飞行原理知识点
飞行原理知识点精讲
飞行原理基础知识大气状态参数1.大气密度ρ是指单位体积内的空气质量,用ρ表示。
由于地心引力的作用,ρ随高度H的增加而减小。
2.大气温度T是指大气层内空气的冷热程度,用T表示。
微观上来讲,温度体现了空气分子运动剧烈程度。
K=C+273.15。
3.大气压力P规定在海平面温度为15°C时的大气压力即为一个标准大气压,表示为760mmHg或1.013×105Pa。
随高度增加而减小。
4.粘性μ当流体内两相邻流层的流速不同时,两个流层接触面上便产生相互粘滞和互相牵扯的力,这种特性就叫粘性。
流体的动力粘性系数μ,液体>气体,随温度的升高,气体μ升高,液体μ降低。
5.可压缩性E是指一定量的空气在压力变化时,其体积发生变化的特性。
可压缩性用体积弹性模量E 来衡量。
E值越大,流体越难被压缩。
空气的E值很小,约为水的两万分之一,因此空气具有压缩性,而水则视为不可压缩流体。
飞机低速飞行(Ma<0.3)时,视为不可压缩流体;高速飞行(Ma≥0.3)时,则必须考虑空气的可压缩性。
6.声速c是指声波在介质中传播的速度,单位为m/s。
在海平面标准状态下,在空气中的声速只有341m/s。
7.马赫数Ma和雷诺数ReMa=v/c,是无量纲参数,作为空气受到压缩程度的指标。
Re是一种可以用来表征流体流动情况(层流、湍流)的无量纲参数。
国际标准大气对流层0-11km,平流层(同温层)11-50km。
国际标准大气具有以下的规定:1.大气是静止的、洁净的,且相对湿度为零。
2.空气被视为完全气体,即其物理参数(密度、温度和压力)的关系服从完全气体的状态方程p =ρRT。
3.海平面作为计算高度的起点,即H=0处。
密度ρ=1.225kg/m3,温度T=288.15K(15°C),压强p=101325Pa,声速c=341m/s。
低速飞行中的空气动力特性理想流体,不考虑流体粘性的影响。
不可压流体,不考虑流体密度的变化,Ma<0.3。
飞行原理知识点总结
飞行原理知识点总结飞行是人类长久以来的梦想与追求,通过不断的探索与发展,飞行原理已经逐渐被揭示,并被运用到实际的飞行器中。
本文将系统地总结飞行原理的相关知识点,包括飞行器的结构设计、气动力学原理、动力系统、飞行控制以及飞行器的稳定性和安全性等方面的内容。
一、飞行器的结构设计飞行器的结构设计是飞行原理的基础,它决定了飞行器是否能够正常地进行飞行。
飞行器的结构主要包括机身、翼面、动力系统、控制系统、起落架和其他附件等部分。
其中,翼面是飞行器的主要承载部分,它产生升力并支撑飞行器的重量;动力系统为飞行器提供动力,并使其前进或升降;控制系统用于调整飞行器的姿态和飞行方向;起落架则为飞行器的着陆和起飞提供支撑。
飞行器的结构设计必须兼顾轻巧、坚固、稳定、低空阻力和高升阻比等要求,以保证飞行器的飞行性能。
二、气动力学原理气动力学是研究空气对飞行器的作用以及飞行器在空气中的运动规律的学科。
飞行器在飞行过程中受到来自空气的多种作用力,其中最重要的是升力和阻力。
升力是使飞行器获得升力并支撑其重量的力,在飞行器翼面的上表面和下表面产生了不同的压力,形成了一个向上的升力。
阻力是阻碍飞行器前进的力,它主要由飞行器的形状和速度决定。
飞行器的气动力学性能对其飞行性能有着直接的影响,因此对气动力学原理的研究至关重要。
三、动力系统动力系统是飞行器的发动机和推进系统等组成部分,它为飞行器提供动力,使其能够飞行。
目前常用的飞行器动力系统主要包括活塞发动机、涡轮喷气发动机、涡轮螺旋桨发动机以及电动驱动系统等。
各种动力系统有着不同的特点和适用范围,飞行器的设计者需要根据具体的需求选择合适的动力系统。
动力系统的研究和发展直接影响着飞行器的飞行速度、载荷能力、续航能力和节能环保性能。
四、飞行控制飞行控制是指通过操纵飞行器的控制面,调整飞行器的姿态和飞行方向。
飞行器的控制系统一般包括横向控制、纵向控制、自动控制和飞行操纵等部分。
横向控制通常由副翼来实现,它可以使飞行器绕纵轴旋转;纵向控制通常由升降舵来实现,它可以使飞行器绕横轴旋转;自动控制可以使飞行器在特定的飞行阶段自动地完成某些操作,例如自动起落、自动刹车等;飞行操纵则是指驾驶员通过操纵杆、脚蹬和其他操纵设备来控制飞行器的飞行方向。
飞行知识点总结
飞行知识点总结一、飞机的结构和原理1. 飞机的结构飞机通常由机身、机翼、尾翼、发动机和起落架等组成。
机身是飞机的主体部分,承载机翼、尾翼和发动机。
机翼是飞机的承载面,能够产生升力。
尾翼主要起到平衡和操纵的作用。
发动机提供动力,并驱动飞机进行飞行。
起落架用于飞机的起降。
2. 飞机的原理飞机飞行的物理原理包括:升力原理、推力原理、阻力原理和重力原理。
升力原理是指通过机翼产生气动升力,使飞机能够离地飞行。
推力原理是指飞机需要足够的推力来克服阻力,使飞机能够飞行。
阻力原理是指在飞行过程中,飞机会受到来自风阻的阻力。
重力原理是指飞机需要克服重力才能够飞行。
二、飞机的操作和操纵1. 飞机的操作飞机的操作主要包括起飞、飞行、下降、着陆和停机等环节。
在这些环节中,飞行员需要掌握飞机的操纵技术,包括使用油门、方向舵、升降舵、副翼和襟翼等,以确保飞机的安全飞行。
2. 飞机的操纵飞机的操纵是通过操纵杆和脚蹬来进行的。
操纵杆主要用于控制飞机的俯仰和翻滚,脚蹬主要用于控制飞机的方向。
飞机的操纵需要飞行员密切配合,以确保飞机的平稳飞行。
三、气象知识1. 气象的影响气象对飞行有着重要的影响,包括天气、气压和风向等因素。
飞行员需要根据气象情况来决定飞行计划,以确保飞机的安全飞行。
2. 气象知识飞行员需要掌握气象知识,包括天气图、气象雷达、气象站报告、风切变、雷暴、大气透镜效应等内容。
这些知识可以帮助飞行员正确判断气象情况,从而做出正确的飞行决策。
四、航行和飞行规则1. 航行知识航行知识包括航线规划、航路选取、航向计算、风速和风向计算、飞行高度计算等内容。
飞行员需要根据实际情况,制定合理的航行计划,确保飞机的安全飞行。
2. 飞行规则飞行规则是为了确保飞机的飞行安全而制定的一系列规定,包括VFR规则和IFR规则。
VFR规则是根据视觉飞行规则进行飞行,飞行员需要依靠视觉进行导航;IFR规则是根据仪表飞行规则进行飞行,飞行员需要依靠飞行仪表进行导航。
飞机的原理是什么,为什么飞机能够起飞?
飞机的原理是什么,为什么飞机能够起飞?随着人们生活水平的提高和技术的进步,飞机作为重要的交通工具逐渐走进我们的生活。
但是,飞机的原理是什么,为什么飞机能够起飞呢?下面我们来探究一下相关的科学原理。
一、飞机的原理1.滑翔原理飞机能够在空中飞行的原理是滑翔原理。
滑翔原理是指选择合适的角度、风速和姿态,使得飞机的翼面能够获得气流的升力,从而使飞机脱离地面飞行。
2.牛顿第三定律飞机可以在空中悬停是牛顿第三定律的作用。
牛顿第三定律认为物体之间的作用力和反作用力大小相等,方向相反。
因此,飞机可以通过下喷气推进,产生大量的反作用力,从而在空中悬停。
3.伯努利定律伯努利定律也是飞机起飞的关键。
伯努利定律认为当液体或气体流经管道时,速度越大,压力就越低。
因此,当空气在飞机的翼面上流过时,由于上翼面比下翼面曲率更大,因此飞机在飞行时也产生了一个向上的升力。
二、飞机能够起飞的原因1.引擎推力飞机起飞时需要大量的推力来产生足够的升力。
引擎的作用是将氧气和燃料混合,在燃烧时释放能量,产生大量的热气和高压气体,从而推动涡轮风扇旋转,最终产生大量的推进力。
2.翼面设计飞机的翼面也是起飞的关键之一。
翼面是根据科学原理设计的,使得飞机在飞行时能够产生较大的升力。
同时,翼面上还设置了控制面,包括副翼、升降舵和方向舵,在飞行时可以根据实际需要进行调整。
3.重量限制飞机起飞时需要克服的重力非常大,因此飞机上依然需要遵守重量和平衡的原则。
机身和发动机的重量需要和货物、乘客和燃油的重量进行平衡,以确保飞机能够稳定地起飞。
综上所述,飞机的原理和起飞的原因是基于科学原理的。
同时,现代飞机还通过先进的科技手段来保证其安全性和节能性。
很明显,飞机起飞是一个非常复杂的过程,不仅需要先进的科技手段,还需要优秀的设计和生产技术,才能让人们在空中尽情飞翔。
飞行的原理和应用知识点
飞行的原理和应用知识点1. 简介飞行是指物体在大气中通过空气动力学原理实现在空中的移动。
飞行已经成为现代文明中不可或缺的一部分,广泛应用于民航、军事航空、航天等领域。
本文将介绍飞行的基本原理和应用的知识点。
2. 飞行原理飞行原理是指飞行器起飞、维持和改变飞行状态的科学原理。
主要涉及以下几个方面:•气动力学: 气动力学研究空气在物体表面上的作用力和物体在空气中运动的关系。
主要包括升力、阻力、势能和动能等概念。
•机翼设计: 机翼是飞行器最重要的部件之一,充当飞行中生成升力的关键组件。
机翼的形状、曲率、悬挂角度等参数对飞行性能产生重要影响。
•推进系统: 推进系统通过提供动力使飞行器前进。
常见的推进系统包括螺旋桨、喷气发动机、火箭发动机等。
•操纵系统: 操纵系统是控制飞行器方向和姿态的关键部件。
它包括舵面、操纵杆、自动驾驶系统等。
3. 飞行器的种类和应用飞行器根据不同的功能和应用可以分为多个类别,下面介绍几种常见的飞行器和其应用。
3.1 飞机飞机是一种主要依靠机翼产生升力并通过推进系统前进的飞行器。
根据用途和功能,飞机可以分为军用飞机和民用飞机两大类。
军用飞机包括战斗机、轰炸机、侦察机等,用于军事目的。
民用飞机用于民航运输、货运、救援和航空旅游等领域。
3.2 直升机直升机是一种通过旋转主旋翼产生升力并通过尾桨提供推进力的飞行器。
其特点是垂直起降能力和悬停能力。
直升机广泛应用于军事、民航、医疗救援等领域。
3.3 无人机无人机是一种不需要人操控的飞行器,通过遥控或自主导航系统进行飞行。
无人机在军事侦查、航空摄影、农业喷洒、气象观测等方面有着广泛的应用。
3.4 航天器航天器是指进入外层空间的飞行器,包括卫星、航天飞机、火箭等。
航天器常用于通信、气象监测、科学研究和太空探索等领域。
4. 飞行安全和应用技术飞行安全是飞行中最重要的问题之一。
为了保证飞行安全,飞行员需要经过专业的培训,并遵守飞行规章制度。
同时,飞行器的设计、制造和维护也要符合相关标准。
飞机飞行的基本原理
飞机飞行的基本原理飞机飞行的基本原理主要包括三个方面:升力、阻力和重力。
1.升力:升力是由空气动力学原理产生的,它是由翼面上的气流产生的。
当翼面运动时,空气会在翼面上形成高压区和低压区,高压区下方产生升力,使飞机向上升。
2.阻力:阻力是飞机穿过空气时产生的阻碍力,包括空气阻力和摩擦阻力。
空气阻力是由飞机前进时空气对飞机表面的摩擦产生的,而摩擦阻力则是由飞机表面摩擦空气产生的。
3.重力:重力是由地球对物体产生的向下的引力。
飞机在飞行过程中需要不断产生升力来抵消重力的作用,以维持飞行。
当飞机的升力大于阻力和重力的总和时,飞机就会上升,而当升力小于阻力和重力的总和时,飞机就会下降。
飞机的驾驶员通过调整飞机的姿态和动力系统来控制飞机的升降和飞行速度。
除了升力、阻力和重力这三个基本原理之外,飞机飞行还需要考虑其他因素。
4.气流:空气的流动对飞机的飞行有重要影响。
飞机在飞行中会遇到不同类型的气流,如下推气流、上升气流和下沉气流等。
飞机的驾驶员需要根据气流的类型和强度来调整飞机的姿态和动力系统,以确保飞机的安全飞行。
5.气压: 气压的变化会对飞机的飞行产生影响。
飞机在飞行中会经历高气压和低气压,高气压会使飞机升高,而低气压则会降低飞机。
飞机的驾驶员需要根据气压的变化来调整飞机的姿态和动力系统。
6.温度:温度的变化也会对飞机的飞行产生影响。
高温会使飞机升高,而低温则会降低飞机。
飞机的驾驶员需要根据温度的变化来调整飞机的姿态和动力系统。
7.风:风的方向和强度会对飞机的飞行产生影响。
飞机的驾驶员需要根据风的方向和强度来调整飞机的姿态和动力系统,以确保飞机的安全飞行。
这些因素都需要飞行员经过严格的训练和经验积累来掌握,并在飞行过程中不断监测和调整,以确保飞机的安全飞行。
另外,飞机的结构和控制系统也对飞行有重要影响。
飞机的翼和机尾设计会影响飞机的升降和飞行速度,而飞机的动力系统会影响飞机的推进力和油耗。
总之,飞机飞行的基本原理需要结合空气动力学、气象学、航空工程等多个领域的知识来理解和掌握。
飞行原理知识点
飞行原理知识点1.后掠角:机翼四分之一弦线与机身纵轴垂直线之间的夹角。
飞行包线:飞机的平飞速度范围随飞行高度变化的曲线称为飞行包线。
以速度作为横坐标,以高度作为纵坐标,把各个高度下的速度上限和下限画出来,这样就构成了一条边界线,称为飞行包线,飞机只能在这个线确定的范围内飞行。
焦点:位于飞机重心之后最小阻力速度:平飞所需拉力最小的飞行速度迎角:相对气流方向(飞行速度方向)与翼弦之间的夹角2.升力基本原理: 空气流到翼型的前缘,分成上下两股,分别沿翼型的上下表面流过,并在翼型的后缘汇合后向后流去。
在翼型的上表面,由于正迎角和翼面外凸的影响,流管收缩,流速增大,压力降低;而在翼型的下表面,气流受阻,流管扩张,流速减慢,压力增大。
这样,翼型的上下翼面出现压力差,总压力差在垂直于相对气流方向的分量,就是升力升力方向:向上3.飞机俯仰稳定力矩:作用在飞机上的空气动力对其重心所产生的力矩沿横轴的分量。
俯仰阻尼力矩: .主要是由水平尾翼产生的4.着陆滑跑距离计算公式(三种情况):书上166页着陆距离:着陆空中段水平距离和着陆滑跑段距离组成。
5.飞机重心计算:力矩之和/飞机总重量=机头向后的延伸距离就是重心位置6.飞机五大部件:机身、机翼、尾翼、起落装置、动力装置7.国际标准大气规定:简称ISA,就是人为的规定一个不变的大气环境,包括大气温度、密度、气压等随高度变化的关系,得出统一的数据,作为计算的试验飞机的统一标准。
标准海平面,海平面高度为0、气温288.15k15℃或59℉、气压1013.2mbar或1013.2hpa或29.92inpa即标准海压、音速661kt、对流层高度为11km或36089ft、对流层内标准温减率为每增加1km温减6.5℃或每增加1000ft温减2℃,从11~20 km之间的平流层底部气温为常值-56.5℃或216.65k8.飞机低速飞行有哪些阻力:摩擦阻力、压差阻力、干扰阻力、诱导阻力9.飞机在稳定飞行时遇到逆风或顺风时,上升角\上升率\下降梯度\下降距离如何变化顺风上升,上升角和上升梯度都减小,逆风上升,上升角和上升梯度都增大;在上升气流中上升,上升角和上升率增大,在下降气流中上升,上升角和上升率减小。
飞行原理知识要点
飞行原理知识要点在现代航空领域中,飞行原理是航空学的基础和核心部分。
了解飞行原理的主要要点可以帮助我们更好地理解飞行器的设计和操作。
本文将介绍飞行原理的几个重要要点。
气动力学飞行器在飞行过程中受到来自空气的气体动力学力学作用。
气动力学是研究空气流动和物体相互作用的学科。
气体动力学力学作用主要包括升力和阻力。
升力使飞行器能够在空中飞行,而阻力则是阻碍飞行器前进的力量。
升力的产生升力是飞行器在飞行时产生的垂直向上的力量,使飞行器能够在空中飞行。
升力主要由翼面上的气流速度差造成的气动力产生。
当飞行器的翼面前缘比后缘更加倾斜时,空气会在翼面上产生较大的压力差,从而产生升力。
阻力的克服阻力是飞行器飞行过程中的对抗力量,使飞行器受到空气阻碍。
在飞行过程中,飞行器需要克服阻力才能保持飞行。
减小飞行速度、增大翼面积和优化飞行器的外形都是减小阻力的方法。
推进力的提供推进力是飞行器前进的动力来源。
推进力主要由发动机提供,推动飞机向前飞行。
不同类型的飞行器采用不同方式产生推进力,如喷气式发动机、螺旋桨等。
控制飞行器在飞行过程中,飞行器需要进行姿态控制和方向控制。
姿态控制是控制飞行器在空中的姿态和角度,包括仰角、横摆角和偏航角。
方向控制则是控制飞行器飞行方向的过程。
飞行器稳定性飞行器的稳定性是指飞行器自身保持平衡和稳定的能力。
飞行器的稳定性取决于飞行器的设计和操纵。
通过合理的设计和飞行员的操纵,飞行器可以在飞行过程中保持稳定。
以上是飞行原理的几个重要要点,了解这些要点可以帮助我们更好地理解飞行器的飞行过程和设计原理。
飞行原理是航空领域中的基础知识,对于对航空行业感兴趣的人来说,具有重要意义。
飞机飞行原理基础知识
飞机飞行原理基础知识飞机的飞行原理是建立在伯努利定律和牛顿定律的基础上的。
飞机的飞行需要克服重力、空气阻力和其他阻力,同时利用空气动力学原理产生升力,从而实现飞行。
以下是飞机飞行原理的基础知识:1. 升力和重力。
飞机在飞行时需要产生足够的升力来克服重力,使飞机能够离开地面并保持在空中飞行。
升力是由飞机的机翼产生的,当空气经过机翼时,由于机翼的形状和倾斜角,会产生气流的分离,上表面气流速度快,气压小,下表面气流速度慢,气压大,这样就形成了上表面气流向下推,下表面气流向上推,产生了升力。
2. 推力和阻力。
飞机需要产生足够的推力来克服空气阻力和其他阻力,推动飞机向前飞行。
空气阻力是飞机飞行时遇到的阻力,它是由于飞机在空气中运动而产生的。
飞机的发动机产生的推力需要克服空气阻力,从而使飞机保持飞行速度。
3. 机翼和气流。
飞机的机翼形状和倾斜角对升力的产生起着至关重要的作用。
当飞机向前飞行时,空气流经过机翼,由于机翼的形状和倾斜角的作用,产生了上下表面气流的速度和压力的差异,从而产生了升力。
4. 飞行控制。
飞机的飞行控制是通过改变飞机的姿态和控制飞机的舵面来实现的。
飞机的姿态是通过改变飞机的升降舵、方向舵和副翼来实现的,从而改变飞机的飞行方向和高度。
总之,飞机的飞行原理基础知识涉及了众多的物理原理和工程技术,飞机的飞行是一项复杂而精密的工程,需要多方面的知识和技术来支撑和保障。
对于飞行爱好者和飞行员来说,了解飞机的飞行原理是非常重要的,它不仅可以帮助他们更好地理解飞机的飞行过程,还可以提高他们的飞行技能和安全意识。
大一飞行理论知识点总结
大一飞行理论知识点总结在大一学习飞行理论课程中,我们接触到了很多关于飞行原理和飞行器的基本知识。
以下是我对这些知识点的总结和归纳。
1. 飞行原理飞行原理是飞机能够在空中飞行的基础理论,主要包括动力学、气动学和控制理论。
其中,质量、升力、推力和阻力是飞机飞行原理的关键要素。
质量是指飞机本身的重量,升力是支撑飞机的力量,推力是飞机推进的力量,而阻力是阻碍飞机前进的力量。
2. 钟摆理论钟摆理论是描述飞机的纵向稳定性和操纵性的重要原理。
飞机在飞行中会出现俯仰运动,而钟摆理论能够解释飞机在俯仰运动中的稳定性和操纵性。
钟摆理论告诉我们,当飞机产生俯仰运动时,飞机的迎角和攻角会发生变化,飞机的升力和阻力也会相应变化,而飞机的稳定性和操纵性也会受到影响。
3. 正常飞行器构型正常飞行器构型是指飞机在正常飞行状态下的形态和布局。
通常,飞机由机翼、机身、机尾和机械驱动装置组成。
机翼是飞机的主要承力结构,机身是容纳乘客和货物的部分,机尾是稳定和控制飞机的部分,而机械驱动装置是飞机产生推力的主要部分。
4. 涡轮喷气发动机原理涡轮喷气发动机是目前商用飞机上最常用的动力装置。
涡轮喷气发动机通过压缩空气、燃烧燃料,并将产生的高压气体喷出,产生推力推动飞机前进。
涡轮喷气发动机的原理是利用燃烧室中的燃烧过程产生的高压气体形成喷气,从而推动飞机前进。
5. 机翼气动力学机翼气动力学是研究机翼在空气中运动时所受到的力和力矩的学科。
机翼气动力学主要包括升力和阻力的产生和计算方法。
升力是机翼上表面和下表面压力差引起的力,而阻力是机翼在飞行中与空气相互作用引起的阻力。
6. 飞行器的导航和控制系统飞行器的导航和控制系统是飞机在飞行过程中确定位置和保持姿态的关键系统。
导航系统主要包括惯性导航系统和全球定位系统,是用来确定飞机的空间位置和方向的。
控制系统主要包括自动驾驶系统和飞行稳定性增益控制系统,是用来控制飞机的航向、俯仰和滚转的。
以上是我对大一飞行理论课程中的知识点进行的总结和归纳。
飞机飞行原理基础知识
飞机飞行原理基础知识飞机的飞行原理主要涉及到气动力学和动力学两个方面。
气动力学研究飞行器在空气中的运动规律,而动力学则研究飞行器的动力来源和推进系统。
1.升力和重力:飞机的升力是使其能够在空中飞行的重要因素。
根据伯努利定律和牛顿第三定律,当飞机的机翼产生升力时,空气在机翼上方的流速增加,而在机翼下方的流速减小,使得上方的气压降低,而下方的气压增加。
这种气压差会使机翼受到一个向上的力,即升力。
升力的大小取决于机翼的气动性能、机翼的面积、飞机的速度和气流的密度。
升力的作用是克服飞机自身的重力,使飞机能够在空中飞行。
2.阻力和推力:飞机在飞行过程中会受到阻力的作用,阻力是与飞机的速度和空气的密度有关的。
阻力分为各种各样的形式,包括:空气摩擦阻力、气动阻力(主要是飞机的机身和其他外形部件的气动产生的阻力)、重力分量和升力分量等。
飞机需要通过推力来克服阻力,推力是由飞机发动机产生的。
3.推进力和动力系统:推进力是飞机向前飞行所需要的力量,通过推进系统提供。
推进力主要由发动机产生,可以采用喷气发动机、螺旋桨发动机等。
喷气发动机通过将空气吸入并喷出来产生推力,而螺旋桨发动机则通过旋转桨叶产生推力。
飞机的推进力要大于阻力,才能保持飞行速度。
4.操纵和控制:飞机的操纵和控制是指飞行员通过操纵飞机的控制面(如副翼、升降舵、方向舵等)来改变飞机的姿态和飞行状态。
通过控制面的升降、俯仰、滚转和偏航等运动,飞行员可以控制飞机的上升、下降、转弯等动作。
总结起来,飞机的飞行原理基于气动力学和动力学的基础,通过升力和推力来克服重力和阻力,实现在空中的飞行。
飞行员通过操纵飞机的控制面来控制飞机的运动。
这些基础知识是飞行原理的核心,对于理解飞机的飞行过程和性能具有重要意义。
飞行原理重点知识
际标准大气由国际民航组织 ICAO 制定,它 管扩*变粗,气流流过物体外凸处或受挤压,
是以北半球中纬度地区大气物理特性的平 流管收缩变细。气流流过物体时,在物体的
均值为依据,加以适当修订而建立的。
后部都要形成涡流区。
3. 实际大气与国际标准大气如何换算?
3. 利用连续性定理说明流管截面积变化与
确定实际大气与国际标准大气的温度偏差, 气流速度变化的关系。
即 ISA 偏差,ISA 偏差是指确定地点的实际 当流体流过流管时,在同一时间流过流管任
温度与该处 ISA 标准温度的差值,常用于飞 意截面的流体质量始终相等。因此,当流管
行活动中确定飞机性能的根本条件。
横截面积减小时,流管收缩,流速增大;当
流管横截面积增大时,流管扩*,流速增大。 在机翼上外表的压强低于大气压,对机翼产
16. 地面效应是如何影响飞机的气动性能
飞机的阻力系数,飞机的飞行动压,机翼的 的?
面
积
。 飞机贴近地面飞行时,流经机翼下外表的气
流受到地面的阻滞,流速减慢,压强增大,
形成所谓的气垫现象;而且地面的阻滞,使
原来从下翼面流过的一局部气流改道从上
翼面流过,是上翼面前段的气流加速,压强
14. 解释以下术语〔1〕最小阻力迎角〔2〕 临界迎角〔3〕升阻比 〔1〕在飞机的升阻比曲线中,当升阻比到 达最大值时所对应的迎角称为最小阻力迎 角。〔2〕在飞机的升力系数曲线中,当升力 系数到达最大值时所对应的迎角称为临界
小升力系数的作用。超音速飞机一般采用前缘削尖,相对厚度小的薄机翼。在大迎角飞行时,
机翼上外表就开场产生气流别离,最大升力系数降低。如放下前缘襟翼,一方面可以减小前
缘与相对气流之间的夹角,使气流能够平顺地沿上翼面流动,延缓气流别离;另一方面也增
飞行的原理和应用有哪些
飞行的原理和应用有哪些1. 飞行的原理飞行是指通过飞行器在大气中获得升力并保持平衡的运动方式。
飞行的原理主要涉及到以下几个方面:•升力原理:在飞行中,飞行器需要通过产生升力来克服重力,从而使其能够在大气中保持悬浮状态。
升力的产生是通过飞行器的机翼或旋翼等空气动力学装置产生的。
•气动力学:飞行器在飞行中受到空气的作用力,包括阻力和升力。
其中,阻力是指空气阻碍飞行器前进的力,升力是指垂直于飞行方向的力,使飞行器能够克服重力。
•动力系统:飞行器的飞行需要动力系统提供推力,推动飞行器前进。
动力系统可以是喷气发动机、螺旋桨等。
2. 飞行的应用飞行技术的应用范围广泛,涉及到多个领域。
以下列举了一些常见的飞行应用:2.1 商业航空商业航空是指通过航空器提供商业服务的行业。
这包括民航公司提供的航班、客运、货运等服务。
商业航空的飞行应用包括:•航空旅行:通过民航航班来进行国内和国际航空旅行,方便快捷。
•货运:通过航空器运送货物,速度快、能够覆盖大范围。
•战略运输:军用飞机用于运输军事人员和物资。
2.2 军事应用飞行技术在军事领域应用广泛,包括以下方面:•空中侦察:通过飞机或者无人机进行侦察,获取敌方情报。
•空中打击:使用战斗机、轰炸机等飞机进行空中打击,攻击敌方目标。
•运输和空中加油:军用飞机用于运输军事人员和物资,同时也能进行空中加油。
2.3 科研探索飞行技术在科研领域有着重要的应用,用于探索、观测和研究。
•航天探索:通过火箭将航天器送入太空,进行太空探索和观测。
•天气预报:通过气象探测机收集气象数据,用于天气预报和气象研究。
2.4 搜索救援飞行技术在搜索救援行动中起到重要作用。
•搜索失踪船只或飞机:通过飞机进行空中搜寻,寻找失踪船只或飞机的位置。
•搜索救援被困人员:通过直升机进行空中救援,迅速将被困人员转移至安全地点。
2.5 体育娱乐飞行技术在体育娱乐领域也有特殊的应用。
•空中表演:飞行员通过飞机进行各种空中特技表演,给观众带来刺激和惊喜。
飞行原理知识点范文
飞行原理知识点范文飞行原理是指飞机在空中稳定飞行和实现姿态调整的物理原理。
飞行原理涉及到气动力学、重力、动力和控制等多个方面的知识。
下面将详细介绍飞行原理的知识点。
1.气动力学气动力学是研究空气在物体表面上所产生的力和力矩的科学。
飞机飞行的基本原理是利用空气的运动、压力和阻力产生升力并克服重力。
其中,升力是支撑飞机的力量,重力是向下的力量。
通过控制机翼表面的气流动态,可以有效地产生升力。
2.升力和重力升力是飞机飞行的主要支撑力量,是由机翼产生的。
机翼上的反压区和高速流动的气流会产生一个向上的力,即升力。
升力的大小与机翼的面积、空气的密度和速度以及攻角有关。
当升力大于重力时,飞机就能够飞起来。
重力是指地球对飞机的吸引力,是飞机的自身重量。
在飞行中,飞机需要克服重力才能保持在空中。
3.阻力和推力阻力是飞机运动中所受到的空气阻碍力,是飞机飞行的抵消力量。
阻力的大小与飞机速度、飞行姿态以及飞机表面的粗糙度等因素有关。
减小阻力可以提高飞机的速度和燃油效率。
推力是指飞机在空中运动时向前推进的力量,是由发动机提供的。
推力的大小与发动机的功率、喷气速度以及喷嘴的方向和面积有关。
通过调整发动机的推力大小,可以控制飞行速度和飞机的姿态。
4.控制飞机的飞行姿态可以通过控制飞机的控制面来实现。
主要包括方向舵、升降舵和副翼等。
方向舵用于控制飞机的左右转向,升降舵用于控制飞机的升降运动,副翼用于控制飞机的滚转运动。
通过控制这些控制面的运动,可以改变飞机所受力的分布,从而实现飞机的姿态调整和稳定飞行。
对于大型飞机,还可以通过自动飞行系统来实现飞机的控制。
6.前进气流和气动力学飞机在飞行中通过改变机翼的迎角和应用控制面的运动,以调整机翼表面的气流动态。
不同的迎角和控制面运动会对气流产生不同的影响,从而产生不同的升力和阻力。
7.机翼结构和空气动力学机翼是飞机的主要承力构件,其结构设计需要考虑到气动力学原理。
机翼的形状和弯曲度能够影响气流在机翼上的流动和气动特性,进而影响到升力和阻力的产生。
飞行考试知识点总结初中
飞行考试知识点总结初中飞行考试是航空工作者必备的技能,无论是飞行员、飞机维护人员还是空管人员,都需要经过相关的飞行考试来获取证书。
本文将总结初中级别的飞行考试知识点,包括飞行原理、飞行器结构、导航知识、气象学以及飞行安全等方面。
一、飞行原理1. 升力的产生原理:升力的产生主要依靠气流在翼面两侧的差别来产生的,其产生的原理是依据伯努利原理和牛顿第三定律来解释的。
2. 风洞实验:风洞实验是研究飞行器在各种气流条件下的飞行特性的重要方法,通过模拟不同的风速、角度等条件来研究飞行器的性能。
3. 飞行器的三轴操纵:飞行器的操纵主要包括滚转、俯仰和偏航三轴,通过操纵杆和脚踏来控制飞行器的姿态和方向。
二、飞行器结构1. 飞行器的构造:飞行器包括机翼、机身、水平尾翼、垂直尾翼、发动机等组成部分,每个部件都有其特定的功能和作用。
2. 发动机原理:不同种类的飞机使用不同种类的发动机,常见的有涡喷发动机、活塞发动机等,每种发动机都有其特定的工作原理和性能特点。
3. 主要航空材料:航空器的制造材料主要包括金属、复合材料、塑料等,每种材料都有其特定的力学性能、重量特点和耐热性能等。
三、导航知识1. 航向和航迹:航向指的是飞行器的头部指向,而航迹指的是飞行器实际飞行的轨迹,通常航向和航迹是有一定的误差的。
2. GPS导航系统:全球定位系统是一种现代化的导航系统,能够提供高精度的位置信息和导航指引,是飞行器导航的重要手段。
3. 航路规划:航空器的航路规划通常是根据航空器的性能和天气等因素来制定的,航线的选择和高度的选择都会对飞行的安全和效率产生影响。
四、气象学1. 大气结构和温度分布:大气的结构主要包括对流层、平流层、中间层和赫兹层,每一层大气的特点和温度分布会对飞行产生一定的影响。
2. 湍流和气流:湍流是大气中的一种不规则的气流现象,会对飞行产生振动和不稳定性,需要飞行员注意。
气流则是一种处于大气中的水平或垂直方向的气态的流体的运动现象。
飞机飞行的基本原理
飞机飞行的基本原理首先是升力。
升力是飞机能够在空中飞行的基础,它是通过机翼产生的。
机翼上方的气流速度比下方快,根据伯努利原理,快速流动的气体会产生低压,而慢速流动的气体会产生高压。
当机翼下方气压高于上方时,就形成了一个向上的压力差,从而产生了升力。
升力的大小取决于多个因素,例如机翼的几何形状、角度、气流速度和密度等。
通过调整这些因素,飞机可以控制升力的大小,从而保持飞行高度。
其次是阻力。
阻力是指飞机在飞行过程中要克服的空气阻力。
阻力主要分为四种类型:气动阻力、重力阻力、轮滚阻力和推进器推力所产生的阻力。
气动阻力是指空气对飞机运动造成的摩擦阻力,它与飞机速度的平方成正比。
重力阻力是由于飞机质量存在而产生的向下阻力,可以通过升力来克服。
轮滚阻力是起飞和着陆时由于飞机与地面接触而产生的摩擦阻力,可以通过使用起落架来减少。
推进器推力所产生的阻力是由于推进器的喷射速度产生的反作用力,可以通过减小喷射速度和提高推力效率来减少。
最后是推力。
推力是指飞机向前移动所需的力量。
推力主要由发动机提供,发动机通过燃烧燃料产生高温高压的气体,然后通过喷射出来,产生一个向后的反作用力,从而推动飞机向前飞行。
推力的大小取决于发动机的设计和性能以及飞机的速度和负载。
总结起来,飞机飞行的基本原理就是通过机翼产生升力,克服阻力,利用推力推动飞机向前飞行。
当升力大于或等于阻力时,飞机就可以保持在空中飞行。
不同类型的飞机在设计上会有所不同,但这个基本原理是通用的。
飞行原理复习知识点
复习知识要点第一节 飞机的一般介绍第二节 飞行大气环境的一般介绍摄氏度、华氏度的换算方法 13第二章 飞机低速空气动力 ★★第一节 空气流动描述流体模型 18 相对气流 19第二节 升力升力的产生原理 25-26 ★第一章 飞机和大气的一般介绍机翼的剖面形状、翼型参数 6-8 ★ 机翼的平面形状、平面形状参数8-9 ★大气的组成10大气的分层,对流层、平流层的特点10-11 ★空气密度、温度、压力、湿度、黏性、压缩性11-15国际标准大气15-16迎角19 ★流场、流线、流管和流线谱(流线谱的特点) 20-21 ★ 连续性定律——流速与流管切面积的关系 21-22 ★ 伯努利定律——压力随速度的变化规律 22-23 ★空速表的原理 24翼型的压力分布 26-27 ★第三节 阻力第四节 低速空气动力性能地面效应 42-43 第五节 增升装置 升力公式(公式 2.10)27-29产生、 减小措施) 32 ★ 产生、 减小措施) 32-34 产生、 减小措施) 34 ★产生、减小措施) 35-3737压差阻力 ★ 干扰阻力 诱导阻力 ★ 阻力公式 增升原理,使用) 43-44 ★ 增升原理,使用)44 ★ 增升原理,使用)44 ★ 增升原理,使用) 45 增升原理,使用)46 ★43前缘缝翼 分裂襟翼 开缝襟翼 后退襟翼 46低速附面层(层流、紊流、转捩点)30-32 ★升力系数的变化规律 37-39升力特性参数(零升迎角、临界迎角、最大升力系数) 39 ★ 阻力系数的变化规律(摩擦、压差、诱导阻力的影响) 40 ★阻力特性参数(最小阻力、零升阻力) 40 ★ 升阻比特性(升阻比、有利迎角、 40-41 ★飞机的极曲线41 ★增升装置概述后退开缝襟翼(增升原理,使用)47前缘襟翼 46 增升原理总结第四章 飞机的平衡、稳定和操纵 ★★第一节 飞机的平衡 飞机的三个轴和重心71-72飞机的俯仰平衡(定义, 力矩及产生过程,影响因素)73-75,76 ★飞机的方向平衡(定义, 力矩及产生过程,影响因素)75,77 ★ 飞机的横侧平衡(定义, 力矩及产生过程,影响因素)75,77第二节 飞机的稳定性 稳定性的概念及条件(稳定力矩、阻尼力矩的概念)77-78俯仰稳定性(稳定力矩、阻尼力矩,焦点)78-80 方向稳定性(稳定力矩:侧滑、阻尼力矩) 82 ★ 横侧稳定性(稳定力矩:上反角和后掠角、阻尼力矩) 83-84方向稳定与横侧稳定的关系 85 ★ 影响飞机稳定性的因素(重心、速度、高度、大迎角) 87 ★第三节 飞机的操纵性操纵性的概述87俯仰操纵(原理、 杆力) 88-91 ★ 方向操纵(原理)91-92 横侧操纵(原理)92-93 方向操纵与横侧操纵的关系93 ★ 影响飞机操纵性的因素(重心、地面效应、速度、高度、迎角)93-96 ★第一节平飞平飞时的作用力第五章平飞、98平飞所需速度(公式和影响因素)真速与表速的关系99 ★上升、下降★99 ★平飞所需拉力计算公式100平飞所需拉力曲线(变化规律及原因)100-102 ★平飞所需功率曲线(变化规律及原因)102 ★剩余拉力、剩余功率(最大所对应的速度)102-103平飞性能(最大速度、最小速度、最小阻力速度、最小功率速度)103-104平飞性能的变化(最大速度的变化)105-106飞行包线106 ★平飞速度范围(第一速度、第二速度范围,改速操纵方法)106-108 ★第二节巡航性能巡航中几个速度的关系(久航速度、远航速度)108-110第三节上升上升的作用力112-113上升角和陡升速度113 ★影响上升角和上升梯度的主要因素114上升率和快升速度114-115升限(理论升限,实用升限)115-116 ★风对上升性能的影响(水平风、垂直气流)116 ★第四节下降飞机下降时的作用力(零拉力)120下降角和下降距离(下降角:升阻比)121 ★下降率(最小下降率:最小功率速度)122下降性能的影响因素123 ★第六章盘旋盘旋的概述(坡度)127盘旋中的作用力127-128载荷因素(定义,几种飞行状态的载荷因素)128-129 ★第三节盘旋性能盘旋升力(速度、坡度的关系)129-130 ★盘旋速度(与盘旋半径、时间的关系)130-131盘旋拉力曲线(速度、迎角、坡度的关系)131 ★第四节侧滑与盘舵协调侧滑(内、外侧滑,产生原因)133第六节侧滑对盘旋性能的影响侧滑力对盘旋性能的影响137第三节起飞起飞的定义147起飞过程147第七章起飞和着陆起飞滑跑(阻力与速度的关系)148 ★抬前轮离地(抬前轮时机与飞行性能)148-149 ★离地速度149-150第四节着陆着陆过程156-158 ★第九章高速空气动力学基础第一节高速气流特性第二节亚跨音速气动特性亚音速的升力特性(M 数与升力曲线、最大升力系数、临界迎角)亚音速的阻力特性225临界M 数226局部激波的形成和发展227-228 ★跨音速的升力特性228-229起飞距离与起飞滑跑距离150影响起飞距离的因素154-156 ★着陆的定义156着陆进场参考速度、接地速度159着陆距离与着陆滑跑距离160影响着陆距离的因素162-165高速空气动力学概述221空气的压缩性221空气压缩性与音速221-222 ★空气压缩性与M 数222气流速度与流管面积的关系222-223 ★223 ★跨音速的阻力特性229-230第三节 后掠翼的高速特性翼根、翼尖效应 231-232翼尖失速 233 ★后掠翼与临界 M 数和局部激波 236-238亚音速下对称气流流过后掠翼的情形 231后掠翼亚音速的升阻特性 232改善翼尖失速的措施 234-236 ★。
航空航天学飞行原理和航空工程的重点知识
航空航天学飞行原理和航空工程的重点知识航空航天学是研究航空航天器设计、制造、运行和维护的科学与技术领域。
而飞行原理和航空工程则是航空航天学的重点知识,它们是保证飞行器安全、效率以及性能的关键要素。
本文将深入探讨航空航天学飞行原理和航空工程的重点知识。
一、飞行原理飞行原理是航空航天学的基础,它涉及飞行器在大气环境中的运动和保持稳定的机制。
飞行原理可以分为气动力学和飞行动力学两个方面。
1. 气动力学气动力学研究空气对飞行器的影响,包括气动力和气动性能。
气动力是指空气对飞行器施加的力和力矩,而气动性能则涉及飞行器在空气中的运动特性,如升力、阻力、升阻比等。
2. 飞行动力学飞行动力学研究飞行器的运动学和动力学特性,包括平衡、稳定和操纵性等。
平衡是指飞行器在空中保持姿态的能力,稳定则涉及飞行器在受到扰动后能够自动回复平衡状态的能力,而操纵性则是指飞行员控制飞行器的能力。
二、航空工程航空工程是应用工程学原理和技术手段来设计、制造和维护航空器的学科。
它是将飞行原理应用于实践的学科,包含飞机设计、发动机技术、航天器结构等多个领域。
1. 飞机设计飞机设计是航空工程的核心内容之一,它涉及飞机的结构设计、气动外形设计、飞行控制设计等诸多方面。
其中,结构设计主要关注飞机的载荷分布、结构强度等问题;气动外形设计则着眼于提高飞机的气动性能,减小阻力和提高升力等;飞行控制设计则关注飞机的操纵性和稳定性。
2. 发动机技术发动机是飞行器的动力来源,是航空工程中必不可少的组成部分。
发动机技术涉及燃气轮机、喷气发动机等各种类型的发动机。
燃气轮机是一种以燃烧室内的高温高压气体对涡轮机进行推动的发动机,它广泛应用于飞机和直升机等航空器中;而喷气发动机则是通过喷射高速气流产生推力的发动机,它常用于喷气式飞机和导弹等。
3. 航天器结构航天器结构是指运载人类进入宇宙空间并在其中进行科学研究和探索的载具。
航天器结构设计的主要目标是提供足够的刚度和强度,以承受大气动力负荷、运输载荷和航天环境的影响。
飞行原理知识要点
第一章飞机和大气的一般介绍1、机翼的剖面参数:翼弦:翼型前沿到后沿的连线。
厚度:上翼面到下翼面的距离;最大厚度;最大厚度位置:最大厚度到翼型前沿的距离与弦长的比值,用百分比表示;相对厚度:(厚弦比)翼型最大厚度与弦长的比值,用百分比表示。
中弧线:与翼型上下表面相切的一系列元的圆心的连线(中弧线到上下翼面的距离相等),对称翼面中弧线与翼弦重合。
弧高:中弧线与翼弦的垂直距离;相对弯度:最大弧高与翼弦的比值,用百分比表示。
2、机翼的平面形状参数:平直机翼有极好的低速特性,便于制造;椭圆形机翼的阻力最小,但是难以制造,成本高;梯形机翼结合律矩形机翼和椭圆机翼的优缺点,具有适中的升阻特性和较好的低速性能,制造成本也较低;后掠翼和三角翼有很好的高速性能,主要用于高亚音速飞机和超音速飞机,低速性能较差翼展:机翼翼尖之间的距离;展弦比:机翼翼展与平均弦长的比值(表示机翼平面形状长短和宽窄的程度);梢根比:机翼翼尖弦长玉机翼翼根弦长的比值(表示翼尖道翼根的收缩度);后掠角:机翼1/4弦线玉机身纵轴垂直线之间的夹角(表示机翼的平面形状向后倾斜的程度)第二节大气的一般介绍空气密度减小对飞行的影响:真空速不断增大、发动机效率降低空气压力降低的线性变化规律:高度上升8.25(27ft)米气压降低1hPa;高度上升1000ft 气压降低1inHg;高度上升11米气压降低1mmHg空气温度降低的线性变化规律:高度上升1000米温度下降6.5°高度上升1000ft温度降低2°湿度越大,空气的密度越小(水蒸气是干空气重量的62%);相对湿度,露点(反映空气中水汽含量的多少,假如空气中水汽含量多,温度降低很少—相对较高的温度就可以达到饱和,露点就高),气温露点差:就是实际气温与露点的差值,反映空气的潮湿程度中低空高度每升高1000米真空速比表速约大5%;气温升高5°速度增大1%第二章低速空气动力学第一节低速空气动力学基础1、飞机的相对气流:相对于飞机运动的空气流,方向与飞行速度方向相反。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
飞行原理知识点
1.后掠角:机翼四分之一弦线与机身纵轴垂直线之间的夹角。
飞行包线:飞机的平飞速度范围随飞行高度变化的曲线称为飞行包线。
以速度作为横坐标,以高度作为纵坐标,把各个高度下的速度上限和下限画出来,这样就构成了一条边界线,称为飞行包线,飞机只能在这个线确定的范围内飞行。
焦点:位于飞机重心之后
最小阻力速度:平飞所需拉力最小的飞行速度
迎角:相对气流方向(飞行速度方向)与翼弦之间的夹角
2.升力基本原理: 空气流到翼型的前缘,分成上下两股,分别沿翼型的上下表面流过,并在翼型的后缘汇合后向后流去。
在翼型的上表面,由于正迎角和翼面外凸的影响,流管收缩,流速增大,压力降低;而在翼型的下表面,气流受阻,流管扩张,流速减慢,压力增大。
这样,翼型的上下翼面出现压力差,总压力差在垂直于相对气流方向的分量,就是升力
升力方向:向上
3.飞机俯仰稳定力矩:作用在飞机上的空气动力对其重心所产生的力矩沿横轴的分量。
俯仰阻尼力矩: .主要是由水平尾翼产生的
4.着陆滑跑距离计算公式(三种情况):书上166页
着陆距离:着陆空中段水平距离和着陆滑跑段距离组成。
5.飞机重心计算:力矩之和/飞机总重量=机头向后的延伸距离就是重心位置
6.飞机五大部件:机身、机翼、尾翼、起落装置、动力装置
7.国际标准大气规定:简称ISA,就是人为的规定一个不变的大气环境,包括大气温度、密度、气压等随高度变化的关系,得出统一的数据,作为计算的试验飞机的统一标准。
标准海平面,海平面高度为0、气温288.15k15℃或59℉、气压1013.2mbar或1013.2hpa或29.92inpa即标准海压、音速661kt、对流层高度为11km或36089ft、对流层内标准温减率为每增加1km温减6.5℃或每增加1000ft温减2℃,从11~20 km之间的平流层底部气温为常值-56.5℃或216.65k
8.飞机低速飞行有哪些阻力:摩擦阻力、压差阻力、干扰阻力、诱导阻力
9.飞机在稳定飞行时遇到逆风或顺风时,上升角\上升率\下降梯度\下降距离如何变化
顺风上升,上升角和上升梯度都减小,逆风上升,上升角和上升梯度都增大;在上升气流中上升,上升角和上升率增大,在下降气流中上升,上升角和上升率减小。
顺风下降,下降角减小,下降距离增长,下降率不变;逆风下降,下降角增大,下降距离缩短,下降率不变。
上升气流中下降,下降角和下降率都减小,下降距离增长;下降气流中下降,下降角和下降率都增大,下降距离缩短。
上升角是飞机上升轨迹与水平面之间的夹角。
上升梯度是飞机上升高度与前进的水平距离之比,等于上升的正切。
上升率是指飞机上升中单位时间所上升的高度。
快升速度是指能获得最大上升率的速度。
10.飞机盘旋速度与坡度、盘旋半径关系:速度很低时,比如速度为0,可以没有坡度。
有一定的速度时,半径越小,需要的坡度越大,以平衡离心力。
半径给定时,速度越高,需要的坡度越大,以平衡离心力。
11.侧滑是什么引起的:是飞机受扰动以致方向平衡遭到破坏引起的。
从操作上讲是只蹬舵或舵量过大造成的
20.什么是侧滑:飞机相对气流方向与飞机对称面不一致的飞行状态。
12.飞机起飞时V2 起飞安全速度。
有一发失效时,此速度可保证飞机安全起飞。
VS1 失速速度或特殊构型最低稳定飞行速度
13. 起飞抬前轮的目的:增大离地迎角,减小离地速度,缩短起飞滑跑距离
14.修正偏流方向: 由于空中风的存在,引起航空器航迹与航向不相一致,偏流修正指消除由此产生的偏流影响的措施。
15.失速的根本原因:飞机迎角超过其临界迎角。
失速告警的类型: 自然失速(气动)警告和人工失速警告:失速警告灯、失速警告喇叭、振杆器
16.低速飞行中升力特性、阻力特性、升阻比特性是衡量飞机的空气动力性能,主要的空气动力性能参数包括飞机的最大升力系数、最小阻力系数和最大升阻比
17.音速的大小与介质和温度相关
18.超音速气流通过什么流管获得:收敛-扩张喷管
19.速度符号解释
VNO 最大巡航结构速度或正常运行最大速度
Vne 最大极限速度,不允许操作
VA 设计机动速度,也叫最大控制偏转速度
Vmp 最小推力速度
21.飞机上升时,升力小于重力、拉力大于阻力(用运动方程判断)(p119)
22.飞机的方向稳定性由方向稳定力矩(主要影响因素是垂直尾翼)和方向阻力力矩(也是由尾翼产生)共同决定
23.温度偏差和实际温度的计算:温度偏差的计算公式
(△Th)=Th-T+2.14σh (2)(△TL)=TL-T+2.14σh 式中:
△Th——温度上偏差,℃△TL——温度下偏差,℃T——标称温度,℃
温度均匀度的计算公式△Tj=ThTL十0.55(σh+σL)…………(1)式中:
△T j——温度均匀度,℃Th——平均最高温度,℃TL——平均最低温度,℃
σh——平均最高温度的标准偏差σL——平均最低温度的标准偏差
24.增升装置的主要作用:增大飞机的最大升力系数;缩短起飞、着陆滑跑距离
25.飞行速度与飞机所需拉力的关系:随着飞行速度增大,螺旋桨的拉力逐渐减小。
26.坡度与失速速度的关系:坡度增加、机翼载荷因子增加、对应的失速速度增加
27.飞行速度与平飞所需拉力的关系:先减小后增大(p106)
28.飞机低速飞行时压力中心随迎角的变化规律:先前移再后移
29.地面效应对飞机的影响:飞机在起飞和着陆贴近地面时,由于流过飞机的气流受地面的影响,使飞机的空气动力和力矩发生变化,称为地面效应。
影响:形成气垫现象,升力系数增大,诱导阻力减小,使飞机阻力系数减小。
30.连续性定理和伯努利定理的本质(自己翻书去)以及静压动压的理解:
连续性定理:当流体流过一流管时,流体将连续不断并稳定的在流管中流动,在同一时间流过流管任意截面的流体质量相等。
本质:质量守恒定律。
伯努利定理:稳定气流中,在同一流管的任意截面上,空气的动压和静压之和保持不变。
本质:能量守恒定律
动压:单位体积空气所具有的动能,是空气在流动中受阻,流速降低时产生的压力。
静压:单位体积空气所具有的压力能,在静止空气中,静压等于当时当地的大气压。
动压大则静压小,动压小则静压大。
31相对厚度、相对弯度中弧线、翼弦的定义
翼旋:翼型前缘到后缘的连线。
相对厚度:翼型最大厚度与旋长的比值。
相对弯度:最大弧高与翼旋的比值。
中弧线:与翼型上下表面相切的一系列圆的圆心的连线。
32.长度单位的中文换算
英里(mile)1英里=1760码=5280英尺=1.609344公里
inch 英寸=25.4 millimetres 毫米
1 ft 英尺=1
2 inch 英寸=0.3048 m 1 yard 码=
3 ft 英尺=0.914
4 metre 米
1 (statute) mile 英里=1760 yards 码=1.609 kilometres 千米 1 nautical mile 海里=185
2 m. 米。