出这个度数;(3)当点C运动到什么位置时,CE∥BF?并说明理由.24.(2017•长春模拟)如图,在△ABC中,点D在边AB上(不与A,B重合),DE∥BC交AC于点E,将△ADE沿直线DE翻折,得到△A′DE,直线DA′,EA′分别交直线BC于点M,N.(1)求证:DB=DM.(2)若=2,DE=6,求线段MN的长.(3)若=n(n≠1),DE=a,则线段MN的长为(用含n的代数式表示).25.(2017•大冶市模拟)如图,△ABC中,点E、F分别在边AB,AC上,BF与CE相交于点P,且∠1=∠2=∠A.(1)如图1,若AB=AC,求证:BE=CF;(2)若图2,若AB≠AC,①(1)中的结论是否成立?请给出你的判断并说明理由;②求证:=.26.(2017•大东区二模)如图1,在锐角△ABC中,D、E分别是AB、BC的中点,点F在AC 上,且满足∠AFE=∠A,DM∥EF交AC于点M.(1)证明:DM=DA;(2)点G在BE上,且∠BDG=∠C,如图2,求证:△DEG∽△ECF;(3)在图2中,取CE上一点H,使得∠CFH=∠B,若BG=5,求EH的长.27.(2017•阳谷县一模)如图,在△ABC中,点D是BA边延长线上一点,过点D作DE∥BC,交CA延长线于点E,点F是DE延长线上一点,连接AF.(1)如果=,DE=6,求边BC的长;(2)如果∠FAE=∠B,FA=6,FE=4,求DF的长.28.(2017•杭州模拟)已知,如图1,点D、E分别在AB,AC上,且=.(1)求证:DE∥BC.(2)已知,如图2,在△ABC中,点D为边AC上任意一点,连结BD,取BD中点E,连结CE并延长CE交边AB于点F,求证:=.(3)在(2)的条件下,若AB=AC,AF=CD,求的值.答案解析1.(2017•黑龙江)已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°.连接AD,BC,点H为BC中点,连接OH.(1)如图1所示,易证:OH=AD且OH⊥AD(不需证明)(2)将△COD绕点O旋转到图2,图3所示位置时,线段OH与AD又有怎样的关系,并选择一个图形证明你的结论.【解答】(1)证明:如图1中,∵△OAB与△OCD为等腰直角三角形,∠AOB=∠COD=90°,∴OC=OD,OA=OB,∵在△AOD与△BOC中,,∴△AOD≌△BOC(SAS),∴∠ADO=∠BCO,∠OAD=∠OBC,∵点H为线段BC的中点,∴OH=HB,∴∠OBH=∠HOB=∠OAD,又因为∠OAD+∠ADO=90°,所以∠ADO+∠BOH=90°,所以OH⊥AD(2)解:①结论:OH=AD,OH⊥AD,如图2中,延长OH到E,使得HE=OH,连接BE,易证△BEO≌△ODA∴OE=AD∴OH=OE=AD由△BEO≌△ODA,知∠EOB=∠DAO∴∠DAO+∠AOH=∠EOB+∠AOH=90°,∴OH⊥AD.②如图3中,结论不变.延长OH到E,使得HE=OH,连接BE,延长EO交AD于G.易证△BEO≌△ODA∴OE=AD∴OH=OE=AD由△BEO≌△ODA,知∠EOB=∠DAO∴∠DAO+∠AOF=∠EOB+∠AOG=90°,∴∠AGO=90°∴OH⊥AD.2.(2017•连云港四模)阅读与理解:图1是边长分别为a和b(a>b)的两个等边三角形纸片ABC和C′DE叠放在一起(C与C′重合)的图形.操作与证明:(1)操作:固定△ABC,将△C′DE绕点C按顺时针方向旋转30°,连接AD,BE,如图2;在图2中,线段BE与AD之间具有怎样的大小关系?证明你的结论;(2)操作:若将图1中的△C′DE,绕点C按顺时针方向任意旋转一个角度α,连接AD,BE,如图3;在图3中,线段BE与AD之间具有怎样的大小关系?证明你的结论;猜想与发现:根据上面的操作过程,请你猜想当α为多少度时,线段AD的长度最大是多少?当α为多少度时,线段AD的长度最小是多少?【解答】解:操作与证明:(1)BE=AD.∵△C′DE绕点C按顺时针方向旋转30°,∴∠BCE=∠ACD=30度,∵△ABC与△C′DE是等边三角形,∴CA=CB,CE=CD,∴△BCE≌△ACD,∴BE=AD.(2)BE=AD.∵△C′DE绕点C按顺时针方向旋转的角度为α,∴∠BCE=∠ACD=α,∵△ABC与△C′DE是等边三角形,∴CA=CB,CE=CD,∴△BCE≌△ACD,∴BE=AD.猜想与发现:当α为180°时,线段AD的长度最大,等于a+b;当α为0°(或360°)时,线段AD的长度最小,等于a﹣b.3.(2017•金乡县模拟)请阅读下列材料:问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1、求∠BPC度数的大小和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PC是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,进而求出等边△ABC的边长为,问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=,BP=,PC=1.求∠BPC度数的大小和正方形ABCD的边长.【解答】解:(1)如图,将△BPC绕点B逆时针旋转90°,得△BP′A,则△BPC≌△BP′A.∴AP′=PC=1,BP=BP′=;连接PP′,在Rt△BP′P中,∵BP=BP′=,∠PBP′=90°,∴PP′=2,∠BP′P=45°;(2分)在△AP′P中,AP′=1,PP′=2,AP=,∵,即AP′2+PP′2=AP2;∴△AP′P是直角三角形,即∠AP′P=90°,∴∠AP′B=135°,∴∠BPC=∠AP′B=135°.(4分)(2)过点B作BE⊥AP′,交AP′的延长线于点E;则△BEP′是等腰直角三角形,∴∠EP′B=45°,∴EP′=BE=1,∴AE=2;∴在Rt△ABE中,由勾股定理,得AB=;(7分)∴∠BPC=135°,正方形边长为.4.(2017•滦县模拟)两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为相等和位置关系为垂直;(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.【解答】(1)解:∵CE=CD,AC=BC,∠ECA=∠DCB=90°,∴BE=AD,∵F是DE的中点,H是AE的中点,G是BD的中点,∴FH=AD,FH∥AD,FG=BE,FG∥BE,∴FH=FG,∵AD⊥BE,∴FH⊥FG,故答案为:相等,垂直.(2)答:成立,证明:∵CE=CD,∠ECD=∠ACD=90°,AC=BC,∴△ACD≌△BCE∴AD=BE,由(1)知:FH=AD,FH∥AD,FG=BE,FG∥BE,∴FH=FG,FH⊥FG,∴(1)中的猜想还成立.(3)答:成立,结论是FH=FG,FH⊥FG.连接AD,BE,两线交于Z,AD交BC于X,同(1)可证∴FH=AD,FH∥AD,FG=BE,FG∥BE,∵三角形ECD、ACB是等腰直角三角形,∴CE=CD,AC=BC,∠ECD=∠ACB=90°,∴∠ACD=∠BCE,在△ACD和△BCE中,∴△ACD≌△BCE,∴AD=BE,∠EBC=∠DAC,∵∠DAC+∠CXA=90°,∠CXA=∠DXB,∴∠DXB+∠EBC=90°,∴∠EZA=180°﹣90°=90°,即AD⊥BE,∵FH∥AD,FG∥BE,∴FH⊥FG,即FH=FG,FH⊥FG,结论是FH=FG,FH⊥FG5.(2017•路北区三模)如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.【解答】解:(1)由旋转的性质得:△ABC≌△ADE,且AB=AC,∴AE=AD,AC=AB,∠BAC=∠DAE,∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,在△AEC和△ADB中,,∴△AEC≌△ADB(SAS);(2)∵四边形ADFC是菱形,且∠BAC=45°,∴∠DBA=∠BAC=45°,由(1)得:AB=AD,∴∠DBA=∠BDA=45°,∴△ABD为直角边为2的等腰直角三角形,∴BD2=2AB2,即BD=2,∴AD=DF=FC=AC=AB=2,∴BF=BD﹣DF=2﹣2.6.(2017•平房区二模)如图,正方形ABCD,点E在AD上,将△CDE绕点C顺时针旋转90°至△CFG,点F,G分别为点D,E旋转后的对应点,连接EG,DB,DF,DB与CE交于点M,DF与CG交于点N.(1)求证BM=DN;(2)直接写出图中已经存在的所有等腰直角三角形.【解答】(1)证明:∵四边形ABCD为正方形,∴∠DCB=90°,CD=CB,∵△CDE绕点C顺时针旋转90°至△CFG,∴CF=CD,∠ECG=∠DCF=90°,∴△CDF为等腰直角三角形,∴∠CDF=∠CFD=45°,∵∠BCM+∠DCE=90°,∠DCN+∠DCE=90°,∴∠BCM=∠DCN,∵∠CBM=∠ABC=45°,∴∠CBM=∠CDN,在△BCM和△DCN中,∴△BCM≌△DCN,∴BM=DN;(2)解:∵四边形ABCD为正方形,∴△ABD和△BCD为等腰直角三角形;由(1)得△CDF为等腰三角形;∵△CDE绕点C顺时针旋转90°至△CFG,∴CE=CG,∠ECG=90°,∴△ECG为等腰直角三角形;∵△CBD和△CFD为等腰直角三角形;∴△BDF为等腰直角三角形.7.(2017•路南区一模)如图①,△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.(1)求∠BCD的度数;(2)将图①中的△BCD绕点B顺时针旋转得到△BC′D′.当点D′恰好落在BC边上时,如图②所示,连接C′C并延长交AB于点E.①求∠C′CB的度数;②求证:△C′BD'≌△CAE.【解答】解:(1)∵AC=BC,∠A=30°,∴∠CBA=∠CAB=30°,∵∠ADC=45°,∴∠BCD=∠ADC﹣∠CBA=15°=∠BC'D';(2)①由旋转可得CB=C'B=AC,∠C'BD'=∠CBD=∠A=30°,∴∠CC'B=∠C'CB=75°;②证明:∵AC=C'B,∠C'BD'=∠A,∴∠CEB=∠C'CB﹣∠CBA=45°,∴∠ACE=∠CEB﹣∠A=15°,∴∠BC'D'=∠BCD=∠ACE,在△C'BD'和△CAE中,,∴△C'BD'≌△CAE(ASA).8.(2017•沙坪坝区一模)已知△ABC和△DEB都是等腰直角三角形,∠BAC=∠EDB=90°.(1)如图1,若点E,B,C在同一直线上,连接AE,当∠AEC=30°,BC=4时,求EB的长;(2)如图2,将图1中的△DEB绕点B顺时针旋转,当点C在ED的延长线上时,EC交AB 于点H,求证:∠EAH=2∠HCB.【解答】(1)解:如图1中,作AH⊥BC于H.∵AB=AC,∠BAC=90°,AH⊥BC,∴AH=BH=HC=2,在Rt△AEH中,∵∠AHE=90°,AH=2,∠AEH=30°,∴EH==2,∴EB=EH﹣BH=2﹣2.(2)证明:如图2中,连接AD.∵∠BDH=∠HAC,∠BHD=∠CHA,∴△BHD∽△CHA,∴=,∴=,∵∠AHD=∠CHB,∴△AHD∽△CHB,∴∠ADH=∠CBH=45°,∠DAH=∠BCH,∴∠ADB=90°+45°=135°,∴∠ADE=360°﹣90°﹣135°=135°,∴∠ADE=∠ADB,在△ADE和△ADB中,,∴△ADE≌△ADB,∴∠DAE=∠DAB,∵∠DAB=∠BCH,∴∠EAH=2∠HCB.9.(2017•重庆模拟)已知等腰Rt△ABC与等腰Rt△CDE,∠ACB=∠DCE=90°,把Rt△ABC 绕点C旋转.(1)如图1,当点A旋转到ED的延长线时,若BC=,BE=5,求CD的长;(2)当Rt△ABC旋转到如图2所示的位置时,过点C作BD的垂线交BD于点F,交AE于点G,求证:BD=2CG.【解答】解:(1)如图1,∵△ADC是由△BEC绕点C旋转得到的,∴AD=BE=5,∠ADC=∠BEC,∵在等腰Rt△ABC与等腰Rt△CDE中,BC=AC=,∠EDC=∠DEC=45°,∴AB=13,∠ADC=∠BEC=135°,∴∠AEB=90°,∴AE==12,∴DE=7,∴等腰Rt△CDE中,CD=DE=;(2)如图2,过点A作AH∥CE,交CG的延长线于H,连接HE,则∠CAH+∠ACE=180°,∵∠ACB=∠DCE=90°,∴∠BCD+∠ACE=180°,∴∠CAE=∠BCD,∵CF⊥BD,∠ACB=90°,∴∠CBF+∠BCF=∠ACG+∠BCF=90°,∴∠CBF=∠ACG,在△BCD和△CAH中,,∴△BCD≌△CAH(ASA),∴AH=CD=CE,BD=CH,又∵AH∥CE,∴四边形ACEH是平行四边形,∴CH=2CG,∴BD=2CG.10.(2017•河北区模拟)如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M,N分别是斜边AB,DE的中点,点P为AD的中点,连接AE、BD、MN.(1)求证:△PMN为等腰直角三角形;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP,BD 分别交于点G、H,请判断①中的结论是否成立,若成立,请证明;若不成立,请说明理由.【解答】解:(1)∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠CBD+∠BDC=90°,∴∠EAC+∠BDC=90°,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PM,∵PM∥BD,PN∥AE,∴∠NPD=∠EAC,∠MPA=∠BDC,∵∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN,∴△PMN为等腰直角三角形;(2)①中的结论成立,理由:设AE与BC交于点O,如图②所示:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD.∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°,∴AE⊥BD,∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD,PN=AE,PN∥AE,∴PM=PN.∵AE⊥BD,∴PM⊥PN,∴△PMN为等腰直角三角形.11.(2017•吉安模拟)两块全等的三角板ABC和EDC如图(1)放置,AC=CB,CE=CD,∠ACB=∠ECD=90°,且AB与CE交于F,ED与AB、BC分别交于M、H,△ABC不动,将△EDC 绕点C旋转到如图(2),当∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论.【解答】解:四边形ACDM是菱形.证明:∵∠ACB=∠DCE=90°,∠BCE=45°,∴∠1=∠2=45°.∵∠E=45°,∴∠1=∠E,∴AC∥DE,∴∠AMH=180°﹣∠A=135°=∠ACD,又∵∠A=∠D=45°,∴四边形ACDM是平行四边形(两组对角分别相等的四边形是平行四边形),∵AC=CD,∴四边形ACDM是菱形.12.(2017•江津区校级三模)如图,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接CF,DF.(1)如图①,当点D在AB上,点E在AC上时,请判断线段CF,DF有怎样的数量关系和位置关系?为什么?(2)如图②,将图①中的△ADE绕点A旋转到图②位置时,请判断(1)中的结论是否仍然成立?并证明你的判断.【解答】解:(1)CF=DF且CF⊥DF.理由如下:∵∠ADE=90°,∴∠BDE=90°,又∵∠BCE=90°,点F是BE的中点,∴CF=DF=BE=BF,∴∠1=∠3,∠2=∠4,∴∠5=∠1+∠3=2∠1,∠6=∠2+∠4=2∠2,∴∠CFD=∠5+∠6=2(∠1+∠2)=2∠ABC,又∵△ABC是等腰直角三角形,且∠ACB=90°,∴∠ABC=45°,∴∠CFD=90°,∴CF=DF且CF⊥DF.(2)(1)中的结论仍然成立.理由如下:如图,延长DF至G使FG=DF,连接BG,CG,DC,∵F是BE的中点,∴BF=EF,又∵∠BFG=∠EFD,GF=DF,∴△BFG≌△EFD(SAS),∴∠FBG=∠FED,BG=ED,∴BG∥DE,∵△ADE和△ACB都是等腰直角三角形,∴DE=DA,∠DAE=∠DEA=45°,AC=BC,∠CAB=∠CBA=45°,又∵∠CBG=∠EBG﹣∠EBA﹣∠ABC=∠DEF﹣(180°﹣∠AEB﹣∠EAB)﹣45°=∠DEF﹣180°+∠AEB+∠EAB﹣45°=(∠DEF+∠AEB)+∠EAB﹣225°=360°﹣∠DEA+∠EAB﹣225°=360°﹣45°+∠EAB﹣225°=90°+∠EAB,而∠DAC=∠DAE+∠EAB+∠CAB=45°+∠EAB+45°=90°+∠EAB,∴∠CBG=∠DAC,又∵BG=ED,DE=DA,∴BG=AD,又∵BC=AC,∴△BCG≌△ACD(SAS),∴GC=DC,∠BCG=∠ACD,∴∠DCG=∠DCB+∠BCG=∠DCB+∠ACD=∠ACB=90°,∴△DCG是等腰直角三角形,又∵F是DG的中点,∴CF⊥DF且CF=DF.13.(2017•济宁二模)将两块全等的三角板如图1摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图1中△A1B1C绕点C顺时针旋转45°得图2,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图2中,若AP1=a,则CQ等于多少?(3)将图2中△A1B1C绕点C顺时针旋转到△A2B2C(如图3),点P2是A2C与AP1的交点.当旋转角为多少度时,有△AP1C∽△CP1P2?这时线段CP1与P1P2之间存在一个怎样的数量关系?.【解答】(1)证明:∵∠B1CB=45°,∠B1CA1=90°,∴∠B1CQ=∠BCP1=45°;又B1C=BC,∠B1=∠B,∴△B1CQ≌△BCP1(ASA)∴CQ=CP1;(2)解:如图:作P1D⊥AC于D,∵∠A=30°,∴P1D=AP1;∵∠P1CD=45°,∴=sin45°=,∴CP1=P1D=AP1;又AP1=a,CQ=CP1,∴CQ=a;(3)解:当∠P1CP2=∠P1AC=30°时,由于∠CP1P2=∠AP1C,则△AP1C∽△CP1P2,所以将图2中△A1B1C绕点C顺时针旋转30°到△A2B2C时,有△AP1C∽△CP1P2.这时==,∴P1P2=CP1.14.(2017•常德)如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.(1)如图1,若BD=BA,求证:△ABE≌△DBE;(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AF•AC.【解答】证明:(1)在Rt△ABE和Rt△DBE中,,∴△ABE≌△DBE;(2)①过G作GH∥AD交BC于H,∵AG=BG,∴BH=DH,∵BD=4DC,设DC=1,BD=4,∴BH=DH=2,∵GH∥AD,∴==,∴GM=2MC;②过C作CN⊥AC交AD的延长线于N,则CN∥AG,∴△AGM∽△NCM,∴=,由①知GM=2MC,∴2NC=AG,∵∠BAC=∠AEB=90°,∴∠ABF=∠CAN=90°﹣∠BAE,∴△ACN∽△BAF,∴=,∵AB=2AG,∴=,∴2CN•AG=AF•AC,∴AG2=AF•AC.15.(2017•杭州)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.【解答】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴=由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=16.(2017•天水)△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF 的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.【解答】(1)证明:∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,∵,∴△BPE≌△CQE(SAS);(2)解:∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ,∴=,∵BP=2,CQ=9,BE=CE,∴BE2=18,∴BE=CE=3,∴BC=6.17.(2017•深圳模拟)如图1,边长为2的正方形ABCD中,E是BA延长线上一点,且AE=AB,点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,直线EP交AD于点F,过点F作直线FG⊥DE于点G,交AB于点R.(1)求证:AF=AR;(2)设点P运动的时间为t,①求当t为何值时,四边形PRBC是矩形?②如图2,连接PB.请直接写出使△PRB是等腰三角形时t的值.【解答】(1)证明:如图,在正方形ABCD中,AD=AB=2,∵AE=AB,∴AD=AE,∴∠AED=∠ADE=45°,又∵FG⊥DE,∴在Rt△EGR中,∠GER=∠GRE=45°,∴在Rt△ARF中,∠FRA=∠AFR=45°,∴∠FRA=∠RFA=45°,∴AF=AR;(2)解:①如图,当四边形PRBC是矩形时,则有PR∥BC,∴AF∥PR,∴△EAF∽△ERP,∴,即:由(1)得AF=AR,∴,解得:或(不合题意,舍去),∴,∵点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,∴(秒);②若PR=PB,过点P作PK⊥AB于K,设FA=x,则RK=BR=(2﹣x),∵△EFA∽△EPK,∴,即:=,解得:x=±﹣3(舍去负值);∴t=(秒);若PB=RB,则△EFA∽△EPB,∴=,∴,∴BP=AB=×2=∴CP=BC﹣BP=2﹣=,∴(秒).综上所述,当PR=PB时,t=;当PB=RB时,秒.18.(2017•惠阳区模拟)把Rt△ABC和Rt△DEF按如图(1)摆放(点C与E重合),点B、C(E)、F在同一条直线上.已知:∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=10cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF 移动的同时,点P从△ABC的顶点A出发,以2cm/s的速度沿AB向点B匀速移动;当点P 移动到点B时,点P停止移动,△DEF也随之停止移动.DE与AC交于点Q,连接PQ,设移动时间为t(s).(1)用含t的代数式表示线段AP和AQ的长,并写出t的取值范围;(2)连接PE,设四边形APEQ的面积为y(cm2),试探究y的最大值;(3)当t为何值时,△APQ是等腰三角形.【解答】(1)解:AP=2t∵∠EDF=90°,∠DEF=45°,∴∠CQE=45°=∠DEF,∴CQ=CE=t,∴AQ=8﹣t,t的取值范围是:0≤t≤5;(2)过点P作PG⊥x轴于G,可求得AB=10,SinB=,PB=10﹣2t,EB=6﹣t,∴PG=PBSinB=(10﹣2t)∴y=S△ABC﹣S△PBE﹣S△QCE==∴当(在0≤t≤5内),y有最大值,y最大值=(cm2)(3)若AP=AQ,则有2t=8﹣t解得:(s)若AP=PQ,如图①:过点P作PH⊥AC,则AH=QH=,PH∥BC ∴△APH∽△ABC,∴,即,解得:(s)若AQ=PQ,如图②:过点Q作QI⊥AB,则AI=PI=AP=t∵∠AIQ=∠ACB=90°∠A=∠A,∴△AQI∽△ABC∴即,解得:(s)综上所述,当或或时,△APQ是等腰三角形.19.(2017•蜀山区二模)如图,在△ABC中,D、E分别为AB、AC上的点,线段BE、CD相交于点O,且∠DCB=∠EBC=∠A.(1)求证:△BOD∽△BAE;(2)求证:BD=CE;(3)若M、N分别是BE、CE的中点,过MN的直线交AB于P,交AC于Q,线段AP、AQ 相等吗?为什么?【解答】(1)证明:∵∠BCO=∠CBO,∴∠DOB=∠BCO+CBO=2∠BCO,∵∠A=2∠BCO,∴∠DOB=∠A,∵∠ABE=∠ABE,∴△BOD∽△BAE;(2)解:延长CD,在CD延长线上取一点F,使BF=BD,∴∠BDF=∠BFD,∵∠BDF=∠ABO+∠DOB,∠BEC=∠ABO+∠A,由(1)得∠BOD=∠A,∴∠BDF=∠BEC,∴∠BFD=∠BEC,在△BFC与△CEB中,,∴△BFC≌△CEB,∴BD=BF,∴BD=CE;(3)解:AP=AQ,理由:取BC的中点G,连接GM,GN,∵M,N分别是BE,CD的中点,∴GM,GN是中位线,∴GM∥CE,GM=CE,GN∥BD,GN=BD,∵BD=CE,∴GM=GN,∴∠3=∠4,∵GM∥CE,∴∠2=∠4,∵GN∥BD,∴∠3=∠1,∴∠1=∠2,∴AP=AQ.20.(2017•安徽模拟)如图,已知△ABC中,AC=BC,点D、E、F分别是线段AC、BC、AD 的中点,BF、ED的延长线交于点G,连接GC.(1)求证:AB=GD;(2)如图2,当CG=EG时,求的值.【解答】解:(1)∵D、E分别是线段AC、BC的中点,∴DE为△ABC的中位线,∴DE∥AB,即EG∥AB,∴∠FDG=∠A,∵点F为线段AD的中点,∴AF=DF,在△ABF与△DGF中,∴△ABF≌△DGF(ASA)∴AB=GD(2)∵DE为△ABC的中位线,∴DE=AB,CE=BC=AC∵DG=AB,∴EG=DE+DG∴EG=AB∵DE∥AB,∴∠GEC=∠CBA,∵AC=BC,CG=EG∴△GEC∽△CBA∴,即,∴21.(2017•肥城市三模)如图,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1)点G在BE上,且∠BDG=∠C,求证:DG•CF=DM•EG;(2)在图中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.【解答】(1)证明:如图1所示,∴D,E分别为AB,BC中点,∴DE∥AC∵DM∥EF,∴四边形DEFM是平行四边形,∴DM=EF,如图2所示,∵D、E分别是AB、BC的中点,∴DE∥AC,∴∠BDE=∠A,∠DEG=∠C,∵∠AFE=∠A,∴∠BDE=∠AFE,∴∠BDG+∠GDE=∠C+∠FEC,∵∠BDG=∠C,∴∠GDE=∠FEC,∴△DEG∽△ECF;∴,∴,∴,∴DG•CF=DM•EG;(2)解:如图3所示,∵∠BDG=∠C=∠DEB,∠B=∠B,∴△BDG∽△BED,∴,∴BD2=BG•BE,∵∠AFE=∠A,∠CFH=∠B,∴∠C=180°﹣∠A﹣∠B=180°﹣∠AFE﹣∠CFH=∠EFH,又∵∠FEH=∠CEF,∴△EFH∽△ECF,∴=,∴EF2=EH•EC,∵DE∥AC,DM∥EF,∴四边形DEFM是平行四边形,∴EF=DM=DA=BD,∴BG•BE=EH•EC,∵BE=EC,∴EH=BG=1.22.(2017•石家庄二模)如图,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE 与AC交于点M,EF与AC交于点N,动点P从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,伴随点P的运动,矩形PEFG在射线AB上滑动;动点K从点P出发沿折线PE﹣﹣EF以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K到达点F时停止运动,点P也随之停止.设点P、K运动的时间是t秒(t>0).(1)当t=1时,KE=1,EN=;(2)当t为何值时,△APM的面积与△MNE的面积相等?(3)当点K到达点N时,求出t的值;(4)当t为何值时,△PKB是直角三角形?【解答】解:(1)当t=1时,根据题意得,AP=1,PK=1,∵PE=2,∴KE=2﹣1=1,∵四边形ABCD和PEFG都是矩形,∴△APM∽△ABC,△APM∽△NEM,∴=,=,∴MP=,ME=,∴NE=;故答案为:1;;(2)由(1)并结合题意可得,AP=t,PM=t,ME=2﹣t,NE=﹣t,∴t×t=(2﹣t)×(﹣t),解得,t=;(3)当点K到达点N时,则PE+NE=AP,由(2)得,﹣t+2=t,解得,t=;(4)①当K在PE边上任意一点时△PKB是直角三角形,即,0<t≤2;②当点k在EF上时,则KE=t﹣2,BP=8﹣t,∵△BPK∽△PKE,∴PK2=BP×KE,PK2=PE2+KE2,∴4+(t﹣2)2=(8﹣t)(t﹣2),解得t=3,t=4;③当t=5时,点K在BC边上,∠KBP=90°.综上,当0<t≤2或t=3或t=4或5时,△PKB是直角三角形.23.(2017•岱岳区二模)如图,C为线段BD上一动点,过B、D分别作BD的垂线,使AB=BC,DE=DB,连接AD、AC、BE,过B作AD的垂线,垂足为F,连接CE、EF.(1)求证:AC•DF=BF•BD;(2)点C运动的过程中,∠CFE的度数保持不变,求出这个度数;(3)当点C运动到什么位置时,CE∥BF?并说明理由.【解答】解:(1)∵BF⊥AD,∴∠AFB=∠BFD=90°,∴∠ABF+∠BAF=90°,∵AB⊥BC,∴∠ABF+∠DBF=90°,∴∠BAF=∠DBF,∴△ABF∽△BDF,∴=,即AB•DF=BF•BD,由AB=BC,AB⊥BC,∴AB=AC,∴AC•DF=BF•BD;(2)∵=,AB=BC、BD=DE,∴=,∵∠FBC+∠BDF=90°、∠BDF+∠EDF=90°,∴∠FBC=∠EDF,∴△FBC∽△FDE,∴∠BFC=∠DFE,又∠BFD=∠BFC+∠CFD=90°,∴∠DFE+∠CFD=90°,即∠CFE=90°,故∠CFE的度数保持不变,始终等于90°.(3)当C为BD中点时,CE∥BF,理由如下:∵C为BD中点,∴AB=BC=CD=BD=DE,在△ABD和△CDE中,∵,∴△ABD≌△CDE(SAS),∴∠ADB=∠CED,∵∠CED+∠ECD=90°,∴∠ADB+∠ECD=90°,∴CE⊥AD,∵BF⊥AD,∴CE∥BF.。

中考数学专题五几何变换压轴题课件

中考数学专题五几何变换压轴题课件
地球在转动
请同学们看下面生活中的一些例子:
地球在转动
乌龟在跑
请同学们看下面生活中的一些例子:
地球在转动
乌龟在跑
手在动
请同学们看下面生活中的一些例子:
请同学们看下面例子:
雄鹰在展翅翱翔
火箭飞向苍穹的太空
请同学们看下面生活中的一些例子:
河北近五年对此问题的考查:2017年第25题、2015年 第26题均考查了图形的旋转变换,2014年第25题考查了图 形的翻折变换.
类型一 图形的旋转变换 旋转变换是近年来中考中的常考点,多与三角形、四
边形相结合.解决旋转变换问题,首先要明确旋转中心、 旋转方向和旋转角,关键是找出旋转前后的对应点,利用 旋转前后两图形全等等性质解题.
(1)当t=1时,KE= ,EN= ; (2)当t为何值时,△APM的面积与△MNE的面积相等? (3)当点K到达点N时,求出t的值; (4)当t为何值时,△PKB是直角三角形?
【分析】 (1)利用△APM∽△ABC求出PM,然后求出ME,再 利用△APM∽△NEM,即可求出EN;(2)△APM的面积与△MNE 的面积相等,且两个三角形相似,所以只要两个三角形全 等面积就相等,表示出三角形的面积,从而求出t值;(3) 根据PE+NE=AP的值,解出t即可;(4)分两种情况,K在PE 边上任意一点时△PKB是直角三角形,在FE上的一点时也是 直角三角形,利用三角形相似求出t的值.
(1)由图2可知,点M的运动速度是每秒 cm,当t为何
值时,四边形PQCM是平行四边形?在图2中反映这一情况 的点是 ;
(2)设四边形PQCM的面积为y cm2,求y与t之间的函数解析
式;
《质点-参考系和坐标系》
请同学们看下面生活中的一些例子:

中考数学复习 专题五 几何变换压轴题数学课件

中考数学复习 专题五 几何变换压轴题数学课件

1
12/9/2021
4
解:(1) 1 7 (2)∵∠AO2 B=90°,点C是AB的中点, ∴OC=BC= 1 AB,∴∠CBO=∠COB. ∵四边形OBD2 E是正方形,
∴BD=OE,∠DBO=∠EOB=90°, ∴∠CBD=∠COE.
12/9/2021
在△CBD和△COE中, ∴△CBD≌△COE(SAS).
理由:由平移的性质得CD∥C′D′,DE∥D′E′. ∵△ABC为等边三角形,∴∠B=∠ACB=60°, ∴∠ACC′=180°-60°=120°. ∵CN是∠ACC′的角平分线, ∴∠NCC′=60°. ∵AB∥DE,DE∥D′E′,∴AB∥D′E′,
12/9/2021
∴∠D′E′C′=∠B=60°,
12/9/2021
∵OE=OF,∴OE=FG. ∵CF=FG+CG,∴CF=OE+AE. 选图3的结论证明如下: 如图,延长EO交FC的延长线于点G.
12/9/2021
∵AE⊥BP,CF⊥BP,∴AE∥CF, ∴∠AEO=∠G. 在△AOE和△COG中,
12/9/2021
∴△AOE≌△COG, ∴OE=OG,AE=CG. 在Rt△EFG中, ∵OE=OG,∴OE=OF=OG. ∵∠OFE=30°, ∴∠OFG=90°-30°=60°, ∴△OFG是等边三角形,∴OF=FG. ∵OE=OF,∴OE=FG. ∵CF=FG-CG,∴CF=OE-AE.
∴∠D′E′C′=∠NCC′,∴D′E′∥CN.
∴四边形MCND′为平行四边形.
∵∠ME′C′=∠MCE′=60°,∠NCC′=∠NC′C=60°,
∴△MCE′和△NCC′为等边三角形,
故MC=CE′,NC=CC′.
又E′C′=2 ,CC′= ,∴CE′=CC′= ,

2021-2021年中考数学复习专题四几何变换压轴题试题

2021-2021年中考数学复习专题四几何变换压轴题试题

2019-2020 年中考数学复习专题四几何变换压轴题试题类型一图形的旋转变换几何图形的旋转变换是近年来中考中的常考点,多与三角形、四边形相结合.解决旋转变换问题,首先要明确旋转中心、旋转方向和旋转角,关键是找出旋转前后的对应点,利用旋转前后两图形全等等性质解题.如图,在菱形 ABCD 中,AB=2,∠BAD=60°,过点 D 作DE⊥AB 于点 E,DF⊥BC 于点 F.1(1)如图 1,连接 AC 分别交 DE,DF 于点M,N,求证:MN=AC;3(2)如图 2,将∠EDF 以点 D 为旋转中心旋转,其两边DE′,DF′分别与直线 AB,BC 相交于点 G,P.连接GP,当△DGP的面积等于3 3时,求旋转角的大小并指明旋转方向.【分析】(1)连接 BD,由∠BAD=60°,得到△ABD为等边三角形,进而证明点 E 是AB 的中点,再根据相似三角形的性质解答;(2)分∠EDF顺时针旋转和逆时针旋转两种情况,然后根据旋转的性质解题.1.(xx·潍坊)边长为 6 的等边△ABC 中,点 D,E 分别在 AC,BC 边上,DE∥AB,EC=2 3.(1)如图1,将△DEC沿射线EC方向平移,得到△D′E′C′,边D′E′与AC的交点为M,边C′D′与∠ACC′的角平分线交于点 N.当CC′多大时,四边形MCND′为菱形?并说明理由.(2)如图 2,将△DEC绕点C 旋转∠α(0°<α<360°),得到△D′E′C,连接AD′,BE′.边D′E′的中点为 P.①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由;②连接 AP,当 AP 最大时,求AD′的值.(结果保留根号)图1 图22.(xx·成都)如图 1,△ABC 中,∠ABC=45°,AH⊥BC 于点 H,点 D 在 AH 上,且 DH=CH,连接 BD.(1)求证:BD=AC;(2)将△BHD 绕点 H 旋转,得到△EHF(点 B,D 分别与点 E,F 对应),连接 AE.①如图 2,当点 F 落在 AC 上时(F 不与 C 重合),若 BC=4,tan C=3,求 AE 的长;②如图 3,当△EHF是由△BHD 绕点H 逆时针旋转 30°得到时,设射线 CF 与AE 相交于点 G,连接 GH,试探究线段 GH 与EF 之间满足的等量关系,并说明理由.803的类型二 图形的翻折变换几何图形的翻折变换也是近年来中考中的常考点,多与三角形、四边形相结合.翻折变换的实质是对 称,翻折部分的两图形全等,找出对应边、对应角,再结合勾股定理、相似的性质与判定解题.(xx·苏州)如图,在△ABC 中,AB =10,∠B=60°,点 D ,E 分别在 AB ,BC 上,且 BD =BE =4,将△BDE 沿 DE 所在直线折叠得到△B′DE(点 B′在四边形 ADEC 内),连接 AB′,则 AB′的长为 .【分析】 作 DF⊥B′E 于点 F ,B′G⊥AD 于点 G ,由∠B=60°,BD =BE ,得到△BDE 是等边三角形,由对称的性质得到△B′DE 也是等边三角形,从而 GD =B′F,然后利用勾股定理求解.、3.(xx·安徽)在三角形纸片 ABC 中,∠A =90°,∠C=30°,AC =30 cm ,将该纸片沿过点 B 的直线折叠, 使点 A 落在斜边 BC 上的一点 E 处,折痕记为 BD(如图 1),剪去△CDE 后得到双层△BDE(如图 2),再沿着过△BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四 边形的周长为 40 或 cm. 3图 1图 24.如图,在矩形 ABCD 中,点 E 在边 CD 上,将矩形沿 AE 折叠,使点 D 落在边 BC 上的点 F 处,过点 F 作 FG∥CD,交 AE 于点 G ,连接 DG.(1)求证:四边形 DEFG 为菱形;(2)若 CD =8,CF =4,求CE 值.DE类型三 图形的相似图形的相似常以三角形、四边形为背景,与旋转、翻折、动点相结合,考查三角形相似的性质及判定,难度较大,是中考中常考的几何压轴题.与动点相关的相似三角形,要根据动点的运动情况讨论相似三角形的对应边、对应角,进而判定相似三角形,再利用相似三角形的性质解题.(xx·青岛)如图,在矩形 ABCD 中,AB=6 cm,BC=8 cm,对角线 AC,BD 交于点 O.点 P 从点A 出发,沿AD 方向匀速运动,速度为 1 cm/s;同时,点 Q 从点D 出发,沿 DC 方向匀速运动,速度为 1 cm/s;当一个点停止运动时,另一个点也停止运动.连接 PO 并延长,交 BC 于点E,过点 Q 作QF∥AC,交 BD 于点F. 设运动时间为 t(s)(0<t<6) ,解答下列问题:(1)当 t 为何值时,△AOP 是等腰三角形;(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式.【分析】(1)根据勾股定理求出 AC 的值,然后分类讨论:当 AP=PO 时,求出 t 的值;当 AP=AO 时,求出t 的值;(2)过点 E 作EH⊥AC于点H,过点 Q 作QM⊥AC于点M,过点 D 作DN⊥AC于点N,交 QF 于点G,分别用 t 表示出 EH,DN,DG,再利用面积的和差计算即可.5.(xx·常德)如图,Rt△ABC中,∠BAC=90°,D 在BC 上,连接 AD,作BF⊥AD分别交 AD 于E,AC 于F.(1)如图 1,若 BD=BA,求证:△ABE≌△DBE;(2)如图 2,若 BD=4DC,取 AB 的中点 G,连接 CG 交AD 于点M.求证:①GM=2MC;②AG2=AF·AC.图1 图2参考答案【例1】 (1)如图,连接 BD,设 BD 交 AC 于点 O,∵在菱形 ABCD 中,∠DAB=60°, AD=AB,∴△ABD 为等边三角形.∵DE⊥AB,= ∴点 E 为 AB 的中点.∵AE∥CD,AM AE 1 = = .CM CD 2同理CN 1 = .AN 21 ∴M,N 是线段 AC 的三等分点,∴MN = AC.3(2)∵AB∥CD,∠BAD=60°,∴∠ADC=120°.∵∠ADE=∠CDF=30°,∴∠EDF=60°.当∠EDF 顺时针旋转时,由旋转的性质知,∠EDG=∠FDP,∠GDP=∠EDF=60°.∵DE=DF = 3,∠DEG=∠DFP=90°,∴△DEG≌△DFP,∴DG=DP ,∴△DGP 是等边三角形.则 S = 3DG 2.由 3DG 2=3 3, △DGP 4 4又∵DG>0,解得 DG =2 3.∴cos∠EDG DE = 3 =,∴∠EDG=60°. DG 2 3 2∴当顺时针旋转 60°时,△DGP 的面积是 3 3.同理,当逆时针旋转 60°时,△DGP 的面积也是 3 3.综上所述,当∠EDF 以点 D 为旋转中心,顺时针或逆时针旋转 60°时,△DGP 的面积是 3 3.【变式训练】1.解:(1)当 CC′= 3时,四边形 MCND′为菱形. 理由:由平移的性质得 CD∥C′D′,DE∥D′E′.∵△ABC 为等边三角形,∴∠B=∠ACB=60°,∴∠ACC′=180°-60°=120°.∵CN 是∠ACC′的角平分线,∴∠NCC′=60°.∵AB∥DE,DE∥D′E′,∴AB∥D′E′,∴∠D′E′C′=∠B=60°,∴∠D′E′C′=∠NCC′,∴D′E′∥CN.∴四边形 MCND′为平行四边形.∵∠ME′C′=∠MCE′=60°,∠NCC′=∠NC′C=60°,∴△MCE′和△NCC′为等边三角形,故 MC =CE′,NC =CC′.又 E′C′=2 3,CC′= 3,∴CE′=CC′= 3,∴MC=CN ,∴四边形 MCND′为菱形. (2)①AD′=BE′.理由:当α≠180°时,由旋转的性质得∠ACD′=∠BCE′.由(1)知 AC =BC ,CD′=CE′,∴△ACD′≌△BCE′,∴AD′=BE′.当α=180°时,AD′=AC +CD′,BE′=BC +CE′,即 AD′=BE′.综上可知,AD′=BE′.②连接 CP ,在△ACP 中,由三角形三边关系得,AP<AC +CP ,∴当 A ,C ,P 三点共线时 AP 最大,如图所示.∴∴ , . = ∴ =,此时,AP =AC +CP.在△D′CE′中,由 P 为 D′E′中点,得AP⊥D′E′,PD′= 3,∴CP=3,∴AP=6+3=9.在 Rt△APD′中,由勾股定理得AD ′= AP 2+PD ′2= 92+( 3)2=2 21.2.解:(1)在 Rt△AHB 中,∠ABC=45°,∴AH=BH.∵∠BHD=∠AHC=90°,DH =CH ,∴△BHD≌△AHC,∴BD=AC.(2)①在 Rt△AHC 中,∵tan C =3, AH CH=3. 设 CH =x ,则 BH =AH =3x ,∴BC=BH +CH =4x =4,∴x=1,∴AH=3,CH =1.由旋转的性质知,∠EHF=∠BHD=∠AHC=90°,EH =AH =3,CH =DH =FH ,∴∠EHA=∠FHC EH FH AH HC=1,∴△EHA∽△FHC, ∴∠EAH=∠C,∴tan∠EAH=tan C =3.如图,过点 H 作 HP⊥AE 于点 P ,则 HP =3AP ,AE =2AP.在 Rt △AHP 中,AP 2+HP 2=AH 2,即 AP 2+(3AP)2=9.∴AP=3 10,∴AE=3 10 10 5②由①知,△AEH 和△FHC 都为等腰三角形,设 AH 交 CG 于点 Q ,∴∠GAH=∠HCG,∴△AGQ∽△CHQ,∴AQ GQ CQ HQAQ CQ = ,∠AGQ=∠CHQ=90°. GQ HQ∵∠AQC=∠GQH,∴△AQC∽△GQH.又∵旋转角为 30°,∴∠EHA=∠FHC=120°,∴∠QAG=30°, EF AC AQ 1 = = = =2. GH GH GQ sin 30°∴= .【例 2】 如图,作 DF⊥B′E 于点 F ,B′G⊥AD 于点 G ,∵∠B=60°,BD =BE =4,∴△BDE 是边长为 4 的等边三角形.∵将△BDE 沿 DE 所在的直线折叠得到△B′DE,∴△B′DE 也是边长为 4 的等边三角形,∴GD=B′F=2.∵B ′D =4,∴B ′G = B ′D 2-GD 2=2 3.∵AB=10,∴AG=10-6=4,∴AB ′= AG 2+B ′G 2=2 7.故答案为 2 7.【变式训练】3.40 或34.(1)证明:由折叠的性质知,DG =FG ,ED =EF ,∠AED=∠AEF,∵FG∥CD,∴∠FGE=∠AED,∴∠FGE=∠AEF,∴FG=FE ,∴DG=GF =EF =DE ,∴四边形 DEFG 为菱形.(2)解:设 DE =x ,根据折叠的性质,EF =DE =x ,EC =8-x ,在 Rt △EFC 中,FC 2+EC 2=EF 2,即 42+(8-x)2=x 2.解得 x =5,CE =8-x =3.CE 3 = .DE 5【例 3】 (1)∵在矩形 ABCD 中,AB =6 cm ,BC =8 cm ,∴AC=10 cm.①当 AP =PO 时,如图,过点 P 作 PM⊥AO,∴AM= 1AO =5 2 2∵∠PMA=∠ADC=90°,∠PAM=∠CAD,∴△APM∽△ACD,∴AP AC ②当 AP =AO 时,t =5.25 AM 25 ,∴AP=t = . AD 8∵0<t <6,∴t= 825 或 t =5 均符合题意, ∴当 t = 8 或 t =5 时,△AOP 是等腰三角形. 80 3 ∴= D . N (2)如图,过点 E 作 EH⊥AC 于点 H,过点 Q 作 QM⊥AC 于点 M ,过点 D 作 DN⊥AC 于点 N ,交 QF 于点 G , ∵四边形 ABCD 是矩形,∴AD∥BC,∴∠PAO=∠ECO.∵点 O 是对角线 AC 的中点,∴AO =CO.又∵∠AOP=∠COE,∴△AOP≌△COE,∴CE=AP =t. ∵△CEH∽△CAB,∴EH CE3t .∵S1 = ,∴EH= AB CA 5 1△ADC = 2 AD·DC= 2 DN·AC, ∴DN=AD·CD 24 AC 5∵QM∥DN,∴△CQM∽△CDN,QM CQ QM 6-t∴D =C ,即24= 6 . 5∴QM=24-4t 24 24-4t 4t,∴DG= - = . 5 5 5 5∵FQ∥AC,∴△DFQ∽△DOC,∴FQ DQ DG 5t = = OC DC ,∴FQ= , DN 6∴S =S △OE C +S △OCD -S △DF Q1 1 1 = OC·EH+ OC·DN- DG·FQ2 2 21 2 3=- t + 3 2 t +12, 1 2 3即 S 与 t 的函数关系式为 S =- 【变式训练】t + t +12. 3 25.证明:(1)在 Rt△ABE 和 Rt△DBE 中,BA =BD ,BE =BE ,∴△ABE≌△DBE.(2)①如图,过点 G 作 GH∥AD 交 BC 于 H ,∵AG=BG ,∴BH=DH.∵BD=4DC ,设 DC =1,则 BD =4,∴ = = = = . . ∴BH=DH =2. ∵GH∥AD, GM HD MC DC2,∴GM=2MC.1②如图,过点 C 作 CN⊥AC 交 AD 的延长线于 N , 则 CN∥AG,∴△AGM∽△NCM,∴AG GM NC MC由①知 GM =2MC ,∴AG=2NC.∵∠BAC=∠AEB=90°,∴∠ABF=∠CAN=90°-∠BAE,∴△ACN∽△BAF,∴AF AB CN ACAF 2AG ∵AB=2AG ,∴ = CN ∴AG 2=AF ·AC. ,∴2CN·AG=AF·AC,AC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档