新初二下册期中考试数学试卷及答案
人教版数学八年级下册《期中考试试卷》附答案解析
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共30分)1. 下列式子中,属于最简二次根式的是( ) A. 4 B. 5 C. 0.2 D. 132. 使二次根式2x -有意义的x 的取值范围是( )A. x≠2B. x >2C. x≤2D. x≥2.3. 下列计算正确的是( )A. 103=7-B. 23=5+C. 333=23-D. 22=22+ 4. 下列各组数中,以a 、b 、c 为边三角形不是直角三角形的是( )A. a =1,b =2,c =3B. a =32,b =2,c =52C. a =5,b =12,c =13D. a =7,b =24,c =255. 在平行四边形ABCD 中,∠A 比∠B 大40°,那么∠C 的度数为( )A 60° B. 70° C. 80° D. 110°6. 在下列给出的条件中,能判定四边形ABCD 为平行四边形的是()A. AB =BC ,CD =DAB. AB //CD ,AD =BCC. AB //CD ,∠A =∠CD. ∠A =∠B ,∠C =∠D7. 如图,正方体的棱长为2,B 为一条棱的中点.已知蚂蚁沿正方体的表面从A 点出发,到达B 点,则它运动的最短路程为( )A 13 B. 4 C. 17 D. 58. 菱形ABCD的边长为2,∠A=60°,点G为AB的中点,以BG为边作菱形BEFG,其中点E在CB的延长线上,点P为FD的中点,则PB=( )A72B. 3C.512D.539. 将一个边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四个剪法中,裁剪线的长度所标的数据不可能的是( )A. B.C. D.10. 将一张正方形纸片按如图的步骤,通过折叠得到④,再沿虚线剪去一个角,展开平铺后得到⑤,其中FM、GN为折痕,若正方形EFGH与五边形MCNGF的面积之比为4:5,则FMFG的值为( )A. 622-B. 22C. 255D. 522- 二、填空题(每小题3分,共18分)11. 化简:()()2255-+=_____. 12. 若a =2+3,b =2﹣3,则ab 的值为_____.13. 点D 、E 、F 分别是△ABC 三边的中点,若△ABC 的周长是16,则△DEF 的周长是_____.14. 如图,在3×3的正方形网格中,每个小正方形边长为1,点A ,B ,C 均为格点,以点A 为圆心,AB 长为半径作弧,交格线于点D ,则CD 的长为_____.15. △ABC 中,AB =AC ,∠BAC =90°,AD ⊥BC 于D ,分别以AD 、BD 、CD 为长对角线作全等的三个菱形,如图所示,若菱形较短的对角线的长为2,点G 刚好在AE 的延长线上,则其中一个菱形AEDF 的面积为_____.16. △ABC 中,AD ⊥BC 于D ,AB =m ,AC =n ,∠ACB =2∠BAD ,用m 、n 表示AD 的长为_____.三、解答题(共72分)17. 计算:(1)1 27123-+=(2)(3622)2-÷=18. 已知:如图,点E,F分别在□ABCD的AB,DC边上,且AE=CF,联结DE,BF.求证:四边形DEBF是平行四边形.19. 已知=51-,求代数式256x x+-的值.20. 如图,在每个小正方形的边长为1的网格中,点A、B、C均在格点上.(1)直接写出AC的长为,△ABC的面积为;(2)请在如图所示网格中,用无刻度的直尺作出AC边上的高BD,并保留作图痕迹;(3)求BD的长.21. 如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD,求证:四边形OCED是菱形.22. 在△ABC中,AB=AC=5.(1)若BC=6,点M、N在BC、AC上,将△ABC沿MN折叠,使得点C与点A重合,求折痕MN的长;(2)点D在BC的延长线上,且BC:CD=2:3,若AD=10,求证:△ABD是直角三角形.23. ▱ABCD中,点E、F分别在AB、AD上,∠EAF=∠B=60°,AD=nAB.(1)当n=1时,求证:△AEF为等边三角形;(2)当n=12时,求证:∠AFE=90°;(3)当CE=CF,DF=4,BE=3时,直接写出线段EF的长为.24. 书籍和纸张的长与宽比值都有固定的尺寸,如常用的A3、A4、A5的纸张长与宽的比值都相等.一长方形纸张对折后的小长方形的长与宽的比值与原长方形的长与宽的比值相等.(1)求满足这样条件的长方形的长与宽的比值;(2)如图所示的长方形ABCD长与宽之比也满足以上条件,其中宽AB=2.①点P是AD上一点,将△BP A沿BP折叠得到△BPE,当BE垂直AC时,求AP的长;②若将长方形ABCD绕点B旋转得到长方形A1BC1D1,直线CC1交DD1于点M,N为BC的中点,直接写出MN的最大值:.答案与解析一、选择题(每小题3分,共30分)1. 下列式子中,属于最简二次根式的是()B. C. D.A.[答案]B[解析][分析]根据最简二次根式是被开方数不含分母,被开方数不含开的尽方的因数或因式,可得答案.[详解]解:A.=2,故不符合题意;B.C.,故不符合题意;5D. ,故不符合题意故选:B.[点睛]本题考查了最简二次根式,最简二次根式是被开方数不含分母,被开方数不含开的尽方的因数或因式.2. x的取值范围是( )A. x≠2B. x>2C. x≤2D. x≥2.[答案]D[解析][分析]根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.[详解]解:由题意得,x-2≥0,解得x≥2,故选:D.[点睛]本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.3. 下列计算正确的是( )C. D. 2[答案]C[解析][分析]先把各个二次根式化成最简二次根式再合并判断即可.[详解]解:A,故该选项不符合题意;B不能计算,故该选项不符合题意;C、正确,符合题意;D,故该选项不符合题意;故选:C.[点睛]此题考查二次根式的加减,关键是先把各个二次根式化成最简二次根式再合并解答.4. 下列各组数中,以a、b、c为边的三角形不是直角三角形的是( )A. a=1,b,cB. a=32,b=2,c=52C. a b,cD. a=7,b=24,c=25[答案]C[解析][分析]根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.[详解]解:A、12+2=2,符合勾股定理的逆定理,是直角三角形,故此选项错误;B、22+(32)2=(52)2,符合勾股定理的逆定理,是直角三角形,故此选项错误;C、2+)2≠2,不符合勾股定理的逆定理,不是直角三角形,故此选项正确;D、72+242=252,符合勾股定理的逆定理,是直角三角形,故此选项错误.故选:C.[点睛]本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5. 在平行四边形ABCD中,∠A比∠B大40°,那么∠C的度数为( )A. 60°B. 70°C. 80°D. 110°[答案]D[解析][分析]根据平行四边形的对角相等,邻角之和为180°,即可求出该平行四边形各个内角的度数.[详解]画出图形如下所示:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,又∵∠A﹣∠B=40°,∴∠A=110°,∠B=70°,∴∠C=110°.故选D.[点睛]此题考查了平行四边形的性质.理解平行四边形的对角相等,邻角互补是解题的关键.6. 在下列给出的条件中,能判定四边形ABCD为平行四边形的是()A. AB=BC,CD=DAB. AB//CD,AD=BCC. AB//CD,∠A=∠CD. ∠A=∠B,∠C=∠D[答案]C[解析]分析]根据平行四边形的判定定理,分别进行判断,即可得到答案.[详解]解:如图:A、根据AB=BC,AD=DC,不能推出四边形ABCD是平行四边形,故本选项错误;B、根据AB∥CD,AD=BC不能推出四边形ABCD平行四边形,故本选项错误;C、由AB∥CD,则∠A+∠D=180°,由∠A=∠C,则∠D+∠C=180°,则AD∥BC,可以推出四边形ABCD是平行四边形,故本选项正确;D、∵∠A=∠B,∠C=∠D,∠A+∠B+∠C+∠D=360°,∴2∠B+2∠C=360°,∴∠B+∠C=180°,∴AB∥CD,但不能推出其它条件,即不能推出四边形ABCD是平行四边形,故本选项错误;故选:C.[点睛]本题考查了对平行四边形判定定理和等腰梯形的判定的应用,注意:平行四边形的判定定理有:①有两组对边分别平行的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形,等腰梯形的定义是两腰相等的梯形.7. 如图,正方体的棱长为2,B为一条棱的中点.已知蚂蚁沿正方体的表面从A点出发,到达B点,则它运动的最短路程为( )13 B. 417 D. 5[答案]A[解析][分析]正方体侧面展开为长方形,确定蚂蚁的起点和终点,根据两点之间线段最短、勾股定理即可求出最短路径长.[详解]一.如图,它运动的最短路程22(22)21721AB⎛⎫=++⨯=⎪⎝⎭二、如图,它运动的最短路程2222+21312AB⎛⎫=+⨯=⎪⎝⎭故选:A.[点睛]本题考查了正方体的侧面展开图、两点之间线段最短、勾股定理,掌握正方体的侧面展开图是解题关键.8. 菱形ABCD的边长为2,∠A=60°,点G为AB的中点,以BG为边作菱形BEFG,其中点E在CB的延长线上,点P为FD的中点,则PB=( )A723 C.512D.53[答案]A [解析][分析]连接BF、BD,根据菱形ABCD的边长为2,可得AB=BC=CD=2,由∠A=60°,可得△BCD是等边三角形,进而可求∠DBF=90°,再根据勾股定理分别求出BF、DF的长,进而可得PB的长.[详解]解:如图,连接BF、BD,∵菱形ABCD的边长为2,∴AB=BC=CD=2,∵∠A=60°,∴△BCD是等边三角形,∴BD=BC=2,∠DBC=60°,∴∠DBA=60°,∵点G为AB的中点,∴菱形BEFG的边长为1,即BE=EF=BG=1,∵点E在CB的延长线上,∠GBE=60°,∴∠FBG=30°,连接EG,∴EG⊥FB于点O,3∴OB∴FB3∵∠DBF=∠DBA+∠FBG=90°,根据勾股定理,得DF227DB BF ,∵点P为FD的中点,∴PB =12DF =72. 故选:A .[点睛]本题考查了菱形的性质、等边三角形的判定与性质、直角三角形斜边上的中线、勾股定理,解决本题的关键是掌握菱形的性质.9. 将一个边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四个剪法中,裁剪线的长度所标的数据不可能的是( )A. B.C. D.[答案]B[解析][分析]直接验证三角形三边的平方之间的关系即可作出判断.[详解]解:对于A 选项,((2255160100+=>,三角形为锐角三角形,合理;对于B 选项,102+42<112,说明边长为11的边所对的角是钝角,这个时候三角形不可能完全处在正方形内,故不合理;对于C 选项,(22210839+>,说明边长为239,三角形为锐角三角形,合理; 对于D 选项,62+72<102,说明边长为10的边所对的角为钝角,合理.故选:B .[点睛]本题主要考查了正方形的性质和勾股定理,正确判断各三角形的形状是解答的关键.10. 将一张正方形纸片按如图的步骤,通过折叠得到④,再沿虚线剪去一个角,展开平铺后得到⑤,其中FM、GN为折痕,若正方形EFGH与五边形MCNGF的面积之比为4:5,则FMFG的值为( )A. 622-B.22C.255D.522-[答案]A[解析][分析]连接HF,直线HF与AD交于点P,根据正方形EFGH与五边形MCNGF的面积之比为4:5,设正方形EFGH 与五边形MCNGF的面积为4x2,5x2,可得GF=2x,根据折叠可得正方形ABCD的面积为24x2,进而求出FM,最后求得结果.[详解]如图,连接HF,直线HF与AD交于点P,∵正方形EFGH与五边形MCNGF的面积之比为4:5,设正方形EFGH与五边形MCNGF的面积为4x2,5x2,∴GF2=4x2,∴GF=2x,∴HF22GF=2,由折叠可知:正方形ABCD的面积为:4x2+4×5x2=24x2,∴PM 2=24x 2,∴PM =x ,∴FM =PH =12(PM ﹣HF )=12(x ﹣x )=)x ,∴FM GF = 故选:A .[点睛]本题考查了剪纸问题,解决本题的关键是掌握对称的性质.二、填空题(每小题3分,共18分)11. 2=_____. [答案]10[解析][分析]根据二次根式的性质计算.[详解]2 =5+5=10.故答案为:10.[点睛]本题考查了二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12. 若a =,b =2则ab 的值为_____.[答案]1[解析][分析]直接利用平方差公式计算得出答案.[详解]解:∵22a b ==∴ab =(22+=4﹣3=1.故答案为:1.[点睛]此题主要考查了二次根式的化简求值,正确运用乘法公式是解题关键.13. 点D、E、F分别是△ABC三边的中点,若△ABC的周长是16,则△DEF的周长是_____.[答案]8.[解析][分析]据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答.[详解]如图,∵D、E、F分别是AB、BC、AC的中点,∴ED、FE、DF为△ABC中位线,∴DF12=BC,FE12=AB,DE12=AC,∴DF+FE+DE12=BC12+AB12+AC12=(AB+BC+CA)12=⨯16=8.故答案为8.[点睛]本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的基本思路.14. 如图,在3×3的正方形网格中,每个小正方形边长为1,点A,B,C均为格点,以点A为圆心,AB长为半径作弧,交格线于点D,则CD的长为_____.[答案]37[解析][分析]由勾股定理求出AB,再由勾股定理求出DE,即可得出CD 的长.[详解]解:连接AB ,AD ,如图所示:∵AD =AB =222222+=,∴DE =()222217-=,∴CD =37-.故答案为:37-.[点睛]本题考查了勾股定理,由勾股定理求出AB 、DE 是解题的关键.15. △ABC 中,AB =AC ,∠BAC =90°,AD ⊥BC 于D ,分别以AD 、BD 、CD 为长对角线作全等的三个菱形,如图所示,若菱形较短的对角线的长为2,点G 刚好在AE 的延长线上,则其中一个菱形AEDF 的面积为_____.[答案]222[解析][分析]如图所示,连接HG ,设EG 交DH 于点K ,先证明△GDE 是等腰直角三角形,再证明∠GKD =90°,从而在Rt △GHK 中,由勾股定理得x 2+22)x x -=4,求得x 2的值,再根据菱形的面积等于底乘以高,得出菱形BGDH 的面积,即菱形AEDF 的面积.[详解]如图所示,连接HG ,设EG 交DH 于点K ,则HG =2,∵三个菱形全等,∴GD =ED ,∠ADE =∠BDG ,∵AD ⊥BC 于D ,∴∠ADB =∠ADE+∠BDE =90°,∴∠GDE =∠BDG+∠BDE =90°,∴△GDE 是等腰直角三角形,∴∠EGD =∠GED =45°,∵四边形AEDF 为菱形,∴AE ∥DF ,∴∠EDF =∠GED =45°,∴∠GDK =45°,∴∠GKD =90°,设GK =DK =x ,则GD =DH 2x ,HK 2x ﹣x ,在Rt △GHK 中,由勾股定理得:x 2+2(2)x x =4,解得:x 2=2∴菱形BGDH 的面积为:DH•GK 2x•x 2x 2=2+2,∴菱形AEDF 的面积为:2+2.故答案为:2+2.[点睛]本题考查了菱形的性质、菱形的面积计算、等腰直角三角形的判定及勾股定理在计算中的应用,明确菱形的性质及根据勾股定理构建方程是解题的关键.16. △ABC 中,AD ⊥BC 于D ,AB =m ,AC =n ,∠ACB =2∠BAD ,用m 、n 表示AD 的长为_____.[答案]2242-m n m n[解析][分析]延长BC 至E ,使CE =AC ,连接AE ,根据三角形的外角性质、等腰三角形的性质得到∠B =∠BAC ,得到BC =AC =n ,根据勾股定理、三角形的面积公式计算即可.[详解]延长BC 至E ,使CE =AC ,连接AE ,则∠CAE =∠E ,∵∠ACB =∠CAE+∠E ,∴∠CAE =∠E =12∠ACB , ∵∠ACB =2∠BAD ,∴∠E =∠BAD ,∵AD ⊥BC ,∴∠B+∠BAD =90°,∴∠B+∠E =90°,即∠BAE =90°,∴∠BAC+∠CAE =90°,∵∠B+∠E =90°,∠CAE =∠E ,∴∠B =∠BAC ,∴BC =AC =n ,由勾股定理得,AE 22BE AB -224n m -S △BAE =12×AB×AE =12×BE×AD ,即m×224n m -=2n×AD ,解得:AD 224-m n m , 224-m n m . [点睛]本题考查的是等腰三角形的性质、直角三角形的性质、勾股定理,掌握三角形的外角性质、灵活运用三角形的面积公式是解题的关键.三、解答题(共72分)17. 计算:(1127123= (2)(3622)2÷=[答案](1)33;(2)332. [解析][分析](1)先化简二次根式,再计算二次根式的加减法即可;(2)利用二次根式除法的分配律进行计算即可.[详解](1)原式323333= 433=; (2)原式362222=332=.[点睛]本题考查了二次根式的加减法、除法运算,熟记运算法则是解题关键.18. 已知:如图,点E ,F 分别在□ABCD 的AB ,DC 边上, 且AE=CF ,联结DE ,BF .求证:四边形DEBF 是平行四边形.[答案]见解析[解析][分析]由四边形ABCD 是平行四边形,可得AB =CD ,AB ∥CD ,再说明EB=DF ,从而根据一组对边既平行又相等的四边形是平行四边形即可得证.[详解]∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,即EB ∥DF.∵AE =CF ,∴AB -AE =CD -CF ,即EB =DF .∴四边形DEBF 是平行四边形.[点睛]本题主要考查了平行四边形的性质与判定,熟练掌握平行四边形的性质定理与判定定理是解答本题的关键.19. 已知51,求代数式256x x +-的值.[答案]535-+[解析][分析]把x 的值代入多项式进行计算即可.[详解]当51时,256x x +-=))2515516+-=6255556--=535-+[点睛]本题考查了二次根式的化简求值,掌握完全平方公式是解题的关键.20. 如图,在每个小正方形边长为1的网格中,点A 、B 、C 均在格点上.(1)直接写出AC 的长为 ,△ABC 的面积为 ;(2)请在如图所示的网格中,用无刻度的直尺作出AC 边上的高BD ,并保留作图痕迹;(3)求BD 的长.[答案](1)29,9;(2)见解析;(3)182929[解析][分析](1)根据勾股定理和三角形的面积公式即可得到结论;(2)根据题意画出线段BD即可;(3)根据三角形的面积公式即可得到结论.[详解](1)AC=2225+=29,S△ABC=4×5﹣12×2×4﹣12×2×5﹣12×1×4=9,故答案为:29,9;(2)如图所示,BD即为所求,(3)∵S△ABC=12AC•BD=1292BD=9,∴BD 1829.[点睛]本题考查了作图﹣应用与设计作图,三角形的面积的计算,勾股定理,正确的作出图形是解题的关键.21. 如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD,求证:四边形OCED 是菱形.[答案]见解析[解析][分析]首先根据两对边互相平行的四边形是平行四边形证明四边形OCED 是平行四边形,再根据矩形的性质可得OC=OD ,即可利用一组邻边相等的平行四边形是菱形判定出结论.[详解]证明:∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形.∵四边形ABCD 是矩形,∴OC=OD=12AC=12BD ∴四边形OCED 是菱形.22. 在△ABC 中,AB =AC =5.(1)若BC =6,点M 、N 在BC 、AC 上,将△ABC 沿MN 折叠,使得点C 与点A 重合,求折痕MN 的长;(2)点D 在BC 的延长线上,且BC :CD =2:3,若AD =10,求证:△ABD 是直角三角形.[答案](1)103;(2)见解析 [解析][分析] (1)如图1,过作AD BC ⊥于,根据等腰三角形的性质得到3BD CD ==,求得4=AD ,根据折叠的性质得到AM CM =,1522AN AC ==,设AM CM x ==,根据勾股定理即可得到结论; (2)如图2,过作AE BC ⊥于,根据等腰三角形的性质得到12BE CE BC ==,设2BC t =,3CD t =,AE h =,得到BE CE t ==,根据勾股定理和勾股定理的逆定理即可得到结论.[详解]解:(1)如图1,过作AD BC ⊥于,5AB AC ==,6BC =,3BD CD ∴==,4AD ∴=,将ABC ∆沿MN 折叠,使得点与点重合,AM CM ∴=,1522AN AC ==, 设AM CM x ==,3MD x ∴=-,222AD DM AM +=,2224(3)x x ∴+-=, 解得:256x , 222225510()()623MN AM AN ∴=-=-=; (2)如图2,过作AE BC ⊥于, AB AC =,12BE CE BC ∴==, :2:3BC CD =,设2BC t =,3CD t =,AE h =,BE CE t ∴==, 5AB =,10AD =,2225h t ∴+=,222(4)10h t +=,联立方程组解得,5t =(负值舍去),55BD ∴=222222510125(55)AB AD BD+=+===,ABD∴∆是直角三角形.[点睛]本题考查了翻折变换(折叠问题),等腰三角形的性质,勾股定理的逆定理,勾股定理,正确的作出辅助线构造直角三角形是解题的关键.23. ▱ABCD中,点E、F分别在AB、AD上,∠EAF=∠B=60°,AD=nAB.(1)当n=1时,求证:△AEF为等边三角形;(2)当n=12时,求证:∠AFE=90°;(3)当CE=CF,DF=4,BE=3时,直接写出线段EF的长为.[答案](1)见解析;(2)见解析;(339[解析][分析](1)根据菱形的判定定理得到平行四边形ABCD为菱形,得到△ACD为等边三角形,证明△F AC≌△EAB,根据全等三角形的性质得到AF=AE,根据等边三角形的判定定理证明结论;(2)延长AF至N,使DN=AD,延长AF至P,使FP=AF,延长BC、NP交于点H,根据菱形的判定定理得到四边形ABHN为平行四边形,根据(1)中结论解答;(3)延长EF交AD的延长线于G,延长FE交AB的延长线于H,作DM⊥FG于M,把△AFG绕点A顺时针旋转120°,得到△APH,求出PE的长,证明△F AE≌△P AE,根据全等三角形的性质得到EF=PE,得到答案.[详解](1)证明:当n=1时,AD=AB,∴平行四边形ABCD 为菱形,∴∠ACD =12∠BCD =60°,∠CAB =60°, ∴△ACD 为等边三角形,∴AC =AD =AB ,∵∠EAF =60°,∴∠F AE =∠CAB ,∴∠F AC =∠EAB ,在△F AC 和△EAB 中,FAC EAB AC ABFCA EBA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△F AC ≌△EAB (ASA )∴AF =AE ,又∵∠EAF =60°,∴△AEF 为等边三角形;(2)证明:如图2,延长AF 至N ,使DN =AD ,延长AF 至P ,使FP =AF ,延长BC 、NP 交于点H ,∵DN =AD ,FP =AF ,∴DF 是△ANP 的中位线,∴NP ∥AB ,又AN ∥BH ,∴四边形ABHN 为平行四边形,∵AB =AN ,∴平行四边形ABHN 为菱形,由(1)可知,△APE 为等边三角形,∵AF =FP ,∴EF ⊥AP ,∴∠AFE =90°;(3)解:如图3,延长EF交AD的延长线于G,延长FE交AB的延长线于H,作DM⊥FG于M,把△AFG绕点A顺时针旋转120°,得到△APH,∵CF=CE,∴∠CFE=∠CEF=30°,∵AG∥BC,∴∠G=∠CEF=30°,∴∠G=∠DFG,∴DG=DF,又DM⊥FG,∴GM=MF,在Rt△DMF中,∠DFM=30°,∴DM=12DF=2,由勾股定理得,MF2223DF DM-=∴GF=3∴PH=GF=3,同理,∠BHE=30°,EH=3,∴∠PHN=60°,∴∠NPH=30°,∴NH=12PH=3∴EN=EH﹣NH3,由勾股定理得,PN22PH NH-6, ∴PE2239PN EN-=∵∠F AE =60°,∠BAD =120°,∴∠DAF +∠EAB =60°,∴∠HAP +∠EAB =60°,即∠EAP =60°,∴∠F AE =∠EAP ,在△F AE 和△P AE 中,AF AP FAE PAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△F AE ≌△P AE (SAS )∴EF =PE =39, 故答案为:39.[点睛]本题考查的是菱形的判定和性质、全等三角形的判定和性质、等边三角形的性质、旋转变换的应用,正确作出辅助线、掌握全等三角形的判定定理和性质定理是解题的关键.24. 书籍和纸张的长与宽比值都有固定的尺寸,如常用的A 3、A 4、A 5的纸张长与宽的比值都相等.一长方形纸张对折后的小长方形的长与宽的比值与原长方形的长与宽的比值相等.(1)求满足这样条件的长方形的长与宽的比值;(2)如图所示的长方形ABCD 长与宽之比也满足以上条件,其中宽AB =2.①点P 是AD 上一点,将△BP A 沿BP 折叠得到△BPE ,当BE 垂直AC 时,求AP 的长; ②若将长方形ABCD 绕点B 旋转得到长方形A 1BC 1D 1,直线CC 1交DD 1于点M ,N 为BC 的中点,直接写出MN 的最大值: .[答案](1)2a b;(2)①232231 [解析][分析] (1)设长方形的长与宽分别为a ,b .根据对折后的小长方形的长与宽的比值与原长方形的长与宽的比值相等,构建关系式解决问题即可;(2)①如图1中,延长PE 、BC 交于点G ,证明AC =PG ,PG =BG 即可解决问题;②如图2中,连接BM ,取BD的中点O ,连接OM ,ON ,延长CC 1到K ,使得C 1K =CC 1在MK 的延长线上取一点J ,使得D 1J =D 1K .想办法证明DM =MD 1,推出BM ⊥DD 1,求出OM ,ON 即可解决问题.[详解](1)设长方形的长与宽分别为a ,b . 由题意:2a b a b =,∴a 2=2b 2,∴2a b=; (2)①如图1中,延长PE 、BC 交于点G ,∵∠PEB =90°,∴PE ⊥BE ,∵BE ⊥AC ,BE ⊥PE ,∴PG ∥AC ,∵四边形ABCD 是矩形,∴AB =CD =2,AD =BC =2,AD ∥BG ,∠ABC =90°, ∴四边形APGC 是平行四边形,∴PG =AC 22AB BC +222(22)+23∵AD ∥BC , ∴∠APB =∠GBP ,∵∠APB =∠GPB ,∴∠GBP =∠GPB ,∴GP =GB =3,∴AP =CG =BG =BC =32;②如图2中,连接BM,取BD的中点O,连接OM,ON,延长CC1到K,使得C1K=CC1在MK的延长线上取一点J,使得D1J=D1K,连接BD1.∵BC=BC1,∴∠BCC1=∠BC1C,∵∠BC1D1=∠BCD=90°,∴∠D1C1K+∠BC1C=90°,∠BCC1+∠DCC1=90°,∴∠D1C2K=∠DCC1,∵CD=C1D1,CC1=C1K,∴△DCC1≌△D1C1K(SAS),∴DC1=KD1=JD1,∠CC1D=∠C1KD1,∵∠JKD1+∠C1JKD1=180°,∠CC1D+∠DC1M=180°,∴∠DC1M=∠D1KJ,∵D1J=D1K,∴∠J=∠D1KJ,∴∠J=∠DC1M,∵∠D1MJ=∠DMC1,∴△D1MJ≌△DMC1(AAS),∴D1M=DM′,∵BD=BD1,∴BM⊥DD1,取BD的中点O,连接OM,ON,∵∠BMD=90°,∴OM=12BD3∵BO=OD,BN=CN,∴ON=12CD=1,∵MN≤OM+ON,∴,∴MN+1..[点睛]本题属于几何变换综合题,考查了矩形的性质,旋转变换,平行四边形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加辅助线构造全等三角形解决问题,属于中考压轴题.。
八年级下学期数学期中考试试卷含答案(共5套,人教版)
人教版八年级第二学期期中考试试卷数学试题校区 班级 姓名本试卷考试时间为:90分钟 满分为:100分一、选择题(每题3分,共24分)1.下列各组数据中的三个数,可作为三边长构成直角三角形的是A .4,5,6B .2,3,4C .11,12,13D .8,15,17 2.方程0)1()23(22=++--x x x 的一般形式是A .0552=+-x x B . 0552=++x x C . 05-52=+x x D . 052=+x 3.用配方法解方程2410x x --=,方程应变形为A .2(2)3x +=B .2(2)5x += C .122=-)(x D .2(2)5x -=4.2016年国内某地产公司投资破8亿元,连续两年增长后,2018年国内地产投资破9.5亿元, 设这两年平均地产投资年平均增长率为x ,根据题意,所列方程中正确的是A .819.52=+)(xB .8-19.52=)(xC .9.5218=+)(xD .9.5182=+)(x 5.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,且DE ∥AC ,CE ∥BD ,若AC =2,则四边形OCED的周长为A .16B .8C .4D .25题图 6题图 7题图6.如图,△ABC 中,AB =AC =12,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长是A .20B .16C .13D .127.如图,在平行四边形ABCD 中,AB=3,AD =5,∠BCD 的平分线交BA 的延长线于点E ,则AE 的长为 A .3 B .2.5 C .2 D .1.58.为了研究特殊四边形,李老师制作了这样一个教具(如下左图):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、 B 与D 两点之间分别用一根橡皮筋拉直固定. 课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如下右图). 观察所得到的四边形,下列判断正确的是 A .∠BCA =45° B .BD 的长度变小 C .AC =BD D .AC ⊥BDA BCDDCBA →二、填空题(每题3分,共24分)9.若关于x 的方程042=-+-a x x 有两个不相等的实数根,写出一个满足条件的整数a 的值:a =____________.10.如下图,作一个以数轴的原点为圆心,长方形对角线为半径的圆弧,交数轴于点A ,则点A 表示的数是____________.11.在平面直角坐标系中,四边形AOBC 是菱形。
2024年人教版八年级数学下册期中考试卷(附答案)
2024年人教版八年级数学下册期中考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个选项是勾股定理的正确表达?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^22. 在直角三角形中,如果一个角是30度,那么它的对边长度是斜边长度的多少?A. 1/2B. 1/3C. 1/4D. 1/63. 下列哪个选项是平行四边形的性质?A. 对边相等B. 对角相等C. 对角线互相平分D. 所有选项都正确4. 下列哪个选项是正方形的性质?A. 对边平行B. 四个角都是直角C. 对角线相等D. 所有选项都正确5. 下列哪个选项是圆的性质?A. 半径相等B. 直径相等C. 圆心到圆上任意一点的距离相等D. 所有选项都正确二、判断题5道(每题1分,共5分)1. 勾股定理只适用于直角三角形。
()2. 平行四边形的对角线互相平分。
()3. 正方形的对角线相等且互相垂直。
()4. 圆的半径是圆心到圆上任意一点的距离。
()5. 圆的直径是圆上任意两点之间的距离。
()三、填空题5道(每题1分,共5分)1. 勾股定理的表达式是:a^2 + b^2 = ______。
2. 平行四边形的对角线互相平分,所以它的对角线长度是______。
3. 正方形的四个角都是______度。
4. 圆的半径是圆心到圆上______的距离。
5. 圆的直径是圆上______点之间的距离。
四、简答题5道(每题2分,共10分)1. 简述勾股定理的内容。
2. 简述平行四边形的性质。
3. 简述正方形的性质。
4. 简述圆的性质。
5. 简述圆的直径和半径之间的关系。
五、应用题:5道(每题2分,共10分)1. 在直角三角形ABC中,已知AC = 6cm,BC = 8cm,求AB的长度。
2. 在平行四边形ABCD中,已知AB = 10cm,BC = 8cm,求CD的长度。
人教版数学八年级下册《期中考试试卷》(带答案)
人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,1523. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.5. 关于x一元二次方程x2-kx-6=0根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 57. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB=米,则点到直线AB距离PC为().A. 米B. 3米C. 米D. 米8. 如图,在矩形ABCD 中,AE平分∠BAD 交BC于点E,ED=5,EC=3,则矩形的周长为( )A. 18B. 20C. 22D. 249. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角四边形是菱形10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个二.填空题(每小题3分,共30分)11. 函数x–1的自变量x的取值范围是_____.12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.18. 如图,在正方形ABCD 中,AC=62,E是BC边的中点,F是AB边上一动点,则FB+FE 的最小值为_________.19. 在ABCD 中,AB=10,BC边上的高为6,AC=5则▭ABCD 的面积为_________.20. 如图,在△ABC中,∠ABC=90°,D为AB边上一点(BD<BC),AE⊥AB,AE=BD,连接DE交AC于F,若∠AFE=45°,AD=5CD=5,则线段AC长度为_________.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程 (1)(3x -1)2=2(3x -1) (2)3x 2-23 x +1=022. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合. (1)画一个面积为10的等腰直角三角形; (2)画一个周长为20,面积为15菱形.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |cd =ad-bc ,上述记号就叫做2阶行列式. (1)若249|x13|x=0,求x 的值; (2)若11|x x +-11|x x -+=6,求x 的值.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC . (1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定为每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? 26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,ON=34,求EG的长.27. 已知,在四边形ABCD中,AD∥BC,AB∥DC,点E在BC延长线上,连接DE,∠A+∠E=180°.(1)如图1,求证:CD=DE;(2)如图2,过点C作BE的垂线,交AD于点F,请直接写出BE、AF、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC的平分线,交CD于G,交CF于H,连接FG,若∠FGH=45°,DF=8,CH=9,求BE的长.答案与解析一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)[答案]A[解析][分析]本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.[详解]A.该方程符合一元二次方程的定义,故本选项符合题意;B.x=1x,不是整式方程,故本选项不符合题意;C.x2+3x-2y=0,含有两个未知数,故不是一元二次方程,故本选项错误;D.x2+2=(x-1)(x+2),方程整理后是一元一次方程,故本选项错误;故选:A.[点睛]本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,152[答案]B[解析][分析]根据勾股定理的逆定理,验证四个选项中数据是否满足“较小两边平方的和等于最大边的平方”,由此即可得出结论.[详解]A、因为32=9,42=16,52=25,92+162≠252,不能构成直角三角形,此选项错误;B、因为52+122=132,能构成直角三角形,此选项正确;C、因为(13)2+(14)2(15)2,不故能构成直角三角形,此选项错误.D、因为222111345222⎛⎫⎛⎫⎛⎫+≠⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不能构成直角三角形,此选项错误.故选:B.[点睛]本题考查了勾股定理的逆定理,解题的关键是根据勾股定理的逆定理验证四个选项.本题属于基础题,难度不大,解决该题型题目时,套入数据验证“较小两边平方的和是否等于最大边的平方”是关键.3. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等[答案]A[解析][分析]根据菱形性质和平行四边形的性质逐一判断即可.[详解]解:A.菱形对角线互相垂直,而平行四边形的对角线不一定垂直,故本选项符合题意;B.菱形和平行四边形的对角线都不一定相等,故本选项不符合题意;C.菱形和平行四边形的对角线都互相平分,故本选项不符合题意;D.菱形和平行四边形的对角都相等,故本选项不符合题意.故选A.[点睛]此题考查的是菱形的性质和平行四边形的性质,掌握菱形的性质和平行四边形的性质是解决此题的关键.4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.[答案]D[解析]根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.5. 关于x一元二次方程x2-kx-6=0的根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况[答案]A[解析][分析]先计算△=(-k)2-4×1×(-6)=k2+24>0,即可判断方程根的情况.[详解]∵△=(-k)2-4×1×(-6)=k2+24>0,∴一元二次方程x2-kx-6=0有两个不相等的实数,故选:A.[点睛]本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 5[答案]B[解析][分析]根据勾股定理求出BC,根据三角形中位线定理计算即可.[详解]∵∠C=90°,AC=8,AB=10,∴22AB AC,∵D、E分别为AC、AB中点,∴DE=12BC=3,故选:B.[点睛]本题考查的是三角形中位线定理和勾股定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.7. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB =米,则点到直线AB 距离PC 为( ).A. 米B. 3米C. 米D. 米[答案]B [解析] [分析]设点到直线AB 距离PC 为米,根据正切的定义用表示出AC 、BC ,根据题意列出方程,解方程即可. [详解]解:设点到直线AB 距离PC 为米, 在Rt APC △中,3tan PCAC x PAC==∠,在Rt BPC △中,3tan 3PC BC x PBC ==∠,由题意得,3323x x -=, 解得,3x =(米),故选:.[点睛]本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键. 8. 如图,在矩形ABCD 中,AE 平分∠BAD 交BC 于点E ,ED =5,EC =3,则矩形的周长为( )A. 18B. 20C. 22D. 24 [答案]C[解析][分析]根据勾股定理求出DC=4;证明BE=AB=4,即可求出矩形的周长.[详解]∵四边形ABCD是矩形,∴∠C=90°,AB=CD;AD∥BC;∵ED=5,EC=3,∴DC2=DE2-CE2=25-9,∴DC=4,AB=4;∵AD∥BC,∴∠AEB=∠DAE;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB=4,矩形的周长=2(4+3+4)=22.故选:C.[点睛]该题主要考查了矩形的性质及其应用问题;解题的关键是灵活运用矩形的性质.9. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角的四边形是菱形[答案]C[解析][分析]利用平行四边形及特殊的平行四边形的判定方法判定后即可确定正确的选项.[详解]A.一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,故选项A错误;B.两条对角线相等且有一个角是直角的平行四边形是矩形,故选项B错误;C.如图,作AE⊥BC于点E,DF⊥BC交BC的延长线于F,则∠AEB=∠DFC=90°.∵四边形ABCD是平行四边形,∴AB=DC,AB∥CD,∴∠ABE=∠DCF,∴△ABE≌△DCF,∴AE=DF,BE=CF.在Rt△ACE和Rt△BDF中,由勾股定理得,AC2=AE2+EC2=AE2+(BC-BE)2,BD2=DF2+BF2=DF2+(BC+CF)2=AE2+(BC+BE)2,∴AC2+BD2=2AE2+2BC2+2BE2=2(AE2+BE2)+2BC2.又∵AE2+BE2=AB2,故AC2+BD2=2(AB2+BC2);即平行四边形两条对角线的平方和等于四条边的平方和,正确;D.有两条对角线平分一组对角的四边形是菱形,故选项D错误.故答案为:C[点睛]考查了命题与定理的知识,解题的关键是了解平行四边形的判定及特殊的平行四边形的判定方法,难度不大.10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 的周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个[答案]D[解析][分析]①作辅助线,延长HF交AD于点L,连接CF,通过证明△ADF≌△CDF,可得:AF=CF,故需证明FC=FH,可证:AF=FH;②由FH⊥AE,AF=FH,可得:∠HAE=45°;③作辅助线,连接AC交BD于点O,证BD=2FG,只需证OA=GF即可,根据△AOF≌△FGH,可证OA=GF,故可证BD=2FG;④作辅助线,延长AD至点M,使AD=DM,过点C作CI∥HL,则IL=HC,可证AL=HE,再根据△MEC≌△MIC,可证:CE=IM,故△CEH的周长为边AM的长.[详解]①连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.②∵FH⊥AE,FH=AF,∴∠HAE=45°.③连接AC交BD于点O,可知:BD=2OA,∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.④连接EM,延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,∵HL⊥AE,CI∥HL,∴AE⊥CI,∴∠DIC+∠EAD=90°,∵∠EAD+∠AED=90°,∴∠DIC=∠AED,∵ED⊥AM,AD=DM,∴EA=EM,∴∠AED=∠MED,∴∠DIC=∠DEM,∴∠CIM=∠CEM,∵CM=MC,∠ECM=∠CMI=45°,∴△MEC≌△CIM,可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故①②③④结论都正确.故选D.[点睛]解答本题要充分利用正方形的特殊性质,在解题过程中要多次利用三角形全等.二.填空题(每小题3分,共30分)11. 函数–1的自变量x的取值范围是_____.[答案]x≥0[解析]试题分析:根据二次根式有意义的条件是被开方数大于等于0,可知x≥0.考点:二次根式有意义12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.[答案]50°[解析]在四边形ABCD中,AB∥CD,AD∥BC,根据两组对边分别平行的四边形为平行四边形,可得四边形ABCD为平行四边形,根据平行四边形的对角相等即可得∠B=∠D=50°.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.[答案]﹣1.[解析][分析]根据一元二次方程的定义得到m-1≠0;根据方程的解的定义得到m2-1=0,由此可以求得m的值.[详解]解:把x=0代入(m﹣1)x2+x+m2﹣1=0得m2﹣1=0,解得m=±1,而m﹣1≠0,所以m=﹣1.故答案为﹣1.[点睛]本题考查一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____[答案]16[解析][分析]边AB的长是方程x2-7x+12=0的一个根,解方程求得x的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.[详解]∵解方程x2-7x+12=0得:x=3或4∵对角线长为6,3+3=6,不能构成三角形;∴菱形的边长为4.∴菱形ABCD的周长为4×4=16.[点睛]本题考查菱形的性质,由于菱形的对角线和两边组成了一个三角形,根据三角形三边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.[答案]20%[解析][分析]本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)2=1+44%,解这个方程即可求出答案.[详解]解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)2=1+44%,解得x1=-2.2(舍去),x2=0.2.答:这两年平均每年绿地面积的增长率为20%.故答案为20%[点睛]此题考查增长率的问题,一般公式为:原来的量×(1±x)2=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________[答案]63[解析]分析:先根据两组对边分别平行证明四边形ABCD是平行四边形,再根据两张纸条的宽度相等,利用面积求出AB=BC,然后根据邻边相等的平行四边形是菱形;根据宽度是3与∠ABC=60°求出菱形的边长,然后利用菱形的面积=底×高计算即可.详解:纸条的对边平行,即AB∥CD,AD∥BC ,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是3 ,∴S四边形ABCD=AB×3=BC×3 ,∴AB=BC ,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.如图,过A作AE⊥BC,垂足为E,∵∠ABC=60∘ ,∴∠BAE=90°−60°=30°,∴AB=2BE ,在△ABE中,AB2=BE2+AE2 ,即AB2=14AB2+32 ,解得AB=23,∴S四边形ABCD=BC⋅AE=23×3=63.故答案是:63.点睛:本题考查了平行四边形的判定与性质,含30°角的直角三角形的性质,勾股定理,菱形的判定与性质,熟练掌握菱形的判定与性质是解答本题的关键.17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.[答案]210[解析][分析]过G作GM⊥AB于M,连接AE,则MG=AD=AB,根据折叠的性质得到AE⊥GF,根据全等三角形的性质得到MF=BE=2,根据勾股定理即可得到结论.[详解]过G作GM⊥AB于M,连接AE,则MG=AD=AB,∵将正方形ABCD的一角折向边CD,使点A与CB上一点E重合,∴AE⊥GF,∴∠FAE+∠AFG=∠AFG+∠MGF ,∴∠BAE=∠MGF ,在△ABE 与△MGF 中B GMF AB GMMGF BAM ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABE ≌△GMF ,∴MF=BE=2,∵MG=AD=BC=6,∴FG=22=210FM MG +, 故答案为:210.[点睛]此题主要考查了图形的翻折变换,根据图形折叠前后图形不发生大小变化得出三角形的全等是解决问题的关键,难度一般.18. 如图,在正方形ABCD 中,AC =62,E 是BC 边的中点,F 是AB 边上一动点,则FB +FE 的最小值为_________.[答案]35[解析][分析]首先确定ED=EF+FD=EF+BF 的值最小.然后根据勾股定理计算.[详解]连接BD ,ED 交AC 于O ,F ,连接BF ,此时EF+BF= EF+FD =ED 的值最小.在正方形ABCD 中,AC =62, ∴BC=CD=6, ∵E 是BC 边的中点,∴CE=3在Rt △CDE 中,根据勾股定理可得DE=2263635CE CD +=+=. ∴FB +FE 的最小值为35故答案为:35.[点睛]此题考查了线路最短的问题,确定动点F 的位置时,使EC+ED 的值最小是关键. 19. 在ABCD 中,AB =10,BC 边上的高为6,AC =35,则▭ABCD的面积为_________.[答案]66[解析][分析]解直角三角形得到BC 的长,根据平行四边形的面积计算公式可得到结论.[详解]如图,∵AE ⊥BC ,在Rt △ABE 中,∵AB=10,AE=6,∴22AB AE -=8,在Rt △AEC 中,∵AC=35,AE=6,∴CE=22AC AE -=3,∴BC=BE+CE=11,∴平行四边形ABCD 的面积=11×6=66, 故答案为:66.[点睛]本题考查了平行四边形的面积,勾股定理,熟练掌握平行四边形的性质是解题的关键.20. 如图,在△ABC 中,∠ABC =90°,D 为AB 边上一点(BD <BC ),AE ⊥AB ,AE =BD ,连接DE 交AC 于F ,若∠AFE =45°,AD =35,CD =5,则线段AC 的长度为_________.[答案]10[解析][分析]延长BC 到G ,使BG=AD ,连接DG 、EG ,证明ACGE 是平行四边形,可得CG=AE=BD ,在直角三角形DBC 中运用勾股定理求出BD 、BC 的长,最后运用勾股定理求出AC 的长即可.[详解]延长BC 到G ,使BG=AD ,连接DG 、EG ,90,ABC AE AB ︒∠=⊥90EAD DBG ∴∠=∠=︒180EAD DBG ∴∠+∠=︒90AED ADE ∠+∠=︒//AE BG ∴,AE BD AD BG ==()AED BDG SAS ∴≅∆,DE DG AED BDG ∴=∠=∠90ADE BDG ∴∠+∠=︒1809090EDG ︒∴-︒∠==︒DEG ∴是等腰直角三角形,45DEG ∴∠=︒45AFE =︒∠AFE FEG ∴∠=∠AC EG ∴//∴四边形ACGE 是平行四边形,AE CG ∴=∵AE=BDBD CG ∴=∵AD =∴设BD=x ,则,在Rt △BCD 中,∵CD=5,∴222CD BD BC =+,即2225=)x x +,解得,1x =,2x当x =,即BD =此时BC =,BD BC >, 不合题意,∴x =即∴在直角三角形ABC 中,10==故答案为:10.[点睛]此题主要考查了平行四边形的判定与性质,以及勾股定理,作辅助线构造平行四边形以及证明CG=AE=BD 是解题的关键.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程(1)(3x -1)2=2(3x -1)(2)3x 2-x +1=0[答案](1)113x =,21x =;(2)12x x == [解析][分析](1)原方程移项后进行因式分解,变形为两个一元一次方程求出方程的解即可;(2)原方程运用公式法求解即可.[详解](1)(3x -1)2=2(3x -1)(3x -1)2-2(3x -1)=0(3x -1)[(3x -1)-2]=0(3x -1)(3x -3)=0∴3x -1=0,3x -3=0解得,113x =,21x =;(2)3x 2-x +1=0这里a=3,b=-c=1∴△=b 2-4ac=(-2-4×3×1=0∴x ==∴12x x ==. [点睛]此题主要考查了解一元二次方程的方法灵活运用,熟练掌握解一元二次方程的方法是解题的关键.22. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合.(1)画一个面积为10的等腰直角三角形;(2)画一个周长为20,面积为15的菱形.[答案](1)见解析;(2)见解析[解析]分析](1)利用数形结合的思想画出直角边为25的等腰三角形即可.(2)利用数形结合的思想画出边长5,高为3的菱形即可.[详解](1)如图1中,平行四边形ABCD即为所求.(2)如图2中,菱形ABCD即为所求.[点睛]本题考查作图-应用与设计,等腰直角三角形的判定,菱形的判定等知识,解题的关键是学会利用数形结合的思想思考问题.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |c d =ad-bc ,上述记号就叫做2阶行列式.(1)若249|x13|x =0,求x 的值; (2)若11|x x +- 11|x x -+=6,求x 的值.[答案](1)1x =2x =(2)1x =,2x =[解析][分析] (1)根据2阶行列式公式列出方程26490x -=,运用直接开平方法即可求得答案;(2)根据2阶行列式公式列出方程2(1)(1)(1)6x x x +---=,即可求得答案.[详解](1)由题意可得:26490x -=∴26=49x 249=6x∴1x =2x = (2)由题意可得:2(1)(1)(1)6x x x +---=,整理得,22x =,解得,1x =,2x =.[点睛]考查了解一元二次方程-直接开平方法,本题根据2阶行列式的公式来解一元二次方程,比较简单,容易掌握.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC .(1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.[答案](1)证明见解析;(2)S△ABC,S四边形ABDE,S矩形ADCE[解析][分析](1)首先得到四边形ADCE是平行四边形,然后利用有一个角是直角的平行四边形是矩形判断矩形即可;(2)根据四边形ADCE是矩形,得到AD∥CE,于是得到S△ADC=S△ADF=S△AED,即可得到结论.[详解](1)证明:∵点D、点O别是BC、AC的中点,∴OD∥AB,∴DE∥AB,又∵AE∥BD,∴四边形ABDE是平行四边形,∵点D是BC的中点,∴AE平行且等于DC,∴四边形AECD是平行四边形,∵AB=AC,D为BC的中点,∴AD⊥BC,∴四边形ADCE是矩形;(2)解:∵四边形ADCE是矩形,∴AD∥CE,∴S△ADC=S△ADF=S△AED,∴四边形ABDF面积=S△ABC=S四边形ABDE=S矩形ADCE.[点睛]本题考查了矩形判定和性质,平行线的性质,三角形的中位线的性质,熟练掌握矩形的判定和性质定理是解题的关键.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? [答案](1)月销售量450千克,月利润6750元;(2)销售单价应定为80元/千克[解析][分析](1)销售单价每涨价1元,月销售量就减少10千克.那么涨价5元,月销售量就减少50千克.根据月销售利润=每件利润×数量,即可求解;(2)等量关系为:销售利润=每件利润×数量,设单价应定为x元,根据这个等量关系列出方程,解方程即可.[详解](1)月销售量为:500﹣5×10=450(千克),月利润为:(55﹣40)×450=6750(元).(2)设单价应定为x元,得:(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=60,x2=80.当x=60时,月销售成本为16000元,不合题意舍去.∴x=80.答:销售单价应定为80元/千克.[点睛]本题主要考查一元二次方程的实际应用,找出等量关系,列出方程,是解题的关键.26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,求EG的长.[答案](1)证明见解析;(2)证明见解析;(3)7105[解析][分析](1)如图1中,证明Rt△CBE≌△Rt△DCF(HL),即可解决问题.(2)如图2中,连接OC.想办法证明△OBE≌△OCF(SAS),即可解决问题.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,首先证明△OMN是等腰直角三角形,利用勾股定理求出a即可解决问题.[详解](1)如图1中,∵四边形ABCD是正方形,∴BC=CD,∠B=∠DCF=90°,∵DE=CE,∴Rt△CBE≌△Rt△DCF(HL),∴BE=CF,∠ECB=∠CDF,∵∠ECB+∠DCE=90°,∴∠CDF+∠DCE=90°,∴∠CGD=90°,∴EC⊥DF.(2)如图2中,连接OC.∵CB=CD,∠BCD=90°,OB=OD,∴OC=OB=OD,OC⊥BD,∴∠OCB=45°,∵四边形ABCD是正方形,∴∠ABD=45°,∴∠OBE=∠OCF,∵BE=CF,OB=OC,∴△OBE≌△OCF(SAS),∴OE=OF,∠BOE=∠COF,∴∠EOF=∠BOC=90°,∴△EOF是等腰直角三角形.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,∵BE=BM,CF=CN,BE=CF,∴BM=CN,∵OB=OC,∠OBM=∠OCN=135°,BM=CN,∴△OBM≌△OCN(SAS),∴∠BOM=∠COM,∴∠MON=∠BOC=90°,∴△MON是等腰直角三角形,∵34∴MN=217, 在Rt △MBN 中,a 2+16a 2=68,∴a=2(负根已经舍弃),BE=2,BC=6,EC=210,∵△CGF ∽△CBE ,CG CF CB CE∴=, 26210CG ∴=, 3105CG ∴=, 31071021055EG EC CG ∴=-=-=. [点睛]本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题.27. 已知,在四边形ABCD 中,AD ∥BC ,AB ∥DC ,点E 在BC 延长线上,连接DE ,∠A +∠E =180°.(1)如图1,求证:CD=DE ;(2)如图2,过点C 作BE 的垂线,交AD 于点F ,请直接写出BE 、AF 、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC 的平分线,交CD 于G ,交CF 于H ,连接FG ,若∠FGH=45°,DF=8,CH=9,求BE 的长.[答案](1)证明见解析;(2)BE=AF+3DF ;(3)31[解析][分析](1)利用等角的补角判断出∠DCE=∠E即可;(2)先判断出四边形CFDN是矩形,再判断出CN=NE=FD,即可得出结论;(3)先判断出∠ABG=∠BGC,进而得出四边形BCFM是正方形,即可判断出△BMK≌△BCH,再用勾股定理求出BM=15,即可得出AD=BC=BM=15,即可求出结论.AD BC AB DC[详解](1)∵//,//四边形ABCD是平行四边形,∴∠A=∠BCD,∵∠A+∠E=180°,∠BCD+∠DCE=180°,∴∠DCE=∠E,∴CD=DE;(2)如图2,过点D作DN⊥BE于N,∵CF⊥BE,∴∠DNC=∠BCF=90°,∴FC∥DN,∵四边形ABCD是平行四边形,∴AD∥BC,∴四边形CFDN是矩形,∴FD=CN,∵CD=DE,DN⊥CE,∴CN=NE=FD,∵四边形ABCD是平行四边形,∴BC=AD=AF+FD,∴BE=AF+3DF.(3)如图3,过点B作BM⊥AD于点M,延长FM至K,使KM=HC.连接BK,∵▱ABCD,∴AB∥CD,∴∠ABG=∠BGC,∵BG平分∠ABC,∴设∠ABG=∠CBG=∠BGC=α,∴BC=CG,∵∠FGH=45°,∴∠FGC=45°+α,∵∠BCF=90°,∴∠BHC=∠FHG=90°-α,∴∠HFG=45°+α=∠FGC,∴FC=CG=BC,∵BM⊥AD,∴∠MBC=90°=∠FCE=∠MFC,∴四边形BCFM是矩形,∵BC=FC,∴四边形BCFM是正方形,∴BM=MF=BC=AD,∴MA=DF=8,∵∠KMB=∠BCH=90°,KM=CH,∴△BMK≌△BCH,∴KM=CH=9,∠KBM=∠CBH=α,∠K=∠BHC=90°-α, ∵∠MBC=90°,∴∠MBA=90°-2α,∴∠KBA=90°-α=∠K,∴AB=AK=8+9=17,在Rt△ABM中,∠BMA=90°,=15,∴AD=BC=BM=15,∴AF=AD-DF=15-8=7,∴BE=AF+3DF=7+3×8=31.[点睛]此题是四边形综合题,主要考查了平行四边形的性质,矩形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,勾股定理,解本题的关键是(2)判断出四边形CFDN是矩形,(3)求出AB=17.。
新人教版八年级数学下册期中考试卷及答案【A4打印版】
新人教版八年级数学下册期中考试卷及答案【A4打印版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若32a3a+=﹣a3a+,则a的取值范围是()A.﹣3≤a≤0 B.a≤0 C.a<0 D.a≥﹣3 2.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-63.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣194.已知关于x的分式方程21mx-+=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠2 5.已知a与b互为相反数且都不为零,n为正整数,则下列两数互为相反数的是()A.a2n-1与-b2n-1 B.a2n-1与b2n-1 C.a2n与b2n D.a n与b n6.已知2,1=⎧⎨=⎩xy是二元一次方程组7,{1ax byax by+=-=的解,则a b-的值为()A.-1 B.1 C.2 D.37.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度9.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a-=__________.21273=___________.3.因式分解:a3﹣2a2b+ab2=________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中有__________对全等三角形.6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+.2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,直线y=kx+6分别与x 轴、y 轴交于点E ,F ,已知点E 的坐标为(﹣8,0),点A 的坐标为(﹣6,0).(1)求k 的值;(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时,△OPA的面积为,并说明理由.5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、C4、D5、B6、A7、D8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、()()33a a +-23、a (a ﹣b )2.4、()()2a b a b++.5、36、8三、解答题(本大题共6小题,共72分)1、4x=2、11a-,1.3、(1)12b-≤≤;(2)24、(1)k=;(2)△OPA的面积S=x+18 (﹣8<x<0);(3)点P坐标为(,)或(,)时,三角形OPA的面积为.5、(1)略(2)等腰三角形,理由略6、(1)2元;(2)至少购进玫瑰200枝.。
数学八下期中考试题及答案
数学八下期中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.5B. √2C. 0.33333...D. 3答案:B2. 一个正数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 2答案:A3. 已知一个三角形的两边长分别为3和4,第三边长x满足的条件是:A. 1 < x < 7B. 0 < x < 7C. 1 < x < 5D. 0 < x < 5答案:A4. 函数y=2x+3的图象不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C5. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A6. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 0D. 5或-5答案:D7. 下列哪个选项是偶数?A. 2B. 3C. 5D. 7答案:A8. 一个数的倒数是1/3,那么这个数是:A. 3B. 1/3C. 3/1D. 1答案:A9. 一个数的平方是9,那么这个数可能是:A. 3B. -3C. 9D. 3或-3答案:D10. 一个数的立方是-8,那么这个数是:A. 2B. -2C. 8D. -8答案:B二、填空题(每题4分,共20分)1. 一个数的平方根是4,那么这个数是______。
答案:162. 一个数的立方根是2,那么这个数是______。
答案:83. 一个数的倒数是2,那么这个数是______。
答案:1/24. 一个数的绝对值是5,那么这个数可能是______。
答案:5或-55. 一个数的相反数是-7,那么这个数是______。
答案:7三、解答题(共50分)1. 解方程:2x - 3 = 7。
(10分)答案:x = 52. 计算:(3x^2 - 2x + 1) - (x^2 + 3x - 4)。
(10分)答案:2x^2 - 5x + 53. 已知一个三角形的两边长分别为5和12,求第三边长的取值范围。
人教版数学八年级下册期中考试试题附答案
人教版数学八年级下册期中考试试卷一、单选题1.下列条件中,不能判断四边形ABCD 是平行四边形的是()A .∠A=∠C ,∠B=∠DB .AB ∥CD ,AB=CDC .AB=CD ,AD ∥BCD .AB ∥CD ,AD ∥BC2.下列各组长度的线段能组成直角三角形的是().A .a =2,b =3,c =4B .a =4,b =4,c =5C .a =5,b =6,c =7D .a =5,b =12,c =133.下列各式中,最简二次根式是()AB C .D 4.若式子在实数范围内有意义,则x 的取值范围是()A .x≤﹣3B .x≥﹣3C .x <﹣3D .x >﹣35.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为().A .120︒B .60︒C .30︒D .15︒6.下列命题中,正确的是().A .有一组邻边相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .两组邻角相等的四边形是平行四边形D .对角线互相垂直且相等的平行四边形是正方形7.如图,矩形ABCD 中,AB=3,两条对角线AC 、BD 所夹的钝角为120°,则对角线BD 的长为A .B .C .33D .38.如图,在矩形ABCD 中,84AB BC ==,,将矩形沿对角线AC 折叠,则重叠部分AFC △的面积为()A .12B .10C .8D .69.如图,正方形ABCD 的两条对角线AC ,BD 相交于点O ,点E 在BD 上,且BE =CD ,则∠BEC 的度数为()A .22.5°B .60°C .67.5°D .75°10.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC ,PF ⊥CD ,垂足分别为点E ,F ,连接AP ,EF ,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③2EC;④△APD 一定是等腰三角形.其中正确的结论有().A .1个B .2个C .3个D .4个二、填空题11.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB=DC”.你同意________的观点,理由是________.12.如图,菱形ABCD 中,若BD=24,AC=10,则AB 的长等于________,该菱形的面积为____________.13.在Rt △ABC 中,a ,b 均为直角边且其长度为相邻的两个整数,若1a b <<,则该直角三角形斜边上的高为____________.14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为.现已知△ABC 的三边长分别为1,2ABC的面积为______.15.已知:,x y为实数,且4y <,则4y --果为_______.16.如图以直角三角形ABC 的斜边BC 为边在三角形ABC 的同侧作正方形BCEF ,设正方形的中心为O,连结AO,如果AB=4,,则AC=________三、解答题17.计算:(1+;(2.18.如图,已知 ABCD,E,F是对角线BD上的两点,且DE=BF.求证:四边形AECF是平行四边形.19.如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.20.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.21.如图,菱形ABCD的对角线AC和BD交于点O,分别过点C.D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=23EA的长。
2023年部编版八年级数学下册期中试卷及答案【完美版】
2023年部编版八年级数学下册期中试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3 B .a <﹣3 C .a >3 D .a ≥32.关于x 的分式方程2322x m m x x++=--的解为正实数,则实数m 的取值范围是( ) A .6m <-且2m ≠ B .6m >且2m ≠ C .6m <且2m ≠- D .6m <且2m ≠3.成人每天维生素D 的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为( )A .74610-⨯B .74.610-⨯C .64.610-⨯D .50.4610-⨯4.把38a 化为最简二次根式,得 ( )A .22a aB .342aC .322aD .24a a5.如图,已知菱形的两条对角线分别为6cm 和8cm ,则这个菱形的高DE 为( )A .2.4cmB .4.8cmC .5cmD .9.6cm6.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A.485B.325C.245D.1257.下列四个图形中,线段BE是△ABC的高的是()A. B.C. D.8.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°9.夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.530020015030x yx y+=⎧⎨+=⎩B.530015020030x yx y+=⎧⎨+=⎩C.302001505300x yx y+=⎧⎨+=⎩D.301502005300x yx y+=⎧⎨+=⎩10.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A .3B .4C .5D .6二、填空题(本大题共6小题,每小题3分,共18分)1.若2x =5,2y =3,则22x+y =________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.6.如图,长为8 cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3 cm 到点D ,则橡皮筋被拉长了_____ cm.三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.3.已知关于x 的方程x 2-(m +2)x +(2m -1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.4.如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB=13.(1)求点B 的坐标;(2)若△ABC 的面积为4,求2l 的解析式.5.如图,某市有一块长为()3a b +米,宽为()2a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当3,2a b ==时的绿化面积?6.因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已成为国内外游客最喜欢的旅游目的地城市之一.著名“网红打卡地”磁器口在2018年五一长假期间,接待游客达20万人次,预计在2020年五一长假期间,接待游客将达28.8万人次.在磁器口老街,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经测算知,该小面成本价为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天多销售30碗.(1)求出2018至2020年五一长假期间游客人次的年平均增长率;(2)为了更好地维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、C4、A5、B6、C7、D8、D9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、752、03、如果两个角互为对顶角,那么这两个角相等4、(-4,2)或(-4,3)5、56、2.三、解答题(本大题共6小题,共72分)1、53xy=⎧⎨=⎩.2、22x-,12-.3、(1)略;(2)4或4+.4、(1)(0,3);(2)112y x=-.5、(5a2+3ab)平方米,63平方米6、(1)年平均增长率为20%;(2)每碗售价定为20元时,每天利润为6300元.。
2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)
20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。
2. 3x+5y=10,求y的值。
3. 4x2y=6,求x的值。
4. 5x+3y=15,求y的值。
5. 2x4y=8,求x的值。
6. 3x+5y=10,求y的值。
7. 4x2y=6,求x的值。
8. 5x+3y=15,求y的值。
9. 2x4y=8,求x的值。
10. 3x+5y=10,求y的值。
三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。
初二数学期中试卷及参考答案
2023-2024学年度第二学期期中考试初二数学试卷一、选择题:(本大题共8小题,每小题3分,共24分. 请将答案涂到答题纸上.)1.中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下列“立春”、“谷雨”、“白露”、“大雪”,四幅作品是中心对称图形的是 ( ▲ )A .B .C .D . 2.分式b a 221与c ab 261的最简公分母是 ( ▲ ) A .abc B .a 2b 2c C .6a 2b 2c D .12a 2b 2c3.下列计算正确的是 ( ▲ )A .39±=B .1028=+C .()55-2=D .326=÷4.如图,在平行四边形ABCD 中,∠A +∠C =80°,则∠D = ( ▲ )A .80°B .40°C .70°D .140°5.若k 1<0<k 2,则在同一平面直角坐标系内,函数y =k 1x 和xk y 2=的图象大致是( ▲ ) A . B . C . D .6.若点A (﹣2,y 1),B (﹣1,y 2)都在函数xy 6=的图象上,则y 1,y 2的大小关系是( ▲ ) A .y 1>y 2 B .y 1=y 2 C .y 1<y 2 D .不能确定7.甲、乙两人每小时一共可做30个电器零件,两人同时开始工作,当甲做了90个零件时乙做了60个零件,设甲每小时能做x 个零件,根据题意可列分式方程为 ( ▲ )A .x x -=309060B .x x -=306090C .x x +=309060D .xx +=309090 8.现有一张平行四边形纸片ABCD ,AD >AB ,要求用尺规作图的方法在边BC ,AD 上分别找点M .N ,使得四边形AMCN 为平行四边形,甲、乙两位同学的作法如图所示,下列判断正确的是 ( ▲ )A .甲对、乙不对B .甲不对、乙对C .甲、乙都对D .甲、乙都不对第4题 第8题二、填空题:(本大题共8小题,每小题3分,共24分. 请将答案填写在答题纸上.)9.若代数式51-x 有意义,则实数x 的取值范围是 ▲ . 10.已知最简二次根式1-x 与二次根式22是同类二次根式,则x = ▲ .11.如图,A ,B 两地被池塘隔开,小明先在AB 外选一点C ,然后测出AC ,BC 的中点M ,N ,并测量出MN 长为12m ,由此可知A ,B 间距离= ▲ m .12.如图,矩形ABCD 的对角线相交于点O ,AB =3,AD =4,则线段AO 的长度为 ▲ .13.如图,在正方形网格中,图②是由图①经过变换得到的,其旋转中心可能是点 ▲ .14.若关于x 的方程xm x x -=--554有增根,则m = ▲ . 15.a 是方程x 2﹣x ﹣1=0的一个根,则代数式2024﹣2a 2+2a 的值是 ▲ .16.如图,在平面直角坐标系中,正方形OABC 的顶点O 与原点重合,顶点A ,C 分别在x 轴,y 轴上,反比例函数()0,0>>=x k xk y 的图象与正方形的两边AB ,BC 分别交于点M ,N ,连接OM ,ON ,MN ,若∠MON =45°,MN =3,则k 的值为 ▲ .三. 解答题:(本大题共9小题,共72分. 请将解答过程填写在答题纸上.)17.(6分)计算:(1)3232-2-210⨯+⎪⎭⎫ ⎝⎛ . 解方程:(2)0542=--x x 18.(6分)先化简44222112+--÷⎪⎭⎫ ⎝⎛-+x x x x ,再从不等式组0≤x <3中选择一个适当的整数,代入求值.19.(7分)如图,菱形ABCD 的对角线交于O 点,BE ∥AC ,CE ∥DB .(1)求证:四边形OBEC 是矩形;(2)若AB =5,BD =6,则四边形OBEC 的面积为 .20.(8分)已知关于x 的一元二次方程x 2﹣(m ﹣4)x ﹣m +3=0.(1)求证:该方程总有两个实数根; 第11题 第12题 第13题 第16题(2)若x 1,x 2是该方程的两个实数根,且(x 1+1)(x 2+1)=a ,求a 的值.21.(9分)如图1,反比例函数()0≠=m xm y 与一次函数y =kx+b (k ≠0)的图象交于点A (1,3),点B (n ,1),一次函数y =kx +b (k ≠0)与y 轴相交于点C .(1)求反比例函数和一次函数的表达式;(2)连接OA ,OB ,求△OAB 的面积;(3)当xm b kx >+时,x 的范围为 ▲ .22.(4分)已知平行四边形ABCD 是中心对称图形,点E 是平面上一点,请仅用无刻度直尺画出点E 关于平行四边形ABCD 对称中心的对称点F .(1)如图1,点E 是平行四边形ABCD 的AD 上一点;(2)如图2,点E 是平行四边形ABCD 外一点.23.(8分)第十九届亚运会在杭州举行.某网络经销商购进了一批以杭州亚运会为主题的文化衫进行销售,文化衫的进价每件30元.根据市场调查:在一段时间内,销售单价是45元时,每日销售量是550件;销售单价每涨1元,每日文化衫就会少售出10件.设该批文化衫的销售单价为x 元(x >55).(1)请你写出销售量y (件)与销售单价x (元)的函数关系式 ▲ .(2)若经销商获得了10000元销售利润,则该文化衫单价x 应为多少元?24.(12分)如图,点P 是y 轴正半轴上的一个动点,过点P作y 轴的垂线l ,与反比例函数xy 4-= 的图象交于点A .把直线l 上方的反比例函数图象沿着直线l 翻折,其它部分保持不变,所形成的新图象称为“x y 4-=的l 镜像”. (1)当OP =3时:①点M ⎪⎭⎫ ⎝⎛2-21-, ▲ “x y 4-=的l 镜像”;(填“在”或“不在”) ②“xy 4-=的l 镜像”与x 轴交点坐标是 ▲ ; (2)过y 轴上的点Q (0,﹣1)作y 轴垂线,与“x y 4-=的l 镜像”交于点B 、C ,点B 在点C 左侧。
人教版八年级下册数学期中考试试题含答案
人教版八年级下册数学期中考试试卷一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣22.下列二次根式中,最简二次根式是()A.B.C.D.3.下列二次根式中,与之积为无理数的是()A.B.C.D.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.25.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,256.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm29.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.810.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.12.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2B.4C.4D.8二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=.14.相邻两边长分别是2+与2﹣的平行四边形的周长是.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是,面积是.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.参考答案与试题解析一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣2【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于或等于0,列不等式,即可求出x的取值范围.【解答】解:由题意得:2+x≥0,解得:x≥﹣2,故选D.【点评】本题考查了二次根式有意义的条件,难度不大,解答本题的关键是掌握二次根式的被开方数为非负数.2.下列二次根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的概念进行判断即可.【解答】解:=a,A错误;=,B错误;=3,C错误;是最简二次根式,D正确,故选:D.【点评】本题考查的是最简二次根式的概念,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.3.下列二次根式中,与之积为无理数的是()A.B.C.D.【考点】二次根式的乘除法.【分析】根据二次根式的乘法进行计算逐一判断即可.【解答】解:A、,不是无理数,错误;B、,是无理数,正确;C、,不是无理数,错误;D、,不是无理数,错误;故选B.【点评】此题考查二次根式的乘法,关键是根据法则进行计算,再利用无理数的定义判断.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.2【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,m﹣1=0,n+2=0,解得m=1,n=﹣2,所以,m+n=1+(﹣2)=﹣1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,25【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、52+122=132,故是直角三角形,故正确;B、42+52≠62,故不是直角三角形,故错误;C、12+()2=()2,故是直角三角形,故正确;D、72+242=252,故是直角三角形,故正确.故选B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD【考点】平行四边形的性质.【分析】根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.【解答】解:∵在平行四边形ABCD中,∴AB∥CD,∴∠1=∠2,(故A选项正确,不合题意);∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,(故B选项正确,不合题意);AB=CD,(故C选项正确,不合题意);无法得出AC⊥BD,(故D选项错误,符合题意).故选:D.【点评】此题主要考查了平行四边形的性质,熟练掌握相关的性质是解题关键.7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°【考点】三角形内角和定理;正方形的性质.【分析】根据三角形内角和为180°,得到∠BAC+∠BCA+∠ABC=180°,又∠4=∠5=∠6=90°,根据平角为180°,即可解答.【解答】解:如图,∵图中是三个正方形,∴∠4=∠5=∠6=90°,∵△ABC的内角和为180°,∴∠BAC+∠BCA+∠ABC=180°,∵∠1+∠4+∠BAC=180°,∠2+∠6+∠ABC=180°,∠3+∠5+∠ACB=180°,∴∠1+∠4+∠BAC+∠2+∠6+∠ABC+∠3+∠5+∠ACB=540°,∴∠1+∠2+∠3=540°﹣(∠4+∠5+∠6+∠BAC+∠ABC+∠ACB)=540°﹣90°﹣90°﹣90°﹣180°=90°,故选:B.【点评】本题考查了三角形内角和定理,解决本题的关键是运用三角形内角和为180°,正方形的内角为90°以及平角为180°,即可解答.8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm2【考点】勾股定理;矩形的性质.【专题】计算题.【分析】在直角三角形ABC中,由AB与AC的长,利用勾股定理求出BC的长,再由BE的长,求出矩形CBEF的面积即可.【解答】解:在Rt△ABC中,AB=17cm,AC=8cm,根据勾股定理得:BC==15cm,则矩形CBEF面积S=BC•BE=45cm2.故选C【点评】此题考查了勾股定理,以及矩形的性质,熟练掌握勾股定理是解本题的关键.9.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.8【考点】估算无理数的大小.【分析】首先得出<<,进而求出的取值范围,即可得出n的值.【解答】解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.【点评】此题主要考查了估算无理数,得出<<是解题关键.10.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形【考点】勾股定理的逆定理.【分析】对原式进行化简,发现三边的关系符合勾股定理的逆定理,从而可判定其形状.【解答】解:∵原式可化为a2+b2=c2,∴此三角形是直角三角形.故选:C.【点评】解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()【考点】矩形的性质.【分析】本题主要根据矩形的性质,得△EBO ≌△FDO ,再由△AOB 与△OBC 同底等高,△AOB 与△ABC 同底且△AOB 的高是△ABC 高的得出结论.【解答】解:∵四边形为矩形,∴OB=OD=OA=OC ,在△EBO 与△FDO 中,∵,∴△EBO ≌△FDO (ASA ),∴阴影部分的面积=S △AEO +S △EBO =S △AOB ,∵△AOB 与△ABC 同底且△AOB 的高是△ABC 高的,∴S △AOB =S △OBC =S 矩形ABCD .故选:B .【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.12.如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,则AE 的边长为()【考点】平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理.【专题】计算题;压轴题.【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE 平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=6.【考点】二次根式的混合运算.【专题】计算题.【分析】先把化简,然后把括号内合并后进行二次根式的乘法运算即可.【解答】解:原式=(+2)×=3×=6.故答案为6.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.14.相邻两边长分别是2+与2﹣的平行四边形的周长是8.【考点】二次根式的应用.【分析】根据平行四边形的周长等于相邻两边的和的2倍进行计算即可.【解答】解:平行四边形的周长为:(2++2﹣)×2=8.故答案为:8.【点评】本题考查的是平行四边形的周长的计算和二次根式的加减,掌握平行四边形的周长公式和二次根式的加减运算法则是解题的关键.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为60cm2.【考点】勾股定理;等腰三角形的性质.【分析】根据题意画出图形,过点A作AD⊥BC于点D,根据BC=10cm可知BD=5cm.由勾股定理求出AD的长,再由三角形的面积公式即可得出结论.【解答】解:如图所示,过点A作AD⊥BC于点D,∵AB=AC=13cm,BC=10cm,∴BD=5cm,∴AD===12cm,∴S△ABC=BC•AD=×10×12=60(cm2).故答案为:60cm2.【点评】本题考查的是勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是60°.【考点】平行四边形的性质.【分析】由平行四边形的性质得出∠A=∠C,∠A+∠B=180°,再由已知条件求出∠A,即可得出∠B.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=240°,∴∠A=120°,∴∠B=60°;故答案为:60°.【点评】本题考查了平行四边形的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是20,面积是24.【考点】菱形的性质.【分析】首先根据题意画出图形,然后由菱形的两条对角线长分别是6和8,可求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长与面积.【解答】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5,∴此菱形的周长是:5×4=20,面积是:×6×8=24.故答案为:20,24.【点评】此题考查了菱形的性质以及勾股定理.注意菱形的面积等于对角线积的一半.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为(9,4).【考点】平行四边形的性质;坐标与图形性质.【分析】由平行四边形的性质得出CD=AB=9,由勾股定理求出OD,即可得出点C的坐标.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=9,∵点A的坐标为(﹣3,0),∴OA=3,∴OD===4,∴点C的坐标为(9,4).故答案为:(9,4).【点评】本题考查了平行四边形的性质、坐标与图形性质、勾股定理;熟练掌握平行四边形的性质,由勾股定理求出OD是解决问题的关键.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是24.【考点】平行四边形的性质.【分析】由在平行四边形ABCD中,DE平分∠ADC,易证得△CDE是等腰三角形,继而求得CD的长,则可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=8,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴CD=CE=BC﹣BE=8﹣4=4,∴AB=CD=4,∴平行四边形ABCD的周长是:AD+BC+CD+AB=24.故答案为:24.【点评】此题考查了平行四边形的性质以及等腰三角形的判定与性质.注意证得△CDE是等腰三角形是关键.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为24m2.【考点】勾股定理的应用.【分析】连接AC,利用勾股定理可以得出三角形ACD和ABC是直角三角形,△ABC的面积减去△ACD的面积就是所求的面积.【解答】解:如图,连接AC由勾股定理可知AC===5,又AC2+BC2=52+122=132=AB2故三角形ABC是直角三角形故所求面积=△ABC的面积﹣△ACD的面积==24(m2).【点评】考查了直角三角形面积公式以及勾股定理的应用.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【解答】解:(1)原式=4+3﹣2+4=7+2;(2)原式=4×12÷(5+﹣4)=48÷(2)=8.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.【考点】图形的剪拼;实数与数轴;分式的化简求值;勾股定理.【分析】(1)首先将括号里面通分,进而利用分式的除法运算法则化简,进而将已知代入求出答案;(2)直接利用勾股定理结合数轴得出的位置;(3)直接利用勾股定理得出大正方形的边长即可.【解答】解:(1)原式=÷=×=,当x=+,y=﹣时,原式==;(2)因为30=25+5,则首先作出以5和为直角边的直角三角形,则其斜边的长即是.如图所示:;(3)如图所示:∵左边是由两个边长为2的小正方形组成,∴大正方形的边长为:=2.【点评】此题主要考查了分式的混合运算以及无理数的确定方法以及勾股定理、图形的剪拼,正确应用勾股定理是解题关键.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质得出AD∥BC,AD=BC,求出AF=CE,根据平行四边形的判定得出即可.【解答】证明:四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DF=BE,∴AF=CE,∴四边形AECF是平行四边形.【点评】本题考查了平行四边形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.【考点】翻折变换(折叠问题).【专题】计算题.【分析】根据矩形的性质得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=4,设EC=x,则DE=EF=8﹣x,在Rt△EFC中,根据勾股定理得x2+42=(8﹣x)2,然后解方程即可.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴FC=BC﹣BF=4,设EC=x,则DE=8﹣x,EF=8﹣x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3,∴EC的长为3cm.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.【考点】分母有理化.【专题】规律型.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:(1)原式==;(2)原式=+++…+=(﹣1).【点评】本题考查了分母有理化,分子分母都乘以分母两个数的差是分母有理化的关键.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【考点】正方形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB;(2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.【解答】证明:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,∵∠ADC=90°,∴四边形MPND是矩形,∵∠ADB=∠CDB,∴∠ADB=45°∴PM=MD,∴四边形MPND是正方形.【点评】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.【考点】矩形的判定;正方形的判定.【专题】压轴题.【分析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.【解答】(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.【点评】此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.。
新人教版八年级数学下册期中试卷及答案
新人教版八年级数学下册期中试卷及答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是()A.﹣2020 B.﹣12020C.2020 D.120202.若关于x的方程3m(x+1)+5=m(3x-1)-5x的解是负数,则m的取值范围是()A.m>-54B.m<-54C.m>54D.m<543.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π4.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣345.已知一次函数y=kx+b随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()A.B.C.D.6.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣37.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁8.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°9.如图,在平面直角坐标系中,反比例函数y=kx(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.62B.10 C.226D.22910.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b|+2()a b +的结果是________.2.比较大小:23________13.3.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.如图,在平面直角坐标系中,△AOB ≌△COD ,则点D 的坐标是__________.6.已知:在▱ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线EF 分别交AD于E 、BC 于F ,S △AOE =3,S △BOF =5,则▱ABCD 的面积是_____.三、解答题(本大题共6小题,共72分)1.解下列方程组(1)203216x y x y -=⎧⎨+=⎩ (2)410211x y x y -=⎧⎨+=⎩2.化简求值:(1)27x -48×4x +23x ; (2)2(53)(113)(113)-++-.3.已知方程组137x y ax y a -=+⎧⎨+=--⎩中x 为非正数,y 为负数.(1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?4.如图,直角坐标系xOy 中,一次函数y=﹣12x+5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C (m ,4). (1)求m 的值及l 2的解析式; (2)求S △AOC ﹣S △BOC 的值;(3)一次函数y=kx+1的图象为l 3,且11,l 2,l 3不能围成三角形,直接写出k 的值.5.如图,在△ABC 中,AB=BC ,BD 平分∠ABC ,四边形ABED 是平行四边形,DE 交BC 于点F ,连接CE求证:四边形BECD是矩形.6.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、B5、A6、D7、D8、A9、C 10、B二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、<3、13k <<.4、()()2a b a b ++.5、(-2,0)6、32三、解答题(本大题共6小题,共72分)1、(1)42x y =⎧⎨=⎩;(2)61x y =⎧⎨=-⎩.2、(12)3、(1)a 的取值范围是﹣2<a ≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1.4、(1)m=2,l 2的解析式为y=2x ;(2)S △AOC ﹣S △BOC =15;(3)k 的值为32或2或﹣12. 5、略6、(1)饮用水和蔬菜分别为200件和120件 (2)设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆; ③甲车4辆,乙车4辆(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元。
天津市部分区2023-2024学年八年级下学期期中练习数学试卷(含解析)
天津市部分区2023~2024学年度第二学期期中练习八年级数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合要求的.将正确选项填在下表中)1. 若在实数范围内有意义,则x的值可以是()A. 2B. 0C.D.答案:A解析:解:在实数范围内有意义,,即,的值可以是2,故选:A.2. 如果一个三角形的三边长分别为1,1,,那么这个三角形是( )A. 锐角三角形B. 等边三角形C. 钝角三角形D. 等腰直角三角形答案:D解析:∵有两边长都是1,∴三角形一定是等腰三角形;∵,∴对角一定是直角,故三角形一定是等腰直角三角形;故选D.3. 如图,在平行四边形中,若,则的大小为()A. B. C. D.答案:B解析:解:∵四边形是平行四边形,∴,∴∴故选B.4. 下列二次根式中,与能合并的是()A. B. C. D.答案:B解析:解:A:,与不是同类二次根式,所以不能合并,该选项不符合题意;B:,与是同类二次根式,所以能合并,该选项符合题意;C:,与不是同类二次根式,所以不能合并,该选项不符合题意;D:,与不是同类二次根式,所以不能合并,该选项不符合题意;故选:B.5. 在数学活动课上,老师要求同学们判断一个四边形门框是不是矩形,下面某学习小组拟定的测量方案,其中正确的是()A. 测量对角线是否互相平分B. 测量两组对边是否分别相等C. 测量一组对角是否都为直角D. 测量四边形的三个角是否都为直角答案:D解析:解:、测量对角线是否互相平分,只能判定四边形门框是不是平行四边形,不能判断是不是矩形,该测量方案不正确,不合题意;、测量两组对边是否分别相等,只能判定四边形门框是不是平行四边形,不能判断是不是矩形,该测量方案不正确,不合题意;、测量一组对角是否都为直角,无法判断一个四边形门框是不是矩形,该测量方案不正确,不合题意;、三个角是直角的四边形是矩形,故测量四边形的三个角是否都为直角能判断一个四边形门框是不是矩形,符合题意;故选:.6. 下列二次根式是最简二次根式的是()A. B. C. D.答案:C解析:解:根据最简二次根式的定义可得:选项,最简二次根式中被开方数不能为分数,不是最简二次根式,不符合题意,选项错误;选项,,即被开方数中含有能开得尽方的因数,不是最简二次根式,不符合题意,选项错误;选项,是最简二次根式,符合题意,选项正确;选项,,即被开方数中含有能开得尽方的因数,不是最简二次根式,不符合题意,选项错误.故选:.7. 在下列长度的各组线段中,能构成直角三角形的是( )A. 3,5,9B. 4,6,8C. 13,14,15D. 6,8,10答案:D解析:解:A、∵,∴不能构成直角三角形,本选项不符合题意;B、∵,∴不能构成直角三角形,本选项不符合题意;C、∵,∴不能构成直角三角形,本选项不符合题意;D、∵,∴能构成直角三角形,本选项符合题意;故选:D.8. 如图,四边形是正方形,点为原点,点的坐标是,点的坐标为()A. B. C. D.答案:A解析:解:∵四边形是正方形,点为原点,点的坐标是,∴,∵点在第二象限,∴点的坐标为,故选:A.9. 如图是由两个直角三角形和三个正方形组成的图形,其中阴影部分的面积是()A. B. C. D.答案:B解析:解:根据勾股定理得出:AB===5,∴EF=AB=5,∴阴影部分面积是25,故选:B.10. 如图,在△ABC中,D,E,F分别是AB、CA、BC的中点,若CF=3,CE=4,EF=5,则CD的长为()A. 5B. 6C. 8D. 10答案:A解析:∵CF=3,CE=4,EF=5,∴CF2+CE2=EF2,∴△ECF是直角三角形,即△ABC也是直角三角形,∵E,F分别是CA、BC的中点,∴EF是△ABC的中位线,∴AB=2EF=10,∵D为AB的中点,∴CD=AB=故选:A.11. 如图,将正方形沿对折,使点A落在对角线上的处,连接,则的大小为()A. B. C. D.答案:C解析:解:在正方形中,∵是正方形的对角线∴,,由折叠性质得,∴,∴,故选:C.12. 如图,中,垂直平分于点,则的长为()A. B. C. D.答案:C解析:解:垂直平分于点,,,,,∴,,,,∴,即,,,故选:C.二、填空题(本大题共6小题,每小题3分,共18分.请将答案直接填在题中横线上)13. 计算的结果是______.答案:解析:故答案为:.14. 如果=0,那么的值为____________答案:-6解析:解:在=0中,∴x-3=0,y+2=0,解得x=3,y=-2,所以,xy=3×(-2)=-6.故答案为:-6.15. 已知直角三角形的两直角边长分别为3cm和4cm,则斜边上的高为________cm.答案:2.4解析:解:由勾股定理,直角三角形斜边长==5(cm),设斜边上的高为h cm,则S=,∴h=2.4,即斜边上的高为2.4cm,故答案:2.4.16. 某地需要开辟一条隧道,隧道的长度无法直接测量.如图所示,在地面上取一点C,使C到A、B 两点均可直接到达,测量找到和的中点D、E,测得的长为1100m,则隧道的长度为______________m.答案:2200解析:解:∵点D、E分别为和的中点,∴是的中位线,∴(米),答:隧道的长度为2200米,故答案为:2200.17. 已知:在平行四边形ABCD中,对角线AC、BD相交于点O,过点O的直线EF分别交AD于E、BC 于F,S△AOE=3,S△BOF=5,则平行四边形ABCD的面积是_____.答案:32解析:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAC=∠BCA,∠AEF=∠CFE,又∵AO=CO,在△AOE与△COF中∴△AOE≌△COF∴△COF的面积为3,∵S△BOF=5,∴△BOC的面积为8,∵△BOC的面积=平行四边形ABCD的面积,∴▱ABCD的面积=4×8=32,故答案为32.18. 如图,在矩形中,平分,交于点,为的中点,为的中点,连接.若,.则:的长为______;的长为______.答案:①. ②.解析:解:矩形中,,,平分,,,;矩形中,,,,,中,,为的中点,为的中点,为的中位线,.故答案为:;.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19. 计算(1);(2).答案:(1)(2)小问1解析:解:原式;小问2解析:原式20. 已知:如图,平行四边形ABCD中,E、F分别是边BC和AD上的点,且BE=DF,求证:AE=CF答案:详见解析解析:证:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,又∵BE=DF,∴△ABE≌△CDF,∴AE=CF. (其他证法也可)21. 如图,,,,,求的面积.答案:30解析:解:如图,在中,∵,∴在中,∵∴∴为直角三角形.∴.22. 如图,在中,,现将它折叠,使点与重合,求折痕的长.答案:解析:解:由折叠的性质可得:,BD=CD,,∵,∴,∴AD=AB-BD=4-CD;在Rt△DAC中,由勾股定理得:,解得:,在Rt△DEC中,由勾股定理得:.答:折痕的长为.23. 如图,等边△ABC的边长是2,D,E分别是AB,AC的中点,延长BC至点F,使CF=BC,连接CD,EF(1)求证:CD=EF;(2)求EF的长.答案:(1)见解析;(2)EF=.解析:(1)∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC,∵使CF=BC,∴DE=FC,∴四边形CDEF是平行四边形,∴CD=EF.(2)∵四边形DEFC是平行四边形,∴CD=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴EF=CD==.24. 如图,在四边形中,,,E为对角线中点,F为边的中点,连接,.(1)求证:四边形是菱形;(2)连接交于点G,若,,求的长.答案:(1)证明见解析(2)4小问1解析:证明:为的中点,F为的中点,,,,,.又∵,,,四边形是平行四边形,是菱形.小问2解析:解:四边形是菱形,且,,,,,,.25. 如图,在中,,,.点从点出发沿方向以每秒个单位长的速度向点匀速运动,同时点从点出发沿方向以每秒个单位长的速度向点匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点,运动的时间是秒.过点作垂直于点,连接,.(1)求,的长;(2)求证:;(3)当为何值时,为直角三角形?请直接写出结果.答案:(1),.(2)证明见解析.(3)当或时,为直角三角形.小问1解析:解:在中,,,,,设,则,由勾股定理得:,即,解得,(舍去),,.小问2解析:证明:,,在中,,,,又,.小问3解析:解:依题得:,,,,,①当时,,,,四边形为矩形,此时,即,解得,②当时,,,,又由可得,,四边形是平行四边形,,,,,即,解得;③当时,点到达点,点到达点,此时、、三点共线,当时,不存在;综上,当或时,为直角三角形.。
江苏苏州2024年八年级下学期期中数学试题+答案
初二年级调研试卷数学2024.04本卷由选择题、填空题和解答题组成,共27题,满分130分,调研时间120分钟. 注意事项:1.答题前,考生务必将学校、班级、姓名、调研号等信息填写在答题卡相应的位置上.2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效;如需作图,先用2B 铅笔画出图形,再用0.5毫米,黑色墨水签字笔描黑,不得用其他笔答题.3.考生答题必须答在答题卡相应的位置上,答在试卷和草稿纸上一律无效;一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将答案填涂在答题卡相应位置上)1.下面四个图形分别是苏州博物馆、苏州轨道交通、苏州银行和苏州电视台的标志,在这四个图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.从装有红球、白球、黑球的不透明袋子中任意摸出一个球,该球是红球,这个事件是( )A .必然事件B .随机事件C .不可能事件D .都有可能 3.若分式221x x ++有意义,则x 的取值范围是( ) A .2x >− B .12x >− C .2x ≠− D .12x ≠− 4.国际奥委会于2001年7月13日在莫斯科举行会议,通过投票确定2008年奥运会举办城市.在第二轮投票中,北京获得总计105张选票中的56票,得票率超过50%,取得了2008年奥运会举办权.在第二轮投票中,北京得票的频数是( )A .50%B .56105C .56D .105 5.1x =是关于x 的一元二次方程220x ax b ++=的解,则24a b +的值是( )A .1−B .1C .2−D .26.“孔子周游列国”是流传很广的故事.相传有一次他和学生到离他们住的驿站30里的书院参观,学生步行出发1小时后,孔子坐牛车出发,牛车的速度是步行的1.5倍,孔子和学生们同时到达书院.设学生步行的速度为每小时x 里,则可列方程为( )A .303011.5x x =+ B .30301.51x x =+ C .303011.5x x =− D .30301.51x x =−7.如果关于x 的一元二次方程210kx x −+=有实数根,则k 的取值范围是( ) A .14k >且0k ≠ B .14k <且0k ≠ C .14k ≤且0k ≠ D .14k < 8.如图,在矩形ABCD 中,点E 是CD 的中点,点F 在BD 上,3BF DF =,若4,3AB BC ==,则EF 的长为( )(第8题)A .1B .54C .32D .52二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上........) 9.根据市生态环境局发布的数据,2023年上半年,全市环境空气质量优良天数比率为80.7%.要调查市区环境空气质量状况,适合的调查方式是___________(填“普查”或“抽样调查”)。
新人教版八年级数学下册期中试卷【附答案】
新人教版八年级数学下册期中试卷【附答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知243m-m-10m-m-m2=+,则计算:的结果为().A.3 B.-3 C.5 D.-52.平行四边形一边的长是10cm,那么这个平行四边形的两条对角线长可以是()A.4cm,6cm B.6cm,8cm C.8cm,12cm D.20cm,30cm 3.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.2xx y+-B.22yxC.3223yxD.222()yx y-4.化简x1x-,正确的是()A.x-B.x C.﹣x-D.﹣x5.如图,直线a,b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠56.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣37.汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=10,则S 2的值为( )A .113B .103C .3D .838.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 与灯塔P 之间的距离为( )A .60海里B .45海里C .203海里D .303海里9.如图将直尺与含30°角的三角尺摆放在一起,若120∠=︒,则2∠的度数是( )A .30B .40︒C .50︒D .60︒10.下列选项中,不能判定四边形ABCD 是平行四边形的是( )A .AD//BC ,AB//CDB .AB//CD ,AB CD =C .AD//BC ,AB DC =D .AB DC =,AD BC =二、填空题(本大题共6小题,每小题3分,共18分)1.若a,b都是实数,b =12a-+21a-﹣2,则a b的值为________.2.因式分解:22ab ab a-+=__________.3.分解因式:2x3﹣6x2+4x=__________.4.如图,在△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为__________.5.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=________度.6.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=________.三、解答题(本大题共6小题,共72分)1.解下列方程组() 32219612x yyx y ⎧-+=⎪⎨++=-⎪⎩2.先化简,再求值:21211222m mm m++⎛⎫-÷⎪++⎝⎭,其中22m=3.己知关于x 的一元二次方程x 2+(2k+3)x+k 2=0有两个不相等的实数根x 1,x 2.(1)求k 的取值范围;(2)若1211x x =﹣1,求k 的值.4.已知:如图,点A 、D 、C 、B 在同一条直线上,AD=BC ,AE=BF ,CE=DF ,求证:AE ∥BF .5.如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD ,等边△ABE ,已知∠BAC=30°,EF ⊥AB ,垂足为F ,连接DF(1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形.6.为保护环境,我市公交公司计划购买A 型和B 型两种环保节能公交车共10辆.若购买A 型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、D4、C5、C6、D7、B8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、42、()21 a b-3、2x(x﹣1)(x﹣2).4、135、30°6、6三、解答题(本大题共6小题,共72分)1、12 xy=⎧⎨=-⎩2、23、(1)k>﹣34;(2)k=3.4、略.5、略.6、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.。
2022-2023年部编版八年级数学下册期中试卷及答案【完美版】
2022-2023年部编版八年级数学下册期中试卷及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >4.已知三角形三边长为a 、b 、c ,且满足247a b -=, 246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定5.若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( )A .k<5B .k<5,且k ≠1C .k ≤5,且k ≠1D .k>56.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a 2+b 2+c 2—ab -bc -ca 的值等于( )A .0B .1C .2D .37.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,小华剪了两条宽为1的纸条,交叉叠放在一起,且它们较小的交角为60,则它们重叠部分的面积为( )A .1B .2C 3D .23 39.如图,点P 是∠AOB 内任意一点,且∠AOB =40°,点M 和点N 分别是射线OA 和射线OB 上的动点,当△PMN 周长取最小值时,则∠MPN 的度数为( )A .140°B .100°C .50°D .40°10.下列选项中,不能判定四边形ABCD 是平行四边形的是( )A .AD//BC ,AB//CDB .AB//CD ,AB CD =C .AD//BC ,AB DC =D .AB DC =,AD BC =二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.若|x |=3,y 2=4,且x >y ,则x ﹣y =__________.3.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为____________.4.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是________.5.如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E=________度.6.如图,ABCD 的对角线相交于点O ,且AD ≠CD ,过点O 作OM ⊥AC ,交AD 于点M .如果CDM 的周长为8,那么ABCD 的周长是_____.三、解答题(本大题共6小题,共72分)1.解方程组:20346x y x y +=⎧⎨+=⎩2.先化简,再求值:21(1)11x x x ÷+--,其中21x =.3.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d +的值.4.如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=10,OC=8.在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D ,E 两点的坐标.5.如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2.(1)求证:AE=CF;(2)求证:四边形EBFD是平行四边形.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、A5、B6、D7、D8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、x(x+2)(x﹣2)2、1或5.3、32或424、x=25、:略6、16三、解答题(本大题共6小题,共72分)1、原方程组的解为=63 xy⎧⎨=-⎩2、11x+,23、0.4、E(4,8) D(0,5)5、(1)见详解;(2)见详解6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
2022-2023年部编版八年级数学下册期中试卷及答案【完整版】
2022-2023年部编版八年级数学下册期中试卷及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.估计101+的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.(-9)2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或73.在圆的周长C =2πR 中,常量与变量分别是( )A .2是常量,C 、π、R 是变量B .2π是常量,C,R 是变量C .C 、2是常量,R 是变量D .2是常量,C 、R 是变量4.已知a 为实数,则代数式227122a a -+的最小值为( )A .0B .3C .33D .95.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-6.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=,2a BC =,AC b =,再在斜边AB 上截取2a BD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长7.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0 8.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.39.如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠410.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.3二、填空题(本大题共6小题,每小题3分,共18分)13x x=,则x=__________2.比较大小:3133.若214x xx++=,则2211xx++= ________.4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________5.我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼制成一个大正方形(如下图),设勾a=3,弦c=5,则小正方形ABCD 的面积是_______。
2024年最新人教版初二数学(下册)期中考卷及答案(各版本)
2024年最新人教版初二数学(下册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4 = 7x 2B. 2x 5 = 3x + 5C. 4x + 6 = 2x 8D. 5x 3 = 3x + 64. 下列各数中,绝对值最小的是()A. 3B. 0C. 2D. 55. 下列各数中,是正数的是()A. 4B. 0C. 3D. 76. 下列各数中,是整数的是()A. 2.5B. 0C. 3/4D. 4.67. 下列各数中,是分数的是()A. 2B. 0C. 3/4D. 58. 下列各数中,是负数的是()A. 2B. 0C. 3/4D. 49. 下列各数中,是偶数的是()A. 3B. 0C. 5D. 810. 下列各数中,是奇数的是()A. 2B. 0C. 3D. 4二、填空题(每题3分,共30分)1. 一个数的立方根是±2,这个数是________。
2. 下列各数中,不是有理数的是________。
3. 下列等式中,正确的是________。
4. 下列各数中,绝对值最小的是________。
5. 下列各数中,是正数的是________。
6. 下列各数中,是整数的是________。
7. 下列各数中,是分数的是________。
8. 下列各数中,是负数的是________。
9. 下列各数中,是偶数的是________。
10. 下列各数中,是奇数的是________。
三、解答题(每题10分,共30分)1. 解方程:3x + 4 = 7x 2。
2. 解方程:2x 5 = 3x + 5。
3. 解方程:4x + 6 = 2x 8。
四、证明题(每题10分,共20分)1. 证明:3x + 4 = 7x 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二学期期中阶段测试初二数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)第Ⅲ卷附加题三部分,其中第Ⅰ卷(选择题)和第Ⅱ卷共100分,第Ⅲ卷20分,考试时间100分钟。
第Ⅰ卷(共30分)一、选择题:(本大题共10小题,每小题3分,共30分. 在每小题的四个选项中,只有一个选项是符合题目要求的).1.下列各式中,运算正确的是( ). A .3333-= B .822= C .2+323=D .2(2)2-=- 2.下列二次根式中,是最简二次根式的是().A .15B .12C .13D .93.下列各组数中,以它们为边长的线段不能构成直角三角形的是( ). A .1,2,3B .3,4,5C .5,12,13D .2,2,31.4.如图,矩形ABCD 中,对角线AC ,BD 交于O 点. 若∠AOB=60°,AC =8,则AB 的长为( ).A .4B .43C .3D .55.如图,点A 是直线l 外一点,在l 上取两点B 、C ,分别以A 、C 为圆心,BC 、AB 长为半径画弧,两弧交于点D ,分别连接AB 、AD 、CD ,则四边形ABCD 一定是( ). A .平行四边形 B .矩形 C .菱形 D .正方形6.用配方法解方程2230x x --=,原方程应变形为( ).A .2(1)2x -=B .2(1)4x +=C .2(1)4x -= D .2(1)2x +=7.如图,在平行四边形ABCD 中,∠BAD 的平分线交BC 于点E ,∠ABC 的平分线交AD 于点F ,若BF =12,AB =10, 则AE 的长为( ).A .13B .14C .15D .16 8.下列命题中,正确的是().A .有一组邻边相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .两组邻角相等的四边形是平行四边形D .对角线互相垂直且相等的平行四边形是正方形9.如图,一根木棍斜靠在与地面(OM )垂直的墙(ON )上,设木棍中点为P ,若木棍A 端沿墙下滑,且B 沿地面向右滑行. 在此滑动过程中,点P 到点O 的距离( ). A .不变B .变小 C .变大 D .无法判断PFE D C BA E C'D CBA10.如图,在菱形ABCD 中,∠BAD =60°,AB =2,E 是DC 边上一个动点,F 是AB 边上一点,∠AEF =30°.设DE =x ,图中某条线段长为y ,y 与x 满足的函数关系的图象大致如图所示,则这条线段可能是图中的( ).A .线段ECB .线段AEC .线段EFD .线段BF第9题图 第10题图第Ⅱ卷(共70分)二、填空:(每小题2分,共10个小题,共20分) 11.写出一个以0,1为根的一元二次方程. 12.如果3x -在实数范围内有意义,那么x 的取值范围是________. 13.一元二次方程2x +kx -3=0的一个根是x=1,则k 的值是.14.如图,为了检查平行四边形书架ABCD 的侧边是否与上、下边都垂直,工人师傅用一根绳子比较了其对角线AC ,BD 的长度,若二者长度相等,则该书架的侧边与上、下边都垂直,请你说出其中的数学原理. 15.某城2016年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,预计到2018年底增加到363公顷,设绿化面积平均每年的增长率为x ,由题意所列方程是 . 16.如图,DE 为△ABC 的中位线,点F 在DE 上,且 ∠AFB =90°,若AB =5,BC =8,则EF 的长为.17.如果关于x 的一元二次方程210ax x +-=有实数根,则a的取值范围 是________.18.如图,矩形ABCD 中,AB=3,BC=5.过对角线交点O 作OE ⊥AC 交AD 于E,则AE 的长是.19.如图,将矩形ABCD 沿对角线BD 所在直线折叠,点C 落在同一平面内,落点记为C’,BC’与AD 交于点E ,若 AB=3,BC =4,则DE 的长为.20.如图,正方形ABCD 的面积是2,E ,F ,P 分别是AB ,BC ,AC 上的动点, PE +PF 的最小值等于.第18题图 第19题图 第20题图三、解答题:(21,22题每小题4分,23,24,25每题5分, 26,27每题6分, 28题7分;共计50分)21.计算(1)188(31)(31)-++-; (2)1(123)622+⨯-NMO A B P22.解方程: (1)2650x x -+=;(2) 22310x x --=.23.如图,在四边形ABCD 中,∠B =90º,AB=BC=2,AD =1,CD =3.求∠DAB 的度数.24.列方程或方程组解应用题如图,要建一个面积为40平方米的矩形花园 ABCD ,为了节约材料,花园的一边AD 靠着 原有的一面墙,墙长为8米(AD <8),另三 边用栅栏围成,已知栅栏总长为24米, 求花园一边AB 的长.25.如图,四边形ABCD 中,AB//CD ,AC 平分∠BAD ,CE//AD 交AB 于E. 求证:四边形AECD 是菱形.26.已知关于x 的一元二次方程22(22)40x m x m +++-=有两个不相等的实数根. (1)求m 的取值范围;(2)若m 为负整数,且该方程的两个根都是整数,求m 的值.27.如图,四边形ABCD 是矩形,点E 在CD 边上,点F 在DC 延长线上,AE =BF . (1)求证:四边形ABFE 是平行四边形(2)若∠BEF =∠DAE ,AE =3,BE =4,求EF 的长.28.如图,在正方形ABCD 中,点M 在CD 边上,点N 在正方形ABCD 外部,且满足∠CMN =90°,CM =MN .连接AN ,CN ,取AN 的中点E ,连接BE ,AC ,交于F 点. (1) ①依题意补全图形;②求证:BE ⊥AC .(2)请探究线段BE ,AD ,CN 所满足的等量关系,并证明你的结论.(3)设AB =1,若点M 沿着线段CD 从点C 运动到点D ,则在该运动过程中,线段EN 所扫过的面积为______________(直接写出答案).D A BC D ACB EDA第Ⅲ卷附加题(共20分)附加题(1题6分,2题7分,3题7分,共20分)1. 如图1,将边长为1的正方形ABCD 压扁为边长为1的菱形ABCD .在菱形ABCD 中,∠A 的大小为α,面积记为S .(1)请补全下表:30°45° 60° 90° 120° 135°150° S12122(2)填空:由(1)可以发现正方形在压扁的过程中,菱形的面积随着∠A 大小的变化而变化,不妨把菱形的面积S 记为S (α).例如:当α=30°时,1(30)2S S =︒=;当α=135°时,2(135)2S S ο==.由上表可以得到 (60)S S ︒=( ______°);(150)S S ︒=( ______°),…,由此可以归纳出(180)()S S α︒-=.(3) 两块相同的等腰直角三角板按图2的方式放置,AD =2,∠AOB =α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).图2图2 2.已知:关于x 的一元二次方程23(1)230(3)mx m x m m --+>-=. (1)求证:方程总有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x ,且12x x <. ①求方程的两个实数根1x ,2x (用含m 的代数式表示); ②若1284mx x <-,直接写出m 的取值范围.3. 阅读下列材料:问题:如图1,在平行四边形ABCD 中,E 是AD 上一点,AE=AB ,∠EAB=60°,过点E 作直线EF ,在EF 上取一点G ,使得∠EGB=∠EAB ,连接AG. 求证:EG =AG+BG.小明同学的思路是:作∠GAH=∠EAB 交GE 于点H ,构造全等三角形,经过推理解决问题. 参考小明同学的思路,探究并解决下列问题:(1)完成上面问题中的证明;(2)如果将原问题中的“∠EAB=60°”改为“∠EAB=90°”,原问题中的其它条件不变(如图2),请探究线段EG、AG、BG之间的数量关系,并证明你的结论.(1)证明:图1(2)解:线段EG、AG、BG之间的数量关系为____________________________.证明:图2初二数学答案及评分标准=(31)-…………………………………………………3分 2……………………………………………………………4分(2)原式=2, ----2分 ==3⨯3分 ==…………………………………………………………………4分 22.(1)解:2650x x -+=移项,得265x x -=-.配方,得26959x x -+=-+,…………………………………………………1分所以,2(3)4x -=.………………………………………………………………2分 由此可得32x -=±,所以,15x =,21x =.…………………………………………………………4分 (2)解:2a =,3b =-,1c =-.………………………………… 1分224(3)42(1)170b ac∆=-=--⨯⨯-=>.………………………2分方程有两个不相等的实数根x ==,1x 2x .……………………………………4分23.解:连接AC在Rt △ABC 中,∠B =90º,AB =BC =2,∴∠BAC =∠ACB =45°,………………………………………………1分∴222AC AB BC =+.∴22AC =.………………………………2分 ∵AD =1,CD =3,∴222AC AD CD +=.…………………………3分 在△ACD 中,222AC AD CD +=,∴△ACD 是直角三角形,即∠DAC =90º.……………………………………4分 ∵∠BAD =∠BAC +∠DAC ,∴∠BAD =135º.………………………………………………………………5分 24.解:设AB 的长为x 米,则AD=BC=(242x -)米. (242)240x x -⋅=………………………………2分212200x x -+=(10)(2)0x x --=1210,2x x ==………………………………4分当110,4x AD == 当22,20x AD ==8,4AD AD <∴=10x ∴=………………………………5分答:AB 的长为10米.25.证明:∵AB ∥CD ,CE ∥AD∴四边形ADCE 是平行四边形…………………1分 ∵AC 平分∠BAD∴∠DAC=∠EAC ………………2分 ∵AB ∥CD∴∠DCA=∠EAC ………………3分 ∴∠DAC=∠DCA∴AD=DC …………………………4分 ∴四边形ADCE 是菱形…………5分26. 解:(1)∵一元二次方程22(22)40x m x m +++-=有两个不相等的实数根, ∴2224(22)41(4)b ac m m ∆=-=+-⨯⨯-………………………………1分 8200m =+>……………………………………………………………2分∴52m >-.……………………………………………………………………3分(2)∵m 为负整数,∴1m =-或2-.……………………………………………………………4分当1m =-时,方程230x -=的根为13x =,23x =-不是整数,不符合题意,舍去.…………………………………………………………………………5分当2m =-时,方程220x x -=的根为10x =,22x =都是整数,符合题意.综上所述2m =-.…………………………………………………………6分27.(1)证明:∵四边形ABCD 是矩形,∴AD =BC , ∠D =∠BCD =90°.∴∠BCF =180°-∠BCD =180°-90°=90°. ∴∠D=∠BCF .------------------------------------------------------------------1分在Rt △ADE 和Rt △BCF 中,,.AE BF AD BC =⎧⎨=⎩∴Rt △ADE ≌Rt △BCF .---------------------------------------------------------2分∴∠1=∠F.∴AE∥BF.∵AE=BF,∴四边形ABFE是平行四边形. ---------------------------------------------------3分(2)解:∵∠D=90°,∴∠DAE+∠1=90°.∵∠BEF=∠DAE,∴∠BEF+∠1=90°.∵∠BEF+∠1+∠AEB=180°,∴∠AEB=90°. --------------------------------------------------------------------------4分在Rt△ABE中, AE=3,BE=4,AB=2222345AE BE+=+=.∵四边形ABFE是平行四边形,∴EF=AB= 5. --------------------------------------------------------------------------6分28.(1)①依题意补全图形.---------------------------------------------------------1分②解法1:证明:连接CE.∵四边形ABCD是正方形,∴∠BCD=90°, AB=BC.∴∠ACB=∠ACD=12∠BCD=45°.∵∠CMN=90°, CM=MN,∴∠MCN=45°.∴∠ACN=∠ACD+∠MCN=90°.∵在Rt△ACN中,点E是AN中点,∴AE=CE=12AN.----------------------------------------------------------------------------2分∵AE=CE,AB=CB,∴点B,E在AC的垂直平分线上.∴BE垂直平分AC.∴BE⊥AC. --------------------------------------------------------------------------------------3分解法2: 证明:连接CE .∵四边形ABCD 是正方形, ∴∠BCD =90°, AB =BC . ∴∠ACB =∠ACD =12∠BCD =45°. ∵∠CMN =90°,CM =MN , ∴△CMN 是等腰直角三角形. ∴∠MCN =45°.∴∠ACN =∠ACD +∠MCN =90°. ∵在Rt △ACN 中,点E 是AN 中点, ∴AE =CE =12AN . 在△ABE 和△CBE 中,,,.AE CE AB CB BE BE =⎧⎪=⎨⎪=⎩∴△ABE ≌△CBE (SSS ). -----------------------------------------------------------------2分 ∴∠ABE =∠CBE . ∵AB =BC ,∴BE ⊥AC . --------------------------------------------------------------------------------------3分 (2)BE =22AD +12CN (或2BE =2AD +CN ). -------------------------------------4分 证明:∵AB =BC , ∠ABE =∠CBE ,∴AF =FC . ∵点E 是AN 中点, ∴AE =EN .∴FE 是△ACN 的中位线. ∴FE =12CN . ∵BE ⊥AC , ∴∠BFC =90°. ∴∠FBC +∠FCB =90°. ∵∠FCB =45°, ∴∠FBC =45°. ∴∠FCB =∠FBC . ∴BF =CF .在Rt △BCF 中,222BF CF BF +=,∴BF =BC .-----------------------------------------------------------------------------5分∵四边形ABCD 是正方形, ∴BC =AD .∴BF AD . ∵BE =BF +FE ,∴BE =2AD +12CN .-------------------------------------------------------------------6分(3)34.---------------------------------------------------------------------------------------7分附加题:1.(1;12.(说明:每对两个给1分)----------------------------------2分(2)120;30;α. -----------------------------------------------------------------------------------4分 (说明:前两个都答对给1分,最后一个α答对给1分) (3)答:两个带阴影的三角形面积相等.证明:将△ABO 沿AB 翻折得到菱形AEBO , 将△CDO 沿CD 翻折得到菱形OCFD .∴S △AOB =12S 菱形AEBO =12S (α)---------------------------------------------------5分S △CDO =12S 菱形OCFD =12S (180α︒-)-----------------------------------------6分由(2)中结论S (α)=S (180α︒-) ∴S △AOB =S △CDO .2.(1)证明:∵23(1)230(0)mx m x m m --+≠-=是关于x 的一元二次方程,∴2[3(1)]4(23)m m m ∆=---- ·············· 1分269m m =-+2(3)m =-. ······················· 2分∵3m >,∴2(3)0m ->,即0∆>.∴方程总有两个不相等的实数根. ·············· 3分(2)①解:由求根公式,得3(1)(3)2m m x m-±-=.∴1x =或23m x m-=.∵3m >, ∴23321m m m -=->.∵12x x <,11 ∴11x =,22332m x m m -==-. ·············· 5分②323m <<. ························ 7分 3.(1)证明:如图1,作∠GAH=∠EAB 交GE 于点H ,则∠GAB=∠HAE .……………………1分∵∠EAB=∠EGB ,∠AOE=∠BOF ,∴∠ABG=∠AEH . 在△ABG 和△AEH 中 GAB HAEAB AE ABG AEH ⎧∠∠⎪⎨⎪∠∠⎩===∴△ABG ≌△AEH .……………………2分∴BG=EH ,AG=AH .∵∠GAH=∠EAB=60°,∴△AGH 是等边三角形.∴AG=HG .∴EG=AG+BG ;……………………3分(2)线段EG 、AG 、BG 之间的数量关系是EG+BG =AG .………4分 证明:如图2,作∠GAH=∠EAB 交GE 的延长线于点H ,则∠GAB=∠HAE . ∵∠EGB=∠EAB=90°,∴∠ABG+∠AEG=∠AEG+∠AEH=180°.∴∠ABG=∠AEH .……………………5分在△ABG 和△AEH 中,∴△ABG ≌△AEH .……………………6分∴BG=EH ,AG=AH .∵∠GAH=∠EAB=90°,∴△AGH 是等腰直角三角形.∴AG=HG ,∴EG+BG =AG . (7)O。