max485芯片

合集下载

RS485使用介绍

RS485使用介绍
二. 单片机 RS-485 多机通讯的实现
摘要 本文介绍一种能利用 RS-485 电气特性和简单的结构方式,采用自定义串 行通信协议,实现单片机 RS-485 多机通讯的方法和技巧。
关键词 单片机,RS-485 总线,总线冲突,串行通信
1 简介 RS-485 串行总线接口标准以差分平衡方式传输信号,具有很强的抗共模干
RS-485 的使用
一.一. 485 接口芯片简介 1.一般说明
MAX481/MAX483/MAX485 是用于 RS—485 通信的小功率收发器,它们都含有 一个驱动器和一个接收器。MAX483 的特点是具有限斜率的驱动器,这样可以使 电磁干扰(EMI)减至最小,并减小因电缆终端不匹配而产生的影响,因此可以 高达 250Kbps 的速度无误差的传送数据。MAX481 和 MAX485 的驱动器不是限斜率 的,允许它们以每秒 2.5Mbps 的速度发送数据。这些收发器的工作电流在 120— 500uA 之间。此外 MAX481/MAX483 有一个低电流的关闭方式,在此方式下,它们 仅需要 0.1uA 的工作电流。所以这些收发器只需一个+5V 的电源。
图 4 程序流程图 注:延时 T 秒的取值 (1) 传送地址帧时,T>2X(1/波特率),可以选取 T=2.5X(1/波特率)。 (2) 传送数据帧时,T>1X(1/波特率),可以选取 T=1.5X(1/波特率)。
三. RS-485 通讯常见问题 1. MAX488/MAX490 在点对点通信中工作很正常,但在点对多点通信时却无法
常用的 RS-485 总线驱动芯片有 SN75174,SN75175,SN75176。SN75176 芯
片有一个发送器和一个接收器,非常适合作为 RS-485 总线驱动芯片。SN75176

MEMORY存储芯片MAX485EEPA+中文规格书

MEMORY存储芯片MAX485EEPA+中文规格书

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers2MAX481/MAX483/MAX485/MAX487–MAX491/MAX1487ABSOLUTE MAXIMUM RATINGSSupply Voltage (V CC ) (12V)Control Input Voltage (RE , DE)...................-0.5V to (V CC + 0.5V)Driver Input Voltage (DI).............................-0.5V to (V CC + 0.5V)Driver Output Voltage (A, B)...................................-8V to +12.5VReceiver Input Voltage (A, B).................................-8V to +12.5VReceiver Output Voltage (RO)....................-0.5V to (V CC + 0.5V)Continuous Power Dissipation (T A = +70°C)8-Pin Plastic DIP (derate 9.09mW/°C above +70°C)....727mW14-Pin Plastic DIP (derate 10.00mW/°C above +70°C)..800mW8-Pin SO (derate 5.88mW/°C above +70°C).................471mW 14-Pin SO (derate 8.33mW/°C above +70°C)...............667mW 8-Pin µMAX (derate 4.1mW/°C above +70°C)..............830mW 8-Pin CERDIP (derate 8.00mW/°C above +70°C).........640mW 14-Pin CERDIP (derate 9.09mW/°C above +70°C).......727mW Operating Temperature Ranges MAX4_ _C_ _/MAX1487C_ A...............................0°C to +70°C MAX4__E_ _/MAX1487E_ A.............................-40°C to +85°C MAX4__M_/MAX1487MJA.............................-55°C to +125°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10sec).............................+300°C DC ELECTRICAL CHARACTERISTICS(V CC = 5V ±5%, T A = T MIN to T MAX , unless otherwise noted.) (Notes 1, 2)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V V IN = -7V V IN = 12V V IN = -7V V IN = 12V Input Current (A, B)I IN2V TH k Ω48-7V ≤V CM ≤12V, MAX487/MAX1487R INReceiver Input Resistance -7V ≤V CM ≤12V, all devices exceptMAX487/MAX1487R = 27Ω(RS-485), Figure 40.4V ≤V O ≤2.4VR = 50Ω(RS-422)I O = 4mA, V ID = -200mV I O = -4mA, V ID = 200mV V CM = 0V -7V ≤V CM ≤12V DE, DI, REDE, DI, RE MAX487/MAX1487,DE = 0V, V CC = 0V or 5.25VDE, DI, RE R = 27Ωor 50Ω, Figure 4R = 27Ωor 50Ω, Figure 4R = 27Ωor 50Ω, Figure 4DE = 0V;V CC = 0V or 5.25V,all devices exceptMAX487/MAX1487CONDITIONS k Ω12µA ±1I OZR Three-State (high impedance)Output Current at Receiver V 0.4V OL Receiver Output Low Voltage3.5V OH Receiver Output High VoltagemV 70ΔV TH Receiver Input HysteresisV -0.20.2Receiver Differential ThresholdVoltage-0.2mA 0.25mA -0.81.01.55V OD2Differential Driver Output(with load)V 2V 5V OD1Differential Driver Output (no load)µA ±2I IN1Input Current V 0.8V IL Input Low VoltageV 2.0V IH Input High VoltageV 0.2ΔV OD Change in Magnitude of DriverCommon-Mode Output Voltagefor Complementary Output StatesV 0.2ΔV OD Change in Magnitude of DriverDifferential Output Voltage forComplementary Output StatesV 3V OC Driver Common-Mode OutputVoltageUNITS MIN TYP MAX SYMBOL PARAMETERLow-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers7MAX481/MAX483/MAX485/MAX487–MAX491/MAX1487______________________________________________________________Pin DescriptionFigure 1. MAX481/MAX483/MAX485/MAX487/MAX1487 Pin Configuration and Typical Operating Circuit。

MEMORY存储芯片MAX485CPA中文规格书

MEMORY存储芯片MAX485CPA中文规格书

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers12MAX481/MAX483/MAX485/MAX487–MAX491/MAX1487500mV/div 20ns/div ABRO 2V/divV CC = 5V T A = +25°C 500mV/div 20ns/divAB RO2V/divV CC = 5V T A = +25°C500mV/div 400ns/div ABRO2V/div V CC = 5V T A = +25°C 500mV/div 400ns/divA B RO2V/div V CC = 5VT A = +25°CFigure 14. Receiver Propagation Delay Test CircuitFigure 15. MAX481/MAX485/MAX490/MAX491/MAX1487Receiver t PHL Figure 16. MAX481/MAX485/MAX490/MAX491/MAX1487Receiver t PLHPHL Figure 18. MAX483, MAX487–MAX489 Receiver t PLHLow-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers 8MAX481/MAX483/MAX485/MAX487–MAX491/MAX1487__________Applications Information The MAX481/MAX483/MAX485/MAX487–MAX491 and MAX1487 are low-power transceivers for RS-485 and RS-422 communications. The MAX481, MAX485, MAX490,MAX491, and MAX1487 can transmit and receive at data rates up to 2.5Mbps, while the MAX483, MAX487,MAX488, and MAX489 are specified for data rates up to 250kbps. The MAX488–MAX491 are full-duplex trans-ceivers while the MAX481, MAX483, MAX485, MAX487,and MAX1487 are half-duplex. In addition, Driver Enable (DE) and Receiver Enable (RE ) pins are included on the MAX481, MAX483, MAX485, MAX487, MAX489,MAX491, and MAX1487. When disabled, the driver and receiver outputs are high impedance.MAX487/MAX1487:128 Transceivers on the Bus The 48k Ω, 1/4-unit-load receiver input impedance of the MAX487 and MAX1487 allows up to 128 transceivers on a bus, compared to the 1-unit load (12k Ωinput impedance) of standard RS-485 drivers (32 trans-ceivers maximum). Any combination of MAX487/MAX1487 and other RS-485 transceivers with a total of 32 unit loads or less can be put on the bus. The MAX481/MAX483/MAX485 and MAX488–MAX491 have standard 12k ΩReceiver Input impedance.Figure 2. MAX488/MAX490 Pin Configuration and Typical Operating Circuit Figure 3. MAX489/MAX491 Pin Configuration and Typical Operating Circuit。

MAX485典型电路讲解

MAX485典型电路讲解

管脚的功能如下:
RO:接收器输出端。若A比B大200mV,RO为高;反之为低电平。
RE:接收器输出使能端。RE为低时,RO有效;为高时,RO呈高阻
状态。
DE:驱动器输出使能端。若DE=1,驱动器输
出A和B有效;若DE=0,则它们呈高阻态。若
驱动器输出有效,器件作为线驱动器用,反之
作为线接收器用。
DI:驱动器输入端。DI=0,有A=0,B=1;
WR1: SETB SDA ;此位为 1,发送1
SETB SCL ;时钟脉冲变高电
NOP NOP CLR SCL
;时钟脉冲变低电
CLR SDA DJNZ R7,WLP
RET
(5)字节数据接收子程序
该子程序的功能是在时钟的高电平时数据已稳定,读入一位,经过8 个时钟从SDA线上读入一个字节数据,并将所读字节存于A和R6
当DI=1,则A=1,B=0。
GND:接地。
A:同相接收器输入和同相驱动器输出。
B:反相接收器输入和反相驱动器输出。
图9.1 MAX485芯片的
VCC:电源端,一般接+5V。
DIP封装管脚图
MAX485典型的工作电路如图9.2所示,其中平衡电阻Rp 通常取100~300欧姆。MAX485的收发功能见表9.3。
单片机原理、接口及应用
内容提要
★ RS-485总线扩展 ★ IIC总线扩展接口及应用 ★ SPI总线扩展接口及应用
9.1 RS-485总线扩展
RS-485标准接口是单片机系统种常用的一种串行总线之 一。与RS-232C比较,其性能有许多改进,细节请见表9.1所示。
表9.1 RS-232C与RS-485性能比较
该子程序的入口条件是待发送的字节位于累加器ACC中。

利用MAX485实现PC机与单片机之间的串行通讯

利用MAX485实现PC机与单片机之间的串行通讯

利用MAX485实现PC机与单片机之间的串行通讯摘要介绍一种RS-485接口芯片MAX485,利用此芯片可以很方便地实现PC机与单片机之间的串行通讯,同时给出PC机与单片机实现多点通讯的实例。

关键词RS-485串行通讯多点通讯随着数据采集系统的广泛应用,通常由单片机构成的应用系统,如仪器仪表、智能设备等,都需要与PC机之间交换数据,实现与PC机之间的通讯功能,以充分发挥PC和单片机之间的功能互补,资源共享的优势。

以往常用的RS-232协议在很大程度上已不能满足设计的要求,如传输速率慢,传输距离短,传输信号易受外界的干扰等缺点。

本文介绍一种性能优越的RS-485接口芯片,以及如何利用此芯片实现单片机与PC机之间的远程通讯,并讨论将其功能进行扩充,实现PC机管理单片机阵列的功能。

1 RS-485协议简介及MAX485芯片介绍由于RS-232的种种缺点,新的串行通讯接口标准RS-449被制定出来,与之相对应的是RS-485的电气标准。

RS-485是美国电气工业联合会(EIA)制定的利用平衡双绞线作传输线的多点通讯标准。

它采用差分信号进行传输;最大传输距离可以达到1.2 km;最大可连接32个驱动器和收发器;接收器最小灵敏度可达±200 mV;最大传输速率可达2.5 Mb/s。

由此可见,RS -485协议正是针对远距离、高灵敏度、多点通讯制定的标准。

MAX485接口芯片是Maxim公司的一种RS-485芯片。

采用单一电源+5 V工作,额定电流为300 μA,采用半双工通讯方式。

它完成将TTL电平与RS-485电平转换的功能。

其引脚结构图如图1所示。

从图中可以看出,MAX485芯片的结构和引脚都非常简单,内部含有一个驱动器和接收器。

RO和DI端分别为接收器的输出和驱动器的输入端,与单片机连接时只需分别与单片机的RXD 和TXD相连即可;/RE和DE端分别为接收和发送的使能端,当/RE为逻辑0时,器件处于接收状态;当DE为逻辑1时,器件处于发送状态,因为MAX485工作在半双工状态,所以只需用单片机的一个管脚控制这两个引脚即可;A端和B端分别为接收和发送的差分信号端,当A引脚的电平高于B 时,代表发送的数据为1;当A的电平低于B端时,代表发送的数据为0。

MEMORY存储芯片MAX485EESA中文规格书

MEMORY存储芯片MAX485EESA中文规格书

General Description The MAX481E, MAX483E, MAX485E, MAX487E–MAX491E, and MAX1487E are low-power transceivers for RS-485 and RS-422 communications in harsh environ-ments. Each driver output and receiver input is protected against ±15kV electro-static discharge (ESD) shocks, without latchup. These parts contain one driver and one receiver. The MAX483E, MAX487E, MAX488E, and MAX489E feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly termi-nated cables, thus allowing error-free data transmission up to 250kbps. The driver slew rates of the MAX481E, MAX485E, MAX490E, MAX491E, and MAX1487E are not limited, allowing them to transmit up to 2.5Mbps.These transceivers draw as little as 120µA supply cur-rent when unloaded or when fully loaded with disabled drivers (see Selector Guide). Additionally, the MAX481E, MAX483E, and MAX487E have a low-current shutdown mode in which they consume only 0.5µA. All parts oper-ate from a single +5V supply.Drivers are short-circuit current limited, and are protected against excessive power dissipation by thermal shutdown circuitry that places their outputs into a high-impedance state. The receiver input has a fail-safe feature that guar-antees a logic-high output if the input is open circuit.The MAX487E and MAX1487E feature quarter-unit-load receiver input impedance, allowing up to 128 trans-ceivers on the bus. The MAX488E–MAX491E are designed for full-duplex communications, while the MAX481E, MAX483E, MAX485E, MAX487E, and MAX1487E are designed for half-duplex applications. For applications that are not ESD sensitive see the pin-and function-compatible MAX481, MAX483, MAX485, MAX487–MAX491, and MAX1487.Applications Low-Power RS-485 TransceiversLow-Power RS-422 TransceiversLevel TranslatorsTransceivers for EMI-Sensitive ApplicationsIndustrial-Control Local Area NetworksNext-Generation Device Features ♦For Fault-Tolerant Applications:MAX3430: ±80V Fault-Protected, Fail-Safe, 1/4-Unit Load, +3.3V, RS-485 TransceiverMAX3080–MAX3089: Fail-Safe, High-Speed(10Mbps), Slew-Rate-Limited, RS-485/RS-422Transceivers♦For Space-Constrained Applications:MAX3460–MAX3464: +5V, Fail-Safe, 20Mbps,Profibus, RS-485/RS-422 TransceiversMAX3362: +3.3V, High-Speed, RS-485/RS-422Transceiver in a SOT23 PackageMAX3280E–MAX3284E: ±15kV ESD-Protected,52Mbps, +3V to +5.5V, SOT23, RS-485/RS-422True Fail-Safe ReceiversMAX3030E–MAX3033E: ±15kV ESD-Protected,+3.3V, Quad RS-422 Transmitters♦For Multiple Transceiver Applications:MAX3293/MAX3294/MAX3295: 20Mbps, +3.3V,SOT23, RS-485/RS-422 Transmitters♦For Fail-Safe Applications:MAX3440E–MAX3444E: ±15kV ESD-Protected,±60V Fault-Protected, 10Mbps, Fail-SafeRS-485/J1708 Transceivers♦For Low-Voltage Applications:MAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E: +3.3V Powered, ±15kVESD-Protected, 12Mbps, Slew-Rate-Limited,True RS-485/RS-422 Transceivers±15kV ESD-Protected, Slew-Rate-Limited, Low-Power, RS-485/RS-422 TransceiversOrdering InformationOrdering Information continued at end of data sheet.Selector Guide appears at end of data sheet.±15kV ESD-Protected, Slew-Rate-Limited,Low-Power, RS-485/RS-422 Transceivers__________Function Tables (MAX481E/MAX483E/MAX485E/MAX487E/MAX1487E)Table 1. TransmittingTable 2. Receivingneers developed state-of-the-art structures to protect these pins against ESD of ±15kV without damage. The ESD structures withstand high ESD in all states: normal operation, shutdown, and powered down. After an ESD event, Maxim’s MAX481E, MAX483E, MAX485E, MAX487E–MAX491E, and MAX1487E keep working without latchup.ESD protection can be tested in various ways; the transmitter outputs and receiver inputs of this product family are characterized for protection to ±15kV using the Human Body Model.Other ESD test methodologies include IEC10004-2 con-tact discharge and IEC1000-4-2 air-gap discharge (for-merly IEC801-2).ESD Test ConditionsESD performance depends on a variety of conditions.Contact Maxim for a reliability report that documents test set-up, test methodology, and test results.Human Body ModelF igure 4 shows the Human Body Model, and F igure 5shows the current waveform it generates when dis-charged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of inter-est, which is then discharged into the test device through a 1.5k Ωresistor.IEC1000-4-2The IEC1000-4-2 standard covers ESD testing and per-formance of finished equipment; it does not specifically refer to integrated circuits (Figure 6).MAX481E/MAX483E/MAX485E/ MAX487E–MAX491E/MAX1487E__________Applications InformationThe MAX481E/MAX483E/MAX485E/MAX487E–MAX491E and MAX1487E are low-power transceivers for RS-485 and RS-422 communications. These “E” versions of the MAX481, MAX483, MAX485, MAX487–MAX491, and MAX1487 provide extra protection against ESD. The rugged MAX481E, MAX483E, MAX485E, MAX497E–MAX491E, and MAX1487E are intended for harsh envi-ronments where high-speed communication is important. These devices eliminate the need for transient suppres-sor diodes and the associated high capacitance loading.The standard (non-“E”) MAX481, MAX483, MAX485, MAX487–MAX491, and MAX1487 are recommended for applications where cost is critical.The MAX481E, MAX485E, MAX490E, MAX491E, and MAX1487E can transmit and receive at data rates up to 2.5Mbps, while the MAX483E, MAX487E, MAX488E, and MAX489E are specified for data rates up to 250kbps. The MAX488E–MAX491E are full-duplex transceivers, while the MAX481E, MAX483E, MAX487E, and MAX1487E are half-duplex. In addition, driver-enable (DE) and receiver-enable (RE) pins are included on the MAX481E, MAX483E, MAX485E, MAX487E, MAX489E, MAX491E, and MAX1487E. When disabled, the driver and receiver outputs are high impedance.±15kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electro-static discharges encountered during handling and assembly. The driver outputs and receiver inputs have extra protection against static electricity. Maxim’s engi-±15kV ESD-Protected, Slew-Rate-Limited,Low-Power, RS-485/RS-422 TransceiversFigure 6. IEC1000-4-2 ESD Test ModelFigure 8. Driver DC Test LoadFigure 7. IEC1000-4-2 ESD Generator Current WaveformFigure 9. Receiver Timing Test LoadFigure 4. Human Body ESD Test ModelFigure 5. Human Body Model Current WaveformMAX481E/MAX483E/MAX485E/ MAX487E–MAX491E/MAX1487E±15kV ESD-Protected, Slew-Rate-Limited,Low-Power, RS-485/RS-422 Transceiversdelay times. Typical propagation delays are shown in Figures 19–22 using Figure 18’s test circuit.The difference in receiver delay times, t PLH - t PHL , is typically under 13ns for the MAX481E, MAX485E,MAX490E, MAX491E, and MAX1487E, and is typically less than 100ns for the MAX483E and MAX487E–MAX489E.The driver skew times are typically 5ns (10ns max) for the MAX481E, MAX485E, MAX490E, MAX491E, and MAX1487E, and are typically 100ns (800ns max) for the MAX483E and MAX487E–MAX489E.Typical ApplicationsThe MAX481E, MAX483E, MAX485E, MAX487E–MAX491E, and MAX1487E transceivers are designed for bidirectional data communications on multipoint bus transmission lines. F igures 25 and 26 show typical net-work application circuits. These parts can also be used as line repeaters, with cable lengths longer than 4000 feet.To minimize reflections, the line should be terminated at both ends in its characteristic impedance, and stub lengths off the main line should be kept as short as possi-ble. The slew-rate-limited MAX483E and MAX487E–MAX489E are more tolerant of imperfect termination.Bypass the V CC pin with 0.1µF.Isolated RS-485For isolated RS-485 applications, see the MAX253 and MAX1480 data sheets.Line Length vs. Data RateThe RS-485/RS-422 standard covers line lengths up to 4000 feet. Figures 23 and 24 show the system differen-tial voltage for the parts driving 4000 feet of 26AWG twisted-pair wire at 110kHz into 100Ωloads.Figure 18. Receiver Propagation Delay Test CircuitIt takes the drivers and receivers longer to become enabled from the low-power shutdown state (t ZH(SHDN ), t ZL(SHDN)) than from the operating mode (t ZH , t ZL ). (The parts are in operating mode if the RE, DE inputs equal a logical 0,1 or 1,1 or 0, 0.)Driver Output ProtectionExcessive output current and power dissipation caused by faults or by bus contention are prevented by two mechanisms. A foldback current limit on the output stage provides immediate protection against short circuits over the whole common-mode voltage range (see Typical Operating Characteristics ). In addition, a thermal shut-down circuit forces the driver outputs into a high-imped-ance state if the die temperature rises excessively.Propagation DelayMany digital encoding schemes depend on the differ-。

Max485使用说明

Max485使用说明

一 485模块描述
1、板载MAX485芯片,是一款用于RS-485通信的低功耗、限摆率收发器
2、板载接5.08(mm)间距2P接线柱,方便RS-485通信接线prefix = o ns = "urn:schemas-microsoft-com:office:office"
3、引出通讯及控制引脚,可连接单片机控制操作
4、工作电压:5V
5、板子尺寸:37(mm)x17.5(mm),设有3MM固定孔
二小板接口说明(4线制)
1 VCC 电源正极(+5V)
2 GND 电源负极
3 RO 接收器输出,连接RXD接口
4 DI 驱动器输入,连接TXD接口
3 RE 接收器输出使能,连接IO口控制
4 DE 驱动器输出使能,连接IO口控制
三使用说明
RE和DE连接说明:
1,分别使用两个IO口控制收发:
RE:接收开关 RE=0:打开 RE=1:关闭
DE:发射开关 DE=0:关闭 DE=1:打开
2,使用一个IO口控制:
RE和DE相连接至一个IO口,IO=0:只接收,IO=1:只发射参考图如下:
两种控制方式取决于系统的设计
3,如果你的系统只有RXD和TXD信号而无控制IO口,则可以由外部直接打开使能,但注意,只能做发射器或接收器。

因板带上拉电阻,RE和DE不连接时(悬空)为高电平,即只做发射器,如需改为接收器使用,则将RE和DE接低电平(接GND端)。

一种rs485串口自动收发控制及指示电路的制作方法

一种rs485串口自动收发控制及指示电路的制作方法

一种rs485串口自动收发控制及指示电路的制作方法RS485串口是一种常用的通信协议,常用于远距离通信和多节点通信。

为了实现对RS485串口的自动收发控制及指示,可以设计一个电路来实现。

下面将介绍一种制作RS485串口自动收发控制及指示电路的方法。

首先,我们需要准备以下材料和工具:1. RS485模块2. Arduino开发板3. MAX485芯片4.逻辑门电路芯片5. LED灯6.电阻、电容等相关元件7.连接线、焊锡工具等制作步骤如下:1.首先,我们将RS485模块和Arduino开发板连接起来。

将RS485模块的A、B线分别连接到Arduino开发板的串口引脚,如A线连接到TX引脚,B线连接到RX引脚。

同时,还需要将RS485模块的GND引脚和Arduino开发板的GND引脚连接起来,以确保电路的接地。

2.接下来,我们需要添加MAX485芯片。

将MAX485芯片的VCC和GND引脚连接到电源上,确保其正常工作。

然后,将MAX485芯片的A、B线分别连接到RS485模块的A、B线上。

此时,RS485模块的A、B线通过MAX485芯片和Arduino开发板相连接。

3.然后,我们需要添加逻辑门电路芯片。

逻辑门电路芯片的作用是控制RS485模块的发送和接收功能。

我们将逻辑门电路芯片的引脚与Arduino开发板的引脚相连接。

具体连接方式可以根据所使用的逻辑门电路芯片而定,通常需要将逻辑门电路芯片的控制引脚连接到Arduino开发板的某个数字引脚上,以实现对RS485模块的控制。

4.接下来,我们需要添加LED灯来指示RS485模块的发送和接收状态。

我们将LED灯的阳极(长脚)连接到逻辑门电路芯片的输出引脚上,将LED灯的阴极(短脚)连接到电源的负极上,以实现对LED 灯的控制和指示。

5.最后,我们需要添加一些电阻、电容等相关元件来保护电路和改善信号质量。

具体的元件数值和连接方式可以根据实际需求而定,在这里不作详细介绍。

MAX485的功能

MAX485的功能

0 MAX485是芯片接口的一种类型。

MAX485接口芯片是Maxim公司的一种RS-485芯片。

MAX485CPAMAX485、MAX487-MAX491以及MAX1487是用于RS-485与RS-422通信的低功耗收发器,每个器件中都具有一个驱动器和一个接收器。

MAX483、MAX487、MAX488以及MAX489具有限摆率驱动器,可以减小EMI,并降低由不恰当的终端匹配电缆引起的反射,实现最高250kbps的无差错数据传输。

MAX481、MAX485、MAX490、MAX491、MAX1487的驱动器摆率不受限制,可以实现最高2.5Mbps 的传输速率。

这些收发器在驱动器禁用的空载或满载状态下,吸取的电源电流在120µA至500µA之间。

另外,MAX481、MAX483与MAX487具有低电流关断模式,仅消耗0.1µA。

所有器件都工作在5V单电源下。

采用单一电源+5 V工作,额定电流为300 μA,采用半双工通讯方式。

它完成将TTL电平转换为RS-485电平的功能。

MAX485芯片的结构和引脚都非常简单,内部含有一个驱动器和接收器。

RO 和DI端分别为接收器的输出和驱动器的输入端,与单片机连接时只需分别与单片机的RXD和TXD相连即可;/RE和DE端分别为接收和发送的使能端,当/RE为逻辑0时,器件处于接收状态;当DE为逻辑1时,器件处于发送状态,因为MAX485工作在半双工状态,所以只需用单片机的一个管脚控制这两个引脚即可;A端和B端分别为接收和发送的差分信号端,当A引脚的电平高于B 时,代表发送的数据为1;当A的电平低于B端时,代表发送的数据为0。

在与单片机连接时接线非常简单。

只需要一个信号控制MAX485的接收和发送即可。

同时将A和B端之间加匹配电阻,一般可选100Ω的电阻。

引脚(管脚)图及工作电路计算机是不能直接识别RS485通讯信号的。

max485典型电路

max485典型电路

9 RS-485总线扩展
RS-485标准接口是单片机系统种常用的一种串行总线之一。

与RS-232C比较,其性能有许多改进,细节请见表9.1所示。

表9.1 RS-232C与RS-485性能比较
RS-485接口可连接成半双工和全双工两种通信方式。

常见的半双工通信芯片有MAX481、MAX483、MAX485、MAX487等,全双工通信芯片有MAX488、MAX489、MAX490、MAX491等。

下面以MAX485为例来介绍RS-485串行接口的应用。

MAX485的封装有DIP、SO和uMAX三种,其中DIP封装的管脚如图9.1所示。

管脚的功能如下:
RO:接收器输出端。

若A比B大200mV,RO为高;反之为低电平。

RE:接收器输出使能端。

RE为低时,RO有效;为高时,RO呈高阻状态。

DE:驱动器输出使能端。

若DE=1,驱动器输
出A和B有效;若DE=0,则它们呈高阻态。


驱动器输出有效,器件作为线驱动器用,反之
作为线接收器用。

DI:驱动器输入端。

DI=0,有A=0,B=1;
当DI=1,则A=1,B=0。

GND:接地。

A:同相接收器输入和同相驱动器输出。

B:反相接收器输入和反相驱动器输出。

VCC:电源端,一般接+5V。

图9.1 MAX485芯片的DIP封装管脚图
MAX485典型的工作电路如图9.2所示,其中平衡电阻Rp 通常取100~300欧姆。

MAX485的收发功能见表9.3。

表9.3 MAX485的收发功能。

关于测径仪MAX485损坏分析

关于测径仪MAX485损坏分析

关于测径仪MAX485损坏分析故障现象:远程控制器不能与激光测径仪通信损坏器件:MAX485、单片机原因分析:一般来说元器件的损坏有两种情况。

一是芯片电源损坏,即电源短路或阻抗下降。

二是功能引脚对电源或地开路或短路,又或者是功能引脚内部开路。

以激光测径仪Opmac-25AL3(序号11-1004018)远程控制和器YK-1A-25AL3(序号YK-1003003),在昆山某一公司使用情况为例,分析如下:用户反映远程控制器不能与激光测径仪通信,经检查参数设置正确,排除控制电缆线问题。

第一次维修时检查发现远程控制器的MAX485损坏,更换后,返还给用户。

使用两天后仪器出现相同的故障现象,检查后发现激光测径仪的MAX485损坏、单片机PIC16F877A的通信口损坏,内部一串口连接扁平线被烧坏。

扁平线系一条GND线烧焦,说明该线通过很大的电流,该线是专供给串口通信的。

检查串口通信的A/B两条线无烧焦的痕迹。

对仪器的电源进行检查均未出现电源异常现象。

到用户现场检查,远程控制器装在用户的电气控制柜内,由控制柜给远程控制器和激光测径仪供电。

通过控制电缆线把激光测径仪测量的数据传输给远程控制器,再由远程控制器传输给工控机。

激光测径仪固定在电线挤出机第一个冷却水槽边缘,采用7字型铁板固定。

由电气控制柜内部单独引出一条地线接到激光测径仪的接地螺丝上。

最终检查出,引起GND线的大电流,来自于水槽上,而水槽本身没有接地,但是通过测径仪接地。

水槽虽然没有电气设备,但是电流会通过水槽的水管连接。

这样就造成漏电流通过测径仪和测径仪的接地线流回到控制柜内部,构成一个回路。

从而导致元器件烧毁,仪器损坏。

在现场做过实验,用一条直径为2mm的裸铜线,一端接电气柜外壳,另一端不停的碰触水槽,铜线在打火,最终将烧坏铜线烧断。

可见,地线的电流有多大,相当于一台小型电焊机了。

该现象,只是在比较严重的场合才能观察得到,同类的现象在电缆厂也应该有不少。

max485芯片工作原理

max485芯片工作原理

max485芯片工作原理
MAX485是一种常用的RS通信接口芯片,可以实现半双工的串行通信。

它的工作原理如下:
1. 驱动器模式:当MAX485处于驱动器模式时,将串行数据输入到芯片的DI(Data Input)引脚,然后芯片内部的驱动器将输入的数据转换成差分信号输出到A与B引,A引脚输出高485处于接收器模式时,A与B上的差分信号将被接收到RE(Receive Enable)引脚控制的接收器输入端。

RE引脚为高电平时,芯片处于接收器模式,此时差分信号经过放大后输出到RO(Receive Output)引脚上。

反之,RE引脚为低电平时,芯片处于驱动器模式,RO引脚将悬空或输出高阻抗。

2. 差分传输:MAX485采用差分传输方式,在传输线上通过比较A与B引脚上的电平差异来接收数据。

高电平差分信号表示逻辑1,低电平差分信号表示逻辑0。

这种差分传输方式具有抗干扰能力强的特点,可以有效减少信号传输中的噪音干扰。

综上所述,MAX485通过驱动器模式和接收器模式的切换,实现了RS485通信的半工功能。

485芯片引脚及说明

485芯片引脚及说明

RS-485协议简介及MAX485芯片介绍作者:本站来源: 发布时间:2008-7-20 18:43:56 发布人:admin减小字体增大字体RS-485协议简介及MAX485芯片介绍(MAX485基本资料)针对RS-232-C的不足,出现了一些新的接口标准, RS-485的电气标准就是其中的一种。

RS-485是美国电气工业联合会(EIA)制定的利用平衡双绞线作传输线的多点通讯标准。

它采用差分信号进行传输;最大传输距离可以达到1.2 km;最大可连接32个驱动器和收发器;接收器最小灵敏度可达±200 mV;最大传输速率可达2.5 Mb/s。

由此可见,RS-485协议正是针对远距离、高灵敏度、多点通讯制定的标准。

RS-485具有以下特点:1)RS-485的电气特性:逻辑“1”以两线间的电压差为+(2―6)V表示;逻辑“0”以两线间的电压差为-(2―6)V表示。

接口信号电平比RS-232-C降低了,就不易损坏接口电路的芯片,且该电平与TTL电平兼容,可方便与TTL 电路连接。

2)RS-485的数据最高传输速率为10Mbps3)RS-485接口是采用平衡驱动器和差分接收器的组合,抗共模干能力增强,即抗噪声干扰性好。

4)RS-485接口的最大传输距离标准值为4000英尺,实际上可达3000米,另外RS-232-C接口在总线上只允许连接1个收发器,即单站能力。

而RS-4 85接口在总线上是允许连接多达128个收发器。

即具有多站能力,这样用户可以利用单一的RS-485接口方便地建立起设备网络。

MAX485接口芯片是Maxim公司的一种RS-485芯片。

采用单一电源+5 V工作,额定电流为300 μA,采用半双工通讯方式。

它完成将TTL电平转换为RS-485电平的功能。

其引脚结构图如图1所示。

从图中可以看出,MAX485芯片的结构和引脚都非常简单,内部含有一个驱动器和接收器。

RO和DI端分别为接收器的输出和驱动器的输入端,与单片机连接时只需分别与单片机的RXD和TXD相连即可;/RE和DE端分别为接收和发送的使能端,当/RE为逻辑0时,器件处于接收状态;当DE为逻辑1时,器件处于发送状态,因为MAX485工作在半双工状态,所以只需用单片机的一个管脚控制这两个引脚即可;A端和B端分别为接收和发送的差分信号端,当A引脚的电平高于B时,代表发送的数据为1;当A的电平低于B端时,代表发送的数据为0。

MAX485简介

MAX485简介

⊙,MAX485简介MAX485是一个8个引脚的芯片,它是一个标准的RS485收发器,只能进行半双工的通讯,内含一个输出驱动器和一个信号接收器。

MAX485具有低功耗设计,静态电流仅为300uA。

MAX485具有三态输出特性,在使用MAX485时,总线最多可以同时连接32个MAX485芯片。

通讯波特率可以达到2.。

5M图1是MAX485的俯视图和逻辑图。

图1MAX485逻辑图下面是MAX485的引脚定义:RO(引脚1):接收信号的输出引脚。

可以把来自A和B引脚的总线信号,输出给单片机。

是COMS电平,可以直接连接到单片机。

RE(引脚2):接收信号的控制引脚。

当这个引脚低电平时,RO引脚有效,MAX485通过RO把来自总线的信号输出到单片机;当这个引脚高电平时,RO引脚处于高阻状态。

DE(引脚3):输出信号的控制引脚。

当这个引脚低电平时,输出驱动器无效;当这个引脚高电平时,输出驱动器有效,来自DI引脚的输出信号通过A和B引脚被加载到总线上。

是COMS电平,可以直接连接到单片机。

DI(引脚4):输出驱动器的输入引脚。

是COMS电平,可以直接连接到单片机。

当DE是高电平时,这个引脚的信号通过A和B脚被加载给总线。

GND(引脚5):电源地线。

A(引脚6):连接到RS485总线的A端。

B(引脚7):连接到RS485总线的B端。

Vcc(引脚8):电源线引脚。

电源4.≤Vcc≤5.。

25V75V⊙,MAX485和单片机的连接在一般情况下,可以直接把MAX485和单片机连接在一起。

连接方法如图2所示。

图2单片机和MAX485连接MAX485的控制引脚2和引脚3可以分别控制,也可以共同控制如图2所示,在图2中当P1.为高电平时,MAX485作为输出驱动器使用,来自单片机TXD的输出信号通过A和B引脚加载到RS485总线上;当P1.为低电平时,MAX485作为信号接收器使用,来自RS485总线的信号通过RO(1号引脚)被读到单片机的RXD。

RS232和RS485接口,MAX485电平转换

RS232和RS485接口,MAX485电平转换

RS232和RS485接口,MAX485电平转换2009-11-29 10:29什么是RS-232-C接口?采用RS-232-C接口有何特点?传输电缆长度如何考虑?答:计算机与计算机或计算机与终端之间的数据传送可以采用串行通讯和并行通讯二种方式。

由于串行通讯方式具有使用线路少、成本低,特别是在远程传输时,避免了多条线路特性的不一致而被广泛采用。

在串行通讯时,要求通讯双方都采用一个标准接口,使不同的设备可以方便地连接起来进行通讯。

RS- 232-C接口(又称 EIA RS-232-C)是目前最常用的一种串行通讯接口。

它是在1970年由美国电子工业协会(EIA)联合贝尔系统、调制解调器厂家及计算机终端生产厂家共同制定的用于串行通讯的标准。

它的全名是“数据终端设备(DTE)和数据通讯设备(DCE)之间串行二进制数据交换接口技术标准”该标准规定采用一个25个脚的 DB25连接器,对连接器的每个引脚的信号内容加以规定,还对各种信号的电平加以规定。

(1)接口的信号内容实际上RS-232-C的25条引线中有许多是很少使用的,在计算机与终端通讯中一般只使用3-9条引线。

RS-232-C最常用的9条引线的信号内容见附表1所示(2)接口的电气特性在RS-232-C中任何一条信号线的电压均为负逻辑关系。

即:逻辑“1”,-5— -15V;逻辑“0” +5— +15V 。

噪声容限为2V。

即要求接收器能识别低至+3V的信号作为逻辑“0”,高到-3V的信号作为逻辑“1”(3) 接口的物理结构 RS-232-C接口连接器一般使用型号为DB-25的25芯插头座,通常插头在DCE端,插座在DTE端. 一些设备与PC机连接的RS-232-C接口,因为不使用对方的传送控制信号,只需三条接口线,即“发送数据”、“接收数据”和“信号地”。

所以采用DB-9的9 芯插头座,传输线采用屏蔽双绞线。

(4)传输电缆长度由RS-232C标准规定在码元畸变小于4%的情况下,传输电缆长度应为50英尺,其实这个4%的码元畸变是很保守的,在实际应用中,约有99%的用户是按码元畸变10-20%的范围工作的,所以实际使用中最大距离会远超过50英尺,美国DEC公司曾规定允许码元畸变为 10%而得出附表2 的实验结果。

max3485中文资料

max3485中文资料

max3455可以代替MAX485吗?否,MAX485是3.3V电源,MAX485是5V电源,其他都是相同的,包括它们的封装和电路结构,它们都是半双工的。

max3485和MAX485之间的区别图1引脚图max3485和MAX485之间的区别max3485和MAX485之间的区别A端和B端分别是接收和发送差分信号端。

当引脚的电平高于B时,发送的数据为1;否则,发送的数据为1。

当a的电平低于B时,发送的数据为0。

下图显示了485的抗干扰原理max3485和MAX485之间的区别MAX485接口芯片是Maxim公司的一种RS-485芯片它采用单电源+ 5V,额定电流为300uA,并采用半双工通信模式。

它可以将TTL电平转换为RS-485电平。

引脚结构如图1所示。

从图中可以看出,MAX485芯片的结构和引脚非常简单,包括驱动器和接收器。

RO 和di分别是接收器的输出和驱动器的输入。

与MCU连接时,只需分别与MCU的RXD和TXD连接。

/ re和de分别是接收和发送的启用端。

当/ re为逻辑0时,设备处于接收状态。

当De为逻辑1时,设备处于发送状态。

由于MAX485工作在半双工状态,因此仅需要单片机的一个引脚即可控制这两个引脚。

a端和b端分别是接收和发送差分信号的端。

当引脚的电平高于B时,发送的数据为1;当a的电平低于B时,发送的数据为0。

连接到制片机时,接线非常简单。

只需一个信号即可控制MAX485的接收和发送。

同时,在A和B端子之间添加一个匹配电阻,通常选择1002电阻。

常用485芯片

常用485芯片

常用485芯片
常用的485芯片是一种用于工业自动化领域的通信芯片,它采用RS-485标准通信协议,能够提供可靠的长距离或多节点通信解决方案。

以下是一些常见的485芯片及其特点:
1. MAX485:MAX485是一款经典的485转换芯片,它具有低功耗、高速传输、抗干扰能力强等特点。

它可以支持半双工通信模式,并且能够实现单个总线上多个节点的通信。

MAX485芯片广泛应用于工业自动化、电力系统、安防监控等领域。

2. SN75176:SN75176是另一种常用的485转换芯片,它具有低功耗、高速传输、抗干扰能力强等特点。

与MAX485相比,SN75176芯片的驱动能力更强,能够实现更长距离的传输。

SN75176芯片广泛应用于电力系统、通信设备、仪器仪表等领域。

3. ADM485:ADM485是ADI公司生产的一款485转换芯片,它具有低功耗、高速传输、抗干扰能力强等特点。

ADM485芯片采用了双差分驱动模式,能够实现更高的传输速率和更好的信号质量。

ADM485芯片广泛应用于工业自动化、仪器仪表、交通系统等领域。

4. LTC485:LTC485是LT公司生产的一款高性能485转换芯片,它具有低功耗、高速传输、抗干扰能力强等特点。

LTC485芯片采用了
差分线路保护技术,能够有效抵抗电磁干扰和电气冲击。

LTC485芯片广泛应用于工业自动化、电力系统、通信设备等领域。

总的来说,485芯片是工业自动化领域中常用的通信芯片,它具有可靠的长距离传输能力和多节点通信能力。

选择适合的485芯片可以提高系统的稳定性和可靠性,实现更高效的数据通信。

485芯片选型

485芯片选型

485芯片选型485总线通讯是一种常见的工业自动化通信技术,其中485芯片是实现485总线通讯的关键组成部分之一。

本文将从不同厂家的485芯片选型方面进行探讨,并对几款常见的485芯片进行介绍。

首先,选择485芯片需要考虑的因素包括通信速率、工作电压、功耗、价格和可靠性等。

根据具体的应用需求,可以选择适合的芯片型号。

在通信速率方面,一般的485芯片支持的速率范围为300bps到10Mbps,可以根据具体的通信要求进行选择。

例如,对于速率要求较高的应用场景,可以选择支持较高速率的芯片,如TI的SN65HVD78和Maxim的MAX485。

工作电压是另一个重要因素,它一般决定了485芯片的适用范围。

对于工业自动化领域,常见的工作电压为5V和3.3V。

因此,在选择485芯片时,需要确保其工作电压符合系统的要求。

功耗是另一个需要考虑的因素,特别是对于低功耗应用来说。

一般来说,功耗较低的485芯片能够延长电池寿命,降低能耗。

一些低功耗的芯片如TI的SN65HVD3082和ON的SP3082。

价格也是选择485芯片时需要考虑的因素之一。

不同厂家的485芯片价格有所差异,同时,价格还受到规格和性能的影响。

因此,在选择485芯片时,需要综合考虑成本和性能。

另外,可靠性也是485芯片选型时需要考虑的重要因素之一。

可靠性包括芯片的抗干扰能力、抗ESD能力等。

在工业自动化领域,环境复杂,抗干扰能力要求较高,因此,在选择485芯片时,需要考虑其抗干扰能力。

下面介绍几款常见的485芯片:1. TI的SN65HVD78:这款芯片是一款低功耗485收发器,工作电压范围为3.3V到5V,支持速率为50kbps到40Mbps,具有较好的抗ESD能力和抗干扰能力。

2. Maxim的MAX485:这款芯片是一款经典的485收发器,工作电压范围为4.5V到5.5V,支持速率为2.5Mbps,价格较为实惠。

3. ON的SP3082:这款芯片是一款低功耗的485收发器,工作电压范围为3V到5.5V,支持速率为250kbps,具有较好的抗干扰能力和抗ESD能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

max485芯片
MAX485是一种用于串行通讯的芯片,它可以实现半双工的
通信,常用于RS-485网络中。

这款芯片具有低功耗、高速率、低电压、可靠性高等特点,被广泛应用于工业自动化、远程监控、数据采集等领域。

MAX485芯片采用了双绞四线制接口,可以实现长距离传输,通信距离可达1200米。

其通信速率可以高达2.5Mbps,同时
还支持多点连接,可以连接最多32个驱动器和接收器。

MAX485芯片的工作电压范围为3.0V至5.25V,因此可以适
应不同的工作环境。

在低功耗模式下,它的供电电流仅为
1μA,非常适合电池供电的应用。

此外,MAX485还具有过温
保护功能,可以保护芯片免受过热损坏。

MAX485芯片的架构采用了低功耗CMOS技术,具有自动接
收释放和禁用保护电路,可以有效地降低功耗。

此外,它还配备了过电流保护和过电压保护电路,可以保护芯片免受电路故障的影响。

MAX485芯片的引脚功能如下:
- A/B:差分传输线,用于发送和接收数据。

- RE/DE:接收使能/发送使能引脚,用于控制芯片的发送和接
收功能。

- RO/RE:发送使能/接收使能引脚,用于选择芯片的发送和接
收功能。

- VCC:供电引脚,具有3.0V至5.25V的宽工作电压范围。

- GND:地线引脚,用于接地连接。

MAX485芯片的工作原理如下:
- 发送数据时,通过RE/DE引脚将芯片设置为发送模式,将发送的数据信号输入到A/B差分传输线上。

- 接收数据时,通过RE/DE引脚将芯片设置为接收模式,通过RO/RE引脚选择芯片的发送和接收功能。

接收到的数据信号
经过差分收发线转换为通用串行总线信号。

- 在半双工通信时,A/B线上只能有一方发送数据,另一方只
能接收数据。

总之,MAX485芯片是一款功能强大且灵活的串行通信芯片,具有高速率、低功耗、可靠性高等特点,被广泛应用于工业自动化、远程监控、数据采集等领域。

它的性能优越和稳定性使得它成为RS-485通信领域中的首选芯片。

相关文档
最新文档