动量和动量守恒定律训练(2)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、如图:在竖直平面内有两条光滑轨道,期中轨道ABC 末端水平,轨道CDE 为半径为R 的半圆形轨道,现有两个质量都为m 的物体,其中一个在斜面上,另一个在C 点静止,若要使两个物体在C 点处碰后合为一体并恰能通过E 点,轨道ABC 上的物体应离水平面多高处由静止释放?

2、下图中,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态。另一质量与B 相同滑块A ,从导轨上的P 点以某一初速度向B 滑行,当A 滑过距离1l 时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不粘连。已知最后A 恰好返回出发点P 并停止。滑块A 和B 与导轨的滑动摩擦因数都为 ,运动过程中弹簧最大形变量为

2l ,求A 从P 出发时的初速度0v 。

3、.如图,质量为M 的槽体放在光滑水平面上,内有半径为R 的半圆形轨道,其左端紧靠一个固定在地面上的挡板。质量为m 的小球从A 点由静止释放,若槽内光滑,求小球上升的最大高度。

4.如图所示,右端带有竖直挡板的木板B ,质量为M ,长L =1.0m ,静止在光滑水平面上.一个质量为m 的小木块(可视为质点)A ,以水平速度v 0=4m/s 滑上B 的左端,而后与其右端挡板碰撞,最后恰好滑到木板B 的左端.已知M =3m ,并设A 与挡板碰撞时无机械能损失,碰撞时间可忽略(g 取).求:

(1)A 、B 最后的速度;

(2)木块A 与木板B 间的动摩擦因数.

5.在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”,这类反应的

前半部分过程和下述力学模型类似,两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P,右边有一小球C沿轨道以v射向B球,如图所示,C与B发生碰撞并立即结成一个整体D,在它们继续向左运速度

动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后A球与挡板P发生碰撞,碰后A、D都静止不动,A与P接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A、B、C三球的质量均为m。

(1)求弹簧长度刚被锁定后A球的速度。

(2)求在A球离开挡板P之后的运动过程中,弹簧的最大弹性势能。

6、如图1所示,固定的凹槽水平表面光滑,其内放置U形滑板N,滑板两端为半径R=0.45m 的1/4圆弧面。A和D分别是圆弧的端点,BC段表面粗糙,其余段表面光滑。小滑块P1和P2的质量均为m。滑板的质量M=4m,P1和P2与BC面的动摩擦因数分别为μ1=0.10和μ2=0.40,最大静摩擦力近似等于滑动摩擦力。开始时滑板紧靠槽的左端,P2静止在粗糙面的B点,P1以v0=4.0m/s的初速度从A点沿弧面自由滑下,与P2发生弹性碰撞后,P1处在粗糙面B点上。当P2滑到C点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P2继续运动,到达D点时速度为零。P1与P2视为质点,取g=10m/s2。问:

(1)P2在BC段向右滑动时,滑板的加速度为多大?

(2)BC长度为多少?N、P1和P2最终静止后,P1与P2间的距离为多少?

分析与求解:(1)P1滑到最低点速度为,由机械能守恒定律有:

解得:。P1.P2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为、,则有:和,解得:,=5m/s。

碰后P2向右滑动时,假设P1保持不动,对P2有:(向左),对P1.M

有:而,此时对P1有:

,所以假设成立。故P2在BC段向右滑动时,滑板的加速度

为0.8m/s2。

(2)P2滑到C点时,滑板与槽碰撞粘连后速度为零。设此时P2速度为,由P1.P2碰撞到P2滑到C点时,设P1、M速度为v,对P2及P1.M整体运用动量守恒定律有:

。P2从滑至过程中,机械能守恒,故有:,解得

,。对P1.P2.M为系统运用功能关系有:

,代入数值解得:。

滑板碰后,P1从B向右滑行距离:,P2从C向左滑行距离:

。所以P1.P2静止后二者的距离:。

相关文档
最新文档