方程组和不等式组的应用
线性方程组与不等式
线性方程组与不等式线性方程组和不等式是数学中常见的概念和问题类型,它们在实际生活和各个领域中都有广泛的应用。
本文将从基本概念入手,逐步介绍线性方程组和不等式的定义、解法以及一些实际问题的应用。
一、线性方程组的定义与解法线性方程组是由一组线性方程构成的方程组。
线性方程的一般形式为:a₁x₁ + a₂x₂ + ... + aₙxₙ = b,其中a₁、a₂、...、aₙ为系数,x₁、x₂、...、xₙ为变量,b为常数。
为了解决线性方程组,在解法上可以使用消元法、代入法或矩阵法等。
其中,消元法是一种常用的解法。
消元法的基本思路是通过不改变方程组解集的操作,将线性方程组逐步化为简化的形式。
具体步骤如下:1. 化简:将线性方程组化为行简化阶梯形式,即将系数矩阵转化为行阶梯形矩阵。
2. 消元:从最后一行开始,逐行进行消元操作,通过倍乘和相减操作将系数矩阵化为最简形式。
3. 回代:从最后一行开始,逐行进行回代操作,通过代入求解出每个变量的值,得到方程组的解集。
需要注意的是,线性方程组的解不一定存在,或者存在无穷多个解。
通过解方程组可以得到变量的具体取值,从而解决相应的问题。
二、线性不等式的定义与解法线性不等式是包含线性函数或变量的不等关系的数学表达式。
一般形式为:a₁x₁ + a₂x₂ + ... + aₙxₙ ≤ b(或≥、<、>)。
解线性不等式的方法主要有图解法和代入法。
图解法利用平面直角坐标系,将不等式绘制成直线或线段,然后根据不等式的性质找到使其成立的解集。
代入法则是通过将不等式中的变量替换为特定的常数,然后求解得到不等式的解集。
与线性方程组不同的是,线性不等式的解集通常是一个区域或者是所有满足不等式条件的点的集合。
解线性不等式可以帮助我们确定变量的取值范围,解决约束条件下的问题。
三、线性方程组与不等式的应用线性方程组和不等式在实际问题中有广泛的应用,涵盖了许多不同领域。
以下是一些常见的应用场景:1. 经济学:线性方程组可以用来描述供求关系、成本与收益关系等经济问题,如经济平衡、市场均衡等。
二元一次方程组和一元一次不等式的应用
二元一次方程组及不等式的综合应用崔莹莹2016-6-112.(2015•广东省,第22题,7分)某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?【答案】解:(1)设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120-+-=⎧⎨-+-=⎩x y x y ,解得4256=⎧⎨=⎩x y .答:A ,B 两种型号计算器的销售价格分别为42元,56元.(2)设最少需要购进A 型号的计算a 台,得3040(70)2500+-≥a a ,解得30≥a .答:最少需要购进A 型号的计算器30台.【考点】二元一次方程组和一元一次不等式的应用(销售问题).【分析】(1)要列方程(组),首先要根据题意找出存在的等量关系,本题设A ,B 型号的计算器的销售价格分别是x 元,y 元,等量关系为:“销售5 台A 型号和1台B 型号计算器的利润76元”和“销售6台A 型号和3台B 型号计算器的利润120元”.(2)不等式的应用解题关键是找出不等量关系,列出不等式求解. 本题设最少需要购进A 型号的计算a 台,不等量关系为:“购进A ,B 两种型号计算器共70台的资金不多于2500元”.6.(2015·四川甘孜、阿坝,第26题8分)一水果经销商购进了A ,B 两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:A种水果/箱B种水果/箱甲店11元17元乙店9元13元(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?考点:一元一次不等式的应用..分析:(1)经销商能盈利=水果箱数×每箱水果的盈利;(2)设甲店配A种水果x箱,分别表示出配给乙店的A水果,B水果的箱数,根据盈利不小于110元,列不等式求解,进一步利用经销商盈利=A种水果甲店盈利×x+B种水果甲店盈利×(10﹣x)+A种水果乙店盈利×(10﹣x)+B种水果甲店盈利×x;列出函数解析式利用函数性质求得答案即可.解答:解:(1)经销商能盈利=5×11+5×17+5×9+5×13=5×50=250;(2)设甲店配A种水果x箱,则甲店配B种水果(10﹣x)箱,乙店配A种水果(10﹣x)箱,乙店配B种水果10﹣(10﹣x)=x箱.∵9×(10﹣x)+13x≥100,∴x≥2,经销商盈利为w=11x+17•(10﹣x)+9•(10﹣x)+13x=﹣2x+260.∵﹣2<0,∴w随x增大而减小,∴当x=3时,w值最大.甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利:﹣2×3+260=254(元).点评:此题考查一元一次不等式的运用,一次函数的实际运用,找出题目蕴含的不等关系与等量关系解决问题.7.(2015·山东潍坊第19 题9分)为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)考点:一元一次不等式的应用;二元一次方程组的应用..分析:(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,根据“购进了A、B两种型号家用净水器共160台,购进两种型号的家用净水器共用去36000元.”列出方程组解答即可;(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a 元,根据保证售完这160台家用净水器的毛利润不低于11000元,列出不等式解答即可.解答:解:(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,由题意得,解得.答:A种型号家用净水器购进了100台,B种型号家用净水器购进了60台.(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a 元,由题意得100a+60×2a≥11000,解得a≥50,150+50=200(元).答:每台A型号家用净水器的售价至少是200元.点评:此题考查一元一次不等式组的实际运用,二元一次方程组的实际运用,找出题目蕴含的数量关系与不等关系是解决问题的关键.12.(2015•四川眉山,第24题9分)某厂为了丰富大家的业余生活,组织了一次工会活动,准备一次性购买若干钢笔和笔记本(每支钢笔的价格相同,每本笔记本的价格相同)作为奖品.若购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元.(1)购买一支钢笔和一本笔记本各需多少元?(2)工会准备购买钢笔和笔记本共80件作奖品,根据规定购买的总费用不超过1100元,则工会最多可以购买多少支钢笔?考点:一元一次不等式的应用;二元一次方程组的应用..分析:(1)首先用未知数设出买一支钢笔和一本笔记本所需的费用,然后根据关键语“购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元”,列方程组求出未知数的值,即可得解.(2)设购买钢笔的数量为x,则笔记本的数量为80﹣x,根据总费用不超过1100元,列出不等式解答即可.解答:解:(1)设一支钢笔需x元,一本笔记本需y元,由题意得解得:答:一支钢笔需16元,一本笔记本需10元;(2)设购买钢笔的数量为x,则笔记本的数量为80﹣x,由题意得16x+10(80﹣x)≤1100解得:x≤50答:工会最多可以购买50支钢笔.点评:此题主要考查了二元一次方程组和一元一次不等式的应用,关键是正确理解题意,找出等量关系,列出方程组和不等式.13. (2015•四川泸州,第21题7分)某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵。
人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用
∴原方程组的解为y=1,将y=1 代入 2kx-3y<5 得 2×k×2-3<5,解得 k<2.
命题点 2:一次方程(组)的应用(近 3 年考查 15 次)
7.(数学文化)(2021·武汉第 7 题 3 分)我国古代数学名著《九章算术》
中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价
32 人.2 艘大船与 1 艘小船一次共可以满载游客 46 人.则 1 艘大船与 1
艘小船一次共可以满载游客的人数为
( B)
A.30
B.26
C.24
D.22
11.★(2022·武汉第 10 题 3 分)幻方是古老的数学问题,我国古代的《洛 书》中记载了最早的幻方——九宫格.将 9 个数填入幻方的空格中,要 求每一横行、 每一竖列以及两条对角线上的 3 个数之和相等,例如图① 就是一个幻方.图②是一个未完成的幻方,则 x 与 y 的和是 ( D ) A.9 B.10 C.11 D.12
14.(2020·仙桃第 12 题 3 分)篮球联赛中,每场比赛都要分出胜负,每 队胜 1 场得 2 分,负 1 场得 1 分.某队 14 场比赛得到 23 分,则该队胜 了__99__场.
15.(2020·黄冈第 19 题 6 分)为推广黄冈各县市名优农产品,市政府组 织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买 6 盒 羊角春牌绿茶和 4 盒九孔牌藕粉,共需 960 元,如果购买 1 盒羊角春牌 绿茶和 3 盒九孔牌藕粉共需 300 元,请问每盒羊角春牌绿茶和每盒九孔 牌藕粉分别需要多少元?
【分层分析】设购进创意文具袋 x 个,由题干信息①得购进笔记本为
((2x2+x+10)个,由题干信息②可列方程为 xx++(2(x2+x1+0)1=0)190.
北京中考复习——方程(组)与不等式(组)的应用(解析版)
北京中考复习——方程(组)与不等式(组)的应用一、解答题1、李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟,他骑自行车的平均速度是250米/分,步行的平均速度是80米/分,他家离学校的距离是2900米,求他骑行和步行的时间分别是多少?答案:骑行了10分钟,步行了5分钟解答:设他步行了x分钟,则骑行了15-x分钟,依题意得:80x+250(15-x)=2900,解得,x=5.15-x=10答:他骑行了10分钟,步行了5分钟.2、自从2012年9月1日昌平区首批50辆纯电动出租车正式运营以来,电动出租车以绿色环保受到市民的广泛欢迎,给市民的生活带来了很大方便.下表是行驶15公里以内普通燃油出租车和纯电动出租车的运营价格:老张每天从家去单位打出租车上班(路程在15公里以内),结果发现正常情况下乘坐纯电动出租车比燃油出租车平均每公里节省0.8元,求老张家到单位的路程是多少公里?答案:小明家到单位的路程是8.2千米.解答:设小明家到单位的路程是x千米.依题意,得13+2.3(x-3)=8+2(x-3)+0.8x.解这个方程,得x=8.2.答:小明家到单位的路程是8.2千米.3、某机械厂加工车间有84名工人,平均每人每天加工大齿轮16个或者小齿轮10个,已知1个大齿轮与2个小齿轮刚好配成一套,问分别安排多少名工人加工大,小齿轮,才能使每天加工的大小齿轮刚好配套?答案:每天加工大齿轮的有20人,每天加工小齿轮的有64人.解答:设每天加工大齿轮的有x人,则每天加工小齿轮的有(84-x)人,根据题意可得;2×16x=10(84-x),解得:x=20,则84-20=64(人).答:每天加工大齿轮的有20人,每天加工小齿轮的有64人.4、根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2013年4月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:2013年5月份,该市居民甲用电100度,交电费60元;居民乙用电200度,交电费122.5元.(1)上表中a=______,b=______.(2)试行“阶梯电价”收费以后,该市一户居民2013年8月份平均电价每度为0.63元,求该用户8月用电多少度?答案:(1)0.6;0.65(2)该市一户居民月用电为375度.解答:(1)根据2013年5月份,该市居民甲用电100度时,交电费60元,得出:a=60÷100=0.6,居民乙用电200度时,交电费122.5元.则(122.5-0.6×150)÷(200-150)=0.65,故答案为:0.6,0.65.(2)设居民月用电为x度,依题意得:150×0.6+0.65(x-150)=0.63x,整理得:90+0.65x-97.5=0.63x,解得:x=375,答:该市一户居民月用电为375度.5、北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日到2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?答案:轨道交通日均客运量为353万人次,地面公交日均客运量为1343万人次. 解答:设轨道交通日均客运量为x 万人次,地面公交日均客运量为y 万人次.依题意得:1696469x y y x +=⎧⎨=-⎩, 解得:3531343x y =⎧⎨=⎩.答:轨道交通日均客运量为353万人次,地面公交日均客运量为1343万人次.6、体育文化用品商店购进篮球和排球共20个,进价和售价如表,全部销售完后共获利润260元.求商店购进篮球,排球各多少个.答案:购进篮球12个,购进排球8个.解答:设购进篮球x 个,购进排球y 个,由题意得:()()2095806050260x y x y +=⎧⎨-+-=⎩, 解得:128x y =⎧⎨=⎩.答:购进篮球12个,购进排球8个.7、水上公园的游船有两种类型,一种有4个座位,另一种有6个座位.这两种游船的收费标准是:一条4座游船每小时的租金为60元,一条6座游船每小时的租金为100元.某公司组织38名员工到水上公园租船游览,若每条船正好坐满,并且1小时共花费租金600元,求该公司分别租用4座游船和6座游船的数量.答案:该公司租用4座游船5条,6座游船3条.解答:设租用4座游船x 条,租用6座游船y 条.依题意得463860100600x y x y +=⎧⎨+=⎩解得53 xy=⎧⎨=⎩答:该公司租用4座游船5条,6座游船3条.8、小志从甲、乙两超市分别购买了10瓶和6瓶cc饮料,共花费51元;小云从甲、乙两超市分别购买了8瓶和12瓶cc饮料,且小云在乙超市比在甲超市多花18元,在小志和小云购买cc饮料时,甲、乙两超市cc饮料价格不一样,若只考虑价格因素,到哪家超市购买这种cc饮料便宜?请说明理由.答案:到甲超市购买这种cc饮料便宜,证明见解答.解答:设甲超市cc饮料每瓶的价格为x元,乙超市cc饮料每瓶的价格为y元,依题意,得:1065112818x yy x+=⎧⎨-=⎩,解得:33.5xy=⎧⎨=⎩,∵3<3.5,∴到甲超市购买这种cc饮料便宜.9、台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域的交流越来越深入,2015年10月10日是北京故宫博物院成立90周年院庆日,两岸故宫同根同源,合作举办了多项纪念活动.据统计北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中北京故宫博物院藏品数量比台北故宫博物院藏品数量的2倍还多50万件,求北京故宫博物院和台北故宫博物院各约有多少万件藏品.答案:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品.解答:设北京故宫博物院约有x万件藏品,台北故宫博物院约有y万件藏品.依题意,列方程组得:245250 x yx y+=⎧⎨=+⎩,解得18065xy=⎧⎨=⎩.答:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品.10、某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?答案:(1)小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,销售完后,该水果商共赚了3200元.(2)大樱桃的售价最少应为41.6元/千克.解答:(1)设小樱桃的进价为每千克x 元,大樱桃的进价为每千克y 元,根据题意可得: 200200800020x y y x +=⎧⎨-=⎩, 解得:1030x y =⎧⎨=⎩, 小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,200×[(40-30)+(16-10)]=3200(元),∴销售完后,该水果商共赚了3200元.(2)设大樱桃的售价为a 元/千克,(1-20%)×200×16+200a -8000≥3200×90%,解得:a ≥41.6,答:大樱桃的售价最少应为41.6元/千克.11、小宜跟几位同学在某快餐厅吃饭,如图为此快餐厅的菜单.若他们所点的餐食总共为10份盖饭,x 杯饮料,y 份凉拌菜.A 套餐:一份盖饭加一杯饮料B 套餐:一份盖饭加一份凉拌菜C 套餐:一份盖饭加一杯饮料与一份凉拌菜(1)他们点了______份A 套餐,______份B 套餐,______份C 套餐(均用含x 或y 的代数式表示).(2)若x =6,且A 、B 、C 套餐均至少点了1份,则最多有______种点餐方案. 答案:(1)(10-y );(10-x );(x +y -10)(2)5解答:(1)根据题意,有(10-y )份套餐,只点了饮料,故有(10-y )份A 套餐.有(10-x )份套餐,点了凉拌饭,故有(10-x )份B 套餐.则C 套餐有10-(10-y +10-x )=(x +y -10)份.(2)若x =6,则10-6=4份点了B 套餐,∵A 、B 、C 套餐均至少点了1份,∴共有以下5种点餐方案.如下表:12、为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?答案:甲工厂每天加工40件产品,乙工厂每天加工60件产品.解答:设甲工厂每天加工x 件产品,则乙工厂每天加工1.5x 件产品,依题意得120012001.5x x-=10, 解得:x =40.经检验:x =40是原方程的根,且符合题意.所以1.5x =60.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.13、某市计划建造80万套保障性住房,用于改善百姓的住房状况.开工后每年建造保障性住房的套数比原计划增加25%,结果提前两年保质保量地完成了任务.求原计划每年建造保障性住房多少万套?答案:原计划每年建造保障性住房8万套.解答:设原计划每年建造保障性住房x 万套,根据题意可得:()8080125%x x-+=2,解方程,得x =8.经检验:x =8是原方程的解,且符合题意.答:原计划每年建造保障性住房8万套.14、为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工产品的数量是甲工厂每天加工产品数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?答案:甲、乙两个工厂每天分别能加工新产品40件、60件.解答:设甲工厂每天加工x件新产品,则乙工厂每天加工1.5x件新产品.依题意,得120012001.5x x-=10.解得x=40.经检验,x=40是所列方程的解,且符合实际问题的意义.当x=40时,1.5x=60.答:甲、乙两个工厂每天分别能加工新产品40件、60件.15、某服装厂设计了一款新式夏装,想尽快制作8800件投入市场,服装厂有A、B两个制衣车间,A车间每天加工的数量是B车间的1.2倍,A、B两车间共同完成一半后,A车间出现故障停产,剩下全部由B车间单独完成,结果前后共用20天完成,求A、B两车间每天分别能加工多少件.答案:A车间每天生产384件,B车间每天生产320件.解答:设B车间每天生产x件,则A车间每天生产1.2x件.由题意得44001.2x x++4400x=20.解得x=320.经检验x=320是方程的解.此时A车间每天生产320×1.2=384(件).答:A车间每天生产384件,B车间每天生产320件.16、为应对雾霾天气,使师生有一个更加舒适的教学环境,学校决定为南北两幢教学楼安装空气净化器.南楼安装的55台由甲队完成,北楼安装的50台由乙队完成.已知甲队比乙队每天多安装两台,且两队同时开工,恰好同时完成任务.甲、乙两队每天各安装空气净化器多少台?答案:甲队每天安装空气净化器22台,乙队每天安装20台.解答:设甲队每天安装空气净化器x台,则乙队每天安装(x-2)台,依题意得,55x=502x-,解方程得,x=22.经检验,x=22是原方程的解,且符合实际意义.x-2=22-2=20(台).答:甲队每天安装空气净化器22台,乙队每天安装20台.17、列方程(组)解应用题某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫.但每件进价比第一批衬衫的每件进价少了10元,且进货量是第一批进货量的一半.求第一批购进这种衬衫每件的进价是多少元?答案:第一批衬衫每件进价为150元.解答:设第一批衬衫每件进价为x 元, 依题意,得12·4500x =210010x -, 解得x =150.经检验x =150是原方程的解,且满足题意.答:第一批衬衫每件进价为150元.18、某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务,若每人每小时绿化面积相同,求每人每小时的绿化面积.答案:每人每小时的绿化面积2.5平方米.解答:设每人每小时的绿化面积x 平方米,由题意,得()180180662x x-+=3,解得:x =2.5.经检验,x =2.5是原方程的解,且符合题意.答:每人每小时的绿化面积2.5平方米.19、小马自驾私家车从A 地到B 地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动汽车所需电费27元.已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费. 答案:新购买的纯电动汽车每行驶1千米所需的电费为0.18元.解答:设A 、B 两地距离为x 千米, 由题意可知:10827x x-=0.54,解得:x =150. 经检验:x =150是原方程的解,且符合题意. ∴纯电动汽车每行驶一千米所需电费为:27150=0.18(元/千米). 答:新购买的纯电动汽车每行驶1千米所需的电费为0.18元.20、京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的37.小王用自驾车方式上班平均每小时行驶多少千米.答案:小王用自驾车方式上班平均每小时行驶27千米.解答:设小王用自驾车方式上班平均每小时行驶x千米.依题意,得1829x=37×18x,解得:x=27,经检验,x=27是原方程的解,且符合题意.答:小王用自驾车方式上班平均每小时行驶27千米.。
二元一次方程组与一元一次不等式的应用题
1 某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同.若购买2个足球和3个篮球共需340元;购买4个排球和5个篮球共需600元.(1)求购买一个足球、一个篮球分别需要多少元?(2)该中学根据实际情况,需从该体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球? 答案:解(1)设购买一个足球需要x 元,购买一个篮球需要y 元 根据题意,得2334045600x y x y +=⎧⎨+=⎩解这个方程组得:5080x y =⎧⎨=⎩答:购买一个足球需要50元,购买一个篮球需要80元(2)设该中学购买篮球m 个根据题意,得8050(100)6000m m +-≤ 解这个一元一次不等式得:1333m ≤m 是整数33m ∴≤(或m 的最大整数解是33)答:这所中学最多可以购买33个篮球。
2.近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A 、B 两种设备,已知:购买1台A 种设备和2台B 种设备需要3.5万元;购买2台A 种设备和1台B 种设备需要2.5万元. (1)求每台A 种、B 种设备各多少万元?(2)根据学校实际,需购进A 种和B 种设备共30台,总费用不超过30万元,请你通过计 解:(1)设每台A 种、B 种设备各x 万元、y 万元,根据题意得出:,解得:,答:每台A 种、B 种设备各0.5万元、1.5万元;(2)设购买A 种设备z 台,根据题意得出: 0.5z+1.5(30﹣z )≤30, 解得:z≥15,答:至少购买A 种设备15台.3.暑期临近,本溪某旅行社准备组织“亲子一家游”活动,去我省沿海城市旅游,报名的人数共有69人,其中成人的人数比儿童人数的2倍少3人.(1)旅游团中成人和儿童各有多少人?(2)旅行社为了吸引游客,打算给游客准备一件T恤衫,成人T恤衫每购买10件赠送1件儿童T恤衫(不足10件不赠送),儿童T恤衫每件15元,旅行社购买服装的费用不超过1200元,请问每件成人T恤衫的价格最高是多少元?4某校九年级有三个班,其中九年一班和九年二班共有105名学生,在期末体育测试中,这两个班级共有79名学生满分,其中九年一班的满分率为70%,九年二班的满分率为80%. (1)求九年一班和九年二班各有多少名学生.(2)该校九年三班有45名学生,若九年级体育成绩的总满分率超过75%,求九年三班至少有多少名学生体育成绩是满分.5.学校准备购进一批篮球和足球,买1个篮球和2个足球共需170元,买2个篮球和1个足球共需190元.(1)求一个篮球和一个足球的售价各是多少元?(2)学校欲购进篮球和足球共100个,且足球数量不多于篮球数量的2倍,求出最多购买足球多少个?6.某校在开展“校园献爱心”活动中,准备向南部山区学校捐赠男女两种款式的书包。
不等式组与方程组的关系
不等式组与方程组的关系在数学中,不等式与方程都是常见的数学表示形式。
不等式组与方程组是由多个不等式或方程组成的集合,它们在数学问题的建模和解决中起着重要的作用。
本文将探讨不等式组与方程组之间的关系,并分析其在实际问题中的应用。
一、不等式组的定义与特点不等式组是由多个不等式组成的集合,通常用符号“≤”或“≥”来表示。
不等式组中的每个不等式都是一个条件,通过满足这些条件,我们可以得到一组解或一组满足特定条件的值。
不等式组与方程组的主要区别在于,不等式组的解不一定是精确的数值,而是一组可能的解范围。
不等式组的解可以用区间或集合来表示,而方程组的解则是精确的数值。
二、方程组的定义与特点方程组是由多个方程组成的集合,通常用符号“=”来表示。
方程组中的每个方程都是表示等式的条件,通过满足这些条件,我们可以得到一组精确的数值解。
与不等式组不同,方程组的解只有一个或者没有解。
方程组的解可以用具体的数值表示,或者用变量表示。
三、1. 联立问题不等式组与方程组之间存在联立的问题。
当我们在解决实际问题时,常常需要同时考虑多个条件,这时就需要联立不等式组与方程组。
通过联立不等式组与方程组,可以得到满足所有条件的解。
例如,在求解一个实际问题中,我们可能需要考虑某个物品的价格与折扣的关系,这时就可以使用一个不等式组来表示物品价格的范围,再联立一个方程来表示折扣情况,从而得到合适的购买方案。
2. 不等式组的应用不等式组在实际问题中有很广泛的应用。
例如,在线性规划中,我们常常需要求解满足一组约束条件的最优解,这时就可以将约束条件表示为不等式组,通过解不等式组来求解最优解。
此外,在经济学、生物学和工程学等领域,不等式组也被广泛应用于模型的建立和解决中。
3. 方程组的应用方程组在实际问题中同样有着重要的应用。
例如,在电路分析中,我们常常需要联立多个方程来描述电路中的电流和电压关系,从而求解电路中的未知量。
方程组也被广泛应用于数学建模和计算机科学中。
方程组、不等式组实际应用
分式方程、方程组、不等式组实际应用1.(2015•XX)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?2.(2015•XX)XX火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?3.(2015•XX)华昌中学开学初在金利源商场购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B 品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌、一个B品牌的足球各需多少元?(2)华昌中学响应习总书记“足球进校园”的号召,决定两次购进A、B两种品牌足球共50个,恰逢金利源商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌足球的总费用不超过3260元,那么华昌中学此次最多可购买多少个B品牌足球?4.(2014•XX)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?5.(2015•XX)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.6.(2015•达州)学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑比购买3台学习机多600元,购买2台平板电脑和3台学习机共需8400元.(1)求购买1台平板电脑和1台学习机各需多少元?(2)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168000元,且购买学习机的台数不超过购买平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?7.(2014•XX)某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台)12 10月污水处理能力(吨/月)200 160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由.8.(2014•XX)某小商场以每件20元的价格购进一种服装,先试销一周,试销期间每天的销量(件)与每件的销售价x(元/件)如下表:x(元/件)38 36 34 32 30 28 26t(件) 4 8 12 16 20 24 28假定试销中每天的销售量t(件)与销售价x(元/件)之间满足一次函数.(1)试求t与x之间的函数关系式;(2)在商品不积压且不考虑其它因素的条件下,每件服装的销售定价为多少时,该小商场销售这种服装每天获得的毛利润最大?每天的最大毛利润是多少?(注:每件服装销售的毛利润=每件服装的销售价﹣每件服装的进货价)9.(2015春•X家港市期末)某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号销售收入第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?10.(2014•XX)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A,B两种型号车的进货和销售价格如下表:A型车B型车进货价格(元)1100 1400销售价格(元)今年的销售价格200011.(2014•XX)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?12.(2014•XX)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?13.(2014•XX)今年我市水果大丰收,A、B两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两销售点,从A基地运往甲、乙两销售点的费用分别为每件40元和20元,从B基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.(1)设从A基地运往甲销售点水果x件,总运费为W元,请用含x的代数式表示W,并写出x的取值X 围;(2)若总运费不超过18300元,且A地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.14.(2014•XX)某校九(3)班去大冶茗山乡花卉基地参加社会实践活动,该基地有玫瑰花和薰衣草两种花卉,活动后,小明编制了一道数学题:花卉基地有甲乙两家种植户,种植面积与卖花总收入如下表.(假设不同种植户种植的同种花卉每亩卖花平均收入相等)种植户玫瑰花种植面积(亩)薰衣草种植面积(亩)卖花总收入(元)甲 5 3 33500乙 3 7 43500(1)试求玫瑰花,薰衣草每亩卖花的平均收入各是多少?(2)甲、乙种植户计划合租30亩地用来种植玫瑰花和薰衣草,根据市场调查,要求玫瑰花的种植面积大于薰衣草的种植面积(两种花的种植面积均为整数亩),花卉基地对种植玫瑰花的种植给予补贴,种植玫瑰花的面积不超过15亩的部分,每亩补贴100元;超过15亩但不超过20亩的部分,每亩补贴200元;超过20亩的部分每亩补贴300元.为了使总收入不低于127500元,则他们有几种种植方案?15.(2014•资阳)某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.16.(2014•XX)甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.(1)分别求出y1,y2与x之间的关系式;(2)当甲、乙两个商场的收费相同时,所买商品为多少件?(3)当所买商品为5件时,应选择哪个商场更优惠?请说明理由.17.(2015•XX)XX市特产批发市场有龟苓膏粉批发,其中A品牌的批发价是每包20元,B品牌的批发价是每包25元,小王需购买A、B两种品牌的龟苓膏共1000包.(1)若小王按需购买A、B两种品牌龟苓膏粉共用22000元,则各购买多少包?(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000包龟苓膏粉,共用了y元,设A品牌买了x包,请求出y与x之间的函数关系式.(3)在(2)中,小王共用了20000元,他计划在网店包邮销售这批龟苓膏粉,每包龟苓膏粉小王需支付邮费8元,若每包销售价格A品牌比B品牌少5元,请你帮他计算,A品牌的龟苓膏粉每包定价不低于多少元时才不亏本(运算结果取整数)?18.(2015•XX)某体育馆计划从一家体育用品商店一次性购买若干个气排球和篮球(每个气排球的价格都相同,每个篮球的价格都相同).经洽谈,购买1个气排球和2个篮球共需210元;购买2个气排球和3个篮球共需340元.(1)每个气排球和每个篮球的价格各是多少元?(2)该体育馆决定从这家体育用品商店一次性购买气排球和篮球共50个,总费用不超过3200元,且购买气排球的个数少于30个,应选择哪种购买方案可使总费用最低?最低费用是多少元?19.(2015•黔东南州)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?20.(2015•资阳)学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?(3)若购买篮球x个,学校购买这批篮球和足球的总费用为y(元),在(2)的条件下,求哪种方案能使y最小,并求出y的最小值.21.(2015•XX)南海地质勘探队在南沙群岛的一小岛发现很有价值的A,B两种矿石,A矿石大约565吨,B矿石大约500吨,上报公司,要一次性将两种矿石运往冶炼厂,需要不同型号的甲、乙两种货船共30艘,甲货船每艘运费1000元,乙货船每艘运费1200元.(1)设运送这些矿石的总费用为y元,若使用甲货船x艘,请写出y和x之间的函数关系式;(2)如果甲货船最多可装A矿石20吨和B矿石15吨,乙货船最多可装A矿石15吨和B矿石25吨,装矿石时按此要求安排甲、乙两种货船,共有几种安排方案?哪种安排方案运费最低并求出最低运费.22.(2015•德阳)大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.(1)求面料和里料的单价;(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.23.(2015•XX)为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:A村(元/辆)B村(元/辆)目的地车型大货车800 900小货车400 600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.24.(2015•XX)小明到服装店进行社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元,乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500元,则甲种服装最多购进多少件??(2)在(1)的条件下,该服装店对甲种服装以每件优惠a(0<a<20)元的价格进行促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?25.(2015•莱芜)今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍.(1)试问去年每吨大蒜的平均价格是多少元?(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?26.(2011•XX)海峡两岸林业博览会连续六届在XX市成功举办,XX市的林产品在国内外的知名度得到了进一步提升.现有一位外商计划来我市购买一批某品牌的木地板,甲、乙两经销商都经营标价为每平方米220元的该品牌木地板.经过协商,甲经销商表示可按标价的9.5折优惠;乙经销商表示不超过500平方米的部分按标价购买,超过500平方米的部分按标价的9折优惠.(1)设购买木地板x平方米,选择甲经销商时,所需费用为y1元,选择乙经销商时,所需费用为y2元,请分别写出y1,y2与x之间的函数关系式;(2)请问该外商选择哪一经销商购买更合算?27.(2010春•海安县期末)为迎接2010年海安经贸洽谈会,园林部门决定利用现有3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧.已知搭配一个A种造型所需甲种花卉盆数是乙种花卉盆数的2倍,且搭配一个A种造型所需甲种花卉是搭配一个B种造型所需甲种花卉盆数的1.6倍;搭配一个B种造型乙种花卉的盆数是搭配一个A种造型乙种花卉盆数的2倍多10盆,搭配一个B种造型共需甲、乙两种花卉140盆.(1)求搭配一个A种造型、一个B种造型各需甲乙两种花卉多少盆?(2)某校七年级(1)班艺术兴趣小组承接了这个园艺造型搭配方案的设计,那么符合题意的搭配方案有几种?请你帮助设计出来.(3)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(2)中哪种方案成本最低?最低成本是多少元?28.(2011•XX)我省某工艺厂为全运会设计了一款成本为每件20元得工艺品,投放市场进行试销后发现每天的销售量y(件)是售价x(元∕件)的一次函数,当售价为22元∕件时,每天销售量为780件;当售价为25元∕件时,每天的销售量为750件.(1)求y与x的函数关系式;(2)如果该工艺品售价最高不能超过每件30元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?(利润=售价﹣成本)- - -29.(2011•XX)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?30.(2013春•沙坪坝区校级期中)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,商场有哪几种进货方案?(3)商场决定甲种玩具的售价为20元,乙种玩具售价为35元,试问该商场在(2)的条件下如何进货利润最大?最大利润是多少?- .可修编.。
二元一次方程组与不等式实际问题结合
二元一次方程组与不等式实际问题结合二元一次方程组是高中数学中的重要内容之一,它可以帮助我们解决各种实际问题。
在此,我们将通过几个实际问题来结合二元一次方程组和不等式的内容,来说明它们的应用。
问题一:小明去超市购买香蕉和苹果。
已知香蕉的价格是每斤2元,苹果的价格是每斤3元。
小明共购买了10斤水果,总共花费了24元。
问小明购买了多少斤香蕉和苹果?解答:设小明购买的香蕉的斤数为x,购买的苹果的斤数为y。
根据题意,可以得到如下二元一次方程组:x + y = 10 (方程一)2x + 3y = 24 (方程二)我们可以通过解这个方程组来求得x和y的值。
首先,我们可以从方程一中得到x = 10 - y;然后,我们将x的值代入方程二中,得到2(10 - y) + 3y = 24;化简得到20 - 2y + 3y = 24;继续化简得到y = 4;将y的值代入方程一中可以求得x = 10 - 4 = 6。
因此,小明购买了6斤香蕉和4斤苹果。
问题二:一条钢筋工厂共生产两种规格的钢筋,每根重量为x 千克和y千克。
已知钢筋工厂每天生产的重量总和为1000千克,共生产了300根。
已知钢筋的总价值为10000元,且每根x千克的钢筋价格为20元,每根y千克的钢筋价格为30元。
问x和y的值分别是多少?解答:设每根重量为x千克的钢筋的数量为a,每根重量为y千克的钢筋的数量为b。
根据题意可以得到如下二元一次方程组:a +b = 300 (方程三)20ax + 30by = 10000 (方程四)由于每天生产的钢筋的重量总和为1000千克,所以可以得到方程:x*a + y*b = 1000。
为了求得x和y的值,我们可以先解方程三,得到b = 300 - a;将b的值代入方程四中,得到20ax + 30(300 - a)y = 10000;化简得到20ax + 9000y - 30ay = 10000;继续化简得到y = (10000 - 20ax)/(9000 - 30a)。
【初中数学精品资料】暑假专题——方程组和不等式的实际应用
在本讲中,方案设计型问题有两类.一、利用二元一次方程;二、利用不等式或不等式组.二元一次方程、不等式和不等式组的解一般都有无数个,所谓的方案设计就是从无数个解中找出符合题意的某些特殊解,通常是整数解.
知识点一:方程和不等式型实际应用问题
例1.6个人用35天完成了某项工程的,如果再增加工作效率相同的8个人,那么完成这项工程,前后共用的天数是()天
1.方程组和不等式、不等式组的解法
(1)解方程组的基本思路是消元,常用方法有代入消元法和加减消元法.
(2)解不等式的基本思路和解一元一次方程是一样的,经过变形将不等式化成ax>b或ax<b的形式,最后把系数化为1.但应注意在解不等式的整个变形过程中,当不等式的两边同乘或除以一个负数时,不等号的方向要改变.
年级
初一
学科
数学
版本
人教新课标版
课程标题
暑假专题——方程组和不等式的实际应用
编稿老师
巩建兵
一校
林卉
二校
张琦锋
审核
王百玲
一、学习目标:
1.熟练运用方程组、不等式及不等式组解决实际应用问题.
2.能够运用方程组、不等式及不等式组解决方案设计、决策类应用问题.
二、重点、难点:
重点:方程组、不等式及不等式组的实际应用问题.
解答过程:(1)设徒弟每天组装x辆摩托车,则师傅每天组装(x+2)辆,依题意得:,解得2<x<4,因为x取正整数,所以x=3(辆);
(2)设师傅工作m天,师徒二人所组装的摩托车辆数相同.依题意得:3(m+2)=5m,解得:m=3(天).
答:徒弟平均每天组装3辆摩托车;若徒弟先工作2天,师傅工作3天,师徒二人所组装的摩托车辆数相同.
_方程(组)与不等式(组)应用题(含答案)-
方程(组)与不等式(组)应用题【例题经典】一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:例如,购买A类会员卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡【点评】此题通过数学建模能培养同学们应用数学知识解决问题的能力,此题先将实问题转化为列方程组和不等式组解应用题.例2《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架。
它的代数成就主要包括开放术、正负术和方程术。
其中,方程术是《九章算术》最高的数学成就。
《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两。
问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两。
问每头牛、每只羊各值金多少两”设每头牛值金x,每只羊各值金y两,可列方程组为_____________.例3:(2010•北京)列方程或方程组解应用题:2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米?【点评】此题通过数学建模能培养同学们应用数学知识解决问题的能力,此题先将实问题转化为列方程组和不等式组解应用题.中考达标函数/不等式/方程的应用问题(东城)9. 为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品. 已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过...200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是A.5 B.6 C.7D.8(海淀)9.油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:某人计划购入一辆上述品牌的汽车.他估算了未来10年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计平均每年行驶的公里数至少..为A.5 000 B.10 000 C.15 000 D.20 000(燕山)9.手工课上,老师将同学们分成A,B两个小组制作两个汽车模型,每个模型先由A组同学完成打磨工作,再由B组同学进行组装完成制作,两个模型每道工序所需时间如下:A.20分钟B.22分钟C.26分钟D.31分钟(石景山)9.王先生清明节期间驾车游玩,每次加油都把油箱加满.下表记录了该车相邻两次加油时的相关数据:注:“累计里程”指汽车从出厂开始累计行驶的路程.根据数据,王先生计算出这段时间内该车行驶一百公里....的平均耗油量大约是 A .7升 B .8升 C .9升 D .10升则应选择的套餐是A .套餐1B .套餐2C .套餐3D .套餐4(门头沟)15.某地中国移动“全球通”与“神州行”收费标准如下表:65~70分钟之间,那么他选择 较为省钱(填“全球通”或“神州行”).(2016房山一模)9.在科技迅猛发展的今天,移动电话成为了人们生活中非常普及的通讯工具,选择经济实惠的计费方式成为了人们所关心的具有实际意若小明的爸爸每月打电话的时间在300分钟,请问选择哪种方式省钱 A. 方式一 B. 方式二 C.两种方式一样 D. 无法确定(2016昌平二模)9.商场为了促销,推出两种促销方式: 方式①:所有商品打8折销售. 方式②:购物每满100元送30元现金.杨奶奶同时选购了标价为120元和280元的商品各一件,现有四种购买方案: 方案一:120元和280元的商品均按促销方式①购买;方案二:120元的商品按促销方式①购买,280元的商品按促销方式②购买; 方案三:120元的商品按促销方式②购买,280元的商品按促销方式①购买; 方案四:120元和280元的商品均按促销方式②购买. 你给杨奶奶提出的最省钱的购买方案是A. 方案一B.方案二C.方案三D.方案四(2016海淀二模)8.某通信公司自2016年2月1日起实行新的4G 飞享套餐,部分套餐资费标准如下:小明每月大约使用国内数据流量200MB,国内主叫200分钟,若想使每月付费最少,则他应预定的套餐是A.套餐1 B.套餐2 C.套餐3 D.套餐4(2016朝阳二模)8.现有A、B两种商品,买3件A商品和2件B商品用了160元,买2件A商品和3件B商品用了190元.如果准备购买A、B两种商品共10件,下列方案中费用最低的为A.A商品7件和B商品3件B.A商品6件和B商品4件C.A商品5件和B商品5件D.A商品4件和B商品6件【考点精练】1.(2006年潍坊市)据《淮坊日报》报道,潍坊市物价局下发了《关于调整潍坊市城市供数50%(•含)•以内的部分]•的基本水价在基数内基本水价的基础上,••每立方米加收_______元;基数外二档(即超基数50%以外的部分)•的基本水价在基数内基本水价的基础上,每立方米加收_________元;(2)若李明家基数内用水为每月6吨,5月份他家用水12吨,那么李明家5月份应交水费(按综合水价计算)多少元?若李明家计划6月份水费不超过30元,那么李明家6月份最多用水多少吨?(精确到0.01)2.双蓉服装店老板到厂家选购A、B两种型号的服装,若购进A种型号服装9件,•B种型号服装10件,需要1810元;若购进A种型号服装12件,B种型号服装8件,•需要1880元.(1)求A、B两种型号的服装每件分别为多少元?(2)若销售1件A型号服装可获利18元,销售1件B型号服装可获利30元,•根据市场需求,服装店老板决定,购进A型服装的数量要比购进B型服装数量的2倍还多4件,•且A型服装最多可购进28件,这样服装全部售出后,可使总的获利不少于699元,•问有几种进货方案?如何进货?3.(2006年龙岩市)某水果经销商上月份销售一种新上市的水果,•平均售价为10元/千克,月销售量为1000千克.经市场调查,若将该种水果价格调低至x元/千克,•则本月份销售量y(千克)与x(元/千克)之间符合一次函数关系式y=kx+b.当x=7•时,•y=2000;x=5时,y=4000.(1)求y与x之间的函数关系式;(2)已知该种水果上月份的成本价为5元/千克,本月份的成本价为4元/千克,•要使本月份销售这种水果所获利润比上月份增加20%,同时又要让顾客得到实惠,•那么该种水果价格每千克应调低至多少元?(利润=售价-成本价)4.武汉市江汉一桥维修工程中拟由甲、乙两个工程队共同完成某项目,•从两个工程队的资料可以知道:若两个工程队合做24天恰好完成;若两队工程队合做18天后,甲工程队再单独做10天,也恰好完成,请问:(1)甲、乙两个工程队单独完成该项目各需多少天?(2)已知甲工程队每天的施工费为0.6万元,乙工程队每天的施工费为0.35万元,要使该项目总的施工费不超过22万元,则乙工程队最少施工多少天?5.(2006年日照市)日照市是中国北方最大的对虾养殖产区,•被国家农业部列为对虾养殖重点区域;贝类产品西施舌是日照特产.沿海某养殖场计划今年养殖无公割标准化对虾和西施舌,由于受养殖水面的制约,这两个品种的种苗每投放一吨的先期投资、290千元,•设西施舌种苗的投放量为x吨.(1)求x的取值范围;(2)设这两个品种的总产值为y(千元),试写出y与x之间的函数关系式,并求出当x等于多少时,y有最大值?最大值是多少?6.某企业在“蜀南竹海”收购毛竹进行粗加工,每天可加工8吨,•每吨获利800元,如果对毛竹进行精加工,每天可加工1吨,每吨获利4000元.由于受条件限制,每天只能采用一种方式加工,要求在一月内(30天)将这批毛竹全部销售.为此企业厂长召集职工开会,让职工们讨论如何加工销售更合算.甲说:将毛竹全部进行粗加工销售;乙说:30天都进行精加工,未加工的毛竹直接销售;丙说:30天中可以几天粗加工,再用几天精加工后销售,请问厂长采用哪位说的方案获利最大?7.(2005年盐城市)学校书法兴趣小组准备到文具店购买A,B两种类型的毛笔,文具店的销售方法是:一次性购买A型毛笔不超过20枝时,按零售价销售;超过20枝时,•超过部分每枝比零售价低0.4元,其余部分仍按零售价销售;一次性购买B型毛笔不超过15枝时,按零售价销售;超过15枝时,超过部分每枝比零售价低0.6元,•其余部分仍按零售价销售.(1)如果全组共有20名同学,若每人各买1枝A型毛笔和2枝B型毛笔,共支付145元;若每人各买2枝A型毛笔和1枝B型毛笔,共支付129元,这家文具店的A,B•两种类型毛笔的零售价各是多少?(2)为了促销,该文具店对A型毛笔除了原来的销售方法外,同时又推出了一种新的销售方法:无论购买多少枝,一律按原零售价(即(1)中所求得的A型毛笔的零售价)的90%出售,现要购买A型毛笔a枝(a>40),在新的销售方法和原来的销售方法中,•应选择哪种方法购买花钱较少?并说明理由.8.(2006年天门市)某地为促进特种水产养殖业的发展,•决定对甲鱼和黄鳝的养殖提供政府补贴.该地某农户在改建的10个1亩大小的水池里分别养殖甲鱼和黄鳝,•因资金有限,投入不能超过14万元,并希望获得不低于10.8万元的收益,•相关信息如下表所示:(收益=(1(2)应怎样安排养殖,可获得最大收益?(3)据市场调查,在养殖成本不变的情况下,黄鳝的毛利润相对稳定,而每亩甲鱼的毛利润针减少m万元.问该农户又该如何安排养殖,才可获得最大收益?答案:例题经典例1. 设甲班人数为x 人,乙班人数为y 人.9169(1)138(1)830069(1)40027334439y x x y x x ⎧=-⎪+-=+-⎧⎪⎨⎨<+-<⎩⎪<<⎪⎩即, 因为x 为整数,所以x=34,35,36,37,38,39,40,41,42,43,44.又因为y 也整数,x 必须是8的倍数,所以x=40,•y=44, 所以总人数为84人.例2. 分析:可设A 、B 两种型号的轿车每辆分别为x 万元、y 万元. 通过列方程组解出(1)问. 解:(1)设A 型号的轿车每辆为x 万元,B•型号的轿车每辆为y 万元,根据题意,得1015300,15,818300.10.x y x x y y +==⎧⎧⎨⎨+==⎩⎩解得. 答:A 、B 两种型号的轿车每辆分别为10万元,15•万元(2)设购进A 种型号的轿车a 辆,则购进B 种型号的轿车(30-a )辆. 根据题意,得1510(30)400,0.80.5(30)20.4.a a a a +-≤⎧⎨+-≥⎩,解此不等式组得18≤a ≤20,∵a 为整数,∴a=18,19,20, ∴有三种购车方案.方案1:•购进A 种型号轿车18辆,购进B 型号轿车12辆; 方案2:购进A 型号轿车19辆,购进B 型号轿车11辆; 方案3:购进A 型号轿车20辆,购进B 型号轿车10辆.• 汽车销售公司将这些轿车全部售出后; 方案1获利18×0.8+12×0.5=20.4(万元); 方案2获利19×0.8+11×0.5=•20.7(万元); 方案3获利20×0.8+10×0.5=21(万元).答:在三种购车方案中,•汽车销售公司将这些轿车全部售出后分别获利为20.4万元,20.7万元,21万元.考点精练 1.(1)0.9;1.9(2)解:由题意知,李明家5月份基数内6吨水费为3.2×6=19.2(元),基数外一档3吨水费为4.1×3=12.3(元); 基数外二档3吨水费为5.1×3=15.3(元),所以,李明家5月份应交水费为19.2+12.3+15.3=46.8(元). 设李明家6月份计划用水x 吨,∵19.2<30<19.2+12.3,∴6<x<9, 依题意得19.2+(x-6)×4.1≤30,••解得x ≤8.63, ∴李明家6月份计划用水8.63吨. 2.(1)解:设A 种型号服装每件x 元,B 型服装每件y 件,由题意得9101810901281880100x y x x y y +==⎧⎧⎨⎨+==⎩⎩,解得; (2)设B 型服装购进m 件,则A 型服装购进(2m+4)件,由题意得18(24)306992428m m m ++≥⎧⎨+≤⎩,解不等式组,得912≤m ≤12,∵m 为正整数,∴m=10,11,12,∴2m+4=24,26,283.解:(1)依题意得:200071000400059000k b k k b b =+=-⎧⎧⎨⎨=+=⎩⎩, ,y=-1000x+9000. (2)•设该种水果价格每千克应调低至x•元.•(9000-1000x )(x-4)=(10-5)·(1+20%)·1000,整理得:x 2-13x+42=0,解得:x 1=6,x 2=7,• ∵要让顾客得到实惠,∴取x 1=6,答:该种水果价格每千克应调低至6元4.(1)解:•设甲独做x 天完成,乙独做y 完成.111402411106018()1x x y y x yx ⎧+=⎪=⎧⎪⎨⎨=⎩⎪++=⎪⎩,解之得符合题意. (2)设甲施工a 天,乙施工b 天.•140600.60.3522ab a b ⎧+=⎪⎨⎪+≤⎩,解之得b ≥40,即乙最少施工40天5.(1)94(50)360310(50)290x x x x +-≤⎧⎨+-≤⎩,解之得30≤x ≤32,(2)y=30x+20(•50-•x )•=10x+1000, ∵k=10>0,∴x=32时,y=1320千克6.设m 为毛竹的数量(吨),m ≤30•时应用精加工,当30<m<150时,应用30240,77m m--天粗加工天精加工, 当m ≥150时,应用粗加工7.解:(1)设每枝A 型毛笔x 元,每枝B 型毛笔y 元,则,2015(4015)(0.6)145,220(4020)(0.4)155(0.6)129.3x y y x x x y y y ++-⨯-==⎧⎧⎨⎨+-⨯-++-==⎩⎩解得, 故每枝A 型毛笔2元,每枝B 型毛笔3元.(2)如果按原来的销售方法购买a 枝A 型毛笔共需m 元,则m=20×2+(a-20)×(2-0.4)=1.6a+8;如果按新的销售方法购买a 枝A 型毛笔共需n 元,则n=a ×2×90%=1.8a ,于是n-m=1.8a-(1.6a+8)=0.2a-8,[键入文字]- 11 - ∵a>40,∴0.2a>8,∴n-m>0,可见,当a>40时,用新的方法购买A 型毛笔花钱多,因此应选择原来的方法购买.8.解:(1)设安排x 亩养甲鱼,得 1.5(10)14(2.5 1.50.2)(1.810.1)(10)10.8x x x x +-≤⎧⎨-++-+-≥⎩解得:6≤x ≤8,∴x=6,7,8.即安排:① 6亩水池养甲鱼,4亩水池养黄鳝;② 7亩养甲鱼,3亩养黄鳝;③8亩养甲鱼,2亩养黄鳝.(2)设收益为W 1,则W 1=(2.5-1.5+0.2)x+(1.8-1+0.1)(10-x )=0.3x+9,由(1)当x=8时W 最大.即8亩水池养甲鱼,2亩水池养黄鳝.(3)设收益为W 2,则W 2=(2.5-1.5+0.2-m )x+(1.8-1+0.1)(10-x )=(0.3-m )x+9, ① 当m=0.3时,按(1)中的安排均可获得最大收益.② 当m<0.3时,安排8亩养甲鱼,2亩养黄鳝.③当m>0.3时,安排6亩养甲鱼,4亩养黄鳝.。
中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用
x+y=40, x+y=12, C.3x+4y=12 D.3x+4y=40
6.(2019·岳阳第 15 题 4 分)我国古代的数学名著《九章算术》中有下 列问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”其意思 为:今有一女子很会织布,每日加倍增长,5 日共织布 5 尺.问每日各织 多少布?根据此问题中的已知条件,可求得该女子第一天织布335115 尺.
8. (2019·娄底第 23 题 9 分)某商场用 14 500 元购进甲、乙两种矿泉水
共 500 箱,矿泉水的成本价与销售价如表所示:
类别
成本价(元/箱)
销售价(元/箱)
甲
25
35
乙
35
48
求:(1)购进甲、乙两种矿泉水各多少箱?
解:设购进甲矿泉水 x 箱,购进乙矿泉水 y 箱,依题意,得
x+y=500, 25x+35y=14 500,
2 次,2020 年考查 2 次)
2x-y=5, 1.(2021·郴州第 6 题 3 分)已知二元一次方程组x-2y=1,则 x-y 的
值为
( A)
A.2
B.6
C.-2
D.-6
2.(2021·株洲第 2 题 4 分)方程x2-1=2 的解是 A.x=2 B.x=3 C.x=5 D.x=6
( D)
3.(2019·湘潭第 6 题 4 分)若关于 x 的方程 3x-kx+2=0 的解为 2,则 k 的值为 44 .
m=8,m=5, m=2, ∴n=2,n=6,或n=10, ∴共有 3 种运输方案,
方案 1:安排 A 型车 8 辆,B 型车 2 辆, 所需费用:500×8+400×2=4 800(元); 方案 2:安排 A 型车 5 辆,B 型车 6 辆, 所需费用:500×5+400×6=4 900(元); 方案 3:安排 A 型车 2 辆,B 型车 10 辆, 所需费用:500×2+400×10=5 000(元). ∵4 800<4 900<5 000, ∴安排 A 型车 8 辆,B 型车 2 辆最省钱,最省钱的运输费用为 4 800 元.
人教版七年级数学下册 第九章:不等式(组)和方程(组)的综合应用(含答案)
不等式(组)与方程(组)的综合应用1.方程组或不等式出现字母系数时可将字母当数字,解方程组成不等式的参数解。
2.解决不等式(组)或方程(组)的问题可运用整体思想、转化思想、消元思想。
【例1】若方程组3133x y k x y +=+⎧⎨+=⎩解为x ,y ,且2<k <4,则x -y 的取值范围是( ) A.102x y -<<B.01x y -<<C.31x y ---<<D.11x y --<<【例2】若关于x ,y 的二元一次方程组323225x y m x y m -=+⎧⎨-=-⎩的解满足x >y ,求m 的取值范围。
【例3】若2a +b =12,其中a ≥0,b ≥=0,又P=3a +2b ,试确定P 的最小值和最大值。
【例4】若关于x ,y 的二元一次方程组25x y a x y +=⎧⎨-=⎩的解满足1x >,1y ≤,其中a 是满足条件的最小整数,求a 2+1的值。
【例5】已知关于x,y的方程组2232 4x y mx y m-=⎧⎨+=+⎩①②的解满足不等式组3050x yx y+≤⎧⎨+⎩>,求满足条件的m的整数值。
1.已知关于x,y的方程组2121x y ax y a-=+⎧⎨+=-⎩的解满足不等式21x y->,求a的取值范围。
2.已知x、y同时满足三个条件:①324x y p-=-,②4x-3y=2+p,③x>y,则()A.p>-1B.p<1C.1p-< D.1p>3.若30x y z++=,350x y z+-=,x、y、z皆为非负数,求M=5x+4y+2z的取值范围。
4.在关于x ,y 的方程组2728x y m x y m +=+⎧⎨+=-⎩中,未知数满足x ≥0,y >0,那么m 的取值在数轴上应表示为( )5.已知关于x ,y 的方程组213252x y k x y k +=+⎧⎨-=-⎩的解满足5035x y x y -⎧⎨-+≥-⎩>,求整数k 的值。
二元一次方程组,一元一次不等式组及其应用
一元一次不等式组及其应用◆知识讲解1.解不等式组一般先分别求出不等式组中各个不等式的解集并表示在数轴上,再求出它们的公共部分,就得到不等式组的解集.2.由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.不等式组 (其中a<b )图示解集口诀x ax b ≥⎧⎨≥⎩x ≥b同大取大x ax b ≤⎧⎨≤⎩x ≤a 同小取小x ax b ≥⎧⎨≤⎩ a ≤x ≤b 大小、小大中间找 x ax b≤⎧⎨≥⎩空集小小、大大找不到3.列一元一次不等式组解决实际问题是中考要考查的一个重要内容,在列不等式解决实际问题时,应掌握以下三个步骤:(1)•找出实际问题中的所有不等关系或相等关系(有时要通过不等式与方程综合来解决),设出未知数,列出不等式组(•或不等式与方程的混合组);(2)解不等式组;(3)从不等式组(或不等式与方程的混合组)•的解集中求出符合题意的答案.◆经典例题: 例1 (2006,江苏江阴)关于x 的不等式组1532223x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有4个整数解,则a 的取值范围是:( ) A .-5≤a ≤-143 B .-5≤a<-≤-143 C .-5<a ≤-143 D .-5<a<-143例2 (2004,南昌市)仔细观察图,认真阅读对话:根据对话内容,试求出饼干和牛奶的标价各是多少元?例3 (2004,江西赣州)某钱币收藏爱好者,想把3.50元纸币兑换成的1分,2•分,5分的硬币;他要求硬币总数为150枚,2分硬币的枚数不少于20枚且是4的倍数,5•分的硬币要多于2分的硬币;请你根据此要求,设计所有的兑换方案.◆强化训练:一、填空题1.(06,四川达州)不等式组31011x x -+≥⎧⎨+>-⎩的解集是_______.2.(2006,四川成都)不等式组52(1)1233x x x >-⎧⎪⎨-≤-⎪⎩的整数解的和是______. 3.不等式1≤3x-7<5的整数解是______. 4.对于整数a ,b ,c ,d ,符号a b c d表示运算ac-bd ,已知1<a b c d<3,则b+d 的值是____.5.长度分别为3cm ,•7cm ,•xcm•的三根木棒围成一个三角形,•则x•的取值范围是_______.6.如果a<2,那么不等式组2x a x >⎧⎨>⎩的解集为________;当______时,不等式组2x a x <⎧⎨>⎩的解集是空集.7.(2006,山西)若不等式组220x a b x ->⎧⎨->⎩的解集是-1<x<1,则(a+b )=______.8.已知关于x 的不等式组0321x a x -≥⎧⎨->-⎩的整数解共有5个,则a 的取值范围是______.9.(2008,苏州)2008年6月1日起,某超市开始有偿提供可重复使用的三种环保购物袋,每只售价分别为1元,2元和3元,这三种环保购物袋每只最多分别能装大米3kg ,5kg 和8kg .6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20kg 散装大米,他们选购的3只环保购物袋至少应付给超市_______元. 二、选择题10.已知0<b<a ,那么下列不等式组中无解的是( )A .x a x b>⎧⎨<⎩ B .x a x b>-⎧⎨<-⎩ C .x a x b>⎧⎨<-⎩ D .x a x b>-⎧⎨<⎩11.(2008,义乌)不等式组312,840x x ->⎧⎨-≤⎩的解集在数轴上表示为( )A B C D 12.(2006,山东聊城)已知24221x y k x y k +=⎧⎨+=+⎩,且-1<x-y<0,则k 的取值范围是( )A .-1<k<-12B .0<k<12C .0<k<1D .12<k<1 13.如果不等式组320x x m-≥⎧⎨≥⎩有解,则m 的取值范围是( ) A .m<32B .m ≤32C .m>32D .m ≥3214.若15233m m +>⎧<⎪⎨-⎪⎩,化简│m+2│-│1-m │+│m │得( )A .m-3B .m+3C .3m+1D .m+115.不等式组3(2)423x a xx x +--≤⎧>⎪⎨⎪⎩无解,则a 的取值范围是( ) A .a<1 B .a ≤1 C .a>1 D .a ≥116.为了改善城乡人民生产,生产环境,我市投入大量资金治理清水河污染,在城郊建立了一个综合性污水处理厂.设库池中存有待处理的污水at ,又从城区流入库池的污水按每小时bt 的固定流量增加.如果同时开动2台机组需30h 处理完污水,同时开动4台机组需10h 处理完污水.若要求在5h 内将污水处理完毕,那么至少要同时开动机组的台数为( ) A .6台 B .7台C .8台 D .9台 三、解答题17.(1)(2005,南京市)解不等式组2(2)33134x x xx +≤+⎧⎪+⎨<⎪⎩,并写出不等式组的整数解; (2)(2004,太原市)解不等式组312(1)2(1)4x x x x+≥-⎧⎨+>⎩,并把它的解集在数轴上表示出来.18.(2006,湖北十堰)某牛奶乳业有限公司经过市场调研,决定从明年起对甲,乙两种产品实行“限产压库”,要求这两种产品全年共新增产量20件,这20件的总产值p (万元)满足:110<p<120.已知有关数据如表所示,•那么该公司明年应怎样安排新增产品的产量?19.(2004,湖北省)如图所示,一筐橘子分给若干个儿童,如果每人分4个,•则剩下9个;如果每人分6个,则最后一个儿童分得的橘子数少于3个,问共有几个儿童,•分了多少个橘子?20.(2005,江苏省)七(2)班有50名学生,老师安排每人制作一件A 型和B 型的陶艺品,学校现有甲种制作材料36kg ,乙种制作材料29kg ,制作A ,B 两种型号的陶艺品用料情况如下表:需甲种材料 需乙种材料1件A 型陶艺品 0.9kg 0.3kg 1件B 型陶艺品 0.4kg1kg(1)设制作B 型陶艺品x 件,求x 的取值范围;(2)请你根据学校现有材料,分别写出七(2)班制作A 型和B 型陶艺品的件数.产品 每件产品的产值 甲 4.5万元 乙7.5万元21.(2008,青岛)2008年8月,北京奥运会帆船比赛在青岛国际帆船中心举行,•观看帆船比赛的船票分为两种:A种船票600/张,B种船票120/张.•某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A,B两种船票共15张,要求A种船票的数量不少于B种船票数量的一半,若设购买A 种船票x张,请你解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程;(2)根据计算判断:哪种购票方案更省钱?22.(2006,青岛)“五一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60•座客车的租金每辆为460元.(1)若学校单独租用这两种车辆各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),•而且要比单独租用一种车辆节省租金.请你帮助学校选择一种最节省的租车方案.23.(2005,深圳)某工程,甲工程队单独做40天完成,若乙工程队单独做30天后,•甲,乙两工程队再合作20天完成.(1)求乙工程队单独做需要多少天完成?(2)将工程分两部分,甲做其中的一部分用了x天,乙做另一部分用了y天,其中x,y均为正整数,且x<15,y<70,求x,y.24.(2005,苏州)苏州地处太湖之滨,有丰富的水产养殖资源,水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到如下信息:①每亩水面的年租金为500元,水面需按整数亩出租;②每亩水面可在年初混合投放4kg蟹苗和20kg虾苗;③每公斤蟹苗的价格为75元,其饲养费用为525元,当年可获1400元收益;④每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;(1)若租用水面n亩,则年租金共需______元;(2)水产养殖的成本包括水面年租金,苗种费用和饲养费用,•求每亩水面蟹虾混合养殖的年利润(利润=收益-成本);(3)李大爷现有资金25000元,他准备再向银行贷不超过25000元的款,•用于蟹虾混合养殖,已知银行贷款的年利率为8%,试问李大爷应该租多少亩水面,•并向银行贷款多少元,可使年利润超过35000元。
列方程(组)、不等式(组)解应用题
列方程(组)、不等式(组)解应用题1、某城市按以下规定收取每月的水费:用水量不超过6吨,按每吨1.2元收费;如果超过6吨,未超过部分仍按每吨1.2元收取,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.4元,那么该用户5月份应交水费多少元?2、江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000千克,求粗加工的该种山货质量.3、植树节期间,两所学校共植树834棵,其中海石中学植树的数量比励东中学的2倍少3棵,两校各植树多少棵?4、整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?5、一群学生前往位于青田县境内的滩坑电站建设工地进行社会实践活动,男生戴白色安全帽,女生戴红色安全帽.休息时他们坐在一起,大家发现了一个有趣的现象,每位男生看到白色与红色的安全帽一样多,而每位女生看到白色的安全帽是红色的2倍.根据这些信息,请你推测这群学生共有多少人?6、A 、B 两地相距40km ,甲骑自行车从A 地出发1小时后,乙也从A 地出发,用相当于甲的1.5的速度追赶,当追到B 地时,甲比乙先到20分钟,求甲、乙两人的速度.7、 某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?8、北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=⨯利润成本)9、开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本. (1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.10、某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件.(1) 求A、B两种纪念品的进价分别为多少?(2) 若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出候总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?参考答案1、【解析】根据总费用等于水量乘以平均值得出方程,求出水量,然后求出水费。
二元一次方程组和不等式组的综合应用题
二元一次方程组和不等式组的综合应用题1、某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆,经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2 000元.乙车的租金为每辆1 800元,问哪种可行方案使租车费用最省?2、某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需资金7 000元;若购进电脑机箱2台和液晶显示器5台,共需资金4 120元.(1)每台电脑机箱和液晶显示器进价各多少元?(2)该经销商计划购进这两种商品共50台,而可用于购买这两种商品的资金不超过22 240元.根据市场行情,电脑机箱、液晶显示器销售一台获利分别为10元、160元.该经销商希望销售完这两种商品后,所获利润不少于4 100元,试问:该经销商有几种进货方案?哪种方案获利最大?最大利润是多少?3、响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过...132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1 200元/台、1 600元/台、2 000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?4、为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)若该县的A类学校不超过5所,则B类学校至少有多少所?(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B 两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?5、某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?。
二元一次方程组和不等式的结合应用题
二元一次方程组和不等式的结合应用题摘要:一、二元一次方程组的定义和基本解法1.二元一次方程组的定义2.代入法解二元一次方程组3.消元法解二元一次方程组二、不等式的基本性质和解法1.不等式的定义和基本性质2.解不等式的方法3.解含有绝对值的不等式三、二元一次方程组和不等式的结合应用题1.结合二元一次方程组解不等式2.结合不等式解二元一次方程组3.二元一次方程组和不等式的实际应用正文:一、二元一次方程组的定义和基本解法二元一次方程组是指包含两个未知数,且每个方程中的次数都是一次的方程组。
解决二元一次方程组的方法有代入法和解元法。
代入法是将一个方程的未知数表示为另一个方程的未知数的函数,然后代入另一个方程求解。
解元法是先将两个方程相加或相减,消去一个未知数,然后再用已知条件求解另一个未知数。
二、不等式的基本性质和解法不等式是指含有比较关系的数学表达式,如大于、小于、大于等于、小于等于等。
解不等式首先要了解不等式的基本性质,如加减同一数、乘除同一正数或负数等。
解不等式的方法有移项法、系数化为1法、解集的端点法等。
对于含有绝对值的不等式,可以先将其转化为不含绝对值的不等式,然后再用相应的方法解出。
三、二元一次方程组和不等式的结合应用题在实际问题中,我们常常需要同时解决二元一次方程组和不等式的问题。
例如,一个商店的苹果和香蕉的价格分别为每斤x元和y元,已知苹果的总价不小于100元,香蕉的总价不大于200元,求苹果和香蕉各多少斤。
这类问题需要先根据不等式确定未知数的取值范围,然后再用二元一次方程组求解。
另外,二元一次方程组和不等式的结合应用题也可以是关于时间、速度、距离等问题。
二元一次方程组和不等式的结合应用题
二元一次方程组和不等式的结合应用题二元一次方程组和不等式的结合应用题一、引言在数学学习中,二元一次方程组和不等式是基础且重要的内容。
它们不仅有着独特的解题方法,还能灵活地应用于各种实际情境中。
本文将通过深入讨论二元一次方程组和不等式的结合应用题,探索其在现实生活中的应用和意义。
二、二元一次方程组和不等式的概念回顾在开始探讨二元一次方程组和不等式的结合应用题之前,我们先来回顾一下二元一次方程组和不等式的基本概念。
二元一次方程组是指由两个未知数的一次方程组成的方程组,通常表示为:\[ \begin{cases} ax + by = c \\ dx + ey = f \end{cases} \]其中,a、b、c、d、e、f为已知数,x、y为未知数。
而不等式则表示不同数之间的大小关系,一般形式为:\[ ax + by < c \]\[ dx + ey > f \]其中,a、b、c、d、e、f为已知数,x、y为未知数。
三、二元一次方程组和不等式的结合应用题1. 题目:某商场正在进行促销活动,A品牌和B品牌的T恤分别售价为x和y元,现有总预算为z元,且希望购买数量尽量多,同时要求品牌A的T恤数量不少于品牌B的T恤数量。
请问应该如何安排购买数量才能使总购买数量最多?解析:我们可以建立以下二元一次方程组来表示购买数量:\[ \begin{cases} x \geq y \\ x + y \leq z \end{cases} \]其中,x表示品牌A的T恤数量,y表示品牌B的T恤数量。
根据题意,我们需要找到满足方程组的x和y的取值,使得x+y的值最大。
接下来,我们可以将不等式转化为方程表示:\[ x = y \]\[ x + y = z \]我们可以将x代入x+y=z的方程中,得到:\[ y + y = z \]\[ 2y = z \]\[ y = \frac{z}{2} \]同理,代入x的方程,得到:\[ x = \frac{z}{2} \]品牌A和品牌B的T恤数量应该相等,且都等于预算的一半,这样购买数量才能最多。
二元一次方程组与一元一次不等式组经典应用题
二元一次方程组与一元一次不等式(组)应用题1.某商店准备购进甲、乙两种商品,已知甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元。
(1)若该商品同时购进甲、乙两种商品共100件,恰好用去2700元,求购进的甲、乙两种商品各多少件?(2)若该商品准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润为多少?2.同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310 元,购买2个足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?3.为了打造区域中心城市,实现跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?4.某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1 块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.(1)求购买1块电子白板和一台笔记本电脑各需多少元?(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?5.某中学计划购买A型和B型课桌凳共200套,经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,,且购4套A型和6套B型课桌凳共需1820元。