水泥磨研磨体级配
水泥磨研磨体级配
该水泥粉磨生产线投产近半年以来,辊压机和V型选粉机预粉磨系统显得能力不足,成为水泥粉磨台时的首要制约因素。
主要的表现是:辊压机因辊缝差和电流差超高频繁跳停;喂料增加时稳流仓持续涨仓。
主要的调整措施:1.调高辊缝差和电流差高限跳停值、更换磨损的侧挡板并将间隙调至最低值约15mm,以提高辊压机对喂料粒度的适应能力,大幅减少跳停故障;2.调整V选内部阀板开度、调整风机风门开度以增大V选的通风量同时封堵V选的短路风管(提升机、皮带机等下料点收尘风管),以便最大限度的提高V选的选出率,从而提高预粉磨的产量进而提高水泥系统的产量;3.适当提高加载压、适当调整辊缝以强化辊压机的辊压效果,以便适当提高辊压机预粉磨的产量。
以上措施实施后,水泥系统的台时逐步提高,绝对增加值约10t/h。
现在,辊压机的主要矛盾已经基本解决,降为水泥系统的次要因素,而水泥磨成为系统产量的主要制约因素。
目前的水泥系统台时,扣除配料秤约13.5%的计量误差,实际仍只有61.5t/h。
为了进一步提高系统的台时产量,除了实施必要的技术改造外,水泥磨的研磨体级配无疑是需要重点调整的工艺方案。
以下是我们拟定的、正在使用的级配方案。
1.原设计方案表1:水泥磨原设计级配规格1仓装载量体积2仓装载量体积3仓装载量体积60 9 1.9350 14 2.9740 10 2.1030 5 1.0318*18 7.5 1.6716*16 10.5 2.3314*14 7.5 1.6712*12 37 8.2210*10 24.5 5.44合计38 8.04 25.5 5.67 61.5 13.67各仓Dcp 47.1 - 16.0 - 11.2 -各仓φ*L 3.1*3705 - 3.1*2500 - 3.1*6000 - 各仓容积27.96 - 18.87 - 45.29 -各仓填充率(%) 28.74 - 30.03 - 30.18 -总装量125 平均填充率29.712.一仓方案表2:1#磨入磨样品筛分析筛孔尺寸(mm) 0.9 0.2 0.08 0.08以下累计筛余(%) 4.6 33.8 51.4分计筛余(%) 4.6 29.2 17.6通过量(%) 95.4 66.2 48.6表3:2#磨入磨样品筛分析筛孔尺寸(mm) 0.9 0.2 0.08 0.08以下累计筛余(%) 3.4 28.8 48分计筛余(%) 3.4 25.4 19.2通过量(%) 96.6 71.2 521#磨取样时产量75t/h,2#磨取样时产量68t/h,2#磨的辊压机系统未达到最佳状态。
如何优化研磨体级配
PR GRI PO7-08 V1研磨介绍:● 研磨体的优化是达到有效研磨效果的一个重要因素。
一台球磨机只能对一种产品进行优化,如果磨机生产几种产品,应该对主要产品进行优化。
● 在磨机优化过程中不能只考虑研磨体,同时必须考虑磨机系统设计,包括选粉机、磨机内部的设计和状况。
● 为了确保研磨体优化能够起到一定的效果,必须保证几个前提条件。
指标和目标:● 中间隔仓板处的筛余量水泥磨:目标2毫米筛的筛余量< 5% 生料磨:目标4毫米筛的筛余量< 5% ● 物料料位1仓:在料床上可以看到一部分大球 2仓:刚刚超过研磨体高度 ● 填充率的膨胀率:< 3% ● 1仓电耗水泥磨8-12kWh/t生料磨,占全部磨机电耗的40-50% ● 篦缝宽度:1仓6-8毫米 2仓8-10毫米前提条件:● 磨机喂料粒度:熟料和混合材:95%通过25毫米;100%通过50毫米 生料原料:95%通过30毫米;100%通过50毫米 ● 所使用的选粉机应达到最佳性能 ● 以下方面对系统没有限制:物料的输送 物料的烘干 隔仓板的开度● 水泥磨的通风:-1.5到2.0m/s ● 熟料温度:<70ºC从磨机审计检查中要求得到的信息● 磨机喂料粒度● 球填充率,急停磨和磨内物料排空后 ● 物料的料位 ● 目前的球级配● 衬板状况和衬板阶梯高度 ● 隔仓板处物料粒度●隔仓板状况、篦缝大小、目前的间隙(如果适合进行流量控制调节)PR GRI PO7-08 V1研磨● 磨机产量● 磨机电机使用功率● 磨机尺寸、电机大小、磨机速度、减速机大小等来计算功率。
工具:● 用于计算磨机电耗的Slegten 公式可以用于估计每仓需要的研磨体量。
参照:研磨区> 工作帮助● 功率指标能够用于计算把细度和成分考虑在内的磨机的净功率。
参照:BRS 数据库>指标>水泥磨电耗指标(PR1120X )在这个程序中你可以发现其他信息的参考文件(工具,其他的“如何”程序、知识文件等)这些文 件在水泥分支网中都能够找到(比如:研磨,烧成..)或从BRS 数据库中(指标) 通过L.O Group Portal 进入水泥门户网参照: >进入所有的局域网>分支网址>水泥PR GRI PO7-08 V1 研磨行动步骤1.确定目标及比较●由易磨性确定磨机的目标产量以及电耗●与实际的磨机性能进行比较2.计算●对1仓的实际和理论能耗进行计算3.如果实际能耗小于8kWh/t●如果实际能耗小于8kWh/t,最大的可能是没有足够的能量对物料进行有效的破碎。
TLM42130水泥磨机技术资料及钢球级配调整方法
TLM42130水泥磨一、磨机技术参数基本数据1、磨机规格:Ф4.2×13m磨机筒体内径(mm)磨机筒体内壁长度(mm)磨机有效内径(mm)磨机有效长度(mm)一仓二仓三仓一仓二仓三仓Ф4200 13000 Ф4080 Ф4080 Ф4100 3650 2700 59002、粉磨方式:开流3、设计生产能力:130t/h(带辊压机,出磨细度为3200cm2/g)4、入磨物料粒度:≤20mm,95%通过5、磨机转速:16.051r/min,主传动转速:15.9r/min,辅助传动转速:0.151r/min6、研磨体最大装载量:225t7、最大填充率:33%8、滑履轴承冷却水用量:4.0m3/h×29、主电动机(兰州电机厂)型号:YR800-6额定功率:3150kw额定转速:991r/min额定电压:10kv10、减速机(重庆同力)型号:MBG22/32(264-4.2)-WX/AZ速比:7.33711、慢驱(重庆同力)型号:MBM360速比:156.712、主电动机润滑装置13、主减速机润滑装置14、滑履轴承润滑装置15、磨机衬板及隔仓板情况介绍TLM42130水泥磨共分为三仓,一仓使用阶梯衬板,一仓和二仓之间为双层隔仓板,二仓使用波纹衬板,二仓和三仓之间为单层隔仓板,三仓为活化衬板,三仓内自隔仓板至出料端:隔仓板1450mm 仰料板1000mm 仰料板1250mm 仰料板1500mm 聚料板700 出料端,出料筛子缝隙宽度为7mm。
一仓和二仓之间的隔仓板由16块隔仓板襄成,由中心通风孔向外分布三层,螺栓孔数由中心向外分别为:16孔、32孔、32孔、32孔。
如下图:二、当前磨机各仓长径数据磨机筒体有效内径(mm)磨机筒体有效长度(mm)磨机有效内径(mm)磨机有效长度(mm)一仓二仓三仓一仓二仓三仓Ф4080 12250 Ф4080 Ф4080 Ф4100 3650 2700 5900 三、当前磨机各仓仓长比例及其参数仓位有效长度(m)仓长比例(%)有效容积(m3)装载量(t)研磨体形状研磨体材质一仓 3.65 29.80 47.69 球高铬铸铁二仓 2.70 22.04 35.28 球、锻高铬铸铁三仓 5.90 48.16 77.86 微锻 高铬铸铁 合计12.25100160.83四、当前磨内各仓研磨体级配 五、磨机总有效容积V φV φ=0.785D φ2·L φ=0.785·4.08672·12.25m 3= 160.60 m 3 其中D φ为有效内径(平均),mL φ为有效长度,m六、研磨体填充率φ其中G 为某一仓研磨体的重量,t; V φ为某一仓的有效容积,m 3;r 为研磨体容重,t/m 3,一般钢球取r=4.5 t/m 3,铁球4.2 t/m 3,钢棒5.4~5.6 t/m 3。
水泥磨研磨体级配调整总结
**公司水泥磨研磨体级配调整总结**公司为年产80万吨水泥粉磨站,由SJG140-65+Φ3.8m×12m球磨机组成双闭路联合水泥粉磨系统。
公司于2015年底大修时,对水泥磨磨内隔仓板改造,钢球重新选球、钢球级配进行调整,取得了较好的节能效果。
众所周知,磨机的台时产量与许多因素有关,如粉磨工艺流程及其配套辅机(选粉机,磨前预破碎机等)的性能、入磨物料的特性(品种及其配比、粒度大小、综合水份、易磨性等)、细度、磨内通风、隔仓板的形状及位置、衬板的工作形状、研磨体填充率及其级配、磨机转速、粉磨生产操作和系统设备调控等。
如何合理进行研磨体填充及级配,以达到最佳粉磨效率呢?我们根据所学理论知识、结合近几年生产实际,对水泥磨研磨体级配进行了调整。
现将研磨体级配调整总结如下:一、主机设备基本参数:表1 主机设备参数:表2 水泥磨主要参数:二、研磨体级配调整前后对比:调整思路:1、减少水泥磨钢球装载量,降低水泥磨运行功率。
找出水泥磨钢球装载量与水泥磨台时的最佳结合点。
在水泥磨台时与降低水泥电耗之间,找出最佳平衡点。
2、辊压机预破碎能力较前期略有降低,入磨物料细度增大,需适当加大平均球径。
表3 水泥磨钢球级配调整前:表4 水泥磨钢球级配调整后:钢球级配调整后,一仓装载量降低4.1吨,平均球径增大1.73mm;二仓装载量降低8.06吨,平均球径增大0.74mm。
三、技改效果:技改完成后,经过半个月的调试和调整,球磨机系统台时趋于稳定。
在工艺状况稳定下,实现水泥磨生产P·O42.5水泥平均磨前台时达到136.46t/h,水泥电耗27.92KWh/t,实现了降低水泥电耗的目标。
改造前后技术经济指标对比见下表:调整前后技术经济指标对比表(以P·O42.5水泥数据对比)四、总结1、水泥磨装载量总体降低12.16吨,磨机运行功率降低180KW,水泥磨台时降低2.41 t/h,水泥电耗降低0.81kwh/t。
研磨体级配对水泥比表面积的影响
研磨体级配对水泥比表面积的影响【水泥人网】生产高标号水泥,除需要高标号熟料外,还需要提高水泥比表面积。
降低出磨水泥细度筛余值,固然可以提高水泥比表面积,但是这种做法往往是以降低磨机台时产量、增加电耗和水泥生产成本作为代价的。
而且筛余值降至一定程度,比表面积提高并不明显。
改进磨内研磨体级配和调节控制选粉机回粉率(循环负荷)是一种既经济又行之有效的方法。
适当降低研磨体平均球径,在控制同样筛余值的情况下,可以明显提高水泥比表面积,而水泥台时产量并不降低,出磨水泥3天抗压强度大幅度提高。
一般认为,在闭路粉磨中,为了减少过粉磨现象,往往使1仓的填充率高于2仓,使物料在磨内流速加快,适当提高回粉率;一般回粉率为100%~150%时,台时产量最高。
回粉率过高,虽然细度合格,但比表面积降低。
如将2仓填充率高于1仓,并适当降低钢球平均球径和钢段直径,减慢磨内流速,同时调整选粉机大、小风叶数量,从而降低了选粉率。
在台时产量和筛余值不变的情况下,能提高水泥比表面积和水泥的早期强度。
生产过程中,随着钢球、钢段的磨损,填充率的降低,首先观察到的不是台时产量的降低,而是回粉率的提高、水泥比表面积的减小、水泥3天抗压强度的下降。
当回粉率太高以后,会引起饱磨,此时才导致台时产量的下降。
所以,必须根据回粉率的多少、比表面积的大小来决定补充研磨体。
一旦台时产量的下降很多,则应倒仓重新进行研磨体级配。
——改善水泥颗粒级配分布与提高3~30微米颗粒含量即使采用闭路系统生产(极少数已采用与第三代O—Sepa型高效选粉机的厂家除外),其成品水泥的颗粒分布也较宽,小于2微米颗粒的含量一般大于8%,大于30微米颗粒的含量则超过25%。
对于普遍采用开流粉磨系统的,水泥中这两部分颗粒的含量还会更高。
国外(如采用O—Sepa型选粉机的日本藤原水泥厂、富勒公司在北美的水泥厂以及采用Rema 型高效选粉机的英国兰圈水泥公司)的水泥厂其水泥产品中粒径大于30微米的颗粒含量仅为17%,有的甚至控制在7%以下。
水泥磨球配方案设计
磨机配球一、仓内混合钢球的最大球径和平均球径 ① 对于闭路磨机的粗磨仓 最大球径: D 大=28⨯395d ⨯m K f(1) 平均球径: D 平=28⨯380d ⨯mK f (2)式中;D 95、D 80——入磨物料最大粒度,平均粒度mm ;以95%、80%通过的筛孔孔径表示;mK ——物料的相对易磨性系数,表1;f ——磨机单位容积物料通过量影响系数,根据磨机每小时的单位容积通过量K 从表1中查出。
其中,K=(Q+QL )/V (t/h m 3) (3) 式中,Q ——磨机小时产量(t/h);L ——磨机的循环负荷率(%)对于开路磨QL=0 V ——磨机有效容积(m 3)。
K f ② 对于细磨仓则,D 大mK fd ⨯⨯=39546 (4)D 平mK f d ⨯⨯=38046 (5)式中,D 大、D 平——细磨仓最大,平均球径,mm ;D 95、D 80——细磨仓入口处物料最在大粒度,平均粒度,mm.二、我国水泥行业经验公式 对于生料磨——仓平均球径: D 平=1.83D 80+57式中,D 80——喂入物料80%通过的筛孔孔径,mm 。
该式只适用于直径大于2m 的开路磨机,对于闭路磨机,D 平可适当加大2~3mm ,且被磨物料为中等硬度。
三、级配后的混合平均球径计算公式112212............n nnD G D G D G D G G G +++=+++平(mm )式中:D 1,D 2,…D n —分别为G 1,G 2……G n 钢球质量的直径,mm ; G 1,G 2,…G n —分别为D 1,D 2……D n 直径的钢球质量,t 。
四、研磨体级配方案的制定制定研磨体的级配方案,通常是从第一仓开始(即粗碎仓)。
对多仓磨机而言,一仓的钢球级配尤为重要,按照一般交叉级配的原则,亦即上一仓的最小球径决定下一仓的最大球径,依此类推,一仓实际上主导了其它各仓的级配,目前,球磨机一仓有代表性的级配方法有两种,一种是应用最普通的多级级配法,另一是近年来开始采用的二级级配法。
磨机级配
70.12
100
34
37
48
∑,t aq,,Illm 小,%
160
29.22
31.36
2010/2水泥技术
万方数据
物料粒径,olin
2.36
相对球径,咖
60
累积百分数,%
5.16
1.0 50 12.84
裹4 一仓研磨体级配
0伪8
o.011<o.011
40
30<25
49.95
84.10
l∞
∑,t 25
21.Omm。 6研磨体填充系数
各种工艺磨机各仓的填充系数 在研磨体级配给出数据,这对泾阳声 威三种粉磨工艺来讲比较合理。目前 一般来讲控制在28%-34%,以30% 为基础,随着入磨物料颗粒粒径的大 大下降,研磨体直径大大下降,相应 填充系数增大,以提高研磨体量来提 高磨机产量。
笔者认为水泥粉磨磨机主电机 负荷控制在88%~93%较合理,一仓 填充系数27%一29%,后仓逐渐提高, 填充系数30%一33%。入磨物料粒径 较细和小型磨机,磨机填充系数可选 高些,全磨研磨体装填量达设计量的 95%一97%,提高动力产量。入磨物料 粒径较粗和大型磨机,磨机填充数可 选低些,全磨研磨体装填量达设计量 的88%一92%,提高钢球产量,降低电 耗。 7水泥磨机研磨级配和装填效果
据报导,国内该工艺系统二仓使
物料粒径,哪
相对应球径,/nm 累积百分数。% 相应百分数,%
相对球量,t 修l 修2
9.5 80 10.9 10.9 6.54 6 7
表2配球组合
2.36
0.045
<o.045
70
60
50
64.66
85.05
技术水泥磨研磨体装载量和级配调整方法
技术水泥磨研磨体装载量和级配调整方法磨体装载量和级配虽有公式可以参考,但同时还需靠经验调配。
目前钢球级配还是以多级配球较多,在使用分级衬板时,磨仓内在长度方向上(进料端到出料端)各点处的物料平均粒径是逐渐降低的,钢球在各点处的平均球径也应该是逐渐降低,两条曲线的走势应该是一致的。
调整钢球级配时要考虑到钢球尺寸的减小并不是一致的。
例如有文献介绍,通过试验和计算得出,当90mm的钢球磨损至80mm时,同比,80mm的钢球磨损至71.11mm,70mm的钢球磨损至63.20mm,60mm的钢球磨损至56.20mm。
显然,若只补大球,则平均球径必然有变大的趋势。
研磨体装载量和级配是否合理,可通过下述四种方法在生产实践中进行检验和调整。
1.根据磨机产量和产品细度进行检验分析(1)当磨机出现产量低、产品细度粗时,说明研磨体装载量不足或研磨体磨耗太大,此时应添加研磨体。
(2)当磨机出现产量高、产品细度粗时,说明磨内研磨体的冲击力太强,研磨能力不足,物料的流速过快所致。
此时应适当减少大球,增加小球和钢段以提高研磨能力,同时减少研磨体之间的空隙,使物料在磨内的流速减慢,延长物料在磨内的停留时间,以便得到充分的研磨。
(3)如磨机出现产量低、产品细度细时,其原因可能是小钢球太多、大钢球太少而造成的。
磨内冲击破碎作用减弱,而相对研磨能力增强。
(4)若磨机产量高、产品细度又细时,说明研磨体的装载量和级配都是合理的。
2.根据磨音判断在正常喂料的情况下,一仓钢球的冲击较强,有哗哗的声音。
若第一仓钢球的冲击声音特别洪亮时,说明第一仓钢球的平均球径过大或填充率较大;若声音发闷,说明第一仓钢球的平均球径过小或填充率过低了,此时应提高钢球的平均球径和填充率。
第二仓正常时应能听到研磨体的唰唰声。
3.检查磨内物料情况在磨机正常运转、正常喂料的情况下,根据生产经验,球仓中的钢球应露出半个钢球于料面上。
如钢球外露太多,说明装载量偏多或钢球平均球径太大;反之,说明装载量偏少或钢球平均球径太小。
水泥磨级配培训PPT课件
• 2.级配的原则
• ① 根据入磨物料的粒度、硬度、易磨性及产品细 度要求来配合。当入磨物料粒度较小、易磨性较 好、产品细度要求细时,就需加强对物料的研磨 作用,装入研磨体直径应小些 。
• ② 大型磨机和小型磨机、生料磨和水泥磨的钢球 级配应有区别。由于小型磨机的筒体短,因而物 料在磨内停留的时间也短,为延长物料在磨内的 停留时间,其平均球径应较大型磨机小(但不等 于不用大球)。由于生料细度较水泥粗,加之粘 土和铁粉的粒度小,所以生料磨应加强破碎作用,
第12页/共52页
• ⑤ 单仓球磨应全部装钢球,不装钢段;双仓磨的头仓用钢球,后仓用钢段;三仓以 上的磨机一般是前两仓装钢球,其余装钢段。为了提高粉磨效率,一般不允许球和 段混合使用。
• ⑥ 闭路磨机由于有回料入磨,钢球的冲击力由于“缓冲作用”会减弱,因此钢球的 平均球径应大些。
• ⑦ 由于衬板的磨损使带球能力不足,冲击力减小,应适当增加大球。 • ⑧ 研磨体的总装载量不应超过设计允许的装载量。
第30页/共52页
• 对于三仓开路磨机,用0.08mm方孔筛对所取式样进行筛析,根据经验第一仓末的 细度在50~70%范围之内;第二仓末的细度应为30~40%,第三仓末(出磨)在 10%以下,表明研磨体级配合理。
第31页/共52页
第32页/共52页
•
可以看出筛析曲线在第一仓入料端有倾斜度较大的下降趋势(距磨头1m左右
体的填充率。其范围一般在25%~35%之间.以28%~32%者居多。 • 填充率直接影响冲击次数、研磨面积,反映各仓球面高低,还影响研磨体的冲击高
度(冲击力); • 根据生产经验可按下述原则选取:对于多仓长磨或闭路磨机的填充率应是前仓高于
后仓,依次递减;
水泥磨钢球级配调整
水泥磨研磨体装载量和级配调整方法球磨机研磨体装载量和级配虽有公式可以参考,但同时还需靠经验调配。
目前钢球级配还是以多级配球较多,在使用分级衬板时,磨仓内在长度方向上(进料端到出料端)各点处的物料平均粒径是逐渐降低的,钢球在各点处的平均球径也应该是逐渐降低,两条曲线的走势应该是一致的。
调整钢球级配时要考虑到钢球尺寸的减小并不是一致的。
例如有文献介绍,通过试验和计算得出,当90mm 的钢球磨损至80mm时,同比,80mm的钢球磨损至71.11mm,70mm的钢球磨损至63.20mm,60mm的钢球磨损至56.20mm。
显然,若只补大球,则平均球径必然有变大的趋势。
研磨体装载量和级配是否合理,可通过下述四种方法在生产实践中进行检验和调整。
1 根据磨机产量和产品细度进行检验分析(1)当磨机出现产量低、产品细度粗时,说明研磨体装载量不足或研磨体磨耗太大,此时应添加研磨体。
(2)当磨机出现产量高、产品细度粗时,说明磨内研磨体的冲击力太强,研磨能力不足,物料的流速过快所致。
此时应适当减少大球,增加小球和钢段以提高研磨能力,同时减少研磨体之间的空隙,使物料在磨内的流速减慢,延长物料在磨内的停留时间,以便得到充分的研磨。
(3)如磨机出现产量低、产品细度细时,其原因可能是小钢球太多、大钢球太少而造成的。
磨内冲击破碎作用减弱,而相对研磨能力增强。
(4)若磨机产量高、产品细度又细时,说明研磨体的装载量和级配都是合理的。
2 根据磨音判断在正常喂料的情况下,一仓钢球的冲击较强,有哗哗的声音。
若第一仓钢球的冲击声音特别洪亮时,说明第一仓钢球的平均球径过大或填充率较大;若声音发闷,说明第一仓钢球的平均球径过小或填充率过低了,此时应提高钢球的平均球径和填充率。
第二仓正常时应能听到研磨体的唰唰声。
3 检查磨内物料情况在磨机正常运转、正常喂料的情况下,根据生产经验,球仓中的钢球应露出半个钢球于料面上。
如钢球外露太多,说明装载量偏多或钢球平均球径太大;反之,说明装载量偏少或钢球平均球径太小。
水泥磨研磨体级配调整探讨
第一仓钢球 冲击强度大, 声音响脆, 明第一仓 破 表 碎能力强, 第三仓 和第 四仓声音 略响, 明研磨能力 较 说 好。结论 : 第一 、 、 三 四仓研磨体级配调整方案可行 。
6 看 磨 内检 查 . 2
作者简介
高增军 20 年 7 02 月毕业于安徽理工大学 ,现工作于天津天铁
水泥磨产量和质量采用 1 天之内的平均值 , 5 台时
的平均值是 1. t , 9 h 细度的平均值是 5 %。 0/ . 6
3 水泥磨研磨体级配情 况 . 2
水泥磨第一仓研磨体 的级配情 况是 :10IT的  ̄0 n TI
钢球是 1 , 0nT 的钢球是 4 ,8 m 的钢球 . t ̄ ll 0 9 l . t ̄ 0m 0 是 5  ̄0m . t 7 m的钢球是 5 , 0m 0, . t0 m的钢球是 3 0 6 . 0
3 水泥磨调整前产质量和研磨体级配情况
3 水泥磨产量和质量情况 . 1
在 正常 喂料 情况下停 磨并进 入磨 内进 行采点 取 样 ,采用每隔 1 . m和隔仓篦板两侧取样 的方式采点 0 1 7个 , 第一仓 采点 123 4 第 二仓采 点 5 6 7 8 第 、、 、 , ,、、, 三仓采点 9 1 、1 1 ,第四仓 采点 1 、4 l 、6 l 。 、0 1 、2 3 1 、5 1 、7
细 度 , 7 O 6 5 5 24 0 3 2 2 5 l 7 1 3 l % 27 86 85 74 53 92 9 1 4 1 l
8 O 7 0 6 o
第二 仓研磨 体 的级 配是 :7 m 的钢球 2 ,  ̄ 0m .t 0
冶金集团天乐公司 , 化验室主任 。
4.2 13水泥磨的钢球级配
*13水泥磨的钢球级配众所周知,磨机的台时产量与许多因素有关,如粉磨工艺流程及其配套辅机(选粉机,磨前预破碎机等)的性能、入磨物料的特性(品种及其配比、粒度大小、综合水份、易磨性等)、细度、磨内通风、隔仓板的形状及位置、衬板的工作形状、研磨体填充率及其级配、磨机转速、粉磨生产操作和系统设备调控等。
如何合理进行研磨体填充及级配,以达到最佳粉磨效率呢本人根据所学理论知识、结合生产实际,现发表我个人见解,谨供大家参考借鉴。
首先根据入磨物料粒度来确定磨机各仓的平均球径,再根据粉磨工艺流程来确定磨机的填充率及装载量,再以装载量、平均球径来反推出各种规格的钢球级配。
1、入磨物料平均粒径与钢球平均球径的关系(经验数据)而且同一台磨机填充率、前仓较后仓高出1%-2%,以利于磨内物料流动。
3、根据规格计算出磨机各仓的有效容积,再根据其填充率、钢球密度,计算出磨机各仓的装载量。
有效容积即磨机的有效空间,是指磨机的内筒体除掉衬板的空间,可用公式:V=π·Di2·L(Di指筒体有效直径,L指有效长度);装载量=ρ×ψ×V(ρ:指钢球的密度吨/米3,ψ指填充率;V:有效容积)4、确定了物料的平均球径和磨机的装载量,再根据平均球径公式反推出钢球的级配,钢球级配的原则是两头小,中间多,即大球和小球少,中径球多,尤其指一仓的钢球级配。
平均球径公式有a、b两个公式:aa:粗约平均球径公式:D平=Bb:精确平均球径公式:D平=般a种方法较b种方法算出的平均球径要高出2—3点,且初次磨内配方应以b种方法准确些。
D平——钢球级配的平均球径mmD1、D2、D3——各种不同规格的球径mmG1、G2、G3——钢球直径分别为D1、D2、D3时的质量tT1、T2、T3——钢球直径分别为D1、D2、D3时每吨的个数钢球(锻)参数一览表5、在磨机进行钢球级配以后,开磨投料,一个小时以后在磨尾取混合料进行细度检测,一般要求:出磨混粉的细度控制在35%—45%,循环负荷率达95%(指闭路磨);选粉效率降低到75%左右;根据检测情况,对磨机钢球级配进行微调,直到两仓(或多仓),即粗粉仓的破碎能力跟细粉仓的研磨能力平衡。
两级配球法在水泥球磨机上的应用
积密度可使物料能够得到一定的研磨作用。在两级配球中,大球的作 用主要是对物料进行冲击破碎。小球的作用一是填充大球间的空隙, 提高研磨体的堆积密度,以控制物料流速,增加研磨能力;二是起能 量传递作用,将大球的冲击能量传递给物料;三是将空隙中的粗颗粒 物料排挤出来,置于大球的冲击区内。 两级配球法需要确定以下几个参数:(1)大球直径的确定。取决于 磨机规格大小、入磨物料的粒度和易磨性。一般以多级配球中的第二 级球径为准。如某台磨机在多级配球中最大球径为 100mm,进行两级 配球时就应选择直径为 90mm 的钢球。(2)小球直径的确定。取决于 大球间空隙的大小,也即取决于大球的直径大小。通常情况下,小球 直径取值为大球直径的 20%-30%比较合适。(3)大、小球的配比。 原则上应保证小球的掺入量不影响大球的填充率。一般小球占大球重 量的 3%-5%。 在多级配球中,对钢球的冲击力、冲击次数、控制物料流速能力的要 求都主要依据平均球径,就是说受多种规格球的影响。在两级配球中, 钢球的冲击力、冲击次数由大球的直径来决定,而控制物料流速的能 力主要由小球的直径、装填量确定,受大球直径的影响很小,因而缓 解了冲击力、冲击次数与控制物料流速能力之间的矛盾。相比之下, 两级配球法比较简单,在确定级配参数时容易做到综合考虑。 3、两级配球法使用情况 3.1 工艺参数
表 2 Φ2.4m*8m 水泥磨两种配球方案台时产量(t/h)
水泥等级、品种
P.C32.5
P.O42.5
混合材掺量
研磨体级配的方法
研磨体的填充率、级配判断与补充量的方法作者:单位: [2007-11-2]关键字:研磨体-填充率-级配-补充量摘要:研磨体装载量和级配虽有些公式可以参考,但一般还是靠经验调配。
钢球级配还是以多级配球较多,在使用分级衬板时,磨仓内在长度方向上(进料端到出料端)各点处的物料平均粒径是逐渐降低的,钢球在各点处的平均球径也应该是逐渐降低,两条曲线的走势应该是一致的。
调整钢球级配时要考虑到钢球尺寸的减小并不是一致的。
例如有文献介绍,通过试验和计算得出,当90mm的钢球磨损至80mm时,同比,80mm的钢球磨损至71.11mm,70mm的钢球磨损至63.20mm,60mm的钢球磨损至56.20mm。
显然,若只补大球,则平均球径必然有变大的趋势。
研磨体装载量和级配是否合理,可通过下述四种方法在生产实践中进行检验和调整。
1 根据磨机产量和产品细度进行检验分析(1)当磨机出现产量低、产品细度粗时,说明研磨体装载量不足或研磨体磨耗太大,此时应添加研磨体。
(2)当磨机出现产量高、产品细度粗时,说明磨内研磨体的冲击力太强,研磨能力不足,物料的流速过快所致。
此时应适当减少大球,增加小球和钢段以提高研磨能力,同时减少研磨体之间的空隙,使物料在磨内的流速减慢,延长物料在磨内的停留时间,以便得到充分的研磨。
(3)如磨机出现产量低、产品细度细时,其原因可能是小钢球太多、大钢球太少而造成的。
磨内冲击破碎作用减弱,而相对研磨能力增强。
(4)若磨机产量高、产品细度又细时,说明研磨体的装载量和级配都是合理的。
2 根据磨音判断在正常喂料的情况下,一仓钢球的冲击较强,有哗哗的声音。
若第一仓钢球的冲击声音特别洪亮时,说明第一仓钢球的平均球径过大或填充率较大;若声音发闷,说明第一仓钢球的平均球径过小或填充率过低了,此时应提高钢球的平均球径和填充率。
第二仓正常时应能听到研磨体的唰唰声。
3 检查磨内物料情况在磨机正常运转、正常喂料的情况下,根据生产经验,球仓中的钢球应露出半个钢球于料面上。
4.2 13水泥磨的钢球级配
4.2*13水泥磨的钢球级配众所周知,磨机的台时产量与许多因素有关,如粉磨工艺流程及其配套辅机(选粉机,磨前预破碎机等)的性能、入磨物料的特性(品种及其配比、粒度大小、综合水份、易磨性等)、细度、磨内通风、隔仓板的形状及位置、衬板的工作形状、研磨体填充率及其级配、磨机转速、粉磨生产操作和系统设备调控等。
如何合理进行研磨体填充及级配,以达到最佳粉磨效率呢?本人根据所学理论知识、结合生产实际,现发表我个人见解,谨供大家参考借鉴。
首先根据入磨物料粒度来确定磨机各仓的平均球径,再根据粉磨工艺流程来确定磨机的填充率及装载量,再以装载量、平均球径来反推出各种规格的钢球级配。
1、入磨物料平均粒径与钢球平均球径的关系(经验数据)而且同一台磨机填充率、前仓较后仓高出1%-2%,以利于磨内物料流动。
3、根据规格计算出磨机各仓的有效容积,再根据其填充率、钢球密度,计算出磨机各仓的装载量。
有效容积即磨机的有效空间,是指磨机的内筒体除掉衬板的空间,可用公式:V=π·Di2·L(Di指筒体有效直径,L指有效长度);装载量=ρ×ψ×V(ρ:指钢球的密度4.65吨/米3,ψ指填充率;V:有效容积)4、确定了物料的平均球径和磨机的装载量,再根据平均球径公式反推出钢球的级配,钢球级配的原则是两头小,中间多,即大球和小球少,中径球多,尤其指一仓的钢球级配。
平均球径公式有a、b两个公式:aa:粗约平均球径公式:D平=Bb:精确平均球径公式:D平=般a种方法较b种方法算出的平均球径要高出2—3点,且初次磨内配方应以b种方法准确些。
D平——钢球级配的平均球径mmD1、D2、D3——各种不同规格的球径mmG1、G2、G3——钢球直径分别为D1、D2、D3时的质量tT1、T2、T3——钢球直径分别为D1、D2、D3时每吨的个数钢球(锻)参数一览表5、在磨机进行钢球级配以后,开磨投料,一个小时以后在磨尾取混合料进行细度检测,一般要求:出磨混粉的细度控制在35%—45%,循环负荷率达95%(指闭路磨);选粉效率降低到75%左右;根据检测情况,对磨机钢球级配进行微调,直到两仓(或多仓),即粗粉仓的破碎能力跟细粉仓的研磨能力平衡。
不同工艺水泥磨研磨体级配与装填的探讨共13页
不同工艺水泥磨研磨体级配与装填的探讨新型干法水泥工艺快速发展,水泥粉磨技术也向高效、节电方向快速变化,由传统多仓管磨机组成开路、闭路系统,与我国自主研制创新的磨内筛分技术和采用微型研磨体的高细高产磨与各种类型高效选粉机组成水泥粉磨系统向管磨机、辊压机、 V 型选粉机或打散分级机、 O-SEPA 选粉机组成不同工艺技术的水泥粉磨系统。
使整个粉磨系统取得了显著的增产、降耗效果。
笔者经历过由φ 4. 2 × 11m 、φ 4.2 × 13m 磨机组成的预粉磨系统,由φ 2.6 × 13m 、φ 3.0 ×11m 、φ 3.2 × 13m 、φ 3.8 × 13m 磨机组成开闭路与高细高产及联合粉磨系统,由φ 3.8 × 11m 磨机组成的联合预粉磨系统,调试与生产实践。
这些不同工艺水泥粉磨系统入磨物料粒径大大的减小,粒径组成也相对较均齐,物料粗碎和中碎任务均在磨外完成,而管磨机只承担细碎和细磨及超细磨任务。
所以,对水泥磨的研磨体级配与装填技术要求不是很高,但目前对管磨机成品质量要求很高, 0.08 筛的筛余1% , 0.045 筛的筛余为 10% ,从这点意义上讲,管磨机研磨体级配与装填的合理性对系统产量、质量影响仍然是不可忽视的重要环节。
现将预粉磨系统(辊压机 + 管磨机 + 高效选粉机组成),联合粉磨系统(辊压机 + 打散机或 V 型选粉机 + 管磨机),联合预粉磨系统(辊压机 +V 型选粉机 + 管磨机 + 高效选粉机组成)的管磨机研磨体级配与装填谈点探讨认识。
1 水泥磨机配球的基本原则1.1 配球时考虑的因素根据入磨物料(熟料)粒径大小,物料特性与系统工艺技术和辊压机能力与磨机能力相对值大小有关,磨机规格性能、转速、磨内结构(各仓长度、衬板形式、隔仓板型式与篦缝的通料率),混合材品种与配比及水份,入磨熟料温度和熟料矿物组成等综合因素。
研磨机的级配
三、研磨机的级配(一)研磨机级配的意义磨内的被磨物料有不同的粒度,在料磨过程中单纯考虑研磨体的装载量是不全面的,还必须考虑使用不同规格研磨体,以提高粉磨效率。
将不同规格的研磨体按一定比例配合使用,就称作研磨体的级配。
物料在粉磨过程中,开始时块度较大,需用较大直径的研磨体的冲击,随着物料块度变小,就需小直径的研磨体进行研磨,使物料和研磨体很好地接触。
在研磨体装载量不变的情况下,缩小研磨体的尺寸,便能增加物料与研磨体的接触,提高研磨能力。
所以在实际生产要求有几种尺寸的研磨体配合使用,即能保证具有一定的冲击能力,又有一定的研磨能力。
(二)选择研磨体级配的原则物料的粉磨过程是一个很复杂的工艺过程,在考虑钢球级配时应注意各种因素的影响,例如物料的硬度、粒度、粉磨细度、工艺流程等。
根据生产实践经验,选择研磨体的级配时应遵循下述原则:(1)入物料的粒度和硬度大,成品要求较粗时,钢球和钢段的直径应大些;反之则可小些。
加入钢球的最大直径可以根据入磨物料的最大粒径用下式近似求得:D=28(d)1/3式中D 钢球的最大直径(毫米); d 入磨物料的最大粒径(毫米)。
在工厂生产中,钢球的级配常以钢球的平均球径来选择。
根据物料的平均粒径查表2-14,得到相应的钢球平均球径,作为配时参考。
(2)大型磨机和小型磨机,生料磨和水泥磨的钢球级配应有区别。
由于小型磨机的筒体较大型磨机的筒体短,物料在磨内的停留时间短,所以在入磨物料的粒度、硬度相同的情况下,为了增加磨机的研磨作用,并控制物料流速,它的平均球径应较大型磨机小。
在磨机规格和入磨物料粒度、易磨性相同的情况下,由于生料细度一般比水泥细度粗,所以生料磨的平均球径应比水泥磨的大。
(3)磨内只用大钢球,则钢球之间的空隙大,物料流速快,出磨物料粗。
为了控制物料流速,满足细度要求,经常是大小球配合使用,减少钢球之间的空隙,使物料在磨内流速减慢,延长物料在磨内的停留时间,提高粉磨效率。
不同工艺水泥磨研磨体级配与装填的探讨-ok
不同工艺水泥磨研磨体级配与装填的探讨徐汉龙(陕西声威建材集团有限公司 713703)新型干法水泥工艺快速发展,水泥粉磨技术也向高效、节电方向快速变化,由传统多仓管磨机组成开路、闭路系统,与我国自主研制创新的磨内筛分技术和采用微型研磨体的高细高产磨与各种类型高效选粉机组成水泥粉磨系统向管磨机、辊压机、V 型选粉机或打散分级机、O-SEPA 选粉机组成不同工艺技术的水泥粉磨系统。
使整个粉磨系统取得了显著的增产、降耗效果。
笔者经历过由φ4.2×11m 、φ4.2×13m 磨机组成的预粉磨系统,由φ2.6×13m 、φ3.0×11m 、φ3.2×13m 、φ3.8×13m 磨机组成开闭路与高细高产及联合粉磨系统,由φ3.8×11m 磨机组成的联合预粉磨系统,调试与生产实践。
这些不同工艺水泥粉磨系统入磨物料粒径大大的减小,粒径组成也相对较均齐,物料粗碎和中碎任务均在磨外完成,而管磨机只承担细碎和细磨及超细磨任务。
所以,对水泥磨的研磨体级配与装填技术要求不是很高,但目前对管磨机成品质量要求很高,0.08筛的筛余1%,0.045筛的筛余为10%,从这点意义上讲,管磨机研磨体级配与装填的合理性对系统产量、质量影响仍然是不可忽视的重要环节。
现将预粉磨系统(辊压机+管磨机+高效选粉机组成),联合粉磨系统(辊压机+打散机或V 型选粉机+管磨机),联合预粉磨系统(辊压机+V 型选粉机+管磨机+高效选粉机组成)的管磨机研磨体级配与装填谈点探讨认识。
1水泥磨机配球的基本原则 1.1配球时考虑的因素根据入磨物料(熟料)粒径大小,物料特性与系统工艺技术和辊压机能力与磨机能力相对值大小有关,磨机规格性能、转速、磨内结构(各仓长度、衬板形式、隔仓板型式与篦缝的通料率),混合材品种与配比及水份,入磨熟料温度和熟料矿物组成等综合因素。
1.2入磨物料粒径的确定为了解物料粒度分布状况,取入磨物料样用套筛或颗粒级配仪测定,然后进行粒径计算并作出相应的粒径组成曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
该水泥粉磨生产线投产近半年以来,辊压机和V型选粉机预粉磨系统显得能力不足,
成为水泥粉磨台时的首要制约因素。
主要的表现是:辊压机因辊缝差和电流差超高频繁跳停;
喂料增加时稳流仓持续涨仓。
主要的调整措施:1.调高辊缝差和电流差高限跳停值、更换磨损的侧挡板并将间隙调至最低值约15mm,以提高辊压机对喂料粒度的适应能力,大幅减少跳停故障;
2.调整V选内部阀板开度、调整风机风门开度以增大V选的通风量同时封堵V选的短路风管(提升机、皮带机等下料点收尘风管),以便最大限度的提高V选的选出率,从而提高预粉磨的产量进而提高水泥系统的产量;
3.适当提高加载压、适当调整辊缝以强化辊压机的辊压效果,以便适当提高辊压机预粉磨的产量。
以上措施实施后,水泥系统的台时逐步提高,绝对增加值约10t/h。
现在,辊压机的主要矛盾已经基本解决,降为水泥系统的次要因素,而水泥磨成为系统产量的主要制约因素。
目前的水泥系统台时,扣除配料秤约13.5%的计量误差,实际仍只有61.5t/h。
为了进一步提高系统的台时产量,除了实施必要的技术改造外,
水泥磨的研磨体级配无疑是需要重点调整的工艺方案。
以下是我
们拟定的、正在使用的级配方案。
1.原设计方案
表1:水泥磨原设计级配
规格1仓装载量体积2仓装载量体积3仓装载量体积
60 9 1.93
50 14 2.97
40 10 2.10
30 5 1.03
18*18 7.5 1.67
16*16 10.5 2.33
14*14 7.5 1.67
12*12 37 8.22
10*10 24.5 5.44
合计38 8.04 25.5 5.67 61.5 13.67
各仓Dcp 47.1 - 16.0 - 11.2 -
各仓φ*L 3.1*3705 - 3.1*2500 - 3.1*6000 - 各仓容积27.96 - 18.87 - 45.29 -
各仓填充率(%) 28.74 - 30.03 - 30.18 -
总装量125 平均填充率29.71
2.一仓方案
表2:1#磨入磨样品筛分析
筛孔尺寸(mm) 0.9 0.2 0.08 0.08以下
累计筛余(%) 4.6 33.8 51.4
分计筛余(%) 4.6 29.2 17.6
通过量(%) 95.4 66.2 48.6
表3:2#磨入磨样品筛分析
筛孔尺寸(mm) 0.9 0.2 0.08 0.08以下
累计筛余(%) 3.4 28.8 48
分计筛余(%) 3.4 25.4 19.2
通过量(%) 96.6 71.2 52
1#磨取样时产量75t/h,2#磨取样时产量68t/h,2#磨的辊压机系统未达到最佳状态。
取1#磨的入磨样品数据作筛分析曲线,得出曲线的回归方程式
利用此方程式计算出入磨物料对应于2.36、1、0.098mm等筛孔的累计筛余。
然后按通常的粒度与球径的对应关系计算研磨体级配如
下。
表4:计算方案1
筛孔尺寸mm 2.36 1 0.098 0.011 <0.011 ∑ dcp 累积筛余% 0 2.59 47.52 89.83 100
分计筛余(%) 0 2.59 44.93 42.31 10.17
相对球径mm 60 50 40 30 25
计算球量(t) 0 0.98 17.07 16.08 3.87 38 34.50
修正0.5 3 16 15 3.5 38 35.72
表5:计算方案2
0.12 0.045 0.038 <0.038 ∑ dcp
累积筛余% 43.60 62.58 65.85 100.00
分计筛余(%) 43.60 18.97 3.27 34.15
40 30 25 20
计算球量(t) 16.57 7.21 1.24 12.98 38.00 30.78
修正16 8 8 6 38 31.58
另一方面,利用上述曲线的回归方程式计算出入磨物料的平均粒径和最大粒径分别为:
d80=0.407mm,d95=0.883mm
据此算出的最大球径和平均球径仅为:
D大=27mm,D平=21mm
取大一级的钢球,即最大球取40mm。
这与上述两个计算方案是基本一致的,同时也表明必须减少60和50mm球的用量。
第三,参照声威集团的联合粉磨(辊压机带打散机)和联合预粉磨(辊压机带V选)对应水泥磨机的研磨体级配(如下表),上述方
案1是比较合适的研磨体级配方案。
表6:联合粉磨系统中的水泥磨级配
2.36 1 0.098 0.011 <0.011 ∑ dcp
相对球径mm 60 50 40 30 <25
累积筛余% 5.16 12.84 49.95 84.1 100
分计筛余(%) 5.16 7.68 37.11 34.15 15.9
计算球量(t) 0 0 0 0 0 φ=27.26
修正1 2 10 8 4 25 36
表7:联合预粉磨系统中的水泥磨级配
0.12 0.045 0.038 <0.038 ∑ dcp φ
40 30 25 20
累积筛余% 16.88 46.27 76.6 100
5.064 8.817 9.099 7.02 30 27.66 28.34
修正4 9 10 7 30 27.33
最后,鉴于目前一仓的平均球径高达47.1mm,为了工艺和操作上平稳过渡,参照方案1提出一个平均球径略大一些的折中参考方案,供选用。
表8:折中方案
2.36 1 0.098 0.011 <0.011 ∑ dcp
累积筛余% 0 2.59 47.52 89.83 100
分计筛余(%) 0 2.59 44.93 42.31 10.17
相对球径mm 60 50 40 30 25
计算球量(t) 0 0.98 17.07 16.08 3.87 38 34.50
折中方案0.5 5 15 14 3.5 38 36.51
3.三仓方案
由于我们的出磨水泥比表比金大地和坝道津市偏低,三仓的方案适当增加了φ10*10小锻的装载量,削减了φ12*12大锻的装载量,以适当降低平均球径,提高粉磨能力。
表9:三仓方案
钢锻规格(mm) 12*12 10*10
装载量(t) 30 31.5
Dcp(mm) 10.9。