第16届走美杯初赛四年级自测卷学生版
2016年第14届“走美杯”小学数学竞赛试卷(四年级初赛B卷)
2016年第14届“走美杯”小学数学竞赛试卷(四年级初赛B卷)一、填空题Ⅰ(每题8分,共40分)1.(8分)计算:109×92479+6×109×15413=.2.(8分)给定一个除数(不为0)与被除数,总可以找到一个商与一个余数,满足被除数=除数×商+余数,其中,0≤余数<除数.这就是带余数的除法.当余数为0时,也称除数整除被除数,或者称除数是被除数的因数(被除数是除数的倍数).不超过988000并且能够被49整除的大于1的自然数共有个.3.(8分)只能被1与其自身整除的大于1的自然数称为素数或质数,比如2、3、5、7、11、13等.大于1的自然数如果不是素数,则称为合数.除唯一的偶数2之外,相邻的两个素数之间至少间隔一个合数,比如3、5;5、7;7、11等.两个连续的素数之间间隔的合数个数称为这两个连续素数的间隔数,间隔数为1的两个素数称为孪生素数,比如3、5;5、7;而7,11的间隔数为3,那么100以内的连续素数的最大间隔数为.4.(8分)大于0的自然数,如果满足所有因数之和等于它自身的2倍,则这样的数称为完美数或完全数.比如,6的所有因数为1,2,3,6,1+2+3+6=12,6就是最小的完美数,是否有无限多个完美数的问题至今仍然是困扰人类的难题之一.研究完美数可以从计算自然数的所有因数之和开始,567的所有因数之和为.5.(8分)将自然数15的0倍,1倍,2倍,3倍,4倍,5倍,…按照顺序写在下面0、15、30、45、60、75、…这一列数中可以一直写下去,并且后一个总比前一个数大,任何一个自然数要么是这一列数中的某一个,要么介于相邻的两个数之间,我们把这一列数叫做严格递增的无穷数列,从左至右的每一个数分别叫做这个数列的第一项,第二项,第三项,…,即第一项是0,第二项是15,第三项是30,…,依此类推,那么,介于这个数列的第135项与136项之间,并且与这两项中的较小的项的差是6,这个数为.二、填空题Ⅱ(每题10分,共50分)6.(10分)将一个正方形沿对角线剖分为4个直角三角形,然后按照如图所示方法移动4个直角三角形,中间空白处形成的正方形的对角线长为厘米.7.(10分)用一根长为36分米的铁丝做一个长方体框架,并且要求长是宽的2倍,长宽高都是整数分米.如果.不计损耗,可以做成的长方体体积最大为立方分米.8.(10分)在印度河畔的圣庙前,一块黄铜板上立着3根金针,针上穿着很多金盘.据说梵天创世时,在最左边的针上穿了由大到小的64片金盘,他要求人们按照“每次只能移动一片,而且小的金盘必须永远在大的金盘上面”的规则,将所有的64片金盘移动到最右边的金盘上面.他预言,当所有64片金盘都从左边的针移动到右边的时候,宇宙就会湮(yān)灭.现在最左边金针(A)上只有5片金盘,如图(1)所示,要按照规则,移动成图(2)的状态,至少需要移动步.9.(10分)在平面上,用边长为1的单位正方形构成正方形网略,顶点都落在单位正方形的顶点(又称为格点)上的简单多边形叫做格点多边形.而除去三个顶点之外,内部或边上不含格点的格点三角形称为本原格点三角形,如图所示的格点三角形MBN.每一个格点多边形都能很容易地划分为若干个本原格点三角形,那么,图中的格点四边形EBGF可以划分为个本原格点三角形.10.(10分)用2颗红色的珠子,2颗蓝色、2颗紫色、2颗绿色的珠子串成如图所示的手链,要求两颗红色珠子相邻,两颗紫色珠子相邻,那么,可以串成种不同的手链.三、填空题Ⅲ(每题12分,共60分)11.(12分)古罗马的凯撒大帝发明了世界上最早的数学加密方法:按照字母表的顺序,将每一个字母对应到按照某种事先的约定确定的字母.例如,将这个字母对应到他后面的第三个字母,也就是A→D,B→E,C→F,…W→Z,X→A,Y→B,Z→C,于是按照这个加密方法,单词“HELLO”,被加密成“KHOOR”.按照这种加密方法,海亮收到了一个加密后的密文“LORYHBRX”,那么,这个信息的原文是.12.(12分)恰好有12个不同因数的最小的自然数为.13.(12分)两个不全为0的数的公共因数成为它们的公因数.求出26019,826,2065的全体公因数.14.(12分)在一个摆满棋子的正方形棋盘中,甲、乙两人轮流拿取棋子,规则为:在某行或某列中,取走任意连续放置的棋子(即不能跨空格拿取),不允许不取,也不能在多行(多列)中拿取,当棋盘中所有棋子被取尽时游戏结束.取走最后一棵棋子的一方获胜.面对如图所示的棋盘,先手有必胜策略,先手第一步应该取走(写出所有的正确方案),才能确保获胜.15.(12分)在的圆圈中填入从1到14的自然数(每一个数用而且只能用一次),使连接在同一直线上的4个圆圈中的数字之和都相等,这称为一个7阶幻星图,这个相等的数称为7阶幻星图的幻和,那么,7阶幻星图的幻和为,并继续完成以下7阶幻星图.2016年第14届“走美杯”小学数学竞赛试卷(四年级初赛B卷)参考答案与试题解析一、填空题Ⅰ(每题8分,共40分)1.(8分)计算:109×92479+6×109×15413=20160313.【分析】先根据根据乘法的分配律和结合律变形为109×92479+109×92478,然后根据乘法的分配律简算即可.【解答】解:109×92479+6×109×15413=109×92479+109×92478=109×(92479+92478)=109×184957=20160313故答案为:20160313.【点评】此题重点考查了学生对运算定律的掌握与运用情况,要结合数据的特征,灵活选择简算方法.2.(8分)给定一个除数(不为0)与被除数,总可以找到一个商与一个余数,满足被除数=除数×商+余数,其中,0≤余数<除数.这就是带余数的除法.当余数为0时,也称除数整除被除数,或者称除数是被除数的因数(被除数是除数的倍数).不超过988000并且能够被49整除的大于1的自然数共有20163个.【分析】首先看988000除以49的商是多少,商就是小于988000的49的最大倍数,同时也是从1倍开始一共的整数倍个数,问题解决.【解答】解:依题意可知988000÷49=20163…13,故小于988000的49的最大倍数是20163倍.从1倍开始到20163倍共20163个数.故答案为:20163.【点评】本题考查整除的性质,从1倍开始最大的倍数就是能够被49整数的个数.3.(8分)只能被1与其自身整除的大于1的自然数称为素数或质数,比如2、3、5、7、11、13等.大于1的自然数如果不是素数,则称为合数.除唯一的偶数2之外,相邻的两个素数之间至少间隔一个合数,比如3、5;5、7;7、11等.两个连续的素数之间间隔的合数个数称为这两个连续素数的间隔数,间隔数为1的两个素数称为孪生素数,比如3、5;5、7;而7,11的间隔数为3,那么100以内的连续素数的最大间隔数为7.【分析】首先需要知道100以内的质数有2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97.然后观察最大间隔即可.【解答】解:100以内的质数有2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97.共25个.最大的间隔89和97共90,91,92,93,94,95,96共7个.故答案为:7【点评】本题的关键和突破口是数字间隔定义的理解,7和11的间隔是3而不是4,同时牢记100以内的质数观察找出最大间隔即可问题解决.4.(8分)大于0的自然数,如果满足所有因数之和等于它自身的2倍,则这样的数称为完美数或完全数.比如,6的所有因数为1,2,3,6,1+2+3+6=12,6就是最小的完美数,是否有无限多个完美数的问题至今仍然是困扰人类的难题之一.研究完美数可以从计算自然数的所有因数之和开始,567的所有因数之和为968.【分析】要想求出所有的因数和,需要分解质因数算出因数个数然后枚举出来一一相加即可.【解答】解:分解质因数576=32×26,因数共3×7=21个.576=1×576=2×288=3×192=4×144=6×96=8×72=9×64=12×48=18×32=16×36=242.1+576+2+288+3+192+4+144+6+96+8+72+9+64+12+48+18+32+16+36+24=968.故答案为:968.【点评】本题的关键是要计算出因数的个数,然后能够知道自己在枚举过程中是否有遗漏,同时成组写出来避免重复相加问题解决.5.(8分)将自然数15的0倍,1倍,2倍,3倍,4倍,5倍,…按照顺序写在下面0、15、30、45、60、75、…这一列数中可以一直写下去,并且后一个总比前一个数大,任何一个自然数要么是这一列数中的某一个,要么介于相邻的两个数之间,我们把这一列数叫做严格递增的无穷数列,从左至右的每一个数分别叫做这个数列的第一项,第二项,第三项,…,即第一项是0,第二项是15,第三项是30,…,依此类推,那么,介于这个数列的第135项与136项之间,并且与这两项中的较小的项的差是6,这个数为2016.【分析】首先是15倍是0倍开始的,那么第135,136项分别就是134倍和135倍.找出最小的数字加上6即可.【解答】解:数列的第135项即是15的134倍.134×15=2010.数列的第136项即是15的135倍.135×15=2025.与较小的数字2010相差6的数字而且在2010﹣2025之间的数字为2010+6=2016.故答案为:2016.【点评】本题的关键是看好倍数从0倍开始,不是1倍开始,对应的135项就是134倍,找到这两个数最小的加上6问题解决.二、填空题Ⅱ(每题10分,共50分)6.(10分)将一个正方形沿对角线剖分为4个直角三角形,然后按照如图所示方法移动4个直角三角形,中间空白处形成的正方形的对角线长为2厘米.【分析】两图比较可知,空白处是正方形,同时在正方形外每一个大三角形上都多出一个小的三角形.这4个小三角形正好可以拼接成里面空白的正方形.【解答】解:对角线的长度就是2个直角三角形的直角边长即1×2=2(厘米)故答案为:2【点评】本题的关键在于面积不变,多余的4个小三角形正好可以拼接成里面的正方形,边长就是小三角形直角边的2倍.问题解决.7.(10分)用一根长为36分米的铁丝做一个长方体框架,并且要求长是宽的2倍,长宽高都是整数分米.如果.不计损耗,可以做成的长方体体积最大为24立方分米.【分析】可以设长方体框架的宽是a分米,则长是2a分米,铁丝总长是36分米,∴高为(36﹣4a﹣4×2a)÷4,根据长方体的体积公式可以求出体积的关系式,再求体积最大值.【解答】解:根据分析,设长方体框架的宽是a分米,则长是2a分米,∵铁丝总长是36分米,∴高为(36﹣4a﹣4×2a)÷4,根据长方体的体积公式可以求出体积的关系式.V=2a×a×(36﹣4a﹣4×2a)÷4=2a×a×(9﹣3a)当a=2时,体积V取最大值24(平方分米).方法二:因为长、宽、高的和=36÷4=9,而长宽高均为整数分米,而且长是宽的两倍,满足条件的只有:1、2、6和2、4、3两组,①长、宽、高为1、2、6时,体积=1×2×6=12(平方分米);②长、宽、高为2、4、3时,体积=2×4×3=24(平方分米);故答案是:24.【点评】本题考查立体图形的体积,突破点是:根据长方体的体积公式可以求出体积的关系式,再求体积最大值.8.(10分)在印度河畔的圣庙前,一块黄铜板上立着3根金针,针上穿着很多金盘.据说梵天创世时,在最左边的针上穿了由大到小的64片金盘,他要求人们按照“每次只能移动一片,而且小的金盘必须永远在大的金盘上面”的规则,将所有的64片金盘移动到最右边的金盘上面.他预言,当所有64片金盘都从左边的针移动到右边的时候,宇宙就会湮(yān)灭.现在最左边金针(A)上只有5片金盘,如图(1)所示,要按照规则,移动成图(2)的状态,至少需要移动19步.【分析】这是一个汉诺塔的变形问题,根据汉诺塔问题的推理结果,要将n个盘从一个柱全部移到另一个柱上,需要2的n次方﹣1步,根据这个进行推理.【解答】解:为了叙述方便,将五个盘按从小到大编为1~5号第一步:要将5盘移到C柱,先将前4个移到B柱上,所以将5号移到C柱上至少需要2×2×2×2﹣1+1=16步此时3号和4号已经符合要求.第二步:将1号和2号移到C柱上需要2×2﹣1=3步至少需要16+3=19步具体移法如下表【点评】大家做这题的时候记住汉诺塔的问题的基本特征,在此基础上灵活运用.9.(10分)在平面上,用边长为1的单位正方形构成正方形网略,顶点都落在单位正方形的顶点(又称为格点)上的简单多边形叫做格点多边形.而除去三个顶点之外,内部或边上不含格点的格点三角形称为本原格点三角形,如图所示的格点三角形MBN.每一个格点多边形都能很容易地划分为若干个本原格点三角形,那么,图中的格点四边形EBGF可以划分为24个本原格点三角形.【分析】这题根据毕克定理S=2×N+L﹣2即可求出这个图能分成多少个本原格点三角形,其中N表示内部的格点数,L表示边界上的格点数.【解答】解:内部的点是10,边界上的点是6,根据公式列出2×10+6﹣2=24故此题填24.【点评】遇到这种问题时,常运用毕克定理公式直接去求,在求的时候要注意分清是正方形格点问题还是三角形格点问题.10.(10分)用2颗红色的珠子,2颗蓝色、2颗紫色、2颗绿色的珠子串成如图所示的手链,要求两颗红色珠子相邻,两颗紫色珠子相邻,那么,可以串成16种不同的手链.【分析】根据题意,分三种情况:(1)两颗红色珠子和两颗紫色珠子之间有2颗珠子;(2)两颗红色珠子和两颗紫色珠子之间有1颗珠子;(3)两颗红色珠子和两颗紫色珠子相邻;把每种情况下可以串成的手链的数量相加,求出可以串成多数种不同的手链即可.【解答】解:因为是手链,所以旋转、翻转相同的只能算一种,(1)两颗红色珠子和两颗紫色珠子之间有2颗珠子时,与红色珠子相邻的两颗珠子有:蓝蓝、绿绿、蓝绿三种,其中蓝绿有2种可能,一共有4种可能性.(2)两颗红色珠子和两颗紫色珠子之间有1颗珠子时,单独的1颗有2种可能性,另外3颗有3种可能性,一共有:2×3=6(种).(3)两颗红色珠子和两颗紫色珠子相邻时,=6(种)4+6+6=16(种)答:可以串成16种不同的手链.故答案为:16.【点评】此题主要考查了排列组合问题,考查了加法原理和乘法原理的应用,要熟练掌握,注意不能多数、漏数.三、填空题Ⅲ(每题12分,共60分)11.(12分)古罗马的凯撒大帝发明了世界上最早的数学加密方法:按照字母表的顺序,将每一个字母对应到按照某种事先的约定确定的字母.例如,将这个字母对应到他后面的第三个字母,也就是A→D,B→E,C→F,…W→Z,X→A,Y→B,Z→C,于是按照这个加密方法,单词“HELLO”,被加密成“KHOOR”.按照这种加密方法,海亮收到了一个加密后的密文“LORYHBRX”,那么,这个信息的原文是ILOVEYOU.【分析】按照字母表的顺序,将每一个字母对应到按照某种事先的约定确定的字母.例如,将这个字母对应到他后面的第三个字母,也就是A→D,B→E,C→F,…W→Z,X→A,Y→B,Z→C,从以上加密方法可以看出:每个英文字母加密成他后面的第三个字母;解密的时候就把他译成前面的第三个字母.【解答】解:收到了一个加密后的密文是“LORYHBRX”,解密为L→I,O→L,R→O,Y→V,H→E,B→Y,R→O,X→U,于是这个信息的原文是:ILOVEYOU;故答案为:ILOVEYOU.【点评】首先仔细研究等差数列的加密方法,运用逆向推理的方法找到解密的方法.12.(12分)恰好有12个不同因数的最小的自然数为60.【分析】首先把12分成两个数的乘积或3个数的乘积,用因数减1当所求自然数的质因数个数,从最小的质数2开始考虑,使2的个数最多,算出乘积比较得出答案.【解答】解:12=1×12=2×6=3×4=2×2×3,有12个约数的自然数有:①2×2×…×2×2(11个2)=2048,②2×2×…×2(5个2)×3=96,③2×2×2×3×3=72,④2×2×3×5=60;从以上可以看出只有④的乘积最小;所以有12个约数的最小自然数是60.故答案为:60.【点评】此题主要考查一个合数的约数个数的计算公式:a=pα×qβ×rγ(其中a 为合数,p、q、r是质数),则a的约数共有(α+1)(β+1)(γ+1)个约数.13.(12分)两个不全为0的数的公共因数成为它们的公因数.求出26019,826,2065的全体公因数1,7,59,413.【分析】寻找3个因数的公约数的方法叫做辗转相除法.找到最大约数,那么他们的所以因数都是满足条件的.【解答】解:根据辗转相除法三个数做差得出两个数即26019﹣2065=23954,2065﹣826=1239,较大的数除以较小的数.23954÷1239=19…413,再用较小的数除以余数,1239÷413=3整除,说明413就是他们的最大约数,再对413分解质因数=1×413=7×59,即26019,826,2065的全体因数为1,7,59,413.故答案为:1,7,59,413.【点评】本题考查知识点是辗转相除法,就是用大数除以小数,然后再用原来的小数除以余数,再用小的数除以余数最后为0则是整除,为1就是互质问题解决.14.(12分)在一个摆满棋子的正方形棋盘中,甲、乙两人轮流拿取棋子,规则为:在某行或某列中,取走任意连续放置的棋子(即不能跨空格拿取),不允许不取,也不能在多行(多列)中拿取,当棋盘中所有棋子被取尽时游戏结束.取走最后一棵棋子的一方获胜.面对如图所示的棋盘,先手有必胜策略,先手第一步应该取走1、3、5、7、9、258、456(写出所有的正确方案),才能确保获胜.【分析】这个游戏的策略主要是利用图形有对称性(1)先手取5号以及258、456号后,图形完全对称,显然是先手可以取胜.(2)先手取1号,①后手取2、3、4、7中的一个或两个,先手都可以取成正方形获胜;如果后手取3,那先手就取7,后手再取4,那先手就取2,这样就剩下5689这个正方形,在这种情况下,谁先取谁就输.如果后手取23,那先手就取47,剩下5689正方形.②后手取59中的一个,先手可以取另一个形成对称图形而获胜.③后手取3678中的一个或两个,先手一定可以获胜.如果后手取36,先手就可以取8,这时剩下47259,此时后手无论怎样取,先手都可以获胜.如果后手取8,先手就取36,情况同上.如果后手取78,那先手就取6,这时剩下23459,此时后手无论怎样取,先手都可以获胜.7如果后手取6,那先手就取78,情况同上.如果后手取3或7,先手可以参照①的情况获胜.(3)同理,先手取3、7、9也可以确保获胜.(4)除上述情况外,取任意其他一个或相邻两个、三个,后手都可以取成对称图形导致先手失败.(对称图形不包括2×3这样的6个)【解答】解:先手确保获胜只能取1、3、5、7、9、258、456这七种.【点评】这题题目是利用图形的对称知识获胜的,只有在形成对称图形之后才能保证自己获得最后一个棋子.15.(12分)在的圆圈中填入从1到14的自然数(每一个数用而且只能用一次),使连接在同一直线上的4个圆圈中的数字之和都相等,这称为一个7阶幻星图,这个相等的数称为7阶幻星图的幻和,那么,7阶幻星图的幻和为30,并继续完成以下7阶幻星图.【分析】所有的数字和的2倍就是所有的幻和的7倍,那么(1+14)×14=210,那么210就是幻和的7倍,即可求出幻和.再根据数字规律填写7阶幻星图即可.【解答】解:所有的数字和的2倍(1+14)×14=210.幻和为:210÷7=30.7阶幻星图为:故答案为:30【点评】幻方的关键问题就是知道求所有的幻和时把所有的数字加了两遍,同时也考察同学们的数字规律和理解能力,综合分析幻方的能力.问题解决.。
2016年走美杯模考四年级组试卷解析
2016 年走美杯模拟考试
四年级组
2016 年走美杯模拟考试
一、填空题(每题 8 分,共 40 分) 1、计算 20.16×62+201.6×3.9-7×2.88=____
【解析】原式=20.16×(62+39-1)=20.16×100=2016 【答案】2016
2、计算 2016×2014+2015×2013-2015×2014-2016×2013=____
【解析】图中圆弧上有 4 个顶点,直径上有 5 个顶点: 3 个顶点都在圆弧上的三角形有 4 个; 2 个顶点在圆弧上 1 个顶点在直径上的三角形有 30 个; 1 个顶点在圆弧上 2 个顶点在直径上的三角形有 40 个; 共有 4+30+40=74 个三角形 【答案】74
9、 一个数介于 1016 到 2016 之间, 且它分别除以 5、 7、 13 的余数相同, 则这个数最大是____。
【解析】先找出 2013 至 2156 之间同时是 3 个数倍数的数,5×7×13=455,455×4=1820,余数不能超过除 数,所以余数最大可以是 4,此时这个数是 1820+4=1824 【答案】1824
四年级走美杯考前模拟演练试题详解
四年级走美杯考前模拟演练试题详解走美三年级模拟测试详细解析2022走进“精彩数学园\中国青年数学论坛”趣味数学解题技能展示大赛初赛模拟注意事项:1.考生要按要求在密封线内填好考生的有关信息.2.不允许使用计算器.小学四年级试卷(a卷)一、填空题i(每题8分,共40分)1、9? 13? 13? 9? 11? 13? 14? 9? 6.13?___________。
[答:5]【解析】9?13?13?9?11?13?14?9?6?13?(9?11+6)? 13? (13+14)? 9==26?13?27?9=2+3=52.6数字分别表示为a、B、C、D、e和f。
a、 B、C和D的平均值为10;b、 C、D、e和F的平均值为14。
如果f是a的两倍,那么a和E的平均值等于。
【答案:15】【分析】a+B+C+D=10×4f+e+B+C+D=14×5∵ f是A的两倍∴2a+e+b+c+d=70①a+b+c+d=40②① - ② 收到a+e=30a和E的平均值=30÷2=153.如图所示,一根木棒上有5个等距离的点:a、b、c、d和e。
第一次以a点、B点和E点为中心点,每次将木杆旋转180°。
旋转3次,放在棍子上,旋转后点的位置与旋转前相同。
【答案:d】[分析]――――――――――――――――――――――――――――――――――――――――――邹梅三年级模拟考试的详细分析4、数字“0”的概念公元前400年左右产生于美索不达米亚,而目前的用法则产生于公元7世纪左右的印度。
如果所有三位数字都表示为180“0”。
【解析】1-90-909 × 10=901-900-99×10=9090+90=1805、3×3的平方中9个数字的和为55,每行和每列的和在表格旁边给出,标记a的空间中的数字为9。
(每个空格包含一个数字)79二①33×3的平方中9个数字的和是55227+a+4=20a=9二、填空题ii罗马帝国的大帝凯撒被敌人围困。
“走美”四年级选拔赛(二)
中国少年科学院科普基地 四年级“走美”四年级赛前综合(二)姓名: 成绩:1. 现依次写有1,2,3,…,2009,2010这2010个自然数,在相邻的两个数之间都添加“+”或“-”号,然后计算结果.结果是否能为2010?为什么?2. 如图,在连接正六边形的3个顶点而成的三角形中,与正六边形有公共边的三角形有 个。
3. 右图的部件是由4个棱长为1的小正方体焊接而成,用7个这样的部件拼成一个立体图形,使得表面积尽可能的小,那么表面积最小是 。
4. 如图,边长是12厘米,的正方形每条边上的3个点(端点除外)都是这条边的四等分,则阴影部分的面积是多少平方厘米?装订线5.如图,直角三角形ABC由红、绿两个直角三角形和一个黄色的长方形拼成,AE=25cm,BF=20cm。
问:黄色长方形的面积是多少平方厘米?6.若今天是星期六,从今天起102000天后的那一天是星期几?7.有四个互不相同的自然数,最大的数与最小的数之差是4,最大数与最小数之积是奇数,而这四个数的和是最小的两位奇数,则这四个数的乘积是。
8.22221012222-+++- =--561+4100329.2010×0.25-210÷4=________10.22010+32010的个位数字是几?11.如图,在右图的每个方框中填入一个1~6的数字,使算式成立。
12.六位数2003□□能被99整除,它的最后两位数是______________ 。
13.设五位数2X36Y能被315整除,其中X与Y分别是千位与个位上的数字,则该五位数是多少?14.ab是一个两位数。
若这个两位数的平方,其值的尾后两个数字仍是ab,问这个两位数最大是多少?15.某个三位数ABC与它的反序数CBA相乘,得到的积是2002的倍数,请将答案填入()中。
ABC×CBA=2002×()16.包含0,1,2,…,9十个数字的十位数称为“十全数”。
四年级走美自测题 教师版
四年级走美杯自测卷填空题Ⅰ(每题8分,共40分)1、2000年后为三个连续自然数乘积的第一个年份是 。
【解析】:11×12×13=1716,12×13×14=2184。
2、将正整数1,2,3,4,5,6,…,10000排成一行。
若一个数不能表示成两个合数的和,则将此数划去。
例如要划去1,但是因为8=4+4,8就不能划去。
根据上面规定划掉所有能划掉的数之后,将剩下的由小到达排列,这时从左数第2016个数是 。
【解析】:从8开始往后的偶数可以拆成两个偶合数的和;从13开始的奇数可以拆成9+2n 的形式(n 大于等于2),而1、2、3、4、5、6、7、9、11要划去,所以剩下的数列为8、10、12、13、14、15……,第2016项即为2025。
3、图中共有 个三角形。
【解析】:①由1个小三角形构成的三角形有24个;②由2个小三角形构成的三角形有20个;③由3个小三角形构成的三角形有8个;④由4个小三角形构成的三角形有8个;⑤由5个小三角形构成的三角形有4个;⑥由6个小三角形构成的三角形有4个;⑦由7个小三角形构成的三角形有4个;所以图中共有三角形24+20+8+8+4+4+4=72个。
4、四位数abcd 与cdab 的和为3636,差为396,那么四位数abcd 为 。
【解析】:100abcd ab cd =+,100cdab cd ab =+。
当ab cd >时: ()1001003636100100396ab cd cd ab ab cd cd ab ⎧+++=⎪⎨+-+=⎪⎩ 整理得36ab cd +=,4ab cd -=,所以20ab =,16cd =,2016abcd =。
同理,ab cd <时,1620abcd =。
5、A、B、C、D四个箱子中分别装有一些小球,现将A箱中的部分小球按如下要求转移到其他三个箱子中:该箱中原有几个小球,就再放入几个小球,此后,按照同样的方法依次把B、C、D箱中的小球转移到其他箱子中,此时,四个箱子都各有16个小球,那么开始时装有小球最多的是______箱,其中装有______小球个。
2017年美国“数学大联盟杯赛”初赛四年级试卷
2017年美国“数学大联盟杯赛”初赛四年级试卷2016-2017年度美国“数学大联盟杯赛”(中国赛区)初赛(四年级)(初赛时间:2016年11月20日,考试时间90分钟,总分200分)学生诚信协议:考试期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论,我确定以下的答案均为我个人独立完成的成果,否则愿接受本次成绩无效的处罚。
如果您同意遵守以上协议请在装订线内签名选择题:每小题5分,答对加5分,答错不扣分,共200分,答案请填涂在答题卡上。
1.Which of the following is the greatest?A) 2.017 B) 20.17 C) 201.7 D) 20172.The sum of the degree-measures of the interior angles of a triangle isA) 180 B) 360 C) 540 D) 7203.100 + 200 + 300 + 400 + 500 = 300 ×?A) 3 B) 4 C) 5 D) 64.100 ÷ 4 = 200 ÷?A) 2 B) 4 C) 8 D) 165.In tonight’s talent show, Jack sang 3 songs. The number of songs that Jill sang is 8 lessthan 4 times the number of songs Jack sang. How many songs did Jill sing?A) 3 B) 4 C) 6 D) 76.Doubling a certain number is the same as adding that number and 36. What is thatnumber?A) 18 B) 36 C) 54 D) 727.The side-lengths of three square farms are 1 km, 2 km, and 3 km respectively. The sum ofthe areas of these three farms is ? km2.A) 6 B) 12 C) 13 D) 148.What is the greatest common factor of 2017 and 20 × 17?A) 1 B) 2 C) 3 D) 59.If a computer can download 2% of the files in 2 seconds, how many seconds does it taketo download all the files?A) 100 B) 200 C) 300 D) 40010.In yes terday’s giant-pie eating, all pies were the same size. Al ate 3/4 of a giant pie, Barbate 4/5 of a giant pie, Cy ate 5/6 of a giant pie, and Di ate 6/7 of a giant pie. Who ate the largest portion?A) Al B) Barb C) Cy D) Di 11.The product of two consecutive positive integers is alwaysA) odd B) evenC) prime D) composite12.In a 5-term sequence, the first term is 2. The value of each term after the first is twice thatof its previous term. What is the product of the 5 terms?A) 24B) 210C) 215D) 24513.Ace, Bo, and Cat performed in a talent show. Bo’s total score was twice that of Ace, andCat’s total score was three times that of Bo. If the sum of all three total scores was 900, what was Cat’s total score?A) 100 B) 200C) 300 D) 60014.The length of each side of triangle T is an integer. If twosides of T have lengths of 2016and 2017, what is the least possible value for the length of the third side?A) 1 B) 2 C) 4032 D) 403315.If the sum of three consecutive whole numbers is 2016, what is the sum of the next threeconsecutive whole numbers?A) 2032 B) 2025 C) 2020 D) 201716.If the sum of a prime and a composite is 2017, what is the least possible value for theproduct of the two numbers?A) 3000 B) 4030 C) 6042 D) 912017.What is the smallest whole number that leaves a remainder of 2 when divided by each of 3,4, 5, and 6?A) 58 B) 60 C) 62 D) 6418.What is the highest power of 2 that divides 1 × 2 × 3 × 4 × 5 × 6 × 7 × 8 × 9?A) 25B) 26C) 27D) 2819.The product of the digits of 23 is 6. How many different whole numbers between 100 and999 have a product of 6?A) 12 B) 9 C) 6 D) 320.What is the value of 1% of 10% of 100%?A) 0.001 B) 0.01 C) 0.1 D) 121.In a box that contains only balls that are red, yellow, or green, 10% of the balls are red, 1/5of the balls are yellow, and 49 balls are green. How many balls are in the box?A) 70 B) 80 C) 90 D) 10022.Of the following, which has the greatest number of positive whole number divisors?A) 24 B) 26 C) 51 D) 2017第1页,共4页第2页,共4页23.If you subtract the sum of the digits of a whole numbergreater than 9 from the numberitself, the result must be divisible byA) 5 B) 6 C) 9 D) 1224.I bought a painting for $40, sold it for $50, rebought it for $60, and resold it for $70. Mytotal profit on the 4 transactions wasA) $10 B) $20 C) $30 D) $4025.What is the minimum number of whole number divisors of the product of two differentcomposite numbers?A) 5 B) 6 C) 8 D) 926.For each whole number from 1000 to 9999, inclusive, I write the product of its digits.How many of the products I write are even?A) 625 B) 3125 C) 5775 D) 837527.Lisa baked some cookies and cakes. Baking one cookie requires 4 cups of sugar and 3cups of flour, and baking one cake requires 7 cups of sugar and 5 cups of flour. At the end she used 83 cups of sugar and 61 cups of flour. How many cookies did she bake?A) 11 B) 12 C) 13 D) 1428.Working by oneself, Al can build a bridge in 3 years, Barb can build a bridge in 4 years,and Cy can build a bridge in 5 years. Working together, how long, in years, does it take them to build the bridge?A) 12B)6047C)6053D) 129.Jack is a gifted athlete who has trained hardfor the Olympic marathon. In the lasthundred yards he finds the inner strength toincrease his pace and overtakes the runner inthe second place.But then, with the finishing line just feetaway, he is overt aken by two other runners…What medal will Jack receive?A) Gold B) SilverC) Bronze D) None30.If we juxtapose three congruent squares, we get a rectangle with perimeter 64. What is thearea of one of the squares?A) 36 B) 49 C) 64 D) 8131.In a four-digit perfect square, the digits in the hundreds and thousands places are equal,and the digits in the tens and ones places are equal. What is this number?A) 6644 B) 7744 C) 8844 D) 9944 32.For how many of the integers from 100 to 999 inclusive is the product of its digits equal to9?A) 6 B) 7 C) 8 D) 933.What is the smallest positive integer x for which (x + 8) is divisible by 5 and (x + 17) isdivisible by 7?A) 30 B) 31 C) 32 D) 3334.Tom’s new tower was completed. The total value ofthe project, the sum of the cost of the construction andthe cost of the land, was one million dollars. The cost of the construction was $900,000 more than the cost of theland. So what did T om pay for the land?A) $25,000 B) $50,000C) $75,000 D) $90,00035.五个连续正整数的和总是可以被下面哪个数整除?A) 2 B) 3 C) 5 D) 736.从1开始,鲍勃一共喊了2017个数,从第一个数之后的每个数都比前一个数大4。
2024年走美杯数学竞赛详细解析-四年级卷
2024“走进美妙的数学花园”π数学趣味闯关活动注意事项:1.请在密封线内填好有关信息.2.不允许使用手机、计算器等电子设备.小学四年级填空题Ⅰ(每题8分,共32分)1.计算:1−(25+0.5)=.解:25=2/5=0.4,原式=1-(0.4+0.5)=1-0.9=0.12.有4个自然数(允许有相等的),从其中任意选取3个数求和,可以而且只能得到23,24,25.那么,原来的4解:由于23,24,25是等差数列,可以得到24/3=8,所以4个自然数中必有8且也是一个等差数列,最终可得7,8,8,9。
验算:7+8+8=23,8+8+9=25,7+8+9=243.能够被1到12的所有自然数整除的最小自然数为解:最小公倍数问题。
1-12之间,质数2,3,5,7,11没有公因数,4,8,12是2的倍数,6,9,12是3的倍数,10是5的倍数,所以最小公倍数为2x 3x 5x 7x 11x 2x 2x 3=277204.满足被6除余2,被9除余5,并且小于100解:分别求符合2个条件的数,找相同数被6除余2:8,14,20,26,32,38,44,50,56,62,68,74,80,86,92被9除余5:14,23,32,41,50,59,68,77,86,95填空题Ⅱ(每题10分,共40分)5.用宽为210毫米,长为297毫米规格的地砖,按照长与宽的方向保持一致的方总分式铺成一块正方形地面,这样铺成的正方形中,面积最小的正方形的边长为.解:求两数最小公倍数,如图210*2976.两本书的正文页码用从1开始的连续自然数标记,共用了(数码),如果第一本书正文比第二本书多5..解:数码问题。
1-9页所用数码总数:1*9=910-99页所用数码总数:90*2=180100-999页所用数码总数:3*901=2703180<705<2703,所以两本书都<999页,多出的5页每页是3位数第二本书总共页码数:(705-5*3)/2=345第二本的3位页码数:(345-180-9)/3=52第二本书总页数:99+52=151页7.用5个边长为单位长度的小正方形(单位正方形)可以构成如下图所示的5-联方(在中国又称为伤脑筋十二块).在西方国家,人们用形象的拉丁字母来标记每一个5-联方.请将具有中心对称性质的5-联方找出来,并将对应的拉丁字解:中心对称是指把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称。
全国小学生英语竞赛(四年级组)2016年初赛、决赛试题及详解【圣才出品】
全国小学生英语竞赛(四年级组)2016年初赛试题及详解听力部分(共四大题,计30分)I. Words(听辨单词)(共5小题;每小题1分,计5分)听音,从A,B,C三个选项中选出你所听到的单词。
每个单词读两遍。
1. A. boatB. bookC. bike2. A. thinkB. thisC. thin3. A. giraffeB. grassC. glass4. A. AustraliaB. AmericaC. Africa5. A. familyB. farmerC. friendly【答案】1.A 2.C 3.A 4.B 5.C【录音原文】1. boat2. thin3. giraffe4. America5. friendlyII. Sentences(句子理解)(共10小题;每小题1分,计10分)(A)听音,从A, B, C三个选项中选出与你所听的句子内容相符的图片。
每个句子读两遍。
6.A.B.C.【答案】B【解析】录音的意思是“请把门关上好吗”,B项图片是一扇开着的门,为正确答案。
【录音原文】Would you please close the door?7.A.B.C.【答案】A【解析】录音的意思是“不要爬树”,A项图片是禁止爬树的标识,为正确答案。
【录音原文】Don’t climb the tree!8.A.B.C.【答案】A【解析】录音的意思是“我六点半起床”,A项图片中的表上时间是六点半,为正确答案。
【录音原文】I get up at six thirty.9.A.B.C.【答案】C【解析】录音的意思是“生日快乐,吉蒂”,C项图片是一个生日蛋糕,为正确答案。
走美杯四年级试题和答案
第三届“走美杯”四年级初赛共12道题,每题10分。
1、33×34+34×35+35×36+36×37= 。
2、李东到商店买练习本,每本3角,共买9本,服务员问:“你有零钱吗?”李东说:“我带的全是5角一张的。
”服务员说:“真不巧,您没有2角一张的,我的零钱全是2角一张的,这怎么办?”你帮李东想一想,他至少应该给服务员 张5角币。
3、幼儿园的老师给班里的小朋友送来40个橘子,200块饼干,120块奶糖,平均分发完毕,还剩4只橘子,20块饼干,12粒奶糖,这班里共有 位小朋友。
4、有一家三口,爸爸比妈妈大3岁,他们全家今年的年龄加起来正好是58岁,而5年前他们全家人年龄加起来刚好是45岁,小孩子今年 岁。
5、两个长方形如下图摆放,阴影三角形面积= 。
6、北京有一家餐馆,店号“天然居”里面有一副著名对联:客上天然居,居然天上客。
巧的很,这幅对联恰好能构成一个乘法算式(见右上图)相同的汉字代表相同的数字,不同的汉字代表不同的数字。
“天然居”表示成三位数是 。
7、一个四位数给它加上小数点后比原来小2346.3,那么原四位数是 。
8、用同样大小的木块堆成了如图所示的形状,这里共用了 个木块。
9、下面图中有9个围棋子围成一圈,现将同色的相邻两子之间放入一个白子,在不同色的相邻两子间放入一个黑子,然后将原来的9个棋子拿掉,剩下新放入的9个棋子如右图,这算一次操作,如果继续这样操作下去,在一圈的9个子中最多有 个是黑子。
10、在1999后面写一串数字,从第5个数字开始,每个数字都是它前面两个数字乘积的个位数字,这样得到1 9 8 9 2 8 6 8 4 2 ……,那么,这串数字中,前2005个数字的和是 。
11、在下图的5×5方格表的空白处填入1~5中的数,使得每行、每列、每条对角线上的数各不相同。
12、甲、乙二人轮流在右上图的10个方格中,甲画“○”,乙画“×”。
四年级走美杯配套习题(试题版)
1
2
34
【考点】计算,周期
1
2
34
1
2
34
1
2
34
31. (2010 年第 8 届走美杯 4 年级) 在一个 3×3 的方格表中,除中间一格无棋子外,其余每格都有 4 枚一样的棋子,这样每边三个格 子中都有 12 枚棋子。去掉 4 枚棋子,请你适当调整一下,使每边三格中仍有 12 枚棋子,并且 4 个角上的棋子数仍然相等(画图表示)。
18. (2007 年第 5 届走美杯 4 年级) 如图所示,大长方形恰被分割为九个互不重叠的正方形.已知最小的两个正方形的边长分别是 2 厘 米和 5 厘米.那么,大长方形的周长是______厘米.
【考点】几何,周长计算
4 2012 年走美杯冲刺班四年级(北分教研出品)
19. (2008 年第 6 届走美杯 4 年级) E 是正方形 ABCD 的边 CD 上的三等分点(如图),BE 把正方形分成一个梯形和一个三角形.梯 形的周长比三角形的周长大 8 厘米.正方形 ABCD 的面积是______.
110 + 111+ 112 + … + 126 = ____ . (2004 年第 2 届走美杯 4 年级)
9999 × 7777 + 3333× 6666 = . 【考点】计算
2. (2009 年第 7 届走美杯 4 年级) 《水浒传》中的 108 将中,男将是女将的 35 倍,男将共有___名,女将共有___名。
【考点】组合,数独
9 2012 年走美杯冲刺班四年级(北分教研出品)
答案____.(填出所有可能情况)
26. (2007 年第 5 届走美杯 4 年级初赛试题) 有些三位数,它的各位数字之积为质数,这样的三位数最小是______,最大是______.
SH四年级走美杯初赛汇总
第七届走美杯四年级初赛一、填空题Ⅰ(每题8分,共40分)1、 3737263376363⨯+⨯⨯+⨯=______2、 下边的一排方格中,除9、8外,每个方格中的字都表示一个数(不同的字可以表示相同的数字),已知其中任何3个连续的方格中的数相加起来都为22,则“走”+“进”+“数”+“学”+“花”+“园”3、 “走美”商场有下列几种瓶装蜂蜜出售:甲,净重3kg ,售价33.99元;乙,净重2kg ,售价22.99元;丙,净重500g ,售价5.99元,那么,_____种蜂蜜最贵,____种蜂蜜最便宜。
4、 一个数学玩具的包装盒是正方体,其表面展开图如下。
现在每方格内都填上相应的数字。
已知将这个表面展开图沿虚线折成正方体后,相对面的两数之和为“3”,则填在A 、B 、C 内的三个数字依次是________。
5、 某品牌乒乓球拍在北京奥运会后推出一款球拍的促销计划:该球拍每只售价为人民币60元,同时购买者可获赠1张奖券,积累3张奖券可兑换1只球拍。
由此可见,1张奖券价值为________元。
二、填空题Ⅱ(第题10分,共50分)6、 A ,B 都是整数,A 大于B ,且2009A B ⨯=,那么A B -的最大值为________,最小值为________。
7、 一天,红太狼和灰太狼同时从“野猪林”出发,到“天堂镇”。
红太狼一半路程溜达,一半路程奔跑。
灰太狼一半时间溜达,一半时间奔跑。
如果它们溜达的速度相同,奔跑的速度也相同,则先到“天堂镇”是___________。
8、 柯南家2008年一年用电10200千瓦时,上半年的月平均用电比下半年的月平均用电少100千瓦时。
柯南家下半年月平均用电为___________千瓦时。
9、 某校A 、B 、C 三名同学参加“走进美妙的数学花园”,其指导教师赛前预测“A 获金牌,B 不会获金牌,C 不会获铜牌”。
结果出来后,三人之中,一人获金牌,一人获银牌,一人获铜牌,指导教师的预测只有一个人与结果相符。
小学四年级美术竞赛试题(2023)
小学四年级美术竞赛试题(2023)第一部分:填空题(每题2分,共20分)1. 春天的大自然是____,草地上到处是____。
2. 在画画时,我们可以使用铅笔、____等工具。
3. 绿色是____的象征,代表希望和____。
4. 蓝天白云、飘动的彩旗,都是____。
5. 锦鲤是中国传统文化中的____,象征着____和____。
6. 水彩画颜料由颜色和____构成。
7. 描绘____时要注意用细长的线条和大胆的色彩。
8. 黄金分割是一种____的构图方式。
9. 装饰画要有____和____的特点。
第二部分:选择题(每题4分,共40分)1. "洛神赋图"是哪位画家的作品?A. 张大千B. 齐白石C. 吴昌硕D. 郎世宁2. "荷塘月色图"是哪位画家的作品?A. 张大千B. 齐白石C. 吴昌硕D. 郎世宁3. 《刘江舟行图》是一幅中国画作品,它的画家是A. 张大千B. 吴昌硕C. 郎世宁D. 杨洪基4. 以下哪位画家的画作属于世界文化遗产?A. 陈逸飞B. 张大千C. 齐白石D. 拿破仑5. 中国传统画中常用的画材是A. 钢笔B. 水彩C. 铅笔D. 油画颜料6. 中国水墨画的主要特点是A. 用黑白颜料B. 用彩色颜料C. 用铅笔素描D. 用油画颜料7. 鲁迅的名篇《狂人日记》的插图是谁绘制的?A. 齐白石B. 吴昌硕C. 萧红D. 郎世宁8. 以下哪一幅画是齐白石的代表作?A. 青狮图B. 石翁仲图C. 荷塘月色图D. 青蛙图9. 李白是唐代的哪位诗人兼画家?A. 李清照B. 王维C. 辛弃疾D. 杜甫10. 以下哪种颜色不属于暖色调?A. 红色B. 黄色C. 绿色D. 橙色第三部分:创作题(共40分)请你根据以下题目任选一题进行创作:1. 画一幅描绘四季变化的农田景色。
2. 画一幅表达亲情的作品。
3. 画一幅寓意吉祥的新年画。
注:请根据自己的创意进行作画,无需具体指明画的内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六届“走进美妙的数学花园”青少年展示活动
趣味数学解题技能展示大赛初赛
四年级自测卷
填空题Ⅰ(每题8分,共40分)
1、计算654321×123456-654322×123455=。
2、某商场有一些糖果,其中水果糖每千克5.6元,奶糖每千克7.2元,巧克力每千克8.8元,奶糖比水果糖少3千克,比巧克力多2千克,如果这些糖果平均价格每千克7元,那么巧克力有千34567(第3题图)(第7题图)
8、设三位数52A 和B 13之积能被36整除,记满足条件的两个三位数之和为“六六大顺数”,则所有的“六六大顺数”之和为。
9、在51个连续的奇数1、3、5……、101中选取k 个数,使得它们的和为1949,那么k 的最大值是。
10、如图所示,每个小正三角形边长为1,小虫每步走过1,从A 出发,恰走4步回到A 的路有
_________条。
(途中不再回A )
(第10题图)
尚品教育教研团队。