圆的有关性质测试题
圆测试题及答案解析
圆测试题及答案解析一、选择题1. 已知圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是什么?A. 直线与圆相离B. 直线与圆相切C. 直线与圆相交D. 直线在圆内答案:C解析:根据圆心到直线的距离小于圆的半径,可以判断直线与圆相交。
2. 圆的周长公式是什么?A. C = 2πrB. C = πr²C. C = 2rD. C = rπ答案:A解析:圆的周长公式是C = 2πr,其中C表示周长,r表示半径。
二、填空题1. 半径为7的圆的面积是 __________。
答案:153.94解析:圆的面积公式是A = πr²,将半径7代入公式得A = π ×7² ≈ 153.94。
2. 如果一个扇形的半径为10,圆心角为30°,那么它的弧长是__________。
答案:5π解析:弧长公式是L = θ × r,其中θ为圆心角(以弧度为单位),r为半径。
将圆心角30°转换为弧度是π/6,代入公式得L = π/6× 10 = 5π/3 ≈ 5。
三、简答题1. 描述圆的切线的性质。
答案:圆的切线在圆上某一点处与圆相切,且与过该点的半径垂直。
解析:圆的切线是一条直线,它恰好在一个点上与圆接触,并且这个接触点处的切线与从圆心到接触点的半径形成90°的角。
四、计算题1. 已知圆的半径为8,求圆的面积。
答案:圆的面积为200π。
解析:根据圆的面积公式A = πr²,将半径8代入公式得A = π × 8² = 64π ≈ 200π。
2. 已知圆的直径为20,求圆的周长。
答案:圆的周长为20π。
解析:圆的周长公式是C = πd,其中d为直径。
将直径20代入公式得C = π × 20 = 20π。
《圆的基本性质》单元测试题s-shuc302
《圆的基本性质》单元测试题王立根一、选择题:(28分)1、三角形外接圆的圆心是()(A)三内角平分线的交点,(B)三边中垂线的交点,(C)三中线的交点,(D)三高线的交点,2、在①平行四边形,②菱形,③等腰梯形,④矩形,⑤正方形中,一定有外接圆的是()(A)①②③(B)②③④(C)③④⑤(D)②④⑤3、一条弦把半径为r的圆分成1:2的两条弧,则弦长为()(A )(B)(C)(D)4、⊙O的直径为10cm,P是⊙O内一点,OP=3,则过点P的最短弦长为()(A)4 (B)6 (C)8 (D)105、等腰三角形ABC中,AB=AC,∠A=30°,BC=6,则△ABC的外接圆直径为()(A)(B)6 (C)(D)126、如图,⊙O中,AB=AD=CD,∠A=138°,则∠E=()(A)48°(B)52°(C)58°(D)63°7、已知扇形的圆心角为120°,弧长等于半径为5cm的圆周长,则扇形的面积为()(A)75cm2 (B)75πcm2 (c)150cm2 (D)150πcm2二、填空题:(21分)1、在⊙O中,直径为10cm,一条弦长为6cm,则这条弦的弦心距为---------cm.2、△ABC内接于以BC为直径的圆,且AB=8,AC=6,则△ABC的外接圆半径为--------。
3、已知四边形ABCD内接于⊙O,∠A:∠B:∠C=2:3:4,则∠D=---------。
4、如图,△ABC中,AB=AC,∠C=68°,以AB为直径的⊙O交AC于D,交BC于E,则∠DOE=--------度。
5、已知扇形面积为15πcm2,弧长为6πcm,则扇形半径为------- cm.6、弓形的半径为10cm,弦长为12cm,则弓高为---------cm.7、已知扇形面积为12cm2,半径为6cm,则扇形周长为--------cm三、如图,△ABC的外接圆直径AB交CD于E,已知∠C=65°,∠D=47°,求∠CEB的度数。
圆测试题及答案
圆测试题及答案
一、选择题
1. 下列哪个选项不是圆的基本性质?
A. 圆周上任意两点之间的线段称为弦。
B. 圆的直径是圆的最长弦。
C. 圆心到圆上任意一点的距离都相等。
D. 圆的面积与半径的平方成正比。
2. 圆的周长公式是什么?
A. C = πr
B. C = 2πr
C. C = 4πr
D. C = πr²
3. 已知圆的半径为3,求圆的周长。
A. 18π
B. 6π
C. 9π
D. 3π
二、填空题
4. 圆的面积公式为 \( A = \pi r^2 \),其中 \( r \) 表示圆的________。
5. 如果圆的周长为12π,那么圆的半径是________。
三、计算题
6. 已知圆的半径为5厘米,求圆的周长和面积。
四、解答题
7. 如果一个圆的直径是14厘米,求圆的周长和面积,并用适当的单位表示结果。
答案:
一、选择题
1. D
2. B
3. A
二、填空题
4. 半径
5. 3
三、计算题
6. 圆的周长为 \( 2\pi \times 5 = 10\pi \) 厘米,圆的面积为\( \pi \times 5^2 = 25\pi \) 平方厘米。
四、解答题
7. 圆的周长为 \( 2\pi \times 7 = 14\pi \) 厘米,圆的面积为\( \pi \times (7)^2 = 49\pi \) 平方厘米。
九年级数学 圆的基本性质 单元测试题
E O ABDC九年级数学《圆的基本性质》单元测试班级 姓名 学号 得分一、选择题(每题3分,共30分)1. 若一个圆的半径是3cm ,则此圆的最长弦的长度为( )A. 3cmB. 4cmC.5cmD. 6cm2. 以下命题:(1)同圆中等弧对等弦;(2)圆心角相等,它们所对的弧长也相等;(3)三点确定一个圆;(4)平分弦的直径必垂直于这条弦.其中正确的命题的个数是( )A. 1个B. 2个C. 3个D. 4个 3. 如图,点A ,B ,C 在⊙O 上,∠AOB =80°,则∠ACB =( )A. 20°B. 40°C. 60°D. 80° 4. 如图,正方形ABCD 的边长为6cm ,则它的外接圆的半径长是( )A.2cmB. 22cmC. 32cmD. 42cm第6题 第7题 5、在⊙O 中,∠AOB=120°,弧AB 的长为 6,则⊙O 的半径是( ) (A )6; (B )9; (C )18; (D )4.5。
6、如图,⊙O 中,ABDC 是圆内接四边形,∠BOC=110°,则∠BDC 的度数是( ) (A )110°; (B )70°; (C )55°; (D )125°。
7、如图3,在⊙O 中,直径CD=5,CD ⊥AB 于E ,OE= 0.7,则AB 的长是( ) (A )2.4; (B )4.8 ; (C )1.2; (D )2.5。
8. 如图,在半径为5的⊙O 中,如果弦AB 的长为8,那么它的弦心距OC 等于( )A. 2B. 3C. 4D. 6OAB CABCDO图1图2第3题第4题第8题图9. 已知⊙O 中,弦AB 的长等于半径,P 为弦AB 所对的弧上一动点,则∠A PB 的度数为( )A. 30oB. 150oC. 30o 或150oD. 60°或120o10.过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm .则OM 的长为() A .C. 2cmD. 3cm二、填空题(每题4分,共24分)11. 一条弧的度数是1080,则它所对的圆心角是 ,所对的圆周角是 .12.P 为⊙O 内一点,⊙O 的半径为5cm ,PO =3cm ,则过P 点的最长的弦长等于 cm ,最短的弦长等于 cm 。
第3章 圆的基本性质 浙教版数学九年级上册测试(含答案)
浙教版数学九年级上册第三章圆的基本性质一、选择题1.下列说法正确的是( )A.三个点可以确定一个圆B.半圆(或直径)所对的圆周角是直角C.相等的圆心角所对的弧相等D.长度相等的弧是等弧2.已知一个扇形的面积是24π,弧长是2π,则这个扇形的半径为( )A.24B.22C.12D.63.如图,点A、B、C在⊙O上,∠C=40∘,则∠AOB的度数是( )A.50∘B.60∘C.70∘D.80∘4.如图,AB是⊙O的直径,弦CD⊥AB于点E,若BE=5,AE=1,则弦CD的长是()A.5B.5C.25D.65.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A,B的读数分别为86°,30°,则∠ACB的度数是( )A.28°B.30°C.36°D.56°6.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则BC的长为( )A .103πB .109πC .59πD .518π7.如图, AB 是半圆O 的直径,点C ,D 在半圆O 上.若 ∠ABC =50° ,则 ∠BDC 的度数为( )A .90°B .100°C .130°D .140°8. 如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的周长等于6π,则正六边形的边长为( )A .3B .6C .3D .239.如图,正五边形ABCDE 内接于⊙O ,阅读以下作图过程:①作直径AF ;②以点F 为圆心,FO 为半径作圆弧,与⊙O 交于点M ,N ;③连接AM ,MN ,AN .结论Ⅰ:△AMN 是等边三角形;结论Ⅱ:从点A 开始,以DN 长为半径,在⊙O 上依次截取点,再依次连接这些分点,得到正十八边形.对于结论Ⅰ和结论Ⅱ,下列判断正确的是( )A .Ⅰ和Ⅱ都对B .Ⅰ和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对10.如图,抛物线y=x2﹣8x+15与x轴交于A、B两点,对称轴与x轴交于点C,点D(0,﹣2),点E (0,﹣6),点P是平面内一动点,且满足∠DPE=90°,M是线段PB的中点,连接CM.则线段CM的最大值是( )A.3B.412C.72D.5二、填空题11.如图,在⊙O中,弦AB,CD相交于点P.若∠A=40°,∠APD=75°,则∠B= °.12.如图,AB、AC是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N.如果MN=2.5,那么BC= .13.如图,四边形ABCD内接于⊙O ,若四边形ABCD的外角∠DCE=65°,则∠BAD的度数是 .14.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=70°,则∠EAC的度数为 .15.我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的割圆术:“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O,若用圆内接正十二边形作近似估计,可得π的估计值为 .的面积,可得π的估计值为33216.如图,点M(2,0)、N(0,4),以点M为圆心5为半径作⊙M交y轴于A、B两点,点C为⊙M上一动点,连接CN,取CN中点D,连接AD、BD,则A D2+B D2的最大值为 .三、解答题17.如图,四边形ABCD为⊙O的内接四边形,AC是⊙O的直径,AD=BD,∠CAB=32°.求∠ACD的度数.18.如图,OC为⊙O的半径,弦AB⊥OC于点D,OC=10,CD=4,求AB的长.19.如图,正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求解答下列问题:(1)△A1B1C1与△ABC关于坐标原点O成中心对称,则B1的坐标为__________;(2)BC与B1C1的位置和数量关系为___________;(3)将△ABC绕某点逆时针旋转90°后,其对应点分别为A2(―1,―2),B2(1,―3),C2(0,―5),则旋转中心的坐标为___________.20.如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于点D,(1)求∠ACB的度数;(2)求BC的长;(3)求AD,BD的长.21.如图,AB是⊙O的直径,C是⏜BD的中点,CE⊥AB于点E,BD交CE于点F.(1)求证:CF=BF.(2)若CD=6,AC=8,求⊙O的半径及CE的长.22.如图所示,AB为☉O的直径,AC是☉O的一条弦,D为BC的中点,作DE⊥AC于点E,交AB的延长线于点F,连接DA.(1)若AB=90 cm,则圆心O到EF的距离是多少?说明你的理由.(2)若DA=DF=63,求阴影部分的面积(结果保留π).23.如图,AB是⊙O的直径,弦CD⊥AB与点E,已知AB=10,AE=8,点P为AB上任意一点,(点P不与A、B重合),连结CP并延长与⊙O交于点Q,连QD,PD,AD.(1)求CD的长.(2)若CP=PQ,直接写出AP的长.(3)①若点P在A,E之间(点P不与点E重合),求证:∠ADP=∠ADQ.②若点P在B,E之间(点P不与点E重合),求∠ADP与∠ADQ满足的关系.答案解析部分1.【答案】B2.【答案】A3.【答案】D4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】C9.【答案】D10.【答案】C11.【答案】3512.【答案】513.【答案】65°14.【答案】15°15.【答案】316.【答案】49217.【答案】61°18.【答案】1619.【答案】(1)(2,2);(2)平行且相等;(3)(0,―1).20.【答案】(1)∠ACB=90°(2)BC=8cm(3)BD=AD=52cm21.【答案】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠A=90°-∠ABC.∵CE⊥AB,∴∠ECB=90°-∠ABC,又∵C是BD的中点,∴CD=BC,∴∠DBC=∠A,∴∠ECB=∠DBC,∴CF= BF;(2)解:∵BC=CD,∴BC=CD=6.在Rt△ABC中,AB= BC2+AC2=62+82=10,∴⊙O的半径为5;∵S△ABC= 12AB×CE= 12BC×AC,∴CE= BC×ACAB =6×810=245.22.【答案】(1)解:如图所示,连接OD,∵D为BC的中点,∴∠CAD=∠BAD.∵OA=OD,∴∠BAD=∠ADO.∴∠CAD=∠ADO.∴OD∥AE.∵DE⊥AC,∴OD⊥EF.∴OD的长是圆心O到EF的距离.∵AB=90 cm,∴OD=12AB=45 cm.(2)解:如图所示,过点O作OG⊥AD交AD于点G.∵DA=DF,∴∠F=∠BAD.由(1),得∠CAD=∠BAD,∵∠F+∠BAD+∠CAD=90°,∴∠F=∠BAD=∠CAD=30°.∴∠BOD=2∠BAD=60°,OF=2OD.∵在Rt△ODF中,OF2-OD2=DF2,∴(2OD)2-OD2=(63)2,解得OD=6.在Rt△OAG中,OA=OD=6,∠OAG=30°,AG=OA2―O G2=33,AD=23,S△AOD=1×63×3=93.2+93=6π+93.∴S阴影=S扇形OBD+S△AOD=60π×6236023.【答案】(1)解:连接OD,∵直径AB=10,AE=8,∴BE=2.∴OE=5-2=3.又∵AB⊥CD,在Rt△PED中,P D2=P E2+E D2∴ED=52―32=4∴CD=2ED=8(2)解:若CP=PQ,则点P与点O重合,或点P与点E重合.所以AP=5或8(3)解:①连接AC,由图可知∠ACQ=∠ADQ,因为AB是⊙O的直径,AB⊥CD,所以CE=DE,即AB是CD的垂直平分线,所以AC=AD,PC=PD,因为AP=AP,所以∠ACP=∠ADP ,所以∠ADP=∠ADQ .②∠ADP+∠ADQ=180°.理由如下:连接AC ,因为AB 是直径,AB ⊥CD ,所以AC=AD ,CE=DE ,所以△ACP ≌△ADP (SSS ),所以∠ACP=∠ADP ,因为∠ACP=12ADQ ,∠ADQ=12ACQ ,所以∠ACP+∠ADQ=12(ADQ +ACQ )=180°.。
圆的有关性质测试题
圆有关的性质测试题一、选择题1、如右图,⊙O 的半径OA 等于5,半径OC ⊥AB 于点D ,若OD =3,则弦AB 的长为( ) A 、10B 、8C 、6D 、4二、如图,⊙O 的弦AB =8,M 是AB 的中点,且OM =3,则⊙O 的半径等于( ) A .8 B .4 C .10 D .53、若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是( ) A.点A 在圆外 B. 点A 在圆上 C. 点A 在圆内 D.不能肯定4、如图,已知⊙O 是正方形ABCD 的外接圆,点E 是AD 上任意一点,则∠BEC 的度数为 ( ) A. 30° B. 45°C. 60°D. 90°五、如图,AB 是⊙O 的直径,AB =4,AC 是弦,AC =23,∠AOC 为( )A .120° B.130C .140°D .150°六、如图,⊙O 的半径为5,若OP =3,,则通过点P 的弦长可能是 ( )A .3B .6C .9D .12 7、如图,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C=70°,现给出以下四个结论: ① ∠A=45°; ②AC=AB ;③ ; ④CE·AB=2BD 2其中正确结论的个数为 ( )A .1个B .2个C .3个D .4个八、如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于C ,若25A =∠.则D ∠等于( ) A .20 B .30 C .40 D .50九、如右图,已知圆的半径是5,弦AB 的长是6,则弦AB 的弦心距是( )A .3B .4C .5D .810、如图,AB 是⊙O 的直径,CD 为弦,AB CD ⊥于E ,则下列结论中不.成立的是( ) A.∠A ﹦∠D B.CE ﹦DE C.∠ACB ﹦90°D .CE ﹦BD11、如图,半径为10的⊙O 中,弦AB 的长为16,则这条弦的弦心距为( )O P(第5题)︵ ︵ AE =(A )6 (B )8 (C )10 (D )12二、填空题1、已知⊙O 的半径为6cm ,弦AB 的长为6cm ,则弦AB 所对的圆周角的度数是 _____.二、如第18题图,已知过D 、A 、C 三点的圆的圆心为E ,过B 、E 、F 三点的圆的圆心为D ,若是∠A =63 º,那么∠B = º.3、如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO =CD ,则∠PCA = °.4、如图,AB 为⊙O 的直径,弦CD ⊥AB ,E 为BC 上一点,若∠CEA=28,则∠ABD=°.五、一条弦把圆分成2:3两部份,那么这条弦所对的圆周角的度数为__________. 六、如图,点A 、B 、C 在圆O 上,且040BAC ∠=,则BOC ∠= .7、如图,⊙O 的半径OA =5cm ,弦AB =8cm ,点P 为弦AB 上一动点,则点P 到圆心O 的最短距离是 cm .八、若是一边长为20cm 的等边三角形硬纸板恰好能不受损地从用铁丝围成的圆形铁圈中穿过,那么铁圈直径的最小值为 cm (铁丝粗细忽略不计). 三、解答题1、如图,在Rt ABC △中,90C ∠=,BE 平分ABC ∠交AC 于点E ,点D 在AB 边上且DE BE ⊥. (1)判断直线AC 与DBE △外接圆的位置关系,并说明理由; (2)若662AD AE ==,,求BC 的长.C(第1题)BDAEOAPB第17题图二、如图,BC 是⊙O 的直径,AD ⊥CD ,垂足为D ,AC 平分∠BCD ,AC =3,CD =1,求⊙O 的半径.3、已知A 、B 、C 是半径为2的圆O 上的三个点,其中点A 是弧BC 的中点,连接AB 、AC ,点D 、E 别离在弦AB 、AC 上,且知足AD =CE .(1)求证:OD =OE ;(2)连接BC ,当BC =22时,求∠DOE 的度数.4、如图,AB 是⊙O 的直径,点A 、C 、D 在⊙O 上,过D 作PF ∥AC 交⊙O 于F 、交AB 于E , 且∠BPF =∠ADC .(1)判断直线BP 和⊙O 的位置关系,并说明你的理由; (2)当⊙O 的半径为5,AC =2,BE =1时,求BP 的长.ODCBAE OD CBAPO ED CBA五、如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径32r=,2AC=,AB=BC求AB长度。
人教版九年级数学上册《圆的有关性质》能力测试题及参考答案
人教版九年级数学上册《圆的有关性质》能力测试题及参考答案一、选择题1.如图是一个半径为5cm的圆柱形输油管的横截面,若油面宽AB=8cm,则油面的深度为()A.2cmB.2.5cmC.3cmD.3.5cm第1题第2题第3题第4题2.如图,AB是⊙O的直径,点C,D是⊙O上的两点,连接AC,OD,CD,且AC//OD,若AB=6,∠ACD=15°,则AC的长为()A.2√2B.4C.3√2D.3√33.如图,点A,B,C,D都在⊙O上,BD为⊙O的直径,若∠A=65°,则∠DBC的值是()A.15°B.25°C.35°D.65°4.如图,AB为⊙O的直径,点C,D都在⊙O上,若BD=BC,∠ABC=65°,则∠BOD 的度数()A.65°B.60°C.50°D.25°5.如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD,∠BAC=28°,则∠D的度数是()A.56°B.58°C.60°D.62°第5题第6题第7题第8题6.如图,四边形ABCD内接于⊙O,∠BOD=84°,则∠C的度数为()A.88°B.92°C.106°D.138°7.如图,在⊙O中,弦AB,CD相交于点P,∠A=45°,∠APD=80°,则∠B的大小是().A.35°B.45°C.60°D.70°8.如图,点A,B,C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交⊙O于点F,则∠BAF等于()A.12.5°B.15°C.20°D.22.5°̂的中点,连接9.如图,在⊙O中,弦AB⊥CD,垂足为E,F为CBDAF,BF,AC,AF交CD于点M,过点F作FH⊥AC,垂足为G,交⊙O于点H.̂=DF̂②HC = BF③MF = FC④DF̂+AĤ= BF̂+AF̂.其中现有以下结论:①CF成立的有()A.1个B.2个C.3个D.4个10.如图,点P在⊙O的直径AB上,作正方形PCDE和正方形PFGH,其中点D,G在直径所在的直线上,点C,E,F,H 都在⊙O 上.若两个正方形的面积之和为16,OP=√2,则DG 的长是( ) A.6√2 B.2√14 C.7 D.4√3第10题 第11题 第12题 第13题11.如图,⊙O 经过菱形ABCD 的顶点A,B,C,顶点D 在⊙O 内,延长AD,CD 与⊙O 分别交于点E,F,连接 BE,BF.下列结论:①BE=BF ②AB ̂=AF ̂=EF ̂③∠ABC=90°+ 12∠EBF,其中正确的结论是( ) A.①② B. ①③ C. ②③ D.①②③12.如图,△ABC 内接于⊙O,∠BAC=45°,AD ⊥BC,垂足为D,BD=6,DC=4,则AB 的长( )A.6√2B.10C.12D.6√513.如图,在半径为√13的⊙O 中,弦AB 与CD 交于点E,∠DEB=75°,AB=6,AE=1,则CD 的长( )A.2√6B.2√10C.2√11D.4√314.过三点A(2,2),B(6,2),C(4,5)的圆的圆心坐标为( )A.(4,176) B .(4,3) C.(5,176) D .(5,3) 15.如图,△ABC 为等边三角形,AB=3.若P 为△ABC 内一动点,且满足∠PAB=∠ACP,则线段PB 长度的最小值为( )A.1.5B.√3C.√3D.216.如图,AB 为⊙O 的直径,C 为⊙O 上的一点,AB=4,∠AOC=120°,P 为⊙O 上的一动点,Q 为AP 的中点,连接CQ,则线段CQ 的最大值为( )A.3B.1+√6C.1+3√2D.1+√7二、填空题17.如图,在⊙O 的内接五边形ABCDE 中,∠CAD=35°,则∠B+∠E 的度数_______.18.如图,AB,CD 是⊙O 的直径,弦BE 与CD 交于点F,F 为BE 中点,AF//ED,若AF 的长为 2√3,则BC 的长为___.第17题 第18题 第19题19.如图,CD 为⊙O 的直径,弦AB ⊥CD,垂足为E,AB̂=BF ̂,CE =1,AB=6,则弦AF 的长度为___. 20.如图,⊙E 与y 轴相交于A,B 两点(点A 在点B 的上方),与x 轴的正半轴相交于点C,且圆心E 的坐标为(m,0),半径为5;直线l 的函数表达式为y=34x+n,且经过点A 并与x 轴相交于点D(-/2,0).若以C为顶点的抛物线过点B,则该抛物线的函数表达式为___.第20题第21题第22题21.如图,AB是⊙O的弦,AB= 6√3,∠AOB=120°,C为⊙O上的一动点,D,E分别是AC,OB的中点,连接DE,则线段DE的取值范围是____.22.如图,等边△ABC的边长为3,F为BC上的动点,DF⊥AB于点D,EF⊥AC于点E,则DE长的最小值为____.三、解答题̂的中点,连结CD,CA,AD.23.如图 1,AB是⊙O的直径,点D为AB下方⊙O上一点,点C为ABD(1)求证:OC平分∠ACD.(2)如图 2,延长AC,DB相交于点E.①求证:OC//BE.②若CE = 4√5,BD =6,求⊙O的半径.24.如图,⊙O为Rt△ABC的外接圆,∠ACB=90°,BC=4√3,AC=4,点D是⊙O上的动点,且点C,D 分别位于AB的两侧.(1)求⊙O的半径;(2)当CD=4√2时,求∠ACD的度数;(3)设AD的中点为M,在点D的运动过程中,线段CM是否存在最大值?若存在,求出CM的最大值;若不存在,请说明理由.25.如图,在△ACE 中,AC=CE,⊙O 经过点A,C 且与边AE,CE 分别交于点D,F,点B 是AĈ上一点,且DF̂=BC ̂,连接AB,BC,CD. (1)求证:△CDE ≌△ABC;(2)若AC 为⊙O 的直径,填空:①当∠E =______时,四边形ABCD 为正方形;②当∠E =____时,四边形OCFD 为菱形.26.已知⊙O 中,弦AB=AC,点P 是∠BAC 所对弧上一动点,连接PA,PB.(1)如图①,把△ABP 绕点A 逆时针旋转到△ACQ,连接PC,求证:∠ACP+∠ACQ=180°;(2)如图②,若∠BAC=60°,试探究PA,PB,PC 之间的关系.参考答案一、选择题1-5 ADBCD 6-10 DABCB 11-15 BDCAB 16 D二、填空题17. 215° 18.2√619.485 20.y=−116(x −8)221.3√3-3≤DE ≤3√3+322.94 三、解答题23.(1)提示:圆心角定理,垂径定理.(2)①略②半径长5.24(1)半径长4.(2)15°(3)2√ 3+225.(1)略(2)①45°②60°26.(1)略(2)①PA=PB+PC。
专题24.1圆的有关性质(测试)(解析版)
专题 24.1 圆的相关性质(测试)一、单项选择题1.以下各角中,是圆心角的是()A.B.C.D.【答案】 D【分析】极点在圆心,两边和圆订交的角是圆心角,选项 D 中,是圆心角,应选 D.2.一个周长是 l 的半圆,它的半径是()A .l B.2l C.l 2 D.l 1【答案】 C【分析】半圆的周长为半径的倍加上半径的 2 倍,因此一个周长是l 的半圆,它的半径是l 2 ,因此选 C. 3.如图, AB, AC 分别是⊙ O 的直径和弦,OD AC 于点D,连结BD,BC,且 AB 10, AC8 ,则BD 的长为()A.25B.4C.213D.【答案】 C【分析】∵ AB 为直径,∴ACB 90 ,∴BC AB 2 AC 2 10 2 82 6,∵ OD AC ,∴ CD AD 14 ,AC2.在 Rt CBD 中,BD42 62 2 13应选 C.4.如图,AB是O 的弦, OC AB 交O 于点 C ,点D是O 上一点,ADC 30 ,则BOC 的度数为().A . 30°B. 40°C.50°D. 60°【答案】 D【分析】解:如图,∵ADC 30 ,∴AOC 2 ADC 60 .∵ AB是O的弦, OC AB交O于点 C,∴.AC BC∴AOC BOC 60 .应选: D..5.如图,有一圆形展厅,在其圆形边沿上的点 A 处安装了一台监督器,它的监控角度是65°.为了监控整个展厅,最少需在圆形边沿上共安装这样的监督器()台.A.3B. 4C.5D.6【分析】设需要安装n( n 是正整数)台相同的监控器,由题意,得:65°×2×n≥360°,解得 n≥36,∴起码要安装 3 台这样的监控器,才能监控整个展厅.应选:A.136.如图,一条公路的转弯处是一段圆弧,点 O 是这段弧所在圆的圆心,AB 40m ,点 C 是AB的中点,且 CD 10m,则这段弯路所在圆的半径为()A .25m B.24m C.30m D.60m【答案】 A【分析】解:OC AB,AD DB20m ,在 Rt AOD 中,OA2 OD 2 AD2,设半径为 r 得:r2 r2202,10解得: r25m ,这段弯路的半径为25m应选: A.7.若AB和CD的度数相等,则以下命题中正确的选项是()A.AB = CDB.AB和CD的长度相等C.AB所对的弦和CD 所对的弦相等D.AB所对的圆心角与CD 所对的圆心角相等【答案】 D【分析】如图,AB 与CD的度数相等,A、依据度数相等,不可以推出弧相等,故本选项错误;B、依据度数相等,不可以推出两弧的长度相等,故本选项错误;C、依据度数相等,不可以推出所对应的弦相等,故本选项错误;D、依据度数相等,能推出弧所对的两个圆心角相等,故本选项正确;应选 D.8.如图, C、D 为半圆上三均分点,则以下说法:①AD =CD=BC;②∠AOD=∠DOC=∠BOC;③AD =CD = OC;④△ AOD 沿 OD 翻折与△COD 重合.正确的有()A.4 个B.3个C.2 个D.1 个【答案】 A【分析】∵ C、D 为半圆上三均分点,∴ ???,故①正确,AD CD BC∵在同圆或等圆中,等弧对的圆心角相等,等弧对的弦相,∴AD = CD = OC,∠ AOD= ∠ DOC= ∠ BOC=60°,故②③正确,∵OA=OD=OC=OB ,∴△ AOD ≌△ COD ≌△ COB ,且都是等边三角形,∴△ AOD 沿 OD 翻折与△COD 重合.故④正确,∴正确的说法有:①②③④共 4 个,应选 A.9.以下说法:①优弧必定比劣弧长;②面积相等的两个圆是等圆;③长度相等的弧是等弧;④经过圆内的一个定点能够作无数条弦;⑤经过圆内必定点能够作无数条直径.A.1 个B.2个C.3 个D.4 个【答案】 C【分析】解:在同圆或等圆中,优弧必定比劣弧长,因此①错误;面积相等的两个圆半径相等,则它们是等圆,因此②正确;能完整重合的弧是等弧,因此③错误;经过圆内一个定点能够作无数条弦,因此④正确;经过圆内必定点能够作无数条直径或一条直径,因此⑤错误.应选: C.10.如下图,AB 是半圆 O 的直径。
小学五年级圆测试卷【含答案】
小学五年级圆测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 圆的周长公式是?A. C = πdB. C = πrC. C = 2πrD. C = 2d2. 一个圆的半径是4厘米,它的直径是?A. 2厘米B. 4厘米C. 8厘米D. 16厘米3. 圆的面积公式是?A. A = πr^2B. A = πd^2C. A = 2πrD. A = 2πr^24. 一个圆的半径增加了2厘米,它的面积增加的最接近的值是?A. 12.56平方厘米B. 25.12平方厘米C. 50.24平方厘米D. 100.48平方厘米5. 圆周角定理是指?A. 圆周角等于圆心角的一半B. 圆周角等于圆心角的两倍C. 圆周角等于90度D. 圆周角等于180度二、判断题(每题1分,共5分)1. 圆的周长和直径成正比。
()2. 所有的圆都是相似的。
()3. 圆的面积和半径成二次方关系。
()4. 圆的直径是圆上任意两点间的最长距离。
()5. 圆的半径决定了圆的大小。
()三、填空题(每题1分,共5分)1. 圆的周长公式是C = ________。
2. 一个圆的半径是5厘米,它的直径是_______厘米。
3. 圆的面积公式是A = ________。
4. 一个圆的半径是3厘米,它的面积是_______平方厘米。
5. 圆周角定理是指圆周角等于_______角的一半。
四、简答题(每题2分,共10分)1. 简述圆的周长公式。
2. 简述圆的面积公式。
3. 简述圆周角定理。
4. 简述如何计算圆的直径。
5. 简述如何计算圆的半径。
五、应用题(每题2分,共10分)1. 一个圆的周长是31.4厘米,求它的半径。
2. 一个圆的面积是78.5平方厘米,求它的半径。
3. 一个圆的直径是10厘米,求它的周长。
4. 一个圆的半径是7厘米,求它的面积。
5. 一个圆的周长是18.84厘米,求它的直径。
六、分析题(每题5分,共10分)1. 如果一个圆的半径增加了1厘米,它的周长和面积各增加多少?2. 如果一个圆的直径减少了2厘米,它的周长和面积各减少多少?七、实践操作题(每题5分,共10分)1. 画一个半径为3厘米的圆,并标出它的直径、周长和面积。
圆的基本性质单元测试卷(标准难度)(含答案)
浙教版初中数学九年级上册第三单元《圆的基本性质》单元测试卷考试范围:第三章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1.若正多边形的内角和是540°,则该正多边形的一个外角为( )A. 45°B. 60°C. 72°D. 90°2.如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则( )A. 3α+β=180°B. 2α+β=180°C. 3α−β=90°D. 2α−β=90°3.如图,AB是半圆O的直径,以弦AC为折痕折叠AC⏜后,恰好经过点O,则∠AOC等于( )A. 120°B. 125°C. 130°D. 145°4.如图,在Rt△ABC中,∠ACB=90∘,∠A=60∘,AC=6,将△ABC绕点C按逆时针方向旋转得到△A′B′C,此时点A′恰好在AB边上,则点B′与点B之间的距离为( )A. 12B. 6C. 6√2D. 6√35. 在平面直角坐标系中,把点A(3,4)绕原点逆时针旋转90°,得到点B ,则点B 的坐标为( )A. (4,−3)B. (−4,3)C. (−3,4)D. (−3,−4)6. 如图,在⊙O 中,弦AB//CD ,OP ⊥CD ,OM =MN ,AB =18,CD =12,则⊙O 的半径为( )A. 4B. 4√2C. 4√6D. 4√37. 如图,将⊙O 沿AB 折叠后,圆弧恰好经过圆心,则AMB ⌢所对的圆心角等于( )A. 60°B. 90°C. 120°D. 150°8. 如图,在△ABC 中,∠C =90°,DE ⏜的度数为α,以点C 为圆心,BC 长为半径的圆交AB 于点D ,交AC 于点E ,则∠A 的度数为( )A. 45∘−12αB. 12αC. 45∘+12αD. 25∘+12α9. 如图,⊙O 是△ABC 的外接圆,∠BAC =60°,若⊙O 的半径OC 为2,则弦BC 的长为( ) A. 1B. √3C. 2D. 2√310.如图,四边形ABCD是半圆的内接四边形,AB是直径,DC⏜=CB⏜.若∠C=110°,则∠ABC的度数等于( )A. 55°B. 60°C. 65°D. 70°11.如上图,四边形ABCD是半圆的内接四边形,AB是直径,DC⌢=CB⌢.若∠C=110∘,则∠ABC的度数等于( )A. 55∘B. 60∘C. 65∘D. 70∘12.如图,在3×4的方格中,每个小方格都是边长为1的正方形,O,A,B分别是小正方形的顶点,则AB⏜的长度为( )A. πB. √2πC. 2πD. 4π第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.根据“不在同一直线上的三点确定一个圆”,可以判断平面直角坐标系内的三个点A(3,0)、B(0,−4)、C(2,−3)______确定一个圆(填“能”或“不能”).14.如图,在⊙A中,弦DE=6,∠BAC+∠EAD=180°,则点A到弦BC的距离等于_________.15.如图,四边形ABCD内接于⊙O,F是CD⏜上一点,且DF⏜=BC⏜,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105∘,∠BAC=25∘,则∠E的度数为.16.如图,点A,B,C在⊙O上,四边形OABC是平行四边形,若对角线AC=2√3,则AC⏜的长为______.三、解答题(本大题共9小题,共72分。
第3章 圆的基本性质单元测试卷(含解析)
第三章圆的基本性质单元测试卷一.选择题(共10小题,满分20分,每小题2分)1.如图,四边形ABCD是⊙O的内接四边形,若∠B=80°,则∠ADC的度数是()A.60°B.80°C.90°D.100°2.如图,等边△ABC内接于⊙O,动点P在劣弧AB上,且不与A、B重合,则∠BPC等于()A.30°B.45°C.60 D.90°3.如图,张三同学把一个直角边长分别为3cm,4cm的直角三角形硬纸板,在桌面上翻滚(顺时针方向),顶点A的位置变化为A1⇒A2⇒A3,其中第二次翻滚时被桌面上一小木块挡住,使纸板一边A2C1与桌面所成的角恰好等于∠BAC,则A翻滚到A2位置时共走过的路程为()A.8cm B.8πcm C.2cm D.4πcm4.用圆心角为60°,半径为24cm的扇形做成一个圆锥的侧面,那么这个圆锥底面的半径是()A.4πcm B.8πcm C.4cm D.8cm5.已知点P是半径为5的⊙O内的一个定点,且OP=3,则过点P的所有弦中,弦长为整数的弦共有多少条()A.2条B.3条C.4条D.5条6.如图,一个长方体盒子,BC=CD=8,AB=4,则沿盒子表面从A点到D点的最短路程是()A.4B.4+4C.4+8 D.47.如图,点P在以AB为直径的半圆内,连接AP、BP,并延长分别交半圆于点C、D,连接AD、BC并延长交于点F,作直线PF,下列说法一定正确的是()①AC垂直平分BF;②AC平分∠BAF;③FP⊥AB;④BD⊥AF.A.①③B.①④C.②④D.③④8.一个扇形的弧长是10πcm,面积是60πcm2,则此扇形的圆心角的度数是()A.300°B.150°C.120°D.75°9.如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是()A.AD=DC B.C.∠ADB=∠ACB D.∠DAB=∠CBA10.如图,AB为⊙O的直径,作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在下半圆上移动时,(不与点A、B重合),下列关于点P描述正确的是()A.到CD的距离保持不变B.到D点距离保持不变C.等分D.位置不变二.填空题(共10小题,满分30分,每小题3分)11.如图,点O是∠EPF的平分线上一点,⊙O和∠EPF的两边分别交于点A、B 和C、D,根据上述条件,可以推出.(要求:填写一个你认为正确的结论即可,不再标注其他字母,不写推理过程)12.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径为cm.13.如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C,D两点,点E为⊙O上一动点,CF⊥AE于F,则弦AB的长度为;当点E在⊙O的运动过程中,线段FG的长度的最小值为.14.如图,已知A、C是半径为2的⊙O上的两动点,以AC为直角边在⊙O内作等腰Rt△ABC,∠C=90°.连接OB.则OB的最小值为.15.如图,在边长为1的小正方形网格中,△ABC的三个顶点都在格点上,将△ABC绕点B逆时针旋转90°得到△A′B′C′,则图中阴影部分图形的面积为.(结果保留π).16.如图所示的扇形是一个圆锥的侧面展开图,若∠AOB=120°,弧AB的长为6πcm,则该圆锥的侧面积为.17.如图,矩形木块ABCD放置在直线L上,将其向右作无滑动的翻滚,直到被正方形PQRS挡住为止,已知AB=3,BC=4,BP=16,正方形木块PQRS边长为2,则点D经过的路线长为.18.如图,已知在扇形OAB中,∠AOB=90°,半径OA=10,正方形FCDE的四个顶点分别在和半径OA、OB上,则CD的长为.19.A、B两点在数轴上,点A所表示的实数是﹣3,⊙A的半径为2,⊙B的半径为3,若⊙B与⊙A相切,则点B所表示的实数是.20.如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交AB于E,交⊙O于D.则弦AD的长是cm.三.解答题(共6小题,满分50分)21.(6分)如图,⊙O的直径EF为10cm,弦AB、CD分别为6cm、8cm,且AB ∥EF∥CD.求图中阴影部分面积之和.22.(8分)如图,AB是⊙O的直径,C是的中点,CE⊥AB,垂足为E,BD交CE于点F.(1)求证:CF=BF;(2)若AD=2,⊙O的半径为4,求BC的长.23.(8分)有一石拱桥的桥拱是圆弧形,如下图所示,正常水位下水面宽AB=60m,水面到拱项距离CD=18m,当洪水泛滥时,水面宽MN=32m时,高度为5m的船是否能通过该桥?请说明理由.24.(8分)如图,点A是半圆上的一个三等分点,点B是弧AN的中点,点P是直径MN上一个动点,圆O的半径为1,(1)找出当AP+BP能得到最小值时,点P的位置,并证明(2)求出AP+BP最小值.25.(8分)如图,AB为⊙O的直径,CD⊥AB于E,CO⊥AB于F,求证:AD=CD.26.(12分)已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.(1)如图1,求证:KE=GE;(2)如图2,连接CABG,若∠FGB=∠ACH,求证:CA∥FE;(3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE=,AK=,求CN的长.参考答案与试题解析一.选择题(共10小题,满分20分,每小题2分)1.解:∵四边形ABCD是⊙O的内接四边形,∴∠B+∠ADC=180°,又∠B=80°,∴∠ADC=100°,故选:D.2.解:∵△ABC为正三角形,∴∠A=60°,∴∠BPC=∠A=60°.故选:C.3.解:根据题意得:=4πcm,故选:D.4.解:根据扇形的弧长公式l===8π,设底面圆的半径是r,则8π=2πr∴r=4cm,这个圆锥底面的半径是4cm.故选:C.5.解:如图,过P作弦AB⊥OP,交⊙O于A、B,连接OA;Rt△OAP中,OP=3,OA=5;根据勾股定理,得AP=4;∴AB=2AP=8;故过点P的弦的长度都在8~10之间;因此弦长为8、9、10;当弦长为8、10时,过P点的弦分别为弦AB和过P点的直径,分别有一条;当弦长为9时,根据圆的对称性知,符合条件的弦应该有两条;故弦长为整数的弦共有4条.故选:C.6.解:如图,把正面和左面展开,形成一个平面,AD两点之间线段最短.即AD===4(cm);如图,把正上面和上面展开,形成一个平面,AD两点之间线段最短.即AD===4(cm).如图,把右面和上面展开,形成一个平面,AD两点之间线段最短.AD===4(cm),故从A点到D点的最短路程为:4cm.故选:D.7.证明:①∵AB为直径,∴∠ACB=90°,∴AC垂直BF,但不能得出AC平分BF,故①错误,②如图1,连结CD,∵AB为直径,∴∠ADB=90°,∴∠BDF=90°,假设AC平分∠BAF成立,则有DC=BC,∴在RT△FDB中,DC=BC=FC,∴AC⊥BF,且平分BF,∴AC垂直BF,但不能得出AC平分BF,与①中的AC垂直BF,但不能得出AC平分BF相矛盾,故②错误,③如图2:∵AB为直径,∴∠ACB=90°,∠ADB=90°,∴D、P、C、F四点共圆,∴∠CFP和∠CDB都对应,∴∠CFP=∠CDB,∵∠CDB=∠CAB,∴∠CFP=∠CAB,又∵∠FPC=∠APM,∴△AMP∽△FCP,∠ACF=90°,∴∠AMP=90°,∴FP⊥AB,故③正确,④∵AB为直径,∴∠ADB=90°,∴BD⊥AF.故④正确,综上所述只有③④正确.故选:D.8.解:∵一个扇形的弧长是10πcm,面积是60πcm2,∴S=Rl,即60π=×R×10π,解得:R=12,∴S=60π=,解得:n=150°,故选:B.9.解:∵弦BD平分∠ABC,∴∠DBC=∠ABD,∴=,AD=DC,故A、B正确;∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,故C正确;∵无法确定∠DAB=∠CBA,故D错误,符合题意.故选:D.10.解:不发生变化.连接OP,∵OP=OC,∴∠P=∠OCP,∵∠OCP=∠DCP,∴∠P=∠DCP,∴CD∥OP,∵CD⊥AB,∴OP⊥AB,∴=,∴点P为的中点不变.故选:D.二.填空题(共10小题,满分30分,每小题3分)11.解:如图:作OM⊥AB,交AB于点M,ON⊥CD,交CD于点N,点O是∠EPF的平分线上一点,∴OM=ON,根据在同圆中两弦的弦心距相等,则弦长相等,知,AB=CD,故弧AB=弧CD.12.解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN﹣ON=4﹣x,MF=2,在直角三角形OMF中,OM2+MF2=OF2即:(4﹣x)2+22=x2解得:x=2.5故答案为:2.513.解:作GM⊥AC于M,连接AG.∵GO⊥AB,∴OA=OB,在Rt△AGO中,∵AG=2,OG=1,∴AG=2OG,OA==,∴∠GAO=30°,AB=2AO=2,∴∠AGO=60°,∵GC=GA,∴∠GCA=∠GAC,∵∠AGO=∠GCA+∠GAC,∴∠GCA=∠GAC=30°,∴AC=2OA=2,MG=CG=1,∵∠AFC=90°,∴点F在以AC为直径的⊙M上,当点F在MG的延长线上时,FG的长最小,最小值=FM﹣GM=﹣1.故答案为2,﹣1.14.解:如图,作等腰直角三角形△OCO′,CO=CO′,∠OCO′=90°,∵AC=CB,∠ACB=∠OCO′,∴△ACO≌△BCO′,∴OA=O′B,∴当点C固定时,点B在以O′为圆心OA为半径的圆上运动,∴当O、B、O′共线时,OB的值最小,最小值=OO′﹣O′B=2﹣2.故答案为2﹣2.15.解:根据旋转的性质和勾股定理得到:A′B2=AB2=22+32=13.S阴影=﹣×2×3=.故答案是:.16.解:由题意得,=6π,解得,OA=9,∴该圆锥的侧面积=×6π×9=27π(cm2),故答案为:27πcm2.17.解:第一次旋转是以点C为圆心,CD为半径,旋转角度是90度,所以弧长==1.5π;第二次旋转是以点D为圆心,所以没有路程;第三次旋转是以点A为圆心,AD为半径,角度是90度,所以弧长==2π;第四次是以点B为圆心,BD为半径,角度是30度,所以弧长==π;所以点D经过的路线长=1.5π+2π+π=π.故答案为:π.18.解:过点O作OH⊥CF于点H,交DE于点K,连接OF,∵OH过圆心,∴CH=HF,∵四边形FCDE是正方形,∴OH⊥DE,DK=EK,∴△OEK是等腰直角三角形,OK=EK,设CD=x,则HK=x,HF=OK=EK=,在Rt△OHF中,OH2+HF2=OF2,即(x+)2+()2=102,解得x=2.即CD的长为2.故答案为:2.19.解:设数轴上点B所表示的实数是b,如果⊙B与⊙A外切,则|b﹣(﹣3)|=2+3,即|b+3|=5,解得b=2或﹣8;如果⊙B与⊙A内切,则|b﹣(﹣3)|=3﹣2,即|b+3|=1,解得b=﹣2或﹣4.故答案为2或﹣8或﹣2或﹣4.20.解:连接BD,∵AB为⊙O的直径,∴∠BCA=90°,∵CD平分∠ACB,∴∠ACD=45°,∴∠ABD=45°,∴△ABD为等腰直角三角形,∴AD 2+BD 2=AB 2, ∵AB=10cm ,∴AD=5cm .故答案为5.三.解答题(共6小题,满分50分)21.解:如图,作直径MN ,使MN ⊥EF 于O ,交AB 于G ,交CD 于H ;连接OA 、OB 、OC 、OD ;在Rt △OBG 中,BG=3cm ,OB=5cm ,因此OG=4cm ; 同理:在Rt △OCH 中,CH=4cm ,OC=5cm ,因此OH=3cm ; sin ∠DOF==, sin ∠BOF==, sin ∠COE==, sin ∠AOE==,即∠DOF=∠AOM=∠COE=∠BOM ,∠CON=∠DON=∠AOE=∠BOF , 因此S 扇形OAE =S 扇形OBF =S 扇形CON =S 扇形ODN ∴S 阴影=S △ABE +S 弓形AMB +S △CDF +S 弓形CND =S △OAB +S 弓形AMB +S △OCD +S 弓形CND =S 扇形OAB +S 扇形OCN +S 扇形ODN =S 扇形OAB +S 扇形OAE +S 扇形OBF =S ⊙O =12.5πcm 2.故图中阴影部分面积之和为12.5πcm 2.22.(1)证明:延长CE交⊙O于点M,∵AB是⊙O的直径,CE⊥AB,∴=,∵C是的中点,∴=,∴=,∴∠BCM=∠CBD,∴CF=BF;(2)解:连接AC,∵AB是⊙O的直径,CE⊥AB,∴∠BEF=∠ADB=90°,∵∠ABD=∠FBE,∴Rt△ADB∽Rt△FEB,∴,∵AD=2,⊙O的半径为4,∴AB=8,∴,∴BF=4EF,又∵BF=CF,∴CF=4EF,利用勾股定理得:BE==EF,又∵∠ACB=∠CEB=90°,∠ABC=∠CBE,∴△EBC∽△ECA,∴,∴CE2=AE•BE,∴(CF+EF)2=(8﹣BE)•BE,∴25EF2=(8﹣EF)•EF,∴EF=,∴BC==2.23.解:不能通过.设OA=R,在Rt△AOC中,AC=30,CD=18,R2=302+(R﹣18)2,R2=900+R2﹣36R+324解得R=34m连接OM,在Rt△MOE中,ME=16,OE2=OM2﹣ME2即OE2=342﹣162=900,∴OE=30,∴DE=34﹣30=4,∴不能通过.(12分)24.(1)证明:过A作AA′⊥MN于E,连接BA′.∵MN过圆心O,∴AE=EA′,∴AP=PA′,即AP+BP=PA′+BP,根据两点间线段最短,当A′,P,B三点共线时,PA′+BP=BA',AP+BP此时为最小值,∴P位于A′B与MN的交点处;(2)解:∵点A是半圆上的一个三等分点,∴∠AON=∠A'ON=60°,∵点B是弧AN的中点,∴=,∴∠BON=30°,∴∠BOA'=∠A'ON+∠BON=90°,∵OB=OA=1,∴BA′=,即AP+BP最小值为.25.证明:∵CD⊥AB,CO⊥AB,∴∠OEC=∠OFA=90°,AD=2AF,CD=2CE,在△OCE和△OAF中,,∴△OCE≌△OAF(AAS),∴CE=AF,∴AD=CD.26.(1)证明:连接OG.∵EF切⊙O于G,∴OG⊥EF,∴∠AGO+∠AGE=90°,∵CD⊥AB于H,∴∠AHD=90°,∴∠OAG=∠AKH=90°,∵OA=OG,∴∠AGO=∠OAG,∴∠AGE=∠AKH,∵∠EKG=∠AKH,∴∠EKG=∠AGE,∴KE=GE.(2)设∠FGB=α,∵AB是直径,∴∠AGB=90°,∴∠AGE=∠EKG=90°﹣α,∴∠E=180°﹣∠AGE﹣∠EKG=2α,∵∠FGB=∠ACH,∴∠ACH=2α,∴∠ACH=∠E,∴CA∥FE.(3)作NP⊥AC于P.∵∠ACH=∠E,∴sin∠E=sin∠ACH==,设AH=3a,AC=5a,则CH==4a,tan∠CAH==,∵CA∥FE,∴∠CAK=∠AGE,∵∠AGE=∠AKH,∴∠CAK=∠AKH,∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH==3,AK==a,∵AK=,∴a=,∴a=1.AC=5,∵∠BHD=∠AGB=90°,∴∠BHD+∠AGB=180°,在四边形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,∵∠AKH+∠HKG=180°,∴∠AKH=∠ABG,∵∠ACN=∠ABG,∴∠AKH=∠ACN,∴tan∠AKH=tan∠ACN=3,∵NP⊥AC于P,∴∠APN=∠CPN=90°,在Rt△APN中,tan∠CAH==,设PN=12b,则AP=9b,在Rt△CPN中,tan∠ACN==3,∴CP=4b,∴AC=AP+CP=13b,∵AC=5,∴13b=5,∴b=,∴CN==4b=.。
浙教版九年级数学上册第3章圆的基本性质单元测试卷-带参考答案
浙教版九年级数学上册第3章圆的基本性质单元测试卷-带参考答案一、单选题1.如图,图中的弦共有( )A .1条B .2条C .3条D .4条2.平面直角坐标系中,O 为坐标原点,点A 的坐标为( 3,1),将OA 绕原点O 按逆时针方向旋转90°得OB ,则点B 的坐标为( )A .(1, 3 )B .(-1, 3)C .(- 3 ,1)D .( 3 ,-1)3.如图,⊙O 的直径为10,AB 为弦,OC ⊙AB ,垂足为C ,若OC =3,则弦AB 的长为( )A .8B .6C .4D .104.在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A 、B 、C 上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是⊙ABC 的( )A .三条高的交点B .重心C .内心D .外心5.如图,点A ,B ,C 是⊙O 上的三点,已知⊙AOB=100°,那么⊙ACB 的度数是( )A .30°B .40°C .50°D .60°6.半径为 a 的圆的内接正六边形的边心距是( )A .2aB .22aC 3aD .a7.如图所示,在O 中30AB AC A ︒=∠=,,则B ∠的度数为( ).A.150︒B.75︒C.60︒D.15︒8.下列语句中,正确的有( )(1)相等的圆心角所对的弧相等;(2)平分弦的直径垂直于弦;(3)长度相等的两条弧是等弧(4) 圆是轴对称图形,任何一条直径都是对称轴A.0个B.1个C.2个D.3个9.下列说法不正确的是()A.过不在同一直线上的三点能确定一个圆B.平分弦的直径垂直于弦C.圆既是轴对称图形又是中心对称图形D.相等的弧所对的弦相等10.如图,在Rt⊙ABC中,⊙ACB=90°,将⊙ABC绕顶点C逆时针旋转得到⊙A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,⊙BAC=30°,则线段PM的最大值是()A.4B.3C.2D.1二、填空题11.如图,在梯形ABCD中,AD⊙BC,将这个梯形绕点D按顺时针方向旋转,使点C落在边AD上的点C′处,点B落在点B′处,如果直线B′C′经过点C,那么旋转角等于度.12.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且⊙EDF=45°,将⊙DAE绕点D逆时针旋转90°,得到⊙DCM.若AE=1,则FM的长为.13.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD 于点E.若AB=6,则⊙AEC的面积为.14.如图,在扇形BOC中,⊙BOC=60°,点D是BC的中点,点E,F分别为半径OC,OB上的动点.若OB=2,则⊙DEF周长的最小值为.三、解答题15.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).求证:AC=BD.16.如图,AB是⊙O的直径,弦CD⊙AB于E,⊙CDB=30°,CD=3,求阴影部分的面积.17.如图,在平面直角坐标系中,⊙ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出⊙A1B1C1,使⊙A1B1C1与⊙ABC关于x轴对称;(2)将⊙ABC绕点O逆时针旋转90°,画出旋转后得到的⊙A2B2C2,并直接写出点B旋转到点B2所经过的路径长.18.如图,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点,⊙APC=⊙CPB=60°.判断⊙ABC 的形状,并证明你的结论;19.如图,射线PG 平分⊙EPF ,O 为射线PG 上一点,以O 为圆心,10为半径作⊙O ,分别与⊙EPF 两边相交于A 、B 和C 、D ,连结OA ,此时有OA⊙PE(1)求证:AP=AO ;(2)若弦AB=12,求tan⊙OPB 的值.四、综合题20.如图,在⊙ABC 中,以AB 为直径的⊙O 分别与BC ,AC 相交于点D ,E ,BD =CD ,过点D 作⊙O 的切线交边AC 于点F.(1)求证:DF⊙AC ;(2)若⊙O 的半径为5,⊙CDF =30°,求弧BD 的长(结果保留π).21.如图,在 O 中 AC CB = , CD OA ⊥ 于点D , CE OB ⊥ 于点E.(1)求证: CD CE = ;(2)若 120,2AOB OA ∠=︒= ,求四边形 DOEC 的面积.22.如图,将矩形ABCD 绕点B 旋转得到矩形BEFG ,点E 在AD 上,延长DA 交GF 于点H.(1)求证:ABE FEH ≅;(2)连接BH ,若30EBC ∠=︒,求ABH ∠的度数.23.如图1,⊙O 的直径AB 为4,C 为⊙O 上一个定点,⊙ABC=30°,动点P 从A 点出发沿半圆弧 AB 向B 点运动(点P 与点C 在直径AB 的异侧),当P 点到达B 点时运动停止,在运动过程中,过点C 作CP 的垂线CD 交PB 的延长线于D 点.(1)求证:⊙ABC⊙⊙PDC(2)如图2,当点P 到达B 点时,求CD 的长;(3)设CD 的长为 x .在点P 的运动过程中, x 的取值范围为(请直接写出案).答案解析部分1.【答案】B【解析】【解答】解:图形中有弦AB和弦CD,共2条故答案为:B.【分析】由连接圆上任意两点间的距离就是弦即可判断得出答案.2.【答案】B【解析】【解答】过点B作BC⊙x轴于点C,过点B作BC⊙y轴于点F∵点A的坐标为( 3,1),将OA绕原点O逆时针旋转90°到OB的位置∴BC 3=,CO=1∴点B的坐标为:(﹣1,3).故答案为:B.【分析】先根据旋转的性质作图,利用图象则可求得点B的坐标.3.【答案】A【解析】【解答】解:连接OA∵OA=5,OC=3,OC⊙AB∴AC=22-=4OA OC∵OC⊙AB∴AB=2AC=2×4=8.故答案为:A.【分析】连接OA,利用勾股定理求出AC的长,根据垂径定理可得AB=2AC,从而求出AB的长. 4.【答案】D【解析】【解答】解:∵三角形的三条垂直平分线的交点到中间的凳子的距离相等∴凳子应放在⊙ABC 的三条垂直平分线的交点最适当.故答案为:D .【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.5.【答案】C【解析】【解答】解:∵⊙AOB 与⊙ACB 都对 AB ,且⊙AOB=100°∴⊙ACB= 12 ⊙AOB=50°故选C【分析】根据图形,利用圆周角定理求出所求角度数即可.6.【答案】C【解析】【解答】解:如图,连接OA 、OB ,过点O 作OH 垂直AB 于点H ,OH 即为正六边形边心距.∵六边形ABCDEF 为正六边形∴60AOB ∠=︒ ,OA=OB=AB=a ,AH=BH= 2a ∴2222233()24aOH OA AH a a =-=-== 即半径为 a 3a . 故答案为:C.【分析】连接OA 、OB ,过点O 作OH 垂直AB 于点H ,OH 即为正六边形边心距,根据正六边形的性质用勾股定理可求解.7.【答案】B【解析】【解答】解:∵AB AC =∴AB=AC∴⊙B=⊙C=12(180°-⊙A)=12(180°-30°)=75°.故答案为B:.【分析】利用同圆和等圆中,相等的弧所对的弦相等,可证得AB=AC,利用等边对等角及三角形的内角和定理可求出⊙B的度数.8.【答案】A【解析】【解答】(1)、不符合题意,需要添加前提条件,即在同圆或等圆中;(2)、不符合题意,平分的弦不能是直径;(3)、不符合题意,等弧是指长度和度数都相等的弧;(4)、不符合题意,圆的对称轴是直径所在的直线.故答案为:A.【分析】在同圆或等圆中,相等的圆心角所对的弧相等,据此判断(1);平分弦(不是直径)的直径垂直于弦,据此判断(2);能重合的弧叫做等弧,据此判断(3);圆是轴对称图形,任何一条直径所在的直线都是对称轴,据此判断(4).9.【答案】B【解析】【解答】解:A、过不在同一直线上的三点能确定一个圆,正确,不符合题意;B、平分弦(不是直径)的直径垂直于弦,故原命题错误,符合题意;C、圆既是轴对称图形又是中心对称图形,正确,不符合题意;D、相等的弧所对的弦相等,正确,不符合题意.故答案为:B.【分析】根据确定圆的条件可判断A;根据垂径定理可判断B;根据轴对称图形、中心对称图形的概念可判断C;根据弧、弦的关系可判断D.10.【答案】B【解析】【解答】解:如图连接PC.在Rt⊙ABC中,∵⊙A=30°,BC=2∴AB=4根据旋转不变性可知,A′B′=AB=4∴A′P=PB′∴PC=12A′B′=2∵CM=BM=1又∵PM≤PC+CM,即PM≤3∴PM的最大值为3(此时P、C、M共线).故答案为:B.【分析】连接PC,根据⊙A=30°,BC=2,可知AB的值,根据旋转的性质可知A′B′=AB,进而可知A′P、PB′、PC的知,结合图形和三角形三边关系即可得出PM的取值范围,进而可知P、C、M共线时,PM值最大,即可选出答案.11.【答案】60【解析】【解答】解:连接CC′,如图所示:则B′、C′、C在一条直线上由旋转的性质得:⊙1=⊙2,DC′=DC∴⊙3=⊙4∵A′D′⊙B′C′∴⊙2=⊙3∴⊙1=⊙3=⊙4∴⊙CDC′是等边三角形∴⊙CDC′=60°;故答案为:60.【分析】根据旋转的性质“对应点与旋转中心连线所成的角度都等于旋转的角度”可求解。
六年级圆的综合测试题
六年级圆的综合测试题一、选择题(每题3分,共30分)1. 圆的半径扩大3倍,它的周长就扩大()倍。
A. 3B. 6C. 9D. 12解析:圆的周长公式为公式,当半径公式扩大3倍变为公式时,新的周长公式。
公式,所以周长扩大3倍,答案是A。
2. 一个圆的直径是10厘米,这个圆的面积是()平方厘米。
A. 314B. 78.5C. 31.4D. 15.7解析:圆的面积公式为公式,已知直径公式厘米,那么半径公式厘米。
所以公式,公式取3.14时,公式平方厘米,答案是B。
3. 圆的周长总是它直径的()倍。
B. 公式C. 3D. 6.28解析:根据圆的周长公式公式,所以圆的周长总是它直径的公式倍,答案是B。
4. 一个半圆的半径是公式,它的周长是()。
A. 公式B. 公式C. 公式D. 公式解析:半圆的周长为圆周长的一半加上直径,圆的周长公式,圆周长的一半是公式,直径是公式,所以半圆的周长是公式,答案是C。
5. 在一个边长为公式厘米的正方形内画一个最大的圆,这个圆的面积是()平方厘米。
A. 50.24B. 200.96C. 64解析:在正方形内画最大的圆,这个圆的直径等于正方形的边长公式厘米,所以半径公式厘米。
圆的面积公式,公式取3.14时,公式平方厘米,答案是A。
6. 把一个圆平均分成若干份,拼成一个近似的长方形,这个长方形的长相当于圆的()。
A. 半径B. 直径C. 周长D. 周长的一半解析:把圆平均分成若干份拼成近似长方形时,长方形的长相当于圆周长的一半,宽相当于圆的半径,答案是D。
7. 一个圆的半径由公式厘米增加到公式厘米,圆的面积增加了()平方厘米。
A. 15.7B. 12.56C. 28.26D. 18.84解析:原来圆的面积公式平方厘米,后来圆的面积公式平方厘米。
面积增加了公式,公式取3.14时,公式平方厘米,答案是A。
8. 车轮滚动一周,所行的路程是求车轮的()。
A. 直径B. 周长C. 面积D. 半径解析:车轮滚动一周的路程就是车轮边缘一周的长度,也就是车轮的周长,答案是B。
人教版九年级数学上册同步测试:圆的有关性质(解析版)
人教版九年级数学上册同步测试:圆的有关性质(解析版)一﹨选择题(共9小题)1.如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm2.(绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A.4m B.5m C.6m D.8m3.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm,水的最大深度是2cm,则杯底有水部分的面积是()A.(π﹣4)cm2B.(π﹣8)cm2C.(π﹣4)cm2 D.(π﹣2)cm24.如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600米,E为弧CD上一点,且OE⊥CD,垂足为F,OF=米,则这段弯路的长度为()A.200π米B.100π米C.400π米D.300π米5.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm6.在半径为13的⊙O中,弦AB∥CD,弦AB和CD的距离为7,若AB=24,则CD的长为()A.10 B.4C.10或4D.10或27.如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不成立的是()A.∠A=∠D B.CE=DE C.∠ACB=90°D.CE=BD8.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为()A.4B.8C.2D.49.如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为()A.2B.C.2D.二﹨填空题(共15小题)10.如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为m.11.赵州桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.如图,若桥跨度AB约为40米,主拱高CD约10米,则桥弧AB所在圆的半径R=米.12.如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A﹨B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是.13.一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,则此时排水管水面宽CD等于m.14.如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,则秋千摆至最高位置时与最低价位置时的高度之差(即CD)为米.15.如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为m.16.把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为.17.如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE:BE=1:3,则AB=.18.如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A﹨B,并使AB与车轮内圆相切于点D,做CD⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径为cm.19.如图是一圆形水管的截面图,已知⊙O的半径OA=13,水面宽AB=24,则水的深度CD 是.20.平面内有四个点A﹨O﹨B﹨C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是.21.如图,AB是⊙O的弦,OC⊥AB于点C,连接OA﹨OB.点P是半径OB上任意一点,连接AP.若OA=5cm,OC=3cm,则AP的长度可能是cm(写出一个符合条件的数值即可)22.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为cm.23.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为.24.如图,已知⊙O的直径AB=6,E﹨F为AB的三等分点,M﹨N为上两点,且∠MEB=∠NFB=60°,则EM+FN=.三﹨解答题(共6小题)25.如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN 的长)为2米,求小桥所在圆的半径.26.如图所示,某窗户由矩形和弓形组成,已知弓形的跨度AB=3m,弓形的高EF=1m,现计划安装玻璃,请帮工程师求出所在圆O的半径r.27.在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;(2)如图2,若点D与圆心O不重合,∠BAC=25°,请直接写出∠DCA的度数.28.如图,已知△ABC是⊙O的内接三角形,AB=AC,点P是的中点,连接PA,PB,PC.(1)如图①,若∠BPC=60°.求证:AC=AP;(2)如图②,若sin∠BPC=,求tan∠PAB的值.29.)如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.30.如图,AB是⊙O的直径,弦CD交AB于点E,OF⊥AC于点F,(1)请探索OF和BC的关系并说明理由;(2)若∠D=30°,BC=1时,求圆中阴影部分的面积.(结果保留π)参考答案与试题解析一﹨选择题(共9小题)1.如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm【考点】垂径定理的应用;勾股定理.【分析】过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求r的值.【解答】解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=AB=×8=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.故选C.【点评】本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.2.绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A.4m B.5m C.6m D.8m【考点】垂径定理的应用;勾股定理.【分析】连接OA,根据桥拱半径OC为5m,求出OA=5m,根据CD=8m,求出OD=3m,根据AD=求出AD,最后根据AB=2AD即可得出答案.【解答】解:连接OA,∵桥拱半径OC为5m,∴OA=5m,∵CD=8m,∴OD=8﹣5=3m,∴AD===4m,∴AB=2AD=2×4=8(m);故选;D.【点评】此题考查了垂径定理的应用,关键是根据题意做出辅助线,用到的知识点是垂径定理﹨勾股定理.3.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm,水的最大深度是2cm,则杯底有水部分的面积是()A.(π﹣4)cm2B.(π﹣8)cm2C.(π﹣4)cm2 D.(π﹣2)cm2【考点】垂径定理的应用;扇形面积的计算.【分析】作OD⊥AB于C,交小⊙O于D,则CD=2,由垂径定理可知AC=CB,利用正弦函数求得∠OAC=30°,进而求得∠AOC=120°,利用勾股定理即可求出AB的值,从而利用S﹣S△AOB求得杯底有水部分的面积.扇形【解答】解:作OD⊥AB于C,交小⊙O于D,则CD=2,AC=BC,∵OA=OD=4,CD=2,∴OC=2,在RT△AOC中,sin∠OAC==,∴∠OAC=30°,∴∠AOB=120°,AC==2,∴AB=4,﹣S△AOB=﹣××2=(π﹣4)cm2∴杯底有水部分的面积=S扇形故选A.【点评】本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.4.如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600米,E为弧CD上一点,且OE⊥CD,垂足为F,OF=米,则这段弯路的长度为()A.200π米B.100π米C.400π米D.300π米【考点】垂径定理的应用;勾股定理;弧长的计算.【分析】设这段弯路的半径为R米,OF=米,由垂径定理得CF=CD=×600=300.由勾股定理可得OC2=CF2+OF2,解得R的值,进而得出这段弧所对圆心角,求出弧长即可.【解答】解:设这段弯路的半径为R米OF=米,∵OE⊥CD∴CF=CD=×600=300根据勾股定理,得OC2=CF2+OF2即R2=3002+(300)2解之,得R=600,∴sin∠COF==,∴∠COF=30°,∴这段弯路的长度为:=200π(m).故选:A.【点评】此题主要考查了垂径定理的应用,根据已知得出圆的半径以及圆心角是解题关键.5.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm【考点】垂径定理的应用;勾股定理.【分析】连接OA,过点O作OE⊥AB,交AB于点M,由垂径定理求出AM的长,再根据勾股定理求出OM的长,进而可得出ME的长.【解答】解:连接OA,过点O作OE⊥AB,交AB于点M,∵直径为200cm,AB=160cm,∴OA=OE=100cm,AM=80cm,∴OM===60cm,∴ME=OE﹣OM=100﹣60=40cm.故选:A.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.6.在半径为13的⊙O中,弦AB∥CD,弦AB和CD的距离为7,若AB=24,则CD的长为()A.10 B.4C.10或4D.10或2【考点】垂径定理;勾股定理.【专题】分类讨论.【分析】根据题意画出图形,由于AB和CD的位置不能确定,故应分AB与CD在圆心O 的同侧和AB与CD在圆心O的异侧两种情况进行讨论.【解答】解:当AB与CD在圆心O的同侧时,如图1所示:过点O作OF⊥CD于点F,交AB于点E,连接OA,OC,∵AB∥CD,OF⊥CD,∴OE⊥AB,∴AE=AB=×24=12,在Rt△AOE中,OE===5,∴OF=OE+EF=5+7=12,在Rt△OCF中,CF===5,∴CD=2CF=2×5=10;当AB与CD在圆心O的异侧时,如图2所示:过点O作OF⊥CD于点F,反向延长交AB于点E,连接OA,OC,∵AB∥CD,OF⊥CD,∴OE⊥AB,∴AE=AB=×24=12,在Rt△AOE中,OE===5,∴OF=EF﹣OE=7﹣5=2,在Rt△OCF中,CF===,∴CD=2CF=2×=2.故CD的长为10或2.故选D.【点评】本题考查的是垂径定理,在解答此类题目时要注意进行分类讨论,不要漏解.7.如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不成立的是()A.∠A=∠D B.CE=DE C.∠ACB=90°D.CE=BD【考点】垂径定理.【专题】压轴题.【分析】根据垂径定理,直径所对的角是直角,以及同弧所对的圆周角相等,即可判断.【解答】解:∵AB是⊙O的直径,CD为弦,CD⊥AB于E.∴CE=DE.故B成立;A﹨根据同弧所对的圆周角相等,得到∠A=∠D,故该选项正确;C﹨根据直径所对的圆周角是直角即可得到,故该选项正确;D﹨CE=DE,而△BED是直角三角形,则DE<BD,则该项不成立.故选D.【点评】本题主要考查了垂径定理的基本内容,以及直径所对的圆周角是直角.8.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为()A.4B.8C.2D.4【考点】垂径定理;勾股定理.【专题】探究型.【分析】先根据⊙O的直径AB=12求出OB的长,再由BP:AP=1:5求出BP的长,故可得出OP的长,连接OC,在Rt△OPC中利用勾股定理可求出PC的长,再根据垂径定理即可得出结论.【解答】解:∵⊙O的直径AB=12,∴OB=AB=6,∵BP:AP=1:5,∴BP=AB=×12=2,∴OP=OB﹣BP=6﹣2=4,∵CD⊥AB,∴CD=2PC.如图,连接OC,在Rt△OPC中,∵OC=6,OP=4,∴PC===2,∴CD=2PC=2×2=4.故选D.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为()A.2B.C.2D.【考点】垂径定理;含30度角的直角三角形;勾股定理.【专题】压轴题.【分析】先过O作OC⊥AP,连结OB,根据OP=4,∠APO=30°,求出OC的值,在Rt△BCO中,根据勾股定理求出BC的值,即可求出AB的值.【解答】解:过O作OC⊥AP于点C,连结OB,∵OP=4,∠APO=30°,∴OC=sin30°×4=2,∵OB=3,∴BC===,∴AB=2;故选A.【点评】此题考查了垂经定理,用到的知识点是垂经定理﹨含30度角的直角三角形﹨勾股定理,解题的关键是作出辅助线,构造直角三角形.二﹨填空题(共15小题)10.如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为0.8m.【考点】垂径定理的应用;勾股定理.【分析】过O点作OC⊥AB,C为垂足,交⊙O于D,连OA,根据垂径定理得到AC=BC=0.5m,再在Rt△AOC中,利用勾股定理可求出OC,即可得到CD的值,即水的深度.【解答】解:如图,过O点作OC⊥AB,C为垂足,交⊙O于D﹨E,连OA,OA=0.5m,AB=0.8m,∵OC⊥AB,∴AC=BC=0.4m,在Rt△AOC中,OA2=AC2+OC2,∴OC=0.3m,则CE=0.3+0.5=0.8m,故答案为:0.8.【点评】本题考查了垂径定理的应用,掌握垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧是解题的关键,注意勾股定理的运用.11.赵州桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.如图,若桥跨度AB约为40米,主拱高CD约10米,则桥弧AB所在圆的半径R=25米.【考点】垂径定理的应用;勾股定理.【分析】根据垂径定理和勾股定理求解即可.【解答】解:根据垂径定理,得AD=AB=20米.设圆的半径是r,根据勾股定理,得R2=202+(R﹣10)2,解得R=25(米).故答案为25.【点评】此题综合运用了勾股定理以及垂径定理.注意构造由半径﹨半弦﹨弦心距组成的直角三角形进行有关的计算.12.如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A﹨B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是50cm.【考点】垂径定理的应用;勾股定理;切线的性质.【分析】根据垂径定理求得AD=30cm,然后根据勾股定理即可求得半径.【解答】解:如图,连接OA,∵CD=10cm,AB=60cm,∵CD⊥AB,∴OC⊥AB,∴AD=AB=30cm,∴设半径为r,则OD=r﹣10,根据题意得:r2=(r﹣10)2+302,解得:r=50.∴这个车轮的外圆半径长为50cm.故答案为:50cm.【点评】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是本题的关键.13.一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,则此时排水管水面宽CD等于 1.6m.【考点】垂径定理的应用;勾股定理.【分析】先根据勾股定理求出OE的长,再根据垂径定理求出CF的长,即可得出结论.【解答】解:如图:∵AB=1.2m,OE⊥AB,OA=1m,∴OE=0.8m,∵水管水面上升了0.2m,∴OF=0.8﹣0.2=0.6m,∴CF=m,∴CD=1.6m.故答案为:1.6.【点评】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.14.如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,则秋千摆至最高位置时与最低价位置时的高度之差(即CD)为0.5米.【考点】垂径定理的应用;勾股定理.【分析】由题意知,秋千摆至最低点时,点C为弧AB的中点,由垂径定理知AB⊥OC,AD=BD=AB=1.5米.再根据勾股定理求得OD即可.【解答】解:∵点C为弧AB的中点,O为圆心由垂径定理知:AB⊥OC,AD=BD=AB=1.5米,在Rt△OAD中,根据勾股定理,OD==2(米),∴CD=OC﹣OD=2.5﹣2=0.5(米);故答案为0.5.【点评】本题考查了垂径定理的应用,勾股定理的应用,将实际问题抽象为几何问题是解题的关键.15.如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为0.2m.【考点】垂径定理的应用;勾股定理.【分析】过O作OC垂直于AB,利用垂径定理得到C为AB的中点,在直角三角形AOC 中,由水面高度与半径求出OC的长,即可得出排水管内水的深度.【解答】解:过O作OC⊥AB,交AB于点C,可得出AC=BC=AB=0.4m,由直径是1m,可知半径为0.5m,在Rt△AOC中,根据勾股定理得:OC===0.3(m),则排水管内水的深度为:0.5﹣0.3=0.2(m).故答案为:0.2.【点评】此题考查了垂径定理的应用,以及勾股定理,熟练掌握定理是解本题的关键.16.把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为5.【考点】垂径定理的应用;勾股定理;切线的性质.【专题】几何图形问题.【分析】首先由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD﹨劣弧于点H﹨I,再连接OF,易求得FH的长,然后设求半径为r,则OH=8﹣r,然后在Rt△OFH 中,r2﹣(16﹣r)2=82,解此方程即可求得答案.【解答】解:由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD﹨劣弧于点H﹨I,再连接OF,在矩形ABCD中,AD∥BC,而IG⊥BC,∴IG⊥AD,∴在⊙O中,FH=EF=4,设求半径为r,则OH=8﹣r,在Rt△OFH中,r2﹣(8﹣r)2=42,解得r=5,故答案为:5.【点评】此题考查了切线的性质﹨垂径定理以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握方程思想与数形结合思想的应用.17.如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE:BE=1:3,则AB= 4.【考点】垂径定理;勾股定理.【专题】计算题.【分析】根据AE与BE比值,设出AE为x与BE为3x,由AE+BE表示出AB,进而表示出OA与OB,由OA﹣AE表示出OE,连接OC,根据AB与CD垂直,利用垂径定理得到E为CD中点,求出CE的长,在直角三角形OCE中,利用勾股定理列出方程,求出方程的解得到x的值,即可确定出AB的长.【解答】解:连接OC,根据题意设AE=x,则BE=3x,AB=AE+EB=4x,∴OC=OA=OB=2x,OE=OA﹣AE=x,∵AB⊥CD,∴E为CD中点,即CE=DE=CD=3,在Rt△CEO中,利用勾股定理得:(2x)2=32+x2,解得:x=,则AB=4x=4.故答案为:4【点评】此题考查了垂径定理,以及勾股定理,熟练掌握定理是解本题的关键.18.如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A﹨B,并使AB与车轮内圆相切于点D,做CD⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径为50cm.【考点】垂径定理的应用;勾股定理;切线的性质.【专题】几何图形问题.【分析】设点O为外圆的圆心,连接OA和OC,根据CD=10cm,AB=60cm,设半径为r,则OD=r﹣10,根据垂径定理得:r2=(r﹣10)2+302,求得r的值即可.【解答】解:如图,设点O为外圆的圆心,连接OA和OC,∵CD=10cm,AB=60cm,∴设半径为r,则OD=r﹣10,根据题意得:r2=(r﹣10)2+302,解得:r=50,故答案为:50.【点评】本题考查了垂径定理的应用,解题的关键是正确构造直角三角形.19.如图是一圆形水管的截面图,已知⊙O的半径OA=13,水面宽AB=24,则水的深度CD 是8.【考点】垂径定理的应用;勾股定理.【分析】先根据垂径定理求出AC的长,再根据勾股定理求出OC的长,根据CD=OD﹣OC 即可得出结论.【解答】解:∵⊙O的半径OA=13,水面宽AB=24,OD⊥AB,∴OD=OA=13,AC=AB=12,在Rt△AOC中,OC===5,∴CD=OD﹣OC=13﹣5=8.故答案为:8.【点评】本题考查的是垂径定理的应用,解答此类问题时往往是找出直角三角形,利用勾股定理求解.20.平面内有四个点A﹨O﹨B﹨C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是2,3,4.【考点】垂径定理;等边三角形的判定与性质.【专题】压轴题.【分析】分类讨论:如图1,根据圆周角定理可以推出点C在以点O为圆心的圆上;如图2,根据已知条件可知对角∠AOB+∠ACB=180°,则四个点A﹨O﹨B﹨C共圆.分类讨论:如图1,如图2,在不同的四边形中,利用垂径定理﹨等边△MAO的性质来求OC的长度.【解答】解:如图1,∵∠AOB=120°,∠ACB=60°,∴∠ACB=∠AOB=60°,∴点C在以点O为圆心的圆上,且在优弧AB上.∴OC=AO=BO=2;如图2,∵∠AOB=120°,∠ACB=60°,∴∠AOB+∠ACB=180°,∴四个点A﹨O﹨B﹨C共圆.设这四点都在⊙M上.点C在优弧AB上运动.连接OM﹨AM﹨AB﹨MB.∵∠ACB=60°,∴∠AMB=2∠ACB=120°.∵AO=BO=2,∴∠AMO=∠BMO=60°.又∵MA=MO,∴△AMO是等边三角形,∴MA=AO=2,∴MA<OC≤2MA,即2<OC≤4,∴OC可以取整数3和4.综上所述,OC可以取整数2,3,4.故答案是:2,3,4.【点评】本题考查了垂径定理﹨等边三角形的判定与性质.此题需要分类讨论,以防漏解.在解题时,还利用了圆周角定理,圆周角﹨弧﹨弦间的关系.21.如图,AB是⊙O的弦,OC⊥AB于点C,连接OA﹨OB.点P是半径OB上任意一点,连接AP.若OA=5cm,OC=3cm,则AP的长度可能是6cm(写出一个符合条件的数值即可)【考点】垂径定理;勾股定理.【专题】开放型.【分析】根据勾股定理求出AC,根据垂径定理求出AB,即可得出AP的范围是大于等于5cm且小于等于8cm,举出即可.【解答】解:∵OC⊥AB,∴∠ACO=90°,∵OA=5cm,OC=3cm,∴由勾股定理得:AC==4cm,∴由垂径定理得:AB=2AC=8cm,只要举出的数大于等于5且小于等于8cm即可,如6cm,故答案为:6.【点评】本题考查了勾股定理和垂径定理的应用,关键是求出AP的范围.22.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为2 cm.【考点】垂径定理;勾股定理.【专题】压轴题.【分析】通过作辅助线,过点O作OD⊥AB交AB于点D,根据折叠的性质可知OA=2OD,根据勾股定理可将AD的长求出,通过垂径定理可求出AB的长.【解答】解:过点O作OD⊥AB交AB于点D,连接OA,∵OA=2OD=2cm,∴AD===cm,∵OD⊥AB,∴AB=2AD=cm.故答案为:2.【点评】本题综合考查垂径定理和勾股定理的运用.23.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为(3,2).【考点】垂径定理;坐标与图形性质;勾股定理.【专题】压轴题;探究型.【分析】过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.【解答】解:过点P作PD⊥x轴于点D,连接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中,∵OP=,OD=3,∴PD===2,∴P(3,2).故答案为:(3,2).【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.24.如图,已知⊙O的直径AB=6,E﹨F为AB的三等分点,M﹨N为上两点,且∠MEB=∠NFB=60°,则EM+FN=.【考点】垂径定理;含30度角的直角三角形;勾股定理.【专题】压轴题.【分析】延长ME交⊙O于G,根据圆的中心对称性可得FN=EG,过点O作OH⊥MG于H,连接MO,根据圆的直径求出OE,OM,再解直角三角形求出OH,然后利用勾股定理列式求出MH,再根据垂径定理可得MG=2MH,从而得解.【解答】解:如图,延长ME交⊙O于G,∵E﹨F为AB的三等分点,∠MEB=∠NFB=60°,∴FN=EG,过点O作OH⊥MG于H,连接MO,∵⊙O的直径AB=6,∴OE=OA﹣AE=×6﹣×6=3﹣2=1,OM=×6=3,∵∠MEB=60°,∴OH=OE•sin60°=1×=,在Rt△MOH中,MH===,根据垂径定理,MG=2MH=2×=,即EM+FN=.故答案为:.【点评】本题考查了垂径定理,勾股定理的应用,以及解直角三角形,作辅助线并根据圆的中心对称性得到FN=EG是解题的关键,也是本题的难点.三﹨解答题(共6小题)25.如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN 的长)为2米,求小桥所在圆的半径.【考点】垂径定理的应用;勾股定理;相似三角形的应用.【分析】根据已知得出旗杆高度,进而得出GM=MH,再利用勾股定理求出半径即可.【解答】解:∵小刚身高1.6米,测得其影长为2.4米,∴8米高旗杆DE的影子为:12m,∵测得EG的长为3米,HF的长为1米,∴GH=12﹣3﹣1=8(m),∴GM=MH=4m.如图,设小桥的圆心为O,连接OM﹨OG.设小桥所在圆的半径为r,∵MN=2m,∴OM=(r﹣2)m.在Rt△OGM中,由勾股定理得:∴OG2=OM2+42,∴r2=(r﹣2)2+16,解得:r=5,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆有关的性质测试题
一、选择题
1、如右图,⊙O 的半径OA 等于5,半径OC ⊥AB 于点D ,若OD =3,则弦AB 的长为( ) A 、10
B 、8
C 、6
D 、4
2、如图,⊙O 的弦AB =8,M 是AB 的中点,且OM =3,则⊙O 的半径等于( ) A .8 B .4 C .10 D .5
3、若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是( ) A.点A 在圆外 B. 点A 在圆上 C. 点A 在圆内 D.不能确定
4、如图,已知⊙O 是正方形ABCD 的外接圆,点E 是AD 上任意一点,则∠BEC 的度数为 ( ) A. 30°
B. 45°
C. 60°
D. 90°
5、如图,AB 是⊙O 的直径,AB =4,AC 是弦,AC
=,∠AOC 为( )
A .120°
B .1300
C .140°
D .150°
6、如图,⊙O 的半径为5,若OP =3,,则经过点P 的弦长可能是 ( )
A .3
B .6
C .9
D .12
7、如图,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C =70°,现给出以下四个结论:
① ∠A =45
°
;
②AC =AB ;
③ ; ④CE ·AB =2BD 2 其中正确结论的个数为 ( )
A .1个
B .2个
C .3个
D .4个
O P
(第5题)
︵ ︵ AE =
8、如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于C ,若25A =∠.则D ∠等于( ) A . 20 B . 30 C . 40 D . 50
9、如右图,已知圆的半径是5,弦AB 的长是6,则弦AB 的弦心距是( )
A .3
B .4
C .5
D .8
10、如图,AB 是⊙O 的直径,CD 为弦,AB CD ⊥于E ,则下列结论中不.成立的是( ) A.∠A ﹦∠D B.CE ﹦DE C.∠ACB ﹦90° D .CE ﹦BD
11、如图,半径为10的⊙O 中,弦AB 的长为16,则这条弦的弦心距为( ) (A )6 (B )8 (C ) (D )12
二、填空题
1、已知⊙O 的半径为6cm ,弦AB 的长为6cm ,则弦AB 所对的圆周角的度数是 _____.
2、如第18题图,已知过D 、A 、C 三点的圆的圆心为E ,过B 、E 、F 三点的圆的圆心为D ,如果∠A =63 º,那么∠B = º.
3、如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO =CD ,则∠PCA = °.
4、如图,AB 为⊙O 的直径,弦CD ⊥AB ,E 为BC 上一点,若∠CEA=28,则∠
ABD= °.
5、一条弦把圆分成2:3两部分,那么这条弦所对的圆周角的度数为__________.
6、如图,点A 、B 、C 在圆O 上,且0
40BAC ∠=,则BOC ∠= .
7、如图,⊙O 的半径OA =5cm ,弦AB =8cm ,点P 为弦AB 上一动点,则点P 到圆心O 的最短距离是
cm .
8、如果一边长为20cm 的等边三角形硬纸板刚好能不受损地从用铁丝围成的圆形铁圈中穿过,那么铁圈直
径的最小值为 cm (铁丝粗细忽略不计). 三、解答题
1、如图,在Rt ABC △中,90C ∠=,BE 平分ABC ∠交AC 于点E ,点D 在AB 边上且DE BE ⊥. (1)判断直线AC 与DBE △外接圆的位置关系,并说明理由; (2)若6AD AE ==,BC 的长.
C
(第1题)
B
D
A
E
第17题图
2、如图,BC 是⊙O 的直径,AD ⊥CD ,垂足为D ,AC 平分∠BCD ,AC =3,CD =1,求⊙O 的半径.
3、已知A 、B 、C 是半径为2的圆O 上的三个点,其中点A 是弧BC 的中点,连接AB 、AC ,点D 、E 分别在弦AB 、AC 上,且满足AD =CE . (1)求证:OD =OE ;
(2)连接BC ,当BC =22时,求∠DOE 的度数.
D
A
B
4、如图,AB 是⊙O 的直径,点A 、C 、D 在⊙O 上,过D 作PF ∥AC 交⊙O 于F 、交AB 于E ,
且∠BPF =∠ADC
.
(1)判断直线BP 和⊙O 的位置关系,并说明你的理由;
(2)当⊙O 的半径为5,AC =2,BE =1时,求BP 的长.
5、 如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,连接CD ,若⊙O 的半径3
2
r =,2AC =,AB=BC 求AB 长度。
P B
A
6、如图,AB是⊙O的直径,BC是⊙O的切线,D是⊙O上一点,且AD∥OC.
(1)求证:△ADB∽△OBC.
(2)若AB=6,BC=4.求AD的长度.(结果保留根号)
Welcome To Download !!!
欢迎您的下载,资料仅供参考!。