Matlab基于腐蚀和膨胀的边缘检测
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Matlab基于腐蚀和膨胀的边缘检测
文/天神
一.课题背景:
形态学运算只针对二值图像(二进制图像),并依据数学形态学(Mathermatical Morphogy)集合论方法发展起来的图像处理方法,起源于岩相对岩石结构的定量描述工作,在数字图像处理和机器视觉领域中得到了广泛的应用,形成了一种独特的数字图像分析方法和理论。数学形态学是图像处理和模式识领域的新方法,其基本思想是:用具有一定形态的结构元素去量度和提取图像中的对应形状,以达到图像分析和识别的目的。优势有以下几点:有效滤除噪声,保留图像中原有信息,算法易于用并行处理方法有效实现(包括硬件实现),基于数学形态学的边缘信息提取处理优于基于微分运算的边缘提取算法,提取的边缘比较平滑,提取的图像骨架也比较连续,断点少。
二、课题相关原理:
形态学基本运算:
特殊领域运算形式——结构元素(Structure Element),在每个像素位置上与二值图像对应的区域进行特定的逻辑运算。运算结果是输出图像的相应像素。运算效果取决于结构元素大小内容以及逻辑运算性质。
常见形态学运算有腐蚀(Erosion)和膨胀(Dilation)两种。
集合论是数学形态学的基础。有集合、元素、子集、并集、补集、位移、映像(镜像对称)、差集等集合的基本概念。
对象和结构元素的3种关系:『对象X(Object)、结构元素B(Structure Element)』
B include in X 包含于、B hit X 击中(不全包含)、B miss X 击不中(不包含)
平移、对称集:Bx=Uy{x+y} B^=Uy{-y}
腐蚀:一种消除边界点,使边界向内部收缩的过程。利用它可以消除小而且无意义的物体。B对X腐蚀所产生的二值图像E是满足以下条件的点(x,y)的集合:如果B的原点平移到点(x,y),那么B将完全包含于X中。
膨胀:将与物体接触的所有背景点合并到该物体中,使边界向外部扩张的过程。利用它可以填补物体中的空洞。B 对X膨胀所产生的二值图像D是满足以下条件的点(x,y)的集合:如果B的原点平移到点(x,y),那么它与X的交集非空。
腐蚀和膨胀运算中存在对偶原理:X⊕B,它是所有满足以下条件的点X'的集合:在B中存在一点y,而且在X中存在一点x,使得x'=x+y。
基本运算:1.开运算(先腐蚀后膨胀的过程):利用它可以消除小物体,在纤细点处分离物体,平滑较大物体边界,但同时并不明显改变原来物体的面积。OPEN(X,B)
2.闭运算(先膨胀后腐蚀的过程):利用它可以填充物体内细小空洞,连接临近物体、平滑其边界,但同时并不明显改变原来物体的面积。CLOSE(X,B)
通常由于噪声的影响,图像在阈值化后所得到的边界通常都很不平滑,物体区域具有一些噪声孔,而背景区域上散布着一些小的噪声物体,连续的开和闭运算可以有效的改善这种情况,而有时,我们需要经过多次腐蚀之,后再加上相同次数的膨胀,才能产生比较好的处理效果。
另外两种是3.击中,击不中变换HMT(模板严格匹配)以及4.边缘和骨架(Boundary and Skeleton)
三、腐蚀和膨胀的Matlab实现:
腐蚀:删除对象边界某些像素。
膨胀:给图像中的对象边界添加像素。
在操作中,输出图像中所有给定像素的状态都是通过对输入图像的相应像素及邻域使用一定的规则进行确定。在膨胀操作时,输出像素值是输入图像相应像素邻域内所有像素的最大值。在二进制图像中,如果任何像素值为1,那么对应的输出像素值为1;而在腐蚀操作中,输出像素值是输入图像相应像素邻域内所有像素的最小值。在二进制图像中,如果任何一个像素值为0,那么对应的输出像素值为0。
结构元素的原点定义在对输入图像感兴趣的位置。对于图像边缘的像素,由结构元素定义的邻域将会有一部分位于图像边界之外。为了有效处理边界像素,进行形态学运算的函数通常都会给出超出图像、未指定数值的像素指定一个数值,这样就类似于函数给图像填充了额外的行和列。对于膨胀和腐蚀操作,它们对像素进行填充的值是不同的。对于二进制图像和灰度图像,膨胀和腐蚀操作使用的填充方法如下表:
腐蚀和膨胀填充图像规则表
规则
腐蚀超出图像边界的像素值定义为该数据类型允许的最大值,对于二进制图像,这些像素值设置为1;对于灰度图像,unit8类型的最小值也为255。
膨胀超出图像边界的像素值定义为该数据类型允许的最小值,对于二进制图像,这些像素值设置为0;对于灰度图像,unit8类型的最小值也为0。
通过对膨胀操作使用最小值填充和对腐蚀操作使用最大值填充,可以有效地消除边界效应(输出图像靠近边界处的区域与图像其它部分不连续)。否则,如果腐蚀操作使用最小值进行填充,则进行腐蚀操作后,输出图像会围绕着一个黑色边框。
结构元素:膨胀和腐蚀操作的最基本组成部分,用于测试输出图像,通常要比待处理的图像小的多。二维平面结构元素由一个数值为0或1的矩阵组成。结构元素的原点指定了图像中需要处理的像素范围,结构元素中数值为1的点决定结构元素的邻域像素在进行膨胀或腐蚀操作时是否需要参与计算。三维或非平面的结构元素使用0,1定义结构元素在x和y平面上的范围,第三维z定义高度。
(1)任意大小和维数的结构元素B原点坐标的获取:
>> origin = floor((size(nhood)+1)/2)
其中nhood 是指结构元素定义的邻域(STREL对象的属性nhood)
(2)创建结构元素:(strel函数来创建任意大小和形状的STREL 对象,支持如线形line、钻石形diamond、圆盘形disk、球形ball等许多种常用的形状)
>> se = strel ('diamond' ,3)
se =
Flat STREL object containing 25 neighbors.
Decomposition: 3 STREL objects containing a total of 13 neighbors
Neighborhood:
0 0 0 1 0 0 0
0 0 1 1 1 0 0
0 1 1 1 1 1 0
1 1 1 1 1 1 1
0 1 1 1 1 1 0
0 0 1 1 1 0 0
0 0 0 1 0 0 0
% se返回了结构元素的有关信息。
(3) 结构元素的分解
为了提高执行效率,stel函数可能会将结构元素拆为较小的块,这种技术称为结构元素的分解。例如要对一个11×11的正方形结构元素进行膨胀操作,可以首先对1×11的结构元素进行膨胀操作,然后再对11×1的结构元素进行膨胀,通过这样的分解,在理论上可以使执行速度提高6.5倍。
对圆盘形和球形结构元素进行分解,其结构是近似的,而对于其他形状的分解,得到的分解结果是精确的。可以调