人教版 九年级数学 24.1 圆的有关性质 课时训练(含答案)

合集下载

人教版九年级数学上册《24.1 圆的有关性质》同步练习题-附答案

人教版九年级数学上册《24.1 圆的有关性质》同步练习题-附答案

人教版九年级数学上册《24.1 圆的有关性质》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________考点1 圆的有关概念(1)圆:平面上到的距离等于的所有点组成的图形.如图所示的圆记做⊙O。

(2)弦与直径:连接任意两点的叫做弦过圆心的叫做直径直径是圆内最长的。

(3)弧:圆上任意两点间的部分叫做小于半圆的弧叫做大于半圆的弧叫做。

(4)圆心角:顶点在的角叫做圆心角。

(5)圆周角:顶点在并且两边都与圆还有一个交点的角叫做圆周角。

(6)弦心距:到弦的距离叫做弦心距。

(7)等圆:能够的两个圆叫做等圆。

(8)等弧:在同圆或等圆中能的弧叫等弧。

考点2垂径定理(1)定理:垂直于弦的直径这条弦并且弦所对的两条弧。

(2)推论:①平分弦(不是直径)的直径于弦并且弦所对的两条弧②弦的垂直平分线经过并且弦所对的两条弧。

(3)延伸:根据圆的对称性如图所示在以下五条结论中:①AC AD=③CE=DE④AB⊥CD⑤AB是直径。

=②BC BD只要满足其中两个另外三个结论一定成立即推二知三。

考点3 弧弦圆心角之间的关系(1)定理:在同圆或等圆中相等的圆心角所对的相等所对的相等。

(2)推论:在同圆或等圆中如果两个圆心角两条弧两条弦中有一组量相等那么它们所对应的其余各组量都分别相等。

考点4圆周角定理及其推论。

(1)定理:一条弧所对的圆周角等于它所对的的一半.如图a=12图a图b图c( 2 )推论:①在同圆或等圆中同弧或等弧所对的圆周角相等.如图b ①A=。

①直径所对的圆周角是直角.如图c=90°。

①圆内接四边形的对角互补.如图a ①A+=180° ①ABC+=180°。

关键点:垂径定理及其运用(1)垂径定理及推论一条直线在下列5条中只要具备其中任意两条作为条件就可以推出其他三条结论.称为知二得三(知二推三)。

①平分弦所对的优弧②平分弦所对的劣弧(前两条合起来就是:平分弦所对的两条弧)③平分弦④垂直于弦⑤过圆心(或是直径)(2)常用的辅助线作垂直于弦的直径或只画弦心距。

人教版 九年级数学 24.1 圆的有关性质 课时训练(含答案)

人教版 九年级数学 24.1 圆的有关性质 课时训练(含答案)

人教版九年级数学24.1 圆的有关性质课时训练一、选择题(本大题共12道小题)1. 下列说法中正确的是()A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,它们所对的弦也相等D.等弦所对的圆心角相等2. 2019·葫芦岛如图,在⊙O中,∠BAC=15°,∠ADC=20°,则∠ABO的度数为()A.70°B.55°C.45°D.35°3. 如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1,l2于点B,C,连接AC,BC.若∠ABC=54°,则∠1等于()A.36°B.54°C.72°D.73°4. 如图,⊙O的直径AB垂直于弦CD,垂足是E,∠CAO=22.5°,OC=6,则CD的长为()A.6 2 B.3 2 C.6 D.125. 在半径等于5 cm 的圆内有长为5 3 cm 的弦,则此弦所对的圆周角为( )A .60°或120°B .30°或120°C .60°D .120°6. 如图,在⊙O 中,如果AB ︵=2AC ︵,那么( )A .AB =AC B .AB =2AC C .AB <2ACD .AB >2AC7. 2019·梧州如图,在半径为13的⊙O 中,弦AB 与CD 交于点E ,∠DEB =75°,AB =6,AE =1,则CD 的长是( )A .2 6B .2 10C .2 11D .4 38.如图,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF =EB ,EF 与AB 交于点C ,连接OF .若∠AOF =40°,则∠F 的度数是( )A .20°B .35°C .40°D .55°9. 如图,将半径为6的⊙O 沿AB 折叠,AB ︵与垂直于AB 的半径OC 交于点D ,且CD =2OD ,则折痕AB 的长为( )A .4 2B .8 2C .6D .6 310. 甲、乙、丙三个牧民用同样长为l 米的铁丝各围一块草地放牧,甲牧民围成面积为S 1的圆形草地,乙牧民围成面积为S 2的正方形草地,丙牧民围成面积为S 3的矩形(不是正方形)草地,则下列结论正确的是( ) A .S 1>S 3>S 2 B .S 2>S 1>S 3 C .S 3>S 1>S 2D .S 1>S 2>S 311. 如图,在⊙O 中,AB ︵所对的圆周角∠ACB =50°,若P 为AB︵上一点,∠AOP =55°,则∠POB 的度数为( )A .30°B .45°C .55°D .60°12.如图,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC =124°,点E 在AD 的延长线上,则∠CDE 的度数为( )A .56°B .62°C .68°D .78°二、填空题(本大题共6道小题)13.如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD ,已知CE =1,ED =3,则⊙O 的半径是________.14. 2019·随州如图,点A ,B ,C 在⊙O 上,点C 在AMB ︵上.若∠OBA =50°,则∠C 的度数为________.15. 如图,AB为⊙O 的直径,CD ⊥AB.若AB =10,CD =8,则圆心O 到弦CD的距离为________.16. 如图,在⊙O 中,半径OA 垂直于弦BC ,点D 在圆上,且∠ADC =30°,则∠AOB 的度数为________.17. 如图,已知等腰三角形ABC 中,∠ACB =120°且AC =BC =4,在平面内任作∠APB =60°,则BP 的最大值为________.18. 如图,在△ABC 中,AB =AC =10,以AB 为直径的⊙O 与BC 交于点D ,与AC 交于点E ,连接OD ,BE ,它们交于点M ,且MD =2,则BE 的长为________.三、解答题(本大题共3道小题)19. 如图,在⊙O 中,AB ︵=2AC ︵,AD ⊥OC于点D.求证:AB =2AD.20. 如图,AB是⊙O 的直径,AC 是弦,将劣弧AC 沿弦AC 翻折与AB 的交点恰好是圆心O ,作OD ⊥AC ,垂足为E ,交⊙O 于点D ,连接BC ,CD .求证:四边形BCDO 是菱形.21. 如图,点E 是△ABC 的内心,线段AE 的延长线交BC 于点F (∠AFC ≠90°),交△ABC 的外接圆于点D .(1)求点F 与△ABC 的内切圆⊙E 的位置关系;(2)求证:ED=BD;(3)若∠BAC=90°,△ABC的外接圆的直径是6,求BD的长;(4)B,C,E三点可以确定一个圆吗?若可以,则它们确定的圆的圆心和半径分别是什么?若不可以,请说明理由.人教版九年级数学24.1 圆的有关性质课时训练-答案一、选择题(本大题共12道小题)1. 【答案】B2. 【答案】B3. 【答案】C4. 【答案】A[解析] ∵∠A=22.5°,∴∠COE=45°.∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°.∵∠COE=45°,∴CE=OE.在Rt△COE中,由勾股定理,得CE2+OE2=OC2,∴2CE2=62,解得CE=3 2,∴CD=2CE=6 2.故选A.5. 【答案】A6. 【答案】C[解析] 取AB ︵的中点D ,则AD ︵=BD ︵=AC ︵,所以AD =BD =AC ,而AD +BD >AB ,所以2AC >AB .7. 【答案】C8. 【答案】B9. 【答案】B[解析] 如图,延长CO 交AB 于点E ,连接OB .∵CE ⊥AB ,∴AB=2BE .∵OC =6,CD =2OD ,∴CD =4,OD =2,OB =6.由折叠的性质可得DE =12×(6×2-4)=4,∴OE =DE -OD =4-2=2.在Rt △OEB 中,BE =OB 2-OE 2=62-22=4 2, ∴AB =8 2.故选B.10. 【答案】D [解析] 本题中甲的草地:2πr =l ,r =l 2π,S 1=π·r 2=l 24π;乙的草地:S 2=l 4×l 4=l 216;丙的草地:设一边长为x ,则S 3=x (l 2-x )=-x 2+l 2x .只有当x =l 4时,S 3取得最大值,此时S 3=l 216,但此时矩形为正方形,不符合题意.所以S 1>S 2>S 3.11. 【答案】B12. 【答案】C[解析] ∵点I 是△ABC 的内心,∴∠BAC =2∠IAC ,∠ACB =2∠ICA . ∵∠AIC =124°,∴∠B =180°-(∠BAC +∠ACB )=180°-2(∠IAC +∠ICA )=180°-2(180°-∠AIC )=68°.又四边形ABCD 内接于⊙O ,∴∠CDE=∠B=68°.二、填空题(本大题共6道小题)13. 【答案】 5【解析】本题考查垂径定理、弦、弦心距的性质、正方形的判定与性质、勾股定理等内容. 解题思路:过点O作OF⊥AB,OG⊥CD,垂足分别是F、G. 连接OD.解图⎭⎬⎫⎭⎪⎬⎪⎫AB⊥CDOF⊥ABOG⊥CD⇒四边形OFEG是矩形AB=CD⇒OF=OG⇒⎭⎬⎫矩形OFEG是正方形⎭⎬⎫⎭⎪⎬⎪⎫CE=1ED=3⇒CD=4AB⊥CD⇒GD=12CD=2⇒EG=1⇒OG=GE=1⇒OD=OG2+DG2=12+22= 5.14. 【答案】40°15. 【答案】316. 【答案】60°[解析] ∵OA⊥BC,∴AB︵=AC︵,∴∠AOB=2∠ADC.∵∠ADC =30°,∴∠AOB=60°.17. 【答案】8[解析] 由题意可得A,P,B,C在同一个圆上,所以当BP为圆的直径时,BP最大,此时∠P AB=90°.过点C作CD⊥AB于点D,可求得AB=4 3,进而可求得BP 的最大值为8.18. 【答案】8[解析] 连接AD ,如图所示.∵以AB 为直径的⊙O 与BC 交于点D ,与AC 交于点E , ∴∠AEB =∠ADB =90°,即AD ⊥BC. 又∵AB =AC , ∴BD =CD.又∵OA =OB ,∴OD ∥AC , ∴OD ⊥BE ,∴BM =EM , ∴CE =2MD =4, ∴AE =AC -CE =6,∴BE =AB2-AE2=102-62=8.三、解答题(本大题共3道小题)19. 【答案】证明:如图,延长AD 交⊙O 于点E.∵OC ⊥AD ,∴AE ︵=2AC ︵,AE =2AD. ∵AB ︵=2AC ︵,∴AE ︵=AB ︵, ∴AB =AE ,∴AB =2AD.20. 【答案】证明:如图,连接AD ,OC .∵OD⊥AC,∴AE=EC.由翻折的性质,得AC是OD的垂直平分线,∴OE=DE,∴四边形OADC是平行四边形,∴OA∥CD,OA=CD.∵OA=OB,∴OB=CD,OB∥CD,∴四边形BCDO是平行四边形.又∵OB=OD,∴四边形BCDO是菱形.21. 【答案】解:(1)设⊙E切BC于点M,连接EM,则EM⊥BC.又线段AE的延长线交BC 于点F,∠AFC≠90°,∴EF>EM,∴点F在△ABC的内切圆⊙E外.(2)证明:∵点E是△ABC的内心,∴∠BAD=∠CAD,∠ABE=∠CBE.∵∠CBD=∠CAD,∴∠BAD=∠CBD.∵∠BED=∠ABE+∠BAD,∠EBD=∠CBE+∠CBD,∴∠BED=∠EBD,∴ED=BD.(3)如图①,连接CD.设△ABC的外接圆为⊙O.∵∠BAC=90°,∴BC是⊙O的直径,∴∠BDC=90°.∵⊙O的直径是6,∴BC=6.∵E为△ABC的内切圆的圆心,∴∠BAD=∠CAD,∴BD=CD.又∵BD2+CD2=BC2,∴BD=CD=3 2.(4)B,C,E三点可以确定一个圆.如图②,连接CD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD=CD.又由(2)可知ED=BD,∴BD=CD=ED,∴B,C,E三点确定的圆的圆心为点D,半径为BD(或ED,CD)的长度.。

人教版九年级数学上册第24章24.1《圆的基本性质》同步练习及答案(1)

人教版九年级数学上册第24章24.1《圆的基本性质》同步练习及答案(1)

初中数学试卷24.1 圆(第二课时 )------ 垂径定理知识点1、垂径定理:垂直于弦的直径 ,并且平分弦所对的 。

2、推论:平分弦(不是直径)的直径 ,并且平分弦所对的 。

【特别注意:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其中三个,注意解题过程中的灵活运用;2、圆中常作的辅助线是过圆心作弦的垂线;3、垂径定理常用作计算,在半径r 、弦a 、弦心d 、和拱高h 中已知两个可求另外两个】一、选择题1.如图,在⊙O 中,OC ⊥弦AB 于点C ,AB=4,OC=1,则OB 的长是( )A .B .C .D .2.如图,⊙O 的半径为5,弦AB =8,M 是弦AB 上的动点,则OM 不可能为( ). A.2 B.3 C.4 D.53.在半径为5cm 的圆中,弦AB ∥CD ,AB =6cm ,CD =8cm ,则AB 和CD 的距离是( ). A.7cm B.1cm C.7cm 或4cm D.7cm 或1cm4.如图,AB 是⊙O 的弦,半径OA =2,∠AOB =120°,则弦AB 的长是( ).B (A )22 (B )32 (C )5 (D )53 ·AO MBBOA5.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不成立的是( ) A .CM=DM B . CB DB C .∠ACD=∠ADCD .OM=MD6.如图,在半径为5的⊙O 中,AB 、CD 是互相垂直的两条弦,垂足为P ,且AB=CD=8,则OP 的长为( ) A .3B .4C .32D .427.如图,AB 为⊙O 的直径,弦CD ⊥AB 于E ,已知CD=12,BE=2,则⊙O 的直径为( ) A .8 B .10 C .16 D .208、如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB 宽为8cm ,水面最深地方的高度为2cm ,则该输水管的半径为( )A .3cmB .4cmC .5cmD .6cm二、填空题1.如图,AB 是⊙O 的直径,BC 是弦,OD ⊥BC ,垂足为D ,已知OD =5,则弦AC = .2、如图AB 是⊙O 的直径,∠BAC=42°,点D 是弦AC 的中点,则∠DOC 的度数是 度.3、如图,M 是CD 的中点,EM ⊥CD ,若CD=4,EM=8,则所在圆的半径为 .4、如图,在⊙O 中,弦AB 垂直平分半径OC ,垂足为D ,若⊙O 的半径为2,则弦AB 的长为 .5、如图,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为____________.6.如图,AB 为⊙O 的直径,CD 为⊙O 的一条弦,CD ⊥AB ,垂足为E ,已知CD=6,AE=1,则⊙0的半径为 .A·BC ODBAC ED OFOC7.如图,AB 是⊙O 的弦,OC ⊥AB 于C .若AB=23,0C=1,则半径OB 的长为 .8.如图,⊙O 的半径为5,P 为圆内一点,P 到圆心O 的距离为4,则过P 点的弦长的最小值是 .OP9.如图,一条公路的转弯处是一段圆弧(图中的AB ︵),点O 是这段弧的圆心,C 是AB ︵上一点,OC ⊥AB ,垂足为D ,AB =300m ,CD =50m ,则这段弯路的半径是 m.D10.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为 cm .三、解答题1.如图,AB 和CD 是⊙O 的弦,且AB=CD , E 、F 分别为弦AB 、CD 的中点, 证明:OE=OF 。

人教版九年级数学上册 24.1圆的有关性质同步训练(含答案)

人教版九年级数学上册 24.1圆的有关性质同步训练(含答案)

E ,满足 AEC 65 ,连接 AD ,则 BAD
度.
答案: 一、选择题
1.(2020•青岛)如图,BD 是⊙O 的直径,点 A,C 在⊙O 上, = ,AC 交 BD 于点 G.若∠COD=126°,则 ∠AGB 的度数为( )
A.99°
B.108°
解:∵BD 是⊙O 的直径,
∴∠BAD=90°,
度数是( )
A.130°
B.140°
C.150°
解:由题意得到 OA=OB=OC=OD,作出圆 O,如图所示,
∴四边形 ABCD 为圆 O 的内接四边形,
∴∠ABC+∠ADC=180°,
∵∠ABC=40°,
∴∠ADC=140°,
故选:B.
D.160°
6.(2020•眉山)如图,四边形 ABCD 的外接圆为 O , BC CD , DAC 35 , ACD 45 ,则 ADB 的度数 为( )
∴∠OEC=∠OCE=40°+ x,
∵OD<OE,∠DOE=100°﹣x+40°=140°﹣x,
∴∠OED<20°+ x,
∴∠CED=∠OEC﹣∠OED>(40°+ x)﹣(20°+ x)=20°,
∵∠CED<∠ABC=40°, ∴20°<∠CED<40° 故选:C. 二、填空题
16.(2020•襄阳)在 O 中,若弦 BC 垂直平分半径 OA ,则弦 BC 所对的圆周角等于 60 或 120 . 解:如图,
上任意一点.则
A.10°
B.20°
C.30°
D.40°
解:连接 OD、OE, ∵OC=OA, ∴△OAC 是等腰三角形, ∵点 D 为弦 AC 的中点, ∴∠DOC=40°,∠BOC=100°, 设∠BOE=x,则∠COE=100°﹣x,∠DOE=100°﹣x+40°, ∵OC=OE,∠COE=100°﹣x,

(含答案)九年级数学人教版上册课时练第24章《24.1.1 圆》

(含答案)九年级数学人教版上册课时练第24章《24.1.1 圆》

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!课时练第24章圆24.1.1圆一、选择题1.一个在圆内的点,它到圆上的最近距离为3cm ,到最远距离为5cm ,那么圆的半径为()A .5cm B .3cm C .8cm D .4cm 2.若O 所在平面内一点P 到O 上的点的最大距离为8,最小距离是2,则此圆的半径是()A .5B .3C .5或3D .10或63.如图,圆环中内圆的半径为a 米,外圈半径比内圆半径长1米,那么外圆周长比内圆周长长()A .2p 米B .()2a p +米C .()22a p +米D .p 米4.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2,以点C 为圆心,BC 为半径的圆与AB 相交于点D ,则AD 的长为()A .2BC .3D 5.如图90,2C AB Ð=°=,以C 为圆心的圆过AB 的中点D ,则AC =().A .2B .3CD 6.已知:如图,AB 是O 的直径,CD 是O 的弦,AB ,CD 的延长线交于E ,2AB DE =,18E Ð=°,求C Ð的角度是().A .35°B .36°C .37°D .38°7.如图,⊙M 的半径为2,圆心M 的坐标为(3,4),点P 是⊙M 上的任意一点,PA ⊥PB ,且PA 、PB 与x 轴分别交于A 、B 两点,若点A 、点B 关于原点O 对称,则AB 的最大值为()A .3B .14C .6D .88.东汉初年,我国的《周髀算经》里就有“径一周三”的古率,提出了圆的直径与周长之间存在一定的比例关系.将图中的半圆弧形铁丝()MN 向右水平拉直(保持M 端不动).根据该古率,与拉直后铁丝N 端的位置最接近的是()A .点AB .点BC .点CD .点D9.如图,平面直角坐标系中,分别以点(2,3)A -,(3,4)B 为圆心,以1、2为半径作A ,B ,M ,N 分别是A ,B 上的动点,P 为x 轴上的动点,则PM PN +的最小值等于()A .5B .10CD 3-10.如图,A 是B 上任意一点,点C 在B 外,已知2AB =,4BC =,ACD △是等边三角形,则BCD △的面积的最大值为()A .4B .C .8D .二、填空题11.加图,扇形OAB 中,90AOB Ð=°,P 为弧AB 上的一点,过点P 作PC OA ^,垂足为C ,PC 与AB 交于点D .若2PD CD ==.则该扇形的半径长为______.12.如图,在平面直角坐标系xOy 中,以点A (﹣5,0)为圆心,13为半径作弧,交y 轴的正半轴于点B ,则点B 的坐标为_____.13.如图,平面直角坐标系xOy 中,M 点的坐标为(3,0),⊙M 的半径为2,过M 点的直线与⊙M 的交点分别为A ,B ,则△AOB 的面积的最大值为_____,此时A ,B 两点所在直线与x 轴的夹角等于_____°.14.如图,已知直线y =34x ﹣3与x 轴、y 轴分别交于A 、B 两点,P 是以C (0,1)为圆心,1为半径的圆上一动点,连接PA ,PB ,则PAB 面积的最大值与最小值之和是___.15.如图,在等腰Rt ABC 中,AC BC ==,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是________.三、解答题16.如图所示,⊙O 的直径AB 和弦CD 交于E ,已知AE =6cm ,EB =2cm ,∠CEA =30°,求CD 的长.17.如图所示,在⊙O 上有一点C(C 不与A 、B 重合),在直径AB 上有一个动点P(P 不与A 、B 重合).试判断PA 、PC 、PB 的大小关系,并说明理由.18.如图,已知圆柱底面的直径8BC =,圆柱的高10AB =,在圆柱的侧面上,过点A ,C 嵌有一圈长度最短的金属丝.(1)现将圆柱侧面沿AB 剪开,所得的圆柱侧面展开图是______.A .;B .;C .;D .(2)求该长度最短的金属丝的长.19.如图,长方形的长为a ,宽为b ,在它的内部分别挖去以b 为半径的四分之一圆和以b 为直径的半圆.(1)用含a 、b 的代数式表示阴影部分的面积;(2)当a =8,b =4时,求阴影部分的面积(π取3).20.如图1,在△ABC 中,∠BAC =90°,AB =AC ,AD ⊥BC 于点D ,E 为AC 上一点,点G 在BE 上,连接DG 并延长交AE 于点F ,且∠EGD =135°.(1)求证:△BGD ∽△BCE ;(2)求证:∠AGB =90°;(3)如图2,连接DE ,若AB =10,AG =,判断△CDE 是否为特殊三角形,并说明理由.21.在平面直角坐标系XOY 中,对于任意两点1P (1x ,2x )与2P (2x ,2y )的“非常距离”,给出如下定义:若1212x x y y -³-,则点1P 与点2P 的“非常距离”为12x x -;若1212x x y y -<-,则点1P 与点2P 的“非常距离”为12y y -.例如:点1P (1,2),点2P (3,5),因为1325-<-,所以点1P 与点2P 的“非常距离”为253-=,也就是图1中线段1P Q 与线段2P Q 长度的较大值(点Q 为垂直于y 轴的直线1P Q 与垂直于x 轴的直线2P Q 的交点).(1)已知点A(-12,0),B 为y 轴上的一个动点,①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标;②直接写出点A 与点B 的“非常距离”的最小值;(2)已知C 是直线334y x =-上的一个动点,①如图2,点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标;②如图3,E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应的点E 和点C 的坐标.22.如图,AB 是⊙O 的直径,把AB 分成几条相等的线段,以每条线段为直径分别画小圆,设AB =a ,那么⊙O 的周长l =πa .计算:(1)把AB 分成两条相等的线段,每个小圆的周长21122l a l p ==;(2)把AB 分成三条相等的线段,每个小圆的周长l 3=;(3)把AB 分成四条相等的线段,每个小圆的周长l 4=;(4)把AB 分成n 条相等的线段,每个小圆的周长l n =.结论:把大圆的直径分成n 条相等的线段,以每条线段为直径分别画小圆,那么每个小圆周长是大圆周长的.请仿照上面的探索方法和步骤,计算推导出每个小圆面积与大圆面积的关系.23.(1)发现:如图1,点A 为一动点,点B 和点C 为两个定点,且BC=a ,AB=b.(a>b )填空:当点A位于______时,线段AC的长取得最小值,且最小值为______(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最小值.③如图3所示,分别以AB,AC为边,作正方形ADEB和正方形ACFG,连接CD,BG.图中线参考答案1.D2.C3.A4.A5.D6.B7.B8.A9.D10.A 11.512.()0,12.13.69014.1615.3 2 p16.cm17.当点P在OA上时PA<PC<PB,OB上时PB<PC<PA,当点P在点O处时PA=PB=PC.18.(1)A;(2)19.(1)阴影部分的面积=ab﹣38πb2;(2)14.20.(1)略;(2)见解析;(3)等腰直角三角形21.(1)①B(0,2)或(0,﹣2);②12;(2)①87,C(﹣87,157);②点C的坐标为(﹣85,95),E(﹣35,45),最小值为1.22.(2)13l;(3)14l;(4)1nl;结论:1n;.23.(1)线段BC上,a-b;(2)①BE=CD,证明略;②2;③.。

人教版九年级上册数学 24.1 圆的有关性质 同步课时训练(含答案)

人教版九年级上册数学 24.1 圆的有关性质 同步课时训练(含答案)

人教版初三数学24.1 圆的有关性质同步课时训练一、选择题1. 已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB 的度数为()A.45°B.35°C.25°D.20°2. 小红不小心把家里的一块圆形玻璃镜打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A,B,C,给出三角形ABC,则这块玻璃镜的圆心是()A.AB,AC边上的中线的交点B.AB,AC边上的垂直平分线的交点C.AB,AC边上的高所在直线的交点D.∠BAC与∠ABC的角平分线的交点3. 如图,在直角坐标系中,以原点为圆心,半径为5的圆内有一点P(0,-3),那么经过点P的所有弦中,最短的弦的长为()A.4 B.5 C.8 D.104. 如图,著名水乡乌镇的一圆拱桥的拱顶到水面的距离CD为8 m,水面宽AB 为8 m,则拱桥的半径OC为()A .4 mB .5 mC .6 mD .8 m5. 如图,AD 是⊙O的直径,BC 是弦,四边形OBCD 是平行四边形,AC 与OB相交于点P ,下列结论错误的是( )A .AP =2OPB .CD =2OPC .OB ⊥ACD .AC 平分OB6. 2019·聊城如图,BC 是半圆O 的直径,D ,E 是BC ︵上的两点,连接BD ,CE并延长交于点A ,连接OD ,OE .如果∠A =70°,那么∠DOE 的度数为( )A .35°B .38°C .40°D .42°7. 如图,从A 地到B 地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A 地到B 地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是( )A .猫先到达B 地 B .老鼠先到达B 地C .猫和老鼠同时到达B 地D .无法确定8. 如图,A ,B ,C ,D是⊙O 上的四个点,B 是AC ︵的中点,M 是半径OD 上任意一点.若∠BDC =40°,则∠AMB 的度数不可能是( )A .45°B .60°C .75°D .85°二、填空题9. 如图,AB为⊙O 的直径,CD ⊥AB.若AB =10,CD =8,则圆心O 到弦CD的距离为________.10. 如图,以△ABC 的边BC 为直径的⊙O 分别交AB ,AC 于点D ,E ,连接OD ,OE .若∠A =65°,则∠DOE =________°.11. 如图,已知等腰三角形ABC 中,∠ACB =120°且AC =BC =4,在平面内任作∠APB =60°,则BP 的最大值为________.12. 如图0,A ,B 是⊙O 上的两点,AB =10,P 是⊙O 上的动点(点P 与A ,B两点不重合),连接AP,PB,过点O分别作OE⊥AP于点E,OF⊥PB于点F,则EF=________.13. 如图,平面直角坐标系xOy中,点M的坐标为(3,0),⊙M的半径为2,过点M的直线与⊙M的交点分别为A,B,则△AOB的面积的最大值为________,此时A,B两点所在直线与x轴的夹角等于________°.14. 如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=________°.15. 如图,半径为5的⊙P与y轴交于点M(0,-4),N(0,-10),则圆心P的坐标为________.16. 如图,定长弦CD在以AB为直径的⊙O上滑动(点C,D与点A,B不重合),M是CD的中点,过点C作CP⊥AB于点P.若CD=3,AB=8,PM=l,则l的最大值是________.三、解答题17. 如图所示,AB ,CD 是⊙O 的两条直径,弦BE =BD.求证:AC ︵=BE ︵.18. 已知:如图5,在⊙O 中,M ,N 分别为弦AB ,CD 的中点,AB =CD ,AB不平行于CD.求证:∠AMN =∠CNM.19. 如图,点E 是△ABC 的内心,线段AE 的延长线交BC 于点F (∠AFC ≠90°),交△ABC 的外接圆于点D .(1)求点F 与△ABC 的内切圆⊙E 的位置关系; (2)求证:ED =BD ;(3)若∠BAC =90°,△ABC 的外接圆的直径是6,求BD 的长;(4)B ,C ,E 三点可以确定一个圆吗?若可以,则它们确定的圆的圆心和半径分别是什么?若不可以,请说明理由.20. 如图,四边形OBCD中的三个顶点在⊙O上,A是优弧BAD上的一个动点(不与点B,D重合).(1)当圆心O在∠BAD的内部时,若∠BOD=120°,则∠OBA+∠ODA=________°.(2)若四边形OBCD为平行四边形.①当圆心O在∠BAD的内部时,求∠OBA+∠ODA的度数;②当圆心O在∠BAD的外部时,请画出图形并直接写出∠OBA与∠ODA的数量关系.人教版初三数学24.1 圆的有关性质同步课时训练-答案一、选择题1. 【答案】A2. 【答案】B[解析]本题实质上是要确定三角形外接圆的圆心,三角形外接圆的圆心是三边垂直平分线的交点,故选B.3. 【答案】C[解析] 过点P作弦AB⊥OP,连接OB,如图.则PB =AP ,∴AB =2BP =2 OB2-OP2.再过点P 任作一条弦MN ,过点O 作OG ⊥MN 于点G ,连接ON . 则MN =2GN =2ON2-OG2.∵OP >OG ,OB =ON ,∴MN >AB , ∴AB 是⊙O 中的过点P 最短的弦.在Rt △OPB 中,PO =3,OB =5,由勾股定理,得PB =4,则AB =2PB =8.4. 【答案】B[解析] 如图,连接BO.由题意可得AD =BD =4 m.设⊙O 的半径OC =x m ,则DO =(8-x)m. 由勾股定理可得x2=(8-x)2+42,解得x =5. 故拱桥的半径OC 为5 m.5. 【答案】A[解析] ∵AD 是⊙O 的直径,∴∠ACD =90°.∵四边形OBCD 是平行四边形, ∴CD ∥OB ,CD =OB ,∴∠CPO =90°, 即OB ⊥AC ,∴选项C 正确; ∴CP =AP.又∵OA =OD , ∴OP 是△ACD 的中位线, ∴CD =2OP ,∴选项B 正确;∴CD =OB =2OP ,即P 是OB 的中点, ∴AC 平分OB ,∴选项D 正确.6. 【答案】C7. 【答案】C8. 【答案】D[解析] 连接AD ,OA ,OB .∵B 是AC ︵的中点,∴∠ADB =∠BDC=40°,∴∠AOB=2∠ADB=80°.又∵M是OD上一点,∴∠ADB≤∠AMB≤∠AOB,即40°≤∠AMB≤80°,则不符合条件的只有85°.二、填空题9. 【答案】310. 【答案】50[解析] 由三角形的内角和定理,得∠B+∠C=180°-∠A.再由OB=OD=OC=OE,得到∠BDO=∠B,∠CEO=∠C.在等腰三角形BOD和等腰三角形COE中,∠DOB+∠EOC=180°-2∠B+180°-2∠C=360°-2(∠B+∠C)=360°-2(180°-∠A)=2∠A,所以∠DOE=180°-2∠A=50°.11. 【答案】8[解析] 由题意可得A,P,B,C在同一个圆上,所以当BP为圆的直径时,BP最大,此时∠P AB=90°.过点C作CD⊥AB于点D,可求得AB =4 3,进而可求得BP的最大值为8.12. 【答案】5[解析] ∵OE过圆心且与PA垂直,∴PE=EA.同理PF=FB,∴EF是△PAB的中位线,∴EF=12AB=5.13. 【答案】690[解析] ∵AB为⊙M的直径,∴AB=4.当点O到AB的距离最大时,△AOB的面积最大,此时AB⊥x轴于点M,∴△AOB的面积的最大值为12×4×3=6,∠AMO=90°.即此时A,B两点所在直线与x轴的夹角等于90°.14. 【答案】215[解析] 连接CE,则∠B+∠AEC=180°,∠DEC=∠CAD=35°,∴∠B+∠AED=(∠B+∠AEC)+∠DEC=180°+35°=215°.15. 【答案】(-4,-7)[解析] 过点P作PH⊥MN于点H,连接PM,则MH=12MN =3,OH =OM +MH =7.由勾股定理,得PH =4,∴圆心P 的坐标为(-4,-7).16. 【答案】34 [解析] 如图,当CD ∥AB 时,PM 的长最大,连接OM ,OC .∵CD ∥AB ,CP ⊥AB , ∴CP ⊥CD .∵M 为CD 的中点,OM 过点O , ∴OM ⊥CD ,∴∠OMC =∠PCD =∠CPO =90°, ∴四边形CPOM 是矩形, ∴PM =OC .∵⊙O 的直径AB =8, ∴半径OC =4,∴PM =4. 三、解答题17. 【答案】证明:∵AB ,CD 是⊙O 的两条直径, ∴∠AOC =∠BOD ,∴AC =BD. 又∵BE =BD , ∴AC =BE ,∴AC ︵=BE ︵.18. 【答案】证明:连接OM ,ON ,OA ,OC ,如图所示.∵M ,N 分别为AB ,CD 的中点,∴OM ⊥AB ,ON ⊥CD ,AM =12AB ,CN =12CD. 又∵AB =CD ,∴AM =CN. 在Rt △AOM 和Rt △CON 中, ⎩⎨⎧OA =OC ,AM =CN ,∴Rt △AOM ≌Rt △CON(HL), ∴OM =ON ,∴∠OMN =∠ONM , ∴∠AMO +∠OMN =∠CNO +∠ONM , 即∠AMN =∠CNM.19. 【答案】解:(1)设⊙E 切BC 于点M ,连接EM ,则EM ⊥BC .又线段AE 的延长线交BC 于点F ,∠AFC ≠90°,∴EF >EM ,∴点F 在△ABC 的内切圆⊙E 外. (2)证明:∵点E 是△ABC 的内心, ∴∠BAD =∠CAD ,∠ABE =∠CBE . ∵∠CBD =∠CAD ,∴∠BAD =∠CBD . ∵∠BED =∠ABE +∠BAD ,∠EBD =∠CBE + ∠CBD ,∴∠BED =∠EBD ,∴ED =BD . (3)如图①,连接CD . 设△ABC 的外接圆为⊙O .∵∠BAC =90°,∴BC 是⊙O 的直径, ∴∠BDC =90°.∵⊙O 的直径是6,∴BC =6. ∵E 为△ABC 的内切圆的圆心, ∴∠BAD =∠CAD ,∴BD =CD .又∵BD 2+CD 2=BC 2,∴BD =CD =3 2.(4)B,C,E三点可以确定一个圆.如图②,连接CD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD=CD.又由(2)可知ED=BD,∴BD=CD=ED,∴B,C,E三点确定的圆的圆心为点D,半径为BD(或ED,CD)的长度.20. 【答案】52解:(1)60(2)①如图(a).∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∠OBC=∠ODC.又∵∠BAD+∠BCD=180°,∠BAD=12∠BOD,∴12∠BOD+∠BOD=180°,解得∠BOD=120°,∴∠BAD=12∠BOD=12×120°=60°,∠OBC=∠ODC=180°-∠BOD=180°-120°=60°.又∵∠ABC+∠ADC=180°,∴∠OBA+∠ODA=∠ABC+∠ADC-(∠OBC+∠ODC)=180°-(60°+60°)=60°.②如图(b)所示,连接AO.∵OA=OB,∴∠OBA=∠OAB.∵OA=OD,∴∠OAD=∠ODA.∵∠OAB=∠OAD+∠BAD,∴∠OBA=∠ODA+∠BAD=∠ODA+60°. 如图(c),同理可得∠ODA=∠OBA+60°.。

人教版九年级数学上册24.1 圆的基本性质同步练习(含答案)【优选】

人教版九年级数学上册24.1 圆的基本性质同步练习(含答案)【优选】

24.1 圆(第四课时 )--------圆周角知识点1、圆周角定义:顶点在 ,并且两边都和圆 的角叫圆周角。

2、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角 ,都等于这条弧所对的圆心角的 。

推论1、在同圆或等圆中,如果两个圆周角 ,那么它们所对的弧 。

推论2、半圆(或直径)所对的圆周角是 ; 900的圆周角所对的弦是 。

3、圆内接四边形:定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做 ,这个圆叫做 。

性质:圆内接四边形的对角一、选择题1.如图,在⊙O 中,若C 是»BD 的中点,则图中与∠BAC 相等的角有( )A.1个B.2 个C.3个D.4个2.如图,△ABC 内接于⊙O ,∠A =40°,则∠BOC 的度数为( )A . 20°B . 40°C . 60° D.80°3.如图,AB 是⊙O 的直径,点C 在⊙O 上,若∠A=40 º,则∠B 的度数为()A .80 ºB .60 ºC .50 ºD .40 º4.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50°B.60°C.70°D.80°5.如图,AB、CD是⊙O的两条弦,连接AD、BC,若∠BAD=60°,则∠BCD的度数为()A.40°B.50°C.60°D.70°6.如图,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内⊙C上一点,∠BMO=120°,则⊙C的半径为()A.6 B.5 C.3 D.327、如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC于点P,OP=23,则⊙O的半径为()A.43B.63C.8 D.128、如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()»»B.A F=BF C.O F=CF D.∠DBC=90°A.AD BD二、填空题1.如图,点A、B、C在⊙O上,∠AOC=60°,则∠ABC的度数是.2.如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB=度.3.已知如图,四边形ABCD内接于⊙O,若∠A=60°,则∠DCE=.4.如图,⊙O的弦CD与直径AB相交,若∠BAD=50°,则∠ACD=..5、如图,AB是⊙O的直径,点C是圆上一点,∠BAC=70°,则∠OCB=.6、如图,若AB是⊙O的直径,AB=10cm,∠CAB=30°,则BC=cm.7、如图所示⊙O中,已知∠BAC=∠CDA=20°,则∠ABO的度数为.8、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则DC=.9、如图,圆心角∠AOB=30°,弦CA∥OB,延长CO与圆交于点D,则∠BOD=.A B C DO 10、如图,量角器的直径与直角三角板ABC 的斜边AB 重合,其中量角器0刻度线的端点N 与点A 重合,射线CP 从CA 处出发沿顺时针方向以每秒3度的速度旋转,CP 与量角器的半圆弧交于点E ,第24秒,点E 在量角器上对应的读数是 度.三、解答题 1、如图,⊙O 的直径AB 为10cm ,弦AC 为6cm ,∠ACB 的平分线交⊙O 于D ,求BC ,AD ,BD 的长.2. 如图,AB 是⊙O 的直径,C 是»BD的中点,CE ⊥AB 于 E ,BD 交CE 于点F . (1)求证:CF ﹦BF ;(2)若CD ﹦6, AC ﹦8,则⊙O 的半径为 ,CE 的长是 .3、如图,A ,P ,B ,C 是半径为8的⊙O 上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC 是等边三角形;(2)求圆心O 到BC 的距离OD .CBDE FO4、如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.5、如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.答案1.圆上相交2.相等一半相等一定相等直角直径3.圆内接多边形这个多边形的外接圆互补一、选择题1.C2.D3.C4.C5. C6.C7、A8、C二、填空题1.150°2.25°3.60°4. 40°.5、20°6、57、50°8.9、30°10、144°三、解答题1、ArrayA B»»2222222BC AB AC 1068cm CD ACBACD BCD 45ADBD AD BDBD AB 100100AD BD 52cm 2∴∠∠︒∴=-=-=∠∴∠=∠=︒∴=∴=+==∴===Q e V Q V 解:AB 是O 的直径ACB=ADB=90在Rt ABC 中,AB=10cm,AC=6cm,平分在Rt ADC 中,AB=10cmAD 2.解:(1) 证明:∵AB 是⊙O 的直径,∴∠ACB ﹦90° 又∵CE ⊥AB , ∴∠CEB ﹦90° ∴∠2﹦90°-∠A ﹦∠1又∵C 是弧BD 的中点,∴∠1﹦∠A ∴∠1﹦∠2,∴ CF ﹦BF ﹒(2) ⊙O 的半径为5 , CE 的长是524﹒3、解:(1)在△ABC 中,∵∠BAC=∠APC=60°,又∵∠APC=∠ABC , CB D E FO 1 2∴∠ABC=60°,∴∠ACB=180°-∠BAC-∠ABC=180°-60°-60°=60°,∴△ABC是等边三角形;(2)∵△ABC为等边三角形,⊙O为其外接圆,∴O为△ABC的外心,∴BO平分∠ABC,∴∠OBD=30°,∴OD=8×12=4.4、证明:(1)∵OD⊥AC OD为半径,∴»»CD AD=,∴∠CBD=∠ABD,∴BD平分∠ABC;(2)∵OB=OD,∴∠OBD=∠0DB=30°,∴∠AOD=∠OBD+∠ODB=30°+30°=60°,又∵OD⊥AC于E,∴∠OEA=90°,∴∠A=180°-∠OEA-∠AOD=180°-90°-60°=30°,又∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ACB中,BC=12 AB,∵OD=»»CD AD=AB,∴BC=OD.5、(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∴AC⊥BC,∵DC=CB,∴AD=AB,∴∠B=∠D;(2)解:设BC=x,则AC=x﹣2,在Rt△ABC中,AC2+BC2=AB2,∴(x﹣2)2+x2=42,解得:x1=1+,x2=1﹣(舍去),∵∠B=∠E,∠B=∠D,∴∠D=∠E,∴CD=CE,∵CD=CB,∴CE=CB=1+.。

2023—2024学年人教版数学九年级上册 24.1圆的有关性质同步练习 含答案

2023—2024学年人教版数学九年级上册  24.1圆的有关性质同步练习 含答案

2023—2024学年人教版数学九年级上册24.1圆的有关性质同步练习(含答案)初中数学同步练习九年级上册24.1 圆的有关性质一、单选题1.如图,点O是正六边形的对称中心,如果用一副三角板的角,借助点O(使该角的顶点落在点O处),把这个正六边形的面积n等分,那么n的所有可能取值的个数是()A.4 B.5 C.6 D.72.如图,在⊙O中,弦AB、CD相交于点M,连接BC、AD,⊙AMD=100°,⊙A=30°,则⊙B=()A.40° B.45° C.50° D.60°3.如图,O是线段BC的中点,A、D、C到O点的距离相等.若⊙ABC =30°,则⊙ADC的度数是()A.30° B.60° C.120° D.150°4.如图,点A.B.C在⊙D上,⊙ABC=70°,则⊙ADC的度数为()A.110° B.140° C.35° D.130°5.下列命题中,不正确的是()A.垂直平分弦的直线经过圆心B.平分弦的直径一定垂直于弦C.平行弦所夹的两条弧相等D.垂直于弦的直径必平分弦所对的弧6.如图,⊙O的直径CD⊙AB,⊙AOC=60°,则⊙CDB=()A.20° B.30° C.40° D.50°7.如图,在⊙O中,弦AC⊙半径OB,⊙BOC=48°,则⊙OAB的度数为() A.24° B.30° C.60° D.90°8.如图,⊙O的半径OD⊙弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=4,CD=1,则EC的长为()A.B.C.D.4二、填空题9.如图,AB,CD是⊙O的弦,且AB⊙CD,连接AD,BC,若⊙C=25°,则⊙D的度数为.10.如图,A、B、C是⊙O的圆周上三点,⊙ACB=40°,则⊙ABO等于度.11.如图,四边形ABCD为⊙O的内接四边形,⊙A=100°,则⊙DCE的度数为;12.如图,AB是半圆的直径,点C、D是半圆上两点,⊙ADC = 144°,则⊙ABC =13.如图,⊙ABC内接于⊙O,AC是⊙O的直径,⊙ACB=50°,点D是上一点,则⊙D=度.14.如图,在⊙O的内接五边形ABCDE中,⊙CAD=35°,则⊙B+⊙E=.15.如图,⊙O是⊙ABC的外接圆,AD是⊙O的直径,连接CD,⊙B=70°,则⊙DAC=.16.如图,在中,A,B,C是O上三点,如果,弦,那么的半径长为.三、解答题17.如图,弦AB和CD相交于⊙O内一点E,AE=CE,求证:BE=DE.18.如图,已知OA、OB、OC是⊙O的三条半径,点C是弧AB的中点,M、N分别是OA、OB的中点.求证:MC=NC.19.AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为多少?20.如图,在中,AB是的直径,与AC交于点D,,求的度数.答案解析部分1.【答案】B2.【答案】C3.【答案】D4.【答案】B5.【答案】B6.【答案】B7.【答案】A8.【答案】B9.【答案】65°10.【答案】5011.【答案】100°12.【答案】3613.【答案】4014.【答案】215°15.【答案】20°16.【答案】517.【答案】证明:⊙⊙A=⊙C,⊙D=⊙B ,AE=CE,⊙ ⊙AED⊙⊙CEB,⊙ BE=DE.18.【答案】解:⊙弧AC和弧BC相等,⊙⊙AOC=⊙BOC,又⊙OA="OB" M、N分别是OA、OB的中点⊙OM=ON,在⊙MOC和⊙NOC中,⊙⊙MOC⊙⊙NOC(SAS),⊙MC=NC.19.【答案】解:如图,连接AQ,由题意可知:⊙BPQ=45°,⊙AB是半圆O的直径,⊙⊙AQB=90°,又⊙⊙BAQ=⊙BPQ=45°,⊙⊙ABQ是等腰直角三角形,⊙BQ=AQ= .即,答案为.20.【答案】解:在⊙ABC中,⊙⊙B=60°,⊙C=75°,⊙⊙A=45°.⊙AB是⊙O的直径,⊙O与AC交于点D,⊙⊙BOD=2⊙A=90°。

人教版九年级上册数学试题:24.1--24.4章节课时练含答案不全

人教版九年级上册数学试题:24.1--24.4章节课时练含答案不全

24.1圆的有关性质一、复习(一)圆及垂径定理1.圆:把平面内到距离等于的点的集合称为圆;我们把称为圆心,把称为半径。

2.我们把连接圆上任意的称为弦,经过的弦称为直径;圆上的部分称为弧。

3.圆的对称性:圆既是图形也是图形,对称轴是,有条;对称中心是。

4.在同一平面内,不在直线上的点确定一个圆。

5.垂径定理:垂直于弦的平分弦,并且平分弦所对的弧。

6.垂径定理推论:平分弦(非直径)的直径弦,并且平分弦所对的两条弧。

(二)圆心角、圆周角1.圆心角:我们把在圆心的角称为圆心角.2.弧、弦、圆心角之间的关系:在同圆或等圆中,相等的圆心角所对的弧,所对的弦。

3.圆周角:在圆周上,并且都和圆相交的角叫做圆周角;在同圆或等圆中,圆周角度数等于它所对的弧上的圆心角度数。

4.相关推论:①半圆或直径所对的圆周角都是_____,都等于_____度;②90°的圆周角所对的弦是;5.在同圆或等圆中,同弧或等弧所对的圆周角_____,相等的圆周角所对的____和____都相等。

二、引领学习(一)命题判断题1.下列说法正确的是()A.长度相等的弧是等弧;B.两个半圆是等弧;C.半径相等的弧是等弧;D.直径是圆中最长的弦;2. 以下说法正确的是:()①圆既是轴对称图形,又是中心对称图形;②垂直于弦的直径平分这条弦;③相等圆心角所对的弧相等。

A. ①②B. ②③C. ①③D. ①②③ 3. 下列语句中,正确的有( )①相等的圆心角所对的弧也相等;②顶点在圆周上的角是圆周角; ③长度相等的两条弧是等弧;④经过圆心的每一条直线都是圆的对称轴。

A.1个 B.2个 C.3个 D.4个 4.下列命题中是真命题的为( )A.三点确定一个圆B.任何一个三角形有且只有一个外接圆C .任何一个四边形都有一个外接圆 D.等腰三角形的外心一定在它的外部 5.下列说法正确的是 ( )A.相等的圆心角所对的弧相等B.过圆心的线段是直径C. 半圆是弧D.弦是直径 (二)多解题 1.已知⊙O 的半径为5.(1)弦AB=8cm,弦CD=6cm,且AB ∥CD ,则这两条弦之间的距离为 cm. (2)弦AB=8cm,则该弦所对的弧的中点到弦AB 的距离为 cm. (3)AB 是⊙O 的一条弦,点P 在直线AB 上,PB=3,AB=8,则=PQOQ. 2.点A 、B 、C 是⊙O 上不同的三个点,∠AOB=100°,则∠ACB= °. (变式):△ABC 是⊙O 的内接三角形,∠AOB=100°,则∠ACB= °. 3.在△ABC 中,AB=AC=5,S ABC ∆=12,则△ABC 外接圆的半径为 。

人教版九年级上册:24.1 圆的有关性质课时训练卷 含答案

人教版九年级上册:24.1 圆的有关性质课时训练卷   含答案

24.1 圆的有关性质课时训练卷一.选择题1.下列条件中,能确定圆的是()A.以点O为圆心B.以2cm长为半径C.以点O为圆心,以5cm长为半径D.经过已知点A2.下列说法正确的是()A.直径是弦,弦是直径B.半圆是弧C.无论过圆内哪一点,只能作一条直径D.直径的长度是半径的2倍3.下面四个图中的角,为圆心角的是()A.B.C.D.4.如图中奥迪车商标的长为34cm,宽为10cm,则d的值为()A.14B.16C.18D.205.如图,已知AB是⊙O的直径,D、C是劣弧EB的三等分点,∠BOC=40°,那么∠AOE =()A.40°B.60°C.80°D.120°6.半圆的圆心角()A.大于180°B.等于180°C.在90°~180°之间D.等于90°7.如图,在⊙O中,A,B,P为⊙O上的点,∠AOB=68°,则∠APB的度数是()A.136°B.34°C.22°D.112°8.如图,⊙O的半径为5,OC垂直弦AB于点C,OC=3,则弦AB的长为()A.4B.5C.6D.89.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm10.如图,AB是⊙O的直径,∠CAB=40°,则∠D=()A.20°B.30°C.40°D.50°11.如图,在⊙O中,直径AB⊥CD,∠A=26°,则∠D度数是()A.26°B.38°C.52°D.64°12.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A.cm B.cm C.cm D.4cm二.填空题13.如图,已知AB、CD是⊙O的直径,,∠AOE=32°,那么∠COE的度数为度.14.如图,A、B、C三点在⊙O上,连接AB,OC,OA,BC,若∠ABC=23°,则∠AOC 的度数为.15.已知弦AB把圆周分成1:9两部分,则弦AB所对圆心角的度数为.16.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=74°,则∠E =.17.如图,四边形ABCD内接于⊙O,AC平分∠BAD.若∠BDC=40°,则∠BCD的度数为.18.如图,⊙O是一个油罐的截面图.已知⊙O的直径为5m,油的最大深度CD=4m(CD ⊥AB),则油面宽度AB为m.19.如图,一条公路的转弯处是一段圆弧AB,点O是这段弧所在圆的圆心,AB=40m,点C是的中点,且CD=10m,则这段弯路所在圆的半径为m.三.解答题20.已知:如图,AB是⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E,若AB=2DE,∠C=40°,求∠E及∠AOC的度数.21.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.22.如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且AB=26m,OE⊥CD于点E.水位正常时测得OE:CD=5:24(1)求CD的长;(2)现汛期来临,水面要以每小时4m的速度上升,则经过多长时间桥洞会刚刚被灌满?23.如图,已知AB,CG是⊙O的两条直径,AB⊥CD于点E,CG⊥AD于点F.(1)求∠AOG的度数;(2)若AB=2,求CD的长.参考答案一.选择题1.解:A、点O为圆心,半径不确定,则不能确定圆;B、2cm长为半径,圆心不确定,则不能确定圆;C、以点O为圆心,以5cm长为半径可确定圆;D、经过点A,则圆心和半径都不能确定,则不能确定圆.故选:C.2.解:A、直径是圆中特殊的弦,但弦不一定是直径,所以错误;B、半圆是特殊的弧,故正确;C、过圆内的点圆心有无数条直径,故错误;D、直径的长度是同一个圆的半径的2倍,故错误.故选:B.3.解:∵圆心角的顶点必须在圆心上∴A、B、C均不对故选:D.4.解:∵宽为10cm,∴圆的直径是10cm,∴圆的重叠部分的宽是(40﹣34)÷3=2cm,∴d=20﹣2=18cm.故选:C.5.解:∵D、C是劣弧EB的三等分点,∠BOC=40°∴∠EOD=∠COD=∠BOC=40°∴∠AOE=60°.故选:B.6.解:∵半圆所对的弦是直径∴半圆所对的圆心角是180度.故选:B.7.解:∵∠AOB=68°,∴∠APB=∠AOB=34°,故选:B.8.解:如图,连接OA,∵OC⊥AB于点C,∴AC=BC,∵⊙O的半径是5,∴OA=5,又OC=3,所以在Rt△AOC中,AC===4,所以AB=2AC=8.故选:D.9.解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48cm,∴BD=AB=×48=24(cm),∵⊙O的直径为52cm,∴OB=OC=26cm,在Rt△OBD中,OD===10(cm),∴CD=OC﹣OD=26﹣10=16(cm),故选:C.10.解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=90°﹣40°=40°,∴∠D=∠B=50°故选:D.11.解:连接OC,如图,∵∠A=26°,∴∠BOC=2∠A=52°,∵AB⊥CD,∴∠OCD=90°﹣∠BOC=90°﹣52°=38°,∵OC=OD,∴∠D=∠OCD=38°.故选:B.12.解:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,∵∠CAD=∠BAD(角平分线的性质),∴=,∴∠DOB=∠OAC=2∠BAD,∴△AOF≌△ODE,∴OE=AF=AC=3(cm),在Rt△DOE中,DE==4(cm),在Rt△ADE中,AD==4(cm).故选:A.二.填空题13.解:∵,(已知)∴∠AOE=∠COA(等弧所对的圆心角相等);又∠AOE=32°,∴∠COA=32°,∴∠COE=∠AOE+∠COA=64°.故答案是:64°.14.解:∵∠AOC=2∠ABC,∠ABC=23°,∴∠AOC=46°,故答案为46°.15.解:∵弦AB把圆周分成1:9两部分,∴弦AB所对圆心角的度数=×360°=36°.故答案为36°.16.解:连结OD,如图,∵OB=DE,OB=OD,∴DO=DE,∴∠E=∠DOE,∵∠1=∠DOE+∠E,∴∠1=2∠E,∵OC=OD,∴∠C=∠1,∴∠C=2∠E,∴∠AOC=∠C+∠E=3∠E,∴∠E=∠AOC=×74°=()°.故答案是:()°.∵∠BDC与∠BAC在BC的同侧,∴∠BAC=40°,∵AC平分∠BAD,∴∠BAD=2∠BAC=80°,∵四边形ABCD内接于⊙O,∴∠BCD+∠BAD=180°;∴∠BCD的度数为100°,故答案为:100°.18.解:连接OA,由题意得,OA=2.5m,OD=1.5m,∵CD⊥AB,∴AD==2m,∴AB=2AD=4m,故答案为:4.19.解:∵OC⊥AB,∴AD=DB=20m,在Rt△AOD中,OA2=OD2+AD2,设半径为r得:r2=(r﹣10)2+202,解得:r=25m,∴这段弯路的半径为25m.故答案为:25.三.解答题20.解:连接OD,∵OC=OD,∠C=40°,∵AB=2DE,OD=AB,∴OD=DE,∵∠ODC是△DOE的外角,∴∠E=∠EOD=∠ODC=20°,∵∠AOC是△COE的外角,∴∠AOC=∠C+∠E=40°+20°=60°.21.(1)证明:过O作OE⊥AB于点E,则CE=DE,AE=BE,∴BE﹣DE=AE﹣CE,即AC=BD;(2)解:由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,∴OE=6,∴CE===2,AE===8,∴AC=AE﹣CE=8﹣2.22.解:(1)∵直径AB=26m,∴OD=,∵OE⊥CD,∴,∵OE:CD=5:24,∴OE:ED=5:12,∴设OE=5x,ED=12x,∴在Rt△ODE中(5x)2+(12x)2=132,解得x=1,∴CD=2DE=2×12×1=24m;(2)由(1)得OE=1×5=5m,延长OE交圆O于点F,∴EF=OF﹣OE=13﹣5=8m,∴,即经过2小时桥洞会刚刚被灌满.23.解:(1)连接OD,∵AB⊥CD,∴=,∴∠BOC=∠BOD,由圆周角定理得,∠A=∠BOD,∴∠A=∠BOD,∵∠AOG=∠BOD,∴∠A=∠AOG,∵∠OF A=90°,∴∠AOG=60°;(2)∵∠AOG=60°,∴∠COE=60°,∴∠C=30°,∴OE=OC=,∴CE==,∵AB⊥CD,∴CD=2CE=.。

人教版 九年级上册数学 24.1 圆的有关性质 课时训练(含答案)

人教版 九年级上册数学 24.1 圆的有关性质 课时训练(含答案)

人教版九年级数学24.1 圆的有关性质课时训练一、选择题1. 如图所示的圆规,点A是铁尖的端点,点B是铅笔芯尖的端点,已知点A与点B的距离是2 cm,若铁尖的端点A固定,将铅笔芯尖的端点B绕点A旋转一周,则作出的圆的直径是()A.1 cm B.2 cm C.4 cm D.π cm2. 如图,A,B,C,D是⊙O上的点,则图中与∠A相等的角是()A.∠B B.∠CC.∠DEB D.∠D3. 与圆心的距离不大于半径的所有点组成的图形是()A.圆的外部(包括边界) B.圆的内部(不包括边界)C.圆D.圆的内部(包括边界)4. 如图,在直角坐标系中,以原点为圆心,半径为5的圆内有一点P(0,-3),那么经过点P的所有弦中,最短的弦的长为()A.4 B.5 C.8 D.105. 如图,AB是⊙O的直径,CD为弦,CD⊥AB于点E,则下列结论中不成立...的是( )A .∠COE =∠DOEB .CE =DEC .OE =BED.BD ︵=BC ︵6. (2019•广元)如图,AB ,AC分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A .5B .4C .13D .4.87.如图,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF =EB ,EF 与AB 交于点C ,连接OF .若∠AOF =40°,则∠F 的度数是( )A .20°B .35°C .40°D .55°8. P为⊙O 内一点,若过点P 的最长的弦为8 cm ,最短的弦为4 cm ,则OP 的长为( )A .2 3 cm B. 3 cm C .3 cmD .2 cm二、填空题9. 如图,AB 为⊙O 的直径,CD ⊥AB.若AB =10,CD =8,则圆心O 到弦CD的距离为________.10. 如图所示,动点C 在⊙O 的弦AB 上运动,AB =23,连接OC ,过点C 作CD ⊥OC 交⊙O 于点D ,则CD 的最大值为________.11. 如图,点A ,B ,C 都在⊙O 上,OC ⊥OB ,点A 在BC ︵上,且OA =AB ,则∠ABC =________°.12. 如图,⊙O 的直径AB 过弦CD 的中点E ,若∠C =25°,则∠D =________°.13. 如图2,一下水管道横截面为圆形,直径为100 cm ,下雨前水面宽为60 cm ,一场大雨过后,水面宽为80 cm ,则水位上升________cm. 链接听P39例4归纳总结14. 在Rt △ABC 中,∠C =90°,BC =3,AC =4,点P 在以点C 为圆心,5为半径的圆上,连接PA ,PB.若PB =4,则PA 的长为________.15. 如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C ,D 与点A ,B 不重合),M 是CD 的中点,过点C 作CP ⊥AB 于点P.若CD =3,AB =8,PM =l ,则l 的最大值是________.16. 只用圆规测量∠XOY 的度数,方法是:以顶点O 为圆心任意画一个圆,与角的两边分别交于点A ,B(如图),在这个圆上顺次截取AB ︵=BC ︵=CD ︵=DE ︵=EF ︵=…,这样绕着圆一周一周地截下去,直到绕第n 周时,终于使第m(m >n)次截得的弧的末端恰好与点A 重合,那么∠XOY 的度数等于________.三、解答题17. 如图,AB 是⊙O的直径,弦CD 与AB 相交,D 为AB ︵的中点.(1)求∠ABD 的大小;(2)若AC =6,BD =5 2,求BC 的长.18. 如图,AB为O的直径,点C在O上.的平分线,与O交于点D;连接OD,交BC于点E(不(1)尺规作图:作BAC写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE与AC的位置及数量关系,并证明你的结论.19. 如图,直线AB经过⊙O的圆心,与⊙O相交于点A,B,点C在⊙O上,且∠AOC=30°,P是直线AB上的一个动点(与点O不重合),直线PC与⊙O相交于点Q.在直线AB上使QP=QO成立的点P共有几个?请相应地求出∠OCP的度数.人教版九年级数学24.1 圆的有关性质课时训练-答案一、选择题1. 【答案】C2. 【答案】D3. 【答案】D4. 【答案】C[解析] 过点P 作弦AB ⊥OP ,连接OB ,如图.则PB =AP ,∴AB =2BP =2OB 2-OP 2.再过点P 任作一条弦MN ,过点O 作OG ⊥MN 于点G ,连接ON . 则MN =2GN =2ON 2-OG 2.∵OP >OG ,OB =ON ,∴MN >AB , ∴AB 是⊙O 中的过点P 最短的弦.在Rt △OPB 中,PO =3,OB =5,由勾股定理,得PB =4,则AB =2PB =8.5. 【答案】C6. 【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴22221086BC AB AC =-=-=, ∵OD AC ⊥,∴142CD AD AC ===, 在Rt CBD △中,2246213BD =+=.故选C .7. 【答案】B8. 【答案】A[解析] 设⊙O 中过点P 的最长的弦为AB ,最短的弦为CD ,如图所示,则CD ⊥AB 于点P.根据题意,得AB =8 cm ,CD =4 cm,∴OC =12AB =4 cm. ∵CD ⊥AB , ∴CP =12CD =2 cm.在Rt △OCP 中,根据勾股定理,得OP =OC2-CP2=42-22=2 3(cm).二、填空题9. 【答案】310. 【答案】3 [解析] 如图,连接OD ,过点O 作OH ⊥AB 于点H ,则AH =BH=12AB = 3.∵CD ⊥OC ,∴CD =OD 2-OC 2.∵OD 为⊙O 的半径,∴当OC 最小时,CD 最大.当点C 运动到点H 时,OC 最小,此时CD =BH =3,即CD 的最大值为 3.11. 【答案】15[解析] ∵OC ⊥OB ,∴∠COB =90°.又∵OC =OB ,∴△COB 是等腰直角三角形, ∴∠OBC =45°.∵OA =AB ,OA =OB ,∴OA =AB =OB , ∴△AOB 是等边三角形,∴∠OBA =60°, ∴∠ABC =∠OBA -∠OBC =15°.12. 【答案】65[解析] ∵∠C =25°,∴∠A =∠C =25°.∵⊙O 的直径AB 过弦CD 的中点E , ∴AB ⊥CD ,∴∠AED =90°, ∴∠D =90°-25°=65°.13. 【答案】10或70 [解析] 对于半径为50 cm 的圆而言,圆心到长为60 cm 的弦的距离为40 cm ,到长为80 cm 的弦的距离为30 cm.①当圆心在两平行弦之外时,两弦间的距离=40-30=10(cm);②当圆心在两平行弦之间时,两弦间的距离=40+30=70(cm).综上所述,水位上升10 cm 或70 cm.14. 【答案】3或73[解析] 如图,连接CP,PB的延长线交⊙C于点P′.∵PC=5,BC=3,PB=4,∴BC2+PB2=PC2,∴△CPB为直角三角形,且∠CBP=90°,即CB⊥PB,∴PB=P′B=4.∵∠ACB=90°,∴PB∥AC.又∵PB=AC=4,∴四边形ACBP为平行四边形.又∵∠ACB=90°,∴▱ACBP为矩形,∴PA=BC=3.在Rt△APP′中,∵PA=3,PP′=8,∴P′A=82+32=73.综上所述,PA的长为3或73.15. 【答案】34[解析] 如图,当CD∥AB时,PM的长最大,连接OM,OC.∵CD∥AB,CP⊥AB,∴CP⊥CD.∵M为CD的中点,OM过点O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四边形CPOM是矩形,∴PM=OC.∵⊙O 的直径AB =8, ∴半径OC =4,∴PM =4.16. 【答案】⎝⎛⎭⎪⎫360n m ° [解析] 设∠XOY 的度数为x ,则mx =n ×360°,所以x =⎝ ⎛⎭⎪⎫360n m °.三、解答题17. 【答案】解:(1)∵D 为AB ︵的中点, ∴AD ︵=BD ︵.∵AB 是⊙O 的直径, ∴∠ADB =90°, ∴∠ABD =∠DAB =45°.(2)由(1)知AD ︵=BD ︵,∴AD =BD =5 2. 又∵∠ADB =90°, ∴AB =AD2+BD2=10. ∵AB 是⊙O 的直径, ∴∠ACB =90°,∴BC =AB2-AC2=102-62=8.18. 【答案】(1)如图所示:(2)OE AC ∥,12OE AC =. 理由如下:∵AD 平分BAC ∠,∴12BAD BAC ∠=∠,∵12BAD BOD ∠=∠,∴BOD BAC ∠=∠, ∴OE AC ∥, ∵OA OB =,∴OE 为ABC △的中位线, ∴OE AC ∥,12OE AC =.19. 【答案】解:在直线AB 上使QP =QO 成立的点P 共有3个. (1)如图①.在△QOC 中,OC =OQ ,∴∠OQC =∠OCQ . 在△OPQ 中,QP =QO ,∴∠QOP =∠QPO .又∵∠QPO =∠OCQ +∠AOC ,且∠AOC =30°,∠QOP +∠QPO +∠OQC =180°,∴3∠OCQ =120°, ∴∠OCQ =40°. 即∠OCP =40°.(2)如图②. ∵QO =QP , ∴∠QPO =∠QOP .设∠QPO =x ,则∠OQC =∠QPO +∠QOP =2x .又∵OC =OQ , ∴∠OCQ =∠OQC =2x ,∴∠AOC =∠OPC +∠OCP =x +2x =3x . ∵∠AOC =30°,∴3x =30°,解得x =10°,∴∠OCP=2x=20°.(3)如图③.∵QO=QP,∴∠QOP=∠QPO.∵OC=OQ,∴∠OQC=∠OCQ.设∠QPO=y,则∠OQC=∠OCQ=∠QPO+∠AOC=y+30°,∴在△OPQ中,有y+y+y+30°=180°,解得y=50°,∴∠OCP=180°-50°-30°=100°.综上所述,在直线AB上使QP=QO成立的点P共有3个,∠OCP的度数分别为40°,20°,100°.。

人教版 九年级数学 24.1 圆的有关性质 课时训练(含答案)

人教版 九年级数学 24.1 圆的有关性质 课时训练(含答案)

人教版九年级数学24.1 圆的有关性质课时训练一、选择题1. 如图,☉O的直径AB垂直于弦CD.垂足是点E,∠CAO=22.5°,OC=6,则CD的长为()A.6B.3C.6D.122. 2019·葫芦岛如图,在⊙O中,∠BAC=15°,∠ADC=20°,则∠ABO的度数为()A.70°B.55°C.45°D.35°3. 如图,在直角坐标系中,以原点为圆心,半径为5的圆内有一点P(0,-3),那么经过点P的所有弦中,最短的弦的长为()A.4 B.5 C.8 D.104. (2019•贵港)如图,AD 是O 的直径,AB CD =,若40AOB ∠=︒,则圆周角BPC ∠的度数是A .40︒B .50︒C .60︒D .70︒5. (2019•广元)如图,AB ,AC分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A .5B .4C .13D .4.86. 在⊙O 中,圆心角∠AOB =3∠COD (∠COD <60°),则劣弧AB ,劣弧CD 的大小关系是( ) A.AB ︵=3CD ︵B.AB ︵>3CD ︵C.AB ︵<3CD ︵D .3AB ︵<CD ︵7. 如图,AB是⊙O的直径,点C,D在⊙O上,∠BOC=110°,AD∥OC,则∠AOD的度数为()A.70°B.60°C.50°D.40°8. 如图,在⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为()A.19 B.16 C.18 D.20二、填空题9.如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O的半径是________.10. 如图,圆内接四边形ABCD中两组对边的延长线分别相交于点E,F,且∠A =55°,∠E=30°,则∠F=________°.11. 如图所示,OB,OC是⊙O的半径,A是⊙O上一点.若∠B=20°,∠C=30°,则∠A=________°.12. 如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O 的半径为________.13. 如图,以△ABC的边BC为直径的⊙O分别交AB,AC于点D,E,连接OD,OE.若∠A=65°,则∠DOE=________°.14. 如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=________°.15. 如图,半径为5的⊙P与y轴交于点M(0,-4),N(0,-10),则圆心P的坐标为________.16. 如图2,一下水管道横截面为圆形,直径为100 cm,下雨前水面宽为60 cm,一场大雨过后,水面宽为80 cm,则水位上升________cm.链接听P39例4归纳总结三、解答题17. 如图,△ABC的高AD,BF相交于点H,AD的延长线交△ABC的外接圆于点E.求证:DH=DE.18. 如图,在⊙O 中,AB ︵=2AC ︵,AD ⊥OC于点D.求证:AB =2AD.19.如图,已知△ABC 内接于⊙O ,点C 在劣弧AB 上(不与点A ,B 重合),点D 为弦BC 的中点,DE ⊥BC ,DE 与AC 的延长线交于点E .射线AO 与射线EB 交于点F ,与⊙O 交于点G .设∠GAB =α,∠ACB =β,∠EAG +∠EBA =γ. (1)点点同学通过画图和测量得到以下近似..数据猜想:β关于α的函数表达式,γ关于α的函数表达式,并给出证明;(2)若γ=135°,CD =3,△ABE 的面积为△ABC 的面积的4倍,求⊙O 半径的长.人教版九年级数学24.1 圆的有关性质课时训练-答案一、选择题1. 【答案】A[解析]∵∠A=22.5°,∴∠COE=45°,∵☉O的直径AB垂直于弦CD,∴∠CEO=90°,CE=DE.∵∠COE=45°,∴CE=OE=OC=3,∴CD=2CE=6,故选A.2. 【答案】B3. 【答案】C[解析] 过点P作弦AB⊥OP,连接OB,如图.则PB=AP,∴AB=2BP=2 OB2-OP2.再过点P任作一条弦MN,过点O作OG⊥MN于点G,连接ON.则MN=2GN=2 ON2-OG2.∵OP >OG ,OB =ON ,∴MN >AB , ∴AB 是⊙O 中的过点P 最短的弦.在Rt △OPB 中,PO =3,OB =5,由勾股定理,得PB =4,则AB =2PB =8.4. 【答案】B【解析】∵AB CD =,40AOB ∠=︒,∴40COD AOB ∠=∠=︒, ∵180AOB BOC COD ∠+∠+∠=︒,∴100BOC ∠=︒,∴1502BPC BOC ∠=∠=︒,故选B .5. 【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴6BC ===, ∵OD AC ⊥,∴142CD AD AC ===,在Rt CBD △中,BD ==C .6. 【答案】A[解析] 把∠AOB 三等分,得到的每一份角所对的弧都等于CD ︵,因此有AB ︵=3CD ︵.7. 【答案】D[解析] ∵∠BOC =110°,∴∠AOC =70°.∵AD ∥OC ,∴∠A =∠AOC =70°.∵OA =OD ,∴∠D =∠A =70°.在△OAD 中,∠AOD =180°-(∠A +∠D)=40°.8. 【答案】D[解析] 如图,延长AO交BC于点D,过点O作OE⊥BC于点E.∵∠A=∠B=60°,∴△DAB是等边三角形,∴AD=DB=AB=12,∠ADB=∠A=60°,∴OD=AD-OA=12-8=4.在Rt△ODE中,∵∠DOE=90°-∠ADB=30°,∴DE=12OD=2,∴BE=DB-DE=12-2=10.由垂径定理,知BC=2BE=20.二、填空题9. 【答案】 5 【解析】本题考查垂径定理、弦、弦心距的性质、正方形的判定与性质、勾股定理等内容. 解题思路:过点O作OF⊥AB,OG⊥CD,垂足分别是F、G. 连接OD.解图⎭⎬⎫⎭⎪⎬⎪⎫AB⊥CDOF⊥ABOG⊥CD⇒四边形OFEG是矩形AB=CD⇒OF=OG⇒⎭⎬⎫ 矩形OFEG 是正方形⎭⎬⎫ ⎭⎪⎬⎪⎫CE =1ED =3 ⇒CD =4 AB ⊥CD ⇒GD =12CD =2⇒EG =1 ⇒OG =GE =1⇒OD =OG 2+DG 2=12+22= 5.10. 【答案】40 [解析] ∵∠BCD =180°-∠A =125°,∠CBF =∠A +∠E =85°,∴∠F =∠BCD -∠CBF =125°-85°=40°.11. 【答案】50 [解析] 连接OA ,则OA =OB ,OA =OC ,∴∠OAB =∠B ,∠OAC =∠C ,∴∠BAC =∠OAB +∠OAC =∠B +∠C =20°+30°=50°.12. 【答案】5 [解析] 设圆的半径为x ,则OE =x -1.根据垂径定理可知,CE =3,由勾股定理可得32+(x -1)2=x2,解得x =5.故答案为5.13. 【答案】50 [解析] 由三角形的内角和定理,得∠B +∠C =180°-∠A .再由OB =OD =OC =OE ,得到∠BDO =∠B ,∠CEO =∠C .在等腰三角形BOD 和等腰三角形COE 中,∠DOB +∠EOC =180°-2∠B +180°-2∠C =360°-2(∠B +∠C )=360°-2(180°-∠A )=2∠A ,所以∠DOE =180°-2∠A =50°.14. 【答案】215 [解析] 连接CE ,则∠B +∠AEC =180°,∠DEC =∠CAD =35°,∴∠B +∠AED =(∠B +∠AEC)+∠DEC =180°+35°=215°.15. 【答案】(-4,-7)[解析] 过点P作PH⊥MN于点H,连接PM,则MH=12MN=3,OH=OM+MH=7.由勾股定理,得PH=4,∴圆心P的坐标为(-4,-7).16. 【答案】10或70[解析] 对于半径为50 cm的圆而言,圆心到长为60 cm的弦的距离为40 cm,到长为80 cm的弦的距离为30 cm.①当圆心在两平行弦之外时,两弦间的距离=40-30=10(cm);②当圆心在两平行弦之间时,两弦间的距离=40+30=70(cm).综上所述,水位上升10 cm或70 cm.三、解答题17. 【答案】证明:连接BE.∵AD,BF是△ABC的高,∴∠FBC+∠C=90°,∠CAD+∠C=90°,∴∠FBC=∠CAD.∵∠CBE=∠CAD,∴∠FBC=∠CBE.又∵BD=BD,∠BDH=∠BDE=90°,∴△BDH≌△BDE,∴DH=DE.18. 【答案】证明:如图,延长AD交⊙O于点E.∵OC ⊥AD ,∴AE ︵=2AC ︵,AE =2AD.∵AB ︵=2AC ︵,∴AE ︵=AB ︵,∴AB =AE ,∴AB =2AD.19. 【答案】【思维教练】(1)观察表格可猜想β=90°+α,γ=180°-α.连接BG ,由直径所对的圆周角为90°和圆内接四边形的对角和为180°即可得出β=90°+α;由题干条件易知△EBD ≌△EGD ,∠EBC =∠ECB ,再由三角形的外角和定理和β=90°+α,利用角度之间的转化即可得出结论;(2)由(1)的结论可以得出α=∠BAG =45°,β=∠ACB =135°,∴∠ECB =45°,∠CEB =90°,△ECD 、△BEC 、△A BG 都是等腰直角三角形,由CD 的长,可得出BE 和CE 的长,再由题干条件△A BE 的面积是△ABC 的面积的4倍可得出AC 的长,利用勾股定理在△ABE 中求出AB 的长,再利用勾股定理在△ABG 求出AG 的长,即可求出半径长.①(1)①β=90°+α,γ=180°-α证明:如解图①,连接BG ,∵AG 是⊙O 的直径,∴∠ABG =90°,∴α+∠BGA =90°,(1分)又∵四边形ACBG 内接于⊙O ,∴β+∠BGA=180°,∴β-α=90°,即β=90°+α;(3分)②∵D是BC的中点,且DE⊥BC,∴△EBD≌△ECD,∴∠EBC=∠ECB,∵∠EAG+∠EBA=γ,∴∠EAB+α+∠EBC+∠CBA=γ,∵∠EAB+∠CBA=∠ECB,∴2∠ECB+α=γ,(4分)∴2(180°-β )+α=γ,由①β=90°+α代入后化简得,γ=180°-α;(6分) (2)如解图②,连接BG,②∵γ=135°,γ=180°-α,∴α=45°,β=135°,∴∠AGB=∠ECB=45°,(8分)∴△ECD和△ABG都是等腰直角三角形,又∵△ABE的面积是△ABC的面积的4倍,∴AE=4AC,∴EC=3AC,(9分)∵CD=3,∴CE=32,AC=2,∴AE=42,(10分) ∵∠BEA=90°,∴由勾股定理得,AB=BE2+AE2=(32)2+(42)2=50=52,(11分)∴AG=2AB=2×52=10,∴r=5.(12分)。

人教版九年级上册数学 圆的有关性质 同步练习(含答案)

人教版九年级上册数学 圆的有关性质 同步练习(含答案)
A.70°B.35°C.40°D.20°
4.如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=130°,则∠BOD的大小是()
A.50°B.100°C.110°D.120°
5.如图,△ABC内接于⊙O,直径AD=6cm,∠DAC=2∠B,则AC的长度为( )
A.3cmB.4cmC.5cmD.6cm
二、填空题
9.如图,四边形ABCD为⊙O的内接四边形,∠ADC=90°ቤተ መጻሕፍቲ ባይዱAB=2,CB=3,则⊙O的直径为_______.
10.如图,点 是 的中点,点 是 上的一点,若 ,则 ______.
11.如图,四边形ABCD是 是内接四边形,已知 ,则 ______.
12.如图,点A、B、C在⊙O上,∠B=130°,则∠AOC=__________°.
(1)证明:
(2)若∠B=70°,求∠CAD的度数;
(3)若AB=4,AC=3,求DE的长.
20.如图, 为 的直径,E为 的中点,弦 于点E,连接 并延长交 于点F,连接 .
(1)求证: 是等边三角形;
(2)若 的半径为2,求 的长.
参考答案:
1.D
2.B
3.D
4.B
5.A
6.B
7.C
8.D
9.
10.110°
人教版九年级上册数学24.1圆的有关性质同步练习
一、单选题
1.如图, 的半径OD垂直弦AB于点C,若 , ,则 的半径为()
A. B.3C.4D.5
2.如图,⊙O的直径AB=2,点C、D在⊙O上,∠ADC=30°,则BC的长为( )
A. B. C.2D.1
3.如图,点A,B,C,D,E在⊙O上,AB=CD,∠OAB=70°,则∠CED=()

人教版九年级上《24.1圆的有关性质》同步练习含答案(共4份)

人教版九年级上《24.1圆的有关性质》同步练习含答案(共4份)

24.1.1圆知识点1圆的定义1.圆的形成定义:在一个平面内,线段绕它固定的一个端点旋转________,另一个端点所形成的图形叫做圆.圆的集合定义:圆心为O、半径为r的圆可以看成是所有到定点O 的距离等于________的点的集合.2.下列条件中,能确定圆的是()A.以已知点O为圆心B.以1 cm长为半径C.经过已知点A,且半径为2 cmD.以点O为圆心,1 cm长为半径3.如图24-1-1所示,以坐标原点O为圆心的圆与y轴交于点A,B,且OA=1,则点B的坐标是()图24-1-1A.(0,1) B.(0,-1)C.(1,0) D.(-1,0)4.如图24-1-2所示,若BD,CE都是△ABC的高.求证:B,C,D,E四点在同一个圆上.图24-1-2知识点2与圆有关的概念5.如图24-1-3所示,在⊙O中,________是直径,________是弦,劣弧有________,优弧有________.图24-1-36.如图24-1-4,在⊙O中,点A,O,D以及点B,O,C分别在一条直线上,图中弦的条数是()图24-1-4A.2 B.3 C.4 D.57.下列命题中是真命题的有()①两个端点能够重合的弧是等弧;②圆的任意一条弦把圆分成优弧和劣弧两部分;③长度相等的弧是等弧;④半径相等的两个圆是等圆;⑤直径是圆中最长的弦.A.2个B.3个C.4个D.5个8.若圆的半径为3,则弦AB的长度的取值范围是__________.9.已知:如图24-1-5,OA,OB为⊙O的半径,C,D分别为OA,OB的中点.求证:AD=BC.图24-1-510.已知:如图24-1-6,在⊙O中,AB为弦,C,D两点在弦AB上,且AC=BD.求证:△OAC≌△OBD.图24-1-611.如图24-1-7,AB 是⊙O 的直径,点D ,C 在⊙O 上,AD ∥OC ,∠DAB =60°,连接AC ,则∠DAC 等于( )图24-1-7A .15°B .30°C .45°D .60°12.如图24-1-8所示,AB ,MN 是⊙O 中两条互相垂直的直径,点P 在AM ︵上,且不与点A ,M 重合,过点P 作AB ,MN 的垂线,垂足分别是D ,C.当点P 在AM ︵上移动时,矩形PCOD 的形状、大小随之变化,则PC 2+PD 2的值( )图24-1-8A .逐渐变大B .逐渐变小C .不变D .不能确定13.如图24-1-9,已知P 是⊙O 外一点,Q 是⊙O 上的动点,线段PQ 的中点为M ,连接OP ,OM.若⊙O 的半径为2,OP =4,则线段OM 的最小值是( )图24-1-9A .0B .1C .2D .314.如图24-1-10,在Rt △ABC 中,以点C 为圆心,BC 长为半径的圆交AB 于点D ,交AC 于点E ,∠BCD =40°,则∠A =________°.图24-1-1015.如图24-1-11,C 是以点O 为圆心,AB 为直径的半圆上一点,且CO ⊥AB ,在OC 两侧分别作矩形OGHI 和正方形ODEF ,且点I ,F 在OC 上,点H ,E 在半圆上,可证:IG =FD.小云发现连接图中已知点得到两条线段,便可证明IG =FD.请回答:小云所作的两条线段分别是________和________.图24-1-1116.⊙O 1与⊙O 2的半径分别是r 1,r 2,且r 1和r 2是关于x 的方程x 2-ax +14=0的两个根.若⊙O 1与⊙O 2是等圆,则a 2019的值为________.17.如图24-1-12所示,AB 是⊙O 的弦,半径OC ,OD 分别交AB 于点E ,F ,且AE =BF ,请你指出线段OE 与OF 的数量关系,并给予证明.图24-1-1218.在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图24-1-13①,当PQ∥AB时,求PQ的长;(2)如图24-1-13②,当点P在BC上移动时,求PQ长的最大值.图24-1-13教师详解详析1.一周 定长r2.D [解析]∵圆心和半径都确定后才可以确定圆,只有D 选项中具备这两个条件, ∴D 选项正确.3.B [解析]∵圆的半径都相等,∴OB =OA =1, ∴点B 的坐标是(0,-1).故选B .4.证明:如图,取BC 的中点F ,连接DF ,EF.∵BD ,CE 都是△ABC 的高, ∴△BCD 和△BCE 都是直角三角形,∴DF ,EF 分别是Rt △BCD 和Rt △BCE 斜边上的中线, ∴DF =EF =BF =CF ,∴B ,C ,D ,E 四点在以点F 为圆心,BF 的长为半径的圆上. 5.AD AD ,AC AC ︵,CD ︵ ADC ︵,CAD ︵6.B [解析] 图中的弦有AB ,BC ,CE ,共3条.7.A [解析] 等弧是完全重合的弧,故①③错误;直径把圆分成两条相等的弧,即两个半圆,故②错误;半径相等的圆可以完全重合,是等圆,故④正确;直径是圆中最长的弦,故⑤正确.故选A .8.0<AB ≤69.证明:∵OA ,OB 为⊙O 的半径,∴OA =OB. ∵C ,D 分别为OA ,OB 的中点, ∴OC =OD.在△AOD 和△BOC 中,∵⎩⎨⎧OA =OB ,∠O =∠O ,OD =OC ,∴△AOD ≌△BOC(SAS ), ∴AD =BC.10.证明:∵OA =OB , ∴∠A =∠B.在△OAC 和△OBD 中,∵⎩⎨⎧OA =OB ,∠A =∠B ,AC =BD ,∴△OAC ≌△OBD(SAS ). 11.B [解析]∵OA =OC , ∴∠CAO =∠ACO.∵AD ∥OC ,∴∠DAC =∠ACO , ∴∠DAC =∠CAO.∵∠DAB =60°,∴∠DAC =12∠DAB =30°.12.C [解析] 连接OP.∵四边形PCOD 是矩形,∴PC =OD ,∴PC 2+PD 2=OD 2+PD 2=OP 2,为一定值.故选C .13.B [解析] 设OP 与⊙O 交于点N ,连接MN ,OQ ,如图.∵OP =4,ON =2,∴N 是OP 的中点. 又∵M 是PQ 的中点, ∴MN 为△POQ 的中位线, ∴MN =12OQ =12×2=1,∴点M 在以点N 为圆心,1为半径的圆上, ∴当点M 在ON 上时,OM 的值最小,最小值为1. 故选B .14.20 [解析]∵CB =CD ,∴∠B =∠CDB. ∵∠B +∠CDB +∠BCD =180°,∴∠B =12(180°-∠BCD)=12(180°-40°)=70°.又∵∠ACB =90°,∴∠A =90°-∠B =20°.15.OH OE [解析] 连接OH ,OE ,如图所示.∵在矩形OGHI 和正方形ODEF 中,IG =OH ,OE =FD , 又∵OH =OE , ∴IG =FD.16.1 [解析]∵⊙O 1与⊙O 2是等圆,∴r 1=r 2,即方程x 2-ax +14=0有两个相等的实数根,∴Δ=b 2-4ac =a 2-4×14=0,即a 2=1,∴a =±1.又∵r 1=r 2>0,a =r 1+r 2,∴a =1, ∴a 2019=12019=1.17.解:OE =OF.证明:连接OA ,OB. ∵OA =OB ,∴∠A =∠B. 又∵AE =BF , ∴△OAE ≌△OBF , ∴OE =OF.18.解:(1)连接OQ.∵PQ ∥AB ,PQ ⊥OP ,∴OP ⊥AB. ∵AB =6,∴OB =3. ∵∠ABC =30°, ∴PB =2OP.在Rt △PBO 中,由勾股定理,得PB 2=OP 2+OB 2. 设OP =x ,则PB =2x ,则(2x)2=x 2+32, 解得x =3(负值已舍去),∴OP = 3.在Rt △OPQ 中,由勾股定理,得PQ =OQ 2-OP 2=32-(3)2= 6. (2)连接OQ ,由勾股定理得 PQ =OQ 2-OP 2=9-OP 2.要使PQ 取最大值,需OP 取最小值,此时OP ⊥BC. ∵∠ABC =30°, ∴OP =12OB =32,此时PQ 最大值=9-94=323.24.1.2 垂直于弦的直径知识点 1 圆的对称性1.下列说法中,不正确的是( ) A .圆既是轴对称图形,又是中心对称图形 B .圆绕着它的圆心旋转任意角度,都会与自身重合 C .圆的对称轴有无数条,对称中心只有一个 D .圆的每一条直径都是它的对称轴 知识点 2 垂径定理2.如图24-1-14,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不成立的是( )图24-1-14A .CM =DM B.CB ︵=DB ︵C .∠ACD =∠ADC D .OM =MB3.如图24-1-15所示,⊙O 的半径为13,弦AB 的长度是24,ON ⊥AB ,垂足为N ,则ON 的长度为( )图24-1-15A .5B .7C .9D .114.2017·泸州如图24-1-16,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB =8,AE=1,则弦CD的长是()图24-1-16A.7B.27C.6 D.85.2017·金华如图24-1-17,在半径为13 cm的圆形铁片上切下一块高为8 cm的弓形铁片,则弓形弦AB的长为()图24-1-17A.10 cm B.16 cm C.24 cm D.26 cm6.2017·长沙如图24-1-18,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为________.图24-1-187.2016·宿迁如图24-1-19,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC =2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为________.图24-1-198.如图24-1-20,两个圆都以点O为圆心,大圆的弦AB交小圆于C,D两点.求证:AC=BD.图24-1-209.如图24-1-21,已知AB,CD是⊙O的两条弦,OE⊥AB于点E,OF⊥CD于点F,OE=OF.求证:AB=CD.图24-1-21知识点3垂径定理的推论10.下列说法正确的是()A.垂直于弦的直线平分弦所对的两条弧B.平分弦的直径垂直于弦C.垂直于直径的弦平分这条直径D.弦的垂直平分线经过圆心11.如图24-1-22所示,⊙O的直径CD=10 cm,AB是⊙O的弦,AM=BM,OM∶OC=3∶5,则AB的长为()图24-1-22A.8 cm B.91cmC.6 cm D.2 cm12.如图24-1-23所示,AB是⊙O的直径,∠BAC=42°,D是弦AC的中点,则∠DOC=________°.图24-1-2313.2017·西宁如图24-1-24,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP =6,∠APC=30°,则CD的长为()图24-1-24A.15B.2 5C.2 15D.814.已知⊙O的半径为13 cm,弦AB∥CD,AB=24 cm,CD=10 cm,则AB与CD之间的距离为()A.17 cm B.7 cmC.12 cm D.17 cm或7 cm15.如图24-1-25,AB是⊙O的弦,AB的长为8,P是⊙O上一个动点(不与点A,B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为________.图24-1-2516.如图24-1-26,⊙O的直径为10 cm,弦AB=8 cm,P是弦AB上的一个动点,则OP长的取值范围是________________.图24-1-2617.如图24-1-27,点A,B,C,D在⊙O上,AB是⊙O的直径,BE=CE.(1)请写出四个不同类型的正确结论;(2)若BE=4,AC=6,求DE的长.图24-1-2718.如图24-1-28,一条公路的转弯处是一段圆弧AB ︵.(1)用直尺和圆规作出AB ︵所在圆的圆心O (要求保留作图痕迹,不写作法); (2)若AB ︵的中点C 到弦AB 的距离为20 m ,AB =80 m ,求AB ︵所在圆的半径.图24-1-2819.有一石拱桥的桥拱是圆弧形,如图24-1-29所示,正常水位下水面宽AB=60 m,水面到拱顶距离CD=18 m,当洪水泛滥,水面到拱顶距离为3.5 m时需要采取紧急措施,当水面宽MN=32 m时,是否需要采取紧急措施?请说明理由.图24-1-29教师详解详析1.D2.D [解析]∵AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,∴M 为CD 的中点,即CM =DM ,选项A 成立.由已知得B 为CD ︵的中点,即CB ︵=DB ︵,选项B 成立.在△ACM 和△ADM 中,∵AM =AM ,∠AMC =∠AMD =90°,CM =DM ,∴△ACM ≌△ADM ,∴∠ACD =∠ADC ,选项C 成立.而OM 与MB 不一定相等,选项D 不成立.故选D .3.A [解析] 因为ON ⊥AB ,所以AN =12AB =12×24=12,∠ANO =90°.在Rt △AON中,由勾股定理,得ON =OA 2-AN 2=132-122=5.故选A .4.B [解析] 连接OC ,则OC =4,OE =3,在Rt △OCE 中,CE =OC 2-OE 2=42-32=7.因为CD ⊥AB ,所以CD =2CE =2 7.5.C [解析] 如图,过点O 作OD ⊥AB 于点C ,交⊙O 于点D. ∵CD =8 cm ,OD =13 cm , ∴OC =5 cm . 又∵OB =13 cm , 在Rt △BCO 中,根据勾股定理,得BC =OB 2-OC 2=132-52=12(cm ) .∵OC ⊥AB , ∴AB =2BC =24 cm .6.5 [解析] 如图,连接OC , ∵AB 为⊙O 的直径,CD ⊥AB ,∴CE =DE =12CD =12×6=3.设⊙O 的半径为x ,则OC =x ,OE =OB -BE =x -1. 在Rt △OCE 中,OC 2=OE 2+CE 2, 即x 2=(x -1)2+32, 解得x =5, ∴⊙O 的半径为5.7.2 3 [解析] 如图,作CE ⊥AB 于点E.∠B =180°-∠BAC -∠ACB =180°-20°-130°=30°.在Rt △BCE 中,∵∠CEB =90°,∠B =30°,BC =2, ∴CE =12BC =1,BE =BC 2-CE 2= 3.∵CE ⊥BD ,∴BD =2BE =2 3.8.证明:过点O 作OH ⊥AB 于点H ,如图,则AH =BH ,CH =DH ,∴AH -CH =BH -DH ,即AC =BD.9.证明:∵OE ⊥AB ,OF ⊥CD , ∴AE =BE ,CF =DF.在Rt △OBE 与Rt △ODF 中,∵⎩⎨⎧OB =OD ,OE =OF ,∴Rt △OBE ≌Rt △ODF(HL ),∴BE =DF ,∴2BE =2DF ,即AB =CD. 10.D11.A [解析] 如图所示,连接OA. ∵⊙O 的直径CD =10 cm ,∴⊙O 的半径为5 cm ,即OA =OC =5 cm . ∵OM ∶OC =3∶5,∴OM =3 cm . ∵AM =BM ,∴AB ⊥CD.在Rt △AOM 中,AM =52-32=4(cm ), ∴AB =2AM =2×4=8(cm ).故选A .12.48 [解析]∵AD =CD ,∴OD ⊥AC. ∴∠CDO =90°,∴∠DOC +∠ACO =90°. ∵OA =OC ,∴∠ACO =∠A =42°, ∴∠DOC =90°-∠ACO =48°.13.C [解析] 作OH ⊥CD 于点H ,连接OC ,如图, ∵OH ⊥CD ,∴HC =HD.∵AP =2,BP =6,∴AB =8,∴OA =4, ∴OP =OA -AP =2.在Rt △OPH 中,∵∠OPH =30°, ∴OH =12OP =1.在Rt △OHC 中,∵OC =OA =4,OH =1, ∴CH =OC 2-OH 2=15, ∴CD =2CH =2 15.14.D [解析]①当弦AB 和CD 的位置如图①所示时,过点O 作OE ⊥AB 于点E ,延长OE 交CD 于点F ,则OF ⊥CD. ∵AB =24 cm ,CD =10 cm , ∴AE =12 cm ,CF =5 cm . ∵OA =OC =13 cm , ∴OE =5 cm ,OF =12 cm , ∴EF =12-5=7(cm ).②当弦AB 和CD 的位置如图②所示时,过点O 作OE ⊥AB 于点E ,延长EO 交CD 于点F ,则OF ⊥CD.∵AB =24 cm ,CD =10 cm , ∴AE =12 cm ,CF =5 cm . ∵OA =OC =13 cm , ∴OE =5 cm ,OF =12 cm , ∴EF =OF +OE =17(cm ).∴AB 与CD 之间的距离为7 cm 或17 cm . 15. 4 [解析]∵OC ⊥AP ,OD ⊥PB , ∴AC =PC ,PD =BD , ∴CD 是△ABP 的中位线. ∵AB 的长为8, ∴CD =12AB =4.16.3 cm ≤OP ≤5 cm [解析] 作直径MN ⊥弦AB ,垂足为D.由垂径定理,得AD =DB =12AB =4 cm .由⊙O 的直径为10 cm ,连接OA ,可得OA =5 cm . 由勾股定理,得OD =OA 2-AD 2=3 cm . ∵垂线段最短,半径最长,∴OP 长的取值范围是3 cm ≤OP ≤5 cm .17.解:(1)不同类型的正确结论有:BE =12BC ,BD ︵=CD ︵,BD =CD ,OD ⊥BC ,△BOD是等腰三角形,△BDE ≌△CDE ,OB 2=OE 2+BE 2等(答案不唯一,合理即可).(2)∵AB 是⊙O 的直径,∴OA =OB.∵BE =CE ,∴OD ⊥BC ,OE 为△ABC 的中位线, ∴OE =12AC =12×6=3.在Rt △OBE 中,由勾股定理,得 OB =OE 2+BE 2=32+42=5, ∴OD =OB =5,∴DE =OD -OE =5-3=2.18.解:(1)如图①,连接AC ,BC ,作线段AC ,BC 的垂直平分线交于点O ,点O 即为所求.(2)如图②,连接OA ,AB ,OC ,OC 交AB 于点D.∵C 为AB ︵的中点,∴OC ⊥AB , ∴AD =BD =12AB =40 m .设⊙O 的半径为r m ,则OA =r m ,OD =OC -CD =(r -20)m . 在Rt △OAD 中,∵OA 2=OD 2+AD 2, ∴r 2=(r -20)2+402,解得r =50. 即AB ︵所在圆的半径是50 m .19.解:不需要采取紧急措施.理由:∵CD 为弓形的高,∴AB ︵所在圆的圆心在直线CD 上.设圆心为O ,连接OA ,OC ,OM.设OA =R m ,在Rt △AOC 中,AC =12AB =30 m ,OC =OD -CD =(R -18)m ,∴R 2=302+(R -18)2,解得R =34.设CD 交MN 于点E ,DE =x m ,在Rt △MOE 中,ME =12MN =16 m ,OE =OD -DE=(34-x)m ,∴342=162+(34-x)2,即x 2-68x +256=0, 解得x 1=4,x 2=64(不合题意,舍去), ∴DE =4 m .∵4 m >3.5 m , ∴不需要采取紧急措施.24.1.3 弧、弦、圆心角知识点 1 圆心角的概念及其计算1.下面四个图中的角,是圆心角的是( )图24-1-302.如图24-1-31,已知AB 为⊙O 的直径,点D 为半圆周上的一点,且AD ︵所对圆心角的度数是BD ︵所对圆心角度数的2倍,则圆心角∠BOD =________°.图24-1-313.在半径为2的⊙O 中,弦AB 的长为2,则弦AB 所对的圆心角的度数为________. 知识点 2 弧、弦、圆心角之间的关系4.如图24-1-32,AB ,CD 是⊙O 的两条弦. (1)∵∠AOB =∠COD ,∴________,________. (2)∵AB ︵=CD ︵,∴____________,____________. (3)∵AB =CD ,∴____________,____________.图24-1-325.已知:如图24-1-33,AB 是⊙O 的直径,C ,D 是BE ︵的三等分点,∠AOE =60°,则∠COE 等于( )图24-1-33A .40°B .60°C .80°D .120°6.如图24-1-34,AB 是⊙O 的直径,BC ,CD ,DA 是⊙O 的弦,且BC =CD =DA ,则∠B 等于( )图24-1-34A .50°B .60°C .70°D .80°7.如图24-1-35,在⊙O 中,C 是AB ︵的中点,∠A =50°,则∠BOC =________°.图24-1-358.如图24-1-36所示,在⊙O 中,弦AB 与弦CD 相等.求证:AD ︵=BC ︵.图24-1-369.已知:如图24-1-37,在⊙O 中,AB ︵=CD ︵,则下列结论:①AB =CD ;②AC =BD ;③∠AOC =∠BOD ;④AC ︵=BD ︵.其中正确的有( )图24-1-37A .1个B .2个C .3个D .4个10.如图24-1-38所示,在⊙O 中,如果AB ︵=2AC ︵,那么( )图24-1-38A .AB =AC B .AB =2AC C .AB <2ACD .AB >2AC11.如图24-1-39,已知在△ABC 中,∠ACB =90°,∠B =35°,以点C 为圆心,CA 长为半径的圆交AB 于点D ,则AD ︵所对的圆心角为________度.图24-1-3912.如图24-1-40所示,A ,B 是半径为3的⊙O 上的两点,若∠AOB =120°,C 是AB ︵的中点,则四边形AOBC 的周长等于________.图24-1-4013.2017·牡丹江如图24-1-41,在⊙O 中,AC ︵=CB ︵,CD ⊥OA 于点D ,CE ⊥OB 于点E .求证:AD =BE .图24-1-4114.如图24-1-42,AB,CD是⊙O的两条直径,过点A作AE∥CD交⊙O于点E,连接BD,DE.求证:BD=DE.图24-1-4215.已知:如图24-1-43,在⊙O 中,M ,N 分别是半径OA ,OB 的中点,且CM ⊥OA ,DN ⊥OB .求证:AC ︵=BD ︵.图24-1-4316.如图24-1-44所示,∠AOB =90°,C ,D 是AB ︵的三等分点,AB 与OC ,OD 分别交于点E ,F .求证:AE =BF =CD .图24-1-44教师详解详析1.D [解析]∵圆心角的顶点必须在圆心, ∴选项A ,B ,C 均不对.故选D . 2.603.60° [解析] 如图,连接OA ,OB.∵OA =OB =AB =2,∴△OAB 是等边三角形,∴∠AOB =60°. 故弦AB 所对的圆心角的度数为60°. 4.(1)AB ︵=CD ︵AB =CD (2)∠AOB =∠COD AB =CD (3)∠AOB =∠COD AB ︵=CD ︵5.C [解析]∵C ,D 是BE ︵的三等分点, ∴BC ︵=CD ︵=DE ︵,∴∠BOC =∠COD =∠DOE.∵∠AOE =60°,∴∠BOC =∠COD =∠DOE =13(180°-∠AOE)=13(180°-60°)=40°,∴∠COE =80°.6.B [解析] 连接OC ,OD.∵BC =CD =DA ,∴∠BOC =∠COD =∠AOD =13×180°=60°,∴△OBC ,△OCD ,△AOD 都是等边三角形,∴∠B =60°.7.40 [解析]∵在⊙O 中,OA =OB ,∠A =50°,∴∠B =50°, ∴∠AOB =180°-∠A -∠B =80°.∵C 是AB ︵的中点, ∴∠BOC =12∠AOB =40°.8.证明:∵AB =CD ,∴AB ︵=CD ︵, ∴AB ︵-DB ︵=CD ︵-DB ︵,即AD ︵=BC ︵.9.D [解析]∵AB ︵=CD ︵,根据同弧所对的弦相等,∴AB =CD ,故①正确.∵AB ︵-CB ︵=CD ︵-CB ︵,∴AC ︵=BD ︵,故④正确.根据同弧所对的弦、圆心角都相等,得②③正确.10.C [解析] 取AB ︵的中点D ,连接AD ,BD ,则AD ︵=BD ︵=AC ︵,∴AD =BD =AC.又∵在△ABD 中,AB <AD +BD ,∴AB <2AC.11.7012.12 [解析]∵C 是AB ︵的中点,∴∠AOC =∠BOC.又∵∠AOB =120°,∴∠AOC =∠BOC =60°,∴△AOC 和△BOC 都是等边三角形,∴OA =OB =CA =CB =3,∴四边形AOBC 的周长等于12.13.证明:连接OC ,∵AC ︵=CB ︵, ∴∠AOC =∠BOC.∵CD ⊥OA 于点D ,CE ⊥OB 于点E , ∴∠CDO =∠CEO =90°. 在△COD 与△COE 中,∵⎩⎨⎧∠DOC =∠EOC ,∠CDO =∠CEO ,CO =CO ,∴△COD ≌△COE(AAS ), ∴OD =OE. ∵AO =BO ,∴AO -OD =BO -OE ,即AD =BE. 14.证明:如图,连接OE.∵OA =OE ,∴∠A =∠OEA. ∵AE ∥CD ,∴∠BOD =∠A ,∠DOE =∠OEA , ∴∠BOD =∠DOE ,∴BD =DE. 15.证明:连接OC ,OD ,则OC =OD.∵M ,N 分别是半径OA ,OB 的中点, ∴OM =ON.∵CM ⊥OA ,DN ⊥OB , ∴∠OMC =∠OND =90°. 在Rt △OMC 和Rt △OND 中,⎩⎨⎧OM =ON ,OC =OD ,∴Rt △OMC ≌Rt △OND(HL ), ∴∠MOC =∠NOD ,∴AC ︵=BD ︵. 16.证明:连接AC ,BD. ∵C ,D 是AB ︵的三等分点,∴AC =CD =BD ,且∠AOC =13×90°=30°.∵OA =OC ,∴∠OAC =∠OCA =75°. ∵∠AOB =90°,OA =OB , ∴∠OAE =∠OBF =45°,∴∠AEC =∠OAE +∠AOC =45°+30°=75°, ∴AE =AC.同理可证BF =BD ,∴AE =BF =CD.24.1.4 圆周角知识点 1 圆周角的概念1.下列四个图中,∠α是圆周角的是( )图24-1-452.如图24-1-46,图中有多少个圆周角?BC ︵所对的圆周角有几个?CD ︵所对的圆周角有几个?图24-1-46知识点 2 圆周角定理3.2017·徐州如图24-1-47,点A ,B ,C 在⊙O 上,∠AOB =72°,则∠ACB 等于( )图24-1-47A .28°B .54°C .18°D .36°4.如图24-1-48所示,把一个量角器放置在△ABC 的上面,根据量角器的读数可得∠BAC 的度数是( )图24-1-48A .60°B .30°C .20°D .15°5.如图24-1-49,A ,B ,P 是半径为2的⊙O 上的三点,∠APB =45°,则弦AB 的长为( )图24-1-49A.2B .2 C .2 2D .46.2017·义乌如图24-1-50,一块含45°角的三角尺,它的一个锐角顶点A 在⊙O 上,边AB ,AC 分别与⊙O 交于点D ,E ,则∠EOD =________°.图24-1-50知识点 3 圆周角定理的推论7.如图24-1-51,在⊙O 中,AB ︵=AC ︵,∠BAC =50°,则∠AEC 的度数为( )图24-1-51A .50°B .55°C .65°D .75°8.如图24-1-52,已知AB 是⊙O 的直径,点C 在⊙O 上,若∠CAB =40°,则∠ABC =________°.图24-1-529.2017·湖州如图24-1-53,已知在△ABC 中,AB =AC .以AB 为直径作半圆O ,交BC 于点D .若∠BAC =40°,则AD ︵的度数是________度.图24-1-5310.如图24-1-54所示,已知四边形ABCD 的四个顶点均在⊙O 上,AB =BC ,BD 交AC 于点E .求证:DB 平分∠ADC .图24-1-54知识点4圆内接多边形11.2017·淮安如图24-1-55,在圆内接四边形ABCD中,若∠A,∠B,∠C的度数之比为4∶3∶5,则∠D的度数是________°.图24-1-5512.如图24-1-56所示,四边形ABCD内接于⊙O,∠B=50°,∠ACD=25°,∠BAD=65°.求证:(1)AD=CD;(2)AB是⊙O的直径.图24-1-5613.2017·云南如图24-1-57,B,C是⊙A上的两点,AB的垂直平分线与⊙A交于E,F两点,与线段AC交于点D.若∠BFC=20°,则∠DBC=()图24-1-57A.30°B.29°C.28°D.20°14.2017·西宁如图24-1-58,四边形ABCD内接于⊙O,点E在BC的延长线上,若∠BOD=120°,则∠DCE=________°.图24-1-5815.如图24-1-59,一块三角尺ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是58°,则∠ACD=________°.图24-1-5916.已知:如图24-1-60,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O 于点E,∠BAC=45°.(1)求∠EBC的度数;(2)求证:BD=CD.图24-1-6017.如图24-1-61,AB 是⊙O 的直径,C 为AE ︵的中点,CD ⊥AB 于点D ,交AE 于点F ,连接AC .求证:AF =CF .图24-1-6118.2017·六盘水如图24-1-62,MN 是⊙O 的直径,MN =4,点A 在⊙O 上,∠AMN=30°,B 为AN ︵的中点,P 是直径MN 上一动点.(1)利用尺规作图,确定当P A +PB 最小时点P 的位置(不写作法,但要保留作图痕迹); (2)求P A +PB 的最小值.图24-1-62教师详解详析1.C [解析] 根据圆周角的定义,顶点在圆上,可排除选项D .根据两边都与圆相交可排除选项A ,B .故选C .2.解:图中有8个圆周角,BC ︵所对的圆周角有1个,是∠BDC ;CD ︵所对的圆周角有2个,分别是∠CBD ,∠CAD.3.D [解析] 根据同弧所对的圆周角等于圆心角的一半,得∠ACB =12∠AOB =12×72°=36°.4.D5.C [解析] 如图,连接OA ,OB.因为∠APB 和∠AOB 分别是AB ︵所对的圆周角和圆心角,所以∠AOB =2∠APB =2×45°=90°.在Rt △AOB 中,OA =OB =2,由勾股定理,得AB =2 2.故选C .6.90 [解析]∠EOD =2∠A =2×45°=90°.7.C [解析]∵AB ︵=AC ︵,∴AB =AC.∵∠BAC =50°,∴∠ABC =12(180°-50°)=65°,∴∠AEC =∠ABC =65°.故选C .8.50 [解析]∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠ABC =90°-∠CAB =90°-40°=50°.9.140 [解析] 连接AD ,OD.∵AB 为圆的直径,∴∠ADB =90°.又∵AB =AC ,∠BAC =40°,根据“等腰三角形三线合一”得到AD 平分∠BAC ,∴∠OAD =20°.又∵OA =OD ,∴∠BOD =2∠OAD =40°,∴∠AOD =140°.即AD ︵的度数是140度.10.证明:∵AB =BC ,∴AB ︵=BC ︵,∴∠ADB =∠BDC , 即DB 平分∠ADC.11.120 [解析] 因为四边形ABCD 是⊙O 的内接四边形,所以∠A +∠C =∠B +∠D =180°.因为∠A ,∠B ,∠C 的度数之比为4∶3∶5,所以∠A ,∠B ,∠C ,∠D 的度数之比为4∶3∶5∶6,所以∠D =63+6×180°=120°.12.证明:(1)∵四边形ABCD 内接于⊙O , ∴∠D =180°-∠B =130°. 又∵∠ACD =25°,∴∠DAC =180°-∠D -∠ACD =180°-130°-25°=25°, ∴∠DAC =∠ACD ,∴AD =CD.(2)∵∠BAC =∠BAD -∠DAC =65°-25°=40°,∠B =50°, ∴∠ACB =180°-∠B -∠BAC =180°-50°-40°=90°, ∴AB 是⊙O 的直径.13.A [解析]∵∠BFC =20°, ∴∠BAC =2∠BFC =40°. ∵AB =AC ,∴∠ABC =∠ACB =180°-40°2=70°.又∵EF 是线段AB 的垂直平分线, ∴AD =BD ,∴∠A =∠ABD =40°,∴∠DBC =∠ABC -∠ABD =70°-40°=30°. 故选A .14.60 [解析]∵∠BOD =120°,∴∠BAD =60°.又∵∠BAD +∠BCD =180°,∠DCE +∠BCD =180°,∴∠DCE =∠BAD =60°.15.61 [解析] 设AB 的中点为O ,连接OD.∵三角尺ABC 的斜边AB 与量角器的直径恰好重合,∴点C 在以AB 为直径的圆上.∵点D 对应的刻度是58°,∴∠DCB =12×58°=29°,∴∠ACD =90°-29°=61°.16.解:(1)∵AB 是⊙O 的直径, ∴∠AEB =90°.又∵∠BAC =45°,∴∠ABE =45°. ∵AB =AC ,∴∠ABC =∠C =67.5°,∴∠EBC =∠ABC -∠ABE =67.5°-45°=22.5°. (2)证明:连接AD. ∵AB 是⊙O 的直径, ∴∠ADB =90°,∴AD ⊥BC. 又∵AB =AC , ∴BD =CD.17.证明:如图,连接BC.∵AB 是⊙O 的直径, ∴∠ACB =90°, 即∠ACF +∠BCD =90°.∵CD ⊥AB ,∴∠B +∠BCD =90°, ∴∠ACF =∠B. ∵C 为AE ︵的中点,∴AC ︵=CE ︵, ∴∠B =∠CAE , ∴∠ACF =∠CAE , ∴AF =CF.18.[解析] (1)画出点A 关于MN 的对称点A′,连接A′B ,与MN 的交点即为点P. (2)利用∠AMN =30°得∠AON =∠A′ON =60°,又由B 为AN ︵的中点,可得∠BON =30°,∴∠A ′OB =90°,再由勾股定理求得PA +PB 的最小值为2 2.解:(1)如图,点P 即为所求.(2)如图,连接OA ,OA ′,OB.由(1)可得,PA +PB 的最小值即为线段A′B 的长.∵点A′和点A 关于MN 对称且∠AMN =30°,∴∠AON =∠A′ON =2∠AMN =60°.又∵B 为AN ︵的中点,∴∠BON =12∠AON =30°,∴∠A ′OB =90°.∵MN =4,∴OB =OA ′=2.在Rt △A ′OB 中,由勾股定理得A ′B =22+22=2 2.∴PA +PB 的最小值是2 2.。

人教版九年级数学上册24.1 圆的基本性质同步练习含答案【精选】

人教版九年级数学上册24.1 圆的基本性质同步练习含答案【精选】

第二十四章圆24.1 圆(第一课时)知识点1、圆的定义:⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转形成的图形叫做圆,固定的端点叫,线段OA 叫做。

⑵描述性定义:圆是到定点的距离等于的点的集合【特别注意】:1、在一个圆中,圆心决定圆的,半径决定圆的。

2、直径是圆中的弦,弦不一定是直径。

2、弦与弧:弦:连接圆上任意两点的叫做弦。

弧:圆上任意两点间的叫做弧,弧可分为、、三类。

3、圆的对称性:⑴轴对称性:圆是轴对称图形,有条对称轴,的直线都是它的对称轴。

⑵中心对称性:圆是中心对称图形,对称中心是。

一、选择题1.下列命题正确的有()①弦是圆上任意两点之间的部分②半径是弦③直径是最长的弦④弧是半圆,半圆是弧A.1个B.2个C.3个D.4个2.如图所示,MN为⊙O的弦,∠N=52°,则∠MON的度数为()A.38°B.52°C.76°D.104°3.如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C 的度数是()A.25°B.40°C.30°D.50°4.一个点到圆上的最小距离是4cm,最大距离是9cm,则圆的半径是().A.2.5cm或6.5 cmB.2.5cmC.6.5cmD.5cm或13cm5.如图,已知在⊙O中,AB、CD为直径,则AD与BC的关系是().B.AD∥BCC.AD∥BC且AD=BCD.不能确定BCDO6.如图,已知AB 为⊙O 的直径,点C 在⊙O 上,∠C=15°,则∠BOC 的度数为( )A .15°B . 30°C . 45°D .60°二、填空题1.⊙O 的半径为2cm ,则它的弦长d cm 的取值范围是.2.⊙O 中若弦AB 等于⊙O 的半径,则△AOB 的形状是 .3.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,点D 是BC 的中点,若AC =10cm ,则OD = cm.4.如图4,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ,CD 的延长线交于E ,若AB=2DE ,∠E=18°,∠C=______,∠AOC=________;5. P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm ,则经过P 点的最长弦长为_______,最短弦长为________;三、解答题1.在Rt △ABC 中,∠C=90°,BC=3cm,AC=4cm,D 为AB 的中点,E 为AC 的中点,以B 为圆心,BC 为半径作⊙B ,A 、C 、D 、E 与⊙B 的位置关系如何?DC BA2、如图, M,N 为线段AB 上的两个三等分点,点A 、B 在⊙O 上,BDO CAABCO求证:∠OMN=∠ONM。

九年级数学上册 第二十四章 24.1 圆的有关性质课时练 (新版)新人教版

九年级数学上册 第二十四章 24.1 圆的有关性质课时练 (新版)新人教版

第二十四章 24.1 圆的有关性质学校:姓名:班考号:()A. ∠ABCB. ∠AOBC.∠OAB D. ∠OBC2. 下列命题中,不一定成立的是()A. 圆既是中心对称图形又是轴对称图形B. 弦的垂线经过圆心且平分这条弦所对的弧C. 弧的中点与圆心的连线垂直平分这条弧所对的弦D. 垂直平分弦的直线必过圆心3. 如图所示,在半径为2 cm的圆O内有长为2 cm的弦AB,则此弦所对的圆心角∠AOB为()A. 60°B. 90°C.120° D. 150°4. 如图所示,AB是☉O的直径,点C,D在☉O上,∠BOC=110°,AD∥OC,则∠AOD= ()A. 70°B. 60°C.50° D. 40°5. 如图,四边形ABCD是☉O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A. 88°B. 92°C.106° D. 136°6. 已知☉O的直径CD=10cm,AB是☉O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为().A. 2cmB. 4cmC. 2cm或4cm D. 2cm或4cm2 27. 如图所示,☉O 的半径OD ⊥弦AB 于点C ,连接AO 并延长交☉O 于点E ,连接EC .若AB =8,CD =2,则EC 的长为 ( )A. 2B. 8C.2 D. 28. 如图所示,,AD 为☉O 的弦,∠BAD =50°,则∠AED 等于 ( )A. 50°B. 60°C.70° D. 75°9. 如图,△ ABC 内接于⊙O ,D 为线段AB 的中点,延长OD 交⊙O 于点E ,连接AE ,BE ,则下列五个结论①AB ⊥DE ,②AE =BE ,③OD =DE ,④∠AEO =∠C ,⑤=,正确结论的个数是( )A. 2B. 3C.4 D. 510. 如图,已知点C ,D 是半圆上的三等分点,连接AC ,BC ,CD ,OD ,BC 和OD 相交于点E.则下列结论:①∠CBA=30°;②OD ⊥BC ;③OE=AC ;④四边形AODC 是菱形;正确的个数是( )A. 1B. 2C.D. 4二、填空题O 的直径,C ,D ,E 都是☉O 上的点,则∠1+∠2= .12. 如图所示,☉O 的直径AB ⊥弦CD ,且∠BAC =40°,则∠BOD = .13. 一点到☉O 的最近距离为4 cm,最远距离为9 cm,则该圆的半径是 .14. 圆内接四边形ABCD的内角∠A∶∠B∶∠C=2∶3∶4,则∠D=度.15. 如图5,已知AB是⊙O的弦,半径OA=6 cm,∠AOB=120°,则AB=________cm.16. 如图,已知AB是☉O的直径,D是圆上任意一点(不与点A,B重合),连接BD,并延长到点C,使DC=BD,连接AC,则△ABC的形状是三角形.17. 如图,MN是⊙O的直径,矩形ABCD的顶点A,D在MN上,顶点B,C在⊙O上,若⊙O的半径为5,AB=4,则AD边的长为.三、解答题,A,B是☉O上的两个定点,P是☉O上的动点(点P不与点A,B重合),我们称∠APB是☉O上关于点A,B的滑动角. 已知∠APB是☉O上关于点A,B的滑动角.(1)若AB是☉O的直径,则∠APB=°;(2)连接AB,若☉O的半径是1,AB=,求∠APB的度数.19. 如图所示,AB是☉O的一条弦,OD⊥AB,垂足为C,交☉O于点D,点E在☉O上.(1)若∠AOD=52°,求∠DEB的度数;(2)若OC=3,OA=5,求AB的长.34 420. (探究题)如图所示,已知△ABC 是等边三角形,以BC 为直径的☉O 分别交AB ,AC 于点D ,E.(1)求证:△DOE 是等边三角形.(2)如图所示,若∠A =60°,AB ≠AC ,则第1问中结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.参考答案1. 【答案】B 【解析】圆心角指顶点在圆心的角,满足此条件的只有B 选项.2. 【答案】B 【解析】弦的垂直平分线经过圆心且平分这条弦所对的弧,而并非是弦的垂线经过圆心且平分这条弦所对的弧.注意:弦的垂线不一定经过弦的中点,它和垂直平分线不同.3. 【答案】C 【解析】半弦长为cm,则垂心距为1cm,垂线与半径夹角为60度,所以弦所对的圆心角为120度.综合利用垂径定理及圆心角定理.4. 【答案】D 【解析】本题考查圆的有关性质,理解各个性质是解题的关键,∵∠BOC =110°,∠BOC +∠AOC =180°,∴∠AOC =70°.∵AD ∥OC ,OD =OA ,∴∠D =∠A =∠AOC =70°.∴∠AOD =180°-2∠A =40°,故选D.5. 【答案】D 【解析】本题考查圆内接四边形的性质、圆心角和圆周角的关系,难度中等,根据圆内接四边形得出∠A+∠C=180°,再根据等弧所对的圆心角和圆周角的关系得出∠A=44°,进而得出∠BCD=136°,故选D .6. 【答案】C 【解析】连接AC ,AO ,如图①.∵☉O 的直径CD =10cm,AB ⊥CD ,AB =8cm,∴AM =AB =×8=4(cm),OD =OC =5(cm),当C 点位置如图①所示时,∵OA =5(cm),AM =4(cm),CD ⊥AB ,∴OM ==3(cm),∴CM =OC +OM =5+3=8(cm),∴AC ==4(cm);当C 点位置如答图②所示时,同理可得OM =3cm,∵OC =5cm,∴MC =5-3=2(cm),在Rt△AMC 中,AC ==2cm.故选C.本题运用了分类讨论思想,先根据题意画出图形,由于点C 的位置不能确定,故应分两种情况进行讨论,容易遗漏其中一种情况而出错.7. 【答案】D 【解析】由题意知AC =BC =4,设☉O 的半径为r ,则OC =r -2,在Rt△AOC 中,∵AO =r ,AC =4,OC =r -2,∴OA 2=AC 2+OC 2,即r 2=42+(r -2)2,解得r =5,∴AE =2r =10,连接BE ,如图, ∵AE 是☉O 的直径,∴∠ABE =90°,在Rt△ABE 中,∵AE =10,AB =8,∴BE ==6,在Rt△BCE 中,∵BE =6,BC =4,∴CE ==2.故选D.8. 【答案】D 【解析】因为,∠BAD =50°,所以劣弧BD 对应50度的角,则劣弧AB,BC,CD 都对应着25度的角.为因此,∠AED 等于75°,故选D.9. 【答案】B【解析】由图可知,连接AO,BO,AO=BO,D为中点,∴DE⊥AB,AE=BD,=,=,故选B10. 【答案】D【解析】连接OC,BD,因为C,D是半圆上的三等分点,所以△AOC,△COD,△BOD都是等边三角形,所以AC=CD=OD=AO,即四边形AODC是菱形,④正确;∠CAO=∠DOB=60°,所以AC∥OD,所以∠OEB=∠ACB,△OBE∽△ABC,所以=,即OE=AC,③正确;又因为AB是直径,所以∠ACB=90°,所以∠OEB=90°,即OD⊥BC,②正确;因为三角形内角和等于180°,所以∠CBA=180°-∠ACB-∠CAB=30°,①正确;所以四个结论均是正确的.故选D.11. 【答案】90°12. 【答案】80°13. 【答案】2.5cm或6.5cm14. 【答案】9015. 【答案】616. 【答案】等腰17. 【答案】618.(1) 【答案】90(2) 【答案】连接OA,OB.在△AOB中,∵OA=OB=1,AB=,∴OA2+OB2=AB2.∴∠AOB=90°.当点P在优弧AB上时,∠APB=∠AOB=45°.当点P在劣弧AB 上时,∠APB=(360°-∠AOB)=135°.综上可知,∠APB的度数为45°或135°.19.(1) 【答案】∵OD⊥AB,∴AD=BD.又∵∠AOD=52°,∴∠DEB=∠AOD=26°.(2) 【答案】∵OD⊥AB,∴AC=BC,在Rt△AOC中,AC==4,∴AB=2AC=8.20.(1) 【答案】由题意知∠B=∠C=60°.∵OB=OC=OE=OD,∴△OBD和△OEC都为等边三角形.∴∠BOD=∠EOC=60°.∴∠DOE=60°.∴△DOE为等边三角形.(2) 【答案】当∠A=60°,AB≠AC时,第1问中的结论仍然成立.证明如下:连接CD.∵BC为☉O的直径,∴∠BDC=90°.∴∠ADC=90°.∵∠A=60°,∴∠ACD=30°.∴∠DOE=2∠ACD=60°.又∵OD=OE,∴△DOE为等边三角形.5。

新人教版九年级上册数学《圆》全套课时作业及答案

新人教版九年级上册数学《圆》全套课时作业及答案

第二十四章圆24. 1圆的有关性质第 1 课时圆和垂直于弦的直径1.下列说法正确的是()A.直径是弦,弦是直径B.半圆是弧C.无论过圆内哪一点,只能作一条直径D.长度相等两条弧是等弧2.下列说法错误的有()①经过点 P 的圆有无数个;②以点P 为圆心的圆有无数个;③半径为 3 cm 且经过点P 的圆有无数个;④以点P 为圆心,以 3 cm 为半径的圆有无数个.A.1个B.2 个C.3 个D.4个3.如图 24-1-8,将半径为 2 cm 的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕 AB 的长为()A . 2 cm B. 3 cm C. 2 3 cm D . 2 5 cm图 24-1-8图24-1-94.如图 24-1-9,在⊙ O 中,弦 AB 垂直于直径CD 于点 E,则下列结论:①AE= BE;② AC = BC ;③ AD = BD ;④EO=ED .其中正确的有()A .①②③④B.①②③C.②③④ D .①④5.如图 24-1-10,在⊙ O 中,半径为5,∠ AOB= 60°,则弦长AB= ________.图 24-1-10图24-1-116.如图 24-1-11,是两个同心圆,其中两条直径互相垂直,其大圆的半径是2,则其阴影部分的面积之和________(结果保留π).7.如图 24-1-12, AB 是⊙ O 的直径, BC 是弦, OD⊥ BC 于点 E,交BC于点 D .(1)请写出五个不同类型的正确结论;(2)若 BC= 8, ED= 2,求⊙ O 的半径.图 24-1-128.平面内的点 P 到⊙ O 上点的最近距离是3,最远距离是7,则⊙ O 的面积为 __________ .9.如图 24-1-13,已知在⊙ O 中, AB,CD 两弦互相垂直于点E,AB 被分成 4 cm 和 10 cm 两段.(1)求圆心 O 到 CD 的距离;(2)若⊙ O 半径为 8 cm,求 CD 的长是多少?图 24-1-13已知10.如图 24-1-14,ABAB= 2DE .是⊙ O的直径,CD是⊙O的弦,AB, CD的延长线交于点E,(1)若∠ E=20°,求∠ AOC 的度数;(2)若∠ E=α,求∠ AOC 的度数.图 24-1-14第 2 课时弧、弦、圆心角和圆周角1.下列说法中,正确的是()A .等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等2.如图 24-1-24,已知 CD 为⊙ O的直径,过点 D 的弦DE平行于半径OA,若∠ D的度数是 50°,则∠ C 的度数为 ()A . 50°B .40° C.30° D .25°图 24-1-24图24-1-25 3.如图 24-1-25,已知 AB 是⊙ O 的直径,BC=CD=DE,∠ BOC= 40°,那么∠ AOE =()A . 40°B .50° C.60° D .120 °4.如图 24-1-26 所示, A,B, C,D 是圆上的点,∠1= 68°,∠ A= 40°.则∠ D =______.图 24-1-26图24-1-275.在半径为 5 cm 的⊙ O 中,60°的圆心角所对的弦长为________cm.6.如图 24-1-27, AB 为⊙ O 的直径,点 C,D 在⊙ O 上.若∠ AOD =30°,则∠ BCD 的度数是 ________.7.如图 24-1-28,在⊙ O 中,AB=AC,∠ B=50°.求∠ A 的度数.图 24-1-288.一个圆形人工湖如图24-1-29 所示,弦AB 是湖上的一座桥,已知桥AB 长 100 m,测得圆周角∠ ACB= 45°,则这个人工湖的直径AD 为 ()图 24-1-29A . 50 2 m B. 100 2 mC. 150 2 mD. 200 2 m9.如图 24-1-30,已知 AB 是⊙ O 的直径, AC 是弦,过点 O 作 OD ⊥ AC 于点 D,连接BC.1(1)求证: OD=2BC;(2)若∠ BAC= 40°,求∠ AOC 的度数.图 24-1-3010.如图 24-1-31, AB 是⊙ O 的直径,点 C 是BD的中点, CE ⊥AB 于点 E,BD 交 CE 于点 F.(1)求证: CF = BF;(2)若 CD = 6, AC = 8,求⊙ O 的半径及CE 的长.图 24-1-3124. 2点和圆、直线和圆的位置关系第 1 课时点和圆的位置关系1.已知⊙ O 的半径为5,点 A 为线段 OP 的中点,当OP= 10 时,点 A 与⊙ O 的位置关系是()A .在圆内B .在圆上C.在圆外 D .不能确定2.如图 24-2-2,Rt△ ABC,∠ C= 90°,AC =3 cm,BC= 4 cm,则它的外心与顶点 C 的距离为()图 24-2-2A . 2.5B. 2.5 cmC.3 cm D .4cm3.下列四个命题中,正确的个数是()①经过三点一定可以画圆;②任意一个三角形一定有一个外接圆,而且只有一个外接圆;③任意一个圆一定有一个内接三角形,而且只有一个内接三角形;④三角形的外心到三角形三个顶点的距离都相等.A.4个B.3 个C.2 个D.1 个4.如图 24-2-3,⊙ O 是等边△ ABC 的外接圆,⊙ O 的半径为2,则等边△ ABC 的边长为()图 24-2-3A. 3B. 5C.2 3D.255.经过一点P 可以作 ______个圆;经过两点P,Q 可以作 ________ 个圆,圆心在__________上;经过不在同一直线上的三个点可以作________个圆,圆心是__________的交点.6.如图 24-2-4,在△ ABC 中,已知 AB= AC,点 O 是其外心, BC= 8 cm,点 O 到 BC 的距离 OD =3 cm,求△ ABC 外接圆的半径.图 24-2-47.如图 24-2-5,城市 A 的正北方向50 千米的 B 处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100 千米, AC 是一条直达 C 城的公路,从 A 城发往 C 城的班车速度为60 千米 /时.(1)当班车从 A 城出发开往 C 城时,某人立即打开无线电收音机,班车行驶了0.5 小时的时候,接收信号最强.此时,班车到发射塔的距离是多少千米(离发射塔越近,信号越强 )?(2)班车从 A 城到 C 城共行驶 2 小时,请你判断到 C 城后还能接收到信号吗?请说明理由.图 24-2-58.如图 24-2-6,△ ABC 内接于⊙ O,∠ BAC = 120 °,AB= AC=4, BD 为⊙ O 的直径,则 BD= __________.图 24-2-6图24-2-79.在矩形ABCD 中, AB= 3 cm, BC=4 cm,现以点 A 为圆心作圆,使B, C, D 三点至少有一个在圆内,至少有一个在圆外,则⊙ A 的半径 r 的取值范围是__________.10.如图 24-2-7, AD 是△ ABC 的外角∠ EAC 的平分线, AD 与三角形的外接圆交于点D,连接 BD,交 AC 于点 P,求证: DB= DC .11.阅读下面材料:对于平面图形A,如果存在一个圆,使图形 A 上的任意一点到圆心的距离都不大于这个圆的半径,则称图形 A 被这个圆所覆盖.图 24-2-8(1)中的三角形被一个圆所覆盖,图24-2-8(2) 中的四边形被两个圆所覆盖.图24-2-8回答下列问题:(1)边长为 1 cm 的正方形被一个半径为r 的圆所覆盖,r 的最小值是 ________cm;(2)边长为 1 cm 的等边三角形被一个半径为r 的圆所覆盖, r 的最小值是 ________cm;(3)边长为 2 cm,1 cm 的矩形被两个半径都为r 的圆所覆盖,r 的最小值是 ________cm,这两个圆的圆心距是________cm.第2课时直线和圆的位置关系1.已知圆的直径为13 cm,设直线和圆心的距离为d,(1)若 d= 4.5 cm,则直线与圆 ________,直线与圆有 ______ 个公共点;(2)若 d= 6.5 cm,则直线与圆 ________,直线与圆有 ______ 个公共点;(3)若 d= 8 cm,则直线与圆 ________,直线与圆有 ______个公共点.2.直线 l 和⊙ O 有公共点,则直线l 与⊙ O()A.相离B.相切C.相交 D .相切或相交3.如图 24-2-18, PA,PB 是⊙ O 的两条切线,切点是么∠ AOB= ()A, B.如果OA= 4, PO=8,那A.90° B.100° C.110° D.120°4.如图24-2-19,已知图 24-2-18AD 为⊙ O 的切线,⊙O 的直径图 24-2-19AB= 2,弦 AC= 1,则∠ CAD =________.5.⊙A 的直径为6,点 A 的坐标为(- 3,-4),则⊙ A 与x 轴、 y 轴的位置关系分别是______________.6.如图24-2-20,正三角形的内切圆半径为 1 cm,正三角形的边长是________.图 24-2-20图24-2-217.如图 24-2-21,在△ ABC 中, AB= AC,∠ BAC= 120 °,⊙ A 与 BC 相切于点 D,与AB 相交于点 E,则∠ ADE= ______.8.如图 24-2-22,在 Rt△ ABC 中,∠ C=90°,点 D 是 AC 的中点,且∠ A+∠ CDB =90°,过点 A,D 作⊙ O,使圆心 O 在 AB 上,⊙ O 与 AB 交于点 E.求证:直线BD 与⊙ O 相切.图 24-2-229.如图 24-2-23,在平面直角坐标系中,四边形OABC 为正方形,顶点A,C 在坐标轴上,以边 AB 为弦的⊙ M 与 x 轴相切,若点 A 的坐标为 (0,8) ,则圆心 M 的坐标为 ()图 24-2-23A . (4,5)B. (- 5,4)C.( -4,6)D. (- 4,5)10.如图 24-2-24,在 Rt△ABC 中,∠ ACB= 90°,内切圆⊙ I 与 BC 相切于点D,∠ BIC=105°, AB= 8 cm,求:(1)∠ IBA 和∠ A 的度数;(2)BC 和 AC 的长.图 24-2-2411.如图 24-2-25,直线 AB, CD 相交于点O,∠ AOC = 30°,半径为 1 cm 的⊙ P 的圆心在射线 OA 上,开始时, PO= 6 cm,如果⊙ P 以 1 cm/秒的速度沿由 A 向 B 的方向移动,那么当⊙ P 的运动时间t(单位:秒 )满足什么条件时,⊙P 与直线 CD 相交?图 24-2-2524. 3正多边形和圆1.下列命题中,是假命题的是()A .各边相等的圆内接多边形是正多边形B.正多边形的任意两个角的平分线如果相交,则交点为正多边形的中心C.正多边形的任意两条边的中垂线如果相交,则交点是正多边形的中心D.一个外角小于一个内角的正多边形一定是正五边形2.如图 24-3-3,正六边形螺帽的边长是 2 cm,这个扳手的开口 a 的值应是 ()图 24-3-3A . 2 3 cm B. 3 cm23C. 3cm D . 1 cm3.已知正六边形的边长为10 cm,则它的边心距为 ()3A. 2cm B . 5 cm C. 5 3 cm D. 10 cm4.正六边形的两条平行边之间的距离为1,则它的边长为 ()33233A. 6B. 4C. 3D. 35.正多边形的一个中心角为36°,那么这个正多边形的一个内角等于________.6.某工人师傅需要把一个半径为 6 cm 的圆形铁片加工成边长最大的正六边形铁片,求此正六边形的边长.7.如图 24-3-4,在圆内接正五边形 ABCDE 中,对角线 AC,BD 相交于点 P,求∠ APB 的度数.图 24-3-48.圆的半径为8,那么它的外切正方形的周长为____,内接正方形的周长为________.9.将一块正五边形纸片[图 24-3-5(1)] 做成一个底面仍为正五边形且高相等的无盖纸盒[ 侧面均垂直于底面,见图24-3-5(2)] ,需在每一个顶点处剪去一个四边形,例如图中的四边形 ABCD ,则∠ BAD 的大小是 ________.图 24-3-510.如图 24-3-6,施工工地的水平地面上,有三根外径都是 1 m 的水泥管,两两相切地堆放在一起,求其最高点到地面的距离?图 24-3-611. (1)如图 24-3-7(1) ,在圆内接△ ABC 中, AB= BC= CA, OD, OE 为⊙ O 的半径,1 OD⊥ BC 于点 F,OE ⊥AC 于点 G,求证:阴影部分四边形OFCG 的面积是△ ABC 面积的3;(2)如图 24-3-7(2),若∠ DOE 保持 120 °不变,求证:当∠DOE 绕着点 O 旋转时,由两条半径和△ ABC 的两条边围成的图形 (图中阴影部分 )面积始终是△ ABC 面积的1 . 3(1)(2)图 24-3-724. 4弧长和扇形面积第 1 课时弧长和扇形面积1.如图 24-4-6,已知⊙ O 的半径 OA= 6,∠ AOB= 90°,则∠ AOB 所对的弧AB 的长为()A . 2π B. 3π C. 6π D . 12π2.如图图 24-4-624-4-7, AB 切⊙ O 于点B,OA= 2图3,AB= 3,弦24-4-7BC∥ OA,则劣弧BC的弧长为 ()A.33 π B.32 πC.π3D.2π3.挂钟分针的长是15πA.cm B.15π210 cm,经过cm45 分钟,它的针尖转过的弧长是()75πC. 2 cm D .75π cm4.如图 24-4-8,在以点O 为圆心的两个同心圆中,大圆的弦为切点,且AB =4, OP= 2,连接 OA 交小圆于点E,则PE的长为AB(是小圆的切线,点)P图 24-4-8ππππA. 4B.3C.2D. 85 .已知扇形的圆心角为150 °,它所对应的弧长为__________cm,面积是 ________cm(结果保留π).6.如图 24-4-9,点 A, B,C 在直径为23的⊙ O 积等于 __________( 结果中保留π).20π cm,则此扇形的半径是上,∠ BAC= 45°,则图中阴影的面图24-4-9图24-4-107.如图24-4-10,以O 为圆心的同心圆,大圆的半径OC,OD分别交小圆于A,B.AB 长为 8π,CD长为 12π, AC=12.则小圆半径为________.8.如图 24-4-11,已知 AB 是⊙ O 的直径,弦CD⊥ AB,垂足为E,∠ AOC= 60°, OC =2.(1)求 OE 和 CD 的长;(2)求图中阴影部分的面积.图 24-4-119.如图 24-4-12,直径 AB 为 6 的半圆,绕点 A 逆时针旋转60°,此时点 B 到了点 B′,则图中阴影部分的面积是()A . 3π B. 6π C. 5π D . 4π图 24-4-12图24-4-1310.如图 24-4-13,在 Rt △ABC 中,∠ C= 90°,AC= 8,BC=6,两等圆⊙ A,⊙ B 外切,那么图中两个扇形的面积之和为()25252525A. 4πB. 8πC.16πD. 32π11.如图 24-4-14,在⊙ O 中,弦 BC 垂直于半径 OA ,垂足为点 E,点 D 是优弧BC上一点,连接 BD , AD , OC,∠ ADB = 30°.(1)求∠ AOC 的度数;(2)若弦 BC= 6 cm,求图中阴影部分的面积.图 24-4-14第 2 课时圆锥的侧面积和全面积1. 一圆锥的侧面展开图是半径为 2 的半圆,则该圆锥的全面积是A . 5π B. 4π C. 3π D . 2π2.如图 24-4-18,圆锥形烟囱帽的底面直径为80 cm ,母线长为()50 cm ,则此烟囱帽的侧面积是()A . 4000 π2cm B. 3600 π2cmC.2000 π2cm D. 1000 π2cm3.如图24-4-19图 24-4-18,小红同学要用纸板制作一个高图 24-4-194 cm,底面周长是6πcm 的圆锥形漏斗模型.若不计接缝和损耗,则她所需纸板的面积是()22A . 12π cm B.15π cm22C.18π cm D .24π cm4.已知点 O 为圆锥的顶点,M 为圆锥底面上一点,点P 在出发,绕圆锥侧面爬行,回到点P 时所爬过的最短路线的痕迹如图将圆锥侧面剪开并展开,所得侧面展开图是()OM 上.一只蜗牛从点24-4-20 所示,若沿POM图 24-4-205.已知圆锥的侧面积恰好等于其底面积的 2 倍,则该圆锥侧面展开图所对应扇形圆心角的度数为 ()A . 60°B .90° C.120 ° D. 180 °6.如图 24-4-21,扇形的半径为 6,圆心角θ为 120 °,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为 ________.图 24-4-217.已知圆锥的侧面展开图的圆心角为180 °,底面积为15 cm2,求圆锥的侧面积.8.如图 24-4-22 是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF 长为 10 cm,母线 OE(OF) 长为 10 cm,在母线OF 上的点 A 处有一块爆米花残渣,且FA= 2 cm,一只蚂蚁从杯口的点 E 处沿圆锥表面爬行到 A 点,则此蚂蚁爬行的最短距离为________cm.扇形9.如图 24-4-23ABC.求:,有一半径为 1 m图 24-4-22的圆形铁片,要从中剪出一个最大的圆心角为90°的(1)被剪掉的阴影部分的面积;(2)用所留的扇形铁片围成一个圆锥,该圆锥底面圆的半径是多少?图 24-4-2310.如图 24-4-24,已知点 B 的坐标为 (0 ,- 2),点 A 在 x 轴的正半轴上,将Rt△ AOB绕 y 轴旋转一周,得到一个圆锥,当圆锥的侧面积等于5π时,求 AB 所在直线的解析式.图 24-4-24第二十四章圆24. 1圆的有关性质第 1 课时圆和垂直于弦的直径【课后巩固提升】1. B2. A 解析:①②③正确;③虽然已知半径,但点 P 不是圆心,能作无数个圆;④满足两个条件,只能作一个圆,故④错误.3. C 4.B5. 5 6.2 π7.解: (1) 不同类型的正确结论有:①BE= CE ;②BD=CD;③∠ BED= 90°;④∠ BOD =∠ A;⑤ AC∥ OD ;⑥ AC⊥ BC;⑦OE2+BE 2= OB2;⑧ S△ABC= BC·OE;⑨△ BOD 是等腰三角形等.1(2)∵ OD ⊥ BC,∴ BE=CE =2BC= 4.设⊙ O 的半径为R,则 OE= OD- DE= R-2.在 Rt△OEB 中,222222由勾股定理,得OE +BE =OB ,即 (R-2) +4 =R .解得 R=5.12 8.4π或 25π解析:当点 P 在⊙ O 的外部时,⊙ O 的半径 r =× (7- 3)= 2,∴ S⊙O=πr=4π当.点 P 在⊙ O 的内部时,⊙ O 的半径 r=1× (7+3)= 5,∴ S⊙O=πr2= 25π. 29.解: (1)如图 30,作 OG⊥ CD 于点 G,OF ⊥ AB 于点 F.图 30∵∠ OGE=∠ GEF =∠ OFE= 90°,∴四边形 OGEF 是矩形.∴ OG= EF .1 1∵OF⊥ AB,∴ AF =2AB=2× (4+ 10)= 7(cm) .∴OG= EF =AF -AE=3(cm) .∴点 O 到 CD 的距离为 3 cm.(2)连接 OD,在 Rt△ ODG 中,OD= 8 cm,OG= 3 cm,由勾股定理,得GD=OD 2- OG2=55 (cm).∵ OG⊥ CD,∴ CD = 2GD= 255 cm.10.解: (1) ∵AB= 2DE,又OA=OB=OC=OD ,∴OD=OC=DE .∴∠ DOE=∠ E= 20°.∴∠ CDO =∠ DOE +∠ E= 40°=∠ C.∴∠ AOC =∠ C +∠ E = 60°. (2)由 (1) 可知:∠ DOE =∠ E = α,∠ C =∠ ODC = 2∠ E ,∴∠ AOC =∠ C +∠ E = 3α.第 2 课时 弧、弦、圆心角和圆周角【课后巩固提升】 1. B 2.D 3.C4. 28° 5.5 6.105 °7. 解: ∵ AB = CD ,∴ AB =AC .∴∠ B =∠ C. 又∵∠ B = 50°,∴∠ C =50°. ∵∠ A +∠ B +∠ C = 180°,∴∠ A = 180°- (∠ B +∠ C)= 80°. 8. B9. (1)证明: ∵ OD ⊥ AC ,∴ AD = CD .∵ AB 是⊙ O 的直径,∴ OA =OB.1∴ OD 是△ ABC 的中位线.∴ OD = 2BC.(2) 解:连接 OC ,∵ OA = OC ,∠ BAC = 40°,∴∠ OCA =40°.∴∠ AOC = 180 °- (40 °+40°)= 100 °.10. (1)证明: 如图 D32,∵ AB 是⊙ O 的直径,图 D32∴∠ ACB = 90°.又∵ CE ⊥ AB ,∴∠ CEB = 90°.∴∠ A +∠ B = 90°,∠ 2+∠ B =90°. ∴∠ A =∠ 2.又∵ C 是弧 BD 的中点, ∴∠ 1=∠ A. ∴∠ 1=∠ 2. ∴ CF = BF.(2)解: 由 (1)可知: CD = BC ,∴ CD = BC =6.又∵在 Rt △ ACB 中, AC = 8,∴ AB =10,即⊙ O 的半径为 5.S △ ACB =AC ·BC= CE ·AB ,∴ CE = 24 . 2 2 524. 2 点和圆、直线和圆的位置关系 第 1 课时 点和圆的位置关系【课后巩固提升】1. B 2.B 3.C 4.C5. 无数 无数 线段 PQ 的垂直平分线上一三条线段垂直平分线 16. 解: 连接 OB.∵OD ⊥ BC , BC = 8 cm ,∴ BD = 2BC = 4(cm).又∵ OD = 3 cm ,在 Rt △ OBD 中,由勾股定理,得 OB =5 cm.∴△ ABC外接圆的半径为5 cm.7. 解: (1)如图 D33,过点 B 作 BM ⊥ AC 于点 M ,图 D33设班车行驶了0.5 小时的时候到达M 点.根据此时接受信号最强,则BM ⊥ AC,又 AM =30, AB= 50.所以 BM = 40 千米.答:所以,此时,班车到发射塔的距离是40 千米.(2)AB=50, AC= 60× 2= 120,则 MC= 90.BM2+ MC2=在 Rt△ BMC 中, BM = 40, MC = 90,则 BC =9 700< 10 000,所以班车到车城 C 后还能接收到信号.8.8解析:∵ AB=AC,∠BAC=120°,∴∠ ACB=∠ ABC=30°.∴∠ D=30°.又∠ BAD =90°,故 BD= 2AB= 8.9. 3 cm< r< 5 cm10.证明:∵∠ BAD +∠ BCD= 180 °,∠ BAD +∠ DAE = 180 °,∴∠ BCD=∠ DAE.∵∠ DAC=∠ DBC,∠ DAE=∠ DAC,∴∠ DBC=∠ DAE.∴∠ DBC =∠ BCD.∴DB= DC .2(2)3(3)2111. (1) 232第 2 课时直线和圆的位置关系【课后巩固提升】1. (1) 相交 2 (2)相切1(3) 相离02. D 3.D4. 30° 5.相离、相切 6.2 3 cm7.60 °8.证明:连接 OD ,∵ OA= OD,∴∠ A=∠ ADO.又∵∠ A+∠ CDB = 90°,∴∠ ADO+∠ CDB= 90°.∴∠ ODB= 180°- (∠ADO +∠ CDB )= 90°.∴ BD⊥ OD.∴ BD 是⊙ O 切线.9. D10.解: (1) ∵∠ ACB= 90°, I 为内心,∴∠ ICB = 45°.∵∠ BIC = 105°,∴∠ IBA=∠ IBC= 30°,∠ ABC = 60°.∴∠ A= 30°.(2)∵ AB= 8 cm,∴ BC= 4 cm.∴ AC=AB 2- BC2=82- 42= 43(cm) .11.解:如图 D34,当⊙ P 运动到⊙ P′时,⊙ P′与 CD 相切.作 P′ E⊥ CD 于点 E.∵⊙ P′半径为 1 cm.∴P′ E= 1.又∠ AOC=30°, P′E⊥ CD ,∴ P′O= 2.∴ t =4.P,此时,t= 8.同理,当点P 在 OB 上时,也存在一圆与CD 相切,即圆中的⊙综上所述, 4< t<8.图 D3424. 3正多边形和圆【课后巩固提升】1. D 2.A 3.C4. D 5.144 °6.解:如图 D35,只有当正六边形是圆的内接正六边形时,此正六边形的边长最大,最大边长为 6 cm.图 D35图D367.解:如图 D36,连接 OA, OB.∵五边形 ABCDE 是正五边形,360°∴∠ AOB=5= 72°.∵AB=CD,∴AB=CD .1∴∠ 2=∠ 1=∠ AOB= 36°.∴∠ APB=∠ 1+∠ 2= 72°.8.64 3229. 72°10.解:由于三个圆两两外切,所以圆心距等于半径之和.所以以三个圆心为顶点的三角形是边长为 1 m 的等边三角形,最高点到地面距离是等边三角形的高加上一个直径.因为等边三角形的高是33,故最高点到地面的距离是1+2m. 211.证明: (1) 连接 OA, OC.∵点 O 是等边三角形ABC 的外心,∴Rt△OFC ≌ Rt △OGC ≌Rt△ OGA .∴S 四边形OFCG= 2S△OFC= S△OAC .1∵S△OAC=3S△ABC,1∴S 四边形OFCG=3S△ABC.(2)如图 D37,连接 OA, OB 和 OC.图 D37则△ AOC≌△ COB≌△ BOA,∠ 1=∠ 2.不妨设 OD 交 BC 于点 F,OE 交 AC 于点 G.∵∠ AOC=∠ 3+∠ 4= 120°,∠DOE=∠5+∠4=120°,∴∠ 3=∠ 5.∠ 1=∠ 2,在△ OAG 和△ OCF 中,OA = OC ,∠ 3=∠ 5,∴△ OAG ≌△ OCF .1∴ S四边形OFCG = S △AOC = 3S △ABC .24. 4 弧长和扇形面积第 1 课时 弧长和扇形面积【课后巩固提升】 1. B 2.A3.B4.C 解析:因为 AB 是小圆的切线, 所以 OP ⊥AP ,AP = 2.所以∠ AOP = 45°,因此 PE45π× 2 π的长为 180 = 2.5. 24 240 π3π 36.4-27. 24 解 析 : 设 小 圆 的 半 径 为 r , ∠ COD = n °, 由 题 意 知 R = r + 12. 则12π= n πR =n πr + 12 ,180 180解得 r = 24.n πr8π= 180.18.解: (1)在△ OCE 中,∵∠ CEO =90°,∠ EOC =60°,OC = 2,∴ OE = 2OC = 1.∴ CE3=2OC = 3.∵ OA ⊥ CD ,∴ CE = DE.∴ CD =2 3.1 1 3=2 3,(2)∵ S △ABC = AB ·CE = × 4×2 2 ∴ S = 1 2 -2 3= 2π- 2 3.阴影 2π×29. B62+ 82= 10. A解析: 设两个扇形的圆心角分别为n 1°, n 2°.在 Rt △ ABC 中, AB = 10, n 1+ n 2= 90.∴两个等圆的半径为5.∴ S 阴影=n 1πR 2 n 2πR 2 πR 2 90× 25π 25π+ = (n 1+ n 2)= 360= 4.360 360 36011. 解: (1)∵弦 BC 垂直于半径 OA , ∴ BE = CE , AB = AC .又∵∠ ADB = 30°,∴∠ AOC =60°.1(2)∵ BC = 6,∴ CE =2BC = 3.在 Rt △OCE 中, CE =3,∠ EAC = 60°,∴ OC = 2 3. ∴ OE = OC 2- CE 2= 4× 3- 9= 3. 连接 OB.∵ AB = AC , ∴∠ BOC = 2∠AOC = 120°.∴ S 阴影= S 扇形 OBC - S △OBC=120× π× (2 3)2- 1× 6× 3= 4π- 3 3. 3602 第 2 课时 圆锥的侧面积和全面积【课后巩固提升】1. C 2.C 3.B4.D5. D 解析: S 侧= πrl , S 底= πr 2,由题意知: l =2r.而侧面展开图扇形的弧长为底面圆的周长.有 n π2r = 2πr ,解得 n = 180°.1806. 2R ,则 πr 2= 15,2 πr = πR ,∴ R 7.解: 设圆锥底面半径为r ,侧面展开图的扇形的半径为 =2r = 215, π∴ S 侧= 180 πR 2 = 1πR 2=1π× 4× 15= 30(cm 2 ).360 22 π8.2 41 解析:底圆周长为 2πr = 10π设.圆锥侧面展开图的扇形所对圆心角为 n °.则 2πr =n πR n π× 10, n = 180,如图 D40,连接 EA ,则 EA 长即为所求的最短距离.在180 .即 10π= 180 OE 2+ OA 2= 102+ 82= 2 41. Rt △ OEA 中, FA = 2, OA = 8,∴ EA =图 D409. 解: (1) 连接 BC.∵∠ BAC = 90°,∴ BC 为⊙ O 的直径.∴ AB 2+ AC 2 =BC 2 =22 .∵ AB = AC ,∴ AB = 2,∴ S 扇形 ABC = 90 π(2) 2 1360 = π. 22 1 1 2∴ S 阴影 = S ⊙O -S 扇形 ABC = π× 1 -π= π (m).2 2(2)设圆锥的底面半径为 r ,依题意,得90π× 2= 2πr.∴ r = 2180 4 m.∴被剪掉的阴影部分的面积为 1 2,该圆锥底面圆的半径为 2m.π m 4 210. 解:设点 A 的坐标为 (r,0),则 OA = r.∵ B(0,- 2),∴ OB = 2.在 Rt △AOB 中,由勾股定理,得 AB = OA 2+ OB 2= r 2+4.∴圆锥的侧面积为 πr ·AB =πr r 2+ 4= 5π.∴ r = 1.∴点 A 的坐标为 (1,0) .设直线 AB 的解析式为 y = kx + b ,k +b = 0,k = 2,∴ ∴b =- 2.b =- 2.∴直线 AB 的解析式为 y = 2x - 2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级数学24.1 圆的有关性质课时训练一、选择题(本大题共12道小题)1. 下列说法中正确的是()A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,它们所对的弦也相等D.等弦所对的圆心角相等2. 2019·葫芦岛如图,在⊙O中,∠BAC=15°,∠ADC=20°,则∠ABO的度数为()A.70°B.55°C.45°D.35°3. 如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1,l2于点B,C,连接AC,BC.若∠ABC=54°,则∠1等于()A.36°B.54°C.72°D.73°4. 如图,⊙O的直径AB垂直于弦CD,垂足是E,∠CAO=22.5°,OC=6,则CD的长为()A.6 2 B.3 2 C.6 D.125. 在半径等于5 cm 的圆内有长为5 3 cm 的弦,则此弦所对的圆周角为( )A .60°或120°B .30°或120°C .60°D .120°6. 如图,在⊙O 中,如果AB ︵=2AC ︵,那么( )A .AB =AC B .AB =2AC C .AB <2ACD .AB >2AC7. 2019·梧州如图,在半径为13的⊙O 中,弦AB 与CD 交于点E ,∠DEB =75°,AB =6,AE =1,则CD 的长是( )A .2 6B .2 10C .2 11D .4 38.如图,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF =EB ,EF 与AB 交于点C ,连接OF .若∠AOF =40°,则∠F 的度数是( )A .20°B .35°C .40°D .55°9. 如图,将半径为6的⊙O 沿AB 折叠,AB ︵与垂直于AB 的半径OC 交于点D ,且CD =2OD ,则折痕AB 的长为( )A .4 2B .8 2C .6D .6 310. 甲、乙、丙三个牧民用同样长为l 米的铁丝各围一块草地放牧,甲牧民围成面积为S 1的圆形草地,乙牧民围成面积为S 2的正方形草地,丙牧民围成面积为S 3的矩形(不是正方形)草地,则下列结论正确的是( ) A .S 1>S 3>S 2 B .S 2>S 1>S 3 C .S 3>S 1>S 2D .S 1>S 2>S 311. 如图,在⊙O 中,AB ︵所对的圆周角∠ACB =50°,若P 为AB︵上一点,∠AOP =55°,则∠POB 的度数为( )A .30°B .45°C .55°D .60°12.如图,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC =124°,点E 在AD 的延长线上,则∠CDE 的度数为( )A .56°B .62°C .68°D .78°二、填空题(本大题共6道小题)13.如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD ,已知CE =1,ED =3,则⊙O 的半径是________.14. 2019·随州如图,点A ,B ,C 在⊙O 上,点C 在AMB ︵上.若∠OBA =50°,则∠C 的度数为________.15. 如图,AB为⊙O 的直径,CD ⊥AB.若AB =10,CD =8,则圆心O 到弦CD的距离为________.16. 如图,在⊙O 中,半径OA 垂直于弦BC ,点D 在圆上,且∠ADC =30°,则∠AOB 的度数为________.17. 如图,已知等腰三角形ABC 中,∠ACB =120°且AC =BC =4,在平面内任作∠APB =60°,则BP 的最大值为________.18. 如图,在△ABC 中,AB =AC =10,以AB 为直径的⊙O 与BC 交于点D ,与AC 交于点E ,连接OD ,BE ,它们交于点M ,且MD =2,则BE 的长为________.三、解答题(本大题共3道小题)19. 如图,在⊙O 中,AB ︵=2AC ︵,AD ⊥OC于点D.求证:AB =2AD.20. 如图,AB是⊙O 的直径,AC 是弦,将劣弧AC 沿弦AC 翻折与AB 的交点恰好是圆心O ,作OD ⊥AC ,垂足为E ,交⊙O 于点D ,连接BC ,CD .求证:四边形BCDO 是菱形.21. 如图,点E 是△ABC 的内心,线段AE 的延长线交BC 于点F (∠AFC ≠90°),交△ABC 的外接圆于点D .(1)求点F 与△ABC 的内切圆⊙E 的位置关系;(2)求证:ED=BD;(3)若∠BAC=90°,△ABC的外接圆的直径是6,求BD的长;(4)B,C,E三点可以确定一个圆吗?若可以,则它们确定的圆的圆心和半径分别是什么?若不可以,请说明理由.人教版九年级数学24.1 圆的有关性质课时训练-答案一、选择题(本大题共12道小题)1. 【答案】B2. 【答案】B3. 【答案】C4. 【答案】A[解析] ∵∠A=22.5°,∴∠COE=45°.∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°.∵∠COE=45°,∴CE=OE.在Rt△COE中,由勾股定理,得CE2+OE2=OC2,∴2CE2=62,解得CE=3 2,∴CD=2CE=6 2.故选A.5. 【答案】A6. 【答案】C[解析] 取AB ︵的中点D ,则AD ︵=BD ︵=AC ︵,所以AD =BD =AC ,而AD +BD >AB ,所以2AC >AB .7. 【答案】C8. 【答案】B9. 【答案】B[解析] 如图,延长CO 交AB 于点E ,连接OB .∵CE ⊥AB ,∴AB=2BE .∵OC =6,CD =2OD ,∴CD =4,OD =2,OB =6.由折叠的性质可得DE =12×(6×2-4)=4,∴OE =DE -OD =4-2=2.在Rt △OEB 中,BE =OB2-OE2=62-22=4 2,∴AB =8 2.故选B.10. 【答案】D[解析] 本题中甲的草地:2πr =l ,r =l 2π,S 1=π·r 2=l24π;乙的草地:S 2=l 4×l 4=l216;丙的草地:设一边长为x ,则S 3=x (l 2-x )=-x 2+l 2x .只有当x =l 4时,S 3取得最大值,此时S 3=l216,但此时矩形为正方形,不符合题意.所以S 1>S 2>S 3.11. 【答案】B12. 【答案】C[解析] ∵点I 是△ABC 的内心,∴∠BAC =2∠IAC ,∠ACB =2∠ICA . ∵∠AIC =124°,∴∠B =180°-(∠BAC +∠ACB )=180°-2(∠IAC +∠ICA )=180°-2(180°-∠AIC )=68°.又四边形ABCD内接于⊙O,∴∠CDE=∠B=68°.二、填空题(本大题共6道小题)13. 【答案】 5【解析】本题考查垂径定理、弦、弦心距的性质、正方形的判定与性质、勾股定理等内容. 解题思路:过点O作OF⊥AB,OG⊥CD,垂足分别是F、G. 连接OD.解图⎭⎬⎫⎭⎪⎬⎪⎫AB⊥CDOF⊥ABOG⊥CD⇒四边形OFEG是矩形AB=CD⇒OF=OG⇒⎭⎬⎫矩形OFEG是正方形⎭⎬⎫⎭⎪⎬⎪⎫CE=1ED=3⇒CD=4AB⊥CD⇒GD=12CD=2⇒EG=1⇒OG=GE=1⇒OD=OG2+DG2=12+22= 5.14. 【答案】40°15. 【答案】316. 【答案】60°[解析] ∵OA⊥BC,∴AB︵=AC︵,∴∠AOB=2∠ADC.∵∠ADC =30°,∴∠AOB=60°.17. 【答案】8[解析] 由题意可得A,P,B,C在同一个圆上,所以当BP为圆的直径时,BP 最大,此时∠P AB =90°.过点C 作CD ⊥AB 于点D ,可求得AB =4 3,进而可求得BP 的最大值为8.18. 【答案】8[解析] 连接AD ,如图所示.∵以AB 为直径的⊙O 与BC 交于点D ,与AC 交于点E , ∴∠AEB =∠ADB =90°,即AD ⊥BC. 又∵AB =AC , ∴BD =CD.又∵OA =OB ,∴OD ∥AC , ∴OD ⊥BE ,∴BM =EM , ∴CE =2MD =4, ∴AE =AC -CE =6,∴BE =AB2-AE2=102-62=8.三、解答题(本大题共3道小题)19. 【答案】证明:如图,延长AD 交⊙O 于点E.∵OC ⊥AD ,∴AE ︵=2AC ︵,AE =2AD. ∵AB ︵=2AC ︵,∴AE ︵=AB ︵, ∴AB =AE ,∴AB =2AD.20. 【答案】证明:如图,连接AD ,OC .∵OD⊥AC,∴AE=EC.由翻折的性质,得AC是OD的垂直平分线,∴OE=DE,∴四边形OADC是平行四边形,∴OA∥CD,OA=CD.∵OA=OB,∴OB=CD,OB∥CD,∴四边形BCDO是平行四边形.又∵OB=OD,∴四边形BCDO是菱形.21. 【答案】解:(1)设⊙E切BC于点M,连接EM,则EM⊥BC.又线段AE的延长线交BC 于点F,∠AFC≠90°,∴EF>EM,∴点F在△ABC的内切圆⊙E外.(2)证明:∵点E是△ABC的内心,∴∠BAD=∠CAD,∠ABE=∠CBE.∵∠CBD=∠CAD,∴∠BAD=∠CBD.∵∠BED=∠ABE+∠BAD,∠EBD=∠CBE+∠CBD,∴∠BED=∠EBD,∴ED=BD.(3)如图①,连接CD.设△ABC的外接圆为⊙O.∵∠BAC=90°,∴BC是⊙O的直径,∴∠BDC=90°.∵⊙O的直径是6,∴BC=6.∵E为△ABC的内切圆的圆心,∴∠BAD=∠CAD,∴BD=CD.又∵BD2+CD2=BC2,∴BD=CD=3 2.word 版 初中数学11 /11(4)B ,C ,E 三点可以确定一个圆.如图②,连接CD .∵点E 是△ABC 的内心,∴∠BAD =∠CAD ,∴BD =CD .又由(2)可知ED =BD ,∴BD =CD =ED ,∴B ,C ,E 三点确定的圆的圆心为点D ,半径为BD (或ED ,CD )的长度.。

相关文档
最新文档