动量和动量守恒定律训练(2)
动量-动量守恒定律专题练习(含答案)
动量-动量守恒定律专题练习(含答案)动量 动量守恒定律一、动量和冲量1、关于物体的动量和动能,下列说法中正确的是:A 、一物体的动量不变,其动能一定不变B 、一物体的动能不变,其动量一定不变C 、两物体的动量相等,其动能一定相等D 、两物体的动能相等,其动量一定相等2、两个具有相等动量的物体A 、B ,质量分别为m A 和m B ,且m A >m B ,比较它们的动能,则:A 、B 的动能较大 B 、A 的动能较大C 、动能相等 D 、不能确定3、恒力F 作用在质量为m 的物体上,如图所示,由于地面对物体的摩擦力较大,没有被拉动,则经时间t ,下列说法正确的是:A 、拉力F 对物体的冲量大小为零;B 、拉力F 对物体的冲量大小为Ft ;C 、拉力F 对物体的冲量大小是Ftcosθ;D 、合力对物体的冲量大小为零。
F4、如图所示,PQS 是固定于竖直平面内的光滑的14圆周轨道,圆心O 在S 的正上方,在O 和P 两点各有一质量为m 的小物块a 和b ,从同一时刻开始,a 自由下落,b 沿圆弧下滑。
以下说法正确的是 A 、a 比b 先到达S ,它们在S 点的动量不相等B 、a 与b 同时到达S ,它们在S 点的动量不相等C 、a 比b 先到达S ,它们在S 点的动量相等D 、b 比a 先到达S ,它们在S 点的动量不相等二、动量守恒定律1、一炮艇总质量为M ,以速度v 0匀速行驶,从船上以相对海岸的水平速度v 沿前进方向射出一质量为m 的炮弹,发射炮弹后艇的速度为v /,若不计水的阻力,则下列各关系式中正确的是 。
A 、'0()Mv M m v mv =-+B 、'00()()MvM m v m v v =-++ C 、''0()()Mv M m v m v v =-++ D 、'0Mv Mv mv =+2、在高速公路上发生一起交通事故,一辆质量为1500kg 向南行驶的长途客车迎面撞上了一辆质量为3000kg 向北行驶的卡车,碰后两车接在一起,并向南O P S Q滑行了一段距离后停止。
高中物理动量守恒定律专项训练100(附答案)
最新高中物理动量守恒定律专项训练100( 附答案 )一、高考物理精讲专题动量守恒定律1.如下图,在水平川面上有两物块甲和乙,它们的质量分别为2m 、 m,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度v0向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰巧与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能(2)第一次碰撞过程中甲对乙的冲量【答案】(1) 1 mv02; (2)4mv0【分析】【详解】解: (1)设第一次碰撞刚结束时甲、乙的速度分别为v1、 v2,以后甲做匀速直线运动,乙以v2初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,所以两物体在这段时间均匀速v2度相等,有: v12而第一次碰撞中系统动量守恒有:2mv02mv1 mv2由以上两式可得: v1v0, v2v0 2所以第一次碰撞中的机械能损失为:E 1g2mgv021g2mgv121mv221mv02 2224(2)依据动量定理可得第一次碰撞过程中甲对乙的冲量:I mv20 mv02.如下图,一小车置于圆滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg, AO 部分粗拙且长L=2m,动摩擦因数μ=0.3,OB部分圆滑.另一小物块a.放在车的最左端,和车一同以 v0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬时速度变成零,但不与挡板粘连.已知车 OB 部分的长度大于弹簧的自然长度,弹簧一直处于弹性限度内. a、 b 两物块视为质点质量均为 m=1kg,碰撞时间极短且不粘连,碰后一同向右运动.(取 g=10m/s2)求:(1)物块 a 与 b 碰后的速度大小;(2)当物块 a 相对小车静止时小车右端 B 到挡板的距离;(3)当物块 a 相对小车静止时在小车上的地点到O 点的距离.【答案】 (1)1m/s (2)(3) x=0.125m【分析】试题剖析:(1)对物块 a,由动能定理得:代入数据解得 a 与 b 碰前速度:;a、 b 碰撞过程系统动量守恒,以 a 的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分别, a 以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车 B 端距挡板的距离:;(3)由能量守恒得:,解得滑块 a 与车相对静止时与O 点距离:;考点:动量守恒定律、动能定理。
第三章 动量定理 动量守恒定律(习题)
第三章 动量定理及动量守恒定律(习题)3.5.1质量为2kg 的质点的运动学方程为 j ˆ)1t 3t 3(i ˆ)1t 6(r 22+++-=(t 为时间,单位为s ;长度单位为m).求证质点受恒力而运动,并求力的方向大小。
解,j ˆ)3t 6(i ˆt 12v ++= j ˆ6i ˆ12a +=jˆ12i ˆ24a m F +==(恒量)12257.262412tg )N (83.261224F ==θ=+=-3.5.2质量为m 的质点在oxy 平面内运动,质点的运动学方程为ωω+ω=b,a, ,j ˆt sin b i ˆt cos a r为正常数,证明作用于质点的合力总指向原点。
解, ,j ˆt cos b i ˆt sin a v ωω+ωω-= r,j ˆt sin b i ˆt cos a a 22 ω-=ωω-ωω-= r m a m F ω-==3.5.3在脱粒机中往往装有振动鱼鳞筛,一方面由筛孔漏出谷粒,一方面逐出秸杆,筛面微微倾斜,是为了从较底的一边将秸杆逐出,因角度很小,可近似看作水平,筛面与谷粒发生相对运动才可能将谷粒筛出,若谷粒与筛面静摩擦系数为0.4,问筛沿水平方向的加速度至少多大才能使谷物和筛面发生相对运动。
解答,以谷筛为参照系,发生相对运动的条件是,g a ,mg f a m 000μ≥'μ=≥'a ' 最小值为)s /m (92.38.94.0g a 20=⨯=μ='以地面为参照系:解答,静摩擦力使谷粒产生最大加速度为,mg ma 0max μ= ,g a 0max μ=发生相对运动的条件是筛的加速度g a a0max μ=≥',a '最小值为)s /m (92.38.94.0g a20=⨯=μ='3.5.4桌面上叠放着两块木板,质量各为,m ,m 21如图所示。
2m 和桌面间的摩擦系数为2μ,1m 和2m 间的静摩擦系数为1μ。
动量守恒定律试题(含答案)
动量守恒定律试题(含答案)一、动量守恒定律 选择题1.如图所示,A 、B 、C 是三级台阶的端点位置,每一级台阶的水平宽度是相同的,其竖直高度分别为h 1、h 2、h 3,将三个相同的小球分别从A 、B 、C 三点以相同的速度v 0水平抛出,最终都能到达A 的下一级台阶的端点P 处,不计空气阻力。
关于从A 、B 、C 三点抛出的小球,下列说法正确的是( )A .在空中运动时间之比为t A ∶tB ∶tC =1∶3∶5B .竖直高度之比为h 1∶h 2∶h 3=1∶2∶3C .在空中运动过程中,动量变化率之比为AC A B P P P t t t::=1∶1∶1 D .到达P 点时,重力做功的功率之比P A :P B :P C =1:4:9 2.如图所示,质量分别为m 和2m 的A 、B 两个木块间用轻弹簧相连,放在光滑水平面上,A 紧靠竖直墙.用水平力向左推B 将弹簧压缩,推到一定位置静止时推力大小为F 0,弹簧的弹性势能为E .在此位置突然撤去推力,下列说法中正确的是( )A .在A 离开竖直墙前,A 、B 与弹簧组成的系统机械能守恒,之后不守恒B .在A 离开竖直墙前,A 、B 系统动量不守恒,之后守恒C .在A 离开竖直墙后,A 、B 223E mD .在A 离开竖直墙后,弹簧的弹性势能最大值为3E 3.如图所示,物体A 、B 的质量均为m =0.1kg ,B 静置于劲度系数k =100N/m 竖直轻弹簧的上端且B 不与弹簧连接,A 从距B 正上方h =0.2m 处自由下落,A 与B 相碰并粘在一起.弹簧始终在弹性限度内,g =10m/s 2.下列说法正确的是A .AB 组成的系统机械能守恒B .B 运动的最大速度大于1m/sC .B 物体上升到最高点时与初位置的高度差为0.05mD .AB 在最高点的加速度大小等于10m/s 24.如图所示,质量为M 、带有半径为R 的四分之一光滑圆弧轨道的滑块静置于光滑水平地面上,且圆弧轨道底端与水平面平滑连接,O 为圆心。
人教版物理选修3-5 第十六章 动量守恒定律16.2 动量和动量定理 同步练习题(含解析)
人教版物理选修3-5第16章第2节动量和动量定理同步练习一、单选题(本大题共13小题,共52.0分)1.下列说法正确的是()A. 速度大的物体,它的动量一定也大B. 动量大的物体,它的速度一定也大C. 只要物体的运动速度大小不变,则物体的动量也保持不变D. 物体的动量变化越大则该物体的速度变化一定越大2.下面关于冲量的说法正确的是( )A. 只要力恒定,不管物体运动状态如何,其冲量就等于该力与时间的乘积B. 当力与位移垂直时,该力的冲量一定为零C. 物体静止时,其重力的冲量一定为零D. 物体受到很大的力时,其冲量一定很大3.古时有“守株待兔”的寓言.设兔子的头部受到大小等于自身体重的打击力即可致死,并设兔子与树桩作用时间为0.3 s,则被撞死的兔子其奔跑的速度可能为(g取10 m/s2)A. 1m/sB. 1.5m/sC. 2m/sD. 3m/s4.如果一物体在任意相等的时间内受到的冲量相等,则此物体的运动不可能是()A. 匀速圆周运动B. 自由落体运动C. 平抛运动D. 竖直上抛运动5.质量为m的物体以初速v0做竖直上抛运动,不计空气阻力,从抛出到落回抛出点这段时间内,以下说法正确的是( )A. 物体动量变化大小是零B. 物体动量变化大小是2mv0C. 物体动量变化大小是mv0D. 重力的冲量为零6.对于力的冲量,下列说法正确的是()A. 力越大,力的冲量就越大B. 作用在物体上的力大,力的冲量不一定大C. 竖直上抛运动中,上升和下降过程时间相等,则重力在整个过程中的冲量等于零D. 竖直上抛运动中,上升和下降过程时间相等,则上升和下降过程中重力的冲量等大、反向7.如图所示,光滑水平面上有质量均为m的物块A和B,B上固定一轻质弹簧,B静止,A以速度v0水平向右运动,从A与弹簧接触至弹簧被压缩到最短的过程中( )A. A,B的动量变化量相同B. A,B的动量变化率相同C. A,B系统的总动能保持不变D. A,B系统的总动量保持不变8.如图所示,质量为m P=2 kg的小球P从离水平面高度为h=0.8 m的光滑斜面上滚下,与静止在光滑水平面上质量为m Q=2 kg的带有轻弹簧的滑块Q碰撞,g=10 m/s2,下列说法正确的是( )A. P球与滑块Q碰撞前的速度为5m/sB. P球与滑块Q碰撞前的动量为16kg·m/sC. 它们碰撞后轻弹簧压缩至最短时的速度为2m/sD. 当轻弹簧压缩至最短时其弹性势能为16 J9.如图所示,斜面和水平面之间通过小圆弧平滑连接,质量为m的物体(可视为质点)从斜面上h高处的A点由静止开始沿斜面下滑,最后停在水平地面上的B点.要使物体能原路返回A点,在B点物体需要的最小瞬时冲量是()A. 12m√gℎ B. m√gℎ C. 2m√gℎ D. 4m√gℎ10.如图所示,一段不可伸长的轻质细绳长为L,一端固定在O点,另一端系一个质量为m的小球(可以视为质点),保持细绳处于伸直状态,把小球拉到跟O点等高的位置由静止释放,在小球摆到最低点的过程中,不计空气阻力,重力加速度大小为g,则()A. 合力做的功为0B. 合力做的冲量为0C. 重力做的功为mgLD. 重力的冲量为m√2gL11.质量为m的小球被水平抛出,经过一段时间后小球的速度大小为v,若此过程中重力的冲量大小为Ⅰ,重力加速度为g,不计空气阻力的大小,则小球抛出时的初速度大小为()A. v−Im B. v−ImgC. √v2−I2m2D. √v2−I2m2g212.质量为1 kg的小球从空中自由下落,与水平地面相碰后弹到空中某一高度,其速度—时间图像如图所示,以竖直向上为正,重力加速度g取10 m/s2。
动量守恒定律(二)
v1 v1
的楔形物块上有圆弧轨道, 【例7】 质量为M的楔形物块上有圆弧轨道,静 的小球以速度v 止在水平面上。 止在水平面上。质量为m的小球以速度 1向物块 运动。不计一切摩擦,圆弧小于90°且足够长。 运动。不计一切摩擦,圆弧小于 °且足够长。 求小球能上升到的最大高度H 和物块的最终速 度v。 。 v
V2=mvcosθ/M
例4.长为L,质量为m1小船停在静水中,一个质 4.长为L 质量为m 小船停在静水中, 长为 量为m 立在船头,若不计水的阻力, 量为m2人,立在船头,若不计水的阻力,当人 从船头走到船尾的过程中, 从船头走到船尾的过程中,船和人对地的位移 各是多少? 各是多少?
v1 L-x 在任一时刻,系统总动 在任一时刻, 量都满足: 量都满足:
在任一时刻, 在任一时刻,系统 水平方向动量守恒: 水平方向动量守恒: 取水平向右为正) (取水平向右为正)
L−x x m + M (− ) = 0 t t
` x
mL x= m+M
例6:如图所示,两只小船平行逆向航行,航线 如图所示,两只小船平行逆向航行, 邻近,当它们头尾相齐时, 邻近,当它们头尾相齐时,由每一只船上各投 质量m=50kg的麻袋到另一只船上去, m=50kg的麻袋到另一只船上去 质量m=50kg的麻袋到另一只船上去,结果载重 较小的一只船停下了,另一只船则v=8.5m/s v=8.5m/s的 较小的一只船停下了,另一只船则v=8.5m/s的 速度向原方向航行,设两只船及船上的载重分 速度向原方向航行, 别为m =500kg和 =1000kg, 别为m1=500kg和m2=1000kg,问在交换麻袋 前两只船的速率各为多少? 前两只船的速率各为多少?
例 10. 甲 、 乙两个小孩各乘一辆冰车在水平冰面上游 10 . 甲和他的冰车的质量共为M=30kg,乙和它的冰车 戏。甲和他的冰车的质量共为 , 总质量也是30kg,游戏时,甲推着一个质量为 总质量也是 ,游戏时,甲推着一个质量为m=15kg 的速度滑行, 的箱子,和他一起以大小为v 的速度滑行 的箱子, 和他一起以大小为 0=3m/s的速度滑行,乙以 同样大小的速度迎面滑来。 为了避免相撞, 同样大小的速度迎面滑来 。 为了避免相撞 , 甲突然将 箱子沿冰面推给乙, 箱子滑到乙处时乙迅速把它抓住。 箱子沿冰面推给乙 , 箱子滑到乙处时乙迅速把它抓住 。 若不计冰面的摩擦力。 求甲至少要以多大的速度( 若不计冰面的摩擦力 。 求甲至少要以多大的速度 ( 相 对于地面)将箱子推出,才能避免与乙相撞。 对于地面)将箱子推出,才能避免与乙相撞。
动量及动量守恒定律习题大全(含解析答案)
动量及动量守恒定律习题大全一.动量守恒定律概述1。
动量守恒定律的条件⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽略不计;⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。
⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒.2.动量守恒定律的表达形式(1),即p1 p2=p1/ p2/,(2)Δp1 Δp2=0,Δp1= —Δp2 和3.应用动量守恒定律解决问题的基本思路和一般方法(1)分析题意,明确研究对象.(2)对各阶段所选系统内的物体进行受力分析,判定能否应用动量守恒。
(3)确定过程的始、末状态,写出初动量和末动量表达式。
注重:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系.(4)建立动量守恒方程求解。
4.注重动量守恒定律的“五性”:①条件性;②整体性;③矢量性;④相对性;⑤同时性.二、动量守恒定律的应用1两个物体作用时间极短,满足内力远大于外力,可以认为动量守恒.碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。
如:光滑水平面上,质量为m1的物体A以速度v1向质量为m2的静止物体B运动,B的左端连有轻弹簧分析:在Ⅰ位置A、B刚好接触,弹簧开始被压缩,A开始减速,B开始加速;到Ⅱ位置A、B速度刚好相等(设为v),弹簧被压缩到最短;再往后A、B远离,到Ⅲ位位置恰好分开。
(1)弹簧是完全弹性的。
压缩过程系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;分开过程弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。
这种碰撞叫做弹性碰撞。
由动量守恒和能量守恒可以证实A、B的最终速度分别为:。
(这个结论最好背下来,以后经常要用到.)(2)弹簧不是完全弹性的。
压缩过程系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态弹性势能仍最大,但比损失的动能小;分离过程弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失。
2动量守恒定律2 - 副本
动量守恒定律2多个物体的动量守恒1.质量为m=100㎏的小船静止在水面上,船上左、右两端各站着质量分别为m甲=40㎏,m乙=60㎏的游泳者,当他们在同一水平线上,甲朝左,乙朝右,同时以相对河岸3m/s 的速率跃入水中时,小船运动方向为_______,运动速率为_____m/s.2.质量为M的小船以速度v0行驶,船上有两个质量均为m的小孩a和b,分别静止站在船头和船尾.现小孩a沿水平方向以速率v(相对于静止水面)向前跃入水中,然后小孩b沿水平方向以同一速率v(相对于静止水面)向后跃入水中,则小孩b跃出后小船的速度方向________,大小为________(水的阻力不计).3.质量分别为60㎏和70㎏的甲、乙两人,分别同时从原来静止的在光滑水平面上的小车两端.以3m/s的水平初速度沿相反方向跳到地面上.若小车的质量为20㎏.则当两人跳离小车后,小车的运动速度为().A.19.5m/s.方向与甲的初速度方向相同B.19.5m/s,方向与乙的初速度方向相同C.1.5m/s,方向与甲的初速度方向相同D.1.5m/s,方向与乙的初速度方向相同4.[多选]匀速向东行驶的小车上有两球被分别向东、向西同时抛出,抛出时两球的动量大小相等,则()A.球抛出后,小车的速度不变B.球抛出后,小车的速度增加C.球抛出后,小车的速度减小D.向西抛出之球的动量变化比向东抛出之球的动量变化大5.在光滑水平直路上停着一辆较长的木板车,车的左端站立一个大人,车的右端站立一个小孩.如果大人向右走,小孩(质量比大人小)向左走.他们的速度大小相同,则在他们走动过程中().A.车可能向右运动B.车一定向左运动C.车可能保持静止D.无法确定6.如图所示,一辆小车静止在光滑水平面上,A、B两人分别站在车的两端.当两人同时相向运动时()A.若小车不动,两人速率一定相等B.若小车向左运动,A的动量一定比B的小C.若小车向左运动,A的动量一定比B的大D.若小车向右运动,A的动量一定比B的大7.如图所示,一平板小车静止在光滑的水平面上,质量均为m的物体A、B分别以2v和v的初速度、沿同一直线同时从小车两端相向水平滑上小车。
2020版高考物理大二轮复习试题:动量定理和动量守恒定律(含答案)
回扣练8:动量定理和动量守恒定律1.将一个光滑的半圆形槽置于光滑的水平面上如图,槽左侧有一个固定在水平面上的物块.现让一个小球自左侧槽口A 点正上方由静止开始落下,从A 点落入槽内,则下列说法中正确的是( )A .小球在半圆槽内运动的过程中,机械能守恒B .小球在半圆槽内运动的全过程中,小球与半圆槽组成的系统动量守恒C .小球在半圆槽内由B 点向C 点运动的过程中,小球与半圆槽组成的系统动量守恒D .小球从C 点离开半圆槽后,一定还会从C 点落回半圆槽解析:选D.只有重力做功时物体机械能守恒,小球在半圆槽内运动由B 到C 过程中,除重力做功外,槽的支持力也对小球做功,小球机械能不守恒,由此可知,小球在半圆槽内运动的全过程中,小球的机械能不守恒,故A 错误.小球在槽内运动的前半过程中,左侧物体对槽有作用力,小球与槽组成的系统水平方向上的动量不守恒,故B 错误.小球自半圆槽的最低点B 向C 点运动的过程中,系统在水平方向所受合外力为零,故小球与半圆槽在水平方向动量守恒,故C 错误.小球离开C 点以后,既有竖直向上的分速度,又有与槽相同的水平分速度,小球做斜上抛运动,然后可以从C 点落回半圆槽,故D 正确.故选D.2.如图所示,质量为m 的A 球在水平面上静止放置,质量为2m的B 球向左运动速度大小为v 0,B 球与A 球碰撞且无机械能损失,碰后A 球速度大小为v 1,B 球的速度大小为v 2,碰后相对速度与碰前相对速度的比值定义为恢复系数e =v 1-v 2v 0-0,下列选项正确的是( ) A .e =1B .e =12C .e =13D .e =14解析:选A.AB 在碰撞的过程中,根据动量守恒可得,2mv 0=mv 1+2mv 2,在碰撞的过程中机械能守恒,可得12·2mv 20=12mv 21+12·2mv 22,解得v 1=43v 0,v 2=13v 0,碰后相对速度与碰前相对速度的比值定义为恢复系数e =v 1-v 2v 0-0=1,故A 正确,BCD 错误;故选A. 3.如图所示,AB 两小球静止在光滑水平面上,用轻弹簧相连接,A 球的质量小于B 球的质量.若用锤子敲击A 球使A 得到v 的速度,弹簧压缩到最短时的长度为L 1;若用锤子敲击B 球使B 得到v 的速度,弹簧压缩到最短时的长度为L 2,则L 1与L 2的大小关系为( )A .L 1>L 2B .L 1<L 2C .L 1=L 2D .不能确定解析:选C.若用锤子敲击A 球,两球组成的系统动量守恒,当弹簧最短时,两者共速,则m A v =(m A +m B )v ′,解得v ′=m A v m A +m B ,弹性势能最大,最大为ΔE p =12m A v 2-12(m A +m B )v ′2=m A m B v 22(m A +m B );若用锤子敲击B 球,同理可得m B v =(m A +m B )v ″,解得v ″=m B v m A +m B ,弹性势能最大为ΔE p =12m B v 2-12(m A +m B )v ′2=m A m B v 22(m A +m B ),即两种情况下弹簧压缩最短时,弹性势能相等,故L 1=L 2,C 正确.4.如图所示,足够长的传送带以恒定的速率v 1逆时针运动,一质量为m 的物块以大小为v 2的初速度从左轮中心正上方的P 点冲上传送带,从此时起到物块再次回到P 点的过程中,下列说法正确的是( )A .合力对物块的冲量大小一定为2mv 2B .合力对物块的冲量大小一定为2mv 1C .合力对物块的冲量大小可能为零D .合力对物块做的功可能为零解析:选D.若v 2>v 1,物块在传送带上先向右做匀减速直线运动,速度减为零后再返回做匀加速直线运动,达到速度v 1后做匀速直线运动,可知物块再次回到P 点的速度大小为v 1,规定向左为正方向,根据动量定理得,合外力的冲量I 合=mv 1-m (-v 2)=mv 1+mv 2.根据动能定理知,合外力做功W 合=12mv 21-12mv 22;若v 2<v 1,物块在传送带上先向右做匀减速直线运动,速度减为零后再返回做匀加速直线运动,物块再次回到P 点的速度大小为v 2,规定向左为正方向,根据动量定理得,合外力的冲量为:I 合=mv 2-m (-v 2)=2mv 2;根据动能定理知,合外力做功为:W 合=12mv 22-12mv 22=0.故D 正确,ABC 错误.故选D. 5.如图甲所示,工人利用倾斜钢板向车内搬运货物,用平行于钢板向上的力将货物从静止开始由钢板底端推送到顶端,到达顶端时速度刚好为零.若货物质量为100 kg ,钢板与地面的夹角为30°,钢板与货物间的滑动摩擦力始终为50 N ,整个过程中货物的速度—时间图象如图乙所示,重力加速度g 取10 m/s 2.下列说法正确的是( )A .0~2 s 内人对货物做的功为600 JB .整个过程中人对货物的推力的冲量为1 000 N·sC .0~2 s 和2~3 s 内货物所受推力之比为1∶2D .整个过程中货物始终处于超重状态解析:选A.0~2 s 内货物的加速度a 1=Δv Δt=0.5 m/s 2,根据牛顿第二定律:F 1-f -mg sin 30°=ma 1,解得F 1=600 N ;0~2 s 内货物的位移:x 1=12×2×1 m=1 m ;则人对货物做的功为W F =Fx 1=600 J ,选项A 正确;整个过程中,根据动量定理:I F -(f +mg sin 30°)t =0,解得整个过程中人对货物的推力的冲量为I F =(f +mg sin 30°)t =(50+100×10×0.5)×3=1 650 N·s,选项B 错误;2~3 s 内货物的加速度大小a 2=1 m/s 2,根据牛顿第二定律:f +mg sin 30°-F 2=ma 2所受推力F 2=450 N ;则0~2 s 和2~3 s 内货物所受推力之比为F 1∶F 2=600∶450=4∶3,选项C 错误;整个过程中货物的加速度先沿斜面向上,后向下,先超重后失重,选项D 错误;故选A.6.(多选)如图所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动.两球质量关系为m B =2m A ,规定向右为正方向,A 、B 两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A 球的动量增量为-4 kg·m/s,则( )A .该碰撞为弹性碰撞B .该碰撞为非弹性碰撞C .左方是A 球,碰撞后A 、B 两球速度大小之比为2∶5D .右方是A 球,碰撞后A 、B 两球速度大小之比为1∶10解析:选AC.规定向右为正方向,碰撞前A 、B 两球的动量均为6 kg·m/s,说明A 、B 两球的速度方向向右,两球质量关系为m B =2m A ,所以碰撞前v A >v B ,所以左方是A 球.碰撞后A 球的动量增量为-4 kg·m/s,所以碰撞后A 球的动量是2 kg·m/s;碰撞过程系统总动量守恒:m A v A +m B v B =-m A v A ′+m B v B ′所以碰撞后B 球的动量是10 kg·m/s,根据m B =2m A ,所以碰撞后A 、B 两球速度大小之比为2∶5,故C 正确,D 错误.碰撞前系统动能:p 2A 2m A +p 2B 2m B=622m A +622×2m A =27m A ,碰撞后系统动能为:p A ′22m A +p B ′22m B =222m A +1022×2m A =27m A,则碰撞前后系统机械能不变,碰撞是弹性碰撞,故A 正确,B 错误;故选AC.7.(多选)质量为M =3 kg 的滑块套在水平固定着的轨道上并可在轨道上无摩擦滑动.质量为m =2 kg 的小球(视为质点)通过长L =0.75 m 的轻杆与滑块上的光滑轴O 连接,开始时滑块静止,轻杆处于水平状态.现给小球一个v 0=3 m/s 的竖直向下的初速度,取g =10 m/s 2.则( )A .小球m 从初始位置到第一次到达最低点的过程中,滑块M 在水平轨道上向右移动了0.3 mB .小球m 从初始位置到第一次到达最低点的过程中,滑块M 在水平轨道上向右移动了0.2 mC .小球m 相对于初始位置可以上升的最大高度为0.27 mD .小球m 从初始位置到第一次到达最大高度的过程中,滑块M 在水平轨道上向右移动了0.54 m解析:选AD.可把小球和滑块水平方向的运动看作人船模型,设滑块M 在水平轨道上向右运动了x ,由滑块和小球系统在水平方向上动量守恒,有m M =x L -x,解得:x =0.3 m ,选项A 正确、B 错误.根据动量守恒定律,小球m 相对于初始位置上升到最大高度时小球和滑块速度都为零,由能量守恒定律可知,小球m 相对于初始位置可以上升的最大高度为0.45 m ,选项C 错误.此时杆与水平面的夹角为cos α=0.8,设小球从最低位置上升到最高位置过程中滑块M 在水平轨道上又向右运动了x ′,由滑块和小球系统在水平方向时动量守恒,有m M =x ′L cos α-x ′,解得:x ′=0.24 m .小球m 从初始位置到第一次到达最大高度的过程中,滑块在水平轨道上向右移动了x +x ′=0.3 m +0.24 m =0.54 m ,选项D 正确.8.(多选)如图所示,一辆质量为M =3 kg 的平板小车A 停靠在竖直光滑墙壁处,地面水平且光滑,一质量为m =1 kg 的小铁块B (可视为质点)放在平板小车A 最右端,平板小车A 上表面水平且与小铁块B 之间的动摩擦因数μ=0.5,平板小车A 的长度L =0.9 m .现给小铁块B 一个v 0=5 m/s 的初速度使之向左运动,与竖直墙壁发生弹性碰撞后向右运动,重力加速度g =10 m/s 2.下列说法正确的是( )A .小铁块B 向左运动到达竖直墙壁时的速度为2 m/sB .小铁块B 与墙壁碰撞过程中所受墙壁的冲量为8 N·sC .小铁块B 向左运动到达竖直墙壁的过程中损失的机械能为4 JD .小铁块B 在平板小车A 上运动的整个过程中系统损失的机械能为9 J解析:选BD.设小铁块B 向左运动到达竖直墙壁时的速度为v 1,根据动能定理得:-μmgL =12mv 21-12mv 20,解得:v 1=4 m/s ,选项A 错误.与竖直墙壁发生弹性碰撞,反弹速度为-4 m/s ,由动量定理可知,小铁块B 与墙壁碰撞过程中所受墙壁的冲量为I =2mv 1=8 N·s,选项B 正确.小铁块B 向左运动到达竖直墙壁的过程中损失的机械能为μmgL =4.5 J ,选项C 错误.假设发生弹性碰撞后小铁块B 最终和平板小车A 达到的共同速度为v 2,根据动量守恒定律得:mv 1=(M +m )v 2,解得:v 2=1 m/s.设小铁块B 在平板小车A 上相对滑动的位移为x 时与平板小车A 达到共同速度v 2,则根据功能关系得:-μmgx =12(M +m )v 22-12mv 21,解得:x =1.2 m ,由于x >L ,说明小铁块B 在没有与平板小车A 达到共同速度时就滑出平板小车A ,所以小铁块B 在平板小车上运动的整个过程中系统损失的机械能为ΔE =2μmgL =9 J ,选项D 正确.9.(多选)在地面上以大小为v 1的初速度竖直向上抛出一质量为m 的皮球,皮球落地时速度大小为v 2.若皮球运动过程中所受空气阻力的大小与其速率成正比,重力加速度为g .下列判断正确的是( )A .皮球上升的最大高度为v 212gB .皮球从抛出到落地过程中克服阻力做的功为12mv 21-12mv 22 C .皮球上升过程经历的时间为v 1gD .皮球从抛出到落地经历的时间为v 1+v 2g解析:选BD.减速上升的过程中受重力、阻力作用,故加速度大于g ,则上升的高度小于v 212g ,上升的时间小于v 1g,故AC 错误;皮球从抛出到落地过程中重力做功为零,根据动能定理得克服阻力做功为W f =12mv 21-12mv 22,故B 正确;用动量定理,结合数学知识,假设向下为正方向,设上升阶段的平均速度为v ,则:mgt 1+kvt 1=mv 1,由于平均速度乘以时间等于上升的高度,故有:h =vt 1,即:mgt 1+kh =mv 1 ①,同理,设下降阶段的平均速度为v ′,则下降过程:mgt 2-kv ′t 2=mv 2,即:mgt 2-kh =mv 2 ②,由①②得:mg (t 1+t 2)=m (v 1+v 2),解得:t =t 1+t 2=v 1+v 2g,故D 正确;故选BD. 10.(多选)如图所示,足够长的光滑水平导轨间距为2 m ,电阻不计,垂直导轨平面有磁感应强度为1 T 的匀强磁场,导轨上相隔一定距离放置两根长度略大于间距的金属棒,a 棒质量为1 kg ,电阻为5 Ω,b 棒质量为2 kg ,电阻为10 Ω.现给a 棒一个水平向右的初速度8 m/s ,当a 棒的速度减小为4 m/s 时,b 棒刚好碰到了障碍物,经过很短时间0.5 s 速度减为零(不反弹,且a 棒始终没有与b 棒发生碰撞),下列说法正确的是( )A .从上向下看回路产生逆时针方向的电流B .b 棒在碰撞前瞬间的速度大小为2 m/sC .碰撞过程中障碍物对b 棒的平均冲击力大小为6 ND .b 棒碰到障碍物后,a 棒继续滑行的距离为15 m解析:选ABD.根据右手定则可知,从上向下看回路产生逆时针方向的电流,选项A 正确;系统动量守恒,由动量守恒定律可知:m a v 0=m a v a +m b v b 解得v b =2 m/s ,选项B 正确;b 碰到障碍物时,回路的感应电动势:E =BL (v a -v b )=4 V ;回路的电流:I =E R a +R b =415 A ;b 棒所受的安培力:F b =BIL =815N ;b 与障碍物碰撞时,由动量定理:(F b -F )t =0-m b v b 解得:F =8.5 N ,选项C 错误;b 碰到障碍物后,a 继续做减速运动,直到停止,此时由动量定理:B IL Δt =m a v a ,其中I Δt =q =ΔΦR a +R b =BLx R a +R b联立解得x =15 m ,选项D 正确;故选ABD. 11.(多选)两个小球A 、B 在光滑水平面上相向运动,已知它们的质量分别是m 1=4 kg ,m 2=2 kg ,A 的速度v 1=3 m/s(设为正),B 的速度v 2=-3 m/s ,则它们发生正碰后,其速度可能分别是( )A .均为1 m/sB .+4 m/s 和-5 m/sC .+2 m/s 和-1 m/sD .-1 m/s 和5 m/s解析:选AD.由动量守恒,可验证四个选项都满足要求.再看动能情况E k =12m 1v 21+12m 2v 22=12×4×9 J+12×2×9 J=27 J E k ′=12m 1v 1′2+12m 2v 2′2由于碰撞过程动能不可能增加,所以应有E k ≥E k ′,可排除选项B.选项C 虽满足E k ≥E k ′,但A、B沿同一直线相向运动,发生碰撞后各自仍能保持原来的速度方向(v A′>0,v B′<0),这显然是不符合实际的,因此C错误.验证选项A、D均满足E k≥E k′,故答案为选项A(完全非弹性碰撞)和选项D(弹性碰撞).。
高二物理:动量与动量守恒定律练习题(含参考答案)
高二物理:动量与动量守恒定律练习题(含参考答案)的物体A。
物体A向右以速度v撞击平板车B,撞击后物体A和平板车B一起向右运动。
假设撞击过程中没有能量损失,则撞击后平板车B的速度为:()A。
v/2B。
vC。
2v/3D。
3v/41.一名跳水运动员从峭壁上水平跳入湖水中。
已知运动员的质量为70kg,初速度为5m/s。
经过1秒后速度为5m/s。
不计空气阻力,求此过程中运动员动量的变化量。
A。
700 kg·m/s B。
350 kg·m/s C。
350(-1) kg·m/s D。
350(+1) kg·m/s2.质量相等的A、B两球在光滑水平面上沿同一直线、同一方向运动。
A球的动量为9kg•m/s,B球的动量为3kg•m/s。
当A追上B时发生碰撞,求碰后A、B两球的动量可能值。
A。
pA′=6 kg•m/s,pB′=6 kg•m/s B。
pA′=8 kg•m/s,pB′=4 kg•m/s C。
pA′=﹣2 kg•m/s,pB′=14 kg•m/s D。
pA′=﹣4 kg•m/s,pB′=17 kg•m/s3.A、B两物体发生正碰。
碰撞前后物体A、B都在同一直线上运动,其位移—时间图象如图所示。
由图可知,物体A、B的质量之比为:A。
1∶1 B。
1∶2 C。
1∶3 D。
3∶14.在光滑水平地面上匀速运动的小车和砂子总质量为M,速度为v。
在行驶途中有质量为m的砂子从车上漏掉,求砂子漏掉后小车的速度。
A。
v B。
(M-m)v/M C。
mv/(M-m) D。
(M-m)v/m5.在光滑水平面上,质量为m的小球A正以速度v匀速运动。
某时刻小球A与质量为3m的静止小球B发生正碰,两球相碰后,A球的动能恰好变为原来的1/4.求碰后B球的速度大小。
A。
2v B。
6v C。
2v/3 或 6v/7 D。
无法确定6.在光滑水平面上停放质量为m装有弧形槽的小车。
现有一质量也为m的小球以v的水平速度沿与切线水平的槽口向小车滑去(不计摩擦)。
2020_2021学年高中物理第十六章动量守恒定律2动量和动量定理课后作业含解析新人教版选修3_52
动量和动量定理时间:45分钟一、选择题(1~8题为单选,9~10题为多选)1.下面关于物体动量和冲量的说法,不正确的是( A )A.物体所受合外力冲量越大,它的动量也越大B.物体所受合外力冲量不为零,它的动量一定要改变C.物体动量增量的方向,就是它所受合外力的冲量方向D.物体所受合外力冲量越大,它的动量变化就越大解析:由动量定理可知,物体所受合外力的冲量,其大小等于动量的变化量的大小,方向与动量增量的方向相同.2.跳远时,跳在沙坑里比跳在水泥地上安全,这是由于( D )A.人跳在沙坑的动量比跳在水泥地上的小B.人跳在沙坑的动量变化比跳在水泥地上的小C.人跳在沙坑受到的冲量比跳在水泥地上的小D.人跳在沙坑受到的冲力比跳在水泥地上的小解析:人跳远时从一定的高度落下,落地前的速度是一定的,初动量是一定的,所以选项A错误;落地后静止,末动量一定,人的动量变化量是一定的,选项B错误;由动量定理可知人受到的冲量等于人的动量变化量,所以两种情况下受到的冲量相等,选项C错误;落在沙坑里力作用的时间长,落在水泥地上力作用的时间短,根据动量定理,在动量变化量一定的情况下,时间t越长则受到的冲力F越小,故选项D正确.3.质量为1 kg的物体做直线运动,其速度图象如图所示.则物体在前10 s内和后10 s 内所受合外力的冲量分别是( D )A.10 N·s,10 N·sB.10 N·s,-10 N·sC.0,10 N·sD.0,-10 N·s解析:由题图可知,在前10 s内初、末状态的动量相同,p1=p2=5 kg·m/s,由动量定理知I1=0;在后10 s内末状态的动量p3=-5 kg·m/s,由动量定理得I2=p3-p2=-10 N·s.4.为估算池中睡莲叶面承受雨滴撞击产生的平均压强,小明在雨天将一圆柱形水杯置于露台,测得1小时内杯中水面上升了45 mm.查询得知,当时雨滴竖直下落速度约为12 m/s.据此估算该压强约为(设雨滴撞击睡莲后无反弹,不计雨滴重力,雨水的密度为1×103 kg/m3)( A )A.0.15 Pa B.0.54 PaC.1.5 Pa D.5.4 Pa解析:设圆柱形水杯的底面积为S,则水杯中水的质量为m=ρV=103×45×10-3S=45S,由动量定理可得Ft=mv,而p=FS,所以p=mvSt=45S×12S×3 600Pa=0.15 Pa.5.质量为60 kg的建筑工人,不慎从高空跌下,幸好弹性安全带的保护使他悬挂起来.已知弹性安全带的缓冲时间是1.5 s,安全带自然长度为5 m,g取10 m/s2,则安全带所受的平均冲力的大小为( D )A.500 N B.1 100 NC.600 N D.1 000 N解析:建筑工人下落5 m 时速度为v ,则v =2gh=2×10×5 m/s =10 m/s ,设安全带所受平均冲力为F ,则由动量定理得:(mg -F )t =-mv ,所以F =mg +mv t =60×10 N +60×101.5 N =1 000 N. 6.如图所示,两个质量相等的物体在同一高度沿倾角不同的两个光滑斜面由静止自由滑下,在到达斜面底端的过程中( D )A .重力的冲量相同B .弹力的冲量相同C .合力的冲量相同D .以上说法均不对解析:设物体质量为m ,沿倾角为θ的光滑斜面下滑的加速度为a ,根据牛顿第二定律,有mg sin θ=ma ,设物体开始下滑时高度为h ,根据初速度为零的匀加速直线运动的位移公式,可得物体下滑的时间为t =2hsin θa=2h g sin 2θ,下滑过程中重力的冲量为I θ=mgt =mg2h g sin 2θ,同理可得,物体沿倾角为α的光滑斜面下滑过程中重力的冲量为I α=mg 2h g sin 2α,因为θ≠α,所以I θ≠I α,选项A 错误;力的冲量是矢量,两个矢量相同,必须大小和方向都相同.因该题中θ≠α,故弹力的方向和合力的方向都不同,故弹力的冲量的方向和合力的冲量的方向也不同,选项B 、C 错误.7.如图所示,铁块压着一纸条放在水平桌面上,当以速度v 抽出纸条后,铁块掉在地上P 点,若以2v 的速度抽出纸条,则铁块落地点为( D )A .快抽时比慢抽时作用力大,所以会落在P 点右侧B .快抽时应落在P 点右侧原水平位移的两倍处C .虽然快抽时铁块所受摩擦力比慢抽时大,但作用时间短、冲量小,所以落在P 点左侧D .快抽时铁块所受摩擦力不变,但作用时间短、冲量小,所以落在P 点左侧解析:抽出纸条的过程中,铁块受到向前的摩擦力作用而加速运动,若纸条以2v 的速度抽出,则纸条与铁块相互作用时间变短,因此铁块加速时间变短,根据动量定理知,摩擦力作用时间变短,做平抛时的初速度减小,平抛时间不变,则平抛运动的水平位移减小,在P 点左侧,选项D 正确.8.如图所示,质量分别为m =1 kg 和M =2 kg 的两物块叠放在光滑水平桌面上,两物块均处于静止状态,从某时刻开始,对放在下面的质量为m 的物块施加一水平推力F ,已知推力F 随时间t 变化的关系为F =6t (N),两物块之间的动摩擦因数为μ=0.2,最大静摩擦力等于滑动摩擦力,重力加速度g =10 m/s 2,下列结论正确的是( A )A .两物块刚发生相对运动时的速度为1 m/sB .从施加推力F 到两物块刚发生相对运动所需的时间为23s C .从施加推力F 到两物块刚发生相对运动两物块的位移为0.5 mD .从施加推力F 到两物块刚发生相对运动F 的冲量为6 N ·s解析:当两物块间达到最大静摩擦力时,M 与m 发生相对滑动,则此时M 的加速度为:a =μMg M =μg =0.2×10 m/s 2=2 m/s 2,则对整体受力分析可知,F =(m +M )a =3×2 N =6 N =6t ,则可知从施加推力到发生相对运动的时间为1 s ,F 是均匀增加的,故1 s 内平均推力F =62N =3 N ,对整体由动量定理可得,F t =(M +m )v ,解得:v =1 m/s ,故A 正确,B 错误;若物块做匀加速直线运动,则1 s 内的位移x =12vt =0.5 m ,而物块做的是变加速直线运动,则位移不是0.5 m ,故C 错误;由动量定理可知,I =(M +m )v =3 N ·s ,故D 错误.故选A.9.下列说法正确的是( AD )A .运动物体在任一时刻的动量方向,一定是该时刻的速度方向B .物体的加速度不变,其动量一定不变C .物体的速度大小不变时,动量的增量Δp 为零D .物体做曲线运动时,动量的增量一定不为零解析:动量具有瞬时性,任一时刻物体动量的方向,即为该时刻的速度方向,选项A 正确;加速度不变,则物体速度的变化率恒定,物体的速度均匀变化,故其动量也均匀变化,选项B 错误;当物体的速度大小不变时,其方向可能变化,也可能不变化,动量可能不变化,即Δp =0,也可能动量大小不变而方向变化,此种情况Δp ≠0,故选项C 错误;当物体做曲线运动时,动量的方向变化,即动量一定变化,Δp 一定不为零,故选项D 正确.10.甲、乙两个物体动量随时间变化的图象如图所示,图象对应的物体的运动过程可能是( BD )A.甲物体可能做匀加速运动B.甲物体可能做竖直上抛运动C.乙物体可能做匀变速运动D.乙物体可能做水平直线运动时遇到了一端固定的弹簧解析:甲物体的动量随时间的变化图象是一条直线,其斜率ΔpΔt恒定不变,说明物体受到恒定的合外力作用,由图线可以看出甲物体的动量先减小然后反向增大,则甲物体做匀变速直线运动,与竖直上抛运动类似,所以选项B正确.乙物体的动量随时间的变化规律是一条曲线,曲线的斜率先增大后减小,则乙物体在运动过程中受到的合外力先增大后减小.由图线还可以看出,乙物体的动量先正方向减小到零,然后反方向增大.由此可知乙物体的运动是一个变加速运动,与水平面上的小球运动时遇到一端固定的弹簧的情况类似,所以选项D正确.二、非选择题11.一个质量为m=2 kg的物体,在F1=8 N的水平推力作用下,从静止开始沿水平面运动了t1=5 s的时间,然后推力减小为F2=5 N,方向不变,物体又运动了t2=4 s的时间后撤去外力,物体再经过t3=6 s的时间停下来.试求物体在水平面上所受的摩擦力大小.答案:4 N解析:规定推力的方向为正方向,在物体运动的整个过程中,物体的初动量p1=0,末动量p2=0.据动量定理有:F1t1+F2t2-f(t1+t2+t3)=0解得f=4 N.12.一宇宙飞船以v=1.0×104 m/s的速度进入密度为ρ=2.0×10-7 kg/m3的微陨石流中,如果飞船在垂直于运动方向上的最大截面积S=5 m2,且认为微陨石与飞船碰撞后都附着在飞船上.为使飞船的速度保持不变,飞船的牵引力应增加多大?答案:100 N解析:设t 时间内附着在飞船上的微陨石总质量为Δm ,则Δm =ρSvt ①这些微陨石由静止至随飞船一起运动,其动量增加是受飞船对其作用的结果,由动量定理有Ft =Δp =Δmv ②则微陨石对飞船的冲量大小也为Ft ,为使飞船速度保持不变,飞船应增加的牵引力为ΔF =F ③综合①②③并代入数值得ΔF =100 N ,即飞船的牵引力应增加100 N.13.如图所示,将质量为m =1 kg 的小球,从距水平地面高h =5 m 处,以v 0=10 m/s 的水平速度抛出,不计空气阻力,g 取10 m/s 2.求:(1)平抛运动过程中小球动量的增量Δp ;(2)小球落地时的动量p ′;(3)飞行过程中小球所受的合外力的冲量I .答案:(1)10 kg ·m/s ,方向竖直向下 (2)10 2 kg ·m/s ,方向与水平方向成45°夹角斜向右下(3)10 N ·s ,方向竖直向下解析:由于平抛运动的竖直分运动为自由落体运动,故h =12gt 2,落地时间t =2h g=1 s(1)因为水平方向上是匀速运动,v 0保持不变,所以小球的速度增量Δv =Δv y =gt =10 m/s所以Δp=Δp y=mΔv=10 kg·m/s,方向竖直向下.(2)落地速度v=v20+v2y=102+102m/s=10 2 m/s,所以小球落地时的动量大小为p′=mv=10 2 kg·m/s,由图可知tanθ=v yv0=1,则小球落地时动量的方向与水平方向成45°夹角斜向右下.(3)小球飞行过程中只受重力作用,所以合外力的冲量I=mgt=1×10×1 N·s=10 N·s,方向竖直向下.。
专题38 动量定理(二)(解析版)
2023届高三物理一轮复习重点热点难点专题特训专题38 动量定理(二)特训目标 特训内容目标1 动量定理在蹦极缓冲类问题中的应用(1T —4T )目标2 用动量定理解决流体问题(5T —8T ) 目标3 各类图像中动量定理应用(9T —12T )目标4分方向动量定理(13T —16T )一、动量定理在蹦极缓冲类问题中的应用1.蹦极是一项刺激的户外休闲活动,足以使蹦极者在空中体验几秒钟的“自由落体”。
如图所示,蹦极者站在高塔顶端,将一端固定的弹性长绳绑在踝关节处。
然后双臂伸开,双腿并拢,头朝下跳离高塔。
设弹性绳的原长为L ,蹦极者下落第一个5L时动量的增加量为1p ∆,下落第五个5L时动量的增加量为2p ∆,把蹦极者视为质点,蹦极者离开塔顶时的速度为零,不计空气阻力,则12p p ∆∆满足( )A .1212p p ∆<<∆ B .1223p p ∆<<∆ C .1234p p ∆<<∆ D .1245p p ∆<<∆ 【答案】D【详解】蹦极者下落高度L 的过程,可视为做自由落体运动,对于初速度为零的匀加速直线运动,通过连续相等位移的时间之比为121324354⋯⋯:():():():()可知125254t t ==-即1245t t <<由动量定理得p mgt ∆=故1245pp ∆<<∆故选D 。
2.高空作业必须系安全带,但安全带使用不当也会对人体造成伤害。
我国对安全带的材料、长度、宽度以及使用方法都有规定,其中规定如果安全带的长度超过三米一定要加装缓冲器。
某兴趣小组的同学们通过模拟实验来探究缓冲器的作用。
同学们改装了甲、乙两根安全带,甲不加装缓冲器,乙加装缓冲器,使两根安全带的总长度(乙安全带的总长度含缓冲器)都为1.25m ,把重物和力的传感器捆在一起挂在安全带的底端,重物(含传感器)的质量为1kg 。
现让重物从安全带上端处自由下落(重物可视为质点),实验发现从安全带伸直到重物速度第一次减为零,甲、乙分别用时0.1s 和0.5s 。
动量守恒定律练习题(含答案)
动量守恒定律复习测试题1.如图所示,质量为M的小船在静止水面上以速率v0向右匀速行驶,一质量为m 的救生员站在船尾,相对小船静止.若救生员以相对水面速率v水平向左跃入水中,则救生员跃出后小船的速率为()A.v0+mM v B.v0-m M vC.v0+mM(v0+v) D.v0+mM(v0-v)2.在2010年温哥华冬奥会上,首次参赛的中国女子冰壶队喜获铜牌,如图13-1-8为中国队员投掷冰壶的镜头.在某次投掷中,冰壶运动一段时间后以0.4 m/s 的速度与对方的静止冰壶发生正碰,碰后对方的冰壶以0.3 m/s的速度向前滑行.若两冰壶质量相等,规定向前运动的方向为正方向,则碰后中国队冰壶获得的速度为()A.0.1 m/s B.-0.1 m/sC.0.7 m/s D.-0.7 m/s3.如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为m B=2m A,规定向右为正方向,A、B两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s,则()A.左方是A球,碰撞后A、B两球速度大小之比为2∶5B.左方是A球,碰撞后A、B两球速度大小之比为1∶10C.右方是A球,碰撞后A、B两球速度大小之比为2∶5D.右方是A球,碰撞后A、B两球速度大小之比为1∶104.如图所示,轻质弹簧的一端固定在墙上,另一端与质量为m的物体A相连,A放在光滑水平面上,有一质量与A相同的物体B,从高h处由静止开始沿光滑曲面滑下,与A相碰后一起将弹簧压缩,弹簧复原过程中某时刻B与A分开且沿原曲面上升.下列说法正确的是()A .弹簧被压缩时所具有的最大弹性势能为mghB .弹簧被压缩时所具有的最大弹性势能为mgh 2C .B 能达到的最大高度为h 2D .B 能达到的最大高度为h5.如图,大小相同的摆球a 和b 的质量分别为m 和3m ,摆长相同,并排悬挂,平衡时两球刚好接触.现将摆球a 向左拉开一小角度后释放,若两球的碰撞是弹性的,下列判断正确的是( )A .第一次碰撞后的瞬间,两球的速度大小相等B .第一次碰撞后的瞬间,两球的动量大小相等C .第一次碰撞后,两球的最大摆角不相同D .发生第二次碰撞时,两球在各自的平衡位置6.如图所示,光滑水平直轨道上有三个滑块A 、B 、C ,质量分别为m A =m C =2m ,m B =m ,A 、B 用细绳连接,中间有一压缩的轻弹簧(弹簧与滑块不拴接).开始时A 、B 以共同速度v 0运动,C 静止.某时刻细绳突然断开,A 、B 被弹开,然后B 又与C 发生碰撞并粘在一起,最终三滑块速度恰好相同.求B 与C 碰撞前B 的速度.7.如图所示,光滑水平桌面上有长L =2 m 的挡板C ,质量m C =5 kg ,在其正中央并排放着两个小滑块A 和B ,m A =1 kg ,m B =3 kg ,开始时三个物体都静止.在A 、B 间放有少量塑胶炸药,爆炸后A 以6 m/s 速度水平向左运动,A 、B 中任意一块与挡板C 碰撞后,都粘在一起,不计摩擦和碰撞时间,求:(1)当两滑块A 、B 都与挡板C 碰撞后,C 的速度是多大;(2)A 、C 碰撞过程中损失的机械能.8.如图所示,在光滑水平面上有质量均为m 的两辆小车A 和B ,A 车上表面光滑水平,其上表面左端有一质量为M 的小物块C (可看做质点).B 车上表面是一个光滑的14圆弧槽,圆弧槽底端的切线与A 的上表面相平.现在A 和C 以共同速度v 0冲向静止的B 车,A 、B 碰后粘合在一起,之后物块C 滑离A ,恰好能到达B 的圆弧槽的最高点.已知M =2m ,v 0=4 m/s ,取g =10 m/s 2.求圆弧槽的半径R .动量守恒复习题答案1.如图所示,质量为M的小船在静止水面上以速率v0向右匀速行驶,一质量为m 的救生员站在船尾,相对小船静止.若救生员以相对水面速率v 水平向左跃入水中,则救生员跃出后小船的速率为()A.v0+mM v B.v0-m M vC.v0+mM(v0+v) D.v0+mM(v0-v)【解析】小船和救生员组成的系统满足动量守恒:(M+m)v0=m·(-v)+Mv′解得v′=v0+mM(v0+v)故C项正确,A、B、D三项均错.【答案】 C2.在2010年温哥华冬奥会上,首次参赛的中国女子冰壶队喜获铜牌,如图13-1-8为中国队员投掷冰壶的镜头.在某次投掷中,冰壶运动一段时间后以0.4 m/s的速度与对方的静止冰壶发生正碰,碰后对方的冰壶以0.3 m/s的速度向前滑行.若两冰壶质量相等,规定向前运动的方向为正方向,则碰后中国队冰壶获得的速度为() A.0.1 m/s B.-0.1 m/sC.0.7 m/s D.-0.7 m/s【解析】设冰壶质量为m,碰后中国队冰壶速度为v x,由动量守恒定律得mv0=mv+mv x解得v x=0.1 m/s,故选项A正确.【答案】 A3.如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为m B=2m A,规定向右为正方向,A、B两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s,则()A .左方是A 球,碰撞后A 、B 两球速度大小之比为2∶5B .左方是A 球,碰撞后A 、B 两球速度大小之比为1∶10C .右方是A 球,碰撞后A 、B 两球速度大小之比为2∶5D .右方是A 球,碰撞后A 、B 两球速度大小之比为1∶10【解析】 由m B =2m A ,p A =p B 知碰前v B <v A若左为A 球,设碰后二者速度分别为v ′A 、v ′B由题意知p ′A =m A v ′A =2 kg·m/sp ′B =m B v ′B =10 kg·m/s 由以上各式得v ′A v ′B =25,故正确选项为A. 若右为A 球,由于碰前动量都为6 kg·m/s ,即都向右运动,两球不可能相碰.【答案】 A4.如图所示,轻质弹簧的一端固定在墙上,另一端与质量为m 的物体A 相连,A 放在光滑水平面上,有一质量与A 相同的物体B ,从高h 处由静止开始沿光滑曲面滑下,与A 相碰后一起将弹簧压缩,弹簧复原过程中某时刻B 与A 分开且沿原曲面上升.下列说法正确的是( )A .弹簧被压缩时所具有的最大弹性势能为mghB .弹簧被压缩时所具有的最大弹性势能为mgh 2C .B 能达到的最大高度为h 2D .B 能达到的最大高度为h【解析】 根据机械能守恒定律可得B 刚到达水平地面的速度v 0=2gh ,根据动量守恒定律可得A 与B 碰撞后的速度为v =12v 0,所以弹簧被压缩时所具有的最大弹性势能为E pm =12·2mv 2=12mgh ,即A 错,B 正确;当弹簧再次恢复原长时,A 与B 将分开,B 以v 的速度沿斜面上滑,根据机械能守恒定律可得mgh ′=12mv 2,B 能达到的最大高度为h /4,即D 错误.【答案】 B5.如图,大小相同的摆球a 和b 的质量分别为m 和3m ,摆长相同,并排悬挂,平衡时两球刚好接触.现将摆球a 向左拉开一小角度后释放,若两球的碰撞是弹性的,下列判断正确的是( )A .第一次碰撞后的瞬间,两球的速度大小相等B .第一次碰撞后的瞬间,两球的动量大小相等C .第一次碰撞后,两球的最大摆角不相同D .发生第二次碰撞时,两球在各自的平衡位置【解析】 弹性碰撞遵守能量守恒和动量守恒,设第一次碰撞前,a 的速度为v ,第一次碰撞后a 的速度为v 1、b 的速度为v 2,根据动量守恒,得mv =mv 1+3mv 2① 根据能量守恒,得:12mv 2=12mv 21+12×3mv 22② ①②联立得:v 1=-12v ,v 2=12v ,故A 选项正确;第一次碰撞后瞬间,a 的动量大小为12mv ,b 的动量大小为32mv ,故B 选项错误;由于第一次碰撞后瞬间的速度大小相等,根据机械能守恒可知,两球的最大摆角相等,C 选项错误;由于摆长相同,两球的振动周期相等,所以第二次碰撞时,两球在各自的平衡位置,D 选项正确.【答案】 AD6.如图所示,光滑水平直轨道上有三个滑块A 、B 、C ,质量分别为m A =m C =2m ,m B =m ,A 、B 用细绳连接,中间有一压缩的轻弹簧(弹簧与滑块不拴接).开始时A 、B 以共同速度v 0运动,C 静止.某时刻细绳突然断开,A 、B 被弹开,然后B 又与C 发生碰撞并粘在一起,最终三滑块速度恰好相同.求B 与C 碰撞前B 的速度.【解析】 设共同速度为v ,球A 与B 分开后,B 的速度为v B ,由动量守恒定律(m A +m B )v 0=m A v +m B v B ①m B v B =(m B +m C )v ②联立①②式,得B 与C 碰撞前B 的速度v B =95v 0.7.如图所示,光滑水平桌面上有长L =2 m 的挡板C ,质量m C =5 kg ,在其正中央并排放着两个小滑块A 和B ,m A =1 kg ,m B =3 kg ,开始时三个物体都静止.在A 、B 间放有少量塑胶炸药,爆炸后A 以6 m/s 速度水平向左运动,A 、B 中任意一块与挡板C 碰撞后,都粘在一起,不计摩擦和碰撞时间,求:(1)当两滑块A 、B 都与挡板C 碰撞后,C 的速度是多大;(2)A 、C 碰撞过程中损失的机械能.【解析】 (1)A 、B 、C 系统动量守恒0=(m A +m B +m C )v C , v C =0.(2)炸药爆炸时A 、B 系统动量守恒m A v A =m B v B解得:v B =2 m/s A 、C 碰撞前后系统动量守恒m A v A =(m A +m C )v v =1 m/sΔE =12m A v 2A -12(m A +m C )v 2=15 J.8.如图所示,在光滑水平面上有质量均为m 的两辆小车A 和B ,A 车上表面光滑水平,其上表面左端有一质量为M 的小物块C (可看做质点).B 车上表面是一个光滑的14圆弧槽,圆弧槽底端的切线与A 的上表面相平.现在A 和C 以共同速度v 0冲向静止的B 车,A 、B 碰后粘合在一起,之后物块C 滑离A ,恰好能到达B 的圆弧槽的最高点.已知M =2m ,v 0=4 m/s ,取g =10 m/s 2.求圆弧槽半径R .【解析】 设A 、B 碰后的共同速度为v 1,C 到达最高点时A 、B 、C 的共同速度为v 2,A 、B 碰撞过程动量守恒:mv 0=2mv 1C 冲上圆弧最高点过程系统动量守恒:Mv 0+2mv 1=(M +2m )v 2机械能守恒:12Mv 20+2×12mv 21=12(M +2m )v 22+MgR 联立以上三式解得:R =v 2016g代入数据得:R =0.1 m。
动量守恒定律试题(含答案)
动量守恒定律试题(含答案)一、动量守恒定律 选择题1.在采煤方法中,有一种方法是用高压水流将煤层击碎而将煤采下.今有一采煤用水枪,由枪口射出的高压水流速度为v .设水的密度为ρ,水流垂直射向煤层表面,若水流与煤层作用后速度减为零,则水在煤层表面产生的压强为( )A .2v ρB .2 2v ρC .2 v ρD .22v ρ2.如图所示为水平放置的固定光滑平行直轨道,窄轨间距为L ,宽轨间距为2L 。
轨道处于竖直向下的磁感应强度为B 的匀强磁场中,质量分别为m 、2m 的金属棒a 、b 垂直于导轨静止放置,其电阻分别为R 、2R ,现给a 棒一向右的初速度v 0,经t 时间后两棒达到匀速运动两棒运动过程中始终相互平行且与导轨良好接触,不计导轨电阻,b 棒一直在宽轨上运动。
下列说法正确的是( )A .a 棒开始运动时的加速度大小为2203B L v RmB .b 棒匀速运动的速度大小为03v C .整个过程中通过b 棒的电荷量为023mv BL D .整个过程中b 棒产生的热量为203mv 3.一质量为m 的物体静止在光滑水平面上,现对其施加两个水平作用力,两个力随时间变化的图象如图所示,由图象可知在t 2时刻物体的( )A .加速度大小为0t F F m -B .速度大小为()()021t F F t t m-- C .动量大小为()()0212tF F t t m -- D .动能大小为()()220218tF F t t m --4.平静水面上停着一只小船,船头站立着一个人,船的质量是人的质量的8倍.从某时刻起,人向船尾走去,走到船中部时他突然停止走动.不计水对船的阻力,下列说法正确的是( )A.人在船上走动过程中,人的动能是船的动能的8倍B.人在船上走动过程中,人的位移是船的位移的9倍C.人走动时,它相对水面的速度大于小船相对水面的速度D.人突然停止走动后,船由于惯性还会继续运动一小段时间5.如图甲所示,质量M=2kg的木板静止于光滑水平面上,质量m=1kg的物块(可视为质点)以水平初速度v0从左端冲上木板,物块与木板的v-t图象如图乙所示,重力加速度大小为10m/s2,下列说法正确的是()A.物块与木板相对静止时的速率为1m/sB.物块与木板间的动摩擦因数为0.3C.木板的长度至少为2mD.从物块冲上木板到两者相对静止的过程中,系统产生的热量为3J6.如图所示,将质量为M1、半径为R且内壁光滑的半圆槽置于光滑水平面上,左侧靠墙角,右侧靠一质量为M2的物块.今让一质量为m的小球自左侧槽口A的正上方h高处从静止开始落下,与圆弧槽相切自A点进入槽内,则以下结论中正确的是A.小球在槽内运动的全过程中,小球、半圆槽组成的系统机械能守恒B.小球在槽内运动的全过程中,小球、半圆槽和物块组成的系统水平动量守恒C.若小球能从C点离开半圆槽,则其一定会做竖直上抛运动D.若小球刚好到达C点,则12mh RM M=+7.如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为m B=2m A,规定向右为正方向,A、B两球的动量均为6kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4kg·m/s,则()A.左方是A球,碰撞后A、B两球速度大小之比为2:5B.左方是A球,碰撞后A、B两球速度大小之比为1:10C.右方是A球,碰撞后A、B两球速度大小之比为2:5D.右方是A球,碰撞后A、B两球速度大小之比为1:108.在光滑的水平桌面上有等大的质量分别为M=0.6kg,m=0.2kg的两个小球,中间夹着一个被压缩的具有E p=10.8J弹性势能的轻弹簧(弹簧与两球不相连),原来处于静止状态。
动量和动量守恒定律(学生版)
动量和动量守恒定律一、单选题1(22-23高一下·内蒙古赤峰·期末)蹦极是一项非常刺激的体育运动。
如图所示,质量m=50kg的人身系弹性绳自高空自由下落,弹性绳绷直后在下降过程经过a点的速度大小为12m/s,落到最低点c后反弹至b点的速度大小为9m/s。
人从a→c→b共用时3s,在此过程中弹性绳对人的平均作用力为()A.350NB.450NC.550ND.850N2(22-23高一下·北京海淀·期末)如图所示,甲、乙两人静止在水平冰面上,甲推乙后,两人向相反方向沿直线做减速运动。
已知甲的质量小于乙的质量,两人与冰面间的动摩擦因数相同,两人之间的相互作用力远大于地面的摩擦力。
下列说法正确的是()A.甲推乙的过程中,甲和乙的机械能守恒B.乙停止运动前任意时刻,甲的速度总是小于乙的速度C.减速过程中,地面摩擦力对甲做的功等于对乙做的功D.减速过程中,地面摩擦力对甲的冲量等于对乙的冲量3(22-23高一下·吉林松原·期末)关于反冲运动,下列说法正确的是()A.抛出部分和剩余部分都适用于牛顿第二定律B.反冲运动中,牛顿第三定律适用,但牛顿第二定律不适用C.抛出部分的质量m1要小于剩下部分的质量m2才能获得反冲D.若抛出部分的质量m1大于剩下部分的质量m2,则m2的反冲力大于m1所受的力4(22-23高一下·天津·期末)将物体水平抛出,在物体落地前(不计空气阻力),下列说法正确的是()A.动量的方向不变B.动量变化量的方向不变C.相同时间内动量的变化量越来越大D.动量变化的越来越快5(22-23高一下·吉林长春·期末)2022年35岁的梅西竭尽所能率领阿根廷队取得第二十二届世界杯足球赛冠军,如图是梅西在练习用头颠球。
假设足球从静止开始自由下落45cm,被头竖直顶起,离开头部后足球上升的最大高度仍为45cm,足球与头部的接触时间为0.1s,足球的质量为0.4kg,不计空气阻力。
物理动量守恒定律专题练习(及答案)含解析
①求弹簧恢复原长时乙的速度大小; ②若乙与挡板 P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板 P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I=8N 【解析】 【详解】 (1)当弹簧恢复原长时,设甲乙的速度分别为 和 ,对两滑块及弹簧组成的系统,设向 左的方向为正方向,由动量守恒定律可得:
又知
(2 分)
因为子弹在射穿第一块钢板的动能损失为 ΔE 损 1=f·d=
mv
2 0
(1
分),
由能量守恒得:
1 2
mv
2 1
+
1 2
mV
2 1
=
1 2
mv
2 0
-ΔE
损 1(2
分)
且考虑到 v1 必须大于 V1,
解得:v1= ( 1 3 ) v0 26
设子弹射入第二块钢板并留在其中后两者的共同速度为 V2,
物理动量守恒定律专题练习(及答案)含解析
一、高考物理精讲专题动量守恒定律
1.在图所示足够长的光滑水平面上,用质量分别为 3kg 和 1kg 的甲、乙两滑块,将仅与甲 拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板 P.现将两滑块由静止释放,当弹簧 恢复原长时,甲的速度大小为 2m/s,此时乙尚未与 P 相撞.
(1)求物块 M 碰撞后的速度大小; (2)若平台表面与物块 M 间的动摩擦因数 μ=0.5,物块 M 与小球的初始距离为 x1=1.3 m, 求物块 M 在 P 处的初速度大小. 【答案】(1)3.0m/s(2)7.0m/s 【解析】 试题分析:(1)碰后物块 M 做平抛运动,设其平抛运动的初速度为 V
6.如图所示,光滑平行金属导轨的水平部分处于竖直向下的 B=4T 的匀磁场中,两导轨间 距 L=0.5m,导轨足够长金属棒 a 和 b 的质量都为 m=1kg,电阻 Ra Rb 1 .b 棒静止于轨 道水平部分,现将 a 棒从 h=80cm 高处自静止沿弧形轨道下滑,通过 C 点进入轨道的水平 部分,已知两棒在运动过程中始终保持与导轨垂直,且两棒始终不相碰.求 a、b 两棒的最 终速度大小以及整个过程中 b 棒中产生的焦耳热(已知重力加速度 g 取 10m/s2)
高考物理考点《动量守恒定律的理解和应用》真题练习含答案
高考物理考点《动量守恒定律的理解和应用》真题练习含答案1.[2024·江苏省无锡市教学质量调研]如图所示,曲面体P 静止于光滑水平面上,物块Q 自P 的上端静止释放.Q 与P 的接触面粗糙,在Q 下滑的过程中,关于P 和Q 构成的系统,下列说法正确的是( )A .机械能守恒、动量守恒B .机械能不守恒、动量守恒C .机械能守恒、动量不守恒D .机械能不守恒、动量不守恒答案:D解析:系统在水平方向所受合外力为零,系统在水平方向动量守恒,但系统在竖直方向所受合外力不为零,系统在竖直方向动量不守恒,系统动量不守恒.Q 与P 的接触面粗糙,克服阻力做功产热,所以机械能不守恒,D 正确.2.(多选)如图所示,在光滑水平面上,一速度大小为v 0的A 球与静止的B 球正碰后,A 球的速率为v 03 ,B 球的速率为v 02,A 、B 两球的质量之比可能是( )A .3∶4B .4∶3C .8∶3D .3∶8答案:AD解析:两球碰撞过程动量守恒,以A 的初速度方向为正方向,如果碰撞后A 球的速度方向不变,有m A v 0=m A ·v 03 +m B ·v 02,解得m A ∶m B =3∶4,如果碰撞后A 的速度反向,有m A v 0=-m A ·v 03 +m B ·v 02,解得m A ∶m B =3∶8,A 、D 正确. 3.如图水平桌面上放置一操作台,操作台上表面水平且光滑.在操作台上放置体积相同,质量不同的甲、乙两球,质量分别为m 1、m 2,两球用细线相连,中间有一个压缩的轻质弹簧,两球分别与操作台左右边缘距离相等.烧断细线后,由于弹簧弹力的作用,两球分别向左、右运动,脱离弹簧后在操作台面上滑行一段距离,然后平抛落至水平桌面上.则下列说法中正确的是()A.刚脱离弹簧时,甲、乙两球的动量相同B.刚脱离弹簧时,甲、乙两球的动能相同C.甲、乙两球不会同时落到水平桌面上D.甲、乙两球做平抛运动的水平射程之比为m1∶m2答案:C解析:脱离弹簧的过程满足动量守恒定律,以甲的运动方向为正方向可得m1v1-m2v2=0,故刚脱离弹簧时,甲、乙两球的动量大小相等,方向相反,A错误;动能与动量的关系为E k=12m v2=p22m,由于质量不同,故刚脱离弹簧时,甲、乙两球的动能不相同,B错误;甲、乙两球在操作台滑行时,距台边缘距离相等但速度不等,故在操作台滑行时间不相等,之后做平抛运动的竖直位移相同,由h=12gt2可知,两球做平抛运动的时间相等,因此甲、乙两球不会同时落到水平桌面上,C正确;由A的解析可得v1v2=m2m1,平抛的水平位移为x=v0t,故甲、乙两球做平抛运动的水平射程与初速度成正比,即与质量成反比,可得x1∶x2=m2∶m1,D错误.4.[2024·江西省萍乡市阶段练习]在光滑水平地面上放置一辆小车,车上放置有木盆,在车与木盆以共同的速度向右运动时,有雨滴以极小的速度竖直落入木盆中而不溅出,如图所示,则在雨滴落入木盆的过程中,小车速度将()A.保持不变B.变大C.变小D.不能确定答案:C解析:雨滴落入木盆的过程中,小车、木盆、雨滴组成的系统水平方向满足动量守恒,设小车、木盆的总质量为M ,雨滴的质量为m ,则有M v =(M +m )v 共,解得v 共=M v M +m<v ,在雨滴落入木盆的过程中,小车速度将变小,C 正确.5.[2024·山东省普高大联考]如图所示,A 、B 两木块紧靠在一起且静止于光滑水平面上,一颗子弹C 以一定的速度v 0向右从A 的左端射入,穿过木块A 后进入木块B ,最后从B 的右端射出,在此过程中下列叙述正确的是( )A .当子弹C 在木块A 中运动时,A 、C 组成的系统动量守恒B .当子弹C 在木块B 中运动时,B 、C 组成的系统动量守恒C .当子弹C 在木块A 中运动时,A 、B 、C 组成的系统动量不守恒D .当子弹C 在木块B 中运动时,A 、B 、C 组成的系统动量不守恒答案:B解析:当子弹C 在木块A 中运动时,B 对A 、C 组成的系统有力的作用,则A 、C 组成的系统动量不守恒,A 错误;当子弹C 在木块B 中运动时,A 已经和B 脱离,则B 、C 组成的系统受合外力为零,则B 、C 组成的系统动量守恒,因此时A 的动量也守恒,则A 、B 、C 组成的系统动量守恒,B 正确,D 错误;当子弹C 在木块A 中运动时,A 、B 、C 组成的系统受合外力为零,则动量守恒,C 错误.6.[2024·广东省深圳市实验学校期中考试]滑板运动是青少年比较喜欢的一种户外运动.现有一个质量为m 的小孩站在一辆质量为λm 的滑板车上,小孩与滑板车一起在光滑的水平路面上以速度v 0匀速运动,突然发现前面有一个小水坑,由于来不及转向和刹车,该小孩立即以对地2v 0的速度向前跳离滑板车,滑板车速度大小变为原来的12,且方向不变,则λ为( )A .1B .2C .3D .4答案:B解析:小孩跳离滑板车时,与滑板车组成的系统在水平方向的动量守恒,由动量守恒定律有(m +λm )v 0=m ·2v 0+λm ·v 02,解得λ=2,B 正确. 7.[2024·湖南省邵阳市期中考试]如图所示,设车厢长为L ,质量为M ,静止在光滑的水平面上,车厢内有一质量为m 的物体以初速度v 0向右运动,与车厢壁来回碰撞n 次后,最终相对车厢静止,这时车厢速度是( )A .v 0,水平向右B .0C .m v 0M +m ,水平向右D .m v 0M +m,水平向左 答案:C解析:物块在车辆内和车发生碰撞满足动量守恒,最后物块和车共速,由动量守恒得m v 0=(m +M )v ,解得v =m v 0m +M,方向水平向右,C 正确. 8.[2024·河北省邯郸市九校联考]如图所示,在粗糙水平面上,用水平轻绳相连的物体A 、B ,在水平恒力F 作用下以速度v 做匀速运动,某时刻轻绳断开,A 在F 作用下继续前进.已知物体A 的质量为2m ,物体B 的质量为m ,则下列说法正确的是( )A .当物体B 的速度大小为12 v 时,物体A 的速度大小为12v B.当物体B 的速度大小为12 v 时,物体A 的速度大小为54v C .当物体B 的速度大小为0时,物体A 的速度大小一定为32v D .当物体B 的速度大小为0时,物体A 的速度大小可能为54v 答案:B解析:A 、B 匀速运动时,对A 、B 整体受力分析可得F =f A +f B ,物体B 的速度大小在减小到0的过程中,A 和B 所组成的系统所受的合外力为零,该系统的动量守恒,当物体B的速度大小为12 v 时,有(m A +m B )v =m A v A +m B v B ,解得v A =54v ,A 错误,B 正确;当物体B 的速度大小为0时,有(m A +m B )v =m A v ′A ,解得v ′A =32v ,A 在F 作用下继续前进,物体A 继续加速,当物体B 的速度大小为0时,物体A 的速度大小不一定为32v ,C 、D 错误.9.[2024·江苏省盐城一中、大丰中学联考]如图所示,一质量为M=3.0 kg的长木板B放在光滑水平地面上,在其右端放一个质量为m=1.0 kg的小木块A.给A和B以大小均为5.0 m/s、方向相反的初速度,使A开始向左运动,B开始向右运动,A始终没有滑离B.在A 做加速运动的时间内,B的速度大小可能是()A.1.8 m/s B.2.4 m/sC.2.8 m/s D.3.5 m/s答案:C解析:以A、B组成的系统为研究对象,因为系统不受外力,则系统动量守恒,选择水平向右的方向为正方向,从A开始运动到A的速度为零,根据动量守恒定律可得(M-m)v0=M v B1,解得v B1=103m/s,当从开始运动到A、B共速,根据动量守恒定律可得(M-m)v0=(M+m)v B2,解得v B2=2.5 m/s,木块A加速运动的过程为其速度减为零到与B共速,此过程中B始终减速,则在木块A正在做加速运动的时间内,B的速度范围为2.5 m/s≤v B≤103 m/s,C正确,A、B、D错误.10.[2024·吉林卷]如图,高度h=0.8 m的水平桌面上放置两个相同物块A、B,质量m A=m B=0.1 kg.A、B间夹一压缩量Δx=0.1 m的轻弹簧,弹簧与A、B不栓接.同时由静止释放A、B,弹簧恢复原长时A恰好从桌面左端沿水平方向飞出,水平射程x A=0.4 m;B 脱离弹簧后沿桌面滑行一段距离x B=0.25 m后停止.A、B均视为质点,取重力加速度g=10 m/s2.不计空气阻力,求:(1)脱离弹簧时A、B的速度大小v A和v B;(2)物块与桌面间的动摩擦因数μ;(3)整个过程,弹簧释放的弹性势能ΔE p.答案:(1)1 m/s 1 m/s(2)0.2(3)0.12 J解析:(1)对A物块由平抛运动知识得h =12gt 2 x A =v A t代入数据解得,脱离弹簧时A 的速度大小为v A =1 m/sA 、B 与弹簧相互作用的过程中,A 、B 所受水平桌面的摩擦力等大反向,所受弹簧弹力也等大反向,又A 、B 竖直方向上所受合力均为零,故A 、B 组成的系统所受合外力为零,动量守恒,则有m A v A =m B v B解得脱离弹簧时B 的速度大小为v B =1 m/s(2)对物块B 由动能定理有-μm B gx B =0-12m B v 2B 代入数据解得,物块与桌面的动摩擦因数为μ=0.2(3)由能量守恒定律ΔE p =12 m A v 2A +12m B v 2B +μm A g Δx A +μm B g Δx B 其中m A =m B ,Δx =Δx A +Δx B解得整个过程中,弹簧释放的弹性势能ΔE p =0.12 J11.如图所示,甲、乙两名宇航员正在离静止的空间站一定距离的地方执行太空维修任务.某时刻甲、乙都以大小为v 0=2 m/s 的速度相向运动,甲、乙和空间站在同一直线上且可视为质点.甲和他的装备总质量为M 1=90 kg ,乙和他的装备总质量为M 2=135 kg ,为了避免直接相撞,乙从自己的装备中取出一质量为m =45 kg 的物体A 推向甲,甲迅速接住A后即不再松开,此后甲、乙两宇航员在空间站外做相对距离不变的同向运动,且安全“飘”向空间站.(1)乙要相对空间站以多大的速度v将物体A推出;(2)设甲与物体A作用时间为t=0.5 s,求甲与A的相互作用力F的大小.答案:(1)5.2 m/s(2)432 N解析:(1)规定水平向左为正方向,甲、乙两宇航员最终的速度大小均为v1,对甲、乙以及物体A组成的系统根据动量守恒定律可得M2v0-M1v0=(M1+M2)v1对乙和A组成的系统根据动量守恒定律可得M2v0=(M2-m)v1+m v联立解得v=5.2 m/s,v1=0.4 m/s.(2)对甲根据动量定理有Ft=M1v1-M1(-v0)解得F=432 N.。
高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析
高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h="0.3" m (h 小于斜面体的高度).已知小孩与滑板的总质量为m 1="30" kg ,冰块的质量为m 2="10" kg ,小孩与滑板始终无相对运动.取重力加速度的大小g="10" m/s 2.(i )求斜面体的质量;(ii )通过计算判断,冰块与斜面体分离后能否追上小孩? 【答案】(i )20 kg (ii )不能 【解析】试题分析:①设斜面质量为M ,冰块和斜面的系统,水平方向动量守恒:222()m v m M v =+系统机械能守恒:22222211()22m gh m M v m v ++= 解得:20kg M =②人推冰块的过程:1122m v m v =,得11/v m s =(向右)冰块与斜面的系统:22223m v m v Mv '=+ 22222223111+222m v m v Mv ='解得:21/v m s =-'(向右) 因21=v v ',且冰块处于小孩的后方,则冰块不能追上小孩. 考点:动量守恒定律、机械能守恒定律.2.光滑水平轨道上有三个木块A 、B 、C ,质量分别为3A m m =、B C m m m ==,开始时B 、C 均静止,A 以初速度0v 向右运动,A 与B 相撞后分开,B 又与C 发生碰撞并粘在一起,此后A 与B 间的距离保持不变.求B 与C 碰撞前B 的速度大小.【答案】065B v v = 【解析】 【分析】【详解】设A 与B 碰撞后,A 的速度为A v ,B 与C 碰撞前B 的速度为B V ,B 与C 碰撞后粘在一起的速度为v ,由动量守恒定律得: 对A 、B 木块:0A A A B B m v m v m v =+对B 、C 木块:()B B B C m v m m v =+由A 与B 间的距离保持不变可知A v v = 联立代入数据得:065B v v =.3.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。
人教版高中物理选修一第一章《动量守恒定律》检测题(含答案解析)(2)
一、选择题1.(0分)[ID :127056]甲乙是两个完全相同的小球,在同一位置以相等的速率抛出,甲被水平抛出,乙被斜上抛,只受到重力,则下列说法正确的是( )A .两球落地时的速度相同B .两球落地时的重力瞬时功率相等C .两球落地时前的重力冲量相同D .两球落地前的动量变化快慢相同2.(0分)[ID :127045]如图所示,有质量相同的a 、b 两个小球,a 从光滑斜面顶端由静止开始自由下滑,b 从同一高度自由下落。
下列说法正确的有( )A .它们到达地面时的动量相同B .它们到达地面时的动能相同C .它们到达地面时重力的功率相同D .它们从开始到到达地面的过程中,重力的冲量相同3.(0分)[ID :127041]如图所示,一物体分别沿三个倾角不同的光滑斜面由静止开始从顶端下滑到底端C 、D 、E 处,三个过程中重力的冲量分别为123G G G I I I 、、,合力的冲量分别为123I I I 合合合、、,动量变化量的大小分别为123、、p p p ∆∆∆,动能变化量的大小分别为123k k k E E E ∆∆∆、、,则有( )A .123k k k E E E ∆=∆=∆,123p p p ∆=∆=∆B .123p p p ∆=∆=∆,123I I I ==合合合C .123I I I ==合合合,123G G G I I I ==D .123G G G I I I ==,123k k kE E E ∆=∆=∆4.(0分)[ID :127040]如图所示,竖直平面内有水平向左的匀强电场E ,M 点与N 点在同一电场线上。
两个质量相等的带正电荷的粒子a 、b ,以相同的速度v 0分别从M 点和N 点同时垂直进入电场,不计两粒子的重力和粒子间的相互作用。
已知两粒子都能经过P 点,在此过程中,下列说法正确的是( )A .b 粒子到达P 点的时间短B .a 粒子电荷量较大C .b 粒子电势能变化较大D .a 粒子动量变化较大5.(0分)[ID :127031]如图,质量为M 的小船在静止水面上以速率v 0向右匀速行驶,一质量为m 的救生员站在船尾,相对小船静止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、如图:在竖直平面内有两条光滑轨道,期中轨道ABC 末端水平,轨道CDE 为半径为R 的半圆形轨道,现有两个质量都为m 的物体,其中一个在斜面上,另一个在C 点静止,若要使两个物体在C 点处碰后合为一体并恰能通过E 点,轨道ABC 上的物体应离水平面多高处由静止释放?
2、下图中,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态。
另一质量与B 相同滑块A ,从导轨上的P 点以某一初速度向B 滑行,当A 滑过距离1l 时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不粘连。
已知最后A 恰好返回出发点P 并停止。
滑块A 和B 与导轨的滑动摩擦因数都为 ,运动过程中弹簧最大形变量为
2l ,求A 从P 出发时的初速度0v 。
3、.如图,质量为M 的槽体放在光滑水平面上,内有半径为R 的半圆形轨道,其左端紧靠一个固定在地面上的挡板。
质量为m 的小球从A 点由静止释放,若槽内光滑,求小球上升的最大高度。
4.如图所示,右端带有竖直挡板的木板B ,质量为M ,长L =1.0m ,静止在光滑水平面上.一个质量为m 的小木块(可视为质点)A ,以水平速度v 0=4m/s 滑上B 的左端,而后与其右端挡板碰撞,最后恰好滑到木板B 的左端.已知M =3m ,并设A 与挡板碰撞时无机械能损失,碰撞时间可忽略(g 取).求:
(1)A 、B 最后的速度;
(2)木块A 与木板B 间的动摩擦因数.
5.在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”,这类反应的
前半部分过程和下述力学模型类似,两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P,右边有一小球C沿轨道以v射向B球,如图所示,C与B发生碰撞并立即结成一个整体D,在它们继续向左运速度
动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后A球与挡板P发生碰撞,碰后A、D都静止不动,A与P接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A、B、C三球的质量均为m。
(1)求弹簧长度刚被锁定后A球的速度。
(2)求在A球离开挡板P之后的运动过程中,弹簧的最大弹性势能。
6、如图1所示,固定的凹槽水平表面光滑,其内放置U形滑板N,滑板两端为半径R=0.45m 的1/4圆弧面。
A和D分别是圆弧的端点,BC段表面粗糙,其余段表面光滑。
小滑块P1和P2的质量均为m。
滑板的质量M=4m,P1和P2与BC面的动摩擦因数分别为μ1=0.10和μ2=0.40,最大静摩擦力近似等于滑动摩擦力。
开始时滑板紧靠槽的左端,P2静止在粗糙面的B点,P1以v0=4.0m/s的初速度从A点沿弧面自由滑下,与P2发生弹性碰撞后,P1处在粗糙面B点上。
当P2滑到C点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P2继续运动,到达D点时速度为零。
P1与P2视为质点,取g=10m/s2。
问:
(1)P2在BC段向右滑动时,滑板的加速度为多大?
(2)BC长度为多少?N、P1和P2最终静止后,P1与P2间的距离为多少?
分析与求解:(1)P1滑到最低点速度为,由机械能守恒定律有:
解得:。
P1.P2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为、,则有:和,解得:,=5m/s。
碰后P2向右滑动时,假设P1保持不动,对P2有:(向左),对P1.M
有:而,此时对P1有:
,所以假设成立。
故P2在BC段向右滑动时,滑板的加速度
为0.8m/s2。
(2)P2滑到C点时,滑板与槽碰撞粘连后速度为零。
设此时P2速度为,由P1.P2碰撞到P2滑到C点时,设P1、M速度为v,对P2及P1.M整体运用动量守恒定律有:。
P2从滑至过程中,机械能守恒,故有:,解得
,。
对P1.P2.M为系统运用功能关系有:
,代入数值解得:。
滑板碰后,P1从B向右滑行距离:,P2从C向左滑行距离:。
所以P1.P2静止后二者的距离:。