2020-2021常州外国语学校七年级数学下期中试题(及答案)
南山区第二外国语(海德学校)2020-2021学年第二学期七年级期中考试数学试卷 -答案
(2)如图 2,∵EF 平分∠PEB, ∴可设∠BEF=∠PEF=α, ∵AB∥CD, ∴∠GFE=∠BEF=α, ∴四边形 PGFE 中,∠PGF=360°﹣∠P﹣2α, ∴∠PGC=180°﹣(360°﹣∠P﹣2α)=∠P+2α﹣180°, ∵∠EFG 是△FGH 的外角, ∴∠FGH=∠EFG﹣∠EHG=α﹣∠EHG, 又∵QG 平分∠PGC, ∴∠PGC=2∠FGH, 即∠P+2α﹣180°=2(α﹣∠EHG), 整理可得,∠P+2∠EHG=180°. 故答案为:∠P+2∠EHG=180°.
19.小明骑自行车去上学,当他以往常的速度骑了一段路时,忽然想起要买某本书,于是又 折回到刚经过的一家书店,买到书后继续赶去学校.以下是他本次上学离家距离与时间 的关系示意图.根据图中提供的信息回答下列问题:
(1)小明家到学校的距离是 1500 米?书店到学校的距离是 900 米? (2)小明在书店停留了 4 分钟,本次上学途中,小明一共行驶了 2700 米。 (3)在整个上学的途中 12-14 时间段小明骑车速度最快?最快的速度是 450 米/分钟? (4)如果小明不买书,以往常的速度去学校,需要 7.5 分钟?本次上学比往常多用
2020-2021 年度第二学期七年级期中考试数学试卷
(南山第二外国语海德学校)
参考答案与试题解析
一.选择题(共 10 小题)
1
2
3
4
5
6
78Leabharlann 910BB
D
2020-2021七年级数学下期中试题及答案
5.已知∠A、∠B互余,∠A比∠B大30°,设∠A、∠B的度数分别为x°、y°,下列方程组中符合题意的是()
A. B. C. D.
6.下列图形中, 和 的位置关系不属于同位角的是()
A. B. C. D.
7.下列命题中,是真命题的是()
A.在同一平面内,垂直于同一直线的两条直线平行
A.若直线 , ,则 B.一条直线的平行线有且只有一条
C.若两条线段不相交,则它们互相平行D.两条不相交的直线叫做平行线
4.为了了解天鹅湖校区2019-2020学年1600名七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是()
A.1600名学生的体重是总体B.1600名学生是总体
14.若不等式组 恰有四个整数解,则 的取值范围是_________.
15.如图,直线 相交于点 , 于点 , 平分 , ,则下列结论:① ;② ;③ 与 互为补角;④ 的余角等于 ,其中正确的是___________(填序号)
16.不等式 的最大整数解是__________.
17.如图,将周长为20个单位的 沿边 向右平移4个单位得到 ,则四边形 的周长为__________.
【分析】
根据平行线的定义、性质、判定方法判断,排除错误答案.
【详解】
A、在同一平面内,平行于同一直线的两条直线平行.故正确;
B、过直线外一点,有且只有一条直线与已知直线平行.故错误;
C、根据平行线的定义知是错误的.
D、平行线的定义:在同一平面内,两条不相交的直线叫做平行线.故错误;
故选:A.
【点睛】
【详解】
点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,
2020-2021学年江苏省常州市七年级(下)期中数学试卷
2020-2021学年江苏省常州七年级(下)期中数学试卷一、选择题(本大题共有8小题,每小题2分,共16分。
在每小题所给的四个选项中,只有一个是正确的)1.下列运算正确的是()A.x2+x3=x5B.x6÷x2=x3C.(x2)3=x5D.x2.x3=x52.下列长度的三条线段能组成三角形的是()A.5,5,10B.6,8,9C.5,6,12D.3,4,83.如图,足球图片中的一块黑色皮块的内角和是()A.180°B.360°C.540°D.720°4.若(x+2)(2x﹣n)=2x2+mx﹣2,则m+n=()A.4B.6C.2D.﹣45.如图,在△ABC中,BC=6,∠A=90°,∠B=70°把△ABC沿BC方向平移到△DEF 的位置,若CF=2,则下列结论中错误的是()A.BE=2B.∠F=20°C.AB∥DE D.DF=66.如图,下列说法错误的是()A.如果∠AED=∠C,则DE∥BCB.如果∠1=∠2,则BO∥EFC.如果AB∥EF,则∠FEC=∠AD.如果∠ABC+∠BDE=180°,则AB∥EF7.(﹣8)2020+(﹣8)2019能被下列数整除的是()A.3B.5C.7D.98.如图,△ABC中∠A=30°,E定AC的点,先将△ABE沿看BE折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B的度数为()A.75°B.72°C.78°D.82°二、填空题(本大题共有10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应的位置上)9.计算:(﹣2x2)3=.10.2019﹣nCoV冠状肺炎病毒颗粒平均直径约为0.00000012a,数据0.00000012月科学记数法表示为.11.若x2﹣kx+16恰好为某一个整式的完全平方,则k为.12.已知a+b=4,ab=3,则代数式(a+2)(b+2)的值为.13.如图所示,3∥b,∠4=110°,则∠1的度数是.14.若m+2n﹣3=0,则3m•9n=.15.如图,△ABC中,若∠A=40°,则∠1+∠2+∠3+∠4=度.16.若多边形的每一个外角都是其相邻内角的,这个多边形是边形.17.已知(2022﹣a)(2020﹣a)=2021,那么(2022﹣a)2+(2020﹣a)2=.18.如图,已知两块三角板如图摆放,点B和点C分别在两块三角板的边上,一块三角板的顶点M在另一块三角板的边上,且∠BAC=40°,∠E=60°,∠F=45°,则∠ABE+∠EMF+∠FCA=度.三、解答题(本大题共7小题,共64分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.计算:(1)(﹣3)0﹣+|﹣3|.(2)x2•x4+x8÷(﹣x)2.(3)(﹣2a+3b)2﹣4a(a﹣2b).(4)(3x﹣y)2(3x+y)2.20.因式分解:(1)2a2b﹣8ab2+8b3.(2)a2(m﹣n)+9(n﹣m).(3)81x4﹣16.(4)(m2+5)2﹣12(m2+5)+36.21.如图,△ABC的顶点都在方格纸的格点上,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B'.(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出BC边上的高AD;(3)过C点画直线I,将△ABC分成两个面积相等的三角形.22.如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)试说明:AB∥CD;(2)若FG⊥BC于点H,BC平分∠ABD,∠D=112°,求∠1的度数.23.如图,点E、A、C在一条直线上,AD⊥BCEG⊥BC,垂足分别为D、G,EG交AB于点F.(1)试说明:AD∥EG;(2)若AD平分∠BAC,探索∠1与∠2的数量关系并说明理由.24.在“整式乘法与因式分解“一章的学习中,我们采用了构造几何图形的方法研究问题,借助直观、形象的几何模型,加深对公式的认识和理解,从中感悟数形结合的思想方法,感悟几何与代数内在的统一性,根据课堂学习的经验,解决下列问题:(1)如图1,有若干张A类、C类正方形卡片和B类长方形卡片(其中a<b),若取2张A类卡片、3张B类卡片、1张C类卡片拼成如图的长方形,借助图形,将多项式2a2+3ab+b2分解因式:2a2+3ab+b2=.(2)若现有3张A类卡片,6张B类卡片,10张C类卡片,从其中取出若干张,每种卡片至少取一张,把取出的这些卡片拼成一个正方形(所拼的图中既不能有缝隙,也不能有重合部分),则拼成的正方形的边长最大是.(3)若取1张C类卡片和4张A类卡片按图3、4两种方式摆放,求图4中,大正方形。
2020-2021学年度七年级下学期期中考试数学试卷(含答案)
七年级下学期期中考试数学试卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第三章《变量之间的关系》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。
在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.某数学兴趣小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表),下列说法错误的是()温度/℃−20−100102030声速/(m/s)318324330336342348A. 在这个变化中自变量是温度,因变量是声速B. 当温度每升高10℃,声速增加6m/sC. 当空气温度为20℃,5s的时间声音可以传播1740mD. 温度越高声速越快2.体育课上,老师测量跳远成绩的依据是()A. 平行线间的距离相等B. 两点之间,线段最短C. 垂线段最短D. 两点确定一条直线3.下列各项中,两个幂是同底数幂的是()A. x2与a2B. (−a)5与a3C. (x−y)2与(y−x)2D. −x2与x34.若(x−1)0−2(2x−6)−2有意义,那么x的取值范围是()A. x>1B. x<3C. x≠1或x≠3D. x≠1且x≠35.如图,∠B的同位角可以是()A. ∠1B. ∠2C. ∠3D. ∠46.一蓄水池中有水50m3,打开排水阀门开始放水后水池的水量与放水时间有如下关系:放水时间/分1234…水池中水量/m348464442…下列说法不正确的是()A. 蓄水池每分钟放水2m3B. 放水18分钟后,水池中水量为14m3C. 蓄水池一共可以放水25分钟D. 放水12分钟后,水池中水量为24m37.某商场为了增加销售额,推出优惠活动,其活动内容为凡活动期间一次购物超过50元,超过50元的部分按9折优惠.在活动期间,李明到该商场为单位购买单价为30元的办公用品x(件)(x>2),则应付款y(元)与商品件数x的关系式为()A. y=27x(x>2)B. y=27x+5(x>2)C. y=27x+50(x>2)D. y=27x+45(x>2)8.如图 ①,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的关系的图象如图 ②,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的关系的图象大致是()A. B.C. D.9.如图,将一副三角尺按下列位置摆放,使∠α和∠β互余的摆放方式是()A.B.C.D.10.如图,直线AB,CD相交于点O,射线OM平分∠BOD.若∠AOC=42∘,则∠AOM等于()A. 159∘B. 161∘C. 169∘D. 138∘11.小萌在利用完全平方公式计算一个二项整式的平方时,得到正确结果4x2+20xy+■,不小心把最后一项染黑了,你认为这一项是()A. 5y2B. 10y2C. 100y2D. 25y212.某同学在计算−3x2乘一个多项式时错误的计算成了加法,得到的答案是x2−x+1,由此可以推断正确的计算结果是()A. 4x2−x+1B. x2−x+1C. −12x4+3x3−3x2D. 无法确定13.若多项式x2+x+m能被x+5整除,则此多项式也能被下列哪个多项式整除()A. x−6B. x+6C. x−4D. x+414.如图所示,与∠α构成同位角的角的个数为()A. 1B. 2C. 3D. 415.某人要在规定的时间内加工100个零件,则工作效率η与时间t之间的关系中,下列说法正确的是()A.数100和η、t都是变量B. 数100和η都是常量C. η和t是变量D. 数100和t都是常量卷Ⅱ二、填空题(本大题共5小题,共25.0分)16.在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是_________________.17.如图,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车距离最近,请你在铁路边选一点来建火车站(位置已选好),理由是.18.已知2x=a,3x=b,则6x=.19.如图,直线EF与CD相交于点O,OA⊥OB,且OC平分∠AOF.若∠AOE=40∘,则∠BOD的度数为.20.观察下列图形及表格:梯形个数n123456⋯周长l5811141720⋯则周长l与梯形个数n之间的关系式为.三、解答题(本大题共7小题,共80.0分)21.(8分)计算:(1)(x2y−12xy2−2xy)÷12xy;(2)[2(x+y)3−4(x+y)2−x−y]÷(x+y).22.(8分)如图,直线a、b被直线l所截,已知∠1=40°,试求∠2的同位角及同旁内角的度数.23.(12分)(1)表示汽车性能的参数有很多,例如:长宽高、轴距、排量、功率、扭矩、转速、百公里油耗等等.为了了解某种车的耗油量,某专业检测人员对这种车在高速公路上做了耗油试验,并把试验的数据记录下米,制成下表:汽车行驶时间t(ℎ)0123…油箱剩余油量Q(L)100948882…①上表反映的两个变量中,白变量是______;②根据上表可知,每小时耗油______升;③根据上表的数据,写出用t表示Q的关系式:______④若汽车油箱中剩余油量为55L,则汽车行驶了多少小时?(2)年龄与手机号码的秘密:①选取你家里任意一部手机的最后一位:②把这个数字乘上2;③然后加上5;④再乘以50;⑤把得到的数目加上1767;⑥最后用这个数目减去你出生的那一年(例如2004年).现在你看到一个三位数的数字.第一位数字是你家手机号的最后一位,接下来就是你的实际年龄!你能否用你所选数字按照上述步骤验证下?你能用所学知识解释这一问题吗?(计算年龄时按照农历现在为2017年)24.(10分)观察下列式:(x2−1)÷(x−1)=x+1;(x3−1)÷(x−1)=x2+x+1;(x4−1)÷(x−1)=x3+x2+x+1;(x5−1)÷(x−1)=x4+x3+x2+x+1;(1)猜想:(x7−1)÷(x−1)=______;(27−1)÷(2−1)=______;(2)根据①猜想的结论计算:1+2+22+23+24+25+26+27.25.(12分)如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=72∘,求∠BOD的度数;(2)若∠DOE=2∠AOC,判断射线OE,OD的位置关系,并说明理由.26.(14分)2018年5月14日川航3U8633航班挡风玻璃在高空爆裂,机组临危不乱,果断应对,正确处置,顺利返航,避免了一场灾难的发生,下面表格是成都当日海拔ℎ(千米)与相应高度处气温t(℃)的关系(成都地处四川盆地,海拔较低,为方便计算,在此题中近似为0米).海拔ℎ(千米)012345…气温t(℃)201482−4−10…根据上表,回答以下问题:(1)由上表可知海拔5千米的上空气温约为________℃;(2)由表格中的规律请写出当日气温t与海拔高度h的关系式为________;如图表示当日飞机下降过程中海拔与玻璃爆裂后立即返回地面所用的时间关系.根据图象回答以下问题:(3)挡风玻璃在高空爆裂时飞机所处的高度为________千米,返回地面用了________分钟;(4)飞机在2千米高空水平面上大约盘旋了________分钟;(5)求挡风玻璃在高空爆裂时,飞机所处高空的气温.27.(16分)已知:如图是一个跳棋棋盘,其游戏规则是:一个棋子从某一个起始角开始,经过若干步跳动以后,到达终点角.跳动时,每一步只能跳到它的同位角或内错角或同旁内角的位置上,例如:从起始位置∠1跳到终点位置∠3写出其中两种不同路径,路径1:∠1−同旁内角→∠9−内错角→∠3.路径2:∠1一内错角→∠12一内错角→∠6−同位角→∠10−同旁内角→∠3.试一试:(1)从起始∠1跳到终点角∠8;(2)从起始角∠1依次按同位角、内错角、同旁内角的顺序跳,能否跳到终点∠8?答案1.C2.C3.D4.D5.D6.D7.B8.C9.A10.A11.D12.C13.C14.C15.C16.y=4−x2(0<x<2)17.垂线段最短18.ab19.20∘20.l=3n+221.解:(1)(x2y−12xy2−2xy)÷12xy=x2y÷12xy−12xy2÷12xy−2xy÷12xy=2x−y−4;(2)[2(x+y)3−4(x+y)2−x−y]÷(x+y)=2(x+y)3÷(x+y)−4(x+y)2÷(x+y)−(x+y)÷(x+y) =2(x+y)2−4(x+y)−1.22.解:如图,由图可知,∠4是∠2的同位角,∠3是∠2的同旁内角,∵∠1=40°,∴∠3=∠1=40°,∠4=180°−∠1=140°,即∠2的同位角是140°,∠2的同旁内角是40°.23.解:(1)①自变量是t,②据上表可知,每小时耗油100−94=6升;③Q=100−6t;④当Q=55时,55=100−6t,6t=45,t=7.5.答:汽车行使了7.5小时;(2)比如:我选择数字为9,出生时间为2004年,我的年龄为13岁,由题意得(9×2+5)×50+1767−2004=900+2017−2004=913,解释:假设选取数字为m,出生时间为n年,由题意得(m×2+5)×50+1767−n=100m+(2017−n)因为m为个位数字,(2017−n)两位数,所以100m+(2017−n)三位数,而且第一位数字就所选数字,后两位恰好为年龄.24.(1)x6+x5+x4+x3+x2+x+1;26+25+24+23+22+2+1;(2)根据①猜想的结论计算:1+2+22+23+24+25+26+27=(28−1)÷(2−1)=28−1=255.25.解:(1)因为OA平分∠EOC,∠EOC=72∘,∠EOC=36∘.所以∠AOC=12所以∠BOD=∠AOC=36∘.(2)OE⊥OD.理由如下:因为∠DOE=2∠AOC,OA平分∠EOC,所以∠DOE=2∠AOC=∠EOC.又因为∠DOE +∠EOC =180∘, 所以∠DOE =∠EOC =90∘. 所以OE ⊥OD .26.解:(1)−10;(2)t =20−6ℎ; (3)9.8,20; (4)2;(5)根据图象可知,当ℎ=9.8时,挡风玻璃爆裂,此时t =20−6×9.8=−38.8, 所以挡风玻璃在高空爆裂时,飞机所处高空的气温为−38.8℃.27.解:(1)路径∠1→内错角∠12→同旁内角∠8;(2)从起始角∠1依次按同位角、内错角、同旁内角的顺序跳,能跳到终点∠8.其路径为: 路径:∠1→同位角∠10→内错角∠5→同旁内角∠8.。
2020-2021学年人教版七年级下册数学期中试卷(有答案)
人教版七年级下册数学期中试卷一.选择题(共10小题,满分40分,每小题4分)1.一个数的两个平方根分别是2a﹣1与﹣a+2,则这个数是()A.﹣1B.3C.9D.﹣32.在,0,,﹣,0.1010010001…(相邻两个1之间的0的个数逐渐增加1)这五个数中,无理数的个数共有()A.2个B.3个C.4个D.5个3.下列不等式变形错误的是()A.若a>b,则1﹣a<1﹣bB.若a<b,则ax2≤bx2C.若ac>bc,则a>bD.若m>n,则>4.若xy>0,则关于点P(x,y)的说法正确的是()A.在一或二象限B.在一或四象限C.在二或四象限D.在一或三象限5.不等式组的解集在数轴上表示为()A.B.C.D.6.如图,点Q(m,n)是第二象限内一点,则点Q到y轴的距离是()A.m B.n C.﹣m D.﹣n7.将三角形三个顶点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系是()A.将原图向左平移两个单位B.关于原点对称C.将原图向右平移两个单位D.关于y轴对称8.估计的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间9.下列说法中正确的是()A.立方根是它本身的数只有1和0B.算术平方根是它本身的数只有1和0C.的算术平方根是4D.绝对值是它本身的数只有1和010.如图,数轴上的点A表示的数是1,OB⊥OA,垂足为O,且BO=1,以点A为圆心,AB 为半径画弧交数轴于点C,则C点表示的数为()A.﹣0.4B.﹣C.1﹣D.﹣1二.填空题(共8小题,满分16分,每小题2分)11.的相反数是,绝对值是.12.疫情期间全国“停课不停学”初中生来清网上听课每节课a分钟,每天六节课,每天上网课总时长小于240分钟,可列不等式.13.若点(3+m,a﹣2)关于y轴对称点的坐标是(3,2),则m+a的值为.14.不等式﹣x+1<0的解集是.15.的值是;的立方根是.16.如果点P(x,y)的坐标满足x+y=xy,那么称点P为“和谐点”,若某个“和谐点”到x轴的距离为3,则P点的坐标为.17.若|a﹣2|+b2+4b+4+=0,则=.18.已知不等式6x+1>5x﹣2的最小整数解是方程2x﹣kx=4﹣2k的解,则k=.三.解答题(共10小题,满分64分)19.解方程:2x2﹣8=0.20.计算:5﹣.21.计算:﹣22+﹣﹣|﹣2|.22.解不等式+1≥.并把此不等式的解表示在数轴上.23.解不等式x﹣4<3(x﹣2),并把解集在数轴上表示出来.24.解不等式组.25.(1)计算:++|1﹣|;(2)解方程组;(3)解不等式组,并写出它的所有整数解..26.如图,三角形ABC的顶点坐标分别为A(﹣2,4),B(﹣3,1),C(0,1),BC上的一点P的坐标为(﹣2,1),将三角形ABC向右平移4个单位长度,再向上平移1个单位长度,得到三角形A1B1C1,其中点A,B,C,P分别对应点A1,B1,C1,P1.(1)在图中画出三角形A1B1C1和点P1;(2)连接P1A,P1B,直接写出三角形P1AB的面积.27.平面直角坐标系中,直线y=2x+4与x轴、y轴分别交于点B、A.(1)直接写出直线AB关于x轴对称的直线BC的解析式;(2)如图1,直线BC与直线y=﹣x交于E点,点P为y轴上一点,PE=PB,求P点坐标;(3)如图2,点P为y轴上一点,∠OEB=∠PEA,直线EP与直线AB交于点M,求M点的坐标.28.放假了,学生王东准备利用假期到某工厂打工,该工厂的工作时间:每月25天,每天上午:8:00﹣12:00,下午:14:00﹣18:00.待遇:按件计酬,另每月加奖金100元.生产甲、乙两种产品,规定每月生产甲种产品不少于100件,每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元.下表是生产甲、乙产品件数与所用时间之间的关系:所用总时间(分)生产甲产品的件数(件)生产乙种产品的件数(件)215065190(1)王东每生产一件甲种产品和每生产一件乙种产品分别需要多少分钟?(2)王东这个月最多能得多少工资?此时生产甲乙两种产品各多少件?参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:由题意得,2a﹣1﹣a+2=0,解得a=﹣1,所以2a﹣1=﹣3,﹣a+2=3,即一个数的两个平方根分别是3与﹣3,所以这个数是9,故选:C.2.解:在,0,,﹣,0.1010010001…(相邻两个1之间的0的个数逐渐增加1)这六个数中,无理数有:,0.1010010001…(相邻两个1之间的0的个数逐渐增加1)共2个.故选:A.3.解:A、∵a>b,∴﹣a<﹣b,∴1﹣a<1﹣b,正确,故本题选项不符合题意;B、∵a<b,∴ax2≤bx2,正确,故本题选项不符合题意;C、当c<0时,根据ac>bc不能得出a>b,错误,故本题选项不符合题意;D、∵m>n,∴>,正确,故本题选项不符合题意;故选:C.4.解:∵xy>0,∴x>0,y>0或x<0,y<0,∴点P(x,y)在一或三象限.故选:D.5.解:,由①得,x>1,由②得,x≥2,故此不等式组的解集为:x≥2.在数轴上表示为:.故选:A.6.解:因为Q(m,n)是第二象限内一点,所以m<0,所以点Q到y轴的距离是|m|=﹣m.故选:C.7.解:∵将三角形三个顶点的横坐标都减2,纵坐标不变,∴所得三角形与原三角形的关系是:将原图向左平移两个单位.故选:A.8.解:∵49<63<64,∴7<<8,故选:A.9.解:A、立方根是它本身的数只有1和0、﹣1,故此选项错误;B、算术平方根是它本身的数只有1和0,故此选项正确;C、=4的算术平方根是2,故此选项错误;D、绝对值是它本身的数是非负数,故此选项错误.故选:B.10.解:在Rt△AOB中,AB==,∴AB=AC=,∴OC=AC﹣OA=﹣1,∴点C表示的数为1﹣.故选:C.二.填空题(共8小题,满分16分,每小题2分)11.解:的相反数是﹣;∵>0,∴||=.故答案为:﹣,.12.解:依题意,得6a<240.故答案为:6a<240.13.解:∵点(3+m,a﹣2)关于y轴对称点的坐标是(3,2),∴3+m=﹣3,a﹣2=2,解得:m=﹣6,a=4,则m+a的值为:﹣6+4=﹣2.故答案为:﹣2.14.解:不等式两边同时乘以﹣3得:x﹣3>0,移项得:x>3,即不等式的解集为:x>3.故答案为:x>3.15.解:∵42=16,∴=4,=8,=2,故答案为:4,2.16.解:∵某个“和谐点”到x轴的距离为3,∴y=±3,∵x+y=xy,∴x±3=±3x,解得:x=或x=.则P点的坐标为:(,3)或(,﹣3).故答案为:(,3)或(,﹣3).17.解:根据题意得|a﹣2|+(b+2)2+=0,∴a﹣2=0,b+2=0,c﹣=0,解得a=2,b=﹣2,c=,所以原式=××=2×=2×1=2.故答案为2.18.解:6x+1>5x﹣2,解得:x>﹣3,∵x是不等式5x﹣2<6x+1的最小整数解,∴x=﹣2,把x=﹣2代入方程2x﹣kx=4﹣2k中得:2×(﹣2)﹣(﹣2)×k=4﹣2k,解得:k=2,故答案为:2.三.解答题(共10小题,满分64分)19.解:x2=4,所以x1=2,x2=﹣2.20.解:原式=5﹣2﹣2=1.21.解:原式=﹣4+6+3﹣(﹣2)=﹣4+6+3﹣+2=7﹣.22.解:去分母得:3(x﹣1)+6≥2(2x+1),去括号得:3x﹣3+6≥4x+2,移项合并同类项得:﹣x≥﹣1,故不等式的解集为:x≤1,在数轴上表示不等式的解集,如图所示:.23.解:去分母得:x﹣4<3x﹣6,移项得:x﹣3x<﹣6+4,合并得:﹣2x<﹣2,解得:x>1,表示在数轴上,如图所示:.24.解:,解不等式①得:x≥4,解不等式②得:x>,所以不等式组的解集是x≥4.25.解:(1)原式=3﹣4+﹣1,=﹣2+.(2),①×2﹣②得,﹣9n=﹣18,解得n=2,把n=2代入①得,m=7,∴方程组的解为;(3),解①得:x≤3;解②得:x>﹣1;则不等式组的解集为﹣1<x≤3,∴这个不等式组的整数解为0,1,2,3.26.解:(1)如图所示:△A1B1C1和点P1,即为所求;(2)三角形P1AB的面积为:3×5﹣×2×4﹣×1×3﹣×1×5=7.27.解:(1)∵直线y=2x+4与x轴、y轴分别交于点B、A.∴A(0,4),B(﹣2,0),∵直线AB与直线BC关于x轴对称,∴C(0,﹣4),设直线BC的解析式为y=kx+b,∴,解得,;∴直线BC的解析式为y=﹣2x﹣4;故答案为:y=﹣2x﹣4;(2)∵,∴,∴E(﹣4,4),∴AE⊥AO,设OP=a,AP=4﹣a,在Rt△BOP和Rt△EAP中,BP2=4+a2,PE2=16+(4﹣a)2,∵PE=PB,∴4+a2=16+(4﹣a)2,解得a=3.5.∴P(0,3.5).(3)①如图,当点P在点A的下方,∵∠OEB=∠PEA,∠AEO=45°,∴∠PEB=45°,过点B作BN⊥BE交直线EP于点N,过点N作NQ⊥OB于Q,过点E作EH⊥OB于点H,∴△EBN为等腰直角三角形,∴EB=BN,∵∠BEH+∠EBH=90°,∠EBH+∠NBQ=90°,∴∠BEH=∠NBQ,又∵∠EHB=∠BQN=90°,∴△EHB≌△BQN(AAS),∴NQ=BH=2,BQ=EH=4,∴N(2,2),设直线EN的解析式为y=kx+b,∴,解得,∴直线EN的解析式为y=﹣x+,∴,解得,即M(﹣,);②P点在A点的上方,由①知图1中OP=,则AP=,∴OP=,设直线EP的解析式为y=mx+,∵E(﹣4,4),∴﹣4m+=4,解得m=,∴直线EP的解析式为y=x+,∴,解得,∴M(0.8,5.6).综合以上可得点M的坐标为(﹣,)或(0.8,5.6).28.解:(1)设生产一件甲种产品需x分钟,生产一种乙种产品需y分钟,由题意得,解得:x=15,y=20,答:生产一件甲种产品需15分钟,生产一件乙种产品需20分钟;(2)设生产甲种产品a件,工资为w元,w=1.5a+2.8(25×8×60﹣15a)÷20+100,=﹣0.6a+1780,∵a≥100,∴由一次函数性质知,当a=100时,w取最大值为1720元.答:王东该月最多工资为1720元,此时生产甲种产品100件,乙种产品525件.。
2020-2021七年级数学下期中试卷(及答案) (3)
2020-2021七年级数学下期中试卷(及答案) (3)一、选择题1.点(),A m n 满足0mn =,则点A 在( )A .原点B .坐标轴上C .x 轴上D .y 轴上 2.将点A (1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为( )A .(2,1)B .(﹣2,﹣1)C .(﹣2,1)D .(2,﹣1)3.在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别减去正数a (a >1),那么所得的图案与原图案相比( )A .形状不变,大小扩大到原来的a 倍B .图案向右平移了a 个单位长度C .图案向左平移了a 个单位长度,并且向下平移了a 个单位长度D .图案向右平移了a 个单位长度,并且向上平移了a 个单位长度4.如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D 等于( )A .2B .3C .23D .325.不等式组324323x x x +⎧⎪-⎨≥⎪⎩<的解集,在数轴上表示正确的是( ) A .B .C .D .6.如图,点E 在AB 的延长线上,则下列条件中,不能判定AD BC ∥的是( )A .180D DCB ∠+∠=︒B .13∠=∠C .24∠∠=D .CBE DAE ∠=∠ 7.下列说法正确的是()A .一个数的算术平方根一定是正数B .1的立方根是±1C .255=±D .2是4的平方根8.如图,下列条件中,能判断AB//CD 的是( )A .∠BAC=∠ACDB .∠1=∠2C .∠3=∠4D .∠BAD=∠BCD 9.如果a >b ,那么下列各式中正确的是( )A .a ﹣2<b ﹣2B .22a b pC .﹣2a <﹣2bD .﹣a >﹣b10.一个自然数的算术平方根是x ,则它后面一个自然数的算术平方根是( ). A .x +1 B .x 2+1 C .1x + D .21x +11.已知关于x ,y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则n-m 的值是( ) A .6B .3C .-2D .1 12.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( )A .3<x <5B .-5<x <3C .-3<x <5D .-5<x <-3 二、填空题13.若3a ++(b-2)2=0,则a b =______.14.一副直角三角尺叠放如图 1 所示,现将 45°的三角尺ADE 固定不动,将含 30°的三角尺 ABC 绕顶点 A 顺时针转动(旋转角不超过 180 度),使两块三角尺至少有一组边互相平行.如图 2:当∠BAD=15°时,BC ∥DE .则∠BAD (0°<∠BAD <180°)其它所有可能符合条件的度数为________.15.对于x y ,定义一种新运算“☆”,x y ax by =+☆,其中a b ,是常数,等式右边是通常的加法和乘法运算.已知3515=☆,4728=☆,则11☆的值为____.16.已知方程3x +5y -3=0,用含x 的代数式表示y ,则y=________.17.已知:m 、n 为两个连续的整数,且m 11<n mn _____.18.若不等式(m-2)x >1的解集是x<12m -,则m 的取值范围是______. 19.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.20.已知方程组236x y x y +=⎧⎨-=⎩的解满足方程x +2y =k ,则k 的值是__________. 三、解答题21.已知∠1=70°,∠CDN=125°,CM 平分∠DCF ,试说明:CM ∥DN22.如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A ′B ′C ′;(2)再在图中画出△ABC 的高CD ;(3)在图中能使S △PBC =S △ABC 的格点P 的个数有 个(点P 异于A )23.解方程组:(1)45()2()1x y x y x y +=⎧⎨--+=-⎩(2)2()()134123()2()3x y x y x y x y -+⎧-=-⎪⎨⎪+--=⎩24.如图,已知//AB CD ,//AB EG .(1)求证:360BED B D ++=︒∠∠∠.(2)若145D ∠=︒,EF 平分BED ∠,20GEF ∠=︒,求B Ð.25.如图,已知//BC GE 、//AF DE 、150∠=︒.(1)AFG ∠=________°.(2)若AQ 平分FAC ∠,交直线BC 于点Q ,且15Q ∠=︒,求ACQ ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】应先判断出所求的点的横纵坐标的可能值,进而判断点所在的位置.【详解】∵点A (m ,n )满足mn=0,∴m=0或n=0,∴点A 在x 轴或y 轴上.即点在坐标轴上.故选:B .【点睛】本题主要考查了平面直角坐标系中点在坐标轴上时点的坐标的特点:横坐标或纵坐标为0.2.C解析:C【解析】分析:让A 点的横坐标减3,纵坐标加2即为点B 的坐标.详解:由题中平移规律可知:点B 的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B 的坐标是(-2,1).故选:C.点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加. 3.C解析:C【解析】【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别减去正数a(a>1),那么所得的图案与原图案相比,图案向左平移了a个单位长度,并且向下平移了a个单位长度.故选:C.【点睛】本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.A解析:A【解析】分析:由S△ABC=9、S△A′EF=4且AD为BC边的中线知S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,根据△DA′E∽△DAB知2A DEABDSA DAD S''=VV(),据此求解可得.详解:如图,∵S△ABC=9、S△A′EF=4,且AD为BC边的中线,∴S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则2A DEABDSA DAD S''=VV(),即22912A DA D'='+(),解得A′D=2或A′D=-25(舍), 故选A . 点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.5.A解析:A【解析】【分析】【详解】324{32? 3x x x <+-≥①②, 由①,得x <4,由②,得x≤﹣3,由①②得,原不等式组的解集是x≤﹣3;故选A .6.C解析:C【解析】【分析】根据平行线的判定方法一一判断即可:A.同旁内角互补,两直线平行;B 、C 内错角相等,两直线平行;D.同位角相等,两直线平行,再根据结果是否能判断//AD BC ,即可得到答案.【详解】解:A. Q 180D DCB ∠+∠=︒,∴//AD BC ,此项正确,不合题意;B. Q 13∠=∠,∴//AD BC ,此项正确,不合题意;C. ∵∠2=∠4,∴CD ∥AB ,∴不能判定//AD BC ,此项错误,符合题意;D. Q CBE DAE ∠=∠,∴//AD BC ,此项正确,不合题意.故选:C .【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.7.D解析:D【解析】【分析】根据平方根、算术平方根、立方根的定义,即可解答.A、一个数的算术平方根一定是正数,错误,例如0的算术平方根是0;B、1的立方根是1,错误;C5=,错误;D、2是4的平方根,正确;故选:D【点睛】本题考查了立方根、平方根,解决本题的关键是熟记平方根、立方根的定义.8.A解析:A【解析】【分析】根据直线平行的判定:内错角相等,两直线平行;同旁内角互补,两直线平行;同位角相等,两直线平行进行判断即可.【详解】解:A. ∠BAC=∠ACD能判断AB//CD(内错角相等,两直线平行),故A正确;B. ∠1=∠2得到AD∥BC,不能判断AB//CD,故B错误;C. ∠3=∠4得到AD∥BC,不能判断AB//CD,故C错误;D. ∠BAD=∠BCD,不能判断AB//CD,故D错误;故选A.【点睛】本题主要考查了平行线的判定的运用,解题时注意:内错角相等,两直线平行;同旁内角互补,两直线平行;同位角相等,两直线平行.9.C解析:C【解析】A.不等式的两边都减2,不等号的方向不变,故A错误;B.不等式的两边都除以2,不等号的方向不变,故B错误;C.不等式的两边都乘以−2,不等号的方向改变,故C正确;D.不等式的两边都乘以−1,不等号的方向改变,故D错误.故选C.10.D解析:D【解析】x则它后面一个数的算术平方根是一个自然数的算术平方根是x,则这个自然数是2,.故选D.11.B【解析】【分析】把12xy=⎧⎨=⎩代入方程组3526x myx ny-=⎧⎨+=⎩,求出m、n的值,再代入要求的代数式求值即可.【详解】把12xy=⎧⎨=⎩代入3526x myx ny-=⎧⎨+=⎩得:325226mn-=⎧⎨+=⎩,解得:m=-1,n=2,∴n-m=2-(-1)=3.故选:B.【点睛】本题考查了二元一次方程组的解,能得出m,n的值是解此题的关键.12.A解析:A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P(2x-6,x-5)在第四象限,∴260 {50xx->-<,解得:3<x<5.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.二、填空题13.9【解析】【分析】根据非负数的性质列式求出ab的值然后代入代数式进行计算即可得解【详解】解:根据题意得a+3=0b-2=0解得a=-3b=2所以ab=(-3)2=9故答案为:9【点睛】本题考查了非负解析:9【解析】【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,a+3=0,b-2=0,解得a=-3,b=2,所以,a b=(-3)2=9.故答案为:9.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.45°60°105°135°【解析】分析:根据题意画出图形再由平行线的判定定理即可得出结论详解:如图当AC∥DE时∠BAD=∠DAE=45°;当BC∥AD时∠DAE=∠B=60°;当BC∥AE时∵∠解析:45°,60°,105°,135°.【解析】分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,当AC∥DE时,∠BAD=∠DAE=45°;当BC∥AD时,∠DAE=∠B=60°;当BC∥AE时,∵∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;当AB∥DE时,∵∠E=∠EAB=90°,∴∠BAD=∠DAE+∠EAB=45°+90°=135°.故答案为:45°,60°,105°,135°.点睛:本题考查了平行线的判定与性质.要证明两直线平行,需使其所构成的同位角、内错角相等(或同旁内角是否互补).15.-11【解析】【分析】利用题中的新定义化简椅子等式求出a与b的值即可确定出所求【详解】解:根据题中的新定义得:解得:所以;故答案为:【点睛】本题考查的是二元一次方程组以及有理数的混合运算熟练掌握运算解析:-11【解析】【分析】利用题中的新定义化简椅子等式求出a与b的值,即可确定出所求.【详解】解:根据题中的新定义得:3515 4728 a ba b+=⎧⎨+=⎩,解得:3524a b =-⎧⎨=⎩, 所以111(35)12411☆=⨯-+⨯=-;故答案为:11-.【点睛】本题考查的是二元一次方程组以及有理数的混合运算,熟练掌握运算法则是解本题的关键.16.;【解析】分析:将x 看作已知数求出y 即可详解:方程3x+5y-3=0解得:y=故答案为点睛:此题考查了解二元一次方程解题的关键是将x 看作已知数求出y 解析:335x -; 【解析】 分析: 将x 看作已知数求出y 即可.详解: 方程3x+5y-3=0,解得:y=335x -. 故答案为335x -. 点睛: 此题考查了解二元一次方程,解题的关键是将x 看作已知数求出y.17.【解析】【分析】利用无理数的估算先取出mn 的值然后代入计算即可得到答案【详解】解:∵∴∵mn 为两个连续的整数∴∴;故答案为:【点睛】本题考查了无理数的估算解题的关键是熟练掌握无理数的估算正确得到mn解析:【解析】【分析】利用无理数的估算,先取出m 、n 的值,然后代入计算,即可得到答案.【详解】<<,∴34<<,∵m 、n 为两个连续的整数,∴3m =,4n =,===;故答案为:【点睛】本题考查了无理数的估算,解题的关键是熟练掌握无理数的估算,正确得到m 、n 的值.18.m <2【解析】【分析】根据不等式的性质和解集得出m-2<0求出即可【详解】∵不等式(m-2)x >1的解集是x <∴m -2<0即m <2故答案是:m <2【点睛】考查对不等式的性质解一元一次不等式等知识点的解析:m <2【解析】【分析】根据不等式的性质和解集得出m-2<0,求出即可.【详解】∵不等式(m-2)x >1的解集是x <12m -, ∴m-2<0,即m <2.故答案是:m <2.【点睛】考查对不等式的性质,解一元一次不等式等知识点的理解和掌握,能根据不等式的性质和解集得出m-2<0是解此题的关键. 19.【解析】【分析】设代入原式化简即可得出结果【详解】原式故答案为:【点睛】本题考查了整式的混合运算设将式子进行合理变形是解题的关键 解析:12020【解析】【分析】 设1120182019m =+,代入原式化简即可得出结果. 【详解】 原式()111120202020m m m m ⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭ 221202*********m m m m m m =-+--++ 12020= 故答案为:12020. 【点睛】 本题考查了整式的混合运算,设1120182019m =+将式子进行合理变形是解题的关键. 20.-3【解析】分析:解出已知方程组中xy 的值代入方程x+2y=k 即可详解:解方程组得代入方程x+2y=k 得k=-3故本题答案为:-3点睛:本题的实质是考查三元一次方程组的解法需要对三元一次方程组的定义解析:-3【解析】分析:解出已知方程组中x ,y 的值代入方程x+2y=k 即可.详解:解方程组236x y x y +=⎧⎨-=⎩, 得33x y ⎧⎨-⎩==, 代入方程x+2y=k ,得k=-3.故本题答案为:-3.点睛:本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成无该未知数的二元一次方程组.三、解答题21.CM 与DN 平行【解析】【分析】首先计算出BCF ∠的度数,再根据角平分线的性质可算出DCM ∠的度数,进而得到180DCM CDN ∠+∠=︒,根据同旁内角互补,两直线平行可得//CM DN .【详解】.CM 与DN 平行.证明:∵∠1=70°,∴∠BCF=180°-70°=110°,∵CM 平分∠DCF ,∴∠DCM=55°,∵∠CDN=125°,∴∠DCM+∠CDN=180°,∴CM ∥DN .【点睛】此题主要考查了平行线的判定,关键是掌握同旁内角互补,两直线平行.22.(1)见解析;(2)见解析;(3)4.【解析】【分析】整体分析:(1)根据平移的要求画出△A´B´C´;(2)延长AB,过点C作AB延长线的垂线段;(3)过点A作BC的平行线,这条平行线上的格点数(异于点A)即为结果.【详解】(1)如图所示(2)如图所示.(3)如图,过点A作BC的平行线,这条平行线上的格点数除点A外有4个,所以能使S△ABC=S△PBC的格点P的个数有4个,故答案为4.23.(1)27101310xy⎧=⎪⎪⎨⎪=⎪⎩,(2)7949xy⎧=⎪⎪⎨⎪=⎪⎩【解析】【分析】(1)将x+y=4整体代入第②个式子,得出x-y=75,再与第①个式子加减消元可求得;(2)设x+y=m,x-y=n,先算m、n的一元二次方程,然后再求解x、y的值.【详解】(1)45()2()1 x yx y x y+=⎧⎨--+=-⎩①②将①代入②得:5(x-y)-8=-1,化简得:x-y=75③①+③得:2x=275,解得:x=2710 将x=2710代入①得:y=1310∴27101310x y ⎧=⎪⎪⎨⎪=⎪⎩(2)2()()134123()2()3x y x y x y x y -+⎧-=-⎪⎨⎪+--=⎩①②①×12得:8(x-y)-3(x+y)=-1 令x+y=m ,x-y=n则831323n m m n -=-⎧⎨-=⎩③④ ③+④得:6n=2,解得:n=13将n=13代入③得:m=119∴11913x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩再利用加减消元法,解得:7949x y ⎧=⎪⎪⎨⎪=⎪⎩【点睛】本题考查解一元二次方程组,常见的消元方法为:代入消元法和加减消元法,特殊情况,如本题还可用整体消元法.24.(1)见解析 (2)105°【解析】【分析】(1)由平行公理的推论可得////AB EG CD ,由平行线的性质可求解;(2)由角的数量关系可得55DEF ∠=︒,由角平分线的性质可得110BED ∠=︒,即可求B Ð的度数.【详解】(1)证明://AB CD ,//AB EG ,∴//CD EG .∴180D DEG ︒∠+∠=.∵//AB EG ,∴180B BEG ︒∠+∠=.∴360B D DEG BEG ∠+∠+∠+∠=︒即360B D BED ∠+∠+∠=︒.(2)由(1)可知180D DEG ︒∠+∠=.∴180********DEG D ∠︒︒︒=-∠=-=︒.∵20GEF ∠=︒,∴352055DEF DEG GEF ∠=∠+∠=︒+︒=︒.∵EF 平分BED ∠,∴2255110BED DEF ∠=∠=⨯︒=︒.由(1)可知360B D BED ∠+∠+∠=︒,∴360360145110105B D BED ∠=︒-∠-∠=︒-︒-︒=︒.【点睛】本题考查了平行线的性质,角平分线的定义,熟练运用平行线的性质是本题的关键.25.(1)50;(2)100°【解析】【分析】(1)根据//AF DE 可知∠AFG=∠E ,再根据//BC GE 即可求得∠AFG=∠1=50°, (2)先根据三角形内角和求出∠DHQ ,再根据//AF DE 求出∠FAH ,根据角平分线可知∠CAQ ,再根据三角形内角和即可求出ACQ ∠.【详解】解:(1)∵//AF DE ,∴∠AFG=∠E ,∵//BC GE ,∴∠E=∠1,又150∠=︒,∴∠AFG=∠1=50°.(2)解:在HDQ ∆中∵1180Q DHQ ∠+∠+∠=︒,15Q ∠=︒,150∠=︒,∴18011801550115DHQ Q ∠=︒-∠-∠=︒-︒-︒=︒;∵AEE ∠与DHQ ∠为对顶角,∴115AHE DHQ ∠=∠=︒,∵//AF EH ,∴180FAQ AHE ∠+∠=︒,∴65FAQ ∠=︒;∵AQ 平分FAC ∠,∴65CAQ FAQ ∠=∠=︒,∴1801806515100ACQ CAQ Q ∠=︒-∠-∠=︒-︒-︒=︒.【点睛】本题考查的平行线的性质,用到的知识点为:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补等.。
2020-2021学年七年级下学期期中数学试卷及答案解析 (38)
2020-2021学年七年级下学期期中数学试卷
一、选择题(本题共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确的)
1.下列说法错误的是()
A.对顶角相等B.同位角相等
C.同角的余角相等D.同角的补角相等
解:A、对顶角相等,说法正确.
B、同位角不一定相等,说法错误.
C、同角的余角相等,说法正确.
D、同角的补角相等,说法正确.
故选:B.
2.某种细菌的半径是0.000 0036毫米,这个数用科学记数法可表示为()A.3.6×10﹣6毫米B.3.6×10﹣5毫米
C.0.36×10﹣7毫米D.36×10﹣4毫米
解:0.000 0036=3.6×10﹣6,
故选:A.
3.下列运算正确的是()
A.a2•a3=a5B.a6•a3=a18C.(a3)2=a5D.a5+a5=a10
解:(B)原式=a9,故B错误;
(C)原式=a6,故C错误;
(D)原式=2a5,故D错误;
故选:A.
4.若有四根木棒,长度分别为4,5,6,9(单位:cm),从中任意选取三根首尾顺次连接围成不同的三角形,下列不能围成三角形的是()
A.4,5,6B.4,6,9C.5,6,9D.4,5,9
解:三角形三边可以为:①4、5、6;②4、6、9;③5、6、9.
所以,可以围成的三角形共有3个.
故选:D.
5.下列各题中,适合用平方差公式计算的是()
第1页(共11页)。
2020-2021学年人教版七年级下数学期中试题及答案(word版)
D D D D D C BA CCC C B B B B AA A A 2020-2021学年度七年级下册数学期中考试题一、选择题(每题3分,共30分)1、如图,若 a ∥b ,∠1=115°,则∠2 = ( )A 、55°B 、60°C 、65°D 、75°2.点(x,y)的坐标满足xy<0,则点N 在( )A .第一象限B .第二象限C .第一或第三象限D .第二或第四象限3、实数38, 2π,34 ,310 ,25 其中无理数有( )A 、 1个B 、 2个C 、 3个D 、 4个4、在下列图案中,不能用平移得到的图案是( )5、下列说法中的不正确的是( ) A 、两直线平行,内错角相等 B 、两直线平行,同旁内角相等 C 、同位角相等,两直线平行D 、平行于同一条直线的两直线平行6、将点P(-4,3)先向左平移2个单位长度,再向下平移2个单位长度得点P ’,则P ’的坐标为( ) A .(-2,5) B .(-6,1) C .(-6,5) D .(-2,1)7.在下列各图形中,分别画出了△ABC 中BC 边上的高AD ,其中正确的是( )8、下列语句中,不是命题的是( )A 、同位角相等,两直线平行B 、画直线AB 平行于CDC 、若a 2=b 2,则a=bD 、同角的余角相等9、如下图:下列条件不能判定AB ∥CD 的是( ) A 、41∠=∠ B 、32∠=∠ C 、B ∠=∠5D 、0180=∠+∠D BAD10观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有 ( )个 .A 、 121个B 、 26个C 、 41个D 、 110个二、耐心填一填 (每空3分,共15分)11.若∠1的对顶角是∠2,∠2的邻补角是∠3,∠3=45°,则∠1的度数为________。
12.64的立方根是_______;13.如果将电影票上的“6排11号”简记为(6,11),那么(9,4)表示14.如图,从A 处观测C 处仰角∠CAD=300,从B 处观测C 处的仰角∠CBD=450,从C 外观测A 、B 两处时视角∠ACB= 度 15.把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点 为G ,D 、C 分别在M 、N 的位置上,若∠EFG =55°, 则 ∠1=_______.三、解答题(共55分)16、解方程4)4(2=-x (4分)17若12-a 的平方根是3±,282+-b a 的立方根是3,求ba 的立方根。
2020-2021学年江苏省常州外国语学校七年级上学期期中考试英语试卷(原卷版)
2020-2021学年江苏省常州外国语学校七年级上学期期中考试英语试卷一、发出划线部分读音和其他选项不同的一项。
(共4小题,每小题1分,满分4分)1. A. many B. age C. table D. grade2. A. maps B. kites C. enjoys D. desks3. A. cute B. duck C. student D. usually4. A. what B. who C. where D. which二、单项选择(共10小题,每小题1分,满分10分)1. Jessica plays _____ volleyball for half _____ hour every day.A./; aB. /; anC. a; anD. the; an2. - How does your mother go to work every day?- She never walks _____ home from work. She usually _____.A.to; by bikeB. to; rides bikeC. /; ride a bikeD. /; rides a bike3. My brother has _____ books, but only _____ of them are interesting.A.many; a fewB. much; fewC. many; fewD. lots; a few4. - Would you please _____ my house when I go to Shanghai for a trip? - No problem.A.look atB. look afterC. look forD. look like5. - __________ ? - She is kind and friendly.A.How is the girl likeB. What does the girl likeC. What is the girl likeD. How does the girl look6. - Usually, the supermarket _____ at 8:30 in France. Let’s go shopping.- Many supermarket _____ because of the epidemic(疫情)in France.A.Opens; are closedB. is open; are closedC. is opened; closeD. opens; close7. - Is the girl on the right _____ best friend?- Yes, she is good at dancing. I hope she can dance with _____ some day.A.you; usB. his; IC. your; meD. her; me8. - Is Jenny good at Biology? - Yes, she can _____ with me about different animals in the zoo.A.sayB. tellC. talkD. speak9. - _____ does your school have the parents’ meeting? - _____ a year.A.How often; Three timesB. How often; Third timesC. How many times; OnceD. How many times; Two times10. - There is a match between my class and Class 3 _____ the evening of December 17.- ________.A.in; I love basketballB. on; Wish you good luckB.in; Have a good time D. on; Let me see三、完型填空(共10小题,每小题1分,共10分)My name is Tom. I am a middle school student. Reading is my favourite ___1___, so my parents bring Monica to read to me.Monica is a robot and it looks like a cat. Cats are ___2___animals. So is Monica. It can read all children’s books. Put a storybook in front of it, and it can read the ___3___to you. Put a picture in front of it, and it can ___4___you what is in it. Monica is helpful. It is___5___ there when I want to talk. “Hi, Monica!” I say. “Hi, Tom! Can I ___6___you?” Monica says.Monica can ___7___ many languages like Chinese, English and Japanese. And it is a great ___8___too. I like to ask it to sing a song for me.Some Chinese engineers made Monica. Their ___9___ is to let Monica read to children from all over the world. Do you want to ___10___ a Monica home? I’m sure you will love it.1. A. hobby B. subject C. sport D. club2. A. small B. clever C. black D. big3. A. e-mail B. name C. story D. card4. A. draw B. ask C. tell D. see5. A. always B. sometimes C. never D. usually6. A. see B. help C. know D. think7. A. say B. play C. write D. speak8. A. teacher B. writer C. singer D. farmer9. A. dream B. grade C. team D. meeting10. A. start B. make C. bring D. look四、阅读理解(共10小题,每小题1.5分,满分15分)A1. Mr. Green wants to go hiking with his children. They should meet at the Market Square ______________.A. at 8:00 a.m. on Saturday morningB. at 2:00p.m. on October 5thC. at 6:30 on MondayD. on Sunday morning2 . W ho can join the Singles’ Club?A. A 23-year-old young manB. A 28-year-old single manC. A 50-year-old single ladyD. A 28-year-old married woman3. From the four passages, we know they are from__________.A. a story bookB. a travel magazineC. a newspaperD. a text bookBOne winter, when the birds were all leaving for the south, one little bird broke its wing on the way and had to stay in aforest. Soon, it began to snow in the forest and the bird was cold and hungry. So the bird asked the trees to help it and let it stay in their branches(树枝).The birch tree said that it couldn’t help it because it had to look after the birds in the forest first. The oak tree didn’thelp it because it was afraid that the bird would eat up all its acorns(橡果). Even the willow tree didn’t want to help it.The poor bird tried to fly, but its wing was badly hurt. Seeing that, the spruce tree said it would like to help it and let itlive on the softest and warmest branch. The big pine tree also wanted to protect it. The little juniper tree gave its berries to the bird. So, the bird lived comfortably there and could fly again at spring time.1. Which was the first tree to help the bird?A. The willow treeB. The juniper treeC. The spruce treeD. The pine tree2. What does the underlined word “berries” in the last paragraph mean in Chinese?A. 浆果B. 石头C. 树根D. 绿叶3. Which of the following is TRUE?A. The story happened in summer.B. The little bird broke its leg.C. The willow tree saved the bird.D. The birch tree didn’t help the bird.CDo you use a mercury thermometer(水银温度计) to take your temperature(温度)? These thermometers will soon become history. Starting in 2026, China will ban(禁止) mercury thermometers.These thermometers were once widely(广泛地) used because they are cheap to make. Theyare also accurate (准确的) at telling small temperature changes. But the mercury in the thermometers is dangerous.Mercury is liquid(液体)at room temperature. This makes it useful to us. However, it is also poisonous(有毒的). Some people put their thermometers under their tongues(舌头) to take their temperature. But if the thermometer breaks and the mercury comes out, it can poison you.Even if the thermometer breaks outside of your body, it is hard to clean up. Mercury will turn into liquid balls and soon evaporate(挥发), making the air poisonous, too. Mercury can also end up in our groundwater(地下水) or soil. This is bad for the environment.Now there are many other body temperature thermometers in use.Forehead/ear thermometersThey use infrared rays(红外线)to take your temperature without touching the human body. they are being widely used during the COVID-I9 pandemic, as they are quick and easy to use.Electronic thermometersAn electronic thermometer has a sensor to take your temperature. It can be put into the mouth or under the armpit(腋窝).Pacifier thermometerThey are safe for babies. The baby just has to hold(含住) it in his or her mouth for a few minutes.1. What do we know from the first paragraph?A. Mercury thermometers are part of history.B. China will stop using mercury thermometer.C. People can’t take their body temperature with mercury thermometer.D. China will make more mercury thermometers.2. According to the story, why are forehead ear thermometers widely used?A. Because they are easy and quick to use.B. Because people can put them into the mouth.C. Because they are cheap to make.D. Because they are easy to buy.3. What is the problem with mercury?A It might break the thermometer. B. It is poisonous.C. It can cut your tongue.D. It is hard to find.4. What is the best title(标题) for this passage?A. Mercury thermometerB. MercuryC. Goodbye to mercury thermometerD. New thermometers五、主观阅读(共5小题,每小题1分,满分5分)Yexiao or night snacks is the fourth meal of the day in China. It is usually from 8: 00 p.m. to 2: 00 a.m. It is different in the north and the south of China.In the north of China, barbecue(烧烤)is the most popular night snack, especially in summer, while in the south there are many choices for yexiao Spicy crayfish(小龙虾) in Zhejiang and tasty desserts(甜点) in Xiamen have a lot of fans.Taiwan's night market is very famous. It is a place for both eating and shopping. Parents take their children to eat at street stalls. Young people shop around. Old people just sit around and chat.Why do people have yexiao?Some say that in southern China we have longer days, so we don't want to go to bed early but to have more mealsBut yexiao is not just about food. People eat with friends, chat and hang out. All these things make yexiao a way of life.Night snacks---a 1 of life1._________2._________3.__________4._________5.________六、词汇(共12小题;每小题1分,满分12分)A)根据句子意思及所给音标,写出单词的正确形式,每空一词。
2020-2021学年七年级下学期期中数学试卷及答案解析 (31)
2020-2021学年七年级下学期期中数学试卷一、选择题(每小题3分,共30分)1.计算(2x)2的结果是()A.2x2B.4x2C.4x D.2x解:(2x)2=22×x2=4x2.故选:B.2.下列语句中正确的是()A.相等的角是对顶角B.有公共顶点且相等的角是对顶角C.有公共顶点的两个角是对顶角D.角的两边互为反向延长线的两个角是对顶角解:A、相等的角不一定是对顶角,是假命题;B、有公共顶点且相等的角不一定是对顶角,错误;C、有公共顶点的两个角不一定是对顶角,错误;D、角的两边互为反向延长线的两个角是对顶角,正确;故选:D.3.下列运算正确的是()A.a2•a3=a6B.(ab)2=a2b2C.(a2)3=a5D.a2+a2=a4解:A、a2•a3=a2+3=a5,故本选项错误;B、(ab)2=a2b2,故本选项正确;C、(a2)3=a2×3=a6,故本选项错误;D、a2+a2=2a2,故本选项错误.故选:B.4.如果一个角的余角是30°,那么这个角的补角的度数是()A.30°B.60°C.90°D.120°解:由题意,得:180°﹣(90°﹣30°)=180°﹣60°=120°.故这个角的补角的度数是120°.故选:D.5.若物体运动的路程s(米)与时间t(秒)的关系式为s=3t2+2t+1,则当t=4秒时,该物体所经过的路程为()A.28米B.48米C.57米D.88米解:把t=4代入s=3t2+2t+1,得s=3×42+2×4+1=57(米).故选:C.6.在关系式y=3x+5中,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④用关系式表示的不能用图象表示;⑤y与x的关系还可以用列表法和图象法表示,其中说法正确的是()A.①②⑤B.①②④C.①③⑤D.①④⑤解:①x是自变量,y是因变量;正确;②x的数值可以任意选择;正确;③y是变量,它的值与x无关;而y随x的变化而变化;错误;④用关系式表示的不能用图象表示;错误;⑤y与x的关系还可以用列表法和图象法表示,正确;故选:A.7.若(x﹣2)(x+3)=x2+ax+b,则a、b的值分别为()A.a=5,b=6B.a=1,b=﹣6C.a=1,b=6D.a=5,b=﹣6解:∵(x﹣2)(x+3)=x2+x﹣6=x2+ax+b,∴a=1,b=﹣6.故选:B.8.如图,已知B、C、E在同一直线上,且CD∥AB,若∠A=105°,∠B=40°,则∠ACE 为()A.35°B.40°C.105°D.145°解:∵CD∥AB,∠B=40°,∠A=105°,∴∠DCE=∠B=40°,∠ACD=∠A=105°,∴∠ACE=∠ACD+∠DCE=145°.故选:D.9.张大伯出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了10分钟报纸后,用了15分钟返回到家,下面哪个图形表示张大伯离家时间与距离之间的关系()A.B.C.D.解:依题意,0~20min散步,离家路程从0增加到900m,20~30min看报,离家路程不变,30~45min返回家,离家从900m路程减少为0m.故选:D.10.设a=x﹣2017,b=x﹣2019,c=x﹣2018,若a2+b2=34,则c2的值是()A.16B.12C.8D.4解:∵a=x﹣2017,b=x﹣2019,a2+b2=34,∴(x﹣2017)2+(x﹣2019)2=34,∴(x﹣2018+1)2+(x﹣2018﹣1)2=34,∴(x﹣2018)2+2(x﹣2018)+1+(x﹣2018)2﹣2(x﹣2018)+1=34,∴2(x﹣2018)2=32,∴(x﹣2018)2=16,又c=x﹣2018,∴c2=16.故选:A.二、填空题(每小题4分,6小题共24分)11.(4分)如果a x•a3=a5,那么x=2.解:由题意,得x+3=5,解得x=2,故答案为:2.12.(4分)在关系式y=3x﹣1中,当x由1变化到5时,y由2变化到14.解:当x=1时,代入关系式y=3x﹣1中,得y=3﹣1=2;当x=5时,代入关系式y=3x﹣1中,得y=15﹣1=14.故答案为:2,14.13.(4分)如图,直线l1∥l2,被直线l所截,如果∠1=60°,那么∠2的度数为120°.解:∵直线l1∥l2,被直线l所截,∠1=60°,∴∠2=180°﹣60°=120°.故答案为:120°.14.(4分)小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行80米.解:通过读图可知:小明家距学校800米,小明从学校步行回家的时间是15﹣5=10(分),所以小明回家的速度是每分钟步行800÷10=80(米).故答案为:80.15.(4分)已知:如图,OC⊥AB,OD⊥OE,则与∠AOD互余的角是∠COD,∠BOE.解:∵OC⊥AB,OD⊥OE,∴∠DOE=∠COB=∠AOC=90°,∴∠AOD+∠COD=∠AOD+∠BOE=90°,∴与∠AOD互余的角是∠COD,∠BOE.故答案为:∠COD,∠BOE.16.(4分)设4x2+mx+121是一个完全平方式,则m=±44.解:∵4x2+mx+121是一个完全平方式,∴mx=±2×11•2x,∴m=±44.故答案为:±44.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:(﹣2x3y2)3÷(2x2y)解:原式=﹣8x9y6÷2x2y=﹣4x7y5.18.(6分)先化简,再求值:(a+2)(a﹣2)+a(4﹣a),其中a=1 4.解:(a+2)(a﹣2)+a(4﹣a)=a2﹣4+4a﹣a2=4a﹣4,当a=14时,原式=4×14−4=1−4=−3.19.(6分)如图,直线a,b被直线c所截,若a∥b,∠1=40°,∠2=70°,求∠3的度数.解:∵a∥b,∠1=40°,∴∠4=∠1=40°,∴∠3=∠2+∠4=70°+40°=110°.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)若一个角的补角是这个角的余角的3倍,求这个角的度数.解:设这个角是x,则这个角的补角为180°﹣x,余角为90°﹣x,所以3(90°﹣x)=180°﹣x,整理,可得2x=90°,解得:x=45°,即这个角的度数为45°.21.(7分)已知y=﹣x2+(a﹣1)x+2a﹣3,当x=﹣1时,y=0,(1)求a的值;(2)当x=1时,求y的值.解:(1)由y=﹣x2+(a﹣1)x+2a﹣3,当x=﹣1时,y=0,得﹣1﹣(a﹣1)+2a﹣3=0,解得a=3;(2)函数解析式为y=﹣x2+2x+3,当x=1时,y=﹣1+2+3=4.22.(7分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.解:阴影部分的面积=(3a+b)(2a+b)﹣(a+b)2=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,当a=3,b=2时,原式=5×32+3×3×2=63(平方米).五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=105°,求∠ACB的度数.解:(1)CD与EF平行.理由如下:∵CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°,∴EF∥CD;(2)∵EF∥CD,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠ACB=∠3=105°.24.(9分)小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的函数关系式.(2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?解:(1)设函数的解析式是y=kx,把x=40,y=64代入得:40k=64,解得k=1.6.则函数的解析式是y=1.6x.(2)∵价前西瓜售价每千克1.6元.降价0.4元后西瓜售价每千克1.2元.降价后销售的西瓜为(76﹣64)÷1.2=10(千克)∴小明从批发市场共购进50千克西瓜.(3)76﹣50×0.8=76﹣40=36(元).即小明这次卖瓜赚了36元钱.25.(9分)小学四年级我们已经知道三角形三个内角和是180°,对于如图1中,AC,BD 交于O点,形成的两个三角形中的角存在以下关系:①∠DOC=∠AOB②∠D+∠C=∠A+∠B.试探究下面问题:已知∠BAD的平分线AE与∠BCD的平分线CE交于点E,(1)如图2,若AB∥CD,∠D=30°,∠B=40°,则∠E=35°;(2)如图3,若AB不平行CD,∠D=30°,∠B=50°,则∠E=40°;(3)在总结前两问的基础上,借助图3,探究∠E与∠D、∠B之间是否存在某种等量关系?若存在,请说明理由;若不存在,请举例说明.解:(1)∠E=12(∠D+∠B)=35°;(2)∠E=12(∠D+∠B)=40°;(3)∠D+∠B=2∠E.简单说明:∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=12∠BCD,∠EAD=∠EAB=12∠BAD,∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E.故答案为:35°;40°.。
2020-2021学年七年级下学期期中数学试卷及答案解析 (36)
2020-2021学年七年级下学期期中数学试卷一、选择题(本题共有12小題,每小题3分,共36分,每小题有四个选项,其中有一个是正确的)1.−67的绝对值是( )A .67B .−76C .−67D .76 解:−67的绝对值是67.故选:A .2.港珠澳大桥的桥隧全长55000米,是世界最长的跨海大桥,数字55000用科学记数法表示为( )A .5.5×104B .0.55×104C .5.5×103D .55×103解:将55000用科学记数法表示应为:5.5×104.故选:A .3.图是由几个正方体组成的立体图形,则这个立体图形从左看到的平面图形是( )A .B .C .D .解:从左面看易得第一层左上角有1个正方形,第二层最有2个正方形.故选:A .4.某商品的进价为200元,标价为300元,打x 折销售时后仍获利5%,则x 为( )A .7B .6C .5D .4解:设商品是按标价的x 折销售的,根据题意列方程得:(300×x 10−200)÷200=5%,解得:x =7.则此商品是按标价的7折销售的.故选:A .5.如图,将一块含30°的三角板叠放在直尺上.若∠1=40°,则∠2=( )A .45°B .50°C .60°D .70°解:如图,∵直尺的两边互相平行,∴∠3=∠1=40°,∴∠4=∠3=40°,∴∠2=∠4+30°=40°+30°=70°.故选:D .6.下列运算正确的是( )A .3x 3﹣5x 3=﹣2xB .6x 3÷2x ﹣2=3xC .(13x 3)2=19x 6D .﹣3(2x ﹣4)=﹣6x ﹣12解:A 、3x 3﹣5x 3=﹣2x 3,原式计算错误,故本选项错误;B 、6x 3÷2x ﹣2=3x 5,原式计算错误,故本选项错误; C 、(13x 3)2=19x 6,原式计算正确,故本选项正确; D 、﹣3(2x ﹣4)=﹣6x +12,原式计算错误,故本选项错误;故选:C .7.下列说法正确的是( )A .单项式32nx 2y 的系数是32B .同一平面内,过一点有且只有一条直线与已知直线平行C .内错角相等,两直线平行D .若AB =BC ,则点B 是线段AC 的中点解:A 、单项式32nx 2y 的系数是32n ,故A 错误;B、同一平面内,过直线外一点有且只有一条直线与已知直线平行,故B错误;C、内错角相等,两直线平行,故C正确;D、A、B、C在同一条直线上,若AB=BC,则点B是线段AC的中点,故D错误;故选:C.8.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°解:由题意得:AB=ED,BC=DC,∠D=∠B=90°,∴△ABC≌△EDC(SAS),∴∠BAC=∠1,∠1+∠2=180°.故选:B.9.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.SAS B.AAS C.ASA D.SSS解:由作法得OD=OC=OC′=OD′,CD=C′D′,则可根据“SSS”可判定△OCD≌△OC′D′,所以∠A′O′B′=∠AOB.故选:D.10.从A地向B地打长途电话,按时收费,3分钟内收费2.4元,以后每超过1分钟加收1元,若通话t分钟(t≥3),则需付电话费y(元)与t(分钟)之间的函数关系式是()A.y=t﹣0.5B.y=t﹣0.6C.y=3.4t﹣7.8D.y=3.4t﹣8解:根据题意得:y=2.4+(t﹣3)=t﹣0.6(t≥3).故选:B.11.观察下列关于a的单项式,探究其规律:a,3a2,5a3,7a4,9a5,….按照上述规律,第2019个单项式是()A.2019a2019B.4039a2019C.4038a2019 D.4037a2019解:根据分析的规律,得第2019个单项式是4037x2019.故选:D.12.如图,两个正方形边长分别为a、b,如果a+b=9,ab=12,则阴影部分的面积为()A.25B.22.5C.13D.6.5解:当a+b=7,ab=12时,由题意得:S阴影=12a2−12b(a﹣b)=12a2−12ab+12b2=12[(a+b)2﹣2ab]−12ab=12(81﹣24)﹣6=22.5故选:B.二、填空题.(本题共有2小题,每小题3分,共6分)13.若﹣5x a+5y3+8x3y b=3x3y3,则ab的值是﹣6.解:∵﹣5x a+5y3+8x3y b=3x3y3,∴a+5=3,b=3,解得:a=﹣2,故ab=﹣6.故答案为:﹣6.14.在同一平面内已知∠AOB=80°,∠BOC=20°,OM、ON分别是∠AOB和∠BOC的平分线,则∠MON的度数是30°或50°.解:∠BOC在∠AOB内部时,∵∠AOB=80°,其角平分线为OM,∴∠MOB=40°,∵∠BOC=20°,其角平分线为ON,∴∠BON=10°,∴∠MON=∠MOB﹣∠BON=40°﹣10°=30°;∠BOC在∠AOB外部时,∵∠AOB=80°,其角平分线为OM,∴∠MOB=40°,∵∠BOC=20°,其角平分线为ON,∴∠BON=10°,∴∠MON=∠MOB+∠BON=40°+10°=50°,故答案为:30°或50°.三、解答题(本题6分)15.(6分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×1602000=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).一、填空题[每题3分,共2题,共6分)16.已知(a﹣4)(a﹣2)=3,则(a﹣4)2+(a﹣2)2的值为10.解:∵(a﹣4)(a﹣2)=3,∴[(a﹣4)﹣(a﹣2)]2=(a﹣4)2﹣2(a﹣4)(a﹣2)+(a﹣2)2=(a﹣4)2+(a﹣2)2﹣2×3=4,∴(a﹣4)2+(a﹣2)2=10.故答案为:10.17.如图,在△ABC中,∠ACB=90°,AC=7cm,BC=3cm,CD为AB边上的高,点E 从点B出发,在直线BC上以2cm的速度移动,过点E作BC的垂线交直线CD于点F,当点E运动2或5s时,CF=AB.解:①如图,当点E在射线BC上移动时,若E移动5s,则BE=2×5=10(cm),∴CE=BE﹣BC=10﹣3=7cm.∴CE=AC,在△CFE与△ABC中,{∠ECF=∠ACE=AC∠CEF=∠ACB,∴△CEF ≌△ABC (ASA ),∴CF =AB ,②当点E 在射线CB 上移动时,若E 移动2s ,则BE ′=2×2=4(cm ),∴CE ′=BE ′+BC =4+3=7(cm ),∴CE ′=AC ,在△CF ′E ′与△ABC 中,{∠E′CF =∠A CE′=AC ∠CEF′=∠ACD =90°,∴△CF ′E ′≌△ABC (ASA ),∴CF ′=AB ,综上所述,当点E 在射线CB 上移动5s 或2s 时,CF ′=AB ;故答案为:2或5.二、解答题18.(8分)(1)计算:(12)−1−(3.14﹣π)0+|﹣3|﹣0.253×43(2)解方程;x 6−30−x 4=5解:(1)原式=2﹣1+3﹣(0.25×4)3=4﹣1=3;(2)去分母得:2x ﹣3(30﹣x )=60,则2x ﹣90+3x =60,整理得:5x =150,解得:x =30.19.(6分)化简求值:[(2x +y )2﹣(2x +y )(x ﹣y )﹣2x 2]÷(﹣2y ),其中x =﹣2,y =12.解:原式=(4x2+4xy+y2﹣2x2+2xy﹣xy+y2﹣2x2)÷(﹣2y)=(5xy+2y2)÷(﹣2y)=−5 2x﹣y,当x=﹣2,y=12时,原式=5−12=412.20.(6分)如图:∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,那么EC与DF平行吗?为什么?请完成下面的解题过程解:∵BD平分∠ABC,CE平分∠ACB(已知)∴∠DBC=12∠ABC,∠ECB=12∠ACB∵∠ABC=∠ACB(已知)∴∠DBC=∠ECB.∠F=∠DBF(已知)∴∠F=∠ECB∴EF∥AD(同位角相等,两直线平行).解:∵BD平分∠ABC,CE平分∠ACB(已知)∴∠DBC=12∠ABC,∠ECB=12∠ACB,∵∠ABC=∠ACB(已知)∴∠DBC=∠ECB.∵∠DBF=∠F,(已知)∴∠F=∠ECB,∴EF∥AD(同位角相等,两直线平行).21.(8分)小凡与小光从学校出发到距学校5千米的图书馆看书,途中小凡从路边超市买了一些学习用品,如图反应了他们俩人离开学校的路程s(千米)与时间t(分钟)的关系,请根据图象提供的信息回答问题:(1)l1和l2中,l1描述小凡的运动过程;(2)小凡谁先出发,先出发了10分钟;(3)小光先到达图书馆,先到了10分钟;(4)当t=34分钟时,小凡与小光在去学校的路上相遇;(5)小凡与小光从学校到图书馆的平均速度各是多少千米/小时?(不包括中间停留的时间)解:(1)由图可得,l1和l2中,l1描述小凡的运动过程,故答案为:l1;(2)由图可得,小凡先出发,先出发了10分钟,故答案为:小凡,10;(3)由图可得,小光先到达图书馆,先到了60﹣50=10(分钟),故答案为:小光,10;(4)小光的速度为:5÷(50﹣10)=18千米/分钟,小光所走的路程为3千米时,用的时间为:3÷18=24(分钟),∴当t=10+24=34(分钟)时,小凡与小光在去学校的路上相遇,故答案为:34;(5)小凡的速度为:520+(60−50)60=10(千米/小时),小光的速度为:550−1060=7.5(千米/小时),即小凡与小光从学校到图书馆的平均速度分别为10千米/小时、7.5千米/小时.22.(8分)如图,在△ABC中,D是BC的中点,过D点的直线EG交AB于点E,交AB 的平行线CG于点G,DF⊥EG,交AC于点F.(1)求证:BE=CG;(2)判断BE+CF与EF的大小关系,并证明你的结论.解:(1)∵D是BC的中点,∴BD=CD,∵AB∥CG,∴∠B=∠DCG,又∵∠BDE=∠CDG,∴△BDE≌△CDG,∴BE=CG;(2)BE+CF>EF.理由:如图,连接FG,∵△BDE≌△CDG,∴DE=DG,又∵FD⊥EG,∴FD垂直平分EG,∴EF=GF,又∵△CFG中,CG+CF>GF,∴BE+CF>EF.23.(10分)(1)如图1中,∠ABC=90°,AB=BC,点B在直线上L上,过A、C两点作直线L的连线段垂足分别为点D、点E,求证:△ADB≌△BEC;(2)如图2,△ABC中,∠ACB=90°,AC=6,BC=8,点P从A点出发沿A﹣C﹣B 路径向终点运动,终点为B点,点Q从B点出发沿B﹣C﹣A路径向终点运动,终点为A 点,点P与Q分别以1和3的迳动速度同时开始运动,两点都要到相应的终点才能停止运动,在某时刻,分别过P和Q作PF⊥l于B,QF垂直l于F.问:点P运动多少时间时,△PEC与QFC全等?请说明理由.(1)证明:∵△ABC是等腰直角三角形,∴AB=AC.∠ABC=90°,∵AD⊥l,CE⊥l,∴∠ADB=∠BEC=∠ABC=90°,∴∠DAB+∠DBA=90°,∠DBA+∠CBE=90°,∴∠DAB=∠CBE,∴△ADB≌△BEC,(2)解:设运动时间为t秒时,△PEC≌△QFC,∵△PEC≌△QFC,∴斜边CP=CQ,有四种情况:①P在AC上,Q在BC上,如图2所示:CP=6﹣t,CQ=8﹣3t,∴6﹣t=8﹣3t,∴t=1;②P、Q都在AC上,此时P、Q重合,如图3所示:∴CP=6﹣t=3t﹣8,∴t=3.5;③P在BC上,Q在AC时,此时不存在;如图4所示:理由是:8÷3×1<6,Q到AC上时,P应也在AC上;④当Q到A点(和A重合),P在BC上时,如图5所示:∵CQ=CP,CQ=AC=6,CP=t﹣6,∴t﹣6=6∴t=12∵t<14∴t=12符合题意即点P运动1或3.5或12秒时,△PEC与△QFC全等.。
2020-2021初一数学下期中试题及答案
(2)扇形统计图中 类所对应的扇形圆心角的度数是度;
(3)若七年级人数为 人,请你估计体育成绩优、良的总人数.
23.已知∠1=70°,∠CDN=125°,CM平分∠DCF,试说明:CM∥DN
24.某商场购进甲,乙两种服装后,都加价50%标价出售.春节期间,商场搞优惠促销,决定将甲,乙两种服装分别按标价的七折和八折出售.某顾客购买甲,乙两种服装共付款186元,两种服装标价和为240元.问:这两种服装打折之后售出的利润是多少元?
5.D
解析:D
【解析】
【分析】
【详解】
∵∠C=80°,∠CAD=60°,
∴∠D=180°﹣80°﹣60°=40°,
∵AB∥CD,
∴∠BAD=∠D=40°.
故选D.
6.D
解析:D
【解析】
【分析】
分 和 两种情况将所求方程变形,求出解即可.
【详解】
当 ,即 时,所求方程变形为 ,
去分母得: ,即 ,
解得:
A.(1,0)B.(2,0)C.(1,-2)D.(1,-1)
4.为了了解天鹅湖校区2019-2020学年1600名七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是()
A.1600名学生的体重是总体B.1600名学生是总体
C.每个学生是个体D.100名学生是所抽取的一个样本
17.有50个数据,共分成6组,第1~4组的频数分别为10,8,7,11.第5组的频率是0.16,则第6组的频数是__________.
18.如图,将边长为6cm的正方形ABCD先向上平移3cm,再向右平移1cm,得到正方形A′B′C′D′,此时阴影部分的面积为______cm2.
2020-2021常州外国语学校七年级数学上期中试题(及答案)
2020-2021常州外国语学校七年级数学上期中试题(及答案)一、选择题1.计算:1252-50×125+252=( )A.100B.150C.10000D.225002.甲乙两个超市为了促销一种定价相等的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买同样的商品最合算( )A.甲B.乙C.相同D.和商品的价格有关3.计算3x2﹣x2的结果是()A.2 B.2x2 C.2x D.4x24.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.81B.508C.928D.13245.如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,∠BAF=600,那么∠DAE等于()A.45°B.30 °C.15°D.60°6.将一副三角板如图摆放,∠OAB=∠OCD=90°,∠AOB=60°,∠COD=45°,OM平分∠AOD,ON平分∠COB,则∠MON的度数为()A.60°B.45°C.65.5°D.52.5°7.如图,O是直线AB上一点,OD平分∠BOC,OE平分∠AOC,则下列说法错误的是()A .∠DOE 为直角B .∠DOC 和∠AOE 互余 C .∠AOD 和∠DOC 互补 D .∠AOE 和∠BOC 互补8.实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A .a+b=0B .b <aC .ab >0D .|b|<|a|9.下列说法:①﹣a 一定是负数;②|﹣a |一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个10.如图,将一三角板按不同位置摆放,其中1∠与2∠互余的是( )A .B .C .D .11.如图所示几何体的左视图是( )A .B .C .D . 12.代数式:216x y x +,25xy x +,215y xy -+,2y ,-3中,不是整式的有( ) A .4个 B .3个 C .2个 D .1个二、填空题13.若代数式5x -5与2x -9的值互为相反数,则x =________.14.将一列有理数-1,2,-3,4,-5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C 的位置)是有理数4,那么,“峰6”中C 的位置是有理数______,-2017应排在A 、B 、C 、D 、E 中_______的位置.15.如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是_______(结果用含a 、b 代数式表示).16.若关于x 的方程2ax =(a+1)x+6的解为正整数,求整数a 的值_____. 17.2018年2月3日崂山天气预报:多云,-1°C~-9°C ,西北风3级,则当天最高气温比最低气温高_______℃18.小华在计算14a -时,误把“-”看成“+”,求得结果为5-,则14a -=____________.19.若233mx y -与42n x y 是同类项,则n m =__________.20.已知3x =是关于x 方程810mx -=的解,则m =__________. 三、解答题21.已知:223+2A B a ab -=,223A a ab =-+-.(1)求B ;(用含a 、b 的代数式表示)(2)比较A 与B 的大小.22.阅读理解与计算:(1)用“⊕”定义新运算:对于任意有理数,a b ,都有21a b b ⊕=+.例如:2744117⊕=+=.则①填空:53⊕= ;②当m 为有理数时,求()2m m ⊕⊕的值;(2)已知,m n 互为相反数,,x y 互为倒数,1=a ,试求()()201220122a m n xy -++-的值.23.初一(7)班数学学习小组“孙康映雪”在学习了第七章平面图形的认识(二)后对几何学习产生了浓厚的兴趣.请你认真研读下列三个片断,并完成相关问题.如图1,直线OM ⊥ON ,垂足为O ,三角板的直角顶点C 落在∠MON 的内部,三角板的另两条直角边分别与ON 、OM 交于点D 和点B .(片断一)小孙说:由四边形内角和知识很容易得到∠OBC+∠ODC的值.如果你是小孙,得到的正确答案应是:∠OBC+∠ODC = °.(片断二)小康说:连结BD(如图2),若BD平分∠OBC,那么BD也平分∠ODC.请你说明当BD平分∠OBC时,BD也平分∠ODC的理由.(片断三)小雪说:若DE平分∠ODC、BF平分∠MBC,我发现DE与BF具有特殊的位置关系.请你先在备用图中补全图形,再判断DE与BF有怎样的位置关系并说明理由.24.我国古代《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?25.在做解方程练习时,学习卷中有一个方程“2y–12=12y+■”中的■没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的解与当x=2时代数式5(x–1)–2(x–2)–4的值相同.”小聪很快补上了这个常数.同学们,你们能补上这个常数吗?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:原式=1252﹣2×25×125+252=(125-25)2=1002=10000.故选C.点睛:本题考查了完全平方公式的应用,熟记完全平方公式的特点是解决此题的关键.2.B解析:B【解析】【分析】此题可设原价为x元,分别计算出两超市降价后的价钱,再比较即可.设原价为x元,则甲超市价格为x×(1-10%)×(1-10%)=0.81x乙超市为x×(1-20%)=0.8x,3.B解析:B【解析】【分析】根据合并同类项的法则进行计算即可得.【详解】3x2﹣x2=(3-1)x2=2x2,故选B.【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.4.B解析:B【解析】【分析】类比于现在我们的十进制“满十进一”,可以表示满七进一的数为:千位上的数×73+百位上的数×72+十位上的数×7+个位上的数.【详解】解:孩子自出生后的天数是:1×73+3×72+2×7+4=508,故选:B.【点睛】本题是以古代“结绳计数”为背景,按满七进一计算自孩子出生后的天数,运用了类比的方法,根据图中的数字列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.5.C解析:C【解析】【分析】先根据矩形的性质得到∠DAF=30°,再根据折叠的性质即可得到结果.【详解】解:∵ABCD是长方形,∴∠BAD=90°,∵∠BAF=60°,∴∠DAF=30°,∵长方形ABCD沿AE折叠,∴△ADE≌△AFE,∴∠DAE=∠EAF=12∠DAF=15°.故选C.图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量.6.D解析:D【解析】【分析】设∠AOM=∠DOM=x,∠CON=∠BON=y,则∠BOD=60-2x,根据∠AOB=60°,∠COD=45°,列出算式,求出x-y的度数,最后根据∠MON与各角之间的关系,即可求出答案.【详解】设∠AOM=∠DOM=x,∠CON=∠BON=y,则∠BOD=60°-2x∵∠COD=45°∴60°-2x+2y=45°,∴x-y=7.5°∴∠MON=x+(60°-2x)+y=60°(x-y)=52.5°故选D.【点睛】本题考查了角平分线的性质、几何图形中角度计算问题,通过代数方法解决几何问题是本题的关键.7.D解析:D【解析】【分析】根据角平分线的性质,可得∠BOD=∠COD,∠COE=∠AOE,再根据余角和补角的定义求解即可.【详解】解:∵OD平分∠BOC,OE平分∠AOC,∴∠BOD=∠COD=12∠BOC,∠AOE=∠COE=12∠AOC,∵∠AOC+∠COB=180°,∴∠COE+∠COD=90°,A、∠DOE为直角,说法正确;B、∠DOC和∠AOE互余,说法正确;C、∠AOD和∠DOC互补,说法正确;D、∠AOE和∠BOC互补,说法错误;故选D.【点睛】本题考查了余角和补角的知识,解答本题的关键是理解余角和补角的定义,掌握角平分线的性质.解析:D【解析】【分析】根据图形可知,a 是一个负数,并且它的绝对是大于1小于2,b 是一个正数,并且它的绝对值是大于0小于1,即可得出|b|<|a|.【详解】A 选项:由图中信息可知,实数a 为负数,实数b 为正数,但表示它们的点到原点的距离不相等,所以它们不互为相反数,和不为0,故A 错误;B 选项:由图中信息可知,实数a 为负数,实数b 为正数,而正数都大于负数,故B 错误;C 选项:由图中信息可知,实数a 为负数,实数b 为正数,而异号两数相乘积为负,负数都小于0,故C 错误;D 选项:由图中信息可知,表示实数a 的点到原点的距离大于表示实数b 的点到原点的距离,而在数轴上表示一个数的点到原点的距离越远其绝对值越大,故D 正确.∴ 选D.9.A解析:A【解析】【分析】【详解】根据负数的概念,当a≤0时,-a≥0,故①不正确;|-a|≥0,是非负数,故②不正确;根据乘积为1的两数互为倒数,可知倒数是本身的数为±1,故③正确;根据绝对值的意义,一个正数的绝对值是本身,0的绝对值是0,负数的绝对值是其相反数,故④不正确;由平方的意义,1和0的平方均为她本身,故⑤不正确.故选A.【点睛】此题主要考查了有理数的相关概念,解题时要明确正负数,相反数,绝对值,倒数的意义及特点,然后从中判断即可.相反数:只有符号不同的两数互为相反数;绝对值:一个正数的绝对值是本身,0的绝对值是0,一个负数的绝对值是其相反数; 倒数:乘积为1的两数互为倒数.10.C解析:C【解析】【分析】根据余角的定义,可得答案.【详解】解:C 中的121809090∠∠+=-=,【点睛】本题考查余角,利用余角的定义是解题关键.11.B解析:B【解析】【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看是:故选B .【点睛】本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.12.C解析:C【解析】【分析】根据整式的概念,进行判断即可.【详解】216x y x+分母中含有未知数,是分式,不是整式, 25xy x +是多项式,是整式,215y xy -+是多项式,是整式, 2y分母中含有未知数,是分式,不是整式, -3是单项式,是整式, ∴不是整式的有216x y x +、2y,共2个, 故选C.【点睛】本题主要考查了整式的定义,注意分式与整式的区别在于分母中是否含有未知数. 二、填空题13.2【解析】【分析】由5x -5的值与2x -9的值互为相反数可知:5x -5+2x -9=0解此方程即可求得答案【详解】由题意可得:5x -5+2x -9=0移项得7x=14系数化为1得x=2【点睛】本题考查了解析:2【解析】【分析】由5x-5的值与2x-9的值互为相反数可知:5x-5+2x-9=0,解此方程即可求得答案.【详解】由题意可得:5x-5+2x-9=0,移项,得7x=14,系数化为1,得x=2.【点睛】本题考查了相反数的性质以及一元一次方程的解法.14.-29A【解析】【分析】由题意可知:每个峰排列5个数求出5个峰排列的数的个数再求出峰6中C位置的数的序数然后根据排列的奇数为负数偶数为正数解答根据题目中图中的特点可知每连续的五个数为一个循环A到E从解析:-29,A.【解析】【分析】由题意可知:每个峰排列5个数,求出5个峰排列的数的个数,再求出,“峰6”中C位置的数的序数,然后根据排列的奇数为负数,偶数为正数解答,根据题目中图中的特点可知,每连续的五个数为一个循环A到E,从而可以解答本题.【详解】解:∵每个峰需要5个数,∴5×5=25,25+1+3=29,∴“峰6”中C位置的数的是-29,(2017-1)÷5=2016÷5=403…1,∴2017应排在A、B、C、D、E中A的位置,故答案为:-29;A【点睛】此题考查图形的变化规律,观察出每个峰有5个数是解题的关键,难点在于峰上的数的排列是从2开始.15.a+8b【解析】【分析】观察可知两个拼接时总长度为2a-(a-b)三个拼接时总长度为3a-2(a-b)由此可得用9个拼接时的总长度为9a-8(a-b)由此即可得【详解】观察图形可知两个拼接时总长度为解析:a+8b【解析】【分析】观察可知两个拼接时,总长度为2a-(a-b),三个拼接时,总长度为3a-2(a-b),由此可得用9个拼接时的总长度为9a-8(a-b),由此即可得.【详解】观察图形可知两个拼接时,总长度为2a-(a-b),三个拼接时,总长度为3a-2(a-b),四个拼接时,总长度为4a-3(a-b),…,所以9个拼接时,总长度为9a-8(a-b)=a+8b,故答案为:a+8b.【点睛】本题考查了规律题——图形的变化类,通过推导得出总长度与个数间的规律是解题的关键. 16.2347【解析】【分析】把a看做已知数表示出方程的解由方程的解为正整数确定出整数a的值即可【详解】方程整理得:(a﹣1)x=6解得:x=由方程的解为正整数即为正整数得到整数a=2347故答案为:23解析:2,3,4,7【解析】【分析】把a看做已知数表示出方程的解,由方程的解为正整数,确定出整数a的值即可.【详解】方程整理得:(a﹣1)x=6,解得:x=61 a-,由方程的解为正整数,即61a-为正整数,得到整数a=2,3,4,7,故答案为:2,3,4,7【点睛】本题考查了求解一元一次方程的解法,解题的关键是得出关于a的等式.17.8【解析】【分析】根据有理数的减法解答即可【详解】-1-(-9)=8所以当天最高气温是比最低气温高8℃故答案为:8【点睛】此题考查有理数的减法关键是根据有理数的减法解答解析:8【解析】【分析】根据有理数的减法解答即可.【详解】-1-(-9)=8,所以当天最高气温是比最低气温高8℃,故答案为:8【点睛】此题考查有理数的减法,关键是根据有理数的减法解答.18.33【解析】【分析】先根据错解求出a的值再进行计算即可得解【详解】解:根据题意得14+a=-5a=-14-5=-19∴14-a=14-(-19)=33故答案为:33【点睛】本题考查有理数的加法和减法解析:33【解析】【分析】先根据错解求出a 的值,再进行计算即可得解.【详解】解:根据题意得,14+a=-5,a=-14-5=-19, ∴14-a=14-(-19)=33故答案为:33【点睛】本题考查有理数的加法和减法,正确理解题意是解题的关键.19.8【解析】【分析】利用同类项的定义得出mn 的值进而得出答案【详解】∵与是同类项∴∴∴故答案为:8【点睛】此题主要考查了同类项正确得出mn 的值是解题关键解析:8【解析】【分析】利用同类项的定义得出m ,n 的值进而得出答案.【详解】∵233m x y -与42n x y 是同类项∴24m =,3n =∴2m =∴328n m ==.故答案为:8.【点睛】此题主要考查了同类项,正确得出m ,n 的值是解题关键.20.6【解析】【分析】将x =3代入原方程即可求出答案【详解】将x =3代入mx −8=10∴3m=18∴m=6故答案为:6【点睛】本题考查一元一次方程解题的关键是熟练运用一元一次方程的解的定义本题属于基础题解析:6【解析】【分析】将x =3代入原方程即可求出答案.【详解】将x =3代入mx−8=10,∴3m =18,∴m =6,故答案为:6【点睛】本题考查一元一次方程,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.三、解答题21.(1)-5a 2+2ab-6;(2)A >B .【解析】【分析】(1)根据题意目中223+2A B a ab -=,223A a ab =-+-,可以用含a 、b 的代数式表示出B ;(2)根据题目中的A 和(1)中求得的B ,可以比较它们的大小.【详解】(1)∵2A-B=3a 2+2ab ,A=-a 2+2ab-3,∴B=2A-(3a 2+2ab )=2(-a 2+2ab-3)-(3a 2+2ab )=-2a 2+4ab-6-3a 2-2ab=-5a 2+2ab-6,(2)∵A=223a ab -+-,B=-5a 2+2ab-6,∴A-B=(223a ab -+-)-(-5a 2+2ab-6)=-a 2+2ab-3+5a 2-2ab+6=4a 2+3,∵无论a 取何值,a 2≥0,所以4a 2+3>0,∴A >B .【点睛】本题考查整式的加减,解答本题的关键是明确整式加减的计算方法.22.(1)①10;②26;(2)2【解析】【分析】(1)根据新定义运算法则可得:①53⊕=32+1;②()2221551m m ⊕+=⊕=+; (2)根据互为相反数和互为倒数的两个数的关系,和绝对值定义可得:m+n=0,xy=1,a 2=1,代入式子可得.【详解】解:(1)根据新定义运算法则可得:①53⊕=32+1=10故答案为:10②()222155126m m ⊕+=⊕=+=(2)因为,m n 互为相反数,,x y 互为倒数,1=a ,所以m+n=0,xy=1,a 2=1所以()()201220122a m n xy -++-=1-0+1=2【点睛】考核知识点:新定义运算,有理数运算.理解新定义运算法则,掌握有理数运算法则是关键.23.(1)180°;(2)见解析;(3)DE ⊥BF.【解析】【分析】(1)根据四边形的性质,可得答案;(2)根据三角形内角和定理和角平分线的定义即可求解;(3)根据补角的性质,可得∠CBM=∠ODC ,根据相似三角形的判定与性质,可得答案.【详解】(1)由四边形内角的性质,得,∠OBC+∠DOB+∠ODC+∠DCB=360°,∵∠DOB=∠DCB=90°,∴∠OBC+∠ODC=180°;(2)∵∠OBD+∠ODC=180°BD 平分∠OBC∴∠OBD=∠CBD∴∠OBD+∠ODB=90°∴∠CBD+∠ODC=90°∴∠ODB=∠BDC∴BD 平分∠ODC.(3)如图,延长DE 交BF 于G , ,∵∠ODC+∠OBC=∠CBM+∠OBC=180,∴∠CBM=∠ODC ,∠CBM=∠EBG=∠ODC=∠EDC .∵∠BEG=∠DEC ,∴△DEC ∽△BEG ,∴∠BGE=∠DCE=90°,∴DE 垂直BF .【点睛】本题考查了三角形的内角和定理,利用相似三角形的判定与性质是解题关键;利用补角的性质得出∠NDC+∠CBM=180°是解题关键.24.客房8间,房客63人【解析】【分析】设该店有x间客房,以人数相等为等量关系列出方程即可.【详解】设该店有x间客房,则7799x x+=-解得8x=7778763x+=⨯+=答:该店有客房8间,房客63人.【点睛】本题考查的是利用一元一次方程解决应用题,根据题意找到等量关系式是解题的关键.25.见解析【解析】【分析】把x=3代入代数式5(x−1)−2(x−2)−4,求出“2y−12=12y-■”的y,再代入该式子求出■.【详解】解:5(x-1)-2(x-2)-4=3x-5,当x=3时,3x-5=3×3-5=4,∴y=4.把y=4代入2y-12=12y-■中,得2×4-12=12×4-■,∴■=-11 2.即这个常数为-11 2.【点睛】根据题意先求出y,将■看作未知数,把已知解代入方程的未知数中,使未知数转化为已知数,从而建立起未知系数的方程,通过未知系数的方程求出未知数系数,这种解题方法叫做待定系数法,是数学中的一个重要方法,以后在函数的学习中将大量用到这种方法.。
2020-2021学年七年级下学期期中数学试卷及答案解析 (1)
2020-2021学年七年级下学期期中数学试卷
一、选择题(共12小题,每小题3分,每小题只有一个正确答案,共36分)
1.计算x2•x3结果是()
A.2x5B.x5C.x6D.x8
解:x2•x3=x5.
故选:B.
2.下面的四个图形中,∠1与∠2是对顶角的是()
A.B.
C.D.
解:根据对顶角的定义可知:只有C图中的∠1与∠2是对顶角,其它都不是.故选:C.
3.一本笔记本5元,买x本共付y元,则5和y分别是()
A.常量,常量B.变量,变量C.常量,变量D.变量,常量解:一本笔记本5元,买x本共付y元,则5和y分别是常量,变量.
故选:C.
4.某种植物细胞的直径约为0.00012mm,用科学记数法表示这个数为()mm.A.1.2×104B.12×10﹣3C.1.2×10﹣3D.1.2×10﹣4解:0.00012=1.2×10﹣4,
故选:D.
5.下列运算正确的是()
A.2m2+m2=3m4B.(mn2)2=mn4C.2m•4m2=8m2D.m5÷m3=m2解:A、2m2+m2=3m2,故此选项错误;
B、(mn2)2=m2n4,故此选项错误;
C、2m•4m2=8m3,故此选项错误;
D、m5÷m3=m2,正确.
故选:D.
6.下列运算中正确的是()
第1页(共10页)。
2020-2021学年鲁教版(五四制)七年级数学下期中复习试卷含答案
鲁教五四新版七年级下册数学期中复习试卷一.选择题(共12小题,满分48分,每小题4分)1.方程组的解为,则被遮盖的前后两个数分别为()A.1、2B.1、5C.5、1D.2、42.下列四个命题:①±4是64的立方根;②5是25的算术平方根;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④在平面直角坐标系中,与两坐标轴距离都是2的点有且只有2个.其中真命题有()个.A.1B.2C.3D.43.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°4.下列说法正确的是()A.篮球队员在罚球线上投篮一次,则“投中”是随机事件B.明天的降水概率为40%,则“明天下雨”是确定事件C.任意抛掷一枚质地均匀的硬币10次,则“5次正面朝上”是必然事件D.a是实数,则“|a|≥0”是不可能事件5.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.6.某市举办中学生足球赛,按比赛规则,每场比赛都要分出胜负,胜1场得3分,负一场扣1分,菁英中学队在8场比赛中得到12分,若设该队胜的场数为x,负的场数为y,则可列方程组为()A.B.C.D.7.池塘中放养了鲤鱼2000条,鲢鱼若干条,在几次随机捕捞中,共捕到鲤鱼200条,鲢鱼300条,估计池塘中原来放养了鲢鱼()A.10000条B.2000条C.3000条D.4000条8.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠D FB=∠CGE.其中正确的结论是()A.②③B.①②④C.①③④D.①②③④9.如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.32°B.45°C.60°D.64°10.下列各题中合并同类项,结果正确的是()A.3a+2b=5ab B.4x2y﹣2xy2=2xyC.7a+a=7a2D.5y2﹣3y2=2y211.已知直线y=kx+2与直线y=x交于点P,且点P的横坐标为2,下列结论:其中正确的是()①关于x的方程kx+2=0的解为x=3;②对于直线y=kx+2,当x<3时,y>0;③方程组的解为,A.①②B.①③C.②③D.①②③12.把一副三角板放在水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A.90°B.105°C.120°D.135°二.填空题(共6小题,满分24分,每小题4分)13.方程组的解是.14.有6张看上去无差别的卡片,上面分别写着0,π,,,0.1010010001,﹣随机抽取1张,则取出的数是无理数的概率是.15.如图,△ABC中,∠A=55°,将△ABC沿DE翻折后,点A落在BC边上的点A′处.如果∠A′EC=70°,那么∠A′DB的度数为.16.如图,直线a,b被c所截,∠1=50°,若要a∥b,则需增加条件(填图中某角的度数);依据是.17.把命题“对顶角相等”改写成“如果…那么…”的形式:.18.将一列有理数﹣1,2,﹣3,4,﹣5,6…如图所示有序排列,4所在位置为峰1,﹣9所在位置为峰2….(1)处在峰5位置的有理数是;(2)2022应排在A,B,C,D,E中的位置上.三.解答题(共7小题,满分78分)19.(6分)如图,已知,AB⊥BC,AD∥BC,∠BAC=∠D=60°.(1)试求∠C和∠DEC的度数;(2)说明直线AC与DE的关系,并说明理由.20.(15分)解方程组(1);(2);21.(9分)小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由.若不公平,如何修改规则才能使游戏对双方公平?22.(12分)如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.23.(12分)某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫2545白色文化衫2035(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.24.(12分)如图:已知在平面直角坐标系中点A(a,b)点B(a,0),且满足|2a﹣b|+(b﹣4)2=0.(1)求点A、点B的坐标.(2)已知点C(0,b),点P从B点出发沿x轴负方向以1个单位每秒的速度移动.同时点Q从C点出发,沿y轴负方向以2个单位每秒的速度移动,某一时刻,如图所示且S阴=S四边形OCAB,求点P移动的时间?(3)在(2)的条件下,AQ交x轴于M,作∠ACO,∠AMB的角平分线交于点N,判断是否为定值,若是定值求其值;若不是定值,说明理由.25.(12分)快车和慢车分别从A市和B市两地同时出发,匀速行驶,先相向而行,慢车到达A市后停止行驶,快车到达B市后,立即按原路原速度返回A市(调头时间忽略不计),结果与慢车同时到达A市.快、慢两车距B市的路程y1、y2(单位:km)与出发时间x(单位:h)之间的函数图象如图所示.(1)A市和B市之间的路程是km;(2)求a的值,并解释图中点M的横坐标、纵坐标的实际意义;(3)快车与慢车迎面相遇以后,再经过多长时间两车相距20km?参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.解:将x=2代入第二个方程可得y=1,将x=2,y=1代入第一个方程可得2x+y=5∴被遮盖的前后两个数分别为:5,1故选:C.2.解:①∵4是64的立方根,∴①是假命题;②∵5是25的算术平方根,∴②是真命题;③∵如果两条直线都与第三条直线平行,那么这两条直线也互相平行,∴③是真命题;④∵在平面直角坐标系中,与两坐标轴距离都是2的点有且只有4个,∴④是假命题;真命题的个数有2个,故选:B.3.解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故选:C.4.解:A.篮球队员在罚球线上投篮一次,则“投中”是随机事件,此选项正确;B.明天的降水概率为40%,则“明天下雨”是随机事件,此选项错误;C.任意抛掷一枚质地均匀的硬币10次,则“5次正面朝上”是随机事件,此选项错误;D.a是实数,则“|a|≥0”是必然事件,此选项错误;故选:A.5.解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4,所以击中黑色区域的概率==.故选:C.6.解:依题意得:.故选:C.7.解:由题意可得,2000÷×=2000×=3000(条),即估计池塘中原来放养了鲢鱼3000条,故选:C.8.解:∵EG∥BC,∴∠CEG=∠BCA,∵CD平分∠ACB,∴∠BCA=2∠DCB,∴∠CEG=2∠DCB,故①正确,∵CG⊥EG,∴∠G=90°,∴∠GCE+∠CEG=90°,∵∠A=90°,∴∠BCA+∠ABC=90°,∵∠CEG=∠ACB,∴∠ECG=∠ABC,∵∠ADC=∠ABC+∠DCB,∠GCD=∠ECG+∠ACD,∠ACD=∠DCB,∴∠ADC=∠GCD,故②正确,假设AC平分∠BCG,则∠ECG=∠ECB=∠CEG,∴∠ECG=∠CEG=45°,显然不符合题意,故③错误,∵∠DFB=∠FCB+∠FBC=(∠ACB+∠ABC)=45°,∠CGE=45°,∴∠DFB=∠CG E,故④正确,故选:B.9.解:如图所示:由折叠的性质得:∠D=∠B=32°,根据外角性质得:∠1=∠3+∠B,∠3=∠2+∠D,∴∠1=∠2+∠D+∠B=∠2+2∠B=∠2+64°,∴∠1﹣∠2=64°.故选:D.10.解:(A)原式=3a+2b,故A错误;(B)原式=4x2y﹣2xy2,故B错误;(C)原式=8a,故C错误;故选:D.11.解:当x=2时,y=x=,则P(2,),把P(2,)代入y=kx+2得2k+2=,解得k=﹣,∴直线y=kx+2的解析式为y=﹣x+2,当y=0时,﹣x+2=0,解得x=3,∴关于x的方程kx+2=0的解为x=3,所以①正确;当y>0,﹣x+2>0,解得x<3,所以②正确;∵直线y=kx+2与直线y=x交点为P(2,),∴方程组的解为,所以③正确.故选:D.12.解:作直线OE平行于直角三角板的斜边.可得:∠A=∠AOE=60°,∠C=∠EOC=45°,故∠1的度数是:60°+45°=105°.故选:B.二.填空题(共6小题,满分24分,每小题4分)13.解:将x=1代入x+y=5,∴y=4,∴方程组的解为:,故答案为:,14.解:在0,π,,,0.1010010001,﹣中,无理数有π,,共2个,∴取出的数是无理数的概率是=;故答案为:.15.解:由翻折的性质可知:∠ADE=∠EDA′,∠AED=∠A′ED=(180°﹣70°)=55°,∵∠A=55°,∴∠ADE=∠EDA′=180°﹣55°﹣55°=70°,∴∠A′DB=180°﹣140°=40°,故答案为40°.16.解:∵∠3=50°,1=50°,∴∠1=∠3,∴a∥b(同位角相等,两直线平行).故答案为:∠3=50°;同位角相等;两直线平行.17.解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.18.解:(1)观察发现:峰n中,A位置的绝对值可以表示为:5n﹣3;B位置的绝对值可以表示为:5n﹣2;C位置(峰顶)的绝对值可以表示为:5n﹣1;D位置的绝对值可以表示为:5n;E位置的绝对值可以表示为:5n+1;∴处在峰5位置的有理数是5×5﹣1=24;(2)根据规律,∵2022=5×405﹣3,∴2022应排在A的位置.故答案为:(1)24;(2)A.三.解答题(共7小题,满分78分)19.解:如图所示:(1)∵AB⊥BC,∴∠B=90°,又∵∠BAC=60°,∠BAC+∠C=90°,∴∠C=30°,又∵AD∥BC,∴∠D=∠DEC,(2)AC⊥DE,理由如下,∵∠D=60°,又∵∠DEC +∠C +∠EFC =180°,∴∠EFC =90°,∴AC ⊥DE .20.解:(1),①×2+②得:﹣9y =﹣9,解得:y =1,把y =1代入②得:x =1, 则方程组的解为; (2)方程组整理得:, ①×2+②得:11x =22,解得:x =2,把x =2代入①得:y =3, 则方程组的解为. 21.解:公平.画树状图得:从表中可以得到:P 积为奇数==,P 积为偶数==, ∴小明的积分为×2=,小刚的积分为×1==.22.解:∵EF ∥AD ,AD ∥BC ,∴EF ∥BC ,∴∠ACB +∠DAC =180°,∵∠DAC =120°,∴∠ACB =60°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.23.解:(1)设学校购进黑文化衫x件,白文化衫y件,依题意,得:,解得:.答:学校购进黑文化衫160件,白文化衫40件.(2)(45﹣25)×160+(35﹣20)×40=3800(元).答:该校这次义卖活动共获得3800元利润.24.解:(1)∵|2a﹣b|+(b﹣4)2=0.∴2a﹣b=0,b﹣4=0,∴a=2,b=4,∴点A的坐标为(2,4)、点B的坐标(2,0);(2)方法一:如图2,设P点运动时间为ts,则t>2,所以P点坐标为(2﹣t,0),Q 点坐标为(0,4﹣2t),设直线AQ的解析式为y=kx+4﹣2t,把A(2,4)代入得2k+4﹣2t=4,解得k=t,∴直线AQ的解析式为y=tx+4﹣2t,直线AQ与x轴交点坐标为(,0),∴S阴影=(+t﹣2)×4+××(2t﹣4),而S阴=S四边形OCAB,∴(+t﹣2)×4+××(2t﹣4)=×2×4,整理得t2﹣3t=0,解得t1=0(舍去),t2=3,∴点P移动的时间为3s;方法二:过P点作PM⊥AC于M,QN⊥AB于N,如图,易得四边形OPMC和四边形ACQN都为矩形,S阴影=S矩形OPMC+S矩形ACQN﹣S△AMC﹣S△AQN=4(t﹣2)+2×2t﹣×t×4﹣×2t×2,∵S阴=S四边形OCAB,∴4(t﹣2)+2×2t﹣×t×4﹣×2t×2=×2×4,解得t=3;(3)为定值.理由如下:如图3,∵∠ACO,∠AMB的角平分线交于点N,∴∠ACN=45°,∠1=∠2,∵AC∥BP,∴∠CAM=∠AMB=2∠1,∵∠ACN+∠CAM=∠N+∠1,∴45°+2∠1=∠N+∠1,∴∠N=45°+∠1,∵∠AMB=∠APB+∠PAQ,∴∠APB+∠PAQ=2∠1,∵∠AQC+∠OMQ=90°,而∠OMQ=2∠1,∴∠AQC=90°﹣2∠1,∴==.25.解:(1)由图可知,A市和B市之间的路程是360km,故答案为:360;(2)根据题意可知快车速度是慢车速度的2倍,设慢车速度为x km/h,则快车速度为2x km/h,2(x+2x)=360,解得,x=602×60=120,则a=120,点M的横坐标、纵坐标的实际意义是两车出发2小时时,在距B市120km处相遇;(3)快车速度为120 km/h,到达B市的时间为360÷120=3(h),方法一:当0≤x≤3时,y1=﹣120x+360,当3<x≤6时,y1=120x﹣360,y2=60x,当0≤x≤3时,y2﹣y1=20,即60x﹣(﹣120x+360)=20,解得,x=,﹣2=,当3<x≤6时,y2﹣y1=20,即60x﹣(120x﹣360)=20,解得,x=,﹣2=,所以,快车与慢车迎面相遇以后,再经过或h两车相距20km.方法二:设快车与慢车迎面相遇以后,再经过t h两车相距20 km,当0≤t≤3时,60t+120t=20,解得,t=;当3<t≤6时,60(t+2)﹣20=120(t+2)﹣360,解得,t=.所以,快车与慢车迎面相遇以后,再经过或h两车相距20 km.。
2020-2021初一数学下期中试题及答案 (6)
2020-2021初一数学下期中试题及答案 (6)一、选择题1.如图,将△ABC 沿直线AB 向右平移后到达△BDE 的位置,若∠CAB=50º,∠ABC=100º,则∠CBE 的度数为( )A .45°B .30°C .20°D .15°2.已知实数a ,b ,若a >b ,则下列结论错误的是 A .a-7>b-7B .6+a >b+6C .55ab >D .-3a >-3b3.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么第一架轰炸机C 的平面坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0) 4.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是 A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-25.下列命题是真命题的有( )个 ①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角的平分线平行 ③垂直于同一条直线的两条直线互相平行 ④过一点有且只有一条直线与已知直线平行 A .0B .1C .2D .36.如图,AB∥CD,BC∥DE,∠A=30°,∠BCD=110°,则∠AED 的度数为( )A .90°B .108°C .100°D .80°7.下列生活中的运动,属于平移的是( )A .电梯的升降B .夏天电风扇中运动的扇叶C .汽车挡风玻璃上运动的刮雨器D .跳绳时摇动的绳子8.已知237351x y x y -=-⎧⎨+=-⎩的解21x y =-⎧⎨=⎩,则2(2)3(-1)73(2)5(-1)1x y x y +-=-⎧⎨++=-⎩的解为( )A .-42x y =⎧⎨=⎩B .50x y =-⎧⎨=⎩C .50x y =⎧⎨=⎩D .41x y =-⎧⎨=⎩9.下列所示的四个图形中,∠1=∠2是同位角的是( )A .②③B .①④C .①②③D .①②④10.如果a >b ,那么下列各式中正确的是( ) A .a ﹣2<b ﹣2B .22a bp C .﹣2a <﹣2b D .﹣a >﹣b11.如图,下列能判断AB ∥CD 的条件有 ( )①∠B +∠BCD =180° ②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5 A .1B .2C .3D .412.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是( ) A .横向拉伸为原来的2倍 B .纵向拉伸为原来的2倍 C .横向压缩为原来的12 D .纵向压缩为原来的12二、填空题13.一个样本的50个数据分别落在5个小组内,第1、2、3、4组的数据的个数分别为2、8、15、5,则第5组的频率为______ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021常州外国语学校七年级数学下期中试题(及答案)一、选择题1.如图,已知∠1=∠2,其中能判定AB ∥CD 的是( )A .B .C .D .2.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么第一架轰炸机C 的平面坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0)3.解方程组229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩得x 等于( )A .18B .11C .10D .94.如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D 等于( )A .2B .3C .23D .325.下列图形中,1∠和2∠的位置关系不属于同位角的是( )A .B .C .D .6.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( ) A .B .C .D .7.请你观察、思考下列计算过程:因为112=121,所以121=11:,因为1112=12321所以12321=111…,由此猜想12345678987654321=( )A .111111B .1111111C .11111111D .1111111118.如图,数轴上表示2、5的对应点分别为点C ,B ,点C 是AB 的中点,则点A 表示的数是( )A .5-B .25-C .45-D .52-9.下列所示的四个图形中,∠1=∠2是同位角的是( )A .②③B .①④C .①②③D .①②④10.已知关于x ,y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则n-m 的值是( ) A .6 B .3 C .-2 D .111.已知两个不等式的解集在数轴上如右图表示,那么这个解集为( )A .≥-1B .>1C .-3<≤-1D .>-3 12.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135°二、填空题13.命题“对顶角相等”的逆命题是_______.14.不等式332x a a -≤-的正整数解为1,2,则a 的取值范围是____________________.15.如果一张长方形的纸条,如图所示折叠,那么∠α等于____.16.如图,数轴上表示1、3的对应点分别为点A 、点B ,若点A 是BC 的中点,则点C 表示的数为______.17.若x +1是125的立方根,则x 的平方根是_________.18.下列说法: ① ()210-10-=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________19.如图,直线a ,b 相交,若∠1与∠2互余,则∠3=_____.20.知a ,b 为两个连续的整数,且5a b <<,则ba =______.三、解答题21.如图,三角形ABO 中,A (﹣2,﹣3)、B (2,﹣1),三角形A ′B ′O ′是三角形ABO 平移之后得到的图形,并且O 的对应点O ′的坐标为(4,3).(1)求三角形ABO 的面积;(2)作出三角形ABO 平移之后的图形三角形A ′B ′O ′,并写出A ′、B ′两点的坐标分别为A ′ 、B ′ ;(3)P(x,y)为三角形ABO中任意一点,则平移后对应点P′的坐标为.22.计算31 27012100 --+-+23.在平面直角坐标系中,△ABC的三个顶点的位置如图所示.现将△ABC平移,使得点A移至图中的点A'的位置.(1)平移后所得△A'B'C'的顶点B'的坐标为,C'的坐标为;(2)平移过程中△ABC扫过的面积为;(3)将直线AB以每秒1个单位长度的速度向右平移,则平移秒时该直线恰好经过点C'.24.如图,∠1=70°,∠2=110°,∠C=∠D,试探索∠A与∠F有怎样的数量关系,并说明理由.25.解方程组215233x yx y+=⎧⎪⎨-=⎪⎩①②【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由∠1=∠2结合“内错角(同位角)相等,两直线平行”得出两平行的直线,由此即可得出结论.【详解】A、∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行);B、∵∠1=∠2,∠1、∠2不是同位角和内错角,∴不能得出两直线平行;C、∠1=∠2,∠1、∠2不是同位角和内错角,∴不能得出两直线平行;D、∵∠1=∠2,∴AB∥CD(同位角相等,两直线平行).故选D.【点睛】本题考查了平行线的判定,解题的关键是根据相等的角得出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等(或互补)的角,找出平行的直线是关键.2.A解析:A【解析】【分析】根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可.【详解】解:因为A(﹣2,1)和B(﹣2,﹣3),所以建立如图所示的坐标系,可得点C的坐标为(2,﹣1).故选:A.【点睛】考查坐标问题,关键是根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系解答.3.C解析:C【解析】【分析】利用加减消元法解方程组即可.【详解】229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩①②③,①+②+③得:3x+3y+3z=90.∴x+y+z=30 ④②-①得:y+z-2x=0 ⑤④-⑤得:3x=30∴x=10故答案选:C .【点睛】本题考查的是三元一次方程组的解法,掌握加减消元法是解题的关键.4.A解析:A【解析】分析:由S △ABC =9、S △A′EF =4且AD 为BC 边的中线知S △A′D E =12S △A′EF =2,S △ABD =12S △ABC =92,根据△DA′E ∽△DAB 知2A DEABDS A D AD S ''=(),据此求解可得. 详解:如图,∵S △ABC =9、S △A′EF =4,且AD 为BC 边的中线,∴S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92, ∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C',∴A′E ∥AB ,∴△DA′E ∽△DAB ,则2A DEABD S A D AD S ''=(),即22912A D A D '='+(),解得A′D=2或A′D=-25(舍), 故选A . 点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.5.D解析:D【解析】【分析】根据同位角的特征:两条直线被第三条直线所截形成的角中,两个角都在两条被截直线的同侧,并且在第三条直线(截线)的同旁,由此判断即可.【详解】解:A .根据根据同位角的特征得,∠1和∠2是同位角.B .根据根据同位角的特征得,∠1和∠2是同位角.C .根据根据同位角的特征得,∠1和∠2是同位角.D .由图可得,∠1和∠2不是同位角.故选:D .【点睛】本题主要考查了同位角,同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.6.A解析:A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①②∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1,在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键. 7.D解析:D【解析】分析:被开方数是从1到n再到1(n≥1的连续自然数),算术平方根就等于几个1.=111…,…,.故选D.点睛:本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.8.C解析:C【解析】【分析】首先可以求出线段BC的长度,然后利用中点的性质即可解答.【详解】∵表示2C,B,,∵点C是AB的中点,则设点A的坐标是x,则∴点A表示的数是故选C.【点睛】本题主要考查了数轴上两点之间x1,x2的中点的计算方法.9.D解析:D【解析】【分析】根据同位角的定义(在截线的同侧,并且在被截线的同一方的两个角是同位角),即可得到答案;【详解】解:图①、②、④中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;图③中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选D.【点睛】本题主要考查了同位角的概念,判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.10.B解析:B【解析】【分析】把12xy=⎧⎨=⎩代入方程组3526x myx ny-=⎧⎨+=⎩,求出m、n的值,再代入要求的代数式求值即可.【详解】把12xy=⎧⎨=⎩代入3526x myx ny-=⎧⎨+=⎩得:325226mn-=⎧⎨+=⎩,解得:m=-1,n=2,∴n-m=2-(-1)=3.故选:B.【点睛】本题考查了二元一次方程组的解,能得出m,n的值是解此题的关键.11.A解析:A【解析】>-3 ,≥-1,大大取大,所以选A12.D解析:D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.二、填空题13.如果两个角相等那么它们是对顶角【解析】【分析】将原命题的条件及结论进行交换即可得到其逆命题【详解】∵原命题的条件是:如果两个角是对顶角结论是:那么这两个角相等;∴其逆命题应该为:如两个角相等那么这两 解析:如果两个角相等,那么它们是对顶角【解析】【分析】将原命题的条件及结论进行交换即可得到其逆命题.【详解】∵原命题的条件是:如果两个角是对顶角,结论是:那么这两个角相等;∴其逆命题应该为:如两个角相等,那么这两个角是对顶角,简化后即为:相等的角是对顶角.【点睛】考查命题与定理,解题的关键是明确逆命题的定义,可以写出一个命题的逆命题.14.【解析】【分析】根据不等式的性质求出不等式的解集根据不等式的正整数解得出2≤<3求出不等式的解集即可【详解】解答:解:3x −3a≤−2a 移项得:3x≤−2a +3a 合并同类项得:3x≤a∴不等式的解集解析:69a ≤<.【解析】【分析】根据不等式的性质求出不等式的解集,根据不等式的正整数解得出2≤3a <3,求出不等式的解集即可.【详解】解答:解:3x−3a≤−2a ,移项得:3x≤−2a +3a ,合并同类项得:3x≤a ,∴不等式的解集是x≤3a , ∵不等式3x−3a≤−2a 的正整数解为1,2,∴2≤3a <3, 解得:6≤a <9.故答案为:6≤a <9.【点睛】本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的解集得出2≤3a <3是解此题的关键. 15.70°【解析】【分析】依据平行线的性质可得∠BAE=∠DCE=140°依据折叠即可得到∠α=70°【详解】解:如图∵AB∥CD∴∠BAE=∠DCE=140°由折叠可得:∴∠α=70°故答案为:70°解析:70°.【解析】【分析】依据平行线的性质,可得∠BAE=∠DCE=140°,依据折叠即可得到∠α=70°.【详解】解:如图,∵AB∥CD,∴∠BAE=∠DCE=140°,由折叠可得:12DCF DCE ∠=∠,∴∠α=70°.故答案为:70°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.16.2﹣【解析】【分析】设点C表示的数是x再根据中点坐标公式即可得出x 的值【详解】解:设点C表示的数是x∵数轴上表示1的对应点分别为点A点B 点A是BC的中点∴=1解得x=2﹣故答案为2﹣【点评】本题考查解析:23【解析】【分析】设点C表示的数是x,再根据中点坐标公式即可得出x的值.【详解】解:设点C表示的数是x,∵数轴上表示13的对应点分别为点A、点B,点A是BC的中点,3x+=1,解得x=23故答案为23【点评】本题考查的是实数与数轴,熟知数轴上的点与实数是一一对应关系是解答此题的关键.17.±2【解析】【分析】先根据立方根得出x的值然后求平方根【详解】∵x+1是125的立方根∴x+1=解得:x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根注意一个正数的平方根有2个算解析:±2【解析】【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.18.2个【解析】【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定解析:2个【解析】【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【详解】=,故①错误;①10②数轴上的点与实数成一一对应关系,故说法正确;③两条平行直线被第三条直线所截,同位角相等;故原说法错误;④在同一平面内,垂直于同一条直线的两条直线互相平行,故原说法错误;与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②⑥共2个.故答案为:2个.【点睛】此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无π也是无理数.19.135°【解析】【分析】由∠1与∠2互余且∠1=∠2可求出∠1=∠2=45°进而根据补角的性质可求出∠3的度数【详解】解:∵∠1与∠2互余∠1=∠2∴∠1=∠2=45°∴∠3=180°﹣45°=13解析:135°.【解析】【分析】由∠1与∠2互余,且∠1=∠2,可求出∠1=∠2=45°,进而根据补角的性质可求出∠3的度数.【详解】解:∵∠1与∠2互余,∠1=∠2,∴∠1=∠2=45°,∴∠3=180°﹣45°=135°,故答案为135°.【点睛】本题考查了余角、对顶角及邻补角的定义,熟练掌握定义是解答本题的关键.20.6【解析】【分析】直接利用的取值范围得出ab的值即可得出答案【详解】∵ab为两个连续的整数且∴a=2b=3∴3×2=6故答案为:6【点睛】此题考查估算无理数的大小正确得出ab的值是解题关键解析:6【解析】【分析】a,b的值,即可得出答案.【详解】∵a,b为两个连续的整数,且a b<<,∴a=2,b=3,∴ba=3×2=6.故答案为:6.【点睛】此题考查估算无理数的大小,正确得出a,b的值是解题关键.三、解答题21.(1)4;(2)图见解析,点A′(2,0) 、点B′(6,2);(3)点P′的坐标为(x+4,y+3).【解析】分析:()1用矩形的面积减去3个直角三角形的面积即可.()2根据点O'的坐标,找出平移规律,画出图形,即可写出,A B''的坐标.()3根据()2中的平移规律解答即可.详解:()111134231224 4.222ABCS=⨯-⨯⨯-⨯⨯-⨯⨯=()2O的对应点O′的坐标为()4,3.可知向右平移4个单位长度,向上平移3个单位长度.如图所示:点A′(2,0) 、点B′(6,2);()3点P'的坐标为()43.x y++,点睛:考查坐标与图形,平移.弄清楚题目的意思,根据题目给的对应点坐标,找出平移的规律即可.22.9-3+2 10【解析】【分析】根据立方根,二次根式的性质,绝对值的性质进行计算即可.【详解】原式=19-302-1=-3+21010-+【点睛】此题考查实数的运算,解题关键在于掌握运算法则.23.(1)(5,3),(8,4);(2)232;(3)5【解析】【分析】(1)根据网格结构找出点B、C的对应点B′、C'的位置,顺次连接之后,根据平面直角坐标系写出点B′,C'的坐标;(2)结合图形可知所求为线段AB扫过的图形为平行四边形ABB A''加上三角形A B C'''的面积,分别求解之后再求和即可;(3)结合网格结构可知线段AB向右平移时,A点坐标变为(8,0)时满足题意,据此可解答本题.【详解】解:(1)根据题意画图:∴(5,3)B ',(8,4)C ';(2)如图, ∵1111634221422182222ABB A S ''=⨯-⨯⨯-⨯⨯-⨯⨯-⨯⨯=, 1117322121312222A B C S '''=⨯-⨯⨯-⨯⨯-⨯⨯=, ∴平移过程中△ABC 扫过的面积为723822+=; (3)结合网格结构可知线段AB 向右平移时,A 点坐标变为(8,0)时满足题意, 此时A 点向右平移了5个单位长度,∵直线AB 以每秒1个单位长度的速度向右平移,∴平移5秒时该直线恰好经过点C '.【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.24.见解析【解析】分析:要找∠A 与∠F 的数量关系,根据平行线的判定,由已知可得∠1+∠2=180°,则CE ∥BD ;根据平行线的性质,可得∠C =∠ABD ,结合已知条件,得∠ABD =∠D ,根据平行线的判定,得AC ∥DF ,从而求得结论.详解:∠A =∠F . 理由如下:∵∠1=70°,∠2=110°,∴∠1+∠2=180°,∴CE ∥DB ,∴∠C =∠ABD .∵∠C =∠D ,∴∠ABD =∠D ,∴AC ∥DF ,∴∠A =∠F .点睛:本题主要考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.25.11x y =⎧⎨=⎩【解析】【分析】方程组整理后,利用加减消元法求出解即可.【详解】解:方程组整理得:265x y x y +=⎧⎨-=⎩①②, ①+②得:77x =,解得:1x =,把1x =代入②,得1y =,则方程组的解为11x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.。