高考数学答题技巧题型分析答题方法总结归纳集锦
高考数学各题型答题技巧
高考数学各题型答题技巧高考数学各题型答题技巧一、排列组合篇1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5.了解随机事件的发生存在着规律性和随机事件概率的意义。
6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8.会计算事件在n次独立重复试验中恰好发生k次的概率.二、立体几何篇1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2.判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。
三、数列问题篇1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
高考数学各类题型的答题套路及技巧
高考数学各类题型的答题套路及技巧高考数学各类题型的答题套路及技巧专题一、三角变换与三角函数的性质问题1、解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。
2、构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数〞的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sinx,y=cosx 的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h 的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
专题二、解三角形问题1、解题路线图(1)①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2)①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2、构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
专题三、数列的通项、求和问题1、解题路线图①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2、构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
⑤再反思:反思回顾,查看关键点、易错点及解题规范。
专题四、利用空间向量求角问题1、解题路线图①建立坐标系,并用坐标来表示向量。
②空间向量的坐标运算。
③用向量工具求空间的角和距离。
2、构建答题模板①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。
2024年高考数学复习各题型解答方法总结
2024年高考数学复习各题型解答方法总结一、选择题解答方法:选择题是高考数学中常见的题型,解答时需要注意以下几点:1. 仔细阅读题目:选择题通常给出了多个选项,要在其中选择正确的答案,所以需要仔细阅读题目,理解题意。
2. 排除法:如果对某个选项确定是错误的,可以直接排除掉,这样可以缩小范围,提高解题效率。
通过排除法,可以找出正确答案。
3. 筛选法:某些选择题的选项中有多个是正确答案,这时可以通过筛选法找出所有正确答案。
首先找出其中一个正确答案,然后再观察其他选项,看是否满足条件,以确定所有正确答案。
4. 推理法:有些选择题需要通过推理来确定答案,需要将题目中给出的条件进行分析,并运用相关知识进行推理,找出正确答案。
二、填空题解答方法:填空题是高考数学中另一种常见的题型,解答时需要注意以下几点:1. 明确题目要求:填空题通常要求填入一个数值,有时也可以是一个表达式。
在填写答案前,要先弄清楚题目要求填什么。
2. 利用已知条件:填空题中常会给出一些已知条件,可以根据这些条件来确定答案。
通过将已知条件代入等式或运用相关关系,可以得到待填空的数值,或者用待填空的变量表达式表示答案。
3. 反推法:有些填空题通过反推法也可以确定答案。
通过比较题目中给出的条件和填空选项的关系,可以反推出待填空的数值或表达式。
4. 多种途径:填空题可以有多种解法,可以多角度思考和尝试。
如果一种方法无法确定答案,可以尝试其他方法,找出最适合的解答途径。
三、解答题解答方法:解答题是高考数学中相对较难的题型,解答时需要注意以下几点:1. 理清思路:解答题一般需要通过一系列的步骤来解决问题,首先要理清思路,明确步骤和方法,避免盲目性解题。
2. 规范书写:解答题需要写清楚解题过程和推理思路,并在重要的步骤和结论处用画线等方式标注出来,以便阅卷人员清晰地看到解题思路。
3. 合理估算:有些解答题中给出的数据量较大,可以通过合理估算或化简计算来简化解答过程,提高解题效率。
人教版高三数学解题技巧常考题型解析与答题方法
人教版高三数学解题技巧常考题型解析与答题方法高三数学是一门重要的学科,其中解题技巧更是关键。
在高三阶段,掌握解题方法对于学生们来说尤为重要。
本文将结合人教版教材,对高三数学常考题型进行解析,并提供一些解题技巧。
一、选择题解析与答题方法选择题是高中数学考试中常见的题型之一。
针对该题型,学生需要掌握以下几个答题方法:1. 仔细阅读题目:选择题中经常会夹杂一些陷阱选项,因此学生在答题前应该仔细阅读题目,理解题意,避免因为匆忙而选错选项。
2. 排除法:当不确定答案时,可以通过排除法来得出正确答案。
首先排除明显错误的选项,然后根据题目条件进行推理,逐步缩小范围,直至找到正确答案。
3. 考虑特殊情况:在解答选择题时,考虑一些特殊情况可能会帮助我们找到正确答案。
例如,可以将某些变量取特殊值进行代入,或者通过图形构造来观察答案的变化。
二、填空题解析与答题方法填空题是数学考试中常见的一种题型。
在解答填空题时,学生可以采取以下答题方法:1. 找准思路:填空题通常需要运用多个知识点和解题思路来解答,学生需要找准思路,将题目所给条件与所学知识结合起来。
2. 分析题目:对于填空题中的每个空,学生应该根据题目条件和题目要求,进行分析并找出适合填入的数值或表达式。
同时,要根据上下文关系进行相应的推理和判断。
3. 检查答案:在填空题做完后,学生应该对答案进行检查,确保每一个空都填写准确,符合题目要求以及所学知识点。
三、解答题解析与答题方法解答题是数学考试中需要较多计算和推理的一种题型,解答题需要具备一定的扎实的基础知识以及解题技巧。
学生可以采取以下答题方法:1. 分析问题:解答题通常会给出一些条件和要求,学生应该仔细阅读并分析问题,确定解题思路和方法。
2. 步骤清晰:在做解答题时,应该按照清晰的步骤逐步进行,不要跳跃性思维。
可以采用分析问题、列式、计算、得出结论的步骤来解答问题。
3. 表达准确:在解答题过程中,要保持解题思路的清晰,表达的准确。
高考数学题型分析及答题技巧
高考数学题型分析及答题技巧高考数学题型分析及答题技巧(一览)高考数学是题型固定的科目之一,而考点也是十分固定的。
无论成败与否,重要的还是要总结高考的得与失,以下是小编准备的高考数学题型分析及答题技巧,欢迎借鉴参考。
高考数学题型分析方法在审题时要注意题目中给出的条件,一道给出的题目,不会有用不到的条件,而另一方面,你要相信给出的条件一定是可以做到正确答案的。
所以,解题时,一切都从题目条件出发,只有这样,一切才都有可能。
在数学家波利亚的四个解题步骤中,第一步审题格外重要,审题步骤中,又有这样一个技巧:当你对整道题目没有思路时:步骤(1)将题目条件推导出“新条件”,步骤(2)将题目结论推导到“新结论”.步骤(1)就是不要理会题目中你不理解的部分,只要你根据题目条件把能做的先做出来,能推导的先推导出来,从而得到“新条件”。
步骤(2)就是想要得到题目的结论,我需要先得到什么结论,这就是所谓的“新结论”。
然后在“新条件”与“新结论”之间再寻找关系。
一道难题,难就难在题目条件与结论的关系难以建立,而你自己推出的“新条件”与“新结论”之间的关系往往比原题更容易建立,这也意味着解出题目的可能性也就越大!最后要提醒的是,虽然我们认为最后一题有相当分值的易得分部分,但是毕竟已是整场考试的最后阶段,强弩之末势不能穿鲁缟,疲劳不可避免,因此所有同学在做最后一题时,都要格外小心谨慎,避免易得分部分因为疲劳出错,导致失分的遗憾结果出现。
高考数学答题技巧“高分靠实力,满分靠运气”。
首先您得有这个心态,才能继续往下看。
先说说训练。
主要分两步走,如果实力可以做到除了后三道大题其余均会做,那么老师发的每一套卷子就先不做后三题,这样可以节约出大量的时间(因为后三道的任何一道都够做一套选择题了)训练准确度。
大约两周的时间吧,把这一关过了,最后三道题能剩将近一小时吧,而且做5套卷子能错1道题左右。
即使能做出的题目,或是难题中比较简单的前几小问也要比较认真地过一下答案,因为很多时候虽然能做出来但是可能方法不是最直接的,表述也不是最严密的,模仿标准答案的思路对于解决答题标准性问题帮助很大。
高考数学各类题型的答题套路及技巧
高考数学各类题型的答题套路及技巧高考数学必考题及解题技巧篇一1、解三角形常用知识:正余弦定理、面积公式、边角互换、均值不等式,注意角范围的叙述(三角形内角和定理);三角函数与解三角形,向量相结合:化一公式、诱导公式、二倍角公式、基本关系式,均值不等式、周期的求法。
2、数列求通项an的方法:公式法、累加法、累乘法、构造法、倒数法、同除法、an与S,和Sn-1的等量关系。
求Sn的常用方法:公式法、错位相减法、裂项相消法、分组求和法等。
3、立体几何证明平行:做辅助线(中位线,平行四边形,相似三角形等)可证面面平行,线面平行性质等。
证明垂直:勾股定理;等腰,等边三角形性质;菱形,正方形性质;基本图形的垂直;线面垂直得线线垂直;面面垂直性质,直径所对的圆周角等。
求距离:解三角形,等体积法等。
求空间角:做辅助线,建系,标出相应点的坐标,求出平面的法向量,写出相应的夹角公式,线面角公式等。
高考数学答题技巧篇二1、高考数学答题带着量角器进考场带个量角器进考场,遇见解析几何马上可以知道是多少度,小题求角基本马上解了,要是求别的也可以代换,大题角度是个很重要的结论,如果你实在不会,也可以写出最后结论。
2、高考数学答题取特殊值法圆锥曲线中最后题往往联立起来很复杂导致算不出,这时你可以取特殊值法强行算出过程就是先联立,后算代尔塔,用下韦达定理,列出题目要求解的表达式,就可以了。
3、高考数学答题空间几何空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。
如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得。
4、高考数学答题图像法超越函数的导数选择题,可以用满足条件常函数代替,不行用一次函数。
如果条件过多,用图像法秒杀。
不等式也是特值法图像法。
先易后难我们在答数学试卷的时候,一定要先选择自己会的有把握的,要按照这个顺序,确保自己会都正确,我们在做其他的题。
高考数学常考题型和答题技巧
高考数学常考题型和答题技巧(大全)高考数学常考题型和答题技巧(大全)高考数学常考题型和答题技巧1.解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
2.因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3.配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
4.换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元一换兀一解兀一还元5.待定系数法待定系数法是在已知对象形式式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写6.复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(__)(__)=0两种情况为或型②配成平方型:(__)2+(__)2=0两种情况为且型数学中两个最伟大的解题思路求值的思路列欲求值字母的方程或方程组2)求取值范围的思路列欲求范围字母的不等式或不等式组数学解题小技巧1、精神要放松,情绪要自控最易导致紧张、焦虑和恐惧心理的是入场后与答卷前的“临战”阶段,此时保持心态平衡的方法有三种:①转移注意法:避开临考者的目光,把注意力转移到某一次你印象较深的数学模拟考试的评讲课上,或转移到对往日有趣、滑稽事情的回忆中。
②自我安慰法:如“我经过的考试多了,没什么了不起”,“考试,老师监督下的独立作业,无非是换一换环境”等。
③抑制思维法:闭目而坐,气贯丹田,四肢放松,深呼吸,慢吐气,(最好默念几遍:“阿弥陀佛或祖先保佑”呵呵,还真的管用)如此进行到发卷时。
2024年高考数学无敌答题技巧总结模版(2篇)
2024年高考数学无敌答题技巧总结模版写作目的:为了帮助同学们在2024年高考数学考试中取得优异的成绩,我整理了一些无敌答题技巧,希望能帮助同学们顺利应对各种题型,提高答题效率。
以下是我总结的十个技巧,希望能对你有所帮助。
技巧一:熟悉考纲和教材高考数学考试的内容都是基于教材和考纲来设置的,所以熟悉考纲和教材非常重要。
仔细阅读考纲,了解每个知识点的要求及考查形式,针对性地进行复习,可以更有针对性地准备考试。
技巧二:掌握基本概念和公式数学是一个基础学科,掌握基本的概念和公式是做好数学题的基础。
在备考过程中,要逐个学习、理解和掌握各个概念和公式,并应用到解题中,培养自己的灵活性和逻辑思维能力。
技巧三:多做题,多总结做题是掌握数学知识的最佳方法之一。
通过多做题可以让同学们熟悉各种题型,加深对知识点的理解,提高自己的解题能力。
同时,做题后要及时总结,找出解题的规律和方法,并进行归纳总结,以备考时参考和巩固。
技巧四:合理安排时间高考数学考试时间紧张,因此在备考过程中要合理安排时间。
要根据自己的情况,将复习时间合理划分,将重点放在理解重点知识,掌握解题技巧和熟悉考题的分析方法上。
技巧五:掌握解题方法和技巧掌握解题方法和技巧是高考数学取得好成绩的关键之一。
要通过练习和总结,掌握各类题型的解题思路和解题方法,灵活运用到实际题目中。
同时,要善于分析题目,理清题目要求,准确把握解题方向。
技巧六:注重思维过程高考数学考试注重思维能力和解题过程,不仅要求得到正确答案,还要求清晰的逻辑推理和严密的论证过程。
因此,在解题过程中要注重思维过程,合理安排解题步骤,注意逻辑性和条理性。
技巧七:审题准确在答题过程中,要仔细审题,准确理解题意,不要随意猜测或主观臆断。
可以通过标记关键信息和关键词,分析问题的要点,帮助自己更好地理解和解答题目。
技巧八:注意单位转换和近似计算高考数学考试中,常常需要进行单位转换和近似计算。
在解题过程中要注意计算过程中的单位是否一致,并正确进行单位的转换。
高考数学各题型答题方法技巧总结
高考数学各题型答题方法技巧总结数学选择题目还是比较多的,占的分值也挺大的,因此,对于不同的数学选择题,就需要掌握不同的解题技巧,数学选择题的解题方法也是多种多样的,下面是给大家带来的高考数学各题型答题方法技巧总结(大全),以供大家参考!数学各题型解题方法一、立体几何题1、证明线面位置关系,一般不需要去建系,更简单;2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
二、导数、极值、最值、不等式恒成立(或逆用求参)问题1、先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);2、注意最后一问有应用前面结论的意识;3、注意分论讨论的思想;4、不等式问题有构造函数的意识;5、恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);6、整体思路上保6分,争10分,想14分。
三、概率问题1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2、搞清是什么概率模型,套用哪个公式;3、记准均值、方差、标准差公式;4、求概率时,正难则反(根据p1+p2+。
+pn=1);5、注意计数时利用列举、树图等基本方法;6、注意放回抽样,不放回抽样;7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;8、注意条件概率公式;9、注意平均分组、不完全平均分组问题。
四、圆锥曲线问题1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;3、战术上整体思路要保7分,争9分,想12分。
【高中数学】高考数学题型特点和答题技巧归纳
【高中数学】高考数学题型特点和答题技巧归纳高考数学题型特点和答题技巧归纳1.选择题不择手段题型特点:(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强,试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,决不标新立异。
(2)定量注重:数量关系的研究就是数学的一个关键的组成部分,也就是数学考试中一项主要的内容,在中考的数学选择题中,定量型的试题所占到的比重非常大,而且许多从形式上看做排序定量型选择题,其实不是直观或机械的排序问题,其中往往蕴藏了对概念、原理、性质和法则的考查,把这种考查与定量排序密切地融合在一起,构成了定量注重的试题特点。
(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。
作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在,绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力。
思辨性的要求充满题目的字里行间。
(4)形数兼具:数学的研究对象不仅就是数,除了图形,而且对数和图形的探讨与研究,不是边缘化开去划分展开,而是有分有合,将它们辩证统一出来。
这个特色在高中数学中已经获得充份的显露出。
因此,在中考的数学选择题中,便充分反映出来形数兼具这一特点,其整体表现就是几何选择题中常常暗藏着代数问题,而代数选择题中往往又寓存有几何图形的问题。
因此,数形融合与形数拆分的解题方法就是中考数学选择题的一种关键且有效率的思想方法与解题方法。
(5)解法多样化:以其他学科比较,一题多解的现象在数学中表现突出,尤其是数学选择题由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。
常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。
解题策略:(1)注意审题。
高考数学题型分析与解题技巧
高考数学题型分析与解题技巧高考数学作为高考中的重要科目,对于考生的总成绩有着举足轻重的影响。
了解高考数学的题型,并掌握相应的解题技巧,是取得高分的关键。
以下将对高考数学常见的题型进行分析,并分享一些实用的解题技巧。
一、选择题选择题在高考数学中所占比例较大,通常考查基础知识和基本概念。
1、直接法直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论。
2、排除法从选项入手,逐一排除不符合条件的选项,从而得出正确答案。
这种方法在解决一些具有明显错误选项的题目时非常有效。
3、特殊值法通过选取特殊值,代入题目中进行验证,从而快速得出答案。
比如在函数问题中,可以选取特殊的点来判断函数的性质。
4、数形结合法将抽象的数学语言与直观的图形结合起来,通过“以形助数”或“以数解形”,使复杂问题简单化,抽象问题具体化。
二、填空题填空题注重考查考生的计算能力和对概念的准确理解。
1、直接计算对于一些简单的填空题,直接进行计算即可得出答案。
2、概念理解有些填空题考查的是对数学概念的深入理解,需要考生准确把握概念的内涵和外延。
3、分类讨论当题目中存在多种情况时,要进行分类讨论,确保答案的完整性。
三、解答题解答题是高考数学中的重头戏,分值较高,考查的知识点也较为综合。
1、三角函数与解三角形这类题目通常会涉及到三角函数的公式运用、化简求值以及解三角形等问题。
解题技巧在于熟练掌握三角函数的基本公式,如正弦定理、余弦定理等,并能灵活运用。
2、数列数列问题常见的有求通项公式、前 n 项和等。
要掌握等差数列和等比数列的通项公式和求和公式,同时注意错位相减法、裂项相消法等求和方法的运用。
3、立体几何证明线面平行、垂直关系,计算几何体的体积、表面积等是常见的考点。
解题时要善于运用空间向量法或者传统的几何方法,建立空间直角坐标系可以简化很多问题。
4、概率与统计概率问题要明确各种概率模型,如古典概型、几何概型等。
高考数学常考题型与答题技巧
高考数学常考题型与答题技巧高考数学常考题型与答题技巧(一览)根据不同高考数学题型,我们应该有不同的答题策略,根据题型特点,我们也可以更好地答题,以下是小编整理的一些高考数学常考题型与答题技巧,欢迎阅读参考。
高中数学考试选择题蒙题技巧1、区间法,这类方法也成为排除法,靠着大概计算出的数据或者猜一些数据。
比如一个题目里给了几个角度,30°,90°。
很明显,答案里就肯定是90±30度,120加减30度。
或者一些与30,60,90度有关的答案。
2、代入法,这列方法往往是给定了一些条件,比如a大于等于0,小于等于1。
b 大于等于1,小于等于2.这些给定了一些特殊的条件,然后让你求一个ab组合在一起的一些式子,可能会很复杂。
但是如果是选择题,你可以取a=0.5,b=1.5试一试。
还有就是可以把选项里的答案带到题目中的式子来计算。
3、函数法,这个就是要把一些计算转化为函数,首先带入答案,之后移项,把方程一边变成零,然后就可以把函数的表达式大概画出来,看与零点有没有唯一焦点,这样就可以大概判断答案,或者找最接近零点的答案。
高中数学答题注意事项选择题解答的基本策略是:快——运算要快,力戒小题大做;稳——变形要稳,防止操之过急;全——答案要全,避免对而不全;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。
关于填空题,常见的错误或不规范的答卷方式有:字迹不工整、不清晰、字符书写不规范或不正确、分式写法不规范、通项和函数表达式书写不规范、函数解析式书写正确但不注明定义域、要求结果写成集合的不用集合表示、集合的对象属性描述不准确。
关于解答题,考生不仅要提供出最后的结论,还得写出主要步骤,提供合理、合法的说明。
填空题则无此要求,只要填写结果,而且所填结果应力求简练、概括的准确。
其次,试题内涵解答题比起填空题要丰富得多,解答题的考点相对较多,综合性强,难度较高,解答题成绩的评定不仅看最后的结论,还要看其推演和论证过程,分情况判定分数,用以反映其差别,因而解答题命题的自由度较之填空题大得多。
高考数学各题型答题技巧及解题思路
高考数学各题型答题技巧及解题思路高考数学是考生在高中学习中接触最多的一门学科。
而高考数学中有各种各样的题型,如函数、导数、数列、几何等等。
各个题型的答题技巧和解题思路也需要考生掌握。
本文将就此进行详细介绍。
一.函数题型答题技巧及解题思路1. 函数的分类在高考数学中,函数有三种类型,分别为元函数、复合函数和反函数。
其中元函数是指单个自变量x的函数,如y=f(x),复合函数是指由两个或两个以上函数复合而成的函数,如y=f(g(x)),反函数则是元函数的互逆,如y=f(x)的反函数为x=g(y)。
2. 函数的性质函数有很多性质,如奇偶性、单调性、周期性等等。
其中奇偶性是指函数有没有对称轴,单调性是指函数的递增递减性质,周期性是指函数图像在一定区间内重复出现。
3. 函数的绘图绘制函数图像是函数学习中的重点内容。
在绘图时,需要掌握对称轴、截距以及拐点等。
1. 导数概念导数是指函数在某一点处的变化率。
导数的计算方式为极限值的求解方法。
导数的概念是微积分学的基础,是高考数学中的重要内容。
2. 导数的计算方法导数的计算方法有很多,如用导数定义式、用导数的四则运算法则、用导数的基本函数形式等。
3. 导函数的应用导函数在数学上有广泛的应用,包括求解函数的最值、函数的单调性、函数的图像形态等。
三.数列题型答题技巧及解题思路1. 数列的概念数列是指按照一定的规律排列的一组数的集合。
数列可以分为等差数列、等比数列等。
2. 数列的通项公式数列的通项公式是指可以用来计算任意项的公式。
对于等差数列和等比数列而言,通项公式是非常重要的。
3. 数列的求和公式数列的求和公式是指可以计算数列前n项和的公式。
对于等差数列和等比数列而言,求和公式也是非常重要的。
1. 几何图形的名词在几何学中,几何图形都有自己的命名。
例如,几何图形有点、直线、平面等。
2. 平面几何的性质平面几何图形的性质可以分为有关角、线段、周长、面积等方面的性质。
几何题中需要掌握到位。
高考数学必考题型及答题技巧锦集
高考数学必考题型及答题技巧锦集【篇1】高考数学必考题型及答题技巧①单项选择考试范围。
集合的基本运算、复数的基本运算、统计与概率-排列组合、立体几何、概率事件、指数与对数函数、平面向量与平面几何、函数的与导数。
②多项选择考试范围。
解析几何(双曲线)、三角函数、不等式应用、对数运算及不等式基本性质。
③填空题考试范围。
解析几何(抛物线)、数列(等差或等比)、三角函数、立体几何轨迹计算。
④解答题考试范围。
三角函数(正弦余弦定理)、等比数列及其求和、统计与概率、立体几何、解析几何、函数与导数。
高考数学不及格影响院校录取吗?高考有科目不及格,不会影响太大,只要总分足够高,还是能上好的大学,只是在同等分数下,你的分数不及格,学校可能会优先选择及格的学生。
【篇2】高考数学必考题型及答题技巧高考数学必考题型是什么题型一运用同三角函数关系、诱导公式、和、差、倍、半等公式进行化简求值类。
题型二运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心。
题型三解三角函数问题、判断三角形形状、正余弦定理的应用。
题型四数列的通向公式的求法。
高考数学答题技巧有哪些1、函数或方程或不等式的题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。
2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴或是……;4、选择与填空中出现不等式的题目,优选特殊值法;5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;【篇3】高考数学必考题型及答题技巧无论是全国卷,还是各个省的自命题卷,虽然对知识的考察重点不同,但是,题型却有很多共性。
高考数学答题技巧归类总结2023
高考数学答题技巧归类总结2023高考数学答题技巧归类总结20231、高考没有足够的时间让你反复验算,往往是拿到一个题目,凭感觉选定一种方法就动手做,这时除了你的每一步运算务求正确外,还要求把你当时的解法坚持到底,也许你选择的不是最好的方法,但如回头重来将会花费更多的时间,当然坚持到底并不意味着钻牛角尖,一旦发现自己走进死胡同,还是要立即迷途知返。
2、函数或方程或不等式的题目,先直接考虑后建立三者的联络。
首先考虑定义域,其次使用“三合一定理”。
3、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,假设与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式。
4、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,假设与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式。
5、假如先做难题,可能会浪费好多时间,即使难关被攻克,却已没有时间去得那些易得的分数,所以关键时刻,敢于放弃,也是一种明智的选择。
有些解答题第一问就很难,这时可以先放弃第一问,而直接使用第一问的结论解决第2问、第3问。
6、求曲线方程的题目,假如知道曲线的形状,那么可选择待定系数法,假如不知道曲线的形状,那么所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点)。
高中数学的学习方法1、学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立考虑、勇于探究的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,擅长开动脑筋,积极主动去发现问题。
2、建议看看自己来年参加的考试的试卷题型分布,哪些知识点只属于识记和根底理解层次,哪些知识点属于重难点。
非重难点可以不独立安排复习时间,因为跟着老师的进度就可以得分,如集合、命题及其关系、充分条件与必要条件、程序框图、复数等内容,但是一定要保证此类问题属于自己的必拿分题目。
高考数学必考题型及答题技巧整理
高考数学必考题型及答题技巧整理(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、致辞讲话、条据书信、合同范本、规章制度、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, speeches, policy letters, contract templates, rules and regulations, emergency plans, insights, teaching materials, essay encyclopedias, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高考数学必考题型及答题技巧整理高考数学必考题型及答题技巧整理总结高考临近,你是否还在焦虑数学做的不好。
高考数学各题型答题技巧及解题思路
高考数学各题型答题技巧及解题思路高考数学是高考三科中重要的一科,而其中数学各题型更是着重考查学生的数学基础和逻辑思维能力。
如何应对高考数学各题型,答题技巧及解题思路是重中之重,下文将对此进行详细阐述。
一、选择题型选择题型是高考数学中的必考题型,考查学生对于数学知识点的掌握以及运算技能的理解和应用。
在做选择题时,我们首先需要掌握以下答题技巧:1、理清题意,分析选项,进行排除。
首先要认真阅读题目中的条件和限制,充分理解题目意思。
接着,结合选项进行逐一排除,将不符合题目要求的选项进行剔除,尽可能缩小正确选项的范围。
2、关注题目中的关键点,确定答案。
有一些题目中会存在一些难以计算的数值,但是这些数值可能不是答案,只是一些附加信息。
因此,我们需要关注题目中的关键点,如某个几何图形的形状、数量、运算符号等,有时候答案就隐藏在其中。
3、复核答案,避免扣分。
做完选择题后,一定要检查答案的合理性和准确性,避免因为抄错、计算错误等原因导致分数的扣除。
二、填空题型填空题型是高考数学中常见的一种题型,也考查学生对于数学知识点的理解和运用,同时也是考查学生的计算技巧及对于一些表述的差别的理解。
具体答题技巧如下:1、仔细阅读题目,确定无关量并化简。
在做填空题时,首先要仔细阅读题目,将无关量进行化简,避免因为计算量过大而导致错误。
2、对于公式进行熟记熟练的运用。
对于常见的数学公式和定理,我们需要进行熟知和熟记,再进行熟练的运用。
例如对于等差数列,我们应该熟记其首项 a 和公差 d 的计算方法,并尽可能减少计算出错的可能性。
3、注意单位和精度要求。
填空题中,有时候会要求保留小数位数,或者使用特定单位。
我们需要注意这些细节,尽量减少算术粗劣的错误。
三、解答题型解答题型是高考数学中最常见的题型,也是最考验学生数学综合能力的题型之一。
其答题思路较为复杂,需要在做题时注意以下技巧:1、理解题目,寻求解题思路。
在解答题时,我们需要先仔细阅读题目,理解题目的条件、运算符号等,并寻求解题的思路。
高考数学题型归纳及选择题答题技巧大全
高考数学题型归纳及选择题答题技巧大全高考数学作为高考中的一门主要科目,承载着大量的考生希望获取好成绩的希望。
因此,有必要了解高考数学题型以及选择题答题技巧,才能在高考中取得好成绩。
一、高考数学题型归纳高考数学题型主要包括选择题、填空题、解答题、证明题等,下面将逐一分析:1.选择题选择题是高考数学中常见的题型,其主要目的是检测学生的基本知识点掌握情况。
在这种题型中,考生需要根据题目所给出的选项中选出正确答案。
在高考数学选择题中,常见的题型包括单选题和多选题,其中单选题一般只有一个正确答案,而多选题则会有两个或两个以上的正确答案。
2.填空题填空题是在数学测试中常见的题型,主要目的是测试学生对概念和水平的掌握情况。
这种类型的问题一般比选择题更难,因为答案不是给出的,而是要求考生自己填写。
在高考数学填空题中,考生需要认真理解题干的意思,梳理思路,将答案准确填写。
3.解答题和证明题解答题和证明题是高考数学中的重点考察题型,对于解答题来说,要求考生掌握基本的解法和思路,并能独立解决问题;对于证明题,需要考生具备一定的数学证明能力,具有一定的逻辑思维能力。
二、选择题答题技巧针对高考数学选择题所具有的特点,考生可以采取以下答题技巧,提高答题准确率。
1.审题认真,明确题目难度,先解简单题目。
2. 针对同时存在多个选项答案的多选题,应该特别注重选项之间的联系,采取排除法来较好的选择答案。
3. 如果考生不确定选择题的答案,不妨尝试用代入法、逆向法等方法验证答案。
4. 合理掌握时间分配,要尽量减少题目花费的时间,迅速解决一些简单的题目,留下更多的时间来解决难题。
5. 在高考数学考试中,建议当考生遇到问题时,应该形成一个良好的心理状况,采取积极的态度来解决问题。
三、结语作为高考数学的考场必修科目,高考数学试卷特点鲜明,考生要特别注意梳理思路、注重思考,反复推导。
只有这样,才能在考场上发挥出自己的优势,取得理想的成绩。
高考数学28个答题模板及答题技巧汇总(真的超精细哦)
高考数学28个答题模板及答题技巧汇总(真的超精细哦)本文总结了高考数学中常见的28个题型、解题模板和解题技巧,希望能够对考生提供参考和帮助。
单选题1. 未知数的代值:将题目中给定的条件代入方程中,解方程即可;未知数的代值:将题目中给定的条件代入方程中,解方程即可;2. 因式分解求值:将式子进行因式分解,再将已知的值代入求得答案;因式分解求值:将式子进行因式分解,再将已知的值代入求得答案;3. 图像与解析式配对:通过画图或分析图像,找到图像对应的解析式,再求得答案;图像与解析式配对:通过画图或分析图像,找到图像对应的解析式,再求得答案;4. 二次函数:将二次函数用顶点式表示或通过配方法将二次函数转化为标准式,再根据已知条件求解;二次函数:将二次函数用顶点式表示或通过配方法将二次函数转化为标准式,再根据已知条件求解;5. 三角函数:根据三角函数的性质以及三角恒等式进行变形,再根据已知条件求解;三角函数:根据三角函数的性质以及三角恒等式进行变形,再根据已知条件求解;6. 数列求和:根据数列的首项、公比、项数等已知条件,利用数列求和公式求解;数列求和:根据数列的首项、公比、项数等已知条件,利用数列求和公式求解;7. 圆的性质:根据圆的定义、性质,以及圆内接、外接三角形性质进行判断和计算;圆的性质:根据圆的定义、性质,以及圆内接、外接三角形性质进行判断和计算;8. 统计与概率:根据统计数据和概率公式进行计算。
统计与概率:根据统计数据和概率公式进行计算。
填空题9. 比例求值:根据已知值和比例关系,通过求解等式来求得答案;比例求值:根据已知值和比例关系,通过求解等式来求得答案;10. 三角函数:根据三角函数的性质以及三角恒等式进行变形,再根据已知条件求解;三角函数:根据三角函数的性质以及三角恒等式进行变形,再根据已知条件求解;11. 函数求值:根据函数的定义和已知条件,将函数进行变形,得出结果;函数求值:根据函数的定义和已知条件,将函数进行变形,得出结果;12. 平面几何:根据平面几何的定义、定理和公式,进行计算;平面几何:根据平面几何的定义、定理和公式,进行计算;13. 空间几何:根据空间几何的定义、定理和公式,进行计算。
高考数学题型归纳及选择题答题技巧
高考数学题型归纳及选择题答题技巧高考数学是每个高中生必须面对的重要考试之一,不仅考查学生的基础知识和思考能力,还要求考生具备良好的数学思维能力和解题技巧。
针对高考数学中的题型归纳及选择题答题技巧,本文将进行详细讨论,帮助学生更好地应对高考数学考试。
一、高考数学题型归纳高考数学题型涉及范围较广,但是无论题型如何改变,其中的解题思路和知识点是相通的。
下面将主要对高考数学中常见的题型进行归纳和分析。
1. 函数题型在高考数学中,函数题型属于难度较大的部分,需要掌握相关的基本知识和解题技巧。
在考试中,能否正确地解决这类题型是考生能否取得更高分数的关键。
2. 几何题型几何题型是高考数学中比较常见的一类,涉及较多的原理和概念,需要考生具备较强的空间想象力和计算能力。
其中,轮廓题型和证明题型是考生需要重点掌握的内容。
3. 解方程题型解方程题型是高考数学中比较常见的一类,需要考生掌握相关的基础知识和解题技巧。
在考试中,解方程题型往往涉及到综合能力的发挥,因此考生需要注重平时的练习和巩固积累。
二、高考数学选择题答题技巧在高考数学答题过程中,选择题是考生需要面对的一部分,其中会出现一些难度较大的题目,需要考生掌握相关的答题技巧。
1. 针对常见的选择题选项,选择特殊的数在高考数学的选择题中,有一些常见的选项,例如0和1等,考生可以在进行题目分析时,优先考虑这些数字,这样可以节省答题时间。
2. 判断定理重要性并运用在高考数学中,很多选择题都有单独的定理或公式,考生在答题时需要判断这些公式的重要性并灵活运用。
3. 避免选错,审清题意在高考数学的选择题中,考生需要注意题目的细节和表述,避免因为理解错误而导致选错答案。
4. 利用排除法确定答案在高考数学的选择题中,如果无法确定正确答案,可以先用排除法将错误答案排除,然后再从剩余的选项中进行选择。
总之,高考数学的题型涉及面广泛,需要考生掌握各类题型的解题方法和答题技巧。
在考试过程中,考生需要注重平时的练习和积累,以便更好地应对高考数学考试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学答题技巧题型分析答题方法总结归纳集锦同学们存在的一些小问题。
对解题的思路还有公式的不熟悉运用影响。
如果都熟悉这些解题技巧,保守的基本分是都可以拿到的。
在确保基础分的基础上去拿高分冲刺。
学习的问题,现在网络发达,很多网课,多途径获取资源,一位考生就是载到网课视频,把自己不足不会的弱缺项都补回来。
这些可以通过这样取得进步。
再者,数学,思维很重要,公式是基本,运用是方法,是解题的思路,很多题只要知道运用什么公式,一套就知道了。
有些需要变换变通的。
关于解题速度和熟练程度靠练,一个题型练那么几道一起,你就会熟悉这个题型的解题方法。
练多几个就会自然而然的知道怎么解。
主要问题:
一、不会解:想不到、分不清、思维定势
二、解题慢:速度慢、不熟练、记忆模糊
三、老出错:不细心、踩陷阱、毫厘之差
其实,将这些总结为一句话:成绩差,归根到底,没方法,缺少正确的引导!
针对这个令广大莘莘学子头疼的问题,我们提出模型解题法。
只要在科学方法的引导下,成绩一定会得到最大程度的提高。
模型三大步:看题型、套模型、出结果
第一步:熟悉模型,不会的题有清晰的思路
第二步:掌握模型,总做错的题不会错了
第三步:活用模型,大题小题都能轻松化解
一、选择题解答模型策略
注重多个知识点的小型综合,渗透各种数学思想和方法,体现基础知识求深度的考基础考能力的导向,使作为中低档题的选择题成为具备较佳区分度的基本题型。
准确是解答选择题的先决条件。
选择题不设中间分,一步失误,造成错选,全题无分。
所以应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。
迅速是赢得时间,获取高分的秘诀。
高考中考生“超时失分”是造成低分的一大因素。
对于选择题的答题时间,应该控制在30分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完。
一般地,选择题解答的策略是:
熟练掌握各种基本题型的一般解法。
结合高考单项选择题的结构(由“四选一”的指令、题干和选择项所构成)和不要求书写解题过程的特点,灵活运用特例法、筛选法、图解法等选择题的常用解法与技巧。
挖掘题目“个性”,寻求简便解法,充分利用选择支的暗示作用,迅速地作出正确的选择。
二、填空题解答模型策略
填空题是一种传统的题型,也是高考试卷中又一常见题型。
高考
中共5个小题,每题5分,共25分,占全卷总分的16.7%。
根据填空时所填写的内容形式,可以将填空题分成两种类型:
一是定量型,要求学生填写数值、数集或数量关系,如:方程的解、不等式的解集、函数的定义域、值域、最大值或最小值、线段长度、角度大小等等。
由于填空题和选择题相比,缺少选择支的信息,所以高考题中多数是以定量型问题出现。
二是定性型,要求填写的是具有某种性质的对象或者填写给定的数学对象的某种性质,如:给定二次曲线的准线方程、焦点坐标、离心率等等。
在解答填空题时,基本要求就是:正确、迅速、合理、简捷。
一般来讲,每道题都应力争在1~3分钟内完成。
填空题只要求填写结果,每道题填对了得满分,填错了得零分,所以,考生在填空题上失分一般比选择题和解答题严重。
所以在解答时,更应该细心、认真。
三、解答题解答模型策略
1.三角变换与三角函数的性质问题
解题路线图
*** 不同角化同角。
*** 降幂扩角。
*** 化f(x)=Asin(ωx+φ)+h。
*** 结合性质求解。
构建答题模板
*** 化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形
式,即化为“一角、一次、一函数”的形式。
*** 整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x 的性质确定条件。
*** 求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
*** 反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
2、解三角函数问题
解题路线图
*** 化简变形;用余弦定理转化为边的关系;变形证明。
*** 用余弦定理表示角;用基本不等式求范围;确定角的取值范围。
构建答题模板
*** 定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
*** 定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
*** 求结果。
*** 再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
3、数列的通项、求和问题
解题路线图
*** 先求某一项,或者找到数列的关系式。
*** 求通项公式。
*** 求数列和通式。
构建答题模板
*** 找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
*** 求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
*** 定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
*** 写步骤:规范写出求和步骤。
*** 再反思:反思回顾,查看关键点、易错点及解题规范。
4、利用空间向量求角问题
解题路线图
*** 建立坐标系,并用坐标来表示向量。
*** 空间向量的坐标运算。
*** 用向量工具求空间的角和距离。
构建答题模板
*** 找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。
*** 写坐标:建立空间直角坐标系,写出特征点坐标。
*** 求向量:求直线的方向向量或平面的法向量。
*** 求夹角:计算向量的夹角。
*** 得结论:得到所求两个平面所成的角或直线和平面所成的角。
5、圆锥曲线中的范围问题
解题路线图
*** 设方程。
*** 解系数。
*** 得结论。
构建答题模板
*** 提关系:从题设条件中提取不等关系式。
*** 找函数:用一个变量表示目标变量,代入不等关系式。
*** 得范围:通过求解含目标变量的不等式,得所求参数的范围。
*** 再回顾:注意目标变量的范围所受题中其他因素的制约。
6、解析几何中的探索问题
解题路线图
*** 一般先假设这种情况成立(点存在、直线存在、位置关系存在等)。
*** 将上面的假设代入已知条件求解。
*** 得出结论。
构建答题模板
*** 先假定:假设结论成立。
*** 再推理:以假设结论成立为条件,进行推理求解。
*** 下结论:若推出合理结果,经验证成立则肯。
定假设;若推出矛盾则否定假设。
*** 再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。
7、离散型随机变量的均值与方法
解题路线图
*** 标记事件;对事件分解;计算概率。
*** 确定ξ取值;计算概率;得分布列;求数学期望。
构建答题模板
*** 定元:根据已知条件确定离散型随机变量的取值。
*** 定性:明确每个随机变量取值所对应的事件。
*** 定型:确定事件的概率模型和计算公式。
*** 计算:计算随机变量取每一个值的概率。
*** 列表:列出分布列。
*** 求解:根据均值、方差公式求解其值。
8、函数的单调性、极值、最值问题
解题路线图
*** 先对函数求导;计算出某一点的斜率;得出切线方程。
*** 先对函数求导;谈论导数的正负性;列表观察原函数值;得到原函数的单调区间和极值。
构建答题模板
*** 求导数:求f(x)的导数f′(x),注意f(x)的定义域。
*** 解方程:解f′(x)=0,得方程的根。
*** 列表格:利用f′(x)=0的根将f(x)定义域分成若干个小开区
间,并列出表格。
*** 得结论:从表格观察f(x)的单调性、极值、最值等。
*** 再回顾:对需讨论根的大小问题要特殊注意,另外观察f(x)的间断点及步骤规范性。
数学是许多高考学子头疼的科目,其实只要把握好基本方法,踏实地练几道题就会了。
只有将这些方法落到实处,才能够促进孩子们提分。
自己把知识点归纳和总结和是很有必要,用的公式也总结好。
这样临考不乱。
祝大家考试顺利。