塑料超声焊的一些问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原来用ABS材料打的2个产品,用超声波接没问题,后把ABS换成PP的,接出现了问题,无法劳固。请专家释疑,谢谢!

影响超音波接的因素

说起热塑塑料的可接力,不能不说到超音波压合对各种树脂的要求。其最主要的因素包括聚合物结构,熔化温度、柔韧性(硬度)、化学结构。

聚合物结构

非结晶聚合物分子排列无序、有明显的使材料逐步变软、熔化及至流动的温度(Tg玻璃化温度)。这类树脂通常能有效传输超音速振动并在相当广泛的压力/振幅范围内实现良好的接。

半结晶型聚合物分子排列有序,有明显的熔点(Tm熔化温度)和再度凝固点。固态的结晶型聚合物是富有弹性的,能吸收部分高频机械振动。所以此类聚合物是不易于将超声波振动能量传至压合面,帮要求更高的振幅。需要很高的能量(高熔化热度)才能把半结晶型的结构打断从而使材料从结晶状态变为粘流状态,这也决定了这类材料熔点的明显性,熔化的材料一旦离开热源,温度有所降低便会导致材料的迅速凝固。所以必须考虑这类材料的特殊性(例如:高振幅、接合点的良好设计、与超音夹具的有效接触、及优良的工作设备)才能取得超声波接的成功。

聚合物:热塑性与热固性

将单体结合的过程称为“聚合”。聚合物基本可分为两大类:热塑性和热固性。热塑性材料加热成型后还可以重新再次软化和成型,基所经历的只是状态的变化而已-这种特性使决定了热塑性材料超音波压合的适应性。热固性材料是通过不可逆反的化学反应生成的,再次加热或加压均不能使已成型的热固性产品软化,所以传统上一直认为热固性材料是不适合使用超音波的。

熔化温度

聚合物的熔点越高,其接所需的超音波能量越多.

硬度(弹力系数)

材料的硬度对其是否能有效传输超音速振动是很有影响的。总的说来,愈硬的材料其传导力愈强。

超声波熔接:

以超声波频率振动的头,在预定的时间及压力下,磨擦生热,令塑胶接面相互熔合,既牢固,又方便快捷

PP属半结晶,与ABS是不一样的

超声波焊接常见缺陷及处理办法

一、强度无法达到欲求标准。

当然我们必须了解超音波熔接作业的强度绝不可能达到一体成型的强度,只能说接近于一体成型的强度,而其熔接强度的要求标准必须仰赖于多项的配合,这些

配合是什么呢?

※塑料材质:ABS与ABS相互相熔接的结果肯定比ABS与PC相互熔接的强度来的强,因为两种不同的材质其熔点也不会相同,当然熔接的强度也不可能相同,虽然我们探讨ABS与PC这两种材质可否相互熔接?我们的答案是绝对可以熔接,但是否熔接后的强度就是我们所要的?那就不一定了!而从另一方面思考假使ABS与耐隆、PP、PE相熔的情形又如何呢?如果超音波HORN瞬间发出150度的热能,虽然ABS材质己经熔化,但是耐隆、PVC、PP、PE只是软化而已。我们继续加温到270度以上,此时耐隆、PVC、PP、PE已经可达于超音波熔接温度,但ABS材质已解析为另外分子结构了!由以上论述即可归纳出三点结论:

1.相同熔点的塑料材质熔接强度愈强。

2.塑料材质熔点差距愈大,熔接强度愈小。

3.塑料材质的密度愈高(硬质)会比密度愈低(韧性高)的熔接强度高。

二、制品表面产生伤痕或裂痕。

在超音波熔接作业中,产品表面产生伤痕、结合处断裂或有裂痕是常见的。因为在超音波作业中会产生两种情形:1.高热能直接接触塑料产品表面 2.振动传导。所以超音波发振作用于塑料产品时,产品表面就容易发生烫伤,而1m/m以内肉厚较薄之塑料柱或孔,也极易产生破裂现象,这是超音波作业先决现象是无可避免的。而在另一方面,有因超音波输出能量的不足(分机台与HORN上模),在振动摩擦能量转换为热能时需要用长时间来熔接,以累积热能来弥补输出功率的不足。此种熔接方式,不是在瞬间达到的振动摩擦热能,而需靠熔接时间来累积热能,期使塑料产品之熔点到达成为熔接效果,如此将造成热能停留在产品表面过久,而所累积的温度与压力也将造成产品的烫伤、震断或破裂。是以此时必须考虑功率输出(段数)、熔接时间、动态压力等配合因素,来克服此种作业缺失。解决方法:

1.降低压力。

2.减少延迟时间(提早发振))。

3.减少熔接时间。

4.引用介质覆盖(如PE袋)。

5.模治具表面处理(硬化或镀铬)。

6.机台段数降低或减少上模扩大比。

7.易震裂或断之产品,治具宜制成缓冲,如软性树脂或覆盖软木塞等(此项指不影响熔接强度)。

8.易断裂产品于直角处加R角。

三、制品产生扭曲变形。

发生这种变形我们规纳其原因有三:

1.本体与欲熔接物或盖因角度或弧度无法相互吻合.

2.产品肉厚薄(2m/m以内)且长度超出60m/m以上.

3.产品因射出成型压力等条件导致变形扭曲.

所以当我们的产品经超音波作业而发生变形时,从表面看来好像是超音波熔接的原因,然而这只是一种结果,塑料产品未熔接前的任何因素,熔接后就形成何种结果。如果没有针对主因去探讨,那将耗费很多时间在处理不对症下药的问题上,而且在超音波间接传导熔接作业中(非直熔),6kg以下的压力是无法改变塑料的轫性与惯性。所以不要尝试用强大的压力,去改变熔接前的变形(熔接机最高压

力为6kg),包含用模治具的强迫挤压。或许我们也会陷入一个盲点,那就是从表面探讨变形原因,即未熔接前肉眼看不出,但是经完成超音波熔接后,就很明显的发现变形。其原因乃产品在熔接前,会因导熔线的存在,而较难发现产品本身各种角度、弧度与余料的累积误差,而在完成超音波熔接后,却显现成肉眼可看到的变形。

解决方法:

1.降低压力(压力最好在 2kg 以下)。

2.减少超音波熔接时间(降低强度标准)。

3.增加硬化时间(至少 0.8 秒以上)。

4.分析超音波上下模是否可局部调整(非必要时)。

5.分析产品变形主因,予以改善。

四、制品内部零件破坏

※超音波熔接后发生产品破坏原因如下:

1.超音波熔接机功率输出太强.

2.超音波能量扩大器能量输出太强.

3.底模治具受力点悬空,受超音波传导振动而破坏.

4.塑料制品高、细成底部直角,而未设缓冲疏导能量的R角.

5.不正确的超音波加工条件.

解决方法:

1.提早超音波发振时间(避免接触发振)。

2.降低压力、减少超音波熔接时间(降低强度标准)。

3.减少机台功率段数或小功率机台。

4.降低超音波模具扩大比。

5.底模受力处垫缓冲橡胶。

6.底模与制品避免悬空或间隙。

7.HORN(上模)掏孔后重测频率。

8.上模掏孔后贴上富弹性材料。

五、产品产生溢料或毛边

※超音波熔接后产品发生溢料或毛边原因如下:

1.超音波功率太强.

2.超音波熔接时间太长.

3.空气压力(动态)太大.

4.上模下压力(静态)太大.

5.上模(HORN)能量扩大比率太大.

6.塑料制品导熔线太外侧或太高或粗.

上述六项为造成超音波熔接作业后产品发生溢料毛边的原因,然而其中最关键性的是在第六项超音波的导熔线开设,一般在超音波熔接作业中,空气压力大约在2~4kg范围,根据经验值最佳的超音波导熔线,是在底部0.4~0.6m/m×高度

0.3~0.4m/m 如:此型Δ,尖角约呈60°,超出这个数值将导至超音波熔接时间、压力、机台或上模功率的升高,如此就形成上述1~6项造成溢料与毛边的原因。解决方法:

1.降低压力、减少超音波熔接时间(降低强度标准)。

相关文档
最新文档