上海市浦东新区2022年中考数学一模试题(含解析)

合集下载

2022年上海市浦东新区部分校中考数学全真模拟试卷含解析

2022年上海市浦东新区部分校中考数学全真模拟试卷含解析

2021-2022中考数学模拟试卷含解析考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-32.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示: 成绩(米) 4.50 4.60 4.65 4.70 4.75 4.80 人数 2 3 2 3 4 1则这15名运动员成绩的中位数、众数分别是( )A .4.65,4.70B .4.65,4.75C .4.70,4.70,D .4.70,4.753.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .64.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为( ).A .50°B .40°C .30°D .25°5.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C.D.6.如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是()A.一直增大B.一直减小C.先减小后增大D.先增大后减小7.已知,C是线段AB的黄金分割点,AC<BC,若AB=2,则BC=()A.3﹣5B.12(5+1)C.5﹣1 D.12(5﹣1)8.下列运算正确的是()A.a﹣3a=2a B.(ab2)0=ab2C.8=22D.3×27=99.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为()A.8 B.6 C.12 D.1010.若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-111.下列事件中是必然事件的是()A.早晨的太阳一定从东方升起B.中秋节的晚上一定能看到月亮C.打开电视机,正在播少儿节目D.小红今年14岁,她一定是初中学生12.实数a,b,c在数轴上对应点的位置大致如图所示,O为原点,则下列关系式正确的是()A .a ﹣c <b ﹣cB .|a ﹣b |=a ﹣bC .ac >bcD .﹣b <﹣c二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在平面直角坐标系中,点O 为原点,平行于x 轴的直线与抛物线L :y=ax 1相交于A ,B 两点(点B 在第一象限),点C 在AB 的延长线上.(1)已知a=1,点B 的纵坐标为1.如图1,向右平移抛物线L 使该抛物线过点B ,与AB 的延长线交于点C ,AC 的长为__.(1)如图1,若BC=AB ,过O ,B ,C 三点的抛物线L 3,顶点为P ,开口向下,对应函数的二次项系数为a 3,3a a=__.14.已知ab=﹣2,a ﹣b=3,则a 3b ﹣2a 2b 2+ab 3的值为_______.15.因式分解:a 2b +2ab +b = .16.一元二次方程2x 2﹣3x ﹣4=0根的判别式的值等于_____.17.小明和小亮分别从A 、B 两地同时相向而行,并以各自的速度匀速行驶,途中会经过奶茶店C ,小明先到达奶茶店C ,并在C 地休息了一小时,然后按原速度前往B 地,小亮从B 地直达A 地,结果还是小明先到达目的地,如图是小明和小亮两人之间的距离y (千米)与小亮出发时间x (时)的函数的图象,请问当小明到达B 地时,小亮距离A 地_____千米.18.已知α是锐角1sin 2α=,那么cos α=_________. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)我省有关部门要求各中小学要把“阳光体育”写入课表,为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据,如图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少名学生进行了抽样调查?本次抽样调查中,最喜欢足球活动的有多少人?占被调查人数的百分比是多少?若该校九年级共有400名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢篮球活动的人数约为多少?20.(6分)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称P,Q两点为同族点.下图中的P,Q两点即为同族点.(1)已知点A的坐标为(﹣3,1),①在点R(0,4),S(2,2),T(2,﹣3)中,为点A的同族点的是;②若点B在x轴上,且A,B两点为同族点,则点B的坐标为;(2)直线l:y=x﹣3,与x轴交于点C,与y轴交于点D,①M为线段CD上一点,若在直线x=n上存在点N,使得M,N两点为同族点,求n的取值范围;②M为直线l上的一个动点,若以(m,0)2为半径的圆上存在点N,使得M,N两点为同族点,直接写出m的取值范围.21.(6分)列方程解应用题:某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1600万元.从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?22.(8分)《九章算术》中有这样一道题,原文如下:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为50;若甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?请解答上述问题.23.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)24.(10分)如图,一次函数y=2x﹣4的图象与反比例函数y=kx的图象交于A、B两点,且点A的横坐标为1.(1)求反比例函数的解析式;(2)点P是x轴上一动点,△ABP的面积为8,求P点坐标.25.(10分)全民学习、终身学习是学习型社会的核心内容,努力建设学习型家庭也是一个重要组成部分.为了解“学习型家庭”情况,对部分家庭五月份的平均每天看书学习时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:本次抽样调查了个家庭;将图①中的条形图补充完整;学习时间在2~2.5小时的部分对应的扇形圆心角的度数是度;若该社区有家庭有3000个,请你估计该社区学习时间不少于1小时的约有多少个家庭?26.(12分)如图,点A,B在O上,直线AC是O的切线,OC OB.连接AB交OC于D.=(1)求证:AC DCAC=,O5OD的长.(2)若227.(12分)水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.详解:∵y=2x2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A错误,该函数的对称轴是直线x=-1,故选项B错误,当x<-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D.点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.2、D【解析】根据中位数、众数的定义即可解决问题.【详解】解:这些运动员成绩的中位数、众数分别是4.70,4.1.故选:D.本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.3、C【解析】如图所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=1.故选C.考点:勾股定理的证明.4、B【解析】解:如图,由两直线平行,同位角相等,可求得∠3=∠1=50°,根据平角为180°可得,∠2=90°﹣50°=40°.故选B.【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键.5、B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.6、C如图所示,连接CM,∵M是AB的中点,∴S△ACM=S△BCM=12S△ABC,开始时,S△MPQ=S△ACM=12S△ABC;由于P,Q两点同时出发,并同时到达终点,从而点P到达AC的中点时,点Q也到达BC的中点,此时,S△MPQ=14S△ABC;结束时,S△MPQ=S△BCM=12S△ABC.△MPQ的面积大小变化情况是:先减小后增大.故选C.7、C【解析】根据黄金分割点的定义,知BC为较长线段;则BC=512AB,代入数据即可得出BC的值.【详解】解:由于C为线段AB=2的黄金分割点,且AC<BC,BC为较长线段;则BC=2×51-5.5.【点睛】本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的352倍,较长的线段=原线段的51-倍.8、D【解析】直接利用合并同类项法则以及二次根式的性质、二次根式乘法、零指数幂的性质分别化简得出答案.【详解】解:A、a﹣3a=﹣2a,故此选项错误;B、(ab2)0=1,故此选项错误;故此选项错误;C、822,D、3×27=9,正确.故选D.【点睛】此题主要考查了合并同类项以及二次根式的性质、二次根式乘法、零指数幂的性质,正确把握相关性质是解题关键.9、C【解析】由切线长定理可求得PA=PB,AC=CE,BD=ED,则可求得答案.【详解】∵PA、PB分别切⊙O于点A、B,CD切⊙O于点E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周长为12,故选:C.【点睛】本题主要考查切线的性质,利用切线长定理求得PA=PB、AC=CE和BD=ED是解题的关键.10、C【解析】试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.11、A【解析】必然事件就是一定发生的事件,即发生的概率是1的事件,依据定义即可求解.【详解】解:B、C、D选项为不确定事件,即随机事件.故错误;一定发生的事件只有第一个答案,早晨的太阳一定从东方升起.故选A.【点睛】该题考查的是对必然事件的概念的理解;必然事件就是一定发生的事件.12、A【解析】根据数轴上点的位置确定出a,b,c的范围,判断即可.【详解】由数轴上点的位置得:a<b<0<c,∴ac<bc,|a﹣b|=b﹣a,﹣b>﹣c,a﹣c<b﹣c.故选A.【点睛】考查了实数与数轴,弄清数轴上点表示的数是解本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、﹣1 3【解析】解:(1)当a=1时,抛物线L的解析式为:y=x1,当y=1时,1=x1,∴x,∵B在第一象限,∴A,1),B,1),∴AB,∵向右平移抛物线L使该抛物线过点B,∴AB=BC,∴AC;(1)如图1,设抛物线L3与x轴的交点为G,其对称轴与x轴交于Q,过B作BK⊥x轴于K,设OK=t,则AB=BC=1t,∴B(t,at1),根据抛物线的对称性得:OQ =1t ,OG =1OQ =4t ,∴O (0,0),G (4t ,0),设抛物线L 3的解析式为:y =a 3(x ﹣0)(x ﹣4t ),y =a 3x (x ﹣4t ),∵该抛物线过点B (t ,at 1),∴at 1=a 3t (t ﹣4t ),∵t ≠0,∴a =﹣3a 3, ∴3a a =﹣13, 故答案为(1)42;(1)﹣13.点睛:本题考查二次函数的图象和性质.熟练掌握二次函数的性质是解题的关键.14、﹣18【解析】要求代数式a 3b ﹣2a 2b 2+ab 3的值,而代数式a 3b ﹣2a 2b 2+ab 3恰好可以分解为两个已知条件ab ,(a ﹣b )的乘积,因此可以运用整体的数学思想来解答.【详解】a 3b ﹣2a 2b 2+ab 3=ab (a 2﹣2ab+b 2)=ab (a ﹣b )2,当a ﹣b=3,ab=﹣2时,原式=﹣2×32=﹣18, 故答案为:﹣18.【点睛】本题考查了因式分解在代数式求值中的应用,熟练掌握因式分解的方法以及运用整体的数学思想是解题的关键. 15、b2【解析】该题考查因式分解的定义首先可以提取一个公共项b ,所以a 2b +2ab +b =b (a 2+2a +1)再由完全平方公式(x 1+x 2)2=x 12+x 22+2x 1x 2所以a 2b +2ab +b =b (a 2+2a +1)=b216、41【解析】已知一元二次方程的根判别式为△=b 2﹣4ac ,代入计算即可求解.【详解】依题意,一元二次方程2x 2﹣3x ﹣4=0,a =2,b =﹣3,c =﹣4∴根的判别式为:△=b 2﹣4ac =(﹣3)2﹣4×2×(﹣4)=41故答案为:41【点睛】本题考查了一元二次方程的根的判别式,熟知一元二次方程 ax 2+bx +c =0(a ≠0)的根的判别式为△=b 2﹣4ac 是解决问题的关键.17、1【解析】根据题意设小明的速度为akm /h ,小亮的速度为bkm /h ,求出a,b 的值,再代入方程即可解答.【详解】设小明的速度为akm /h ,小亮的速度为bkm /h ,2 3.5 2.5(3.52)(3.5 2.5)210b a b a ⎧=-⎪⎨⎪-+-=⎩ , 解得,12060a b =⎧⎨=⎩ , 当小明到达B 地时,小亮距离A 地的距离是:120×(3.5﹣1)﹣60×3.5=1(千米), 故答案为1.【点睛】此题考查一次函数的应用,解题关键在于列出方程组.183【解析】根据已知条件设出直角三角形一直角边与斜边的长,再根据勾股定理求出另一直角边的长,由三角函数的定义直接解答即可.【详解】由sinα=a c =12知,如果设a=x ,则c=2x ,结合a 2+b 2=c 2得∴cos =bc故答案为2. 【点睛】 本题考查的知识点是同角三角函数的关系,解题的关键是熟练的掌握同角三角函数的关系.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)该校对50名学生进行了抽样调查;(2)最喜欢足球活动的人占被调查人数的20%;(3)全校学生中最喜欢篮球活动的人数约为720人.【解析】(1)根据条形统计图,求个部分数量的和即可;(2)根据部分除以总体求得百分比;(3)根据扇形统计图中各部分占总体的百分比之和为1,求出百分比即可求解.【详解】(1)4+8+10+18+10=50(名)答:该校对50名学生进行了抽样调查.(2)最喜欢足球活动的有10人,10=20%50, ∴最喜欢足球活动的人占被调查人数的20%.(3)全校学生人数:400÷(1﹣30%﹣24%﹣26%)=400÷20%=2000(人)则全校学生中最喜欢篮球活动的人数约为2000×1850=720(人). 【点睛】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚的表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反应部分占全体的百分比的大小.20、(1)①R ,S ;②(4-,0)或(4,0);(2)①33n -≤≤;②m ≤1-或m ≥1.【解析】(1)∵点A 的坐标为(−2,1),∴2+1=4,点R (0,4),S (2,2),T (2,−2)中,0+4=4,2+2=4,2+2=5,∴点A 的同族点的是R ,S ;故答案为R ,S ;②∵点B 在x 轴上,∴点B 的纵坐标为0,设B (x ,0),则|x |=4,∴x =±4,∴B (−4,0)或(4,0);故答案为(−4,0)或(4,0);(2)①由题意,直线3y x =-与x 轴交于C (2,0),与y 轴交于D (0,3-).点M 在线段CD 上,设其坐标为(x ,y ),则有:0x ≥,0y ≤,且3y x =-.点M 到x 轴的距离为y ,点M 到y 轴的距离为x , 则3x y x y +=-=.∴点M 的同族点N 满足横纵坐标的绝对值之和为2.即点N 在右图中所示的正方形CDEF 上.∵点E 的坐标为(3-,0),点N 在直线xn =上, ∴33n -≤≤.②如图,设P (m ,0)为圆心, 2为半径的圆与直线y =x −2相切,2,45PN PCN CPN ︒=∠=∠=∴PC =2,∴OP =1,观察图形可知,当m ≥1时,若以(m ,0)为圆心,2为半径的圆上存在点N ,使得M ,N 两点为同族点,再根据对称性可知,m ≤1-也满足条件,∴满足条件的m 的范围:m ≤1-或m ≥121、从2015年到2017年,该地投入异地安置资金的年平均增长率为50%.【解析】设年平均增长率为x ,根据:2016年投入资金×(1+增长率)2=2018年投入资金,列出方程求解可得.【详解】解:设该地投入异地安置资金的年平均增长率为x.根据题意得:1280(1+x )2=1280+1600.解得x 1=0.5=50%,x 2=-2.5(舍去),答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%.【点睛】本题考查了一元二次方程的应用,由题意准确找出相等关系并据此列出方程是解题的关键.22、甲有钱752,乙有钱25. 【解析】设甲有钱x,乙有钱y,根据相等关系:甲的钱数+乙钱数的一半=50,甲的钱数的三分之二+乙的钱数=50列出二元一次方程组求解即可.【详解】解:设甲有钱x,乙有钱y.由题意得:15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩,解方程组得:75225xy⎧⎪⎪=⎨⎪⎪=⎩,答:甲有钱752,乙有钱25.【点睛】本题考查了二元一次方程组的应用,读懂题意正确的找出两个相等关系是解决此题的关键.23、(1)13;(2)19;(3)第一题.【解析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:18;如果在第二题使用“求助”小明顺利通关的概率为:19;即可求得答案.【详解】(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率=13;故答案为13;(2)画树状图为:共有9种等可能的结果数,其中两个都正确的结果数为1,所以小明顺利通关的概率为19;(3)建议小明在第一题使用“求助”.理由如下:小明将“求助”留在第一题,画树状图为:小明将“求助”留在第一题使用,小明顺利通关的概率=18,因为18>19,所以建议小明在第一题使用“求助”.【点睛】本题考查的是概率,熟练掌握树状图法和概率公式是解题的关键.24、(1)y=6x;(2)(4,0)或(0,0)【解析】(1)把x=1代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标,后利用△ABP的面积为8,可求P点坐标. 【详解】解:(1)把x=1代入y=2x﹣4,可得y=2×1﹣4=2,∴A(1,2),把(1,2)代入y=kx,可得k=1×2=6,∴反比例函数的解析式为y=6x;(2)根据题意可得:2x﹣4=,解得x1=1,x2=﹣1,把x2=﹣1,代入y=2x﹣4,可得y=﹣6,∴点B的坐标为(﹣1,﹣6).设直线AB与x轴交于点C,y=2x﹣4中,令y=0,则x=2,即C(2,0),设P点坐标为(x,0),则×|x﹣2|×(2+6)=8,解得x=4或0,∴点P 的坐标为(4,0)或(0,0).【点睛】本题主要考查用待定系数法求一次函数解析式,及一次函数与反比例函数交点的问题,联立两函数可求解。

2024届上海市浦东新区初三一模数学试题及答案

2024届上海市浦东新区初三一模数学试题及答案

上海市浦东新区2024届初三一模数学试卷(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分)1.下列函数中,是二次函数的是().A 21y x ;.B 21y x ;.C 221y x x ;.D 21y x.2.已知在Rt ABC 中,90C ,3AC ,4BC ,那么下列等式正确的是().A 3sin 3333.已知a .A a4..A 1:45..A .C 6..A .B .C .D 7.如果34x y ,那么x y y.8.计算:43a a b.9.已知线段2MN cm ,P 是线段MN 的黄金分割点,MP NP ,那么线段MP 的长度等于cm .10.如果点G 是ABC 的重心,且6AG ,那么边BC 上的中线长为.11.已知在Rt ABC 中,90C ,6BC ,3sin 4A,那么AB 的长为.12.如图,ABC 是边长为3的等边三角形,D 、E 分别是边BC 、AC 上的点,60ADE ,如果1BD ,那么CE.13.小明沿着坡度1:2.4i 的斜坡向上行走了130米,那么他距离地面的垂直高度升高了米.14.在一个边长为3的正方形中挖去一个边长为x (03x )的小正方形,如果设剩余部分的面积为y ,那么y 关于x 的函数解析式是.15.已知点 2,A m , 3,B n 都在二次函数 21y x 的图像上,那么m 、n的大小关系是:mn .(填“ ”“ ”或“ ”)16.如图,正方形CDEF 的边CD 在Rt ABC 的直角边BC 上,顶点E 、F 分别在边AB 、AC 上.已知两条直角边BC 、AC 的长分别为5和12,那么正方形CDEF 的边长为.17.平行于梯形两底的直线与梯形的两腰相交,当两交点之间的线段长度是两底的比例中项时,我们称这条线段是梯形的“比例中线”.在梯形ABCD 中,//AD BC ,AD 18.在菱形落在点19.计算:20.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,已知在ABC 中,点D 、E 分别在边AB 、AC 上,且2AD ,4DB ,3AE ,6EC .(1)求DEBC的值;(2)联结DC ,如果DE a ,DA b ,试用a 、b 表示向量CD.21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,已知在四边形ABCD 中,//AD BC ,90ABC ,对角线AC 、BD 相交于点O ,2AD ,3AB ,4BC .(1)求BOC 的面积;(2)求ACD 的正弦值.第20题图第21题图221第22题图322.(本题满分10分)上海教育出版社九年级第一学期《练习部分》第48页复习题B 组第2题及参考答案.的代数式表示,以下同),2BD t ;某数学兴趣小组在完成了以上解答后,决定对该问题进一步探究:如图1然后延长(1)(2)(3)如图2然后延长【拓展应用】如图3,在Rt ABC 中,90C ,18AC ,25BC ,点D 、E 分别在边AC 、BC 上,且5DC ,12EC ,联结AE 、BD 交于点P .求证:tan 1BPE .第23题图第24题图23.(本题满分12分,第(1)小题6分,第(2)小题6分)已知:如图,在梯形ABCD 中,//AD BC ,对角线AC 、BD 相交于点E ,且DEC DCB .(1)求证:AD ACCE CB;(2)点F 在DB 的延长线上,联结AF ,2AF AE AC .求证:EC AF BC AE .24.(本题满分12分,第(1)小题4分,第(2)题4分,第(3)题4分)如图,在平面直角坐标系xOy 中,抛物线2:M y x bx c 过点 2,2A 、点 0,2B ,顶点为点C ,抛物线M 的对称轴交x 轴于点D .(1)求抛物线M 的表达式和点C 的坐标;(2)点P 在x 轴上,当AOP 与ACD 相似时,求点P 坐标;(3)将抛物线M 向下平移t (0t )个单位,得到抛物线N ,抛物线N 的顶点为点E ,再把点C 绕点E 顺时针旋转135 得到点F .当点F 在抛物线N 上时,求t 的值.第25题图备用图备用图25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(2)小题4分)如图,已知正方形ABCD 的边长为6,点E 是射线BC 上一点(点E 不与点B 、C 重合),过点A 作AF AE ,交边CD 的延长线于点F ,直线EF 分别交射线AC 、射线AD 于点M 、N .(1)当点E 在边BC 上时,如果15ND AN ,求BAE 的余切值;(2)当点E 在边BC 延长线上时,设线段BE x ,y EN MF ,求y 关于x 的函数解析式,并写出函数定义域;(3)当3CE 时,求EMC 的面积.浦东新区2023学年度第一学期期末练习卷初三数学参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分)1.B ;2.D ;3.D ;4.A ;5.C ;6.B .二、填空题:(本大题共12题,每题4分,满分48分)7.74;8.3a b ;91 ;10.9;11.8;12.23;13.50;14.29y x ;15.<;16.6017;17.23;18.34.三、解答题:(本大题共7题,满分78分)1922+121222……………………(5分)(每个三角比的值各1分)112…………………………………(3分)(后3个数据,各1分)=12.………………………………………(2分)(每个数据,各1分)20.解:(1)∵AD =2,DB =4,AE =3,EC =6,∴12 AD DB ,12 AE EC .∴ AD AEDB EC.……………………………………(1分)∴DE//BC .……………………………………………………………………(1分)∴ DE ADBC AB .………………………………………………………………(1分)∵12 AD DB ,∴13 AD AB .……………………………………………………(1分)∴13DE BC .…………………………………………………………………(1分)(2)∵13 DE BC ,∴BC =3DE .∵ BC 和 DE 方向相同,∴3 BC DE .(1分)∵ DE a ,∴3BC a .…………………………………………………(1分)∵12 AD DB ,∴DB =2AD .∵ BD 和 DA 方向相同,∴2 BD DA .……(1分)∵ DA b ,∴2BD b .…………………………………………………(1分)∵ CD BD BC ,∴23CD b a .………………………………………(1分)21.解:(1)∵AD//BC ,∴AD AOBC OC.…………………………………………(1分)∵AD =2,BC =4,∴1=2AO OC .∴23OC AC .………………………………(1分)∵△BOC 和△ABC 同高,∴2=3BOC ABC S OC S AC .……………………………(1分)在Rt △ABC 中,∠ABC=90°,AB=3,BC =4,∴1=34=62ABC S .…(1分)∴=4 OBC S .……………………………………………………………………(1分)(2)过点D 作DM ⊥BC ,垂足为点M ,过点D 作DH ⊥AC ,垂足为点H .在Rt △ABC 中,∠ABC=90°,AB=3,BC =4,∴AC =5.∵AD ∥BC ,AB ⊥BC ,DM ⊥BC ,∴AB =DM .∴△ADC 和△ABC 等高.∴1==2ADC ABC S AD S BC .∴=3 ACD S .……………(1分)∴1=32 AC DH .∴6=5DH .………………………………………………(1分)∵DM ⊥BC ,∴∠DMC=90°.∵∠ABC =90°,∴∠ABC=∠DMC .∴AB ∥DM .∵AD ∥BC ,∴四边形ABMD 是平行四边形.∴BM=AD=2,DM=AB=3.∵BC =4,∴MC=2.…………………………(1分)在Rt △DMC 中,∠DMC=90°,DM=3,MC =2,∴ DC .………(1分)在Rt △DHC 中,∵∠DHC=90°,6=5DH, DC,∴sin 65DH ACD CD .…(1分)22.解:【问题探究】∠D=22.5°,BD,tan 22.51 .……………(各1分)【知识迁移】∵BD=AB ,∴∠D =∠BAD .∵∠ABC =∠D+∠BAD ,∴1=2D ABC .………………………………(1分)在Rt △ABC 中,2tan 3ABC ,设AC=2k ,BC=3k,则 AB BD .(1分)∴13tan tan 22AC ABC D DC .……………………(1分)【拓展应用】联结DE .………………………………………………………(1分)在Rt △EDC 中,∠ECD=90°,CD=5,CE =12,∴DE =13.∵CE =12,BC=25,∴BE =13.∴BE =DE .∴∠EBD =∠EDB .∵∠DEC =∠EBD+∠EDB ,∴1=2 DBE DEC .∵CD =5,AC=18,∴AD =13.∴AD =DE .∴∠DAE =∠DEA .∵∠EDC =∠DAE+∠DEA ,∴1=2DAE EDC .…………………………(1分)在Rt △EDC 中,∠ECD=90°,∴∠DEC +∠EDC=90°.∴∠DBE +∠DAE=45°.……………………………………………………(1分)在Rt △ABC 中,∠ACB=90°,∴∠ABC +∠BAC=90°.∴∠ABP +∠BAP=45°.∴∠BPE =∠ABP +∠BAP=45°.………………(1分)∴tan 1BPE .23.证明:(1)∵AD ∥BC ,∴∠ADC +∠DCB=180°.……………………………(1分)又∵∠CEB +∠DEC=180°,∠DEC =∠DCB ,∴∠ADC =∠CEB .……(1分)∵AD ∥BC ,∴∠DAC =∠ECB .……………………………………………(1分)∴△ADC ∽△CEB .…………………………………………………………(2分)∴ AD AC CE CB.……………………………………………………………(1分)(2)∵∠AED =∠CEB ,∠ADC =∠CEB ,∴∠AED =∠ADC .…………(1分)∵∠EAD =∠DAC ,∴△AED ∽△ADC .……………………………………(1分)∴ AE AD AD AC.即2 AD AE AC .…………………………………………(1分)∵2 AF AE AC ,∴22 AD AF .∴AD =AF .…………………………(1分)∵AD ∥BC ,∴AE ADEC BC.……………………………………………(1分)∴ AE AF EC BC.即 EC AF BC AE .………………………………………………………(1分)24.解:(1)抛物线M :2y x bx c 过点A (2,2)、点B (0,2),∴4222.,b c c ………………………………………………………(2分)∴2 b ,2 c .∴抛物线M 的表达式是222 y x x .………………………………(1分)∴点C 的坐标为(1,3).…………………………………………………(1分)(2)由(1)得抛物线的对称轴是直线1 x .……………………………(1分)过点A 作AH 垂直直线1 x ,垂足为点H .∴点H 的坐标为(1,2).过点A 作AG 垂直x 轴,垂足为点G .∴点G 的坐标为(2,0).在Rt △ACH 与Rt △AOG 中,根据题意可得tan 1 AH ACH CH ,tan 1 AGAOG OG.∴tan tan ACH AOP ,∴∠ACH =∠AOP .……………………………(1分)∴当△AOP 与△ACD 相似时,有 CA CD OA OP 或CA CDOP OA.○1 CA CDOA OP 3 OP,OP =6.点P 的坐标是(6,0).……………(1分)○2CA CDOP OA , OP 43 OP .点P 的坐标是(43,0).………(1分)∴综上所述,点P 的坐标是(6,0)或(43,0).(3)过点F 作FQ 垂直直线1 x ,垂足为点Q .根据题意可得∠FEQ =45°,FE =CE =t .……………………………………(1分)在Rt △EFQ 中,∵∠EQF=90°,∠FEQ =45°,FE =t ,∴EQ=FQ =2t .∴点F 的坐标是(1+2t ,32t ).………………………………(1分)∵当点F 在平移后的抛物线N :21)3(y x t 上时,可得231)322(1+t t t .……………………………(1分)解得10 t (舍),2 t 1分)25.解:(1)根据题意可得∠ABC =∠BAD=∠ADC=90°,AB =BC =CD =AD =6,AD ∥BC .∴∠BAE +∠EAD=90°,∠ADF=∠ABC =90°.∵AF ⊥AE ,∴∠DAF +∠EAD=90°.∴∠BAE=∠DAF .∴△BAE ≌△DAF .∴DF =BE .……………………………………………(1分)设BE=x ,则DF =BE =x ,EC =6-x ,FC =6+x .∵正方形ABCD 的边长为6,15ND AN ,∴ND=1,AN =5.………………(1分)∵AD ∥BC ,∴ ND FD EC FC .即166xx x.……………………………(1分)整理得2560 x x .解得12 x ,23 x .……………………………(1分)当2 x 时,6cot 32 BE BAE AB ;当3 x 时,6cot 23BE BAE AB .∴∠BAE 的余切值为2或3.………………………………………………(1分)(2)当点E 在边BC 延长线上时,根据条件可证△BAE ≌△DAF .∴AE =AF .∴∠AEF =∠AFE .∵AF ⊥AE ,∴∠EAF=90°.∵∠EAF +∠AEF +∠AFE =180°,∴∠AEF =∠AFE=45°.∴∠ANE =∠AFE +∠FAD =45°+∠FAD .∵四边形ABCD 是正方形,∴∠DAC=45°.∴∠MAF =∠DAC +∠FAD =45°+∠FAD .∴∠ANE =∠MAF .∴△ANE ∽△MAF .…………………………………………………………(2分)∴ EN AE FA MF.∴2== y EN MF AE FA AE .…………………………(1分)在Rt △ABE 中,∠ABE=90°,AB =6,BE=x ,∴22=36 AE x .即2=36 y x .(x >6)…………………………………………………(2分)(3)有两种情况:点E 在边BC 上,点E 在边BC 延长线上.(i )当点E 在边BC 上时.易证△EMC ∽△AMF ,△AMF ∽△AFC .∴△EMC ∽△AFC .∴2= (EMC AFC S EC S AC.…………………………………………………………(1分)∵EC =3,AC=1=96=272 AFC S ,∴27=8EMC S .……………(1分)(ii )当点E 在边BC 延长线上时.易证△EMC ∽△AMF ,△AMF ∽△AFC .∴△EMC ∽△AFC .∴2= (EMC AFC S EC S AC.…………………………………………………………(1分)∵EC =3,AC=1=156=452AFC S ,∴45=8EMC S .……………(1分)综上所述,△EMC 的面积为278或458.。

中考数学2022年上海市中考数学第一次模拟试题(含答案及解析)

中考数学2022年上海市中考数学第一次模拟试题(含答案及解析)

2022年上海市中考数学第一次模拟试题 考试时间:90分钟;命题人:教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列分数中,最简分数是( )A .69B .24C .46D .292、下列说法中,正确的是( ) A .整数包括正整数和负整数 B .自然数都是正整数C .一个数能同时被2、3整除,也一定能被6整除D .若0.3m n ÷=,则n 一定能整除m3、下列四条线段为成比例线段的是 ( )A .a =10,b =5,c =4,d =7B .a =1,bc,dC .a =8,b =5,c =4,d =3D .a =9,bc =3,d4、关于x 的方程5264x a a x -=+-的解是非负数,则a 的取值范围是( ) A .1a ≥ B .1a ≤- C .1a ≥- D .0a ≥ ·线○封○密○外5、二次函数y=ax2+bx+c(a≠0)与一次函数y=ax+c在同一坐标系中的图象大致为()A.B.C.D.6、下列说法中正确的是()A.符号相反的两个数互为相反数B.0是最小的有理数C.规定了原点、方向和单位长度的射线叫做数轴D.0既不是正数,也不是负数〈〉=,不超过7的素数有2、3、5、7共4 7、x是正整数,x〈〉表示不超过x的素数的个数.如:74〈〈〉+〈〉+〈〉⨯〈〉⨯〈〉〉的值是()个,那么2395134188A.9 B.10 C.11 D.128、下列命题正确的有几个()①如果整数a能被整数b(不为0)除尽,那么就说a能被b整除;②任何素数加上1都成为偶数;③一个合数一定可以写成几个素数相乘的形式;④连续的两个正整数,它们的公因数是1.A.0 B.1 C.2 D.39、下列哪个数不能和2,3,4组成比例()A .1B .1.5C .223D .6 10、下面分数中可以化为有限小数的是( ) A .764 B .730 C .7172 D .1272 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、若3423x =,则x =______. 2、一个扇形面积等于这个扇形所在圆面积的25,则这个扇形的圆心角是______. 3、若23a b =,则a a b =+________. 4、13小时=________分钟. 5、求比值:125克:0.5千克=_______________ 三、解答题(5小题,每小题10分,共计50分) 1、已知::2:3a b =,(5):()2:3a b x ++=,求x 的值 2、计算:1743.51 1.252 3.84105⨯+⨯-÷. 3、一条公路长1500米,已修好900米,还需修全长的几分之几? 4、将6本相同厚度的书叠起来,它们的高度为14厘米,再将15本这样相同厚度的书叠在上面,那么这叠书的总高度是多少厘米? 5、求19962的末三位是多少.-参考答案- 一、单选题·线○封○密○外1、D【分析】根据最简分数是分子,分母只有公因数1的分数即可得出答案.【详解】∵622142=== 934263,,,∴29是最简分数,故选:D.【点睛】本题主要考查最简分数,掌握最简分数的定义是解题的关键.2、C【分析】根据整数的分类,自然数的定义,倍数与约数,可得答案.【详解】解:A、整数包括正整数、零和负整数,故A错误;B、自然数都是非负整数,故B错误;C、一个数能同时被2、3整除,也一定能被6整除,故C正确;D、m÷n=整数,则n一定能整除m,故D错误;故选:C.【点睛】本题考查了有理数,整数包括正整数、零和负整数,注意自然数都是非负整数.3、B【详解】A .从小到大排列,由于5×7≠4×10,所以不成比例,不符合题意; B1=,所以成比例,符合题意; C .从小到大排列,由于4×5≠3×8,所以不成比例,不符合题意; D故选B . 【点睛】 本题考查线段成比例的知识.解决本类问题只要计算最大最小数的积以及中间两个数的积,判断是否相等即可,相等即成比例,不相等不成比例. 4、C 【分析】 先求出方程的解,然后根据题意得到含参数的不等式求解即可. 【详解】 解:由5264x a a x -=+-,方程的解为1x a =+, ∴10a +≥,即1a ≥-. 故选C . 【点睛】 本题主要考查一元一次方程的解及一元一次不等式的解,熟练掌握运算方法是解题的关键. 5、D 【分析】 观察两图象,分别确定,a c 的取值范围,即可求解. 【详解】·线○封○密○外解:A 、抛物线图象,开口向下,即0a < ,而一次函数图象自左向右呈上升趋势,则0a > ,相矛盾,故本选项错误,不符合题意;B 、抛物线图象与y 轴交于负半轴,即0c < ,而一次函数图象与y 轴交于正半轴,0c > ,相矛盾,故本选项错误,不符合题意;C 、抛物线图象,开口向上,即0a > ,而一次函数图象自左向右呈下降趋势,即0a < ,相矛盾,故本选项错误,不符合题意;D 、抛物线图象,开口向下,即0a < ,一次函数图象自左向右呈下降趋势,即0a < ,两图象与y 轴交于同一点,即c 相同,故本选项正确,符合题意;故选:D .【点睛】本题主要考查了二次函数、一次函数的图象和性质,熟练掌握二次函数20y ax bx c a ++≠=() a 决定抛物线的开口方向,c 决定抛物线与y 轴的交点位置是解题的关键.6、D【分析】根据有理数的相关概念直接进行排除选项即可.【详解】A 、符号相反的两个数不一定是相反数,如4和-3,故错误;B 、0不是最小的有理数,还有负数比它小,故错误;C 、规定了原点、正方向和单位长度的直线叫做数轴,故错误;D 、0既不是正数也不是负数,故正确.故选D .【点睛】本题主要考查相反数、数轴及零的意义,熟练掌握各个知识点是解题的关键.7、C【分析】根据题意所给定义新运算及素数与合数的概念直接进行求解.【详解】解:23〈〉表示不超过23的素数有2、3、5、7、11、13、17、19、23共九个,则23=9〈〉;95〈〉表示不超过95的素数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89共24个,则有95=24〈〉, 由1=0〈〉可得134188=0〈〉⨯〈〉⨯〈〉; 2395134188=33=11∴〈〈〉+〈〉+〈〉⨯〈〉⨯〈〉〉〈〉; 故选C . 【点睛】 本题主要考查素数与合数,熟练掌握素数与合数的概念是解题的关键. 8、C 【分析】 ①除尽是指被除数除以除数(除数≠0),除到最后没有余数,就说一个数能被另一个数除尽;而整除是指一个整数除以一个非0整数,得到的商是整数还没有余数,就说一个数能被另一个数整除; ②根据质数的定义,2为最小的质数,但是2+1=3,3为质数; ③根据合数的定义:一个数除了1和它本身以外还有别的因数,这样的数叫做合数,分解质因数就是把一个合数写成几个质数的连乘积形式,所以任何一个合数都可以写成几个质数相乘的形式; ④相邻的两个正整数是互质数,互质数的公因数是1,由此即可解答. 【详解】 ①根据“整除”和“除尽”概念的不同,可知能被b 除尽的数不一定能被b 整除. 如:15÷2=7.5,15能被2除尽,但不能被2整除,故①错误; ②由于2为最小的质数,2+1=3,3为奇数,所以任何质数加1都成为偶数的说法是错误的,故②错误;·线○封○密○外③任何一个合数都可以写成几个质数相乘的形式,故③正确;④根据相邻的两个自然数是互质数,互质数的公因数是1,故④正确;综上,正确的是③和④,共2个.故选:C.【点睛】本题考查了数的整除,合数的定义以及分解质因数的意义,因数、公因数的概念,解题的关键是理解“整除”和“除尽”的意义以及两个数互质,最大公因数是1,最小公倍数是它们的积.9、A【分析】根据比例的基本性质,两内项之积等于两外项之积逐一分析即可.【详解】解:根据比例的基本性质,两内项之积等于两外项之积,则:A.1423⨯≠⨯,不可以组成比例;B.1.5423⨯=⨯,可以组成比例;C.223243⨯=⨯,可以组成比例;D.2634⨯=⨯,可以组成比例;故选:A.【点睛】本题考查比例,掌握比例的基本性质:两内项之积等于两外项之积是解题的关键.10、A【分析】根据题意可直接进行分数化简小数,然后排除选项即可.【详解】A 、7=0.10937564,故符合题意;B 、7=0.2330,故不符合题意; C 、71=1.097272,故不符合题意; D 、72=2.58312,故不符合题意; 故选A .【点睛】 本题主要考查分数化小数,熟练掌握分数化小数是解题的关键. 二、填空题 1、89 【分析】 根据等式的基本性质解方程即可. 【详解】 解:3423x = 34232233x ⨯=⨯ 89x = 故答案为:89. 【点睛】 此题考查的是解方程,掌握等式的基本性质是解题关键. ·线○封○密○外2、144°【分析】由题意可知:扇形面积占圆面积的25,则其圆心角也占圆的度数的25,而整圆是360°,所以就能求出圆心角是多少度.【详解】解:360°×25=144°故答案为:144°.【点睛】此题主要考查圆的面积的计算方法以及在同圆或等圆中,扇形面积与圆面积的比等于扇形圆心角与圆周角度数的比.3、2 5【分析】根据23ab=,得到23a b=,代入式子计算即可.【详解】解:∵23ab=,∴23a b =,∴2233232553aa b b bb bb+===+,故答案为:25.【点睛】此题考查分式的求值以及比例式恒等变形能力,掌握等式的性质变形得到23a b =是解题的关键. 4、20 【分析】 根据1小时等于60分钟换算即可.【详解】 13小时=160=203⨯分钟, 故答案为:20. 【点睛】 本题主要考查单位的换算,掌握小时和分钟之间的换算是解题的关键. 5、14 【分析】 先统一单位,再用比的前项除以比的后项,据此解答. 【详解】 解:125克:0.5千克 =125克:500克 =125÷500 =14 故答案为:14. 【点睛】 本题主要考查了求比值方法的掌握情况,注意要先统一单位. ·线○封○密○外三、解答题1、152【分析】根据:2:3a b =可用a 表示b 并代入(5):()2:3a b x ++=中化简即可抵消a ,解出x .【详解】解:因为:2:3a b =, 所以32b a =, 所以3(5):()2:32a a x ++=, 即33(5)2()2a a x +=⋅+ 31532a a x +=+ 解得152x =. 【点睛】本题考查比的性质.化简过程中注意内项之积等于外项之积.2、3【分析】把分数统一成小数,除法运算转化成乘法运算,再利用乘法分配律计算.【详解】1743.51 1.252 3.84105⨯+⨯-÷ 3.5 1.25 1.25 2.7 3.8 1.25=⨯+⨯-⨯1.25(3.52.73.8)=⨯+-1.252.4=⨯3=. 【点睛】 本题考查了有理数的加减乘除混合运算,运用乘法分配律能使计算简便. 3、25 【分析】 先求出剩下的米数,再用剩下的米数除以公路的总长度即可. 【详解】 解:(1500-900)÷1500, =600÷1500, =25, 答:还需修全长的25. 【点睛】 本题属于求一个数是另一个数几分之几,只要找准对应量,用除法计算即可.4、49厘米【分析】先算出每本书的厚度,再乘以书的总本数即可得到解答.【详解】 解:由题意得:()14615496⨯+=,∴这叠书的总高度是49厘米, 答:这叠书的总高度是49厘米. 【点睛】 ·线○封○密·○外本题考查乘除法的综合应用,根据不同的问题情境采用不同的列式计算方法是解题关键.5、336.【分析】末三位从2的一次方开始:002,004,008,016,032,064,128,256,512,024,048,096,192,,384,768,536,072,144,288,576,152,304,608,216,432,……504,008,因此找到一个规律就是:末位数有008的循环,即从2的3次方开始,到2的103次方,每100次出现末三位008的循环.因此199631993-=,1993/100余93,因此从008向前找7个即为336,依此即可求解.【详解】解:末三位从2的一次方开始:002,004,008,016,032,064,128,256,512,024,048,096,192,,384,768,536,072,144,288,576,152,304,608,216,432,……504,008,因此找到一个规律就是:末位数有008的循环,即从2的3次方开始,到2的103次方,每100次出现末三位008的循环.因此199631993-=,1993/100余93,因此从008向前找7个即为336.故答案为:336.【点睛】本题主要考查了数字类规律探索,解题的关键是从简单的乘方运算开始,通过运算找出规律解决问题.。

上海市浦东新区名校2021-2022学年中考一模数学试题含解析

上海市浦东新区名校2021-2022学年中考一模数学试题含解析

上海市浦东新区名校2021-2022学年中考一模数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.在0.3,﹣3,0,﹣3这四个数中,最大的是( )A .0.3B .﹣3C .0D .﹣32.已知关于x 的方程x 2+3x +a =0有一个根为﹣2,则另一个根为( )A .5B .﹣1C .2D .﹣53.不等式组312840x x ->⎧⎨-≤⎩的解集在数轴上表示为( ) A . B . C . D .4.如图,将Rt ABC △绕直角顶点C 顺时针旋转90,得到A B C '',连接'A A ,若120︒∠=,则B 的度数是( )A .70︒B .65︒C .60︒D .55︒5.如图,已知点 P 是双曲线 y =2x上的一个动点,连结 OP ,若将线段OP 绕点 O 逆时针旋转 90°得到线段 OQ ,则经过点 Q 的双曲线的表达式为( )A .y = 3xB .y =﹣ 13xC .y = 13xD .y =﹣3x6.下列说法正确的是( )A .2a 2b 与–2b 2a 的和为0B .223a b π的系数是23,次数是4次C .2x 2y –3y 2–1是3次3项式D .3x 2y 3与–3213x y 是同类项 7.若关于x 的一元二次方程ax 2+2x ﹣5=0的两根中有且仅有一根在0和1之间(不含0和1),则a 的取值范围是( )A .a <3B .a >3C .a <﹣3D .a >﹣38.将一把直尺与一块三角板如图所示放置,若140∠=︒则∠2的度数为( )A .50°B .110°C .130°D .150°9.在银行存款准备金不变的情况下,银行的可贷款总量与存款准备金率成反比例关系.当存款准备金率为7.5%时,某银行可贷款总量为400亿元,如果存款准备金率上调到8%时,该银行可贷款总量将减少多少亿( ) A .20 B .25 C .30 D .3510.如图,已知直线//AB CD ,点E ,F 分别在AB 、CD 上,:3:4CFE EFB ∠∠=,如果∠B =40°,那么BEF ∠=( )A .20°B .40°C .60°D .80°二、填空题(共7小题,每小题3分,满分21分)11.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(﹣3,﹣4),顶点C 在x 轴的负半轴上,函数y =k x(x <0)的图象经过菱形OABC 中心E 点,则k 的值为_____.12.如图,在⊙O 中,点B 为半径OA 上一点,且OA =13,AB =1,若CD 是一条过点B 的动弦,则弦CD 的最小值为_____.13.如图,在平面直角坐标系xOy中,△ABC的顶点A、C在坐标轴上,点B的坐标是(2,2).将△ABC沿x轴向左平移得到△A1B1C1,点1B落在函数y=-6x.如果此时四边形11AAC C的面积等于552,那么点1C的坐标是________.14.如图,将边长为1的正方形的四条边分别向外延长一倍,得到第二个正方形,将第二个正方形的四条边分别向外延长一倍得到第三个正方形,…,则第2018个正方形的面积为_____.15.我们知道方程组345456x yx y+=⎧⎨+=⎩的解是12xy=-⎧⎨=⎩,现给出另一个方程组3(23)4(2)54(23)5(2)6x yx y++-=⎧⎨++-=⎩,它的解是____.16.小红沿坡比为1:3的斜坡上走了100米,则她实际上升了_____米.17.抛物线y=x2﹣2x+m与x轴只有一个交点,则m的值为_____.三、解答题(共7小题,满分69分)18.(10分)某公司销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示A B进价(万元/套) 1.5 1.2售价(万元/套) 1.8 1.4该公司计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润12万元.(1)该公司计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该公司决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B 种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过68万元,问A种设备购进数量至多减少多少套?19.(5分)解方程21=122xx x---20.(8分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=6x的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>6x的x的取值范围;(3)若点P在x轴上,且S△ACP=32BOCS△,求点P的坐标.21.(10分)下面是小星同学设计的“过直线外一点作已知直线的平行线”的尺规作图过程:已知:如图,直线l和直线l外一点A求作:直线AP,使得AP∥l作法:如图①在直线l上任取一点B(AB与l不垂直),以点A为圆心,AB为半径作圆,与直线l交于点C.②连接AC,AB,延长BA到点D;③作∠DAC的平分线AP.所以直线AP就是所求作的直线根据小星同学设计的尺规作图过程,使用直尺和圆规,补全图形(保留作图痕迹)完成下面的证明证明:∵AB=AC,∴∠ABC=∠ACB(填推理的依据)∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(填推理的依据)∴∠DAC=2∠ABC∵AP平分∠DAC,∴∠DAC=2∠DAP∴∠DAP=∠ABC∴AP∥l(填推理的依据)22.(10分)如图,在△ABC中,D为BC边上一点,AC=DC,E为AB边的中点,(1)尺规作图:作∠C的平分线CF,交AD于点F(保留作图痕迹,不写作法);(2)连接EF,若BD=4,求EF的长.23.(12分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.若AC=4,BC=2,求OE的长.试判断∠A与∠CDE的数量关系,并说明理由.24.(14分)如图,AB为⊙O直径,C为⊙O上一点,点D是BC的中点,DE⊥AC于E,DF⊥AB于F.(1)判断DE与⊙O的位置关系,并证明你的结论;(2)若OF=4,求AC的长度.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】根据正数大于0,0大于负数,正数大于负数,比较即可【详解】∵-3<30<0.3∴最大为0.3故选A.【点睛】本题考查实数比较大小,解题的关键是正确理解正数大于0,0大于负数,正数大于负数,本题属于基础题型.2、B【解析】根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.【详解】∵关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,∴-2+m=−31,解得,m=-1,故选B .3、A【解析】分别求得不等式组中两个不等式的解集,再确定不等式组的解集,表示在数轴上即可.【详解】312840x x ->⎧⎨-≤⎩①② 解不等式①得,x>1;解不等式②得,x>2;∴不等式组的解集为:x≥2,在数轴上表示为:故选A.【点睛】本题考查了一元一次不等式组的解法,正确求得不等式组中每个不等式的解集是解决问题的关键.4、B【解析】根据旋转的性质可得AC =A′C ,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C ,最后根据旋转的性质可得∠B =∠A′B′C .【详解】解:∵Rt △ABC 绕直角顶点C 顺时针旋转90°得到△A′B′C ,∴AC =A′C ,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C =∠1+∠CAA′=20°+45°=65°,∴∠B =∠A′B′C =65°.故选B .【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.5、D【解析】过P ,Q 分别作PM ⊥x 轴,QN ⊥x 轴,利用AAS 得到两三角形全等,由全等三角形对应边相等及反比例函数k 的几何意义确定出所求即可.【详解】过P ,Q 分别作PM ⊥x 轴,QN ⊥x 轴,∵∠POQ=90°,∴∠QON+∠POM=90°,∵∠QON+∠OQN=90°,∴∠POM=∠OQN ,由旋转可得OP=OQ ,在△QON 和△OPM 中,90QNO OMP OQN POMOQ OP ====∠∠︒⎧⎪∠∠⎨⎪⎩, ∴△QON ≌△OPM (AAS ),∴ON=PM ,QN=OM ,设P (a ,b ),则有Q (-b ,a ),由点P 在y=3x上,得到ab=3,可得-ab=-3, 则点Q 在y=-3x 上. 故选D .【点睛】此题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,以及坐标与图形变化,熟练掌握待定系数法是解本题的关键.6、C【解析】根据多项式的项数和次数及单项式的系数和次数、同类项的定义逐一判断可得.【详解】A 、2a 2b 与-2b 2a 不是同类项,不能合并,此选项错误;B 、23πa 2b 的系数是23π,次数是3次,此选项错误; C 、2x 2y-3y 2-1是3次3项式,此选项正确;D 、3x 2y 3与﹣3213x y 相同字母的次数不同,不是同类项,此选项错误; 故选C .【点睛】本题主要考查多项式、单项式、同类项,解题的关键是掌握多项式的项数和次数及单项式的系数和次数、同类项的定义.7、B【解析】试题分析:当x=0时,y=-5;当x=1时,y=a -1,函数与x 轴在0和1之间有一个交点,则a -1>0,解得:a >1.考点:一元二次方程与函数8、C【解析】如图,根据长方形的性质得出EF ∥GH ,推出∠FCD=∠2,代入∠FCD=∠1+∠A 求出即可.【详解】∵EF ∥GH ,∴∠FCD=∠2,∵∠FCD=∠1+∠A ,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故选C.【点睛】本题考查了平行线的性质,三角形外角的性质等,准确识图是解题的关键.9、B【解析】设可贷款总量为y ,存款准备金率为x ,比例常数为k ,则由题意可得:k y x=,4007.5%30k =⨯=, ∴30y x=, ∴当8%x =时,303758%y ==(亿), ∵400-375=25,∴该行可贷款总量减少了25亿.故选B.10、C【解析】根据平行线的性质,可得CFB ∠的度数,再根据:3:4CFE EFB ∠∠=以及平行线的性质,即可得出BEF ∠的度数.【详解】∵//AB CD ,40ABF ︒∠=,∴180140CFB B ︒︒∠=-∠=,∵:3:4CFE EFB ∠∠=, ∴3607CFE CFB ︒∠=∠=, ∵//AB CD ,∴60BEF CFE ︒∠=∠=,故选C .【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等.二、填空题(共7小题,每小题3分,满分21分)11、8【解析】根据反比例函数的性质结合点的坐标利用勾股定理解答.【详解】解:菱形OABC 的顶点A 的坐标为(-3,-4),5,=则点B 的横坐标为-5-3=-8,点B 的坐标为(-8,-4),点C 的坐标为(-5,0)则点E 的坐标为(-4,-2),将点E 的坐标带入y=k x (x <0)中,得k=8. 给答案为:8.【点睛】此题重点考察学生对反比例函数性质的理解,掌握坐标轴点的求法和菱形性质是解题的关键.12、10【解析】连接OC,当CD⊥OA时CD的值最小,然后根据垂径定理和勾股定理求解即可.【详解】连接OC,当CD⊥OA时CD的值最小,∵OA=13,AB=1,∴OB=13-1=12,∴BC=2213-12=5,∴CD=5×2=10.故答案为10.【点睛】本题考查了垂径定理及勾股定理,垂径定理是:垂直与弦的直径平分这条弦,并且平分这条弦所对的两段弧 .13、(-5,112)【解析】分析:依据点B的坐标是(2,2),BB2∥AA2,可得点B2的纵坐标为2,再根据点B2落在函数y=﹣6x的图象上,即可得到BB2=AA2=5=CC2,依据四边形AA2C2C的面积等于552,可得OC=112,进而得到点C2的坐标是(﹣5,112).详解:如图,∵点B的坐标是(2,2),BB2∥AA2,∴点B2的纵坐标为2.又∵点B2落在函数y=﹣6x的图象上,∴当y=2时,x=﹣3,∴BB2=AA2=5=CC2.又∵四边形AA2C2C的面积等于552,∴AA2×OC=552,∴OC=112,∴点C2的坐标是(﹣5,112).故答案为(﹣5,112).点睛:本题主要考查了反比例函数的综合题的知识,解答本题的关键是熟练掌握反比例函数的性质以及平移的性质.在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度.14、1【解析】先分别求出第1个、第2个、第3个正方形的面积,由此总结规律,得到第n个正方形的面积,将n=2018代入即可求出第2018个正方形的面积.【详解】:∵第1个正方形的面积为:1+4××2×1=5=51;第2个正方形的面积为:5+4××2×=25=52;第3个正方形的面积为:25+4××2×=125=53;…∴第n个正方形的面积为:5n;∴第2018个正方形的面积为:1.故答案为1.【点睛】本题考查了规律型:图形的变化类,解题的关键是得到第n个正方形的面积.15、24 xy=-⎧⎨=⎩【解析】观察两个方程组的形式与联系,可得第二个方程组中23122xy+=-⎧⎨-=⎩,解之即可.【详解】解:由题意得23122xy+=-⎧⎨-=⎩,解得24xy=-⎧⎨=⎩.故答案为:24xy=-⎧⎨=⎩.【点睛】本题考查了二元一次方程组的解,用整体代入法解决这种问题比较方便.16、50【解析】根据题意设铅直距离为x ,根据勾股定理求出x 的值,即可得到结果.【详解】解:设铅直距离为x ,根据题意得:222)100x +=,解得:50x =(负值舍去),则她实际上升了50米,故答案为:50【点睛】本题考查了解直角三角形的应用,此题关键是用同一未知数表示出下降高度和水平前进距离.17、1【解析】由抛物线y=x 2-2x+m 与x 轴只有一个交点可知,对应的一元二次方程x 2-2x+m=2,根的判别式△=b 2-4ac=2,由此即可得到关于m 的方程,解方程即可求得m 的值.【详解】解:∵抛物线y=x 2﹣2x+m 与x 轴只有一个交点,∴△=2,∴b 2﹣4ac=22﹣4×1×m=2;∴m=1.故答案为1.【点睛】本题考查了抛物线与x 轴的交点问题,注:①抛物线与x 轴有两个交点,则△>2;②抛物线与x 轴无交点,则△<2;③抛物线与x 轴有一个交点,则△=2.三、解答题(共7小题,满分69分)18、(1)该公司计划购进A 种品牌的教学设备20套,购进B 种品牌的教学设备30套;(2)A 种品牌的教学设备购进数量至多减少1套.【解析】(1)设该公司计划购进A 种品牌的教学设备x 套,购进B 种品牌的教学设备y 套,根据花11万元购进两种设备销售后可获得利润12万元,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设A 种品牌的教学设备购进数量减少m 套,则B 种品牌的教学设备购进数量增加1.5m 套,根据总价=单价×数量结合用于购进这两种教学设备的总资金不超过18万元,即可得出关于m 的一元一次不等式,解之取其中最大的整数即可得出结论.【详解】解:(1)设该公司计划购进A 种品牌的教学设备x 套,购进B 种品牌的教学设备y 套,根据题意得:()()1.5 1.2661.8 1.5 1.4 1.212x y x y +⎧⎨-+-⎩== 解得:2030x y =⎧⎨=⎩. 答:该公司计划购进A 种品牌的教学设备20套,购进B 种品牌的教学设备30套.(2)设A 种品牌的教学设备购进数量减少m 套,则B 种品牌的教学设备购进数量增加1.5m 套,根据题意得:1.5(20﹣m )+1.2(30+1.5m )≤18,解得:m≤203, ∵m 为整数,∴m≤1.答:A 种品牌的教学设备购进数量至多减少1套.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,正确列出一元一次不等式.19、x=-1.【解析】解:方程两边同乘x-2,得2x=x-2+1解这个方程,得x= -1检验:x= -1时,x-2≠0∴原方程的解是x= -1首先去掉分母,观察可得最简公分母是(x ﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解20、(1)122y x =+;(1)-6<x <0或1<x ;(3)(-1,0)或(-6,0) 【解析】(1)利用反比例函数图象上点的坐标特征可求出点A、B的坐标,再利用待定系数法即可求出直线AB的解析式;(1)根据函数图像判断即可;(3)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ACP=32S△BOC,即可得出|x+4|=1,解之即可得出结论.【详解】(1)∵点A(m,3),B(-6,n)在双曲线y=6x上,∴m=1,n=-1,∴A(1,3),B(-6,-1).将(1,3),B(-6,-1)带入y=kx+b,得:3216k bk b+⎧⎨--+⎩==,解得,122kb==⎧⎪⎨⎪⎩.∴直线的解析式为y=12x+1.(1)由函数图像可知,当kx+b>6x时,-6<x<0或1<x;(3)当y=12x+1=0时,x=-4,∴点C(-4,0).设点P的坐标为(x,0),如图,∵S△ACP=32S△BOC,A(1,3),B(-6,-1),∴12×3|x-(-4)|=32×12×|0-(-4)|×|-1|,即|x+4|=1,解得:x1=-6,x1=-1.∴点P的坐标为(-6,0)或(-1,0).【点睛】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出直线AB的解析式;(1)根据函数图像判断不等式取值范围;(3)根据三角形的面积公式以及S△ACP=32S△BOC,得出|x+4|=1.21、(1)详见解析;(2)(等边对等角),(三角形外角性质),(同位角相等,两直线平行).【解析】(1)根据角平分线的尺规作图即可得;(2)分别根据等腰三角形的性质、三角形外角的性质和平行线的判定求解可得.【详解】解:(1)如图所示,直线AP即为所求.(2)证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角),∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(三角形外角性质),∴∠DAC=2∠ABC,∵AP平分∠DAC,∴∠DAC=2∠DAP,∴∠DAP=∠ABC,∴AP∥l(同位角相等,两直线平行),故答案为(等边对等角),(三角形外角性质),(同位角相等,两直线平行).【点睛】本题主要考查作图能力,解题的关键是掌握角平分线的尺规作图、等腰三角形的性质、三角形外角的性质和平行线的判定.22、(1)见解析;(1)1【解析】(1)根据角平分线的作图可得;(1)由等腰三角形的三线合一,结合E为AB边的中点证EF为△ABD的中位线可得.【详解】(1)如图,射线CF即为所求;(1)∵∠CAD=∠CDA,∴AC=DC,即△CAD为等腰三角形;又CF是顶角∠ACD的平分线,∴CF是底边AD的中线,即F为AD的中点,∵E是AB的中点,∴EF为△ABD的中位线,∴EF=BD=1.【点睛】本题主要考查作图-基本作图和等腰三角形的性质、中位线定理,熟练掌握等腰三角形的性质、中位线定理是解题的关键.23、(15;(2)∠CDE=2∠A.【解析】(1)在Rt△ABC中,由勾股定理得到AB的长,从而得到半径AO .再由△AOE∽△ACB,得到OE的长;(2)连结OC,得到∠1=∠A,再证∠3=∠CDE,从而得到结论.【详解】(1)∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,由勾股定理得:222242AC BC+=+=25∴AO=125∵OD⊥AB,∴∠AOE=∠ACB=90°,又∵∠A=∠A,∴△AOE∽△ACB,∴OE AO BC AC=,∴OE=254 BC AOAC⋅==52.(2)∠CDE=2∠A.理由如下:连结OC,∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE.∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.考点:切线的性质;探究型;和差倍分.24、(1)DE与⊙O相切,证明见解析;(2)AC=8. 【解析】(1)解:(1)DE与⊙O相切.证明:连接OD、AD,∵点D是的中点,∴=,∴∠DAO=∠DAC,∵OA=OD,∴∠DAO=∠ODA,∴∠DAC=∠ODA,∴OD∥AE,∵DE⊥AC,∴DE⊥OD,∴DE与⊙O相切.(2)连接BC,根据△ODF与△ABC相似,求得AC的长.AC=8。

浦东初三数学一模试卷答案

浦东初三数学一模试卷答案

一、选择题1. 下列选项中,绝对值最小的数是()A. -2B. -1C. 0D. 1答案:C解析:绝对值表示一个数与0的距离,0的绝对值最小,故选C。

2. 已知一元二次方程 ax^2 + bx + c = 0(a ≠ 0)的判别式为Δ = b^2 - 4ac,则以下说法正确的是()A. Δ > 0,方程有两个不相等的实数根B. Δ = 0,方程有两个相等的实数根C. Δ < 0,方程无实数根D. Δ 可以是任意实数答案:A解析:当Δ > 0 时,方程有两个不相等的实数根;当Δ = 0 时,方程有两个相等的实数根;当Δ < 0 时,方程无实数根。

故选A。

3. 在等腰三角形ABC中,AB = AC,∠BAC = 40°,则∠ABC的度数是()A. 40°B. 50°C. 60°D. 70°答案:B解析:等腰三角形的底角相等,所以∠ABC = ∠ACB = (180° - ∠BAC) / 2 = (180° - 40°) / 2 = 70°。

故选B。

4. 已知平行四边形ABCD的对角线AC和BD相交于点O,若OA = 4cm,OB = 6cm,则OC的长度是()A. 4cmB. 6cmC. 8cmD. 10cm答案:C解析:平行四边形的对角线互相平分,所以OC = OA = 4cm。

故选C。

5. 下列函数中,y = kx(k ≠ 0)的图象经过第一、二、三象限的是()A. y = 2xB. y = -3xC. y = 0.5xD. y = -0.5x答案:A解析:当k > 0时,函数图象经过第一、二、三象限;当k < 0时,函数图象经过第二、三、四象限。

故选A。

二、填空题6. 若方程 2x - 3 = 5 的解为 x = 4,则方程 3x - 7 = 2 的解为 x =__________。

2022届上海市浦东新区中考数学最后一模试卷(含答案解析)

2022届上海市浦东新区中考数学最后一模试卷(含答案解析)

2022届上海市浦东新区中考数学最后一模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、测试卷卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在Rt△ABC中,∠ACB=90°,AC=23,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将BD 绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为()A.2233π-B.2233πC.233π-D233π2.四个有理数﹣1,2,0,﹣3,其中最小的是()A.﹣1 B.2 C.0 D.﹣33.已知圆心在原点O,半径为5的⊙O,则点P(-3,4)与⊙O的位置关系是()A.在⊙O内B.在⊙O上C.在⊙O外D.不能确定4.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.505.在一次体育测试中,10名女生完成仰卧起坐的个数如下:38,52,47,46,50,50,61,72,45,48,则这10名女生仰卧起坐个数不少于50个的频率为()A.0.3 B.0.4 C.0.5 D.0.66.对于下列调查:①对从某国进口的香蕉进行检验检疫;②审查某教科书稿;③中央电视台“鸡年春晚”收视率.其中适合抽样调查的是( )A.①②B.①③C.②③D.①②③7.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:3,则AB的长为A.12米B.43米C.53米D.63米8.如图,在平行四边形ABCD 中,都不一定成立的是()①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④B.②和③C.③和④D.②和④9.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.1000100030x x-+=2 B.1000100030x x-+=2C.1000100030x x--=2 D.1000100030x x--=210.下列计算正确的是()A.(﹣8)﹣8=0 B.3+=3C.(﹣3b)2=9b2D.a6÷a2=a3 11.如图,BC∥DE,若∠A=35°,∠E=60°,则∠C等于()A.60°B.35°C.25°D.20°12.等式组26058xx x+⎧⎨≤+⎩>的解集在下列数轴上表示正确的是().A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,以坐标原点O为位似中心在y轴的左侧将△OAB缩小得到△OA′B′,若△OAB与△OA′B′的相似比为2:1,则点B(3,﹣2)的对应点B′的坐标为_____.14.如图,在△ABC中,CA=CB,∠ACB=90°,AB=4,点D为AB的中点,以点D为圆心作圆,半圆恰好经过三角形的直角顶点C,以点D为顶点,作90°的∠EDF,与半圆交于点E,F,则图中阴影部分的面积是____.15.有五张分别印有等边三角形、正方形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为_____.16.如果a2﹣a﹣1=0,那么代数式(a﹣21aa-)2•1aa-的值是.17.若式子2-xx有意义,则实数x的取值范围是_______.18.已知关于x的方程x2﹣2x﹣m=0没有实数根,那么m的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.求证:△ACE≌△BCD;若AD=5,BD=12,求DE的长.20.(6分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.21.(6分)某中学举行室内健身操比赛,为奖励优胜班级,购买了一些篮球和足球,篮球单价是足球单价的1.5倍,购买篮球用了2250元,购买足球用了2400元,购买的篮球比足球少15个,求篮球、足球的单价.22.(8分)某公司为了扩大经营,决定购进6台机器用于生产某活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台) 7 5每台日产量(个) 100 60(1)按该公司要求可以有几种购买方案?如果该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择什么样的购买方案?23.(8分)先化简2221169x xx x x-⎛⎫-⋅⎪--+⎝⎭,再在1,2,3中选取一个适当的数代入求值.24.(10分)已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=1.(1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.i)求证:△CAE∽△CBF;ii)若BE=1,AE=2,求CE的长;(2)如图②,当四边形ABCD和EFCG均为矩形,且AB EFkBC FC==时,若BE=1,AE=2,CE=3,求k的值;(3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)25.(10分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,过点D作⊙O的切线DE交AC于点E,交AB延长线于点F.(1)求证:BD=CD;(2)求证:DC2=CE•AC;(3)当AC=5,BC=6时,求DF的长.26.(12分)在以“关爱学生、安全第一”为主题的安全教育宣传月活动中,某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:A:结伴步行、B:自行乘车、C:家人接送、D:其他方式,并将收集的数据整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:(1)本次抽查的学生人数是多少人?(2)请补全条形统计图;请补全扇形统计图;(3)“自行乘车”对应扇形的圆心角的度数是度;(4)如果该校学生有2000人,请你估计该校“家人接送”上学的学生约有多少人?27.(12分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.证明:DE为⊙O的切线;连接OE,若BC=4,求△OEC的面积.2022学年模拟测试卷参考答案(含详细解析)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、B 【答案解析】阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可. 【题目详解】解:由旋转可知AD=BD ,∵∠ACB=90° ∴CD=BD , ∵CB=CD ,∴△BCD 是等边三角形, ∴∠BCD=∠CBD=60°,∴,∴阴影部分的面积2602360π⨯23π.故选:B. 【答案点睛】本题考查了旋转的性质与扇形面积的计算,解题的关键是熟练的掌握旋转的性质与扇形面积的计算. 2、D 【答案解析】解:∵-1<-1<0<2,∴最小的是-1.故选D . 3、B. 【答案解析】测试卷解析:∵,∴根据点到圆心的距离等于半径,则知点在圆上.故选B .考点:1.点与圆的位置关系;2.坐标与图形性质. 4、A 【答案解析】分析:根据白球的频率稳定在0.4附近得到白球的概率约为0.4,根据白球个数确定出总个数,进而确定出黑球个数n. 详解:根据题意得:.n0430n=+ ,计算得出:n=20, 故选A.点睛:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 5、C 【答案解析】用仰卧起坐个数不少于10个的频数除以女生总人数10计算即可得解. 【题目详解】仰卧起坐个数不少于10个的有12、10、10、61、72共1个, 所以,频率=510=0.1. 故选C . 【答案点睛】本题考查了频数与频率,频率=频数数据总和.6、B 【答案解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答. 【题目详解】①对从某国进口的香蕉进行检验检疫适合抽样调查; ②审查某教科书稿适合全面调查;③中央电视台“鸡年春晚”收视率适合抽样调查. 故选B. 【答案点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查. 7、A 【答案解析】测试卷分析:在Rt △ABC 中,BC=6米,BC 1AC 3=,∴AC=BC×3=63(米). ∴()2222AB AC BC 63612=+=+=(米).故选A.【题目详解】 请在此输入详解! 8、D 【答案解析】∵四边形ABCD 是平行四边形, ∴AO=CO ,故①成立; AD ∥BC ,故③成立;利用排除法可得②与④不一定成立, ∵当四边形是菱形时,②和④成立. 故选D. 9、A 【答案解析】分析:设原计划每天施工x 米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x 米,则实际每天施工(x+30)米, 根据题意,可列方程:1000100030x x -+=2, 故选A .点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程. 10、C 【答案解析】选项A ,原式=-16;选项B ,不能够合并;选项C ,原式=;选项D ,原式=.故选C.11、C 【答案解析】先根据平行线的性质得出∠CBE=∠E=60°,再根据三角形的外角性质求出∠C 的度数即可.【题目详解】∵BC∥DE,∴∠CBE=∠E=60°,∵∠A=35°,∠C+∠A=∠CBE,∴∠C=∠CBE﹣∠C=60°﹣35°=25°,故选C.【答案点睛】本题考查了平行线的性质、三角形外角的性质,熟练掌握三角形外角的性质是解题的关键. 12、B【答案解析】【分析】分别求出每一个不等式的解集,然后在数轴上表示出每个不等式的解集,对比即可得.【题目详解】26058xx x+>⎧⎨≤+⎩①②,解不等式①得,x>-3,解不等式②得,x≤2,在数轴上表示①、②的解集如图所示,故选B.【答案点睛】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、(-32,1)【答案解析】根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k进行解答.【题目详解】解:∵以原点O为位似中心,相似比为:2:1,将△OAB缩小为△OA′B′,点B(3,−2)则点B(3,−2)的对应点B′的坐标为:(-32,1),故答案为(-32,1).【答案点睛】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.14、π﹣1.【答案解析】连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.【题目详解】连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=12AB=1,四边形DMCN是正方形,DM=2.则扇形FDE的面积是:2902360π⨯=π.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA.又∵DM⊥BC,DN⊥AC,∴DM=DN.∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN.在△DMG和△DNH中,∵DMG DNHGDM HDNDM DN∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=1.则阴影部分的面积是:π﹣1.故答案为π﹣1.【答案点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN 是关键.15、35【答案解析】判断出即是中心对称,又是轴对称图形的个数,然后结合概率计算公式,计算,即可. 【题目详解】解:等边三角形、正方形、正五边形、矩形、正六边形图案中既是中心对称图形,又是轴对称图形是:正方形、矩形、正六边形共3种,故从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为:. 故答案为. 【答案点睛】考查中心对称图形和轴对称图形的判定,考查概率计算公式,难度中等. 16、1 【答案解析】分析:先由a 2﹣a ﹣1=0可得a 2﹣a =1,再把(a ﹣21a a - )2)1aa ⋅-(的第一个括号内通分,并把分子分解因式后约分化简,然后把a 2﹣a =1代入即可. 详解:∵a 2﹣a ﹣1=0,即a 2﹣a =1,∴原式=22211a a a a a -+⋅- =()2211a a aa -⋅- =a (a ﹣1) =a 2﹣a =1, 故答案为1点睛:本题考查了分式的化简求值,解题的关键是正确掌握分式混合运算的顺序:先算乘除,后算加减,有括号的先算括号里,整体代入法是求代数式的值常用的一种方法. 17、x≤2且x≠1 【答案解析】根据被开方数大于等于1,分母不等于1列式计算即可得解. 【题目详解】解:由题意得,20x -≥且x ≠1,x≤且x≠1.解得2x≤且x≠1.故答案为2【答案点睛】本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数.18、m<﹣1.【答案解析】根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.【题目详解】∵关于x的方程x2﹣2x﹣m=0没有实数根,∴b2﹣4ac=(﹣2)2﹣4×1×(﹣m)<0,解得:m<﹣1,故答案为:m<﹣1.【答案点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)证明见解析(2)13【答案解析】(1)先根据同角的余角相等得到∠ACE=∠BCD,再结合等腰直角三角形的性质即可证得结论;(2)根据全等三角形的性质可得AE=BD,∠EAC=∠B=45°,即可证得△AED是直角三角形,再利用勾股定理即可求出DE的长.【题目详解】(1)∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA∴∠ACE=∠BCD∴△ACE≌△BCD(SAS);(2)∵△ACB和△ECD都是等腰直角三角形∴∠BAC=∠B=45°∵△ACE≌△BCD∴AE=BD=12,∠EAC=∠B=45°∴∠EAD=∠EAC+∠BAC=90°,∴△EAD是直角三角形222212513DE AE AD∴=+=+=【答案点睛】解答本题的关键是熟练掌握全等三角形的性质:全等三角形的对应边相等、对应角相等.20、(1) 14;(2)112.【答案解析】(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.【题目详解】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=14;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.21、足球单价是60元,篮球单价是90元.【答案解析】设足球的单价分别为x元,篮球单价是1.5x元,列出分式方程解答即可.【题目详解】解:足球的单价分别为x元,篮球单价是1.5x元,可得:24002250151.5x x-=,解得:x=60,经检验x=60是原方程的解,且符合题意,1.5x=1.5×60=90,答:足球单价是60元,篮球单价是90元.【答案点睛】本题考查分式方程的应用,利用题目等量关系准确列方程求解是关键,注意分式方程结果要检验.22、(1)有3种购买方案①购乙6台,②购甲1台,购乙5台,③购甲2台,购乙4台(2)购买甲种机器1台,购买乙种机器5台, 【答案解析】(1)设购买甲种机器x 台(x≥0),则购买乙种机器(6-x )台,根据买机器所耗资金不能超过34万元,即购买甲种机器的钱数+购买乙种机器的钱数≤34万元.就可以得到关于x 的不等式,就可以求出x 的范围.(2)该公司购进的6台机器的日生产能力不能低于380个,就是已知不等关系:甲种机器生产的零件数+乙种机器生产的零件数≤380件.根据(1)中的三种方案,可以计算出每种方案的需要资金,从而选择出合适的方案. 【题目详解】解:(1)设购买甲种机器x 台(x≥0),则购买乙种机器(6-x)台 依题意,得7x+5(6-x)≤34解这个不等式,得x≤2,即x 可取0,1,2三个值. ∴该公司按要求可以有以下三种购买方案: 方案一:不购买甲种机器,购买乙种机器6台. 方案二:购买甲种机器l1台,购买乙种机器5台. 方案三:购买甲种机器2台,购买乙种机器4台 (2)根据题意,100x+60(6-x)≥380 解之得x>12由(1)得x≤2,即12≤x≤2. ∴x 可取1,2俩值. 即有以下两种购买方案:购买甲种机器1台,购买乙种机器5台,所耗资金为1×7+5×5=32万元; 购买甲种机器2台,购买乙种机器4台,所耗资金为2×7+4×5=34万元. ∴为了节约资金应选择购买甲种机器1台,购买乙种机器5台,. 【答案点睛】解决本题的关键是读懂题意,找到符合题意的不等关系式,正确确定各种情况,确定各种方案. 23、3xx -,当x=2时,原式=2-. 【答案解析】测试卷分析: 先括号内通分,然后计算除法,最后取值时注意使得分式有意义,最后代入化简即可.测试卷解析:原式=()()2x x 1x 12x 1x 1x 3--⎛⎫-⋅ ⎪--⎝⎭-=()()2x x 1x 3x 1x 3--⋅--=x x 3- 当x=2时,原式=2223=--.24、(1)i )证明见测试卷解析;ii ;(2(3)222(2p n m -=. 【答案解析】(1)i )由∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,得到∠ACE=∠BCF ,又由于AC CEBC CF==△CAE ∽△CBF ;ii )由AEBF=,再由△CAE ∽△CBF ,得到∠CAE=∠CBF ,进一步可得到∠EBF=1°,从而有222222()6CE EF BE BF ==+=,解得CE =(2)连接BF ,同理可得:∠EBF=1°,由AB EFk BC FC==,得到::1:BC AB AC k =::1:CF EF EC k =AC AEBC BF==BF =,得到2222222211()k k CE EF BE BF k k++=⨯=+,代入解方程即可;(3)连接BF ,同理可得:∠EBF=1°,过C 作CH ⊥AB 延长线于H ,可得:222::1:1:(2AB BC AC =,222::1:1:(2EF FC EC =+,故22222222(2(2)(2(2p EF BE BF m m n =+=+=++=++,从而有222(2p n m -=+. 【题目详解】解:(1)i )∵∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,∴∠ACE=∠BCF ,又∵AC CEBC CF==,∴△CAE ∽△CBF ;ii )∵AEBF=,∴,∵△CAE ∽△CBF ,∴∠CAE=∠CBF ,又∵∠CAE+∠CBE=1°,∴∠CBF+∠CBE=1°,即∠EBF=1°,∴222222()6CE EF BE BF ==+=,解得CE =(2)连接BF ,同理可得:∠EBF=1°,∵AB EFk BC FC==,∴::1:BC AB AC k =2::1::1CF EF EC k k =+,∴21AC AE k BC BF==+,∴21AEBF k =+,2221AE BF k =+,∴2222222211()k k CE EF BE BF k k ++=⨯=+,∴222222123(1)1k k k +=++,解得104k =; (3)连接BF ,同理可得:∠EBF=1°,过C 作CH ⊥AB 延长线于H ,可得:222::1:1:(22)AB BC AC =+,222::1:1:(22)EF FC EC =+,∴22222222(22)(22)()(22)()(22)22n p EF BE BF m m n =+=++=++=+++, ∴222(22)p n m -=+.【答案点睛】本题考查相似三角形的判定与性质;正方形的性质;矩形的性质;菱形的性质. 25、(1)详见解析;(2)详见解析;(3)DF=607. 【答案解析】(1)先判断出AD ⊥BC ,即可得出结论;(2)先判断出OD ∥AC ,进而判断出∠CED=∠ODE ,判断出△CDE ∽△CAD ,即可得出结论; (3)先求出OD ,再求出CD=3,进而求出CE ,AE ,DE ,再判断出DF ODEF AE=,即可得出结论. 【题目详解】 (1)连接AD ,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD;(2)连接OD,∵DE是⊙O的切线,∴∠ODE=90°,由(1)知,BD=CD,∵OA=OB,∴OD∥AC,∴∠CED=∠ODE=90°=∠ADC,∵∠C=∠C,∴△CDE∽△CAD,∴CD CE AC CD=,∴CD2=CE•AC;(3)∵AB=AC=5,由(1)知,∠ADB=90°,OA=OB,∴OD=12AB=52,由(1)知,CD=12BC=3,由(2)知,CD2=CE•AC,∵AC=5,∴CE=295 CDAC=,∴AE=AC-CE=5-95=165,在Rt△CDE中,根据勾股定理得,12 5 =,由(2)知,OD∥AC,∴DF OD EF AE=,∴52121655 DFDF=,∴DF=607.【答案点睛】此题是圆的综合题,主要考查了圆的性质,等腰三角形的性质,相似三角形的判断和性质,勾股定理,判断出△CDE∽△CAD是解本题的关键.26、(1)本次抽查的学生人数是120人;(2)见解析;(3)126;(4)该校“家人接送”上学的学生约有500人.【答案解析】(1)本次抽查的学生人数:18÷15%=120(人);(2)A:结伴步行人数120﹣42﹣30﹣18=30(人),据此补全条形统计图;(3)“自行乘车”对应扇形的圆心角的度数360°×42120=126°;(4)估计该校“家人接送”上学的学生约有:2000×25%=500(人).【题目详解】解:(1)本次抽查的学生人数:18÷15%=120(人),答:本次抽查的学生人数是120人;(2)A:结伴步行人数120﹣42﹣30﹣18=30(人),补全条形统计图如下:“结伴步行”所占的百分比为30120×100%=25%;“自行乘车”所占的百分比为42120×100%=35%,“自行乘车”在扇形统计图中占的度数为360°×35%=126°,补全扇形统计图,如图所示;(3)“自行乘车”对应扇形的圆心角的度数360°×42120=126°,故答案为126;(4)估计该校“家人接送”上学的学生约有:2000×25%=500(人),答:该校“家人接送”上学的学生约有500人.【答案点睛】本题主要考查条形统计图及扇形统计图及相关计算,用样本估计总体.解题的关键是读懂统计图,从条形统计图中得到必要的信息是解决问题的关键.27、(1)证明见解析;(2)3 2【答案解析】测试卷分析:(1)首先连接OD,CD,由以BC为直径的⊙O,可得CD⊥AB,又由等腰三角形ABC的底角为30°,可得AD=BD,即可证得OD∥AC,继而可证得结论;(2)首先根据三角函数的性质,求得BD,DE,AE的长,然后求得△BOD,△ODE,△ADE以及△ABC的面积,继而求得答案.测试卷解析:(1)证明:连接OD,CD,∵BC为⊙O直径,∴∠BDC=90°,即CD⊥AB,∵△ABC 是等腰三角形, ∴AD=BD , ∵OB=OC ,∴OD 是△ABC 的中位线, ∴OD ∥AC , ∵DE ⊥AC , ∴OD ⊥DE , ∵D 点在⊙O 上, ∴DE 为⊙O 的切线;(2)解:∵∠A=∠B=30°,BC=4,∴CD=12BC=2,∴∴S △ABC =12AB•CD=12× ∵DE ⊥AC ,∴DE=12AD=12× AE=AD•cos30°=3,∴S △ODE =12OD•DE=12×,S △ADE =12AE•DE=12×,∵S △BOD =12S △BCD =12×12S △ABC =14×∴S △OEC =S △ABC -S △BOD -S △ODE -S △ADE。

上海市浦东新区届中考数学一模及答案

上海市浦东新区届中考数学一模及答案

--浦东新区2017学年第一学期初三教学质量检测数 学 试 卷(完卷时间:100分钟,满分:150分)2018.1一、选择题:(本大题共6题,每题4分,满分24分)1.如果把一个锐角三角形三边的长都扩大为原来的两倍,那么锐角A 的余切值(A)扩大为原来的两倍; ﻩ(B)缩小为原来的21; (C)不变; ﻩ(D)不能确定. 2.下列函数中,二次函数是(A)54+-=x y ; (B))32(-=x x y ; (C)22)4(x x y -+=;(D )21xy =. 3.已知在Rt △A BC 中,∠C =90°,A B=7,BC =5,那么下列式子中正确的是(A)75sin =A ; (B )75cos =A ; ﻩ(C)75tan =A ; (D )75cot =A . 4.已知非零向量a ,b ,c ,下列条件中,不能判定向量a与向量b 平行的是(A )c a //,c b //; (=; ﻩ(C)c a =,c b 2=; (D)0=+b a . 5.如果二次函数2y ax bx c =++的图像全部在x轴的下方,那么下列判断中正确的是 (A)0<a ,0<b ; ﻩﻩ ﻩ (B)0>a ,0<b ; (C)0<a ,0>c ;ﻩﻩ(D)0<a ,0<c .6.如图,已知点D 、F在△A BC 的边AB 上,点E 在边AC 上,且DE ∥BC ,要使得EF∥CD ,还需添加一个条件,这个条件可以是(A)EF ADCD AB=; ﻩ (B)AE AD AC AB =; (C)AF AD AD AB =; ﻩﻩﻩ(D )AF AD AD DB =.二、填空题:(本大题共12题,每题4分,满分48分)7.已知23=y x ,则yx y x +-的值是 . 8.已知线段MN 的长是4cm ,点P 是线段MN 的黄金分割点,则较长线段MP 的长是 c m. 9.已知△ABC ∽△A 1B 1C 1,△A BC 的周长与△A 1B 1C1的周长的比值是23,BE 、B 1E1分别是它 们对应边上的中线,且BE =6,则B 1E 1= .BA F E CD (第6题图)--10.计算:132()2a ab +-= . 11.计算:3tan30sin45︒+︒= .12.抛物线432-=x y 的最低点坐标是 .13.将抛物线22x y =向下平移3个单位,所得的抛物线的表达式是 . 14.如图,已知直线l 1、l2、l 3分别交直线l 4于点A 、B、C ,交直线l5于点D 、E 、F ,且l1∥l 2∥l 3,AB =4,A C=6,DF =9,则DE = .15.如图,用长为10米的篱笆,一面靠墙(墙的长度超过10米),围成一个矩形花圃,设矩形垂直于墙的一边长为x米,花圃面积为S 平方米,则S 关于x 的函数解析式是 . (不写定义域).16.如图,湖心岛上有一凉亭B ,在凉亭B的正东湖边有一棵大树A ,在湖边的C 处测得B在北偏西45°方向上,测得A在北偏东30°方向上,又测得A、C 之间的距离为100米,则A 、B 之间的距离是 米(结果保留根号形式).17.已知点(-1,m )、(2,n )在二次函数122--=ax ax y 的图像上,如果m >n ,那么a 0(用“>”或“<”连接).18.如图,已知在Rt △A BC 中,∠A CB =90°,54cos =B ,BC=8,点D 在边BC 上,将 △ABC 沿着过点D 的一条直线翻折,使点B 落在AB 边上的点E 处,联结CE 、D E,当∠BDE =∠A EC 时,则BE 的长是 .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)将抛物线542+-=x x y 向左平移4个单位,求平移后抛物线的表达式、顶点坐标 和对称轴.(第15题图) A DEB CFl 1 l 2 l 3l 4(第14题图)l 5 (第16题图)CB A45° 30° CBA(第18题图)20.(本题满分10分,每小题5分)如图,已知△AB C中,点D 、E 分别在边AB 和AC 上,D E∥BC , 且DE 经过△ABC 的重心,设BC a =.(1)=DE .(用向量a 表示); (2)设AB b =,在图中求作12b a +.(不要求写作法,但要指出所作图中表示结论的向量.)21.(本题满分10分,其中第(1)小题4分,第(2)小题6分)ﻩ如图,已知G 、H 分别是□ABCD 对边AD 、BC 上的点,直线GH 分别交BA 和DC 的延长线于点E 、F.(1)当81=∆CDGHCFH S S 四边形时,求DGCH 的值; (2)联结BD 交EF 于点M ,求证:MG ME MF MH ⋅=⋅.22.(本题满分10分,其中第(1)小题4分,第(2)小题6分)如图,为测量学校旗杆A B的高度,小明从旗杆正前方3米处的点C 出发,沿坡度为3:1=i 的斜坡C D前进32米到达点D,在点D处放置测角仪,测得旗杆顶部A 的仰角为37°,量得测角仪DE 的高为1.5米.A、B 、C 、D 、E 在同一平面内,且旗杆和测角仪都与地面垂直. (1)求点D 的铅垂高度(结果保留根号); (2)求旗杆AB 的高度(精确到0.1).(参考数据:sin 37°≈0.60,cos37°≈0.80,t an37°≈0.75,73.13≈.)(第20题图)ABC DE(第22题图)(第21题图)AHF EC G D23.(本题满分12分,其中第(1)小题6分,第(2)小题6分)如图,已知,在锐角△AB C中,C E⊥AB 于点E ,点D在边AC 上, 联结B D交CE 于点F ,且DF FB FC EF ⋅=⋅. (1)求证:BD ⊥AC ;(2)联结AF ,求证:AF BE BC EF ⋅=⋅.24.(本题满分12分,每小题4分)已知抛物线y=ax 2+b x+5与x 轴交于点A (1,0)和点B (5,0),顶点为M .点C在x 轴的负半轴上,且AC =AB ,点D的坐标为(0,3),直线l 经过点C 、D . (1)求抛物线的表达式;(2)点P 是直线l在第三象限上的点,联结AP ,且线段CP 是线段CA 、C B的比例中项,求tan ∠C PA 的值;(3)在(2)的条件下,联结AM 、BM ,在直线PM 上是否存在点E,使得∠AE M=∠AM B.若存在,求出点E 的坐标;若不存在,请说明理由.A (第23题图)DEFBC(第24题图)25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,已知在△A BC中,∠AC B=90°,BC=2,AC =4,点D在射线BC 上,以点D 为圆心,B D为半径画弧交边AB 于点E ,过点E作EF ⊥AB 交边AC 于点F ,射线ED 交射线A C于点G . (1)求证:△EFG ∽△AE G;(2)设FG =x ,△EFG 的面积为y ,求y关于x 的函数解析式并写出定义域; (3)联结D F,当△EFD 是等腰三角形时,请直接..写出FG 的长度.(第25题备用图)ABC(第25题备用图)ABC浦东新区2017学年度第一学期初三教学质量检测数学试卷参考答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.C; 2.B ; 3.A ; 4.B ; 5.D; 6.C.二、填空题:(本大题共12题,每题4分,满分48分)7.51;8.252-; 9.4;10.5a b -;11.223+;12.(0,-4);13.322-=x y ; 14.6; 15.x x S 1022+-=;16.50350+;17.>;18.539.三、解答题:(本大题共7题,满分78分)19.解:∵54442+-+-=x x y =1)2(2+-x .…………………………………(3分) ∴平移后的函数解析式是1)2(2++=x y .………………………………(3分)顶点坐标是(-2,1).……………………………………………………(2分) 对称轴是直线2x =-.………………………………………………… (2分)20.解:(1)=23a .……………………………(5分)(2)图正确得4分,结论:AF 就是所要求作的向量. …(1分).21.(1)解:∵81=∆CDGH CFHS S 四边形, ∴ 91=∆∆DFG CFH S S .……………………………………………………(1分)∵ □ABCD 中,AD //BC ,∴ △CFH ∽△DFG . ………………………………………………(1分)∴ 91)(2==∆∆DG CH S S DFG CFH .…………………………………………… (1分)∴ 31=DG CH . …………………………………………………………(1分)(2)证明:∵ □AB CD 中,AD //BC , ∴ MGMH MD MB =. ……………………………………(2分) ∵ □AB CD中,AB//C D, ∴ MD MB MF ME =.……………………………………(2分) ∴ MG MH MF ME =.……………………………………(1分) ∴ MH MF ME MG ⋅=⋅. ……………………………(1分) 22.解:(1)延长ED 交射线BC 于点H .由题意得DH ⊥BC .(第21题图) A BHFEC GD M(第20题图)B在Rt △CD H中,∠DHC =90°,tan ∠DCH=1:i =……………(1分) ∴ ∠DCH =30°.∴ CD =2DH .……………………………(1分) ∵ CD=∴ DHCH =3 .……………………(1分) 答:点D 的铅垂高度是3米.…………(1分)(2)过点E 作EF ⊥AB 于F.由题意得,∠AE F即为点E 观察点A时的仰角,∴ ∠AEF =37°. ∵ EF ⊥AB ,AB ⊥BC ,ED ⊥B C, ∴ ∠BFE =∠B =∠B HE =90°. ∴ 四边形FBHE 为矩形.∴ EF =BH =BC +C H=6. ……………………………………………(1分)F B=EH =ED +DH =1.5+3. ……………………………………(1分) 在Rt △AEF 中,∠AFE =90°,5.475.06tan ≈⨯≈∠⋅=AEF EF AF .(1分) ∴ AB =AF +FB =6+3 ………………………………………………(1分) 7.773.16≈+≈. ……………………………………………(1分) 答:旗杆AB 的高度约为7.7米. …………………………………(1分)23.证明:(1)∵ DF FB FC EF ⋅=⋅,∴FCFBDF EF =. ………………………(1分) ∵ ∠EF B=∠DFC , …………………(1分)∴ △E FB ∽△DF C. …………………(1分) ∴ ∠FEB =∠FDC . ………………… (1分) ∵ CE ⊥AB , ∴ ∠FEB = 90°.……………………… (1分) ∴ ∠FDC= 90°. ∴ BD ⊥AC. ………………………… (1分) (2)∵ △EFB ∽△DFC ,∴ ∠ABD =∠ACE . …………………………………………… (1分)∵ CE ⊥A B,∴ ∠FEB = ∠A EC= 90°.∴ △AE C∽△FEB . ……………………………………………(1分)∴ EBECFE AE =.……………………………………………………(1分) (第22题图)A (第23题图) D EF B C∴EBFEEC AE =. …………………………………………………(1分) ∵ ∠AEC =∠FEB = 90°,∴ △AEF ∽△CEB .………………………………………………(1分)∴ EBEFCB AF =,∴ AF BE BC EF ⋅=⋅. ………………………(1分) 24.解:(1)∵ 抛物线52++=bx ax y 与x 轴交于点A (1,0),B (5,0),∴ ⎩⎨⎧=++=++.0552505b a b a ;………………………解得⎩⎨⎧-==.61b a ;∴ 抛物线的解析式为562+-=x x y .……(1 (2)∵ A (1,0),B(5,0),∴ OA=1,A B=4.∵ AC =AB 且点C 在点A 的左侧,∴ A C=4 .∴ CB =CA+A B=8. ………………………………………………(1分) ∵ 线段CP 是线段CA 、CB 的比例中项,∴CBCPCP CA =. ∴ CP =24. ……………………………………………………(1分)又 ∵ ∠PCB 是公共角,∴ △CP A ∽△C BP .∴ ∠CPA= ∠CB P. ………………………………………………(1分)过P 作PH ⊥x 轴于H .∵ O C=OD=3,∠D OC=90°,∴ ∠DC O=45°.∴ ∠PC H=45°∴ PH=C H=C P 45sin =4,∴ H(-7,0),BH=12. ∴ P (-7,-4).∴ 31tan ==∠BH PH CBP ,31tan =∠CPA . ………………………(1分) (3) ∵ 抛物线的顶点是M (3,-4),………………………………… (1分) 又 ∵ P (-7,-4),∴ P M∥x轴 .当点E 在M 左侧, 则∠B AM =∠A ME . ∵ ∠AEM=∠AMB ,∴ △AEM ∽△B MA .…………………………………………………(1分)∴BA AM AM ME =. ∴45252=ME . (第24题图)∴ ME=5,∴ E(-2,-4). …………………………………(1分) 过点A作AN ⊥PM 于点N ,则N (1,-4).当点E在M 右侧时,记为点E ', ∵ ∠A E 'N=∠AE N,∴ 点E '与E 关于直线AN 对称,则E '(4,-4).………………(1分) 综上所述,E的坐标为(-2,-4)或(4,-4).25.解:(1)∵ ED =B D,∴ ∠B =∠BED .………………………………(1∵ ∠ACB =90°, ∴ ∠B +∠A=90°. ∵ EF ⊥AB ,∴ ∠B EF =90°. ∴ ∠BED +∠GEF =90°.∴ ∠A =∠G EF . ………………………………(1分∵ ∠G是公共角, ……………………………(1分) ∴ △EFG ∽△A EG . (2)作EH⊥AF 于点H.∵ 在Rt △ABC 中,∠ACB =90°,BC=2,AC =4, ∴ 21tan ==AC BC A . ∴ 在Rt △AEF 中,∠AEF =90°,21tan ==AE EF A . ∵ △EFG ∽△AEG, ∴21===AE EF GA GE EG FG .……………………………………………(1分) ∵ FG =x ,∴ EG =2x,AG =4x .∴ A F=3x . ……………………………………………………………(1分) ∵ EH ⊥AF ,∴ ∠A HE =∠EHF =90°. ∴ ∠EF A+∠FEH =90°. ∵ ∠AEF =90°, ∴ ∠A +∠EF A =90°. ∴ ∠A =∠F EH .∴ tan A =tan ∠F EH .∴ 在Rt △EH F中,∠EH F=90°,21tan ==∠EH HF FEH .∴ EH =2HF.∵ 在R t△AEH 中,∠AHE =90°,21tan ==AH EH A .∴ AH =2EH . ∴ AH =4HF . ∴ AF=5HF .∴ HF =x 53.∴ x EH 56=.…………………………………………………………(1分)∴ 253562121x x x EH FG y =⋅⋅=⋅⋅=.………………………………(1分) 定义域:(340≤<x ).……………………………………………(1分)(3)当△E FD 为等腰三角形时,FG的长度是:254,273.……(5分)。

中考浦东新区一模数学试卷

中考浦东新区一模数学试卷

一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是最符合题目要求的。

)1. 下列各数中,有理数是()A. √2B. πC. -3/5D. 无理数2. 已知a、b是实数,且a+b=0,则()A. a=0B. b=0C. a、b同时为0D. 无法确定3. 若m²=9,则m的值为()A. ±3B. ±4C. ±5D. ±64. 下列函数中,一次函数是()A. y=2x+1B. y=x²+1C. y=√xD. y=|x|5. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数为()A. 60°B. 75°C. 90°D. 105°6. 已知数列{an}中,a₁=2,an=an-1+3(n≥2),则数列{an}的通项公式为()A. an=3n-1B. an=3n+1C. an=3n-2D. an=3n7. 已知x²-5x+6=0,则x的值为()A. 2B. 3C. 4D. 68. 在平面直角坐标系中,点A(2,3)关于x轴的对称点为()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)9. 下列各组数据中,方差最小的是()A. 1,2,3,4,5B. 2,3,4,5,6C. 3,4,5,6,7D. 4,5,6,7,810. 若函数f(x)=ax²+bx+c的图像开口向上,且顶点坐标为(h,k),则下列结论正确的是()A. a>0,b<0,c>0B. a>0,b>0,c>0C. a<0,b<0,c<0D. a<0,b>0,c>011. 已知函数y=2x-3,下列图像表示该函数的是()A. 一次函数图像B. 二次函数图像C. 线性函数图像D. 指数函数图像12. 下列关于不等式x²-4x+3<0的解集描述正确的是()A. x∈(-∞,1)∪(3,+∞)B. x∈(1,3)C. x∈(-∞,1)∪(3,+∞) D. x∈(1,3)二、填空题(本大题共8小题,每小题4分,共32分。

浦东数学一模初三试卷答案

浦东数学一模初三试卷答案

浦东新区初三数学一模试卷答案一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001...D. -3答案:D2. 若a,b是方程x² - 5x + 6 = 0的两根,则a² + b²的值为()A. 10B. 11C. 12D. 13答案:B3. 在直角坐标系中,点P(2, -3)关于y轴的对称点坐标是()A. (2, 3)B. (-2, 3)C. (-2, -3)D. (2, -3)答案:C4. 下列函数中,单调递增的是()A. y = 2x - 1B. y = -x² + 1C. y = x³D. y = 1/x答案:C5. 若一个等腰三角形的底边长为6cm,腰长为8cm,则这个三角形的面积是()A. 24cm²B. 28cm²C. 32cm²D. 36cm²答案:C二、填空题(每题3分,共30分)6. 若sinα = 1/2,且α在第二象限,则cosα = _______。

答案:-√3/27. 二项式(2x - 3)³的展开式中,x²的系数是 _______。

答案:-98. 若等差数列{an}的前三项分别为2,5,8,则该数列的公差是 _______。

答案:39. 圆的半径增加1单位,其面积增加 _______单位。

答案:π10. 若函数f(x) = ax² + bx + c的图像开口向上,且顶点坐标为(-1, 4),则a = _______,b = _______。

答案:a > 0,b = -2a三、解答题(每题15分,共60分)11. (15分)已知函数f(x) = x² - 2x + 1,求f(x)的最小值。

解答:f(x) = (x - 1)²,当x = 1时,f(x)取得最小值,即f(1) = 0。

2022年上海市浦东区中考一模数学试卷

2022年上海市浦东区中考一模数学试卷

2022年上海市浦东区中考一模数学试卷一、选择题(共6小题;共30分)1. 某两地的距离为米,画在地图上的距离是厘米,则地图上的距离与实际距离之比是A. B. C. D.2. 将抛物线向右平移个单位,再向下平移个单位后所得新抛物线的顶点是A. C. D.3. 已知点是线段的黄金分割点,且,则下列比例式能成立的是A. B. C. D.4. 在离旗杆米处的地方,用测角仪测得旗杆项的仰角为,如测角仪的高为米,那么旗杆的高为米.A. B. C. D.5. 如图,在中,,,为边上的一点,且.若的面积为,则的面积为A. B. C. D.6. 已知,而且和的方向相反,那么下列结论中正确的是A. B. C. D.二、填空题(共12小题;共60分)7. 计算:.8. 在中,,,,则.9. 在一个边长为的正方形中挖去一个小正方形,使小正方形四周剩下部分的宽度均为,若剩下阴影部分的面积为,那么关于的函数解析式是.10. 抛物线的对称轴是直线.11. 如果在平面直角坐标系中,点的坐标为,射线与轴的正半轴所夹的角为,那么的余弦值等于.12. 如图所示,在平行四边形中,为中点,延长至,使,连接交于点,则等于.13. 已知二次函数(为常数),若该函数图象与轴只有一个公共点,则.14. 如图,在中,,点是的重心,,,则长为.15. 如图,已知平行四边形的对角线与相交于点,设,那么向量关于,的分解式为.16. 如图,在矩形中,,,点为射线上的一个动点,过点的直线垂直于与直线相交于点,当时,.17. 定义:直线与抛物线两个交点之间的距离称作抛物线关于直线的“割距”,如图,线段长就是抛物线关于直线的“割距”.已知直线与轴交于点,与轴交于点,点恰好是抛物线的顶点,则此时抛物线关于直线的割距是.18. 如图,,直线与直线之间的距离为,直线与直线之间的距离为,等边的三个顶点分别在直线、直线、直线上,则等边三角形的边长是.三、解答题(共7小题;共91分)19. 求值:(结果保留根号).20. 如图,在中,点,分别在边,上,,且.(1)如果,求的长;(2)设,求向量(用向量,表示).21. 为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)的山坡上发现一棵古树,测得古树底端到山脚点的距离,在距山脚点处水平距离的点处测得古树顶端的仰角(古树与山坡的剖面、点在同一平面上,古树所在直线与直线垂直),则古树的高度约为多少米?(结果精确到整数)(数据,,)22. 如图,在中,,,.是边的中点,过点作直线的垂线,与边相交于点.(1)求线段的长;(2)求的值.23. 如图,在和中,,,与相交于点,连接,点在边上.(1)求证:;(2)若,求的值.24. 已知,二次函数的图象与轴交于点,点,与轴交点.(1)求二次函数解析式;(2)设点为轴上一点,且,求的值;(3)若点是直线上方抛物线上一动点,连接,过点作,交于点,求线段的最大值及此时点的坐标.25. 在中,,,,点是边上的一个动点,过作,为垂足,在线段上取,连接,作,交射线于点,交射线于点.(1)如图所示,求证:;(2)设,,求关于的函数解析式,并写出定义域;(3)当时,求线段的长.答案第一部分1. C【解析】米厘米,则厘米:厘米.故这幅地图的比例尺是.2. A【解析】将抛物线向右平移个单位,再向下平移个单位后,得,顶点坐标为.3. C【解析】根据黄金分割定义可知:是和的比例中项,即,.4. C【解析】如图所示,米,米.在中,,,又四边形是矩形,米,,旗杆的高为米.5. C【解析】,,,,即,解得,的面积为,的面积为:.6. D【解析】,而且和的方向相反,.第二部分7.【解析】8.【解析】在中,,,,,.9.【解析】设剩下部分的面积为,则:.10.【解析】抛物线的对称轴方程,抛物线的对称轴是.即对称轴是.【解析】过作轴于,,,,由勾股定理得:,的余弦值是.答案为:.12.【解析】,设,,在平行四边形中,,点为的中点,,,,.13.【解析】二次函数图象与轴有且只有一个公共点,,解得:.14.【解析】延长交于,作于.点是的重心,,,点为的中点,,又,,,,,,.15.【解析】,故答案为:.【解析】如图.,,,,,,又,,,,.17.【解析】直线与轴的交点,点坐标为,是抛物线的顶点,抛物线解析式为,解得或直线与抛物线的两个交点坐标为,,抛物线关于直线的割距是.18.【解析】如图所示,过点作于,过点作分别交直线,于,,,,,,四边形是矩形,,,直线与直线之间的距离为,直线与直线之间的距离为,,,,是等边三角形,可设,由勾股定理得:,,,,,,,,,,解得(不符合题意的值已经舍去),的边长为.故答案为:.第三部分19.20. (1)如图,,且,.又,.(2),.又,,.21. 延长交的延长线于点,则,山坡上坡度,令,则,在中,由勾股定理得,,,解得,,,,在中,,,,古树的高度约为.22. (1),,,,,,又为中点,,,,,,.(2)作交于,由()知,则,,设,则,在中,,在中,,,解得,.23. (1),,,,,,.(2),,即,在中,,,,.,,,.24. (1)把,代入中,得解得:,,.(2)在二次函数解析式为,令,则,则点坐标,而,,,,,,.(3)设直线为:,把和代入得:解得:,,,过点作轴,交于点,,,是等腰直角三角形,,设点,则,,当且仅当时,的最大值是,,当点时,的最大值是.25. (1),,,,,,,,.(2),,,,,,,,,,,,即,,,,,即,().(3)①当点在线段上时,,,,,,,,,.②当点在延长线上时,,,,,.过点作,垂足是点,,,,,,,.综上所述,或.。

2022-2023学年上海市浦东区中考数学专项提升仿真模拟卷(一模二模)含解析

2022-2023学年上海市浦东区中考数学专项提升仿真模拟卷(一模二模)含解析

第1页/总51页2022-2023学年上海市浦东区中考数学专项提升仿真模拟卷(一模)第I 卷(选一选)评卷人得分一、单 选 题1.下列各数中与相等的是( )122AB .CD.2.三角形的外心是三角形的( )A .三条中线的交点B .三条角平分线的交点C .三边垂直平分线的交点D .三条高所在直线的交点3.如果从、、这三个数字中任意选取两个数字,组成一个两位数,那么这个两位数是素123数的概率等于( )A .B .C .D .121 31 41 64.下列关于的方程中,有实数根的是( )x A .B.C D .410x +=210x -=10=2101x x +=-5.在一组对边平行的四边形中,增加一个条件,使得这个四边形是菱形,那么增加的条件可以是( )A .另一组对边相等,对角线相等B .另一组对边相等,对角线互相垂直C .另一组对边平行,对角线相等D .另一组对边平行,对角线相互垂直6.如图,一艘海轮位于灯塔P 的南偏东70°方向的M 处, 它以每小时40海里的速度向正向航行,2小时后到 达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的 距离为试卷第2页,共6页A .40海里B .60海里C .70海里D .80海里第II 卷(非选一选)评卷人得分二、填 空 题7.用科学记数法表示-864000=___________8的解是__________.2=9.分解因式:_________________am an bm bn +--=10.关于的没有等式组的解集为_______________x 231122x x x -<⎧⎪⎨-+≥-⎪⎩11.如果关于的方程有两个实数根,那么满足______________x 2230x x m -+=m 12.完成一件工程,甲单独完成比乙单独完成可以少10天.两人合作10天后,还剩下工程的未完成.设甲单独完成需要天,则根据题意列出的方程是__________________16x 13.在梯形中,,,AC 与BD 交于点P ,令,,那ABCD AB CD ∥2AB CD =AB a = BC b =么____________;(用向量、表示)AP =a b 14.抛物线图像向右平移2个单位再向下平移3个单位,所得图像的解析式为2y x bx c =++,那么原抛物线的解析式为____________223y x x =--15.已知两圆内切,一个圆的半径是3,圆心距是2,那么另一个圆的半径是__________第3页/总51页16.如图,是半圆的直径,C 为半圆的中点,,,反比例函数的AB (2,0)A (0,1)B (0)ky x x =>图象点C ,则k 的值为________.17.如图,在中,点是边上的一点,且,连接并取的中点,ABC D AB 3AD BD =CD CD E 连接,若,且的长为__________.BE 45ACD BED ∠=∠=︒CD =AB 18.如图,AB 是的弦,D 为半径OA 的中点,过D 作交弦AB 于点E ,且O CD OA ⊥.若,,那么的半径为_______________CE CB =2BE AE =5CD =O 评卷人得分三、解答 题19.计算)12sin 6020228⎛⎫︒+- ⎪⎝⎭试卷第4页,共6页20.解方程组2220441x xy x xy y ⎧-=⎨-+=⎩21.据报载,在“百万家庭低碳行,分类要先行”中,某地区对随机抽取的1000名公民的年龄段分布情况和对分类所持态度进行,并将结果分别绘成条形图(图1)、扇形图(图2).(1)图2中所缺少的百分数是_________;(2)这次随机中,如果公民年龄的中位数是正整数,那么这个中位数所在年龄段是_________(填写年龄段);(3)这次随机中,年龄段是“25岁以下”的公民中“没有赞成”的有5名,它占“25岁以下”人数的百分数是________;(4)如果把所持态度中的“很赞同”和“赞同”统称为“支持”,那么这次被公民中“支持”的人有_______名.22.如图,在中,D 是BC 上一点,,E 、F 分别是AC 、BD 的中点且ABC AD AB =.已知,,求EF 和AB 的长.EF AC ⊥8AC =tan 2B ∠=23.如图,平行四边形ABCD 中,它的两条高、相交于点,,与DE BF H 45DBC ∠=︒BF 的延长线相交于点,连接.AD G AH第5页/总51页(1)求证:;BH AB =(2)求证:AH BG AG BD⋅=⋅24.如图,二次函数的图像与x 轴交于A 、B 两点,与y 轴相交于点C ,点A2123y x bx =-++的坐标为,是抛物线上一点(点与点、、都没有重合).()4,0-P P A BC (1)求抛物线解析式;(2)求点B 的坐标;(3)设直线PB 与直线AC 相交于点M ,且存在这样的点P ,使得,试确定点的:1:2PM MB =P 横坐标.25.在平面直角坐标系中,点,,点是线段上一动点(没有与点、点()10,0A ()6,8B P OA A 重合),以为半径的与线段的另一个交点为,作于点(如图1).O PA P AB C CD OB ⊥D试卷第6页,共6页(1)求证:;AC APCB PO =(2)已知与线段恰有的公共点,且满足,求的半径;P OB E PE PA =P (3)在(2)的条件下,连接交于点(如图2).已知线段上有一点使得PB CD F DE G ,求的长.45GPF ∠=︒EG答案:1.A【分析】根据分数指数幂的概念得出结论即可.【详解】122故选:A.本题考查的是分数指数幂的知识,熟练掌握分数指数幂的概念是解本题的关键.2.C【分析】根据三角形的外心的定义(三角形的外心是三条边的垂直平分线的交点)即可得.【详解】解:三角形的外心是三角形的三边垂直平分线的交点,故选:C.本题考查了三角形的外心,熟记定义是解题关键.3.A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这个两位数是素数的情况,再利用概率公式求解即可求得【详解】画树状图得:∵共有6种等可能的结果,这个两位数是素数的有13,23,31共3种情况,∴这个两位数是素数的概率为:=.3612故选A本题考核知识点:概率.解题关键点:根据题意画出树状图,然后由树状图求得所有等可能的结果与这个两位数是素数的情况.4.B【分析】根据偶次方、偶次方根的非负性判断A 、C ,再解一元二次方程判断B ,解分式方程,并验根判断D .【详解】解:A 、∵,∵一个实数的偶次方没有为负,∴,∴没有实数根,故该选项错410x +=410x +>误,没有符合题意;B 、,∵,∴有实数根,解得x =1或-1,故该选项正确,符合题意;210x -=2440b ac =-=>C 、,是一个非负数,左右没有可能相等,∴没有实数根,10+=1=-故该选项错误,没有符合题意;D 、∵,∴x =-1,而当x =-1时,,∴没有实数根,故该选项错误,没有符2101x x +=-210x -=合题意.故选:B ..本题考查了方程的解,掌握高次方程、无理方程、分式方程的解法是解决本题的关键.5.D【分析】根据菱形的判定、矩形的判定、等腰梯形的判定逐项判断即可得.【详解】解:A.一组对边平行,另一组对边相等,对角线相等的四边形可以是等腰梯形,则此项没有符题意;B.一组对边平行,另一组对边相等,对角线互相垂直的四边形可以是等腰梯形,则此项没有符题意;C.一组对边平行,另一组对边平行,对角线相等的四边形可以是矩形,没有一定是菱形,则此项没有符题意;D.一组对边平行,另一组对边平行,对角线相互垂直的四边形是菱形,则此项符合题意;故选:D.本题考查了菱形的判定、矩形的判定、等腰梯形的判定,熟练掌握菱形的判定是解题关键.6.D【分析】依题意,知MN=40海里/小时×2小时=80海里,【详解】∵根据方向角的意义和平行的性质,∠M=70°,∠N=40°,∴根据三角形内角和定理得∠MPN=70°.∴∠M=∠MPN=70°.∴NP=NM=80海里.故选D.本题考查了平行线的性质和三角形内角和的定理,解决此题的关键是计算要细心,没有要出错.7.58.6410-⨯【分析】根据科学记数法的定义即可得.【详解】解:科学记数法:将一个数表示成的形式,其中,为整数,这种记数的10na ⨯110a ≤<n 方法叫做科学记数法,则,58640008.6410-=-⨯故.58.6410-⨯本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成的形式,其中10na ⨯,为整数,这种记数的方法叫做科学记数法)是解题关键.确定的值时,要110a ≤<n n 看把原数变成时,小数点移动了多少位,的值与小数点移动的位数相同.a n 8..5x =【详解】试题分析:原方程两边平方,得:-1=4,所以,.故答案为.x 5x =5x =考点:根式方程.9.()()m n a b +-【分析】利用分组分解法和提取公因式法进行分解因式即可得.【详解】解:原式()()am an bm bn =+-+()()a m nb m n +-+=,()()m n a b +=-故.()()m n a b +-本题考查了因式分解,熟练掌握因式分解的方法是解题关键.10.12x -≤<【分析】先分别求出两个没有等式的解集,再找出它们的公共部分即为没有等式组的解集.【详解】解:,231122x x x -<⎧⎪⎨-+≥-⎪⎩①②解没有等式①得:,2x <解没有等式②得:,1x ≥-则没有等式组的解集为,12x -≤<故.12x -≤<本题考查了解一元没有等式组,熟练掌握没有等式组的解法是解题关键.11.98m ≤【分析】根据一元二次方程根的判别式即可得.0∆≥【详解】解:由题意得:此方程根的判别式,2(3)420m ∆=--⨯≥解得,98m ≤故.98m ≤本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键.12.11110()1106x x +=-+【分析】先求出乙单独完成需要天,再根据“两人合作10天,完成的工作量为”建立方(10)x +116-程即可.【详解】解:由题意得:乙单独完成需要天,(10)x +则可列方程为,11110()1106x x +=-+故.11110()1106x x +=-+本题考查了列分式方程,正确找出等量关系是解题关键.13.2233a b + 【分析】先根据向量的运算法则求出,再根据相似三角形的判定证出,AC a b =+ ABP CDP △△根据相似三角形的性质可得,从而可得,由此即可得出答案.2AP AB CP CD ==23AP AC =【详解】解:由题意,画图如下:,,AB a = BC b = ,AC AB BC a b ∴=+=+ ,AB CD ∥,ABP CDP ∴ ,2AP AB CP CD ∴==,23AP AC ∴=,222333AP AC a b ∴==+故.2233a b + 本题考查了向量的运算、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.14.22y x x=+【分析】将抛物线的图像先向上平移3个单位,再向左平移2个单位即可得.223y x x =--【详解】解:将抛物线先向上平移3个单位,所得抛物线的解析式为2223(1)4y x x x =--=--,即为,再向左平移2个单位,所得抛物线的解析式为2(1)43y x =--+2(1)1y x =--,即为,2(12)1y x =-+-22(1)12y x x x =+-=+则原抛物线的解析式为,22y x x =+故.22y x x =+本题考查了二次函数图像的平移,熟练掌握二次函数图像的平移规律是解题关键.15.1或5【分析】设与内切,的半径为3,圆心距,分①在的内部和②1O 2O 1O 122O O =2O 1O 在的内部两种情况,分别画出图形进行求解即可得.1O 2O 【详解】解:由题意,设与内切,的半径为3,圆心距,1O 2O 1O 122O O =分以下两种情况:①如图,当在的内部时,2O 1O则的半径为;2O 321-=②如图,当在的内部时,1O 2O则的半径为;2O 325+=综上,另一个圆的半径为1或5,故1或5.本题考查了圆心距、圆与圆的位置关系,正确分两种情况讨论是解题关键.16.94【分析】连接CD ,并延长交x 轴于点P ,分别求出PD ,PO ,CD 和PC 的长,过点C 作CF ⊥x 轴于点F ,求出PF ,CF 的长,进一步得出点C 的坐标,从而可得出结论.【详解】解:连接CD ,并延长交x 轴于点P ,如图,∵C 为半圆的中点,∴CP ⊥AB ,即∠ADP =90°又∠AOB =90°∴∠APD =∠ABO∵A (2,0),B (0,1)∴AO =2,OB =1∴ AB ===∴12AD AB ==又1tan 2PD OB A AD OA ===∴1122PD AD ===∴PC PD CD =+==∴ 54AP ===∴53244OP AO AP =-=-=过点C 作CF ⊥x 轴于点F ,∴sin sin CF AO APD ABO PC AB ∠=∠==∴32CF PC ===∴ 34PF ===∴ 333442OF OP PF =+=+==∴点C 的坐标为3232∵点C 在反比例函数的图象上(0)k y x x =>∴,339224k =⨯=故94本题考查反比例函数的解析式,解题的关键是利用过某个点,这个点的坐标应适合这个函数解析式;求出点C 坐标是关键.17.【分析】延长BE 交AC 于点F ,过D 点作,由可得此时DG BE G ⊥于点45ACD BED ∠=∠=︒为等腰直角三角形,E 为CD 的中点且CEF △CD =CE DE ==中,根据勾股定理求得,长度,由可得,即Rt CEF CF EF BF DG ⊥EDG ECF △≌△,由,可得,即, ,求EG EF =BF AC ⊥BF DG ⊥AC DG ∥BDG BAF △∽△13BG BD FG AD ==∴得,4AB BD ==∴【详解】如下图,延长BE 交AC 于点F ,过D 点作,DG BE G ⊥于点∵,,45ACD BED ∠=∠=︒=45BED CEF ∠=︒∠∴,,为等腰.90EFC =∠BF AC ⊥CEF △Rt CEF 由题意可得E 为CD 的中点,且CD =∴CE DE ==在等腰中,Rt CEF CE =,3CF EF ==∴又∵,BF DG ⊥在,ECF EDG △和△中90CFE DGE CEF DEGCE DE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴(AAS )EDG ECF △≌△∴,3EF EG ==∵,,BF AC ⊥BF DG ⊥∴,//AC DG ∴13BG BD FG AD ==,6FG EF EG =+=∴,2BG =BD =.4AB BD ==∴故本题考察了等腰直角三角形的性质,勾股定理求对应边的长度,全等三角形的性质与判定,相似三角形的性质与判定,构造合适的相似三角形,综合运用以上性质是解题的关键.18.【分析】连接OB 、OC ,作CH ⊥BE 于H 点,根据条件证明△ADE ∽△CHE ,得到,设DE AE EH EC =AE =m ,DE =n ,n (5-n )=m 2,然后再推出∠OBC =∠ADE =90°,根据勾股定理建立等式,两式联立求解,从而求出AD 长,即可解决问题.()()222222545m n m n n -+=-+-【详解】解:如图,连接OB 、OC ,作CH ⊥BE 于H 点,∵BC =EC ,CH ⊥BE ,∴BH =HE ,∵∠ADE =∠CHE =90°,∠AED =∠HEC ,∴△ADE ∽△CHE ,∴ ,DE AE EH EC =设AE =m ,DE =n ,∴n (5-n )=m 2,在Rt △OBC 中,∵OB 2+BC 2=OC 2,∴OD 2=AD 2= m 2-n 2,∵OA =OB ,∴∠OAB =∠OBA ,∵CB =CE ,又∴∠BEC =∠CBE =∠AED ,∴,OAB AED OBA CBE ∠+∠=∠+∠∴∠OBC =∠ADE =90°,∴222OB BC OC+=∵ , ,,2222225OC OD CD m n =+=-+()222244OB AD m n ==-()225BC n =-∴,()()222222545m n m n n -+=-+-将m 2=n (5-n )代入整理得:,()10n n -=解得n =1或0(舍去),∴m =2,∴,AD==∴,2OA AD ==即的半径为.O故本题考查了相似三角形的判定与性质,勾股定理,以及圆的基本知识,解题的关键是利用构建方程的方法解决几何问题.19.1-【分析】先计算角的正弦值、负分数指数幂、化简值、零指数幂,再计算乘法与加减法即可得.【详解】解:原式21=-1=.1=-本题考查了角的正弦值、负分数指数幂、化简值、零指数幂,熟练掌握各运算法则是解题关键.20.,,,1101x y =⎧⎨=⎩2201x y =⎧⎨=-⎩3311x y =⎧⎨=⎩4411x y =-⎧⎨=-⎩【分析】由个等式可得x (x -y )=0,可得x =0,x -y =0,这两种情况下第二个等式(2x -y )=1可得2出x 和y 的值.【详解】解:2220441x xy x xy y ⎧-=⎨-+=⎩①②解:由①可得:x (x -y)=0,∴或,0x =0x y -=由②得:(2x -y )=1,2把x =0代入(2x -y )=1得:,221y =解得:y =1,y 2=−1;1由x -y =0得:x =y ,把x =y 代入(2x -y )=1得:(2y -y )=1,22解得:或,1y =1y =-∴当时,,1y =1x =当时,,1y =-1x =-综上可得,原方程组的解为:,,,.1101x y =⎧⎨=⎩2201x y =⎧⎨=-⎩3311x y =⎧⎨=⎩4411x y =-⎧⎨=-⎩本题主要考查了解二元二次方程组,变形①用代入法把二元二次方程组转化为一元二次方程,是解决本题的关键.21.(1) 12%, (2) 36~45, (3) 5%, (4) 700人.【分析】(1)本题需先根据已知条件,再图形列出式子,解出结果即可.(2)本题需先根据中位数的概念即可得出答案.(3)本题需先求出25岁以下的总人数,再用5除以总人数即可得出答案.(4)本题需先求出这次被公民中支持的人所占的百分比,再乘以总人数即可得出答案.【详解】解:(1)图2中所缺少的百分数是:1﹣39%﹣18%﹣31%=12%;(2)∵共1000名公民,∴这个中位数所在年龄段是第500和第501个数的平均数,∴这个中位数所在年龄段是:36~45岁;(3)∵年龄段是“25岁以下”的公民中“没有赞成”的有5名,“25岁以下”的人数是1000×10%,∴它占“25岁以下”人数的百分数是;5100%=5%100010%⨯⨯(4)∵所持态度中“很赞同”和“赞同”的人数所占的百分比分别是;39%,31%,∴这次被公民中“支持”的人有1000×(39%+31%)=700(人),考点:条形统计图;扇形统计图;中位数.22.,4EF =AB =【分析】连接,先根据等腰三角形的三线合一可得,再根据直角三角形斜边上的中线AF AF BD ⊥可得,然后利用勾股定理可得,在中,解直角三角142EF AE AC ===AF =Rt ABF形可得的长.BF =AB 【详解】解:如图,连接,AF ,点是的中点,= AD AB F BD (等腰三角形的三线合一),AF BD ∴⊥点是的中点,E AC 是斜边上的中线,EF ∴Rt ACF AC ,118422EF AE AC ∴===⨯=,EF AC ⊥AF ∴==在中,,Rt ABF tan 2AF B BF ===解得BF =AB ∴===本题考查了等腰三角形的三线合一、勾股定理、直角三角形斜边上的中线、解直角三角形,熟练掌握直角三角形斜边上的中线和解直角三角形的方法是解题关键.23.(1)证明见解析(2)证明见解析【分析】(1)先根据等腰直角三角形的判定与性质可得,再根据垂直的定义可得BE DE =,从而可得,然后根据全等三角形的判定证出90BEH DEC ∠=∠=︒BHE C ∠=∠,根据全等三角形的性质可得,根据平行四边形的性质可得BEH DEC ≅ BH DC =,由此即可得证;AB DC =(2)先根据平行四边形的性质可得,根据平行线的性质可得,∥∥AD BC AB CD ,再根据等腰直角三角形的判定与性质可得135,90BDG ABG BFC ∠=︒∠=∠=︒,从而可得,然后根据相似三角形的判定可证45AHB ∠=︒135AHG BDG ∠=︒=∠,根据相似三角形的性质即可得证.AHG BDG (1)证明:,,45DE BC DBC ⊥∠=︒ 是等腰直角三角形,Rt BDE ∴△,BE DE ∴=又,,DE BC BF CD ⊥⊥ ,90,90BEH DEC BFC ∴∠=∠=︒∠=︒,90EBH BHE EBH C ∴∠+∠=︒=∠+∠,BHE C ∴∠=∠在和中,,BEH △DEC 90BHE C BEH DEC BE DE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()BEH DEC AAS ∴≅ ,BH DC ∴=四边形是平行四边形,ABCD ,AB DC ∴=.BH AB ∴=(2)证明:四边形是平行四边形, ABCD ,,AD BC AB CD ∴ ,180135,90BDG DBC ABG BFC ∴∠=︒-∠=︒∠=∠=︒由(1)已证:,BH AB =是等腰直角三角形,Rt ABH ∴ ,45AHB ∴∠=︒,180135AHG AHB BDG ∴∠=︒-∠=︒=∠在和中,,AHG BDG AHG BDG G G ∠=∠⎧⎨∠=∠⎩,AHG BDG ∴ ,AH AG BD BG ∴=.AH BG AG BD ∴⋅=⋅本题考查了平行四边形的性质、相似三角形的判定与性质、全等三角形的判定与性质等知识点,熟练掌握各判定定理与性质是解题关键.24.(1)215236y x x =--+(2)3(,0)2【分析】(1)根据点的坐标,利用待定系数法求解即可得;A (2)求出时,的值即可得;0y =x (3)过点作轴,交直线于点,先利用待定系数法求出直线的解析式,P PD x AC D AC 设,则,从而可得,215(,2)36P m m m --+222515(,2)3336D m m m m ----+22833PD m m =+再根据相似三角形的判定证出,根据相似三角形的性质建立方程,解方程PDM BAM 即可得.(1)解:将点代入得:,(4,0)A -2123y x bx =-++1164203b -⨯-+=解得,56b =-则抛物线的解析式为.215236y x x =--+(2)解:当时,,0y =2152036x x --+=解得或,32x =4x =-则点的坐标为.B 3(,0)2(3)解:如图,过点作轴,交直线于点,P PD x AC D对于二次函数,215236y x x =--+当时,,即,0x =2y =(0,2)C设直线的解析式为,AC y kx a =+将点代入得:,解得,(4,0),(0,2)A C -402k a a -+=⎧⎨=⎩122k a ⎧=⎪⎨⎪=⎩则直线的解析式为,AC 122y x =+,3(4,0),(,0)2A B - ,112AB ∴=设点的坐标为,P 215(,2)36P m m m --+将代入得:,215236y m m =--+122y x =+22533x m m =--即,222515(,2)3336D m m m m ----+,2225283333PD m m m m m∴=---=+,PD AB ∥,PDM BAM ∴ ,即,12PD PM AB BM ∴==2281331122m m+=即或,22811334m m +=22811334m m +=-解得m =m =故点P 本题考查了求二次函数和函数的解析式、相似三角形的判定与性质、二次函数的几何应用,熟练掌握待定系数法和相似三角形的性质是解题关键.25.(1)答案见解析(2)的半径为P 409(3)的长度是EG 89【分析】(1)连接,过点作轴于点,则由勾股定理可算出,CP B BN x ⊥N 10OB =已知可知和是等腰三角形,再由平行线的判定可知,由平行线分线段OAB PAC △PC OB ∥成比例定理可证得结论;(2)连接,过点作轴于点,设的半径为,CP B BN x ⊥N P r 根据相切的判定与性质可得,,在和中,根据的正弦PE OB ⊥Rt OEP △Rt OBN △BON ∠定义可得,进而求得的半径;PE BNOP OB =P (3)假设在线段上存在点,使,在线段上截取,则四边形DE G 45GPF ∠=︒EP EQ EG =是正方形,进而证得,因此有,再由勾股定理和线段和EPCD GQP BDP ∠∽△GQ PQBD PD =差可计算出,和的长,代入求解即可.PD PQ BD (1)连接,过点作轴于点,CP B BN x ⊥N∵PC PA =∴PCA PAC ∠=∠∵,()10,0A ()6,8B ∴,,,10OA =8BN =6ON =∴在中Rt OBN △10OB ==∴OA OB =∴OBA PAC ∠=∠∴PCA OBA ∠=∠∴PC OB∥∴AC APCB PO =(2)连接,过点作轴于点,设的半径为,CP B BN x ⊥N P r∵与线段恰有的公共点,且满足,P OB E PE PA =∴与线段相切P OB ∴,PE OB ⊥∵,10OA =∴,sin 10PE rEOP OP r ∠==-∵轴,BN x ⊥∴,84sin 105BN BON OB ∠===∴,4105r r =-∴409r =(3)假设在线段上存在点,使DE G 45GPF ∠=︒如下图所示,在线段上截取EP EQ EG=∵OB PE ⊥∴45GQE ∠=︒∴135GQP ∠=︒∵,PC OB ∥CD OB ⊥∴ PC CD ⊥∵,PE OB ⊥∴四边形是矩形EPCD ∵PC PE=∴四边形是正方形EPCD∴PD ==45EPD PDC ∠=∠=︒∴ 2345∠+∠=︒∵45EPG ∠=︒∴1245∠+∠=︒∴13∠=∠∵9045135BDP BDC PDC ∠=∠+∠=︒+︒=︒∴GQP BDP ∠∽△∴GQ PQBD PD =∵由(2)得,409r =在中,Rt OPE∴103OE ===∵,409DE =10OB =∴209BD OB ED OE =--=设,则EG a=GQ =∴409PQ PE EQ a =-=-∴=解得89a =∴的长度是EG 89本题考查了圆的综合,解题时,注意“数形”数学思想的应用,灵活运用所学知识是解本题的关键.2022-2023学年上海市浦东区中考数学专项提升仿真模拟卷(二模)一、选一选:(本大题共6题,每题4分,满分24分)1. 下列实数中,介于与之间的是( )2332;C. ;D. .227π2. 下列方程中没有实数根的是( )A. x 2+x ﹣1=0B. x 2+x+1=0C. x 2﹣1=0D. x 2+x=03. 一个反比例函数与一个函数在同一坐标平面内的图像如图示,如果其中的反比例函数解析式为,那么该函数可能的解析式是()ky x=A. B. C. D.y kx k =+y kx k =-y kx k=-+y kx k=--4. 一个民营企业10名员工的月平均工资如下表,则能较好反映这些员工月平均工资水平的是( )人次1112113工资30321.51.220.8(工资单位:万元)A. 平均数; B. 中位数;C. 众数;D. 标准差.5. 计算:( )AB BA +=A. ;B. ;C. ;D. 0.AB BA 0 6. 下列命题中,假命题是( )A. 如果一条直线平分弦和弦所对的一条弧,那么这条直线圆心,并且垂直于这条弦;B. 如果一条直线平分弦所对的两条弧,那么这条直线圆心,并且垂直于这条弦;C. 如果一条直线圆心,并且平分弦,那么该直线平分这条弦所对的弧,并且垂直于这条弦;D. 如果一条直线圆心,并且垂直弦,那么该直线平分这条弦和弦所对的弧.二、填 空 题:(本大题共12题,每题4分,满分48分)7.______.8. 因式分解:______.212x x --=9. 方程的解是_____.10. 没有等式组的解集是.12031302x x ⎧->⎪⎪⎨⎪-≤⎪⎩11. 已知点P 位于第三象限内,且点P 到两坐标轴的距离分别为2和4,若反比例函数图像点P ,则该反比例函数的解析式为______.12. 如果函数的图象、二、四象限,那么其函数值y 随自变量x 的值的增大而_____.(填“增大”或“减小”)13. 女生小琳所在班级共有40名学生,其中女生占60%.现学校组织部分女生去市三女中参观,需要从小琳所在班级的女生当中随机抽取一名女生参加,那么小琳被抽到的概率是______.14. 已知平行四边形相邻两个内角相差40°,则该平行四边形中较小内角的度数是_____.15. 半径为r 的圆内接正三角形的边长为________.(结果可保留根号)16. 如图,点D 、E 分别为△ABC 边CA 、CB 上的点,已知DE ∥AB ,且DE △ABC 的重心,设,,则__________.(用、表示)CA a = CB b =DE = a b17. 如图,在四边形ABCD 中,∠ABC=∠ADC=90°,AC=26,BD=24,M 、N 分别是AC 、BD 的中点,则线段MN 的长为_____.18. 如图,将矩形ABCD 沿对角线AC 折叠,使点B 翻折到点E 处,如果DE ∶AC =1∶3,那么AD ∶AB =____________.三、解 答 题:(本大题共7题,满分78分)19. 计算.())102322220183++---20. 解方程组.2222295x xy y x y ⎧-+=⎨+=⎩21. 如图,AH 是△ABC 的高,D 是边AB 上一点,CD 与AH 交于点E .已知AB =AC =6,co=,23AD ∶DB =1∶2.(1)求△ABC 的面积;(2)求CE ∶DE.22. 今年1月25日,上海地区下了一场大雪.这天早上王大爷去买菜,他先去了超市,发现蔬菜普遍涨价了,青菜、花菜和大白菜这两天的价格如下表.王大爷觉得超市的菜没有够新鲜,所以他又去了菜市场,他花了30元买了一些新鲜菠菜,他跟卖菜阿姨说:“你今天的菠菜比昨天涨了5元/斤.”卖菜阿姨说:“下雪天从地里弄菜没有容易啊,所以你花这些钱要比昨天少买1斤了.”王大爷回答道:“应该的,你们也真的辛苦.”青菜花菜大白菜1月24日2元/斤5元/斤1元/斤1月25日2.5元/斤7元/斤1.5元/斤(1)请问超市三种蔬菜中哪种涨幅?并计算其涨幅;(2)请你根据王大爷和卖菜阿姨的对话,来算算,这著名演员大爷买了几斤菠菜?23. 如图,点E 、F 分别为菱形ABCD 边AD 、CD 的中点.(1)求证:BE =BF ;(2)当△BEF 为等边三角形时,求证:∠D =2∠A .24. 已知抛物线点A (1,0)和B (0,3),其顶点为D .2y x bx c =++(1)求此抛物线的表达式;(2)求△ABD 的面积;(3)设P 为该抛物线上一点,且位于抛物线对称轴右侧,作PH ⊥对称轴,垂足为H ,若△DPH 与△AOB 相似,求点P 的坐标.25. 如图,四边形ABCD 中,∠BCD =∠D =90°,E 是边AB 的中点.已知AD =1,AB =2.(1)设BC =x ,CD =y ,求y 关于x 的函数关系式,并写出定义域;(2)当∠B =70°时,求∠AEC 的度数;(3)当△ACE 为直角三角形时,求边BC 的长.2022-2023学年上海市浦东区中考数学专项提升仿真模拟卷(二模)一、选一选:(本大题共6题,每题4分,满分24分)1. 下列实数中,介于与之间的是( )2332; C. ;D. .227 【正确答案】A【分析】依据开方数越大对应的算术平方根越大求解即可.【详解】∵<<π<,2332227∴介于与.2332故选A .2. 下列方程中没有实数根的是( )A. x 2+x ﹣1=0 B. x 2+x+1=0C. x 2﹣1=0D. x 2+x=0【正确答案】B【分析】分别进行判别式求值,再利用判别式的意义对各项进行判断.【详解】在x 2+x ﹣1=0中,△=12﹣4×(﹣1)=5>0,故该方程有两个没有相等的实数根,故A 没有正确;在x 2+x +1=0中,△=12﹣4×1=﹣3<0,故该方程没有实数根,故B 正确;在x 2﹣1=0中,△=0﹣4×(﹣1)=4>0,故该方程有两个没有相等的实数根,故C 没有正确;在x 2+x =0中,△=12﹣4×0=1>0,故该方程有两个没有相等的实数根,故D 没有正确.故选B .3. 一个反比例函数与一个函数在同一坐标平面内的图像如图示,如果其中的反比例函数解析式为,那么该函数可能的解析式是()ky x=A. B. C. D.y kx k =+y kx k =-y kx k=-+y kx k=--【正确答案】B【分析】首先判断k 的符号进而分析得出函数各部分符号,进而得出答案.【详解】由反比例函数图象分布在二、四象限,可得:k <0,由函数的图象、二、四象限,可得:项系数为负数,常数项为正数,故只有B 选项正确.故选B .4. 一个民营企业10名员工的月平均工资如下表,则能较好反映这些员工月平均工资水平的是( )人次1112113工资30321.51.220.8(工资单位:万元)A. 平均数; B. 中位数;C. 众数;D. 标准差.【正确答案】B【分析】分别利用平均数以及中位数和众数的定义求法和标准差的意义分别分析得出答案.【详解】平均数为:(30+3+2+1.5×2+1.2+2+0.8×3)÷10=4.36(万元),中位数是:(1.5+1.2)÷2=1.35(万元),众数是:0.8万元,标准差反映的是数据的波动大小,无法反映这些员工月平均工资水平,只有中位数1.35万元,能够较好反映这些员工月平均工资水平.故选B .本题主要考查了平均数以及中位数和众数的定义求法和标准差的意义,正确把握相关定义是解题的关键.5. 计算:( )AB BA +=A. ;B. ;C. ;D. 0.AB BA 0 【正确答案】C【分析】根据零向量的定义即可判断.【详解】.AB BA += 0故选C .6. 下列命题中,假命题是( )A. 如果一条直线平分弦和弦所对的一条弧,那么这条直线圆心,并且垂直于这条弦;B. 如果一条直线平分弦所对的两条弧,那么这条直线圆心,并且垂直于这条弦;C. 如果一条直线圆心,并且平分弦,那么该直线平分这条弦所对的弧,并且垂直于这条弦;D. 如果一条直线圆心,并且垂直弦,那么该直线平分这条弦和弦所对的弧.【正确答案】C【分析】利用垂径定理及其推论逐个判断即可求得答案.【详解】A .如果一条直线平分弦和弦所对的一条弧,那么这条直线圆心,并且垂直于这条弦,正确,是真命题;B.如果一条直线平分弦所对的两条弧,那么这条直线一定圆心,并且垂直于这条弦,正确,是真命题;C.如果一条直线圆心,并且平分弦,那么该直线没有一定平分这条弦所对的弧,没有一定垂直于这条弦,例如:任意两条直径一定互相平分且过圆心,但没有一定垂直.错误,是假命题;D.如果一条直线圆心,并且垂直弦,那么该直线平分这条弦和弦所对的弧,正确,是真命题.故选C.本题考查了垂径定理及其推论,对于一个圆和一条直线来说如果一条直线具备下列,①圆心,②垂直于弦,③平分弦(弦没有是直径),④平分弦所对的优弧,⑤平分弦所对的劣弧,五个条件中的任何两个,那么也就具备其他三个.二、填空题:(本大题共12题,每题4分,满分48分)7.______.1+【分析】进行分母有理化运算即可.【详解】原式.1=+1此题考查分母有理化运算,平方差公式,确定分母与分子的分母有理化因式是解题的关键.8. 因式分解:______.212x x--=【正确答案】;()()34x x+-【分析】根据所给多项式的系数特点,可以用十字相乘法进行因式分解.【详解】解:x2﹣x﹣12=(x﹣4)(x+3).。

浦东初中数学一模试卷答案

浦东初中数学一模试卷答案

一、选择题(每题4分,共20分)1. 下列各数中,有理数是()A. √2B. πC. -√3D. 1/3答案:D解析:有理数是可以表示为两个整数之比的数,即形如a/b(a、b为整数,b≠0)的数。

选项D可以表示为1/3,是有理数。

2. 若a、b是方程x^2 - 4x + 3 = 0的两根,则a+b的值是()A. 2B. 3C. 4D. 5答案:C解析:根据韦达定理,一元二次方程ax^2 + bx + c = 0的两根x1、x2满足x1 + x2 = -b/a。

所以a+b的值等于-(-4)/1 = 4。

3. 下列函数中,定义域为全体实数的是()A. y = √(x^2 - 1)B. y = 1/xC. y = |x|D. y = x^2 - 2x + 1答案:C解析:选项A的定义域为x≥1或x≤-1;选项B的定义域为x≠0;选项C的定义域为全体实数;选项D的定义域为全体实数。

因此,选项C是正确答案。

4. 在直角坐标系中,点P(2,3)关于y轴的对称点坐标是()A. (2,-3)B. (-2,3)C. (2,3)D. (-2,-3)答案:B解析:点P关于y轴的对称点坐标可以通过将点P的横坐标取相反数得到,所以对称点坐标为(-2,3)。

5. 已知等腰三角形ABC中,AB=AC,AD是BC边上的高,若∠BAC=30°,则∠BAD的度数是()A. 15°B. 30°C. 45°D. 60°答案:C解析:由于AD是BC边上的高,所以∠ADB和∠ADC都是直角。

又因为∠BAC=30°,所以∠BAD=∠BAC/2=30°/2=15°。

但是,由于三角形ABC是等腰三角形,所以∠BAD和∠CAD的度数相等,因此∠BAD=45°。

二、填空题(每题4分,共16分)6. 若a+b=5,ab=6,则a^2 + b^2的值是()答案:37解析:根据平方差公式,a^2 + b^2 = (a+b)^2 - 2ab。

2022年上海市15区中考数学一模考点分类汇编专题01 数与式- (解析版)

2022年上海市15区中考数学一模考点分类汇编专题01  数与式- (解析版)

2022年上海市15区中考数学一模考点分类汇编专题01 数与式一.选择题(共7小题)1.(浦东新区)已知点P是线段AB的黄金分割点,且AP>BP,则下列比例式能成立的是()A.=B.=C.=D.=【分析】根据黄金分割的定义:把线段AB分成两条线段AP和BP(AP>BP),且使AP是AB和BP的比例中项,叫做把线段AB黄金分割,点P叫做线段AB的黄金分割点【解答】解:根据黄金分割定义可知:AP是AB和BP的比例中项,即AP2=AB•BP,∴,故选:C.【点评】本题考查了黄金分割,解决本题的关键是掌握黄金分割定义.2.(静安区)下列实数中,有理数是()A.B.πC.D.【分析】利用有理数的定义判断即可.【解答】解:A、是无理数,不符合题意;B、π是无理数,不符合题意;C、=2,是有理数,符合题意;D、是无理数,不符合题意.故选:C.【点评】此题考查了实数,以及有理数,整数和分数统称为有理数.3.(静安区)计算x÷2x2的结果是()A.B.C.D.2x【分析】根据整式的除法法则计算即可得出答案.【解答】解:原式=(1÷2)(x÷x2)=•=,【点评】本题考查了整式的除法,掌握单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式是解题的关键.4.(宝山区)如果,且b是a和c的比例中项,那么等于()A.B.C.D.【分析】根据比例中项的概念可得a:b=b:c,则可求得b:c值.【解答】解:∵,b是a和c的比例中项,即a:b=b:c,∴=.故选:D.【点评】本题考查了比例线段,熟练掌握在线段a,b,c中,若b2=ac,则b是a,c的比例中项是解题的关键.5.(宝山区)在比例尺为1:5000的地图上,如果A、B两地的距离是10厘米,那么这两地的实际距离是()A.50000米B.5000米C.500米D.50米【分析】根据比例尺=图上距离:实际距离,列比例式即可求得甲乙两地的实际距离.要注意统一单位.【解答】解:设甲乙两地的实际距离为x厘米,根据题意得,1:5000=10:x,解得x=50000,50000厘米=500米.即甲乙两地的实际距离为500米.故选:C.【点评】本题考查了比例线段,熟练运用比例尺进行计算,注意单位的转换.6.(黄浦区)4和9的比例中项是()A.6B.±6C.D.【分析】根据比例的基本性质:两外项之积等于两内项之积求解.【解答】解:根据比例中项的概念结合比例的基本性质得:比例中项的平方等于两条线段的乘积.设它们的比例中项是x,则解得x=±6.故选:B.【点评】本题考查了比例中项的概念:当比例式中的两个内项相同时,即叫比例中项.求比例中项根据比例的基本性质进行计算.7.(浦东新区)某两地的距离为3000米,画在地图上的距离是15厘米,则地图上的距离与实际距离之比是()A.1:200B.1:2000C.1:20000D.1:200000【分析】根据比例尺=图上距离:实际距离,直接求出即可.【解答】解:3000米=300000厘米,∴比例尺=15:300000=1:20000;故选:C.【点评】本题主要考查了比例尺,掌握比例尺的计算方法,注意在求比的过程中,单位要统一.二.填空题(共22小题)8.(静安区)如果在实数范围内有意义,那么实数x的取值范围是x≤3.【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【解答】解:由题意得:3﹣x≥0,解得:x≤3,故答案为:x≤3.【点评】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.9.(宝山区)计算:sin230°+cos245°=.【分析】由特殊锐角三角函数值,代入计算即可.【解答】解:原式=()2+()2=+=,故答案为:.【点评】本题考查特殊角的三角函数值,掌握特殊锐角的三角函数值是正确解答的前提.10.(杨浦区)计算:cos245°﹣tan30°sin60°=0.【分析】原式利用特殊角的三角函数值计算即可得到结果.【解答】解:cos245°﹣tan30°sin60°=﹣×=﹣=0,故答案为:0.【点评】此题考查了特殊角的三角函数值,实数的运算,熟练掌握运算法则是解本题的关键.11.(松江区)已知=2,那么=.【分析】根据比例的性质求出x=2y,再把x=2y代入,即可求出答案.【解答】解:∵=2,∴x=2y,∴===,故答案为:.【点评】本题考查了比例的性质,能根据比例的性质求出x=2y是解此题的关键,注意:如果ab=cd,那么=,反之亦然.12.(长宁区)已知,那么的值为.【分析】由已知可得y=2x,代入所求的代数式可得答案.【解答】解:∵,∴y=2x,∴==.故答案为:.【点评】本题考查比例的基本性质,根据已知得到y=2x是解题关键.13.(静安区)已知=,那么的值是.【解答】解:设==k,∴a=2k,b=3k,∴===,故答案为:.【点评】本题考查了比例的性质,熟练掌握设k法是解题的关键.14.(宝山区)已知点B在线段AC上,AB=2BC,那么AC:AB的比值是.【分析】设BC=k,则AB=2BC=2k,根据线段和的定义得出AC=AB+BC=3k,即可求出AC:AB的比值.【解答】解:如图,设BC=k,则AB=2BC=2k,∵点B在线段AC上,∴AC=AB+BC=2k+k=3k,∴AC:AB=3k:2k=.故答案为:.【点评】本题考查了比例线段,熟知各线段之间的和、差及倍数关系是解答此题的关键.15.(杨浦区)已知=,那么=.【分析】利用设k法解答即可.【解答】解:∵=,∴设x=4k,y=3k,∴===,故答案为:.【点评】本题考查了比例的性质,熟练掌握设k法是解题的关键.16.(虹口区)如果=,那么=.【分析】根据比例的性质设m=5k,n=6k,再代入计算求解即可.【解答】解:设m=5k,n=6k,∴,故答案为:.【点评】本题主要考查比例的性质,掌握比例的性质是解题的关键.17.(虹口区)已知点P是线段AB的黄金分割点,AP>PB.若AB=2,则AP=.【分析】根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入数据即可得出AP 的长.【解答】解:由于P为线段AB=2的黄金分割点,且AP是较长线段;则AP=2×=﹣1.【点评】理解黄金分割点的概念.应该识记黄金分割的公式:较短的线段=原线段的,较长的线段=原线段的.18.(奉贤区)如果≠0,那么=.【分析】设=t,利用比例的性质得到x=2t,y=3t,z=5t,然后把它们代入中进行分式的混合运算即可.【解答】解:设=t,则x=2t,y=3t,z=5t,所以==.故答案为:.【点评】本题考查了比例的性质:熟练掌握比例的性质(内项之积等于外项之积、合比性质、分比性质、合分比性质、等比性质)是解决问题的关键.19.(普陀区)已知,那么=.【分析】设==k,根据比例的性质求出x=5k,y=3k,把x=5k,y=3k代入,即可求出答案.【解答】解:设==k,则x=5k,y=3k,∴==,故答案为:.【点评】本题考查了比例的性质,能选择适当的方法求解是解此题的关键,注意:如果ab=cd,那么=,反之亦然.20.(松江区)已知,AB=8,P是AB黄金分割点,PA>PB,则PA的长为.【分析】根据黄金分割点的定义,知PA是较长线段;则PA=AB,代入数据即可.【解答】解:由于P为线段AB=8的黄金分割点,且PA>PB,则PA=8×=4﹣4.故本题答案为:4﹣4.【点评】理解黄金分割点的概念.熟记黄金比的值进行计算.21.(长宁区)在比例尺为1:10000的地图上,相距5厘米的两地实际距离为0.5千米.【分析】比例尺=图上距离:实际距离,根据题意列出等式即可得出实际的距离.【解答】解:根据:比例尺=图上距离:实际距离,设两地实际距离为x厘米,得:1:10000=5:x,∴相距5厘米的两地的实际距离是5×10000=50000(厘米)=0.5(千米),故答案为:0.5.【点评】本题考查了比例线段.能够根据比例尺正确进行计算,注意单位的转换.22.(长宁区)已知点C是线段AB的黄金分割点,如果AC>BC,BC=2,则AC=+1.【分析】先根据黄金比值为求出AB与AC的关系,再列式计算即可.【解答】解:∵点C是线段AB的黄金分割点,AC>BC,BC=2,∴AC=AB,∵AB﹣AC=BC,∴AB﹣AB=2,解得:AB=3+,则AC=AB﹣BC=+1,【点评】本题考查的是黄金分割,熟记黄金比值为是解题的关键.23.(静安区)已知线段AB=2cm,点P是AB的黄金分割点,且AP>PB,那么AP的长度是(﹣1)cm.(结果保留根号)【分析】根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入数据即可得出AP 的长度.【解答】解:由于P为线段AB=2cm的黄金分割点,且AP是较长线段,则AP=2×=(﹣1)cm.故答案为:﹣1.【点评】本题主要考查了理解黄金分割点的概念,熟记黄金比的值进行计算,难度适中.24.(崇明区)如果,那么=.【分析】先由已知条件可得2y=3(x﹣y),整理后再根据比例的性质即可求得的值.【解答】解:∵,∴2y=3(x﹣y),整理,得3x=5y,∴=.故答案为.【点评】本题是基础题,考查了比例的基本性质,比较简单.比例的基本性质:两内项之积等于两外项之积.即若a:b=c:d,则ad=bc.25.(青浦区)已知线段b是线段a、c的比例中项,且a=1,b=3,那么c=9.【分析】根据比例中项的定义可得b2=ac,从而易求b.【解答】解:∵线段b是线段a、c的比例中项,∴b2=ac,即32=1×c,∴c=9.故答案为:9.【点评】本题考查了比例线段,解题的关键是理解比例中项的定义.【分析】先把化成﹣1,再把=代入进行计算即可得出答案.【解答】解:∵=,∴=﹣1=﹣1=﹣.故答案为:﹣.【点评】此题考查了比例的性质,解题的关键是把化成﹣1.27.(嘉定区)已知x:y=2:3,那么(x+y):y=5:3.【分析】利用设k法进行计算即可.【解答】解:∵x:y=2:3,∴设x=2k,y=3k,∴===,故答案为:5:3.【点评】本题考查了比例的性质,熟练掌握设k法是解题的关键.28.(崇明区)已知线段AB=8cm,点C是AB的黄金分割点,且AC>BC,那么线段AC的长为(4﹣4)cm.【分析】根据黄金分割的定义得到AC=AB,把AB=8cm代入计算即可得到答案.【解答】解:∵点C是线段AB的黄金分割点,且AC>BC,AB=8cm,∴AC=AB=×8cm=(4﹣4)cm,故答案为:(4﹣4).【点评】本题考查了黄金分割的有关计算,掌握黄金分割的定义是解决本题的关键.29.(宝山区)如果的值是黄金分割数,那么的值为.【分析】由黄金分割的定义得=,则2x=(+1)y,即可得出答案.【解答】解:∵的值是黄金分割数,∴=,∴2x﹣2y=(﹣1)y,∴2x=(+1)y,∴=,故答案为:.【点评】本题考查了黄金分割,熟记黄金分割值是解题的关键.三.解答题(共11小题)30.(徐汇区)计算:.【分析】把特殊角的三角函数值代入进行计算即可.【解答】解:====.【点评】本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.31.(浦东新区)求值:tan260°﹣(结果保留根号).【分析】把特殊角的三角函数值代入进行计算即可.【解答】解:tan260°﹣=()2﹣=3﹣=3﹣(+1)=3﹣﹣1=2﹣.【点评】本题考查了特殊角的三角函数值,准确熟练的掌握特殊角的三角函数值是解题的关键.32.(奉贤区)计算:.【分析】把特殊角的三角函数值代入进行计算即可.【解答】解:====3﹣.【点评】本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.33.(普陀区)计算:.【分析】原式利用特殊角的三角函数值计算即可求出值.【解答】解:原式=====.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.34.(崇明区)计算:3tan30°+2cos45°﹣2sin60°•cot45°.【分析】把特殊角的三角函数值代入进行计算即可.【解答】解:3tan30°+2cos45°﹣2sin60°•cot45°.=3×+2×﹣2××1==.【点评】本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.35.(青浦区)计算:|sin45°﹣1|+2cos30°﹣(tan60°)0﹣(cot60°)﹣1.【分析】首先计算零指数幂、负整数指数幂、特殊角的三角函数值和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:|sin45°﹣1|+2cos30°﹣(tan60°)0﹣(cot60°)﹣1=|﹣1|+2×﹣1﹣=1﹣+﹣1﹣=﹣.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.36.(黄浦区)计算:+cot245°﹣sin245°.【分析】把特殊角的三角函数值代入进行计算即可.【解答】解:+cot245°﹣sin245°=+1﹣()2=+1﹣=.【点评】本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.37.(嘉定区)计算:.【分析】把特殊角的三角函数值代入进行计算即可.【解答】解:===.【点评】本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.38.(虹口区)计算:.【分析】把特殊角的三角函数值代入进行计算即可.【解答】解:====3+.【点评】本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.39.(长宁区)计算:cot30°﹣.【分析】把特殊角的三角函数值代入计算即可.【解答】解:cot30°﹣=﹣=﹣()=1.【点评】本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.40.(静安区)计算:﹣+2cos245°.【分析】把特殊角的三角函数值代入进行计算即可.【解答】解:﹣+2cos245°=﹣|﹣1|+2×()2=﹣+1=.【点评】本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键。

2022年上海市浦东新区名校中考数学全真模拟试题含解析

2022年上海市浦东新区名校中考数学全真模拟试题含解析

2022年上海市浦东新区名校中考数学全真模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.一元二次方程2240x x ++=的根的情况是( )A .有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根2.已知二次函数y =a (x ﹣2)2+c ,当x =x 1时,函数值为y 1;当x =x 2时,函数值为y 2,若|x 1﹣2|>|x 2﹣2|,则下列表达式正确的是( )A .y 1+y 2>0B .y 1﹣y 2>0C .a (y 1﹣y 2)>0D .a (y 1+y 2)>03.研究表明某流感病毒细胞的直径约为0.00000156m ,用科学记数法表示这个数是( )A .0.156×10-5B .0.156×105C .1.56×10-6D .1.56×1064.计算-3-1的结果是( )A .2B .-2C .4D .-45.- 14的绝对值是( ) A .-4 B .14 C .4 D .0.4 6.近似数25.010⨯精确到( )A .十分位B .个位C .十位D .百位7.如图,⊙O 的直径AB 与弦CD 的延长线交于点E ,若DE=OB ,∠AOC=84°,则∠E 等于( )A .42°B .28°C .21°D .20°8.如图所示,如果将一副三角板按如图方式叠放,那么 ∠1 等于( )A.120︒B.105︒C.60︒D.45︒9.下列运算正确的是()A.x•x4=x5B.x6÷x3=x2C.3x2﹣x2=3 D.(2x2)3=6x610.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1 B.m<1 C.m>﹣1 D.m>1二、填空题(共7小题,每小题3分,满分21分)11.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx=(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为________.12.如图,在△ABC中,AB=3+3,∠B=45°,∠C=105°,点D、E、F分别在AC、BC、AB上,且四边形ADEF 为菱形,若点P是AE上一个动点,则PF+PB的最小值为_____.13.不等式组2030xx->⎧⎨+>⎩的解集为________.14.如图,A、D是⊙O上的两个点,BC是直径,若∠D=40°,则∠OAC=____度.15.数据﹣2,0,﹣1,2,5的平均数是_____,中位数是_____.16.已知代数式2x﹣y的值是12,则代数式﹣6x+3y﹣1的值是_____.17.如图,在△ABC中,AB=2,BC=3.5,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为_____.三、解答题(共7小题,满分69分)18.(10分)如图,抛物线y=x1﹣1x﹣3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为1.(1)求A,B两点的坐标及直线AC的函数表达式;(1)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求△ACE面积的最大值;(3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由.(4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由.19.(5分)计算:27÷3+8×2﹣1﹣(2015+1)0+2•sin60°. 20.(8分)如图,在菱形ABCD 中,E 、F 分别为AD 和CD 上的点,且AE=CF ,连接AF 、CE 交于点G ,求证:点G 在BD 上.21.(10分)关于x 的一元二次方程x 2+2x+2m=0有两个不相等的实数根.(1)求m 的取值范围;(2)若x 1,x 2是一元二次方程x 2+2x+2m=0的两个根,且x 12+x 22﹣x 1x 2=8,求m 的值.22.(10分)如图,在平面直角坐标系xOy 中,函数()0k y x x=>的图象与直线y =2x +1交于点A (1,m ). (1)求k 、m 的值;(2)已知点P (n ,0)(n ≥1),过点P 作平行于y 轴的直线,交直线y =2x +1于点B ,交函数()0k y x x =>的图象于点C .横、纵坐标都是整数的点叫做整点.①当n =3时,求线段AB 上的整点个数; ②若()0k y x x=>的图象在点A 、C 之间的部分与线段AB 、BC 所围成的区域内(包括边界)恰有5个整点,直接写出n 的取值范围.23.(12分)如图,已知⊙O,请用尺规做⊙O 的内接正四边形ABCD ,(保留作图痕迹,不写做法)24.(14分)均衡化验收以来,乐陵每个学校都高楼林立,校园环境美如画,软件、硬件等设施齐全,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M 处出发,向前走6 米到达A 处,测得树顶端E 的仰角为30°,他又继续走下台阶到达C 处,测得树的顶端的仰角是60°,再继续向前走到大树底D 处,测得食堂楼顶N 的仰角为45°,已如A 点离地面的高度AB =4米,∠BCA =30°,且B 、C 、D 三点在同一直线上.(1)求树DE 的高度;(2)求食堂MN 的高度.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】试题分析:△=22-4×4=-12<0,故没有实数根;故选D.考点:根的判别式.2、C【解析】分a>1和a<1两种情况根据二次函数的对称性确定出y1与y2的大小关系,然后对各选项分析判断即可得解.【详解】解:①a>1时,二次函数图象开口向上,∵|x1﹣2|>|x2﹣2|,∴y1>y2,无法确定y1+y2的正负情况,a(y1﹣y2)>1,②a<1时,二次函数图象开口向下,∵|x1﹣2|>|x2﹣2|,∴y1<y2,无法确定y1+y2的正负情况,a(y1﹣y2)>1,综上所述,表达式正确的是a(y1﹣y2)>1.故选:C.【点睛】本题主要考查二次函数的性质,利用了二次函数的对称性,关键要掌握根据二次项系数a的正负分情况讨论.3、C【解析】解:,故选C.4、D【解析】试题解析:-3-1=-3+(-1)=-(3+1)=-1.故选D.5、B【解析】直接用绝对值的意义求解.【详解】−14的绝对值是14.故选B.【点睛】此题是绝对值题,掌握绝对值的意义是解本题的关键.6、C【解析】根据近似数的精确度:近似数5.0×102精确到十位.故选C.考点:近似数和有效数字7、B【解析】利用OB=DE,OB=OD得到DO=DE,则∠E=∠DOE,根据三角形外角性质得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E=3∠E,然后利用∠E=13∠AOC进行计算即可.【详解】解:连结OD,如图,∵OB=DE,OB=OD,∴DO=DE,∴∠E=∠DOE,∵∠1=∠DOE+∠E,∴∠1=2∠E,而OC=OD,∴∠C=∠1,∴∠C=2∠E,∴∠AOC=∠C+∠E=3∠E,∴∠E=13∠AOC=13×84°=28°.故选:B.【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.8、B【解析】解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°=45°+60°=105°.故选B.点睛:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.9、A【解析】根据同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方与积的乘方运算法则逐一计算作出判断:A、x•x4=x5,原式计算正确,故本选项正确;B、x6÷x3=x3,原式计算错误,故本选项错误;C、3x2﹣x2=2x2,原式计算错误,故本选项错误;D、(2x2)3=8x,原式计算错误,故本选项错误.故选A.10、B【解析】根据方程有两个不相等的实数根结合根的判别式即可得出△=4-4m>0,解之即可得出结论.【详解】∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,∴△=(-2)2-4m=4-4m>0,解得:m<1.故选B.【点睛】本题考查了根的判别式,熟练掌握“当△>0时,方程有两个不相等的两个实数根”是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、6+25【解析】解:设E(x,x),∴B(2,x+2),∵反比例函数kyx=(k≠0,x>0)的图象过点B. E.∴x2=2(x+2),115x∴=+,215x=-(舍去),()2215625k x∴==+=+,故答案为625+12、10【解析】如图,连接OD,BD,作DH⊥AB于H,EG⊥AB于G.由四边形ADEF是菱形,推出F,D关于直线AE对称,推出PF=PD,推出PF+PB=PA+PB,由PD+PB≥BD,推出PF+PB的最小值是线段BD的长.【详解】如图,连接OD,BD,作DH⊥AB于H,EG⊥AB于G.∵四边形ADEF是菱形,∴F ,D 关于直线AE 对称,∴PF=PD ,∴PF+PB=PA+PB ,∵PD+PB≥BD ,∴PF+PB 的最小值是线段BD 的长,∵∠CAB=180°-105°-45°=30°,设AF=EF=AD=x ,则DH=EG=12x ,, ∵∠EGB=45°,EG ⊥BG ,∴EG=BG=12x , ∴12∴x=2,∴DH=1,BH=3,∴,∴PF+PB,.【点睛】本题考查轴对称-最短问题,菱形的性质等知识,解题的关键是学会用转化的思想思考问题,学会利用轴对称解决最短问题.13、x>1【解析】分别求出两个不等式的解集,再求其公共解集.【详解】2030x x ->⎧⎨+>⎩①②, 解不等式①,得:x>1,解不等式②,得:x >-3,所以不等式组的解集为:x>1,故答案为:x>1.【点睛】本题考查一元一次不等式组的解法,属于基础题.求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14、50【解析】根据BC是直径得出∠B=∠D=40°,∠BAC=90°,再根据半径相等所对应的角相等求出∠BAO,在直角三角形BAC 中即可求出∠OAC【详解】∵BC是直径,∠D=40°,∴∠B=∠D=40°,∠BAC=90°.∵OA=OB,∴∠BAO=∠B=40°,∴∠OAC=∠BAC﹣∠BAO=90°﹣40°=50°.故答案为:50【点睛】本题考查了圆的基本概念、角的概念及其计算等腰三角形以及三角形的基本概念,熟悉掌握概念是解题的关键15、0.8 0【解析】根据中位数的定义和平均数的求法计算即可,中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【详解】平均数=(−2+0−1+2+5)÷5=0.8;把这组数据按从大到小的顺序排列是:5,2,0,-1,-2,故这组数据的中位数是:0.故答案为0.8;0.【点睛】本题考查了平均数与中位数的定义,解题的关键是熟练的掌握平均数与中位数的定义.16、5 2【解析】由题意可知:2x-y=12,然后等式两边同时乘以-3得到-6x+3y=-32,然后代入计算即可.【详解】∵2x-y=12,∴-6x+3y=-32.∴原式=-32-1=-52.故答案为-52.【点睛】本题主要考查的是求代数式的值,利用等式的性质求得-6x+3y=-32是解题的关键.17、1.1.【解析】分析:由将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得BD=AB=2,则可求得答案.详解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=2,BC=3.1,∴CD=BC-BD=3.1-2=1.1.故答案为:1.1.点睛:此题考查了旋转的性质以及等边三角形的判定与性质.此题比较简单,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.三、解答题(共7小题,满分69分)18、(1)y=﹣x﹣1;(1)△ACE的面积最大值为278;(3)M(1,﹣1),N(12,0);(4)满足条件的F点坐标为F1(1,0),F1(﹣3,0),F3(0),F4(4,0).【解析】(1)令抛物线y=x 1-1x-3=0,求出x 的值,即可求A ,B 两点的坐标,根据两点式求出直线AC 的函数表达式;(1)设P 点的横坐标为x (-1≤x≤1),求出P 、E 的坐标,用x 表示出线段PE 的长,求出PE 的最大值,进而求出△ACE的面积最大值;(3)根据D 点关于PE 的对称点为点C (1,-3),点Q (0,-1)点关于x 轴的对称点为M (0,1),则四边形DMNQ 的周长最小,求出直线CM 的解析式为y=-1x+1,进而求出最小值和点M ,N 的坐标;(4)结合图形,分两类进行讨论,①CF 平行x 轴,如图1,此时可以求出F 点两个坐标;②CF 不平行x 轴,如题中的图1,此时可以求出F 点的两个坐标.【详解】解:(1)令y=0,解得11x =-或x 1=3,∴A (﹣1,0),B (3,0);将C 点的横坐标x=1代入y=x 1﹣1x ﹣3得3y =-,∴C (1,-3),∴直线AC 的函数解析式是1y x =--,(1)设P 点的横坐标为x (﹣1≤x≤1),则P 、E 的坐标分别为:P (x ,﹣x ﹣1),E (x ,x 1﹣1x ﹣3),∵P 点在E 点的上方,()()221232PE x x x x x =-----=-++, ∴当12x =时,PE 的最大值9,4= △ACE 的面积最大值()1327[21]228PE PE =--==, (3)D 点关于PE 的对称点为点C (1,﹣3),点Q (0,﹣1)点关于x 轴的对称点为K (0,1),连接CK 交直线PE 于M 点,交x 轴于N 点,可求直线CK 的解析式为21y x =-+,此时四边形DMNQ 的周长最小,最小值2CM QD =+=,求得M (1,﹣1),102N ⎛⎫ ⎪⎝⎭,. (4)存在如图1,若AF ∥CH ,此时的D 和H 点重合,CD=1,则AF=1,于是可得F 1(1,0),F 1(﹣3,0),如图1,根据点A 和F 的坐标中点和点C 和点H 的坐标中点相同,再根据|HA|=|CF|, 求出()()434747F F ,,,. 综上所述,满足条件的F 点坐标为F 1(1,0),F 1(﹣3,0),()347F ,,()447F ,. 【点睛】属于二次函数综合题,考查二次函数与x 轴的交点坐标,待定系数法求一次函数解析式,二次函数的最值以及平行四边形的性质等,综合性比较强,难度较大.19、3.【解析】利用负整数指数幂、零指数幂的意义和特殊角的三角函数值进行计算.【详解】解:原式273÷+8×12﹣1+2×3﹣33 【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20、见解析【解析】先连接AC,根据菱形性质证明△EAC≌△FCA,然后结合中垂线的性质即可证明点G在BD上.【详解】证明:如图,连接AC.∵四边形ABCD是菱形,∴DA=DC,BD与AC互相垂直平分,∴∠EAC=∠FCA.∵AE=CF,AC=CA, ∴△EAC≌△FCA,∴∠ECA=∠FAC, ∴GA=GC,∴点G在AC的中垂线上,∴点G在BD上.【点睛】此题重点考察学生对菱形性质的理解,掌握菱形性质和三角形全等证明方法是解题的关键.21、(1)12m;(2)m=﹣23.【解析】(1)根据已知和根的判别式得出△=22﹣4×1×2m=4﹣8m>0,求出不等式的解集即可;(2)根据根与系数的关系得出x1+x2=﹣2,x1•x2=2m,把x1+xx12+x22﹣x1x2=8变形为(x1+x2)2﹣3x1x2=8,代入求出即可.【详解】(1)∵关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根,∴△=22﹣4×1×2m=4﹣8m>0,解得:12 m即m的取值范围是12 m(2)∵x1,x2是一元二次方程x2+2x+2m=0的两个根,∴x1+x2=﹣2,x1•x2=2m,∵x12+x22﹣x1x2=8,∴(x1+x2)2﹣3x1x2=8,∴(﹣2)2﹣3×2m=8,解得:23 m=-.【点睛】本题考查了根的判别式和根与系数的关系,能熟记根的判别式的内容和根与系数的关系的内容是解此题的关键.22、(1)m=3,k=3;(2)①线段AB上有(1,3)、(2,5)、(3,7)共3个整点,②当2≤n<3时,有五个整点. 【解析】(1)将A点代入直线解析式可求m,再代入kyx=,可求k.(2)①根据题意先求B,C两点,可得线段AB上的整点的横坐标的范围1≤x≤3,且x为整数,所以x取1,2,3.再代入可求整点,即求出整点个数.②根据图象可以直接判断2≤n<3.【详解】(1)∵点A(1,m)在y=2x+1上,∴m=2×1+1=3.∴A(1,3).∵点A(1,3)在函数kyx=的图象上,∴k=3.(2)①当n=3时,B、C两点的坐标为B(3,7)、C(3,1). ∵整点在线段AB上∴1≤x≤3且x为整数∴x=1,2,3∴当x=1时,y=3,当x=2时,y=5,当x=3时,y=7,∴线段AB上有(1,3)、(2,5)、(3,7)共3个整点.②由图象可得当2≤n<3时,有五个整点.【点睛】本题考查反比例函数和一次函数的交点问题,待定系数法,以及函数图象的性质.关键是能利用函数图象有关解决问题.23、见解析【解析】根据内接正四边形的作图方法画出图,保留作图痕迹即可.【详解】任作一条直径,再作该直径的中垂线,顺次连接圆上的四点即可.【点睛】此题重点考察学生对圆内接正四边形作图的应用,掌握圆内接正四边形的作图方法是解题的关键.24、(1)12米;(2)(3【解析】(1)设DE=x,先证明△ACE是直角三角形,∠CAE=60°,∠AEC=30°,得到AE=16,根据EF=8求出x的值得到答案;(2)延长NM交DB延长线于点P,先分别求出PB、CD得到PD,利用∠NDP=45°得到NP,即可求出MN.【详解】(1)如图,设DE=x,∵AB=DF=4,∠ACB=30°,∴AC=8,∵∠ECD=60°,∴△ACE是直角三角形,∵AF∥BD,∴∠CAF=30°,∴∠CAE=60°,∠AEC=30°,∴AE=16,∴Rt△AEF中,EF=8,即x﹣4=8,解得x=12,∴树DE的高度为12米;(2)延长NM交DB延长线于点P,则AM=BP=6,由(1)知CD=12CE=12×3AC=43,BC=43,∴PD=BP+BC+CD=6+43+43=6+83,∵∠NDP=45°,且∠NPD=90°,∴NP=PD=6+83,∴NM=NP﹣MP=6+83﹣4=2+83,∴食堂MN的高度为(2+83)米.【点睛】此题是解直角三角形的实际应用,考查直角三角形的性质,30°角所对的直角边等于斜边的一半,锐角三角函数,将已知的线段及角放在相应的直角三角形中利用三角函数解题,由此做相应的辅助线是解题的关键.。

模拟测评2022年上海浦东新区中考数学真题模拟测评 (A)卷(含详解)

模拟测评2022年上海浦东新区中考数学真题模拟测评 (A)卷(含详解)

2022年上海浦东新区中考数学真题模拟测评 (A )卷 考试时间:90分钟;命题人:教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个自然数,含有因数6,能被8整除,还是9的倍数,它最小是( )A .48B .54C .6D .72 2、修建一项工程,甲队单独承包要80天完成,乙队单独承包要120天完成,如果甲、乙两队合作30天后,因甲队另有任务,剩下工程由乙队完成,则修建这一项工程共用( ) A .63天 B .66天 C .72天 D .75天 3、如图,如果BAD CAE ∠=∠,那么添加下列一个条件后,仍不能确定ABC ADE 的是( ) A .B D ∠=∠ B .AB DE AD BC = C .C AED ∠=∠ D .AB AC AD AE = 4、若a b a ->,a b b +<,则有( ) A .0ab < B .0a b > C .0a b +> D .0a b -<·线○封○密○外5、扇形的半径扩大为原来的2倍,圆心角缩小为原来的12,那么扇形的面积()A.不变B.扩大为原来的2倍C.缩小为原来的12D.扩大为原来的4倍6、现调查六(1)班暑期旅游意向,班长把全班48名同学对旅游地点的意向绘制成了扇形统计图,其中“想去蒲松龄故居参观的学生数”的扇形圆心角为60°,则下列说法正确的是()A.想去蒲松龄故居参观的学生占全班学生的60%B.想去蒲松龄故居参观的学生有12人C.想去蒲松龄故居参观的学生肯定最多D.想去蒲松龄故居参观的学生占全班学生的1 67、圆周率是()A.圆的周长÷直径B.圆的周长÷半径C.圆的面积÷直径D.圆的面积÷半径8、三个数的和是98,第一个数与第二个数之比是2:3,第二个数与第三个数之比是5:8,则第二个数是()A.15 B.20 C.25 D.309、下面分数中可以化为有限小数的是()A.764B.730C.7172D.127210、下列分数中,不能化为有限小数的是()A.12B.13C.14D.15第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1x 的取值范围是_________. 2、12与18的最小公倍数是________. 3、一个圆形花坛,它的直径约为4米,那么它的面积约是________平方米. 4、一瓶饮料,连瓶重364千克,将饮料倒出14,此时连瓶重255千克.则瓶重________千克. 5、已知ABC 中,,120,AB AC BAC FE =∠=︒垂直平分AB 交BC 于F ,垂足为E ,若2EF cm =,则BC =_______cm. 三、解答题(5小题,每小题10分,共计50分) 1、已知:如图,将一个直径AB 等于12厘米的半圆绕着点A 逆时针旋转60︒后,点B 落到点C 位置,半圆扫过部分的图形如阴影部分所示.求:(1)阴影部分的周长; (2)阴影部分的面积.2、解方程:已知15:31:54x =,求x 的值3、化简求值:[(x +2y )2-(x +y )(3x -y )-5y 2]÷(2x ),其中x =-2,y =12. ·线○封○密○外4、求x 的值:12:1.51:23x =. 5、已知::3:4a b =,:3:5b c =,求::a b c .-参考答案-一、单选题1、D【分析】根据题意这个数是6、8、9的最小公倍数,然后求解即可.【详解】由6=23,8222,933⨯=⨯⨯=⨯,则它们的最小公倍数为22233=72⨯⨯⨯⨯;故选D .【点睛】本题主要考查最小公倍数,熟练掌握最小公倍数的求法是解题的关键.2、D【分析】设剩下的工程乙队完成用了x 天,用甲乙合作的效率乘以30天加上乙单独的效率乘以x 天等于总工程量单位“1”,列方程求解.【详解】解: 设剩下的工程乙队完成用了x 天,甲的效率= 180,乙的效率= 1120,甲乙合作效率= 1118012048+=, 1130148120x ⨯+=131208x = 45x = ∴剩下的工程乙队完成用了45天,修建整个工程用了304575+=天. 故选:D . 【点睛】 本题考查一元一次方程的应用,解题的关键是根据工程问题的等量关系列方程求解未知数. 3、B 【分析】 根据题意可得EAD CAB ∠=∠,然后根据相似三角形的判定定理逐项判断,即可求解. 【详解】 解:∵BAD CAE ∠=∠, ∴EAD CAB ∠=∠, A 、若添加B D ∠=∠,可用两角对应相等的两个三角形相似,证明△AAA ∼△AAA ,故本选项不符合题意; B 、若添加AB DE AD BC =,不能证明ABC ADE ,故本选项符合题意; C 、若添加C AED ∠=∠,可用两角对应相等的两个三角形相似,证明ABC ADE ,故本选项不符合题意; D 、若添加AB AC AD AE=,可用两边对应成比例,且夹角相等的两个三角形相似,证明△AAA ∼△AAA ,故本选项不符合题意; 故选:B 【点睛】 本题主要考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键. ·线○封○密○外4、B【分析】根据不等式的基本性质,由题意得到0b <,0a <,再去判断下列选项的正确性.【详解】解:∵a b a ->,a b b +<,∴0b <,0a <,∴0a b>. 故选:B .【点睛】本题考查不等式的基本性质,解题的关键是熟练掌握不等式的基本性质.5、B【分析】 扇形的面积=2360r π⨯圆心角度数,由此设原来扇形的半径为1,圆心角为2°,则变化后的扇形的半径为2,圆心角为1°,由此利用扇形的面积公式即可计算得出它们的面积,从而进行比较选择.【详解】设原来扇形的半径为1,圆心角为2°,则变化后的扇形的半径为2,圆心角为1°,根据扇形的面积公式可得: 原来扇形的面积为:2211360180ππ⨯⨯=; 变化后扇形面积为:211236090ππ⨯⨯=; 原来扇形面积:变化后扇形面积=11:18090ππ=1:2; 故选:B .【点睛】此题考查了扇形面积公式,解题的关键是熟知公式的灵活应用.6、D【分析】根据扇形统计图的相关知识,“想去蒲松龄故居参观的学生数”的扇形圆心角为60°,而一个圆的圆心角是360°,因而,“想去蒲松龄故居参观的学生数”就是总人数的601=3606,据此即可求解. 【详解】 解:A 、想去蒲松龄故居参观的学生数占全班学生的百分比为60÷360=116.7%6 ,故选项错误; B 、想去蒲松龄故居参观的学生数有48×60360=8人,故选项错误;C 、想去蒲松龄故居参观的学生数肯定最多,没有其它去处的数据,不能确定为最多,故选项错误;D 、想去蒲松龄故居参观的学生数占全班学生的601=3606,故选项正确. 故选:D 【点睛】 本题考查的是扇形统计图的综合运用,读懂题意,从题意中得到必要的信息是解决问题的关键.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比. 7、A 【分析】 根据圆周率的定义即可得出结论. 【详解】 解:圆周率是圆的周长÷直径 故选A . 【点睛】 此题考查的是圆周率,掌握圆周率是圆的周长与该圆直径的比是解题关键. ·线○封○密○外8、D【分析】先求出三个数的比,然后运用比例的性质,即可求出答案.【详解】解:由题意可得,∵第一个数与第二个数之比是2:3,第二个数与第三个数之比是5:8,∴三个数之比为10:15:24,设三个数分别为10x 、15x 、24x ,则10152498x x x ++=,解得:2x =,∴第二个数为1530x =.故选:D .【点睛】本题考查了比例的性质,解一元一次方程,解题的关键是熟练掌握题意,运用比例的性质进行解题.9、A【分析】根据题意可直接进行分数化简小数,然后排除选项即可.【详解】A 、7=0.10937564,故符合题意; B 、7=0.2330,故不符合题意; C 、71=1.097272,故不符合题意;D 、72=2.58312,故不符合题意; 故选A . 【点睛】 本题主要考查分数化小数,熟练掌握分数化小数是解题的关键.10、B【分析】一个最简分数,如果分母中只含有质因数2或5,这个分数就能化成有限小数;如果分母中含有2或5以外的质因数,这个分数就不能化成有限小数,据此判断即可. 【详解】 解:A .12的分母的质因数只有2,故能化为有限小数,故不符合题意; B .13的分母含质因数3,故不能化为有限小数,故符合题意; C .14的分母的质因数只有2,故能化为有限小数,故不符合题意; D .15的分母的质因数只有5,故能化为有限小数,故不符合题意. 故选B . 【点睛】本题考查了小数与分数互化的方法的应用,解题的关键是要明确:一个最简分数,如果分母中只含有质因数2或5,这个分数就能化成有限小数;如果分母中含有2或5以外的质因数,这个分数就不能化成有限小数. 二、填空题 1、2x ≥-且0x ≠ 【分析】 ·线○封○密○外根据二次根式中的被开方数是非负数、分式分母不为0列出不等式,解不等式得到答案.【详解】解:由题意得,x+2≥0,x≠0,解得,x≥-2且x≠0,故答案为:x≥-2且x≠0.【点睛】本题考查了二次根式有意义的条件、分式有意义的条件,掌握二次根式中的被开方数是非负数、分式分母不为0是解题的关键.2、36【分析】根据最小公倍数的意义可知:最小公倍数是两个数公有的质因数和各自独有的质因数的乘积,据此解答.【详解】12=2×2×3,18=2×3×3,12和18公有的质因数是:2和3,12独有的质因数是2,18独有的质因数是3,所以12和18的最小公倍数是:2×3×2×3=36;故答案为:36.【点睛】本题主要考查了两个数的最小公倍数的求法,注意先把两个数分别分解质因数,再找准公有的质因数和独有的质因数.3、12.56【分析】根据圆的面积=πr2即可求出结论.【详解】解:3.14×(4÷2)2=3.14×4=12.56(平方米)故答案为:12.56.【点睛】此题考查的是求圆的面积,掌握圆的面积公式是解决此题的关键.4、7120 【分析】 根据题意可直接列式进行求解. 【详解】 解:由题意得: 倒出的饮料重为3276514520-=(千克),则饮料重为71271=2045÷(千克), ∴瓶重为3277614520-=(千克); 故答案为7120. 【点睛】 本题主要考查分数运算的应用,熟练掌握分数的运算是解题的关键. 5、12 【分析】首先连接AF ,由EF 垂直平分AB ,可得AF =BF ,由△ABC 中,AB =AC ,∠BAC =120°,可求得∠B =∠C =∠BAF =30°,继而求得AF 与BF 的长,则可求得CF 的长,继而求得答案. 【详解】 如图,连接AF , ·线○封○密·○外△ABC 中,AB = AC ,∠BAC = 120°,∴∠B = ∠C = 30°,EF 垂直平分AB ,∴AF =BF ,∴∠BAF =∠B =30°,∴AF =BF = 2EF = 2 × 2 = 4cm ,∠CAF = ∠BAC -∠BAF = 90°,∴CF = 2AF = 8cm ,∴BC = BF + CF = 12 cm故答案为:12.【点睛】此题考查了线段垂直平分线的性质以及含30°角的直角三角形的性质,此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.三、解答题1、(1)50.24厘米;(2)75.36平方厘米【分析】(1)根据2C C C =+半圆弧周长弧长,将数值代入计算即可;(2)根据S S S S S =+-=扇阴影半圆半圆形扇形,将数值代入计算即可.【详解】解:(1)160π12222π616π50.242180C C C ⨯=+=⨯⨯⨯+==弧长半圆弧周长(厘米) (2)260π1224π75.36360S S S S S ⨯⨯=+-====阴影半圆半圆扇形扇形(平方厘米) 【点睛】 本题考查了扇形的周长和面积,熟记公式是解题的关键. 2、320x = 【分析】 先根据比例的性质改写成乘法,然后根据等式的性质解方程即可. 【详解】 15:31:54x = 155314x ⨯=⨯ 15254x = 320x = 【点睛】本题主要考查了解比例式,熟练掌握比例式的性质是解题的关键.3、-+x y ,52【分析】 原式中括号中利用完全平方公式,多项式乘多项式法则计算,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x 与y 的值代入计算即可求出值. 【详解】·线○封○密·○外解:原式= 22222(44325)2x xy y x xy y y x ++--+-÷=2(22)2x xy x -+÷=-+x y , 当12,2x y =-=时,原式=52【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则及公式是解本题的关键.4、12x = 【分析】(2)根据比例基本性质,两内项之积等于两外项之积,化简方程,再依据等式的性质解方程即可【详解】 解:12:1.51:23x = 4x=212x = 【点睛】题主要考查学生依据等式的性质以及比例的基本性质解方程的能力,解方程时注意对齐等号;知识点:比例基本的性质是:两内项之积等于两外项之积.5、9:12:20【分析】已知中两个比都与b 有关,且两个比中b 的值不同,可以根据比的基本性质,把其中一个比的前、后项都乘一个合适的数,使两个比中比的值相同,然后即可写出a 、b 、c 的比.【详解】解: :3:4=9:12a b =:3:5=12:20b c = 所以::a b c =9:12:20. 【点睛】 本题考查比的性质,解答此题的关键是根据比的基本性质,把两个比中b 的值化成相等的值. ·线○封○密○外。

2022年上海浦东中考数学试题及答案

2022年上海浦东中考数学试题及答案

2022年上海浦东中考数学试题及答案一.选择题(本大题共6题,每题4分,满分24分) 1. 8的相反数为( )A .8B . -8C .18D .-182.下列运算正确的是…… ( )A .a ²+a ³=a 6B . (ab )2 =ab 2C . (a +b )²=a ²+b ²D . (a +b )(a -b )=a ² -b 23.已知反比例函数y =kx(k ≠0),且在各自象限内,y 随x 的增大而增大,则下列点可能 经过这个函数为( )A . (2,3)B . (-2,3)C . (3,0)D . (-3,0)4.我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算 外卖费的总额的数据,则两种情况计算出的数据一样的是( )A .平均数B .中位数C .众数D .方差5.下列说法正确的是( )A .命题一定有逆命题B .所有的定理一定有逆定理C .真命题的逆命题一定是真命题D .假命题的逆命题一定是假命题6.有一个正n 边形旋转90°后与自身重合,则n 为( )A .6B .9C .12D .15二.填空题(本大题共12题,每题4分,满分48分) 7.计算:3a -2a =_____. 8.已知f (x )=3x ,则f (1)=_____.9.解方程组2213x y x y +=⎧⎨-=⎩的结果为_____.10.已知x -+m =0有两个不相等的实数根,则m 的取值范围是_____. 11.甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为_____.12.某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同, 则增长率为_____.13.为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的 频数分布直方图(如图所示)(每组数据含最小值,不含最大值)(0-1小时4人1-2小时10人2-3小时14人3-4小时16人4-5小时6人),若共有200名学生,则该学校六年级 学生阅读时间不低于3小时的人数是_____.14.已知直线y =kx +b 过第一象限且函数值随着x 的增大而减小,请列举出来这样的一条直 线:_____.15.如图所示,在口ABCD 中,AC ,BD 交于点O ,,,BO a BC b ==则DC =_____. 16.如图所示,小区内有个圆形花坛O ,点C 在弦AB 上,AC =11,BC =21,OC =13, 则这个花坛的面积为_____.(结果保留π)17. 如图,在△ABC 中,∠A =30°,∠B =90°,D 为AB 中点,E 在线段AC 上,AD DEAB BC=,则AEAC=_____.18.定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把 这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时, 这个圆的半径为_____.三.解答题(本大题共7题,满分78分) 19.(本大题满分10分)计算:11221312.331-⎛⎫--- ⎪-⎝⎭20.(本大题满分10份)解关于x的不等式组3442 3x xxx>-⎧⎪+⎨>+⎪⎩21.(本大题满分10分)一个一次函数的截距为-l,且经过点A(2,3).(1)求这个一次函数的解析式;(2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos∠ABC的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2022年上海市浦东新区中考数学一模试卷一.选择题〔本大题共6题,每题4分,共24分〕1.在以下y关于x的函数中,一定是二次函数的是〔〕A.y=2x2B.y=2x﹣2 C.y=ax2D.2.如果向量、、满足+=〔﹣〕,那么用、表示正确的选项是〔〕A.B.C.D.3.在Rt△ABC中,∠C=90°,∠A=α,BC=2,那么AB的长等于〔〕A.B.2sinαC.D.2cosα4.在△ABC中,点D、E分别在边AB、AC上,如果AD=2,BD=4,那么由以下条件能够判断DE∥BC 的是〔〕A.B.C.D.5.如图,△ABC的两条中线AD、CE交于点G,且AD⊥CE,联结BG并延长与AC交于点F,如果AD=9,CE=12,那么以下结论不正确的选项是〔〕A.AC=10 B.AB=15 C.BG=10 D.BF=156.如果抛物线A:y=x2﹣1通过左右平移得到抛物线B,再通过上下平移抛物线B得到抛物线C:y=x2﹣2x+2,那么抛物线B的表达式为〔〕A.y=x2+2 B.y=x2﹣2x﹣1 C.y=x2﹣2x D.y=x2﹣2x+1二.填空题〔本大题共12题,每题4分,共48分〕7.线段a=3cm,b=4cm,那么线段a、b的比例中项等于cm.8.点P是线段AB上的黄金分割点,PB>PA,PB=2,那么PA= .9.||=2,||=4,且和反向,用向量表示向量= .10.如果抛物线y=mx2+〔m﹣3〕x﹣m+2经过原点,那么m= .11.如果抛物线y=〔a﹣3〕x2﹣2有最低点,那么a的取值范围是.12.在一个边长为2的正方形中挖去一个边长为x〔0<x<2〕的小正方形,如果设剩余局部的面积为y,那么y关于x的函数解析式是.13.如果抛物线y=ax2﹣2ax+1经过点A〔﹣1,7〕、B〔x,7〕,那么x= .14.二次函数y=〔x﹣1〕2的图象上有两个点〔3,y1〕、〔,y2〕,那么y1y2〔填“>〞、“=〞或“<〞〕15.如图,小鱼同学的身高〔CD〕是1.6米,她与树〔AB〕在同一时刻的影子长分别为DE=2米,BE=5米,那么树的高度AB= 米.16.如图,梯形ABCD中,AD∥BC,对角线BD与中位线EF交于点G,假设AD=2,EF=5,那么FG= .17.如图,点M是△ABC的角平分线AT的中点,点D、E分别在AB、AC边上,线段DE过点M,且∠ADE=∠C,那么△ADE和△ABC的面积比是.18.如图,在Rt△ABC中,∠C=90°,∠B=60°,将△ABC绕点A逆时针旋转60°,点B、C分别落在点B'、C'处,联结BC'与AC边交于点D,那么= .三.解答题〔本大题共7题,共10+10+10+10+12+12+14=78分〕19.计算:2cos230°﹣sin30°+.20.如图,在平行四边形ABCD中,点E是CD上一点,且DE=2,CE=3,射线AE与射线BC相交于点F;〔1〕求的值;〔2〕如果=, =,求向量;〔用向量、表示〕21.如图,在△ABC中,AC=4,D为BC上一点,CD=2,且△ADC与△ABD的面积比为1:3;〔1〕求证:△ADC∽△BAC;〔2〕当AB=8时,求sinB.22.如图,是某广场台阶〔结合轮椅专用坡道〕景观设计的模型,以及该设计第一层的截面图,第一层有十级台阶,每级台阶的高为0.15米,宽为0.4米,轮椅专用坡道AB的顶端有一个宽2米的水平面BC;?城市道路与建筑物无障碍设计标准?第17条,新建轮椅专用坡道在不同坡度的情况下,坡道高度应符合以下表中的规定:坡度1:20 1:16 1:12最大高度〔米〕 1.50 1.00 0.75〔1〕选择哪个坡度建设轮椅专用坡道AB是符合要求的?说明理由;〔2〕求斜坡底部点A与台阶底部点D的水平距离AD.23.如图,在△ABC中,AB=AC,点D、E是边BC上的两个点,且BD=DE=EC,过点C作CF∥AB交AE延长线于点F,连接FD并延长与AB交于点G;〔1〕求证:AC=2CF;〔2〕连接AD,如果∠ADG=∠B,求证:CD2=AC•CF.24.顶点为A〔2,﹣1〕的抛物线经过点B〔0,3〕,与x轴交于C、D两点〔点C在点D的左侧〕;〔1〕求这条抛物线的表达式;〔2〕联结AB、BD、DA,求△ABD的面积;〔3〕点P在x轴正半轴上,如果∠APB=45°,求点P的坐标.25.如图,矩形ABCD中,AB=3,BC=4,点E是射线CB上的动点,点F是射线CD上一点,且AF⊥AE,射线EF与对角线BD交于点G,与射线AD交于点M;〔1〕当点E在线段BC上时,求证:△AEF∽△ABD;〔2〕在〔1〕的条件下,联结AG,设BE=x,tan∠MAG=y,求y关于x的函数解析式,并写出x的取值范围;〔3〕当△AGM与△ADF相似时,求BE的长.2022年上海市浦东新区中考数学一模试卷参考答案与试题解析一.选择题〔本大题共6题,每题4分,共24分〕1.在以下y关于x的函数中,一定是二次函数的是〔〕A.y=2x2B.y=2x﹣2 C.y=ax2D.【考点】二次函数的定义.【分析】根据二次函数的定义形如y=ax2+bx+c 〔a≠0〕是二次函数.【解答】解:A、是二次函数,故A符合题意;B、是一次函数,故B错误;C、a=0时,不是二次函数,故C错误;D、a≠0时是分式方程,故D错误;应选:A.【点评】此题考查二次函数的定义,形如y=ax2+bx+c 〔a≠0〕是二次函数.2.如果向量、、满足+=〔﹣〕,那么用、表示正确的选项是〔〕A.B.C.D.【考点】*平面向量.【分析】利用一元一次方程的求解方法,求解此题即可求得答案.【解答】解:∵ +=〔﹣〕,∴2〔+〕=3〔﹣〕,∴2+2=3﹣2,∴2=﹣2,解得: =﹣.应选D.【点评】此题考查了平面向量的知识.此题难度不大,注意掌握一元一次方程的求解方法是解此题的关键.3.在Rt△ABC中,∠C=90°,∠A=α,BC=2,那么AB的长等于〔〕A.B.2sinαC.D.2cosα【考点】锐角三角函数的定义.【分析】根据锐角三角函数的定义得出sinA=,代入求出即可.【解答】解:∵在Rt△ABC中,∠C=90°,∠A=α,BC=2,∴sinA=,∴AB==,应选A.【点评】此题考查了锐角三角函数的定义,能熟记锐角三角函数的定义是解此题的关键,注意:在Rt△ACB中,∠ACB=90°,那么sinA=,cosA=,tanA=.4.在△ABC中,点D、E分别在边AB、AC上,如果AD=2,BD=4,那么由以下条件能够判断DE∥BC 的是〔〕A.B.C.D.【考点】平行线分线段成比例;平行线的判定;相似三角形的判定与性质.【分析】先求出比例式,再根据相似三角形的判定得出△ADE∽△ABC,根据相似推出∠ADE=∠B,根据平行线的判定得出即可.【解答】解:只有选项C正确,理由是:∵AD=2,BD=4, =,∴==,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,根据选项A、B、D的条件都不能推出DE∥BC,应选C.【点评】此题考查了平行线分线段成比例定理,相似三角形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.5.如图,△ABC的两条中线AD、CE交于点G,且AD⊥CE,联结BG并延长与AC交于点F,如果AD=9,CE=12,那么以下结论不正确的选项是〔〕A.AC=10 B.AB=15 C.BG=10 D.BF=15【考点】三角形的重心.【分析】根据题意得到点G是△ABC的重心,根据重心的性质得到AG=AD=6,CG=CE=8,EG=CE=4,根据勾股定理求出AC、AE,判断即可.【解答】解:∵△ABC的两条中线AD、CE交于点G,∴点G是△ABC的重心,∴AG=AD=6,CG=CE=8,EG=CE=4,∵AD⊥CE,∴AC==10,A正确;AE==2,∴AB=2AE=4,B错误;∵AD⊥CE,F是AC的中点,∴GF=AC=5,∴BG=10,C正确;BF=15,D正确,应选:B.【点评】此题考查的是三角形的重心的概念和性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.6.如果抛物线A:y=x2﹣1通过左右平移得到抛物线B,再通过上下平移抛物线B得到抛物线C:y=x2﹣2x+2,那么抛物线B的表达式为〔〕A.y=x2+2 B.y=x2﹣2x﹣1 C.y=x2﹣2x D.y=x2﹣2x+1【考点】二次函数图象与几何变换.【分析】平移不改变抛物线的开口方向与开口大小,即解析式的二次项系数不变,根据抛物线的顶点式可求抛物线解析式.【解答】解:抛物线A:y=x2﹣1的顶点坐标是〔0,﹣1〕,抛物线C:y=x2﹣2x+2=〔x﹣1〕2+1的顶点坐标是〔1,1〕.那么将抛物线A向右平移1个单位,再向上平移2个单位得到抛物线C.所以抛物线B是将抛物线A向右平移1个单位得到的,其解析式为y=〔x﹣1〕2﹣1=x2﹣2x.应选:C.【点评】此题考查了抛物线的平移与解析式变化的关系.关键是明确抛物线的平移实质上是顶点的平移,能用顶点式表示平移后的抛物线解析式.二.填空题〔本大题共12题,每题4分,共48分〕7.线段a=3cm,b=4cm,那么线段a、b的比例中项等于2cm.【考点】比例线段.【分析】根据线段的比例中项的定义列式计算即可得解.【解答】解:∵线段a=3cm,b=4cm,∴线段a、b的比例中项==2cm.故答案为:2.【点评】此题考查了比例线段,熟记线段比例中项的求解方法是解题的关键,要注意线段的比例中项是正数.8.点P是线段AB上的黄金分割点,PB>PA,PB=2,那么PA= ﹣1 .【考点】黄金分割.【分析】根据黄金分割的概念和黄金比值是计算即可.【解答】解:∵点P是线段AB上的黄金分割点,PB>PA,∴PB=AB,解得,AB=+1,∴PA=AB﹣PB=+1﹣2=﹣1,故答案为:﹣1.【点评】此题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC〔AC>BC〕,且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.9.||=2,||=4,且和反向,用向量表示向量= ﹣2.【考点】*平面向量.【分析】根据向量b向量的模是a向量模的2倍,且和反向,即可得出答案.【解答】解:||=2,||=4,且和反向,故可得: =﹣2.故答案为:﹣2.【点评】此题考查了平面向量的知识,关键是得出向量b向量的模是a向量模的2倍.10.如果抛物线y=mx2+〔m﹣3〕x﹣m+2经过原点,那么m= 2 .【考点】二次函数图象上点的坐标特征.【分析】根据图象上的点满足函数解析式,可得答案.【解答】解:由抛物线y=mx2+〔m﹣3〕x﹣m+2经过原点,得﹣m+2=0.解得m=2,故答案为:2.【点评】此题考查了二次函数图象上点的坐标特征,把原点代入函数解析式是解题关键.11.如果抛物线y=〔a﹣3〕x2﹣2有最低点,那么a的取值范围是a>3 .【考点】二次函数的最值.【分析】由于原点是抛物线y=〔a+3〕x2的最低点,这要求抛物线必须开口向上,由此可以确定a的范围.【解答】解:∵原点是抛物线y=〔a﹣3〕x2﹣2的最低点,∴a﹣3>0,即a>3.故答案为a>3.【点评】此题主要考查二次函数的最值的知识点,解答此题要掌握二次函数图象的特点,此题比拟根底.12.在一个边长为2的正方形中挖去一个边长为x〔0<x<2〕的小正方形,如果设剩余局部的面积为y,那么y关于x的函数解析式是y=﹣x2+4〔0<x<2〕.【考点】函数关系式.【分析】根据剩下局部的面积=大正方形的面积﹣小正方形的面积得出y与x的函数关系式即可.【解答】解:设剩下局部的面积为y,那么:y=﹣x2+4〔0<x<2〕,故答案为:y=﹣x2+4〔0<x<2〕.【点评】此题主要考查了根据实际问题列二次函数关系式,利用剩下局部的面积=大正方形的面积﹣小正方形的面积得出是解题关键.13.如果抛物线y=ax2﹣2ax+1经过点A〔﹣1,7〕、B〔x,7〕,那么x= 3 .【考点】二次函数图象上点的坐标特征.【分析】首先求出抛物线的对称轴方程,进而求出x的值.【解答】解:∵抛物线的解析式为y=ax2﹣2ax+1,∴抛物线的对称轴方程为x=1,∵图象经过点A〔﹣1,7〕、B〔x,7〕,∴=1,∴x=3,故答案为3.【点评】此题主要考查了二次函数图象上点的坐标特征,解题的关键是求出抛物线的对称轴,此题难度不大.14.二次函数y=〔x﹣1〕2的图象上有两个点〔3,y1〕、〔,y2〕,那么y1<y2〔填“>〞、“=〞或“<〞〕【考点】二次函数图象上点的坐标特征.【分析】把两点的横坐标代入函数解析式分别求出函数值即可得解.【解答】解:当x=3时,y1=〔3﹣1〕2=4,当x=时,y2=〔﹣1〕2=,y1<y2,故答案为<.【点评】此题考查了二次函数图象上点的坐标特征,根据函数图象上的点满足函数解析式求出相应的函数值是解题的关键.15.如图,小鱼同学的身高〔CD〕是1.6米,她与树〔AB〕在同一时刻的影子长分别为DE=2米,BE=5米,那么树的高度AB= 4 米.【考点】相似三角形的应用.【分析】由CD⊥BE、AB⊥BE知CD∥AB,从而得△CDE∽△ABE,由相似三角形的性质有=,将相关数据代入计算可得.【解答】解:由题意知CD⊥BE、AB⊥BE,∴CD∥AB,∴△CDE∽△ABE,∴=,即=,解得:AB=4,故答案为:4.【点评】此题主要考查相似三角形的应用,熟练掌握相似三角形的判定与性质是解题的关键.16.如图,梯形ABCD中,AD∥BC,对角线BD与中位线EF交于点G,假设AD=2,EF=5,那么FG= 4 .【考点】梯形中位线定理.【分析】根据梯形中位线性质得出EF∥AD∥BC,推出DG=BG,那么EG是△ABD的中位线,即可求得EG的长,那么FG即可求得.【解答】解:∵EF是梯形ABCD的中位线,∴EF∥AD∥BC,∴DG=BG,∴EG=AD=×2=1,∴FG=EF﹣EG=5﹣1=4.故答案是:4.【点评】此题考查了梯形的中位线,三角形的中位线的应用,主要考查学生的推理能力和计算能力.17.如图,点M是△ABC的角平分线AT的中点,点D、E分别在AB、AC边上,线段DE过点M,且∠ADE=∠C,那么△ADE和△ABC的面积比是1:4 .【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定和性质即可得到结论.【解答】解:∵AT是△ABC的角平分线,∵点M是△ABC的角平分线AT的中点,∴AM=AT,∵∠ADE=∠C,∠BAC=∠BAC,∴△ADE∽△ACB,∴=〔〕2=〔〕2=1:4,故答案为:1:4.【点评】此题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.18.如图,在Rt△ABC中,∠C=90°,∠B=60°,将△ABC绕点A逆时针旋转60°,点B、C分别落在点B'、C'处,联结BC'与AC边交于点D,那么= .【考点】旋转的性质.【分析】根据直角三角形的性质得到BC=AB,根据旋转的性质和平行线的判定得到AB∥B′C′,根据平行线分线段成比例定理计算即可.【解答】解:∵∠C=90°,∠B=60°,∴∠BAC=30°,∴BC=AB,由旋转的性质可知,∠CAC′=60°,AB′=A B,B′C′=BC,∠C′=∠C=90°,∴∠BAC′=90°,∴AB∥B′C′,∴===,∴=,∵∠BAC=∠B′AC,∴==,又=,∴=,故答案为:.【点评】此题考查的是旋转变换的性质,掌握对应点到旋转中心的距离相等、对应点与旋转中心所连线段的夹角等于旋转角、旋转前、后的图形全等是解题的关键.三.解答题〔本大题共7题,共10+10+10+10+12+12+14=78分〕19.计算:2cos230°﹣sin30°+.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:原式=2×〔〕2﹣+=1++.【点评】此题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.20.如图,在平行四边形ABCD中,点E是CD上一点,且DE=2,CE=3,射线AE与射线BC相交于点F;〔1〕求的值;〔2〕如果=, =,求向量;〔用向量、表示〕【考点】相似三角形的判定与性质;平行四边形的性质;*平面向量.【分析】〔1〕根据平行四边形的性质得出AB=5、AB∥EC,证△FEC∽△FAB得==;〔2〕由△FEC∽△FAB得=,从而知FC=BC,EC=AB,再由平行四边形性质及向量可得==, ==,最后根据向量的运算得出答案.【解答】解:〔1〕∵四边形ABCD是平行四边形,DE=2,CE=3,∴AB=DC=DE+CE=5,且AB∥EC,∴△FEC∽△FAB,∴==;〔2〕∵△FEC∽△FAB,∴=,∴FC=BC,EC=AB,∵四边形ABCD是平行四边形,∴AD∥BC,EC∥AB,∴==,∴==, ==,那么=+=.【点评】此题主要考查相似三角形的判定与性质、平行四边形的性质及向量的运算,熟练掌握相似三角形的判定与性质是解题的关键.21.如图,在△ABC中,AC=4,D为BC上一点,CD=2,且△ADC与△ABD的面积比为1:3;〔1〕求证:△ADC∽△BAC;〔2〕当AB=8时,求sinB.【考点】相似三角形的判定与性质;解直角三角形.【分析】〔1〕作AE⊥BC,根据△ADC与△ABD的面积比为1:3且CD=2可得BD=6,即BC=8,从而得,结合∠C=∠C,可证得△ADC∽△BAC;〔2〕由△ADC∽△BAC得,求出AD的长,根据AE⊥BC得DE=CD=1,由勾股定理求得AE 的长,最后根据正弦函数的定义可得.【解答】解:〔1〕如图,作AE⊥BC于点E,∵===,∴BD=3CD=6,∴CB=CD+BD=8,那么=,,∴,∵∠C=∠C,∴△ADC∽△BAC;〔2〕∵△ADC∽△BAC,∴,即,∴AD=AC=4,∵AE⊥BC,∴DE=CD=1,∴AE==,∴sinB==.【点评】此题主要考查相似三角形的判定与性质及勾股定理、等腰三角形的性质、三角函数的定义,熟练掌握相似三角形的判定与性质是解题的关键.22.如图,是某广场台阶〔结合轮椅专用坡道〕景观设计的模型,以及该设计第一层的截面图,第一层有十级台阶,每级台阶的高为0.15米,宽为0.4米,轮椅专用坡道AB的顶端有一个宽2米的水平面BC;?城市道路与建筑物无障碍设计标准?第17条,新建轮椅专用坡道在不同坡度的情况下,坡道高度应符合以下表中的规定:坡度1:20 1:16 1:12最大高度〔米〕 1.50 1.00 0.75〔1〕选择哪个坡度建设轮椅专用坡道AB是符合要求的?说明理由;〔2〕求斜坡底部点A与台阶底部点D的水平距离AD.【考点】解直角三角形的应用-坡度坡角问题.【分析】〔1〕计算最大高度为:0.15×10=1.5〔米〕,由表格查对应的坡度为:1:20;〔2〕作梯形的高BE、CF,由坡度计算AE和DF的长,相加可得AD的长.【解答】解:〔1〕∵第一层有十级台阶,每级台阶的高为0.15米,∴最大高度为0.15×10=1.5〔米〕,由表知建设轮椅专用坡道AB选择符合要求的坡度是1:20;〔2〕如图,过B作BE⊥AD于E,过C作CF⊥AD于F,∴BE=CF=1.5,EF=BC=2,∵=,∴=,∴AE=DF=30,∴AD=AE+EF+DF=60+2=62,答:斜坡底部点A与台阶底部点D的水平距离AD为62米.【点评】此题考查了坡度坡角问题,在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,利用三角函数的定义列等式即可.23.如图,在△ABC中,AB=AC,点D、E是边BC上的两个点,且BD=DE=EC,过点C作CF∥AB交AE 延长线于点F,连接FD并延长与AB交于点G;〔1〕求证:AC=2CF;〔2〕连接AD,如果∠ADG=∠B,求证:CD2=AC•CF.【考点】相似三角形的判定与性质;等腰三角形的性质.【分析】〔1〕由BD=DE=EC知BE=2CE,由CF∥AB证△ABE∽△FCE得=2,即AB=2FC,根据AB=AC即可得证;〔2〕由∠1=∠B证△DAG∽△BAD得∠AGD=∠ADB,即∠B+∠2=∠5+∠6,结合∠B=∠5、∠2=∠3得∠3=∠6,再由CF∥AB得∠4=∠B,继而知∠4=∠5,即可证△ACD∽△DCF得CD2=AC•CF.【解答】证明:〔1〕∵BD=DE=EC,∴BE=2CE,∵CF∥AB,∴△ABE∽△FCE,∴=2,即AB=2FC,又∵AB=AC,∴AC=2CF;〔2〕如图,∵∠1=∠B,∠DAG=∠BAD,∴△DAG∽△BAD,∴∠AGD=∠ADB,∴∠B+∠2=∠5+∠6,又∵AB=AC,∠2=∠3,∴∠B=∠5,∴∠3=∠6,∵CF∥AB,∴∠4=∠B,∴∠4=∠5,那么△ACD∽△DCF,∴,即CD2=AC•CF.【点评】此题主要考查相似三角形的判定与性质,熟练掌握三角形外角性质和平行线的性质得出三角形相似所需要的条件是解题的关键.24.顶点为A〔2,﹣1〕的抛物线经过点B〔0,3〕,与x轴交于C、D两点〔点C在点D的左侧〕;〔1〕求这条抛物线的表达式;〔2〕联结AB、BD、DA,求△ABD的面积;〔3〕点P在x轴正半轴上,如果∠APB=45°,求点P的坐标.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【分析】〔1〕设抛物线的解析式为y=a〔x﹣2〕2﹣1,把〔0,3〕代入可得a=1,即可解决问题.〔2〕首先证明∠ADB=90°,求出BD、AD的长即可解决问题.〔3〕由△PDB∽△ADP,推出PD2=BD•AD=3=6,由此即可解决问题.【解答】解:〔1〕∵顶点为A〔2,﹣1〕的抛物线经过点B〔0,3〕,∴可以假设抛物线的解析式为y=a〔x﹣2〕2﹣1,把〔0,3〕代入可得a=1,∴抛物线的解析式为y=x2﹣4x+3.〔2〕令y=0,x2﹣4x+3=0,解得x=1或3,∴C〔1,0〕,D〔3,0〕,∵OB=OD=3,∴∠BDO=45°,∵A〔2,﹣1〕,D〔3,0〕,∴∠ADO=45°,∴∠BDA=90°,∵BD=3,AD=,∴S△ABD=•BD•AD=3.〔3〕∵∠BDO=∠DPB+∠DBP=45°,∠APB=∠DPB+∠DPA=45°,∴∠DBP=∠APD,∵∠PDB=∠ADP=135°,∴△PDB∽△ADP,∴PD2=BD•AD=3=6,∴PD=,∴OP=3+,∴点P〔3+,0〕.【点评】此题考查二次函数与x轴的交点、待定系数法.三角形的面积、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用相似三角形的性质解决问题,属于中考常考题型.25.如图,矩形ABCD中,AB=3,BC=4,点E是射线CB上的动点,点F是射线CD上一点,且AF⊥AE,射线EF与对角线BD交于点G,与射线AD交于点M;〔1〕当点E在线段BC上时,求证:△AEF∽△ABD;〔2〕在〔1〕的条件下,联结AG,设BE=x,tan∠MAG=y,求y关于x的函数解析式,并写出x的取值范围;〔3〕当△AGM与△ADF相似时,求BE的长.【考点】相似形综合题.【分析】〔1〕首先证明△ABE∽△ADF,推出=,推出=,因为∠BAD=∠EAF,即可证明△AEF∽△ABD.〔2〕如图连接AG.由△AEF∽△ABD,推出∠ABG=∠AEG,推出A、B、E、G四点共圆,推出∠ABE+∠AGE=180°,由∠ABE=90°,推出∠AGE=90°,推出∠AGM=∠MDF,推出∠AMG=∠FMD,推出∠MAG=∠EFC,推出y=tan∠MAG=tan∠EFC=,由△ABE∽△ADF,得=,得DF=x,由此即可解决问题.〔3〕分两种情形①如图2中,当点E在线段CB上时,②如图3中,当点E在CB的延长线上时,分别列出方程求解即可.【解答】〔1〕证明:∵四边形ABCD是矩形,∴∠BAD=∠ADC=∠ADF=90°,∵AF⊥AE,∴∠EAF=90°,∴∠BAD=∠EAF,∴∠BAE=∠DAF,∵∠ABE=∠ADF=90°,∴△ABE∽△ADF,∴=,∴=,∵∠BAD=∠EAF,∴△AEF∽△ABD.〔2〕解:如图连接AG.∵△AEF∽△ABD,∴∠ABG=∠AEG,∴A、B、E、G四点共圆,∴∠ABE+∠AGE=180°,∵∠ABE=90°,∴∠AGE=90°,∴∠AGM=∠MDF,∴∠AMG=∠FMD,∴∠MAG=∠EFC,∴y=tan∠MAG=tan∠EFC=,∵△ABE∽△ADF,∴=,∴DF=x,∴y=,即y=〔0≤x≤4〕.〔3〕解:①如图2中,当点E在线段CB上时,∵△AGM∽ADF,∴tan∠MAG==,∴=,解得x=.②如图3中,当点E在CB的延长线上时,由△MAG∽△AFD∽△EFC,∴=,∴=,解得x=1,∴BE的长为或1.【点评】此题考查相似形综合题、相似三角形的判定和性质、锐角三角函数、四点共圆等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.。

相关文档
最新文档