(试卷)奥赛经典-奥林匹克数学中的几何问题---第二十一章平行六面体的性质及应用
平行六面体与长方体

自主学习
1、
{四棱柱}
底面为平
侧棱与底
底面为
行四边形{平行六面体}面垂直 {直平行六面体}矩形
底面为
侧棱与底面
{长方体}正方形 {正四棱柱} 边长相等 {正方体}
2、有以下四个命题,真命题的个数是( A )
(1)底面是矩形的平行六面体是长方体;(2)棱 长相等的直四棱柱是正方体;(3)有两条侧棱都 垂直于底面一边的平行六面体是直平行六面体;
(4)对角线相等的平行六面体是直平行六面体。
A1
B2
C3
D4
【餐风宿露】cānfēnɡsùlù见406页〖风餐露宿〗。【尘嚣】chénxiāo名人世间的纷扰喧嚣:远离~。 【贬损】biǎnsǔn动贬低:不能~别人,纠 正缺点错误。【不起眼儿】bùqǐyǎnr〈方〉不值得重视;【称愿】chèn∥yuàn动满足愿望(多指对所恨的人遭遇不幸而感觉快意)。②形容没有旺盛
作业:P
C D
B1 A1
B
A
(2)如果长方体的一条对角线与这一对角线交于
一点的三条棱所成的角分别为 , , ,则
cos2 cos2 cos2 1
(3)如果长方体的一条对角线和经过这条对角
线的一端点的三个面所成的角分别为 , , ,
则 cos2 cos2 cos2 ___2___
二、知识应用与解题研究:
例:长方体的全面积为11,十二条棱的长度之和 为24,求这个长方体的一条对角线长。
练习:已知以长方体的一个顶点为端点的三条棱 长为3、4、5,则它的对角线长为_____
三、小结
通过本节学习,我们必须: 1、正确理解几种特殊的四棱柱及它们之间的关系。 2、掌握几种特殊的四棱柱的性质。 3、理解事物之间相互转化、互为统一的辩证关系。 4、学会运用整体化思维方法去分析、探究和解决问题。
(答案)奥赛经典-奥林匹克数学中的几何问题---参考答案(第3-5章)

第三章 托勒密定理及应用习题A1.由CDE BAE △∽△和CBE DAE △∽△,有4BE AB CE =,4DEAD CE=,对四边形ABCD 应用托勒密定理,有()()416BE DEBD AE CE AB AD CE+⋅+=+=⋅.令CE x =,得方程26160x x +-=,求得2x =(舍去了负值).于是12BE DE CE AE ⋅=⋅=.又8BD BC DC <+=,求得3BE =,4DE =或4BE =,3DE =,总之7BD =为所求.2.连EF ,DF ,由FBC FBD FED FAC ∠=∠=∠=∠,ABF EBF EDF ACF ∠=∠=∠=∠,知EDF EDF △∽△,即EF DE DF AF AC CF==.设其比值为k (k 为参数),则EF kAF =,DE kAC DF kCF =⋅=,对四边形BEFD 应用托勒密定理.有()BE EF DF BF DE +=⋅,即()BE k AF k CF BF k AC ⋅+⋅=⋅⋅注意到BE AC =,消去k ,得BF AF CF =+.3.连AC ,在四边形APCD 中应用托勒密定理,有PA PC AC PB AB +=4.连11l l 11,,B D DC B C ,设CAD α∠=,BAD β∠=,O ⊙的半径为R .由AD 为BC 上中线,可令12ABC ACD ABC S S S k ===△△△.由正弦定理有112sin B D R β=⋅,112sin()C D R αβ=⋅+.对四边形111AB D C 应用托勒密定理,有1112sin 2sin 2sin()AB R αAC R βAD R αβ⋅⋅+⋅⋅=⋅⋅+,消去2R ,两边同乘以 12AB AC AD ⋅⋅得111122ACD ABD ABC AB AB S AC AC S AD AD S ⋅⋅+⋅⋅=⋅⋅△△△,亦即 1112AB AB AC AC AD AD ⋅+⋅=⋅,由此即证.5.连1535,A A A A ,则1514A A A A =,3513A A A A =.对四边形1345A A A A 应用托勒密定理,有 3413151435()A A A A A A A A A A ⋅+=⋅,即1213141413()A A A A A A A A A A +=⋅,由此整理即证.6.对四边形AB A B ''应用托勒密定理,有11a b cc AB A B '''=+⋅,即11111a b c cc c AB A B c '''=+⋅⋅,同理,对四边形B CA C ''',AB BC '',AA BC ''分别应用托勒密定理,有1AB A B c AB B C b AB A C a '''''''⋅⋅=⋅⋅+⋅⋅,1AB B C b abc bb b '''⋅⋅=+,1AB A C a a b c aa a '''''''⋅⋅=+.由此四式即证得结论.7.设圆心O 到AB ,BC ,CA 的距离分别为1x ,2x ,3x ,连接BO 并延长与O ⊙交于D ,连AD ,DC ,则12AD x =,22CD x =,对四边形ABCD 应用托勒密定理有12222x a x c Rb +=.同理,23222x b x a Rc +=,13222x b x c Ra +=.加之1232()2()2()2()x a b x b c x c a R a b c +=+++=++,但123()cx ax bx r a b c ++=++,以上两式相加得123x x x R r ++=+.但11x R h =-,22x R h =-, 33x R h =-,由此即证.8.作一直径(11)AB x x =≥的圆,在B 的两侧分别取C ,D 二点,使2BC =,11BD =,于是AC =AD ,对四边形ABCD 应用托勒密定理,有211CD x ⋅=+,将此式与原方程比较得CD =.在BCD △中,由余弦定理,有1cos 2CBD ∠=-,知120CBD ∠=︒,故14sin120CDx AB ===︒为所求.9.作直径1AC =的圆,并作弦AB b =,AD a =的圆内接四边形ABCD ,则DC =,BC =AD BC AB CD AC BD ⋅+⋅=⋅,即1a b BD =⋅,由此得1BD =,即BD 也是圆的直径,故221a b +=.10.当0x =时,1y =,当0x ≠时,作代换222x t x +=,1122x x t x x =+=+≥sin cos t θy t θ+=+,即1sin cos yt θy θ-=-⋅,以1AB =为直径作圆,作弦sin AC θ=,作弦AD =,则BD =cos BC θ=.由托勒密定理及1CD AB ≤=,有sin cos θy θ+,亦有sin cos sin cosyt tθyθθyθ-=-≤+,即11t y⋅--,故22y≤≤11.连AC,CE,AE,对四边形APCE应用托勒密定理,有AC PE AE PC CE PA⋅=⋅+⋅,而AC AE CE==,有PE PA PC=+.同理,PD PB PF=+,由此即证.12.不失一般性,令P点位于OBF△内部(其中O为CAB△中心),作1PP AD⊥于1P,2PP BE⊥于2P,3PP CF⋅于3P.由P,O,1P,2P四点共圆,有23180PP O PPO∠+=︒,知1P,3P,O,2P四点共圆,即P,3P,O,lP,2P共圆,推知l23PP P△是正三角形,在312PP PP中,有123213312PP P P PP PP PP PP⋅=⋅+⋅,即123PP PP PP=+,故PAD PCFS S+△△.13.作ABC△外接圆的直径CF,并设AF x=,BF y=,则60BFC A∠=∠=︒,直径2CF d y==.对四边形BCAF应用托勒密定理,有cd ax by=+.从而tan tan tan tan2221tan tan tan tan2a bA B BFC AFC ax by ax by by cd by by c by xa bA B BFC AFC ax by ax by cd c y cy x--∠-∠-+-=-======-= +∠+∠++⋅+.14.令AB AC a==,对四边形ABPC应用托勒密定理,有a PB a PC BC PA⋅+⋅=⋅,即有PA aPB PC BC=+.对四边形BCAQ应用托勒密定理,有QA BC a QB a QC⋅+⋅=⋅,即QA aQC QB BC=-.15.对四边形ABCD应用托勒密定理,BC AD BD AC AB CD⋅+⋅=⋅,即AD ACBC BD CDAB AB⋅+⋅=.又ABD MCP△∽△及ABC MDQ△∽△,有AD MPAB MC=,AC MQAB MD=,于是MP MQBC BD CDMC MD⋅+⋅=,注意到=22CD MC MD=即证.16.连EG,FG和EF,对四边形BFGE应用托勒密定理,有BE FG BF EG BG EF⋅+⋅=⋅,又FEG FBG ADB∠=∠=∠,EFG EBG∠=∠,则EFG ABD△∽△,有FG EG EFAB AD BD==,令其比值为t,则t BE AB t BF AD t BG BD⋅⋅+⋅⋅=⋅⋅,消去t,注意到AD BC=即证.17.作DG AF∥交1O⊙于G,则AG FD=,GF AD=.对四边形AGDF应用托勒密定理,AD FG AG FD AF GD⋅=⋅+⋅.由AD平分BAF∠,知FD BD=,即AG BD=,由此知GB DA∥,有GD AB=.故222AD FD AF GD FD AF AB=+⋅=+⋅.同理,有22AE FE AF AC=+⋅.此两式相减有2222DA EA DF EF-=-,故DE AF⊥.18.在直径2AB x=>的圆中,在两个半圆上分别取点C和D,使2AC=,1AD=,则BCBD=由托勒密定理,CD x=⋅,与原方程比较得CD.在ACD△中,由余弦定理,有1cos2CAD∠=-,则120CAD∠=︒,故sinCDxCAD=∠.19.由222+=,在直径AB=的圆中,在一半圆上取点C,使AC=,BC=;在另一半圆上取中点D,则AD BD==CD,知CD AB≤,由托勒密定理,2AB CD=⋅≤,即y=≤ABC△中,AC BC AB+≥(当C与A或B重合时,取等号),故y≤20.设222x y a+=,则01a≤≤.当0a=时,命题显然成立,当01a<≤时,在直径AB a=的一半圆上取点C,使AC x=,BC y=,因2222x y a +=+=,则可在另一半圆上取点D ,使BD =,AD =,由托勒密定理,有2x y AB CD a +=⋅≤,即2()()x x y y x y ++-≤≤但222()()()()x xy y x x y y x y x x y y x y +-=++-≤++-≤21.设点T 在劣弧»AB 上,连AT ,BT ,CT ,分别交小圆于点D ,E ,F .连DE ,EF ,FD ,过点T 作公切线RQ .由DFT RTD RTA ACT ∠=∠=∠=∠,有AC DF ∥,有AD ATCF CT=.又 2AM AD AT =⋅,2CP CF CT =⋅,有2222AM AD AT AT CP CF CT CT =⋅=,即AM AT CP CT =.同理,BN BT CP CT=.对圆内接四边形ATBC 应用托勒密定理,有AT BC BT AC TC AB ⋅+⋅=⋅,而AB BC CA ==,则 AT BT CT +=,故AM BN CP ++.22.令BC a =,AC b =,AB c =.由BE 平分ABC ∠,有AE AB EC BC =,亦有AE ABAC BC AB=+,即bc AE a c =+.同理,bcAF a b=+.由AE PQ ∥,有AEF Q ∠=∠,从而AEF PCB ∠=∠,注意到 FAE BPC ∠=∠,有AEF PCB △∽△,即PB AF a cPC AE a b+==+,即()PB b PC a c PB a ⋅=⋅+-⋅.在圆内接四边形PABC 中,应用托勒密定理,有PB b PC c PA a ⋅=⋅+⋅,故()PC a c PB a PC c PA a +-⋅=⋅+⋅,因此,PC PA PB ++.23.由()BE AC AF FC AC ⋅=+⋅,AC ,()()AF BC AB FC AF BD CD FC BE AE AF ⋅+⋅=⋅++-=⋅ ()()AC AF CD FC AC FC AE AF FC AC AF CD FC AE +⋅+⋅-⋅=+⋅+⋅-⋅,又AF CD FC AE ⋅=⋅, 则BF AC AF BC AB FC ⋅=⋅+⋅,由托勒密定理之逆,知ABCF 有外接圆.24.连EA ,ED ,由BAE ECD ∠=∠,且CDE EAD ABE ∠=∠=∠,有ABE CDE △∽△,亦有AE ABEC CD=, 即EC AB EA CD ⋅=⋅.在圆内接四边形AEBC 中,应用托勒密定理,有EA BC EB AC EC AB ⋅+⋅=⋅,于是222111EB AC EA BC EA BC BC BD BD BD EC AB EC AB EA CD CD CD BD CD DA ⋅⋅⋅=-=-=-===⋅⋅⋅⋅.又ABD CAD ∠=∠,ADB ADC ∠=∠,有ABD CAD △∽△,有AB BDAC AD=.于是22EB AC AB EC AB AC ⋅=⋅,故33EB AB EC AC =. 习题B1.在弧¼ADC 上取点H ,使AH CD c ==,连HC ,HB ,令AC m =,BD n =,BH p =,易证AHC CDA △∽△,即HC AD d ==.对四边形ABCD ,ABCH 分别应用托勒密定理,有ac bd mn +=,ad bc pm +=.又在弧¼BCH 上取点K ,使BK CH d ==,由CHB KBH △∽△,有HK BC b ==对四边形ABKH 应用托勒密定理,有ab cd AK p +=⋅.又由¼¼KHA BCD =,有AK BD n ==. 于是2()()ac bd ad bc m ab cd ++=+,2()()ac bd ab cd n ad bc++=+,由此即求得AC ,BD .2.作AGH △的外接圆1O ,分别截AC ,AD AB 于点H ,Q ,G .易证BCD APE △∽△,即DC BCPE AP=,BD BC AE AP =,即PE AK CD BC BC AP AP =⋅=⋅,AEBD BC AP=⋅.对四边形ABDC 应用托勒密定理,有AE AKAD BC BD AC DC AB BC BC AB AP AP⋅=⋅+⋅=⋅+⋅⋅,故AP AD AE AE AK AB ⋅=⋅+⋅.(*) 同理,由托勒密定理,有AP AQ AE AE AK AG ⋅=⋅+⋅.于是2()AP AQ AP AP PQ AP AP PQ AE AH AK AG ⋅=+=+⋅=⋅+⋅, 即22AP PG PH AP AP PQ AE AH AK AG +⋅++⋅=⋅+⋅从而2AP AE AH AK AG PG PH =⋅+⋅-⋅.由(*)式减去上式,有()()() AP AD AP AE AC AH AK AB AG PG PH -=-+-+⋅,即PA PD PK PI PE PF PG PH ⋅=⋅+⋅+⋅.又22221()24PK PI EF KI KI ++≤≤,214PE PF EF ⋅≤,214PG PH GH ⋅≤,故224EF KI GH PA PD ++≥⋅,其中等号当且仅当P 为ABCV △的中心时取得. 3.设四边形1234A A A A 内接于以O 为圆心,半径为R 的圆,设点O 在弦13A A ,12A A ,23A A ,34A A ,41A A ,上的射影分别为点0H ,1H ,2H ,3H ,4H .记(0,1,,4)i i h OH i ==…,1S ,2S 与1p ,2p 为123A A A △与34l A A A △的面积与半周长,1r ,2r 为它们的内切圆半径.考虑含点O 的三角形,不妨设O 在123A A A △内,分别对四边形302A H OH ,110A H OH ,221A H OH ,应用托勒密定理,并注意02H H ,01H H ,12H H 是123A A A △的中位线,有1102()R r p R H H +=⋅.01121023203011102121()()(R H H R H H S h H A h H A h H A h H A h H A h +⋅+⋅+=⋅+⋅+⋅+⋅+⋅+⋅2211222003112011)()()2H A h A A h A A h A A h h h p +⋅+⋅+⋅=++⋅,故1120R r h h h +=++.考虑O 在三角形外部的情形,考虑341A A A △,对四边形140A H H O ,330A H H O ,413A H OH 应用托勒密定理,有220404033434010413()()(R r p R H H R H H R H H R H H S h H A h H A h +=⋅+⋅+⋅+⋅+=⋅-⋅+⋅0303343434433444101334021)()()()2H A h H A h H A h H A h A A h A A h A A h h h p -⋅+⋅-⋅+⋅+⋅-⋅=+-⋅,故2340R r h h h +=+-.在上述情形下,1212342r r h h h h R +=+++-.对一般情形,所求内切圆半径之和等于1h ,2h ,3h ,4h ,2R 并赋以一定的符号之和,这些符号只与点O 相对四边形1234A A A A 的位置有关.因此,这个和与对角线的选取无关.4.设圆1C 的圆心为O ,半径为r ,连i OA ,(1,2,,)i OB i n =…,在四边形112OA B B 中应用托勒密不等式,有112211112OA B B CO A B OB A B ⋅+⋅≥⋅,即1211222()r B B λr A B λr A A A B →⋅+⋅≥+),故 12111222()B B λA B λA A A B +≥+.同理,迭用托勒密不等式,有23222333()B B λA B λA A A B '+≥+;34333444()B B λA B λA A A B +⋅≥+;…; 1111()n n n n n n n B λA B λA A A B ----+⋅≥+,1111()n n n n B B λA B λA A A B +≥+.将上述几个同向不等式相加,得1223111223-11()n n n n n B B B B B B B B λA A A A A An A A -+++≥+++……+, 故21p λp ≥.由托勒密不等式中等号成立的条件是当且仅当四边形112OA B B ,223OA B B ,…,1n n OA B B ,都是圆内接四边形,由圆内接四边形性质,知2323OA A OB B ∠=∠,2132OA A OB B ∠=∠,但 2332OB B OB O ∠=∠,则2123OA A OA A ∠=∠,从而1223OA A OA A △∽△,因此1223A A A A =.同理, 23341n A A A A A A ===…,即n 边形12n A A A …为正n 边形.反之,若12n A A A …为正n 边形,将其绕点O 逆时针方向旋转2πn,知12A A →,23A A →,…,1n A A →,从而12B B →,23B B →,…,1n B B →.于是知12n B B B …也是正n 边形,因此有122312n A A A A A A r ===⋅…πsin n,12231π2sin n B B B B B B λr n ====⋅….此时有21p λp =.5.作1O ⊙,O ⊙的公共直径GMK ,其中GM 是1O ⊙的直径,GK 是O ⊙的直径,连CG 交1O ⊙于点N .显然MN KC ∥,于是CN KM CG KG =,222CN KMf CN CG CG CG CG KG=⋅=⋅=⋅,即f CG =理,d AG =e BG =ABGC 中应用托勒密定理,有b BG c CG a AG ⋅+⋅=⋅.此时两bd ce af +=. 6.首先证EF GH =,MN PQ =.由切线长定理,有()()()()AC BC BD DA AF BF BE AE -+-=-+-= ()()2AF AE BE BF EF -+-=,()()()()()AC DA BD BC CH DH DG CG CH CG -+-=-+-=-+()2DG DH GH -=,而()()()()AC B BD DA AC DA BD BC -+-=-+-,故EF GH =.同理MN PQ =. 连1O A ,1O E ,3O C ,3O G ,由BAD ∠与BCD ∠互补,知1O AE ∠与3O CG ∠互余,有13390O AE O CG CO G ∠=︒-∠=∠,即13AE CO G △∽△.于是1313AE CG O E O G R R ⋅=⋅=⋅.同理,24BM DP R R ⋅=⋅.令AE AQ a ==,BM BF b ==,CG CN c == DP DH d == EF GH m ==,MN PQ n ==.于是,AB a b m =++,CD c d m =++,BC b c n =++,DA d a n =++,()()AC AF CM a m c n =+=+++,()()BD BE DQ b m d n =+=+++.对ABCD 应用托勒密定理,有AC BD AB CD BC DA ⋅=⋅+⋅,即()()()()()()a c m n b d m n a b m c d m b c n d a n +++⋅+++=+++++++++,亦即mn ac bd =+.即证. 7.设BAN NAC a ∠=∠=,对AB ,AN ,AC 应用三弦定理,则有2cos AN αAB AC ⋅=+,因1sin ()2ABC ABL ACL S S S AL αAB AC ++=⋅⋅+△△△,则cos sin ABC AN AL αα=⋅⋅⋅△S .又在Rt ALK △中,cos AL αAK ⋅=,则sin 2ANK S ABC AN AK αS =⋅⋅=△△.又易知AK AM =,即知ANK ANM △∽△,于是12ANK ANM AKNM S S S ==△△四边形,即证.8.必要性:连OB ,OC ,知EAB △,FAC △均为等腰三角形,且2()2BPC AEP CFD BAD CAD BAC BOC ∠=∠+∠=∠+∠=∠=∠,知B ,C ,P ,O 共圆,由托勒密定理,有PB OC PC OB OP BC ⋅=⋅+⋅,由PB PC PO =+得OC BC =,即OBC △为正三角形,推得1302BAC BOC ∠=∠=︒.充分性:由30BAC ∠=︒,知OBC △为正三角形,且由BPC BOC ∠=∠知B ,C ,P ,O 共圆,由托勒密定理,有PB OC PC OB PO BC ⋅=⋅+⋅,及OC OB BC ==,即得PB PC PO =+. 9.对四边形1ACA B 应用托勒密定理,有111AA BC AB AC AC A B ⋅=⋅+⋅,令11A B AC x ==,注意112x A B ACK BC =+>,有11222()ABx AC x AA AB AC AB AC BC BC +==+⋅>+,即11()2AA AB AC >+.同理,11()2BB BA BC >+,11()2CC CA CB >+,此三式相加即证.10.令AC a =,CE b =,AE c =.对四边形ACEF 应用托勒密不等式,有AC EF CE AF AE CF ⋅+⋅≥⋅,注意EF AF =,有FA c FC a b ≥+.同理。
【精品】奥林匹克题解几何篇

【关键字】精品第三章、几何第一节平面几何证明(上)C1-001 已知线段MN的两个端点在一个等腰三角形的两腰上,MN的中点S作等腰三角形的底边的平行线,交两腰于点K 和L.证明:线段MN在三角形底边上的正投影等于线段KL.【题说】 1956年~1957年波兰数学奥林匹克三试题2.【证】设M、N在直线KL上的射影分别为D、E,由于MS=SN,所以MD=NE.由于AB=AC,KL∥BC,所以∠DKM=∠AKL=∠ALK,又∠MDK=∠NEL=90°,所以△MDK≌△NEL,DK=EL,从而DE=KL,即MN在BC上的正投影等于KL.C1-002 设四边形ABCD内接于圆O,其对边AD与BC的延长线交于圆O外一点E,自E引一直线平行于AC,交BD延长线于点M,自M引MT切圆O于T点,则MT=ME.【题说】 1957年南京市赛初赛5.利用切割线定理和相似三角形.【证】四边形ABCD内接于圆O,故∠1=∠2.由ME∥AC,得∠2=∠4,又∠1=∠3,所以∠3=∠4,又∠EMB=∠DME,所以△EMB∽△DME.从而有即ME2=MB·MD所以MT2=MB·MD=ME2即 MT=MEC1-003 若一直角三角形的外接圆半径为R,其内切圆半径为r,与斜边相切的旁切圆半径为t,若R为r及t的比例中项,证明这直角三角形为等腰直角三角形.【题说】 1957年北京市赛高二题4.【证】设直角△ABC的斜边长为c,两直角边长为a、b.易知R=c/2所以a=b.C1-004 任意四边形ABCD的对角线AC与BD相交于P,而BD与AC的中点是M与N,设Q是P关于直线MN的对称点,过P 作MN的平行线,分别交AB、CD于X、Y,又过Q作MN的平行线,顺次交AB、BD、AC、CD于E、F、G、H.试证:1.EF=GH;【题说】 1963年成都市赛高二二试题4.同本届高三二试题4.【证】 1.P、Q关于MN对称,所以MN平分PQ,又FG∥MN,所以MP=MF,从而BF=PD,BP=FD.同理,有AP=CG,AG=PC.比较(1)、(2)得EF=GH.C1-005 在内角都相等的凸n边形中,设a1,a2,…,an 依次为边的长度,而且满足不等式a1≥a2≥…≥an.证明:必有a1=a2=…=an.【题说】第五届(1963年)国际数学奥林匹克题3.本题由匈牙利提供.【证】当n为奇数时,设n=2k+1(k为正整数),∠A2A1An 的平分线A1B交Ak+1Ak+2于点B(如图).由于已知n边形的各角都相等,所以A1B⊥Ak+1Ak+2,因此折线A1A2…Ak+1与折线A1An…Ak+2在这条角平分线上的射影都等于A1B.另一方面,A1A2≥A1An,并且它们与A1B的交角相等,所以A1A2的射影≥A1An的射影.同理A2A3的射影≥AnAn-1的射影….所以上述各式中等号均应成立,即a1=a2=…=an.当n为偶数时,作A1A2的中垂线L.考虑各边在L上的射影,同样可得a1=a2=…=an.C1-006 在平面上取四点A、B、C、D,已知对任何点P都满足不等式PA+PD≥PB+PC.证明;点B和C在线段AD上,并且AB=CD.【题说】 1966年全俄数学奥林匹克九年级题2.【证】由于点P是任意的.可以取P=D,则应有AD≥BD+DC;若取P=A,则有AD≥AB+AC.将二式相加,得2AD≥AB+AC+BD+CD(1)然而另一方面,总有AD≤AC+CD及AD≤AB+BD.因此又得2AD≤AB+AC+BD+CD(2)由(1)、(2)知2AD=AB+AC+BD+CD从而其他4个不等式中皆取等号,亦即B、C两点一定在线段AD上,而且AB=CD.C1-007 凸多边形内一点O同每两个顶点都组成等腰三角形,证明:该点到多边形的各顶点等距.【题说】第六届(1972年)全苏数学奥林匹克九年级题6.【证】(1)如果凸多边形是△ABC,则结论显然成立.(2)对n(n>3)边形,设A、B、C为多边形的任意三个顶点,则C或在AO、BO的反向延长线组成的夹角内(图a),或C 在该角外,即该角与多边形的边DE相交(图b).在图a中,点O在△ABC内,由(1),AO=BO=CO.在图b中,点O在△BDE和△ADE内,故有AO=DO=EO=BO.C1-008 设有一圆,它与∠O两边相切,切点为A、B.从点A引OB的平行线,交圆于点C,线段OC与圆交于E,直线AE与OB 交于K.证明:OK=KB.【题说】第七届(1973年)全苏数学奥林匹克九年级题2.【证】设圆在点C的切线与∠O两边分别相交于P、Q.因为AP=PC,所以△APC和△OPQ皆为等腰三角形,从而AO=CQ=OB=BQ.又∠OAE=∠OCA=∠COQ,且∠AOB=∠CQB,从而△OAK∽△QOC.所以亦即 OK=KBC1-009 圆的内接四边形两条对角线互相笔直,则从对角线交点到一边中点的线段等于圆心到这一边的对边的距离.【题说】 1978年上海市赛二试题6.【证】如图,已知ABCD为⊙O的内接四边形,AC⊥BD于E,F为AB中点,OG⊥DC,G为垂足.因为 AF=FB=EF∠EAB=∠AEF又∠EAB=90°-∠EBA=90°-∠GCH=∠GHC所以∠AEF=∠GHC , EF∥GO同理可证,EG∥FO.所以EGOF是一个平行四边形,从而FE=OG.C1-010四边形两组对边延长后分别相交,且交点的连线与四边形的一条对角线平行,证明:另一条对角线的延长线平分对边交点连成的线段.【题说】 1978年全国联赛二试题1.【证】设四边形ABCD的对边交点为E、F,并且BD∥EF,AC交BD 于H,交EF于G.由于BD∥EF,所以GF=EGC1-011在平面上已知两相交圆O1和O2,点A为交点之一,有两动点M1和M2,从点A同时出发,分别以常速沿O1和O2同向运动,各绕行一周后恰好同时回到点A.证明:在平面上存在一定点P,P到点M1和M2的距离在每一时刻都相等.【题说】第二十一届(1979年)国际数学奥林匹克题3.本题由原苏联提供.【证】设O1和O2为已知圆的圆心,r1和r2分别为它们的半径.作线段O1O2的垂直平分线l及点A关于l的对称点P,则O1P=r2,O2P=r1(如图).由已知,∠AO1M1=∠AO2M2,由对称性,∠AO1P=∠AO2P.于是,∠M1O1P=∠M2O2P.又因为O1M1=O2P=r1,O2M2=O1P=r2,故△O1M1P≌O2M2P,M1P=M2P.[别证] 可以用复数来作.以O1为原点,O1O2为实轴建立复平面.C1-012二圆彼此外切于D,一直线切一圆于A,交另一圆于B、C两点.证明:A点到直线BD、CD的距离相等.【题说】第十三届(1987年)全俄数学奥林匹克十年级题3.【证】过切点D作二圆的公切线l,交AB于F.设E在CD的延长线上,则∠BDA=∠BDF+∠FDA=∠ACD+∠FAD=∠ADE,即DA平分∠BDE,所以,A到BD、CD的距离相等.C1-013在“筝形”ABCD中,AB=AD,BC=CD.经AC、BD的交点O任作两条直线,分别交AD于 E,交BC于F,交AB于G,交CD于H.GF、EH 分别交BD于I、J.求证:IO=OJ.【题说】 1990年全国冬令营选拔赛题3.本题宜用解析几何来证.本题是蝴蝶定理的一个推广.【证】易证AC⊥BD.如图,以O为原点,BD为x轴,CA为y轴,建立直角坐标系.设各点坐标为A(0,b),B(-a,0),C(0,c),D(a,0),EF 的方程为y=kx,GH的方程为y=lx,则AD的方程是EH的方程是比较常数项与y的系数有J的横坐标x满足及(1′)·l-(2′)·k得利用(3)得同样可得I的横坐标x应满足(将(4)中的k与l互换,a换成-a).由(4)、(5)立即看出I、J的横坐标互为相反数,即IO=OJ.C1-014如图,设△ABC的外接圆O的半径为R,内心为I,∠B=60°,∠A<∠C,∠A的外角平分线交⊙O于E.证明:(1)IO=AE;【题说】 1994年全国联赛二试题3.【证】(1)连AI,延交⊙O于F,则易知EF为⊙O直径.过E作ED∥IO交AF于D,则IO是△FDE的中位线,从而IO=因∠AOC=2∠ABC=120°故A、O、I、C共圆.从而(2)连CF,则∠IFC=∠AFC=∠B=60°∠ICF=∠ICB+∠BCF故IF=IC,又由(1)知IO=AE,从而IO+IA+IC=EA+AI+IF=EA+AF≥EF=2R令α=∠OAI,则(因∠A<∠C)又 AE+AF=2Rsinα+2Rcosα当α∈(0,45°)时,sin(45°+α)为增函数,故AE+AF<2R(sin30°+cos30°)C1-015设△ABC是锐角三角形,在△ABC外分别作等腰Rt△BCD、△ABE、△CAF.在这三个三角形中,∠BDC、∠BAE、∠CFA是直角.又在四边形BCFE外作等腰Rt△EFG,∠EFG是直角.求证:(2)∠GAD=135°.【题说】 1994年上海市赛高三二试题2.【证】以点A为原点建立直角坐标系,与B相应的复数记为Z B,等等.C1-016设M、N为三角形ABC的边BC上的两点,且满足BM=MN=NC.一平行AC的直线分别交AB、AM、AN于D,E和F,求证:EF=3DE.【题说】 1994年澳大利亚数学奥林匹克一试题1.【证】如图,过N、M分别作AC的平行线交AB于H、G点.NH交AM于K点.则BG=GH=HA.HK∶KN=1∶3又由于DF∥HN,于是DE∶EF=HK∶KN=1∶3故EF=3DE.C1-017 ABCD是一个平行四边形,E是AB上的一点,F为CD上一点.AF 交ED于G,EC交FB于H.连接G,H并延长交AD于L,交BC于M,求证:DL=BM【题说】 1994年澳大利亚数学奥林匹克二试题4.【证】如图,过E、F分别作EK∥AD,FQ∥AD,则所以AL·DL=QF·EK.同理,CM·MB=QF·EK.故AL·DL=CM·MB又由于 AL+DL=CM+MB,所以DL=BMC1-018 在梯形ABCD(AB∥DC)中,两腰AD、BC上分别有点P、Q 满足∠APB=∠CPD,∠AQB=∠CQD.证明:点P和Q到梯形对角线交点O的距离相等.【题说】第二十届(1994年)全俄数学奥林匹克九年级(决赛)题7.【证】如图,设B′是B点关于AD的对称点,则P点就是B′C与AD的交点.在△APB和△DPC中,∠APB=∠DPC,∠PAB=180°-∠PDC,由正弦定理知△COP∽△CAB′C1-019从△ABC的顶点A引3条线段,∠A的平分线AM,∠A的外角平分线AN,三角形外接圆的切线AK,点M、N、K依次排列在直线BC上.证明:MK=KN.【题说】 1995年城市数学联赛低年级普通水平题4.【证】由于∠KAM=∠KAB+∠BAM=∠ACB+∠CAM=∠AMK所以,KA=KM.另一方面,∠NAM=90°,且∠ANM=90°-∠AMN=90°-∠KAM=∠NAK故KN=AK=KM.C1-020△ABC具有下面性质:存在一个内部的点P使∠PAB=10°,∠PBA=20°,∠PCA=30°,∠PAC=40°.证明:△ABC是等腰三角形.【题说】第25届(1996年)美国数学奥林匹克题5.[解] 作AC边上的高BD,又作AQ使∠QAD=30°,AQ交BD于Q,连PQ.设直线PQ交AC于C′.因为∠BAD=10°+40°=50°,所以∠ABD=90°-50°=40°,∠PBQ=40°-∠PBA=20°=∠PBA,∠PAQ=∠PAC-∠QAD=10°=∠PAB,从而P是△ABQ的内心,∠PQA=∠PQB=而∠PCA=30°,所以C′与C重合.从而QA=QC,QD平分AC,BA=BC.C1-021半径相等的三个互不相交的圆的圆心O1、O2、O3位于三角形的顶点处.分别从点O1、O2、O3引已知圆的切线,如图所示,已知这些切线相交成凸六边形,而六边形相邻的边分别涂成红色和蓝色.证明:红色线段长度之和等于蓝色线段长度之和.【题说】第二十二届(1996年)全俄数学奥林匹克九年级题2.【证】如图所示,X1、X2、Y1、Y2、Z1、Z2分别为切点.切线围成的六边形为ABCDEF.因⊙O1,⊙O2,⊙O3的半径相等,易得X1O2=O1Y2,Y1O3=O2Z2,Z1O1=O3X2.即X1A+AB+BO2=O1B+BC+CY2Y1C+CD+DO3=O2D+DE+EZ2Z1E+EF+FO1=O3F+FA+AX2以上三式两边相加,并利用X1A=AX2,Y1C=CY2,Z1E=EZ2,及BO2=O1B,DO3=O2D,FO1=O3F,得AB+CD+EF=BC+DE+FAC1-022 在等腰△ABC中(AB=BC),CD是角平分线.过△ABC的外心作直线垂直于CD,交BC于E点,再过E点作CD的平行线交AB于F,证明:BE=FD.【题说】第二十二届(1996年)全俄数学奥林匹克十一年级题6.【证】设O是△ABC的外心,K是直线BO和CD的交点.先设O在B、K之间(图a),∠BOE=90°-∠DKO=∠DCA,所以,点K、O、E、C四点共圆.∠OKE=∠OCE因为OB=OC,所以∠OCE=∠OBE.于是∠BKE=∠OCE=∠KBE所以BE=KE又∠BKE=∠KBE=∠KBA所以KE∥AB.从而KEFD为平行四边形,则DF=KE=BEK在O、B之间(图b)或K、O重合的情况可用类似方法证明.C1-023直角三角形ABC中,C为直角,证明:在△ABC中至少有一点P,使∠PAB=∠PBC=∠PCA.【题说】 1963年合肥市赛高二二试题2.【证】我们证明结论对任意△ABC成立.不妨设∠A、∠B为锐角,过A作AB的垂线,与边AC的中垂线相交于点O B.过B作BC的垂线交AB的中垂线于点O C,分别以O B、O C为心,过A点作圆.设P为这两个圆的另一个公共点,则AP⊥O B O C.连PB、PC.设O为△ABC的外心,则OO C∥AO B,四边形OO B AO C为梯形,对角线O B O C 在梯形内,∠AO B O C<∠AO B O,所以∠PAO B=90°-∠AO B O C>90°-∠AO B O=∠CAO B.同样∠PAO C>∠BAO C,所以射线AP在∠CAB内,P是AP与的交点,与A在BC的同侧,所以P在△ABC内.由于BC与⊙O C相切,所以∠PBC=∠PAB.同理∠PAB=∠PCA.因此,P合乎要求.C1-024在矩形ABCD内,M是AD的中点,N是BC的中点,在线段CD的延长线上取一点P,用Q表示直线PM和AC的交点.证明:∠QNM=∠MNP.【题说】第六届(1972年)全苏数学奥林匹克八年级题1.【证】设R是直线QN和CD的交点,O是矩形ABCD的中心,由OM=ON 得:PC=CR.因此三角形PNR是等腰三角形(NC是该三角形的中线和高,也就是△PQN的外角∠PNR的平分线,又NC⊥MN),问题的结论由此即得.C1-025已知正方形ABCD,点P和Q分别在AB和BC上,且BP=BQ,BH⊥PC于H.证明:∠DHQ是直角.【题说】第八届(1974年)全苏数学奥林匹克十年级题2.【证】延长BH交AD于E,则Rt△ABE≌Rt△BCP,于是AE=BP=BQ,因此,QC=ED,从而得矩形CDEQ.这个矩形的外接圆直径就是其对角线CE与DQ,而∠CHE=90°,所以H点在矩形的外接圆上,即C、D、E、H、Q五点共圆.对着直径DQ的圆周角:∠DHQ=∠DCQ=90°即∠DHQ是直角.C1-026设ABCD是矩形,BC=3AB,证明:如果P、Q是BC边上的点,BP=PQ=QC,那么∠DBC+∠DPC=∠DQC.【题说】第六届(1974年)加拿大数学奥林匹克题2.【证】如图所示,即证β+γ=α或tan(β+γ)=tanα=1△BRD∽△PQD.于是∠RBD=∠DPC=β,从而有β+γ=∠RBC=α.C1-027在任一△ABC的边上,向外作△BPC、△CQA和△ARB,使得2.QR=RP.【题说】第十七届(1975年)国际数学奥林匹克题3.本题由荷兰提供.【证】建立一个复平面,令A和B的坐标分别为-1和1,C的因而,于是RQ⊥RP,RQ=RP.C1-028如图,两圆O1、O2相交于A、B,圆O1的弦BC交圆O2于E,圆O2的弦BD交圆O1于F,证明:1.若∠DBA=∠CBA,则DF=CE;2.若DF=CE,则∠DBA=∠CBA.【题说】 1979年全国联赛二试题6.【证】 1.连AD、AE、AF、AC,则∠DFA=∠ECA.又∠DBA=∠CBA以AD=AE,AC=AF所以△DAF≌△EACDF=CE2.由于∠DFA=∠ACE,∠AEC=∠ADF,DF=CE,所以△DAF≌△EAC,AD=AE.从而∠DBA=∠EBA.C1-029两圆相切(内切或外切)于P点,一条直线切一个圆于A,交另一圆于B、C.证明:直线PA是∠BPC的平分线(如果两圆内切)或∠BPC的补角的平分线(如果两圆外切).【题说】 1980年五国国际数学竞赛题4.本题由比利时提供.【证】设两圆外切(图a),作公切线PT,则∠APB=∠APT+∠TPB=∠BAP+∠BCP=∠BPC的补角-∠APB即AP是∠BPC的补角的平分线.若两圆内切(图b),设公切线与BC相交于T.因为∠CPT、∠APT、∠TAP都是弦切角,故∠BPA=∠APC,因此,PA是∠BPC的平分线.C1-030已知A为平面上两条半径不等的圆O1和O2的一个交点,两外公切线P1P2、Q1Q2分别切两圆于P1、P2、Q1、Q2,M1、M2分别为P1Q1、P2Q2的中点,求证:∠O1AO2=∠M1AM2.【题说】第二十四届(1983年)国际数学奥林匹克题2.本题由原苏联提供.【证】设B是两圆的另一交点,T、M分别是P1P2、O1O2与AB的交点.又P1M1∥TM∥P2M2所以MM1=MM2为AB⊥O1O2所以TM是M1M2的中垂线.在O1O2上,取MO3=MO2,则∠O3AM1=∠O2AM2.因为O1P1∥O2P2,O1M1∥O2M2,P1M1∥P2M2△O1P1M1∽△O2P2M2由此可知,AM1是∠O1AO3的角平分线.所以∠O1AM1=∠O3AM1=∠O2AM2故有∠O1AO2=∠O1AM1+∠M1AO2=∠O2AM2+∠M1AO2=∠M1AM2C1-031 如图,延长线段AB至D,以AD为直径作半圆,圆心为H.G 是半圆上一点,∠ABG为锐角.E在线段BH上,Z在半圆【题说】 1992年澳大利亚数学奥林匹克题5.【证】由EH·ED=EZ2知△HEZ∽△ZED,所以∠EZH=∠EDZ=∠DZH.于是∠AEZ=3∠EZHC1-032 在正方形ABCD的AB、AD边各取点K、N,使得AK·AN=2BK·DN.线段CK、CN各交对角线BD于L、M.试证:∠BLK=∠DNC=∠BAM.【题说】第三届(1993年)澳门数学奥林匹克第二轮题4.【证】令AB=a,BK=b,DN=c,则(a-b)(a-c)=2bc即a2-bc=a(b+c)所以∠BCK+∠DCN=45°∠BLK=∠BCK+45°=90°-∠DCN=∠DNC再由△ABM≌△CBM,得∠BAM=∠BCM=∠BCK+∠LCM=∠BCK+(90°-45°)=∠BLKC1-033如图,⊙O1与⊙O2外切于点P,Q是过P的公切线上任一点,QAB和QDC分别是⊙O1与⊙O2的割线,P在AB、AD和DC上的射影分别为E、F、G.求证:(1)∠BPC=∠EFG;(2)△EFG∽△PBC.【题说】 1994年四川省赛题3.【证】(1)因PQ切⊙O1与⊙O2于P,所以∠QPA=∠PBA (1)因为∠AEP=∠AFP=90°所以A、E、P、F四点共圆.故有∠FEP=∠FAP=∠DAP (2)同理,F、D、G、P四点共圆.且∠BPC=∠BAP+∠PDC=∠EFP+∠PFG=∠EFG(3)(2)因为∠PEQ=∠PGQ=90°所以Q、E、P、G四点共圆,于是∠GEP=∠GQP=∠DQP (4)由(2)、(4)与∠DAP+∠QPA=∠QDA+∠DQP得∠FEG=∠FEP-∠GEP=∠DAP-∠DQP=∠QDA-∠QPA(5)又A、B、C、D四点共圆,有∠QDA=∠QBC.于是由(1)、(5)得∠FEG=∠QBC-∠PBA=∠PBC(6)由(3)、(6)得△EFG∽△PBC.C1-034 D、E、F分别为△ABC的边BC、CA、AB上的点,且∠FDE=∠A,∠DEF=∠B,又设△AFE、△BDF、△CED均为锐角三角形,它们的垂心依次为H1、H2、H3,求证:(1)∠H2DH3=∠FH1E;(2)△H1H2H3≌△DEF.【题说】 1994年江苏省赛题5.【证】如图,(1)∠H2DB=90°-∠B,∠H3DC=90°-∠C,所以∠H2DH3=180°-∠H2DB-∠H3DC=∠B+∠C.而∠EH1F=180°-∠H1EF-∠H1FE=180°-(90°-∠AFE)-(90°-∠AEF)=180°-∠A=∠B+∠C.所以∠H2DH3=∠FH1E(2)由(1)知∠FH1E+∠EDF=180°,所以,H1在△DEF的外接圆上.同理H2、H3也在此圆上,因此D、E、F、H1、H2、H3六点共圆.又由(1)知∠EH1F=∠H2DH3,所以EF=H2H3.同理DF=H1H3,DE=H1H2,故△DEF≌△H1H2H3.C1-035 △ABC为锐角三角形.AD为BC边的高,H为AD内一点.直线BH、CH分别交AC、AB于E、F.证明:∠EDH=∠FDH.【题说】第26届(1994年)加拿大数学奥林匹克题5.又见第3届(1993年)澳门数学奥林匹克题3.[解] 过A作直线l平行于BC.延长DE、EF,分别交l于Q、P.由相似三角形,AP=AQ于是△DPQ的高DA平分PQ,所以△DPQ是等腰三角形,并且∠EDH=∠FDH.C1-036 在直角KLM内取一点P.以O1点为圆心的圆ω1分别切∠KLP 的两边LK和LP于A、D两点;以O2点为圆心半径与圆ω1半径相等的圆ω2分别切∠MLP的两边LP、LM于B、E两点.点O1在线段AB上.设O2D的延长线与KL交于C点.证明:BC是∠ABD的平分线.【题说】第二十届(1994年)全俄数学奥林匹克九年级题6.【证】连结O1D及O2B,则O1D=BO2.因为O1D⊥LP,O2B⊥LP,所以O1D∥BO2,O1BO2D为平行四边形,从而CO2∥AB,∠LDC=∠O1BD.∠LCD=∠LAB=90°(1)因为O2E⊥LM,所以O2ELC是矩形.因此CL=O2E=O2B=DO1(2)由(1)、(2)得Rt△LCD≌Rt△O1DB,所以CD=DB.于是∠ABC=∠BCD=∠CBD,即BC是∠ABD的平分线.C1-037设AK、BL、CM是△ABC的角平分线,K在BC上,令P、Q 分别是BL,CM上的点,使得AP=PK,AQ=QK.证明:【题说】 1995年城市数学联赛低年级较高水平题3.【证】如图,设BL交△ABK的外接圆于点D.则∠DAK=∠DBK=∠DBA=∠DKA所以,DA=DK,从而D与P重合.即有C1-038设△ABC是锐角三角形,且BC>CA,O是它的外心,H是它的垂心,F是高CH的垂足,过F作OF的垂线交边CA于P.证明:∠FHP=∠BAC.【题说】第三十七届(1996年)IMO预选题.【证】延长CF交⊙O于D点,连BD、BH.由于∠BHF=∠CAF=∠D且BF⊥HD,所以F为HD的中点.设FP所在直线交⊙O于M、N两点,交BD于T点.由OF⊥MN知F为MN的中点.由蝴蝶定理即得F为PT的中点.又因F 为HD的中点,故HP∥TD,所以,∠FHP=∠D=∠BAC.C1-039在凸凹边形ABCD的BC边上取E和F(点E比F更靠近点B).已知∠BAE=∠CDF及∠EAF=∠FDE.证明:∠FAC=∠EDB.【题说】第二十二届(1996年)全俄数学奥林匹克十年级题1.【证】因为∠EAF=∠FDE,所以A、E、F、D共圆,∠AEF+∠FDA=180°,又∠BAE=∠CDF,所以∠ADC+∠ABC=∠FDA+∠CDF+∠AEF-∠BAE=180°因此A、B、C、D共圆,∠BAC=∠BDC,由此得∠FAC=∠EDB.C1-040 在平行四边形ABCD中有一点O,使得∠AOB+∠COD=180°.证明:∠OBC=∠ODC.【题说】第二十九届(1997年)加拿大数学奥林匹克题4.[解] 过O作OE BA,连EC、ED,则四边形EOAD、EOBC都是平行四边形,所以CE∥BO,ED∥OA,∠CED+∠COD=∠AOB+∠COD=180°O、C、E、D四点共圆,从而∠ODC=∠OEC=∠OBCC1-041已知一个等腰三角形,外接圆半径为R,内切圆半径为r.证明:外接圆和内切圆的圆心距离d为【题说】第四届(1962年)国际数学奥林匹克题6.本题由原东德提供.【证】本题结论(即欧拉公式)对任意三角形(不限于等腰三角形)均成立.设M为BC的中点,O与I分别为外接圆和内切圆的圆心,外接圆直径MN交BC于D.连IB、BM、AM必过I.又设IE⊥BCIK⊥MNE、K为垂足.=∠IBM所以MI=MB又 IO2=MI2+MO2-2MO·MK而MB2=MD·MN=2R·MD所以d2=2R·MD+R2-2R·MK=R2-2R×DK=R2-2RrC1-042设过三角形的内心和重心的直线平行于一边.求证:其它二边长的和等于这一边长的两倍.【题说】 1963年西安市赛高二题3.【证】设△ABC的三边为a、b、c、M为BC之中点,G、I分别为△ABC的重心和内心,且IG∥BC.因为IG∥BC所以G到BC的距离GE=r(内切圆半径)BC边上的高h=3GE=3r,而ha=r(a+b+c)(=2S△ABC)所以3a=a+b+c即b+c=2aC1-043 1.在凸六边形ABCDEF中,所有角都相等.证明:AB-DE=EF-BC=CD-FA2.反之,若六条边a1,a2,a3,a4,a5,a6满足等式a1-a4=a5-a2=a3-a6.证明:它们可以组成各内角相等的凸六边形.【题说】 1964年全俄数学奥林匹克八年级题5(1)、十年级题3(2).【证】 1.直线AB、CD、EF构成△GHI.由已知六边形各角相等知,每个角都是120°,从而△GHI的每个角都是60°,因此它是正三角形.并且AF、BC、DE分别与边GI、GH、HI平行.AB+AC=AB+BI=AI=GF=GE+EF=DE+EF所以 AB-DE=EF=BC同理 EF-BC=CD-FA2.以a1+a2+a6为边作正三角形GHI,然后在各边取A、B、C、D、E、F,使BI=IC=a2,DG=GE=a4,FH=HA=a6,则BC∥GH,DE∥HI,AF∥GI,所以六边形ABCDEF各角相等,并且AB=a1,BC=BI=a2,AF=AH=a6,DE=DG=a4,CD=(a1+a2+a6)-a2-a4=a3.EF=(a1+a2+a6)-a4-a6=a5.C1-044 已知ABCD为一圆外切梯形,E是对角线AC和BD的交点,r1、r2、r3、r4分别是△ABE、△BCE、△CDE和△DAE的内切圆半径.证明:【题说】 1964年全俄数学奥林匹克十一年级题2.【证】设△ABE、△BCE、△CDE、△DAE的面积和周长分别为S1、S2、S3、S4;l1、l2、l3、l4.由于 AB+C D=AD+BC所以 l1+l3 =l2+l4(2)因为 AB∥CD所以 S2=S4记之为S.则从而相加并利用(2)得即(1)成立.C1-045 设点M是△ABC的AB边上的任一内点,r1、r2、r分别是△AMC、△BMC、△ABC的内切圆半径;q1、q2、q分别是这些三角形在∠ACM、∠BCM、∠ACB内的旁切圆半径.试证:【题说】第十二届(1970年)国际数学奥林匹克题1.本题由波兰提供.【证】设∠CAB=α,∠ABC=β,∠BCA=γ,∠AMC=δ;又设△ABC的内切圆的圆心为R,且与AB切于P(如图).于是从而有由于三角形的角的内、外分角线互相垂直,因而类似地有由(1)和(2)可得类似的结论对于△AMC和△BMC也成立,故有将(4)、(5)相乘,并利用(3)得C1-046 考虑如图a、图b所示的△ABC和△PQR.在△ABC中,∠ADB=∠BDC=∠CDA=∠120°.试证:x=u+v+w.【题说】第三届(1974年)美国数学奥林匹克题5.【证】△BCD绕B逆时针方向旋转60°,至△BEF,如图c.这时易知A、D、F、E在一直线上,且AE=u+v+w.再将△EAC绕E顺时针方向旋转60°,至△EGB.则△AEG为正三角形且易证它与△PQR全等,其中B相当于O点.得证.【别证】(1)△PQR绕R逆时针旋转60°,至△SPR,如图d.这时作正△ROT外接圆,设交RP于D′.易证∠OD′T=∠TD′P=∠PD′O=120°.由△ABC中D点的唯一性及△ABC≌△TOP知PD′=w,OD′=v,TD′=u.又由托勒密定理,知RD′=u+v,故x=u+v+w.(2)过O作△PQR三边平行线,如图e,也可以得结论.C1-047 直径A0A5把圆O分成两个半圆,其中一个半圆分成五段等点M、N.证明:线段A2A3与MN之和等于圆的半径.【题说】第十九届(1985年)全苏数学奥林匹克八年级题6.【证】在圆上分别标出点A1、A2、A3、A4关于直径A0A5的对称点B1、B2、B3、B4,得圆的内接正十边形A0A1…A5B4B3…B1(如图).则A2B1∥A3B2,A2B1∥A1A0,OA2∥B2A1,A0A5∥A1A4∥A2A3.由对称性知A2B1和B2A1的交点K在A0A5上.又设A2B1和A1A4相交于点L.于是KA2A3O、A0A1LK、A1MOK、LNOK都是平行四边形.所以A2A3=KO=A1M=LN,从而MN=A1L=A0K.因此,A2A3+MN=A0O.C1-048 四边形ABCD内接于圆,另一圆的圆心O在边AB上且与其余三边相切.求证:AD+BC=AB.【题说】第二十六届(1985年)国际数学奥林匹克题1.本题由英国提供.【证】在AB上取点M,使MB=BC.连结OD、OC、MD和MC.所以C、D、M、O四点共圆.所以∠AMD=∠ADM,故AM=AD.从而AB=AM+MB=AD+BC【别证】设半圆半径为1,∠OAE=α,则AE=cotα.同理可证 BG+ED=BO故 AD+BC=ABC1-049 已知两圆相交于M和K,引两圆的公切线,切点为A和B.证明:∠AMB+∠AKB=180°.【题说】第十四届(1988年)全俄数学奥林匹克八年级题2.【证】如图,连结MK,则∠AMK=∠KAB∠BMK=∠KBA两式相加得∠AMB=∠KAB+∠KBA因此∠AMB+∠AKB=∠KAB+∠KBA+∠AKB=180°C1-050 在一个三角形中,以h a、h b、h c表示它的三条高,以r表示它的内切圆半径.证明:当且仅当三角形为等边三角形时,h a+h b+h c=9r.【题说】 1988年原联邦德国数学奥林匹克(第一轮)题2.【证】设三角形三边为a、b、c,周长为p,面积为S,则2S=rp=ah a=bh b=ch c当且仅当a=b=c,即三角形为等边三角形时取等号,即h a+h b+h c=9rC1-051 设点D、E、F分别在△ABC的三边BC、CA、AB上,且△AEF、△BFD、△CDE的内切圆有相等的半径r,又以r0和R分别表示△DEF和△ABC 的内切圆半径.求证:r+r0=R【题说】第四届(1989年)全国冬令营赛题4.【证】设p为△ABC的半周长,q为△DEF的半周长.因为S△ABC=S△AEF=S△BFD+S△CDE+S△DEF所以R·p=r·p+(r0+r)·q(1)所以 R(p-q)=Pr(4)由(1)、(4)得Rq=(r0+r)q,即R=r0+r.C1-052 在圆内引弦AB和AC,∠BAC平分线交圆于D点.过D【题说】第十六届(1990年第三阶段)全俄数学奥林匹克九年级题8.【证】作DM⊥AC于M(如图).因为ABDC内接于圆,所以∠MCD=∠B若B与E重合,则∠B=90°=∠ACDRt△ABD≌Rt△ACD,结论显然成立.若B与E不重合,则∠B为锐角或钝角.不妨设∠B为锐角(钝角情形同样讨论),则∠ACD为钝角,M在AC延长线上,而E点在AB线段内.由于AD平分∠BAC,所以DE=DM,AE=AM.从而△BDE≌△CDM,则C1-053 四边形ABCD内接于半径为r的圆,对角线AC、BD相交于E.证明:若AC⊥BD,则EA2+EB2+EC2+ED2=4r2(1)若(1)成立,是否必有AC⊥BD?说明你的理由.【题说】 1991年英国数学奥林匹克题3.【解】若AC⊥BD,则EA2+EB2+EC2+ED2=AB2+CD2.由正弦定理AB2=4r2sin2∠ACBCD2=4r2sin2∠CBD=4r2cos2∠ACB所以EA2+EB2+EC2+ED2=4r2sin2∠ACB+4r2cos2∠ACB=4r2反之,若(1)成立,未必有AC⊥BD.例如AC、BD为任两条直径,则交点E即为圆心.(1)式显然成立.C1-054 设∠A是三角形ABC中最小的内角.点B和C将这个三角形的外接圆分成两段弧.设U是落在不含A的那段弧上且不等于B与C的一个点.线段AB和AC的垂直平分线分别交线段AU于V和W.直线BV和CW相交于T.证明:AU=TB+TC.【题说】第三十八届(1997年)国际数学奥林匹克题2.本题由英国提供.【证】如图所示,因为点V在线段AB的垂直平分线上,所以∠VAB=∠VBA.又因∠A是△ABC的最小内角,且∠VAB=∠UAB<∠CAB故∠VBA=∠VAB<∠CAB≤∠CBA即V在∠ABC内.同理W在∠ACB内.BV与CW的交点T在△ABC内.延长BT交外接圆于S.由于AU与BS关于弦AB的中垂线对称,所以AU=BS.因为∠TCS=∠TCA+∠ACS=∠WAC+∠ABS=∠WAC+∠VAB=∠BAC=∠BSC,所以TS=TC,从而AU=BT+TS=BT+TCC1-055 在圆上取六个点A、B、C、D、E、F,使弦AB与DE平行,弦DC与AF平行.证明:弦BC与弦EF平行.【题说】 1959年~1960年波兰数学奥林匹克三试题5.【证】圆上六点的顺序有种种情况.以图a、图b所示的两种为例,其他情况可仿此证明.在图a中,因AB∥DE,DC∥AF,故有所以BC∥EF所以,BC∥EF.C1-056 在平行四边形ABCD的两边AB、AD上,向外作两个正方形ABMX、ADNY.求证:CA⊥XY.【题说】 1963年武汉市赛高三一试题4.【证】如图,延长CA交XY于E,因∠ABC=180°-∠BAD=180°-(360°-∠BAX-∠XAY-∠YAD)=∠XAY又AY=AD=BC及AX=BA所以△XAY≌△ABC,从而∠XYA=∠ACB=∠CAD所以∠AEY=180°-∠EAY-∠EYA=180°-∠EAY-∠CAD=∠DAY=90°.亦即AC⊥XY.C1-057 作△ABC外接圆,连接AC中点与AB、BC中点的弦,分别交AB 于D,交BC于E.证明:DE∥AC且通过三角形的内心.【题说】 1965年全俄数学奥林匹克八年级题3.△ABC的内心,则AM、BN过O.又设LN与AC交于K,连结OK.LN⊥AM在△AON中,易知∠AON=∠NAO.从而ND平分AO.又AO平分∠A.从而AO平分DK.因此在四边形AKOD中二对角线AO、DK互相垂直平分,故AKOD 是菱形.于是DO∥AK.同理,四边形CEOJ是菱形,从而OE∥CJ,从而D、O、E在一条直线上,即DE∥AC,而且DE过△ABC内心O.C1-058 某个平面四边形,各边之长顺次为a,b,c,d,对角线互相垂直.试证:任何其它四边形,若其各边长顺次为a,b,c,d,则其对角线也互相垂直.【题说】 1975年~1976年波兰数学奥林匹克三试题4.【证】设四边形ABCD、A′B′C′D′的边长顺次为a,b,c,d,AC 与BD相交于O,并且AC⊥BD(如图).显然a2-b2=AO2-OC2=d2-c2设B′在A′C′上的射影为P,D′在A′C′上的射影为Q,则A′P2-PC′2=a2-b2=d2-c2=A′Q2-QC′2即 A′C′×(A′P-PC′)=A′C′×(A′Q-QC′)从而A′P-PC′=A′Q-QC′,又A′P+PC′=A′C′=A′Q+QC′,所以A′P=A′Q,P与Q重合,并且均在B′D′上.于是B′D′⊥A′C′.C1-059 已知平面上的三个正方形ABCD、A1B1C1D1和A2B2C2D2(正方形的顶点是沿逆时针方向标写的).并且顶点A1与A重合,而C2与C重合,试证:线段D1D2与BM(其中M为线段B1B2的中点)互相垂直并且|D1D2|=2|BM|.【题说】第六届(1981年)全俄数学奥林匹克十年级题5.【证】设B为原点,其它各点的复数表示仍用同样的字母,则由于M 是线段B1B2中点,2·M=B1+B2=(B1-A)+(B2-C)+A+C=(D1-A)·(-i)+(D2-C)·i+A+C=(D2-D1)i+A·(1+i)+C·(1-i)=(D2-D1)i+C·i(1+i)+C·(1-i)=(D2-D1)i因此线段D1D2⊥BM,并且|D1D2|=2|BM|.C1-060 如图,在凸四边形ABCD中,AB与CD不平行.圆O1过A、B且与边CD相切于P,圆O2过C、D且与边AB相切于Q,圆O1与圆O2相交于E、F.求证:EF平分线段PQ的充分必要条件是BC∥AD.【题说】第五届(1990年)全国冬令营赛题1.【证】首先证明:如图,分别延长CD与BA,记它们的交点为S.并记SC,SD,SP,SA,SB,SQ为c,d,p,a,b,q,则p2=ab,q2=cd.于是延长PQ分别交圆O1、O2于J、I,则由相交弦定理可知PD·PC=PI·PQ,QA·QB=QJ·PQ弦定理可知KP·KJ=KE·KF=KQ·KI即KP(KQ+QJ)=KQ(KP=PI)于是KP·QJ=KQ·PI综上所述,命题得证.C1-061 △ABC是直角三角形,以直角边AC和BC为边分别向外作两个菱形ACDE和CBFG,其中心分别为P和Q,且∠EAC=∠GCB<90°,如果M和N分别为AB和DG的中点.证明:PQ⊥MN.【题说】 1992年友谊杯国际数学竞赛八年级题2.【证】容易证明,△ACG≌△BCD,所以AG=BD.从而以四边形ADGB各边中点为顶点的四边形P,N,Q,M是菱形,故PQ⊥MN.C1-062 ABCDE是凸五边形,AB=BC,∠BCD=∠EAB=90°.X为此五边形内一点,使得AX⊥BE且CX⊥BD.证明:BX⊥DE.【题说】 1992年澳大利亚数学奥林匹克题3.【证】设AX交BE于Y,CX交BD于Z,BX交DE于F.则AB2=BY·BE=BZ·BD所以D,E,Y,Z四点共圆.又由于B,Y,X,Z四点共圆,所以∠BXZ=∠BYZ=∠ZDF故D,F,X,Z四点共圆,从而∠BFD=∠DZX=90°,即BX⊥DE.C1-063 已知△ABC以O1、O2、O3为旁切圆圆心.证明:△O1O2O3是锐角三角形.【题说】第三届(1993年)澳门数学奥林匹克第一轮题3.【证】易知△O1O2O3包含△ABC,△ABC三内角平分线是△O1O2O3三高,△ABC内心O是△O1O2O3垂心.O在△ABC内,更在△O1O2O3内,故△O1O2O3为锐角三角形.C1-064 在△ABC中,∠A的平分线交AB边中垂线于A′,∠B的平分线交BC边中垂线于B′,∠C的平分线交CA边中垂线于C′.求证:(1)若A′与B′重合,则△ABC为正三角形;【题说】 1993年德国数学奥林匹克(第二轮)题3.【证】(1)若A′与B′重合,则△ABC的内心与外心重合,从而△ABC为正三角形.(2)将△A′AC′绕A旋转,使A与B重合.设这时C′转到∠ABC-∠BAC+∠ACB)=∠B′CC′.所以△B′BK≌△B′CC′,B′K=B′C′.从而△B′A′K≌△B′A′C′,∠【注】设I为内心,AB的垂直平分线交BB′于J,则可以证明△A′C′I∽△A′B′J,从而导出结论,但需要稍多的计算.C1-065 ABC是一个等腰三角形,AB=AC,假如(i)M是BC的中点,O是直线AM上的点,使得OB垂直于AB;(ii)Q是线段BC上不同于B和C的一个任意点;(iii)E在直线AB上,F在直线AC上,使得E,Q,F是不同的和共线的.求证:OQ⊥EF当且仅当QE=QF.【题说】第三十五届(1994年)国际数学奥林匹克题2.本题由亚美尼亚-澳大利亚提供.【证】连线段OE、OF、OC.由对称性,OC⊥AC,∠OBQ=∠OCQ.若OQ ⊥EF,则O、Q、B、E四点共圆,O、Q、C、F四点共圆,故∠OEQ=∠OBQ,∠OFQ=∠OCQ (1)于是∠OEQ=∠OFQ,OE=OF又OQ⊥EF,故QE=QF.反之,若QE=QF,过E作EG∥BC交AC于G,则易知EB=GC=CF.又OB=OC,∠OBE=∠OCF=90°,所以△OBE≌△OCF,OE=OF.从而OQ⊥EF.C1-066 如图,菱形ABCD的内切圆O与各边分别切于E、F、G、CD于P,交DA于Q.求证:MQ∥NP.【题说】 1995年全国联赛二试题3.【证】连结AC,则O为AC中点,再连结MO、NO.则∠MON=180°-(∠OMN+∠MNO)因此△AMO∽△OMN∽△CON。
平行六面体和长方体

第三条是过不相邻的棱的截面。
观察以下几何体的变化,通过比较,说出他们的特征.
底面为平行四边形
矩形
正方形
总结:特殊四棱柱及它们之间的关系,用集合表示为: {四棱柱}{平行六面体}{直平行六面体}{长方体} {正四棱柱}{正方体}.
定理:平行六面体的对角线相交于一点, 并且在交点处互相平分.
D′ C′
A′ D
A
B′
O C B
定理:长方体的一条对角线长的平 方等于一个顶点上的三条棱的长的 平方和.
练习: 1、长方体的一条对角线与一个顶点上的 三条棱所成的角分别为α、β、γ, 求:cos2α+cos2β+cos2γ的值.
2、长方体的一条对角线与各个面所成的角 分别为α,β,γ,求: cos2α+cos2β+cos2γ的值.
例、四棱柱的底面是边长为a的正方形,侧 棱长为b(a<√2b),上底的一个顶点A`与 下底的各个顶点等距离。
(1)求证:ABiblioteka 在下底面的射影是 下底面的中心;(2)求两个对角面的面积。
D` C` A` B`
D A
O
C B
2ab,b
2b a
2
2
作业:P. 62 第4、5题.
平行六面体与长方体
一复习
1.棱柱的定义中,强调了棱柱的二个特点, 它们分别指什么? 2.棱柱分为斜棱柱、直棱柱的依据是什么? 3.棱柱有三条性质,它们所涉及的对象各是什么? 1、有二个面互相平行,其余各面均为四边形; 侧棱互相平行. 2、侧棱与底面是否垂直. 3、第一条性质是侧棱、侧面; 第二条是上下底面与平行于底面的截面;
(答案)奥赛经典-奥林匹克数学中的几何问题---参考答案(第1-2章)

参考答案第一章 梅涅劳斯定理及应有习题A1.延长CB ,FE 交于H ,ADB △与截线GEH ,有13122AG DH BE DH GD HB EA HB ⋅⋅=⋅⋅=,有43DH HB =,即74CH HD =.对ACD △及截线FGH ,72141AF CH DG AF FC HD GA FC ⋅⋅=⋅⋅=,求得27AF FC =. 2.设CB ,DE 的延长线交于P ,又BP BC =,32FP PB =,对AFB △与截线HEP ,CGE ,有31121AH FP BE AH GF PB EA HF ⋅⋅=⋅⋅=,即23AH HF =;11121AG FC BE AG GF CB EA GF ⋅⋅=⋅⋅=,即21AG GF =.由此求得645AH HG GF =∶∶∶∶.3.对BDP △于截线CEA ,有1231612BC DA PE BC CD AP EA CD ⋅⋅=⋅⋅=,知BD DC =.对CDP △与截线BFA ,有22111CB DA PF PF BD AP FC FC ⋅⋅=⋅⋅=,知14PF FC =.而20CF =,故15CP =. 在PBC △中,由中线长公式2PD =,得BC =,即BD =.又22222269BP PD BD +=+==,即90BPD ∠=︒,27PBD S =△,4108ABC PBD S S ==△△.4.直线OCB 分别与DMF △和AEM △的三边延长线都相交,有1DB MO FC MB FO DC ⋅⋅=,1AB EO MCEB MO AC⋅⋅=,即OF OE DB FC EB AC OM OM MB DC AB MC ⋅⋅⋅=⋅⋅⋅.由EF AD ∥,有DB AB MB EB =,FC MC DC AC =,从而21OF OE OM ⋅=,即22OF OE OM OP ⋅==,有OFP OPE △∽△,故OPF OEP ∠=∠.5.直线截ABC △,有22133CF AD BE BE FA DB EC EC ⋅⋅=⋅⋅=,即94BE EC =,故54BC CE =.直线截DBE △,有25154EF AD BC EF FD AB CE ED ⋅⋅=⋅⋅=,所以21EF FD =∶∶. 6.设AC BC x ==,则AB =,。
2平行六面体与长方体

AB AD AA ,
2
2
' 2
即AC AB AD AA .
'2 2 2 '2
2
已知长方体的一条对角线AC1,AC1与AB、AD、AA1所 2 2 2 2 2 成的角分别为α 、β cos 2 2(a b c ) 2 cos cos 、γ ,与过A的三个面所成的角为 动 2 画 θ 、Φ 、σ 。 l
5
应用:
动 画 音 乐
1.以下四个命题中真命题的是_______
①底面是矩形的平行六面体是长方体;
②棱长都相等的直四棱柱是正方体; ③有两条侧棱都垂直于底面一边的平行六面体 是直平行六面体; ④对角线相等的平行六面体是直平行六面体.
6
首 页 上 页 下 页 小 结 结 束
动 画 音 乐
5.已知正四棱柱ABCD-A1B1C1D1中,A1B与截 面A1B1CD所成的角为300. 求证:此四棱柱为正方体. 如果长方体的一条对角线和经过这 条对角线一个端点的三个面所成的 角分别为 , , , 则
A1 C1
B1
首 页 上 页 下 页 小 结 结 束
Z
A
X
D B
C
Y
17
动 画 音 乐
例2、 正 六 棱 柱 ABCDEF A1 B1C1 D1 E1 F1的 底 面 边 长 为 , 侧 棱 长 为 2, 则 这 个 棱 柱 的 侧 1 面 对 角 线 1 D与BC1 所 成 的 角 是 ( ) E A、 0 90 B、 0 60 C、 0 45 D、 0 30
B1 A
M是底面上BC边的中点,N是侧棱柱CC1上的点,
A1 C1
首 页 上 页 下 页 小 结 结 束
奥数挑战平面与立体几何

奥数挑战平面与立体几何奥数挑战:平面与立体几何奥数(奥林匹克数学竞赛)作为一项旨在培养学生数学能力和解决问题能力的竞赛,常常涵盖了各个数学领域的题目。
其中,平面与立体几何一直是奥数考察的重要领域之一。
本文将介绍平面与立体几何的基本知识和解题思路,希望对参与奥数竞赛的同学有所帮助。
1. 平面几何平面几何是研究平面内点、线、面及其间的相互关系的数学分支。
在奥数竞赛中,常见的平面几何题目类型包括线段相交、平行线、垂直线、三角形性质等。
下面就以一些常见的平面几何题型为例进行介绍。
1.1 线段相交当题目给出若干条线段,要求求出它们相交的情况或者计算相交部分的长度时,可以利用线段相交的充分必要条件:两条线段分别有一个端点在对方的延长线上,并且另外两个端点夹在另外两条线段的延长线的两侧。
根据这个条件,可以推导出判断线段相交的方法,进而解决相交问题。
1.2 平行线和垂直线平行线和垂直线是平面几何中的基本概念。
当题目中出现平行线和垂直线时,可以利用平行线之间的性质和垂直线之间的性质来解题。
例如,利用平行线之间的性质可以判断两条线段是否平行,而利用垂直线之间的性质可以判断两条线段是否垂直。
1.3 三角形性质三角形是平面几何中最基本的图形之一。
在奥数竞赛中,常常需要根据三角形的性质来解题。
例如,利用三角形的内角和为180度的性质可以判断三角形是否成立;利用三角形的相似性质可以计算未知边长或者角度的值等。
2. 立体几何立体几何研究的是三维空间中的点、线、面及其间的相互关系。
在奥数竞赛中,立体几何的题目往往涉及到关于体积、表面积、相似、全等等的计算和推理。
下面就以一些常见的立体几何题型为例进行介绍。
2.1 体积计算计算立体图形的体积是立体几何中的基本题型之一。
常见的题目类型包括计算正方体、长方体、圆柱体、圆锥体、球体等图形的体积。
解决这类问题时,可以利用各种立体图形的体积公式来计算。
2.2 表面积计算计算立体图形的表面积也是立体几何中的一个重要题型。
(答案)奥赛经典-奥林匹克数学中的几何问题---参考解答第21章-25章

第二十一章 平行六面体的性质及应用 习题A1.连1AD ,AC ,设E 为OA 的中点,则11O E D O ∥,于是1EO B ∠即为1D O 与1BO 所成的角,且1112O E D O =.不妨设正方体棱长为1,则11BO D O ===,1O E ,BE =.在△1BO E 中15cos 6BO E =∠为所求. 2.问题的难度在于不易确定该平面与正方体的位置.由条件,设正方体1111ABCD A B C D -的棱AB ,AC ,AD 与所给平面的夹角相同,可知所给平面与面BCD 平行.进一步,面BCD 与此正方体的12条棱的夹角都相同,因而,只需求出棱AD 与面BCD 所成的角.为此,过A 作AH ⊥面BCD ,H 为在面BCD 上的射影,连DH ,就有ADH α=∠.注意到△BCD 为正三角形,可证H 为△BCD 的外心,重心.设正方体棱长为a ,则2sin 603DH CD =⋅⋅︒=,而90AHD =︒∠,于是cos cos DH ADH AD α===∠故α=. 3.可以用一个平面截正方体得截面为凸五边形.设点I 为正方体1111ABCD A B C D -的棱1BB 延长线上一点,使得112IB BB =,E 为11A D 的中点,F 为1A A 上的点,113AF A F =,则由△EAF ∽△11C B I ,知1EF C I ∥,从而1C ,E ,F ,I 共面.设此截面交AB 于G ,交BC 于H ,连GH ,则截面1C EFGH 为凸五边形. 用一个平面去截一个正方体所得截面不能是一个正五边形.若截面可以为一个正五边形,则此五边形的五条边分属于此正方体的五个不同的面,过相对的两个面的截线平行,而正五边形中没有平行的边.结论获证.4.由第3题,知截面交棱1BB 的延长线于I ,则112BI BB =,可证12AG AF GB BI ==,11113BH BI B C B I ==,于是23BG =,14BH =,从而可求得GH =,1C H =,512FG =,EF =1C E =为512+. 5.将正方体PQRS P Q R S ''''-的各个面依次展开,从正方形PQQ P ''出发,依次为PP Q Q '',Q QRR '',Q R S P '''',R S SR '',S SPP '',PSRQ .从上述展开图可知截面六边形的周长AA '≥,而AA '==6.作出正方体AS BC A SB C ''''-,则图中三棱锥S ABC -符合题设条件.连S C ''',则EF SS '∥,EF 与SA 所成的角即为SS '与SA 所成的角,而45S SA '=︒∠,故异面直线EF 与SA 成45︒的角.7.将题给直三棱柱补成正方体1111ABPC A B PC -.分别取BP ,1CF 的中点E ,H ,连1EF ,CE ,EH ,则1BD EF ∥,故1EF H ∠为1BD 与1CF 所成的角.设正方体棱长为2,则11EF BD ==,1F H =,且1EH CF ⊥,故111cos F H EF H EF ==∠为所求. 8.以正方体ABCD 为底面,GC 为棱,补作长方体ABCD A B GD '''-.由BD ∥面EFG ,则B 到面EFG的距离等于直线BD 到面EFG 的距离,即ABCD 的中心O 到面EFG 的距离. 过O 作OK GH ⊥于K (H 为EF 与AC 的交点),则OK ⊥面EFG ,线段OK 是点O 到面EFG 的距离.由题设有2GC =,CH =,OH =GH OK OHGC GH=,故OH GC OK GH ⋅==. 9.作四面体的外接平行六面体,使四面体的棱成为外接平行六面体的侧面对角线,由于四面体三对对棱相等,则此平行六面体为长方体.设长方体的长、宽、高分别为x ,y ,z ,则由222222222x x z a y z b y x y c z ⎧=⎪⎧+=⎪⎪⎪+=⇒=⎨⎨⎪⎪+=⎩⎪=⎪⎩而V xyz =长方体,13V V =四面体长方体,故V =四面体10.(Ⅰ)作四面体的外接平行六面体,使四面体的棱成为平行六面体的侧面对角线.设长度分别为1m ,2m 的线段成α角,长度为i m 的线段所在直线与过相应对棱的两平行平面成i β角,则123V m m =⋅⋅33sin sin m αβ⋅⋅,故123333sin sin Vm m m V αβ⋅⋅=⋅≥.(Ⅱ)由四面体重心定义,知G 将1m ,2m ,3m 互相平分.设棱i j A A 的中点为ij B ,由三角形中线长公式,有()22222222211241132121424132111111()224484AG A B A B m A A A A A A A A m =+-=+---. 同理,2222222232131242111()()484A G A A A A A A A A m =+---, 2222223343242312111()()484A G A A A A A A A A m =+---, 2222224114313422111()()484A G A A A A A A A A m =+---. 于是 422222212233441211()2ii AG A A A A A A A A m ==+++-∑. 同理,422222213344221311()2ii AG A A A A A A A A m ==+++-∑, 422222214422331111()2i i AGA A A A A A A A m ==+++-∑. 故 42221231143()i i j i i j G A A A m m m =<=-++∑∑≤≤,而222123m m m ++≥34ii iAG AG =,由此即证. (Ⅲ)由斯特瓦尔特定理,有 22221112134234122339AG A A A B A B =+-222222212141334232434121112111332249224A A A A A A A A A A A A A A ⎛⎫⎛⎫=++--+- ⎪ ⎪⎝⎭⎝⎭()()2222221213142324341139A A A A A A A A A A A A =++-++. 同理,()()222222222324213431411139A G A A A A A A A A A A A A =++-++, ()()2222222333431324142121139A G A A A A A A A A A A A A =++-++, ()()2222222444142431213231139A G A A A A A A A A A A A A =++-++.于是,2141414224399i i i j i ji j i j i j i j AG A A A A A A <<<=-=∑∑∑∑≤≤≤≤≤≤. 11.作长方体1111ABCD A B C D -,使1ABD α=∠,11B BD β=∠,1CBD γ=∠.令AB a =,BC b =,1B B c =.(Ⅰ)由1tan AD AB α==,111tan B D B B β==,221tan D C a c BC b γ+==,有tan tan tan αβγ⋅⋅=. (Ⅱ)在三面角1B AD C -中,有π2ABC αγ+>=∠.同理ππ22αββγ+>+>,故3π4αβγ<++. 在三面角1O ACD -中,112πAOD COD AOC ++<∠∠∠,即2222παβγ++<,故παβγ++<.由此结论获证. 注:若令1π2αα=-,1π2ββ=-,1π2γγ=-,则知1α,1β,1γ均为锐角,且222111sin sin sin 1αβγ++=,有111π3π24αβγ<++<. 12.设2cos a α=,2cos b β=,2cos c γ=,且α,β,γ为锐角.作长方体1111ABCD A B C D -,使1ABD α=∠,11B BD β=∠,1CBD γ=∠.令AB x =,BC y =,1B B z =,1BD l =,则cos x l α=,cos z l β=,cos ylγ=. 由α,β,γ均为锐角,则cos 0α>,cos 0β>,cos 0γ>cos cos cos αβγ+++=x y zl++=注:由上可知α,β,γ均为锐角,且222cos cos cos 1αβγ++=,则有0cos cos cos αβγ<++ 习题B1.因x 表示立方体的棱长,则题中所说的体积差为32233,0,(),0,()(),,,.abc x x a abc x a x ax x b f x x ab c x abx b x c x abc c x ⎧-<⎪+--<⎪=⎨+--<⎪⎪-<⎩当≤时当≤时当≤时当时注意到当0x >时,函数()f x 是连续的,且它的系数为 22223,0,34,0,()32,,3,x x a x ax x b f x x ab b x c x x c ⎧-<<⎪-<<⎪'=⎨-<<⎪⎪>⎩当时当时当时当时.因此,当0x a <<时,函数()f x 是递减的.当x b >时,则是逆增的,而在区间(,)a b 上,因为2234340x ax b ab -<-≤,所以如果43b a <,则()f x 是递减的;如果43a b >,则()f x 在43ax =处有极小值.于是,函数()f x 的最小值要么在x b =处取到(当43a b ≤时),要么在43a x =处取到(当43ab >时),从而所求的min x 为4,3a b ⎧⎫⎨⎬⎩⎭.2.过给定的立方体12341234A A A A A A A A ''''-的中心O 作垂直于对角线13A A '的平面,它分别过棱14A A '',22A A ',34A A 的中点1B ,2B ,3B .又点1B ,2B ,3B 到顶点1A 与3A '的距离相等,,且123B O B O B O ==,122311B B B B B B ===>,所以正棱锥1123A B B B 及3123A B B B '(它们没有公共内点)各含有一个正四面体,13AO A O '==,而其底面123B B B '''△与△123B B B 关于中心O 是位似的.最后,所求的正四面体分别在1123A B B B '''与3123A B B B ''''1<,而高,从而其棱长即为a . 第二十二章 一般四面体的性质及应用 习题A1.由于过不在同一平面上的四点A ,B ,C ,1A 可确定一个球面,设该球面分别与棱SB ,SC 交于1B ',1C ',四边形11A B BA '和11AC CA '分别内接于侧面SAB 及SAC 与球面的交线的圆,由圆的割线定理,有11SA SA SB SB ⋅=⋅,11SA SA SC SC '⋅=⋅.于是111SA SA SB SB SB ⋅'==,111SA SASC SC SC⋅'==. 因此,1B ',1C '分别重合于1B ,1C ,即1B ,1C 在所确定的球面上,亦即A ,B ,C ,1A ,1B ,1C 共在一个球面上.2.在线段CD 上取点Q ,使CQ QD r δ=∶∶在线段BQ 上取一点R ,使()BR RQ γδβ=+∶∶;在线段AR 上取一点P ,使()AP PR βγδα=++∶∶,则点P 为所求的点.事实上,PBCD ABCD V RP V RA ααβγδ==+++, PCDA PCDA RCDA BCDA RCDA BCDA V V V PA BQ V V V RA BQ βγδββαβγδβγδαβγδ++=⋅=⋅=⋅=++++++++, QDAB PDAB PDAB RDAB CDAB RDAB QDAB CDAB V V V V AP BR DQ V V V V AR BQ DC βγδγδγαβγδβγδγδ+++=⋅⋅=⋅⋅=⋅⋅++++++ γαβγδ=+++,QABC PABC PABC RABC DABC RABC QABC DABC V V V V AP BR CQ V V V V AR BQ CD βγδγδδαβγδβγδδγ+++=⋅⋅=⋅⋅=⋅⋅++++++ δαβγδ=+++.故 PBCD PCDA PDAB PABC V V V V αβγδ=∶∶∶∶∶∶,故点P 为所求. 3.由BE EF FC ==,则ABE AEF AFC S S S ==△△△, 即 ABED AEFD AFCD V V V V '===, 而ARGQ AGHQ AHPQV V V V V V V V =++''''133AR AG AQ AG AH AQ AH AP AQAR AG AQ AG AH AQ AH AP AQ AB AE AD AE AF AD AF AC AD AB AE AD AE AF AD AF AC AD ⎛⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=++⋅⋅ ⎪⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⎝⎭≥113311133V V V AR AP AQ AG AH AQ AH AG AQ AB AC AD AE AF AD AF AE AD V V V ⎛⎫⋅⋅⋅⋅⋅⋅⎛⎫=⋅⋅=⋅⋅ ⎪ ⎪'''⋅⋅⋅⋅⋅⋅⎝⎭⎝⎭,从而13V V ≥. 由证明过程易知,当且仅当AR AG AQ AG AH AQ AH AP AHAB AE AD AE AF AD AF AC AD⋅⋅⋅⋅⋅⋅==⋅⋅⋅⋅⋅⋅,即RP BC ∥或RP 与BC 重合时,取得等号.4.连OA ,OB ,OC ,OD 延长分别交对面于1A ,1B ,1C ,1D .令ABCD V V =,1OBCD V V =,2OACD V V =,3OABC V V =,4OABD V V =,则31241V V V V V V V V +++=,从而111111111OA OB OC OD AA BB CC DD +++=,亦即 111111111OA OB OC OD R OA R OB R OC R OD +++=++++.不妨设1111OA OB OC OD ≤≤≤,下证103ROA R =≤.因2121t t R t R t ++≥,当210t t >≥时成立.若103ROA R >=,则011014R OA R OA R R >=++,则(*)式左边1>,矛盾.从而10OA R ≤. 作1OO ⊥面BCD ,则1O 为△BCD的外心,111A O B OC O D R ====0=.设△BCD 的最大边长为BC ,则1120BO C ︒∠≥,从而02sin 60A BC R ⋅︒≥≥.证毕. 5.设E 为AB 的中点,A 在面DEC 的射影为H ,连HE ,则由ADEC BDEC V V =有()32CD AH S V ⋅=.在Rt △AHE 中,12AH AE AB =≤,故()1233CD AH AB S V V =≤. 同理,可得()13BC ADS V≤等五式,相加即证.其中等号当且仅当四面体ABCD 为正四面体时取得. 6.设四面体KLMN 的面KLM 具有最大的周长,又设1A ,1B ,1C ,1D 分别是点A ,B ,C ,D 在平面KLM 上的射影,而且设折线Γ是四面体KLMN 在这个平面上的射影,再设RSTQ P 是联结点R ,S ,T ,Q 中任意两点所得到的六条线段长度的和,则有①2KLMN KLM P P ≤;②KLM P P Γ≤;③111123A B C D P P Γ≤;④1111A B C D ABCD P P ≤.由此即证.7.设1A ,1B ,1X ,1Y 分别是面BXY ,XYA ,YAB ,ABX 与球面的切点,于是△11XY B XA B ≌△,△1AY B ≌△1AB X 等等.利用这两个等式,则可以说明空间四边形AXBY 的角之和等于1AY B +∠ 112AX B AX B =∠∠,而且可以证明11AY B AX B +∠∠不依赖于X ,Y .8.过D 作DP ⊥面ABC 于P ,作DH BC ⊥于H .连PH ,则PH BC ⊥,30DHP =︒∠,由已知80BCD S =△,10BC =,得182DP DH ==,从而13203ABCD ABC V DP S =⋅=△.9.设V 为四面体ABCD 的体积,则有111111OBCD AA OA V AO k V OA AO OA =++=+,同理OACD OABD OABC V V VV V V ===1k +.由此得4414OBCDOACD OABD OABC V Vk V V V V V+===+++,求得3k =.10.答案是否定的,设通过长为d 的线段AB 的两个端点各作一条与AB 垂直的直线,而且这两条直线也互相垂直,在这两条直线上分别截取以A ,B 为中点、长为a 的线段,以这两条线段的端点为四面体的顶点,该四面体的每个面的面积等于1124=15知其体积为216a d .因此,分别具有13a =,12d =与21a =,2d =的两个四面体的界面面积相等(因1a215a ),而其体积不等,因为22112218a d a d =≠=. 11.为使连接点B ,C 与△ACD ,△ABD 内切圆中心的两条直线相交,其必要充分条件是,它们在同一个平面上.而这等价于,ABD ∠和ACD ∠的平分线与棱AD 交于同一点.根据三角形平分线的性质,后一条件当且仅当AB ACBD CD=,即AB CD AC BD ⋅=⋅时成立.于是,如果在题中所说的四条直线交于一点,则它的对棱长度的乘积相等.反之,如果所说的三个乘积相等,则四条直线中任意两条都相交,且任意三条不共面.因此所有直线交于同一点.12.可以证明所有直线n n K L 都过某个固定点O ,而点O 在过顶点A 且平行于直线BC 的直线上,其中n +∈N .事实上,如果直线n n K L 与直线BC 交于点P (位于射线CB 上),则由于△n K BP 与△n K AO 相似,所以1n n PK PB n OA AK ==-;由n L CP △与n L AO △相似,有nnCL PC n OA AL ==.因而OA nOA =- ()1n OA PC PB BC -=-=.同理,对于N +∈N ,所有直线n n L M 都过某个固定点Q ,而点Q 在过顶点A 且平行于CD 的直线上.因此,对N +∈N ,所有平面n n n K L M 都过直线OQ .13.因V 、S 与r 分别表示四面体的体积、表面积与内切球的半径,在四面体被平面截成的两个部分中有一个是底面在该平面上的棱锥,用1V 、1S 与1r 分别表示该棱锥的体积、侧面积与球心在该平面上且和侧面相切的球面的半径.棱锥的底面过四面体内切球的球心的充要条件是r r =.又由13V Sr =,11113V S r =,因而1r r =等价于11V S V S =,即1111V V S S V S --=. 14.设点O 在四面体ABCD 的内部,用P 表示直线DO 与平面ABC 的交点,Q 表示直线BP 与边AC 的交点,由三面角性质,有AOB AOC AOB AOQ QOC BOQ QOC BOP +=++>+=+∠∠∠∠∠∠∠∠ 180180POQ QOC BOPO POC BOD COD +>+=︒-+︒-∠∠∠∠∠∠,从而AOB AOC BOD +++∠∠∠ 360COD >︒∠.同理,360AOB BOC AOD COD +++>︒∠∠∠∠,AOC BOC AOD BOD +++∠∠∠∠ 360>︒.上述三个不等式相加后除以2,即得要证的不等式.15.用V 与S 表示四面体的体积与表面积,用i S 表示第i 个面的面积,这个面上的四面体的高记为i h ,旁切球半径为i r ,则()1112341113(2)V h S r S S S S r S S ==++-=-.同理,i i i 3(2)i V h S r S S ==⋅-,因此444123411111221(2222)2333i i i i iiS S S S S S S S S S r V V V h ====-+-+-+-===∑∑∑. 16.在△ABC 中应用中线公式,可以算出222211009(22)44CN AC BC AB =+-=.同理2DN =2221425(22)44AD BD AB +-=.在NCD △中有()2222215482213744a MN DN CN CD ==+-==.17.由Weitzenbock不等式,有222ABC a b c ++△≥,222DAB c d e ++△≥,222a e f ++≥DBC S △,222DCA b f d ++△≥,将此四个不等式两边相加并整理即证.18.由三角形任意两边之差小于第三边,则由题设含有一边长为2的三角形的其他两边边长只能有下面四种情形:①3,3;②5,5;③4,5;④3,4.对题中四面体,以2为公共棱的两侧面三角形又可能有三种情形:(1)①与②,(2)①与③,(3)②与④.由(1)令3AC BC ==,5AD BD ==,这样的四面体只有一个,113ABC V CD S =⋅=△;(2)这样的四面体有两个,2211133ABC ABC V h S DB S V =⋅<⋅=△;(3)这样的四面体也有两个,331133ACD ACD V h S AB S =⋅<⋅△△.比较1V ,2V ,3V知最大为1V =.19.在四面体1234A A A A 中,设其重心G 到四面△234A A A ,△134A A A ,△124A A A ,△123A A A 的距离分别为1d ,2d ,3d ,4d ,相应的面积记为1S ,2S ,3S ,4S .设四面体的内切球半径为r ,则内心到四面距离之和为4r .连1A G 并延长交面234A A A 于点Q ,则114GQ AQ =∶∶. 23412341144GA A A A A A A V V V ==.同理12312314GA A A GA A A V V V ==.于是111113/434V d V S S ==,同理2234V d S =,3334V d S =,4434V d S =.故123412341234311111()44d d d d V r S S S S S S S S ⎛⎫+++=+++=+++ ⎪⎝⎭ 123411114r S S S S ⎛⎫+++ ⎪⎝⎭≥. 20.点M ,N ,L 既在截面上,又在侧面ABC 上,所以它们在这两个面的交线上,即它们共线. 同理A ',B ',M 共线;B ',C ',M 共线;A ',C ',M 共线.而1sin 2ANL S AL NL ALN =⋅⋅△∠,LMB S =△ 1sin 2LB LM ALN ⋅⋅∠. 于是ANL LMB S AL NL S LB LM ⋅=⋅△△.同理BMB B C P S B B MB S B C B P '''''⋅='''⋅△△,PC A A NA S PA A C S A A A N ''''''⋅=''⋅△.故ANL BMB PC A LMB B C P A NAS S S S S S ''''''⋅⋅=△△△△△△AL NL B B MB PA A C AL BB VA NL MB L A LB LM B C B P A A A N LB B P A A LM B C A N''''''''''⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅''''''''''⋅⋅⋅. 因直线A B P ''同时为△PAB 和△MC N '的截线,故由梅涅劳斯定理,得1AL BB PA LB B P A A ''⋅⋅='',NL LM⋅ 1MB C A B C A N'''⋅='''.由此结论可证. 21.设截面交AB 于L .由一般四面体性质20,有1AK ZM CP BL KZ MC PB LA ⋅⋅⋅=,即32BL LA =.连MA ,ML ,AP ,设ABC S S =△,过点Z 引四面体ZABCD 的高h ,则153Sh =,过M 引四面体MALP 的高为35h ,则1312133133535252535MALP ALP ABC V S h S h Sh ⎛⎫=⋅=⋅⋅⋅=⋅= ⎪⎝⎭△△.设1ZAB S S =△,过C 作四面体CZAB 的高为1h ,则1111112221232552535MAKL V S h S h ⎛⎫=⋅⋅⋅=⋅= ⎪⎝⎭,AKMPL V =1MALP MAKL V V +=.又113AKMPL KMPL V S =⋅,故3KMPL S =为所求.22.因AF DE =,有AE DF =.由一般四面体性质22,有222BCF ABC BCD DF AF S S S AD AD=⋅+⋅-△△△ 22221144ABC BCD AE DE BC AF DF S S BC AE DE AD AD ⋅⋅=⋅+⋅-⋅⋅△△.又面BCE 平分二面角A BC D --,由性质22推论3,有2214BCE ABC BCD S S S BC AE DE =⋅-⋅⋅△△△.以上两式两边相减,注意到ABC ABC BCD S AE AD S S =+△△△及BCD ABC BCDS DEAD S S =+△△△,即证. 习题B1.由点P 作平面ABC 的垂线,假设点Q 是四面体ABCD 的在这个垂线上离平面ABC 最远的点.显然,点Q 属于界面ABD ,ACD ,BCD 中的一个界面,为确定起见,假设Q 属于界面ABD .在平面ABD 上,过点Q 作直线和棱AB 垂直,假设R 是这个垂线上离AB 最远而又属于△ABD 的点,点R 属于一条棱AD 或BD .例如,假设点R 属于棱AD .如果点沿着平面或直线的垂线作背离平面或直线的移动,那么这个点和平面或直线的任一点的距离增加.因此PA QA RA DA ≤≤≤.每一个不等式可以单个地变成严格的等式,因为允许点之间两两重合:P Q ≡,Q R ≡,R D ≡.但是所有的不等式不可能同时变成严格的等式,因为根据本题条件,点P 不和顶点D 重合.因此,至少有一个不等式即使在所有其他的不等式都变成等式的情况下仍保持不等号,于是有PA DA <. 2.由于EH FG ∥,BD 为平面ABD ,CBD 的交线,所以BD EH ∥.同理AC EF ∥.又切线AE AH =,EH BD ∥,则AB AD =.同理AB BC CD DA ===. 设球与AC 切于点I ,则过E ,F ,I 的圆是球与平面ABC 的交线,从而这圆是等腰△ABC 的内切圆,因此I 为AC 的中点.由EH AE BD AB =,EF BEAC AB=及EH EF =,22AC AI AE ==,易得2BD BE =. 取BD 的中点J ,则△JAC 为等腰三角形,于是IJ ,AC ,BD 互相垂直并且平面ACJ 平分二面角B ACD --,球心O 在这个二面角的平分面上,从而在IJ 上,又OE OJ ==. 所以该球与棱BD 相切于J (并且O 为IJ 的中点).3.设四个球的球心为A ,B ,C ,D ,依题意有6AB =,4CD =,5AC BC AD BD ====.又设AB ,CD 的中点分别为F 和E ,小球的球心为O ,则由对称性,O 在线段EF 上,并且易知EF AB ⊥,EF CD ⊥,于是EF ===,OEOF r 为小球O+=又222-=,=于是= (6)r +.而0r >,从而=126r r =+,故611r =为所求. 4.设S 表全面积,i S 表顶点i A 所对的面的面积(1i =,2,3,4),设α,β,γ分别是以23A A ,24A A ,34A A 为棱的二面角的大小;并设1h 为顶点1A 到对面的高,11h A E '=是△123A A A 边23A A上的高,则11sin h h α'=⋅==同理,1242h A A ==2h = 由上即有12324342h Q A A A A A A =⋅++,其中41i Q ==2θγ=,3θβ=,4θα=.再由柯西不等式及性质5,可得1122443322443322[(cos )(cos )(cos )][(cos )(cos )(cos )]Q S S a S S S S S S S S S S αβγαβγ+++++⋅-+-+-≤112243214321()()S S S S S S S S =+++⋅++-=.从而1232434h再注意到113r S h S V ⋅=⋅=,则11112324342h S S r r S A A A A A A ==++≤同理,有r ≤i r 2i =,3,4). 故 44222112112i i i iS S r r S r==-=∑∑≤. 5.由切线长定理知,必要性显然,仅证充分性:设l 是过△ACD 的内心1O 且垂直于面ACD 的直线,则l 到ACD △的三边等距离.设g 是过△BCD 的内心2O 且垂直于面BCD 的直线,则g 到BCD △的三边也等距离.设△ACD 与△BCD 的内切圆1O e 和2O e 分别切CD 边上于E ,F 两点,设1O e 切AD 于H ,切AC 于G ,2O e 切BD 于M ,切BC 于N .由AD BC AC BD +=+,知有()AH HD ++()()()BN CN AG GC BM MD +=+++,即HD CN GC MD +=+.将HD DE =,MD DF =,CG CE =,CN CF =代入上式,得20DE CF CE DF CD EF CD EF EF +=+⇔+=-⇔=.这表明1O e 与2O e 分别切于CD 上同一点E ,所以l 与g 相交.若设l 与g 交于点O ,则O 到除棱AB 外的其余各棱等距离.再考虑其他任何两面过内心的垂线,同理可证他们两两相交.再根据立体几何结论:“空间三直线两两相交且不共面则必交于一点。
平行六面体、面积和体积PPT教学课件

小结 ▪ 今天你有什么收获? ▪ 我们了解了棱柱的三条性质; ▪ 还学习了的几种特殊的四棱柱; ▪ 学会使用长方体的对角线公式;
斜、直棱柱的侧面积体积公式;割补法
辨识题
动 画
音 下列表示西汉与东汉关系图哪一幅是正确的? 乐 请说明理由?
首 页
西东
上 汉汉
页
下 页
小 前202-220年
结
结 束
西汉 东汉
页
小 结
结 束
课外补充
封
动 在中国古代历史上,出现过很
画
建
音 多所谓的“治世”和“盛世”, 乐 像文景之治、贞观之治、开元盛
王
世、康乾盛世等等。所谓“治世”
朝
首 和“盛世”,指的就是社会安定、
页
的
上 政治清明,百姓丰衣足食。
页
治
下 页
实际上,在封建社会的“盛世”,
世
小 朝廷的作用只是限制统治阶级不要剥削 结 过重,使多数自耕农能维持基本上生活
复习:1、棱柱的分类
侧棱不垂直底面的棱柱叫做斜棱柱.
动 画
侧棱垂直底面的棱柱叫做直棱柱.
音 乐
底面是正多边形的直棱柱叫做正棱柱.
棱柱的底面可以是三角形、四边形、五边形……
我们把这样的棱柱分别叫做三棱柱、四棱柱、五
首 页
棱柱…
上 页
斜棱柱
直棱柱
正棱柱
下 页
小 结
结 束
5、有两个面是对应边平行的全等多边形,其 余面都是平行四边形的几何体是否是棱柱?
束
例2. 三个平面、、 两两互相垂直且交于点O,空间一 动 点P到三个平面的距离分别为2、3、4,则PO=_________
奥林匹克数学题型平面几何基础

奥林匹克数学题型平面几何基础在奥林匹克数学竞赛中,平面几何是一个重要的题型,同时也是考察学生数学思维和推理能力的重要途径。
学好平面几何的基础知识,对于解答奥林匹克数学中的几何题目起着至关重要的作用。
本文将以奥林匹克数学题型平面几何基础为主题,简要介绍几何学中的一些重要概念和常见题型。
一、点、线、面的概念在几何学中,点、线、面是最基本的几何概念。
点是没有延伸和厚度的,线是由一些不同点之间的连结所组成的,而面是由一些不同线之间的连结所组成的。
熟练掌握点、线、面概念对于理解几何学的其他内容至关重要。
二、平行和垂直平行线是在同一个平面中永不相交的直线,而垂直线则是与另一条直线相交成直角的直线。
平行和垂直的关系也是平面几何中的重要内容,常出现在同位角、对应角等题型中。
三、典型的几何题型在奥林匹克数学竞赛中,常见的几何题型包括等腰三角形、直角三角形、相似三角形、平行四边形等。
对于这些题型,掌握相应的性质和定理是解题的关键。
学生需要熟悉三角形的内外角和,充分利用各种三角形的性质,运用等腰、直角和相似三角形的特性来解题。
四、利用倍长或倍面积解题在奥林匹克数学竞赛中,有时候需要利用倍长或倍面积的方法来解题。
倍长即为将线段的长度进行倍乘,倍面积即为将面积进行倍乘,这种方法在计算中可以简化运算过程,提高解题效率。
五、重心、垂心和内心重心是一个三角形三条中线的交点,垂心是一个三角形三条高线的交点,而内心则是一个三角形三条角平分线的交点。
重心、垂心和内心对于解答与三角形相关的几何题目非常重要,掌握三者的性质和相关定理能够帮助学生更好地解题。
六、解析几何与平面几何的联系解析几何是数学中的一个重要分支,而平面几何则是解析几何中的一部分。
解析几何利用坐标系的思想来研究几何问题,通过建立坐标系,将几何问题转化为代数方程的求解过程。
在奥林匹克数学竞赛中,解析几何与平面几何常常结合起来,用解析的方法来解决复杂的几何问题。
通过本文对奥林匹克数学题型平面几何基础的介绍,相信读者对于平面几何的基本概念有了更加清晰的认识。
(试卷)奥赛经典-奥林匹克数学中的几何问题---第二十二章一般四面体的性质及应用

第二十二章一般四面体的性质及应用【基础知识】四面体是三角形在空间的直接推广,三角形的很多性质及其证法可以推广到四面体上去.四面体的许多性质可以借助于平行六面体来证.性质1任意四面体六个内二面角的平分面交于一点,这点到四面体四个面的距离相等,该点称为四面体的内切球球心(简称四面体的内心).内切球与四面体四个面内切. 若四面体ABCD 的体积为V ,顶点A 所对的侧面面积为A S ,类似地有B S ,C S ,D S (后面所设均同此),其内切球半径记为r ,则3A B C DVr S S S S =+++.性质2任意四面体六条棱的垂直平分面交于一点,这点到四面体四顶点的距离相等,该点称为四面体的外接球球心(简称四面体的外心).外接球通过四面体四顶点. 若四面体ABCD 的体积为V ,其三对对棱的长分别为1a ,a ;1b ,b ;1c ,c ,其外接球半径为R ,则1624Q R V V===注其中Q 即为以三对对棱乘积为边的三角形面积. 性质3任意四面体的四条中线(每一顶点与其对面重心的连线)交于一点,而且每条中线从各该顶点算起都被这点分为31∶之比,这点称为四面体的重心. 性质4任意四面体的共顶点的(二面角的棱共顶点)三个内二面角的平分面与另三个内二面角的补(或外)二面角的平分面交于一点,这点到四面体四个面的距离相等,该点称为四面体的旁切球球心(简称四面体的旁心),且一个四面体有四个旁心,旁切球与四面体的一个侧面外切,与其他三个侧面的延展面相切.若与四面体ABCD 的顶点A 所对的面外切,与其余三个侧面的延展面相切的旁切球半径记为A r ,类似地有B r ,C r ,D r ,其他记号同前,则 3A B C D A V r S S S S =++-,3B A C D B Vr S S S S =++-,3C A B D C V r S S S S =+++,3D A B C DVr S S S S =+++.性质5(射影定理)四面体任意一个侧面的面积等于其他三个侧面在这个侧面上的射影面积之和.即在四面体ABCD 中,若记AB θ为棱AB 所在的内二面角的大小,其余类同,则有 cos cos cos A B CD C BD D BC S S S S θθθ=⋅+⋅+⋅, cos cos cos B C AD D AC A CD S S S S θθθ=⋅+⋅+⋅, cos cos cos C D AB A BD B AD S S S S θθθ=⋅+⋅+⋅, cos cos cos D A BC B AC C AB S S S S θθθ=⋅+⋅+⋅.性质6(余弦定理)四面体任意一个侧面的面积的平方,等于其他三个侧面的面积的平方和减去这三个侧面中每两个面面积及其所夹二面角余弦之积的两倍之和.即在四面体ABCD 中,有22222cos 2cos 2cos A B C D B C AD C D AB B D AC S S S S S S S S S S θθθ=++-⋅⋅-⋅⋅-⋅,22222cos 2cos 2cos B C D A C D AB C A BD D A BC S S S S S S S S S S θθθ=++-⋅⋅-⋅⋅-⋅,22222cos 2cos 2cos C A B D A B CD A D BC B D AC S S S S S S S S S S θθθ=++-⋅⋅-⋅⋅-⋅,22222cos 2cos 2cos D A B C A B AB A C BD B C AD S S S S S S S S S S θθθ=++-⋅⋅-⋅⋅-⋅.注顺次用A S ,B S ,C S ,D S 去乘射影定理中各式并相加整理即得以上第一式,其余各式类同. 性质7(体积公式一)四面体体积13=倍底面面积与底面上的高的乘积.即11113333A AB BC CD D v S h S h S h S h =⋅=⋅=⋅=⋅.性质8(体积公式二)四面体的体积等于它的任意两个面的面积及其所夹二面角正弦之积的三分之二,除以这两个面的公共棱长.即对四面体ABCD ,有2sin 2sin 2sin 2sin 3333C D AB A D BC A B CD B C DAS S S S S S S S V AB BC CD DAθθθθ⋅⋅⋅⋅⋅⋅⋅⋅====2sin 2sin 33B DAC A C BDS S S S AC BDθθ⋅⋅⋅⋅=. 注由2111sin sin 3332C C C AB C AB h AB V S h S h S AB θθ⋅⋅=⋅=⋅⋅=⋅⋅=⋅斜高斜高2sin 3C DABS S ABθ⋅⋅等即证得. 性质9(体积公式三)四面体的体积等于共顶点的三条棱长乘积与该顶点三面角的特征值乘积的六分之一,即对于四面体ABCD ,若共顶点A 的三条棱长分别为a ,b ,c ,顶点A 处的三个面角分别为α,β,γ则有()1166v abc S A =⋅=16abc =,()12ωαβγ=++. 其中()S A =A的三面角的特征值. 注由111sin sin 332V S h ab C γβ=⋅=⋅⋅⋅⋅性质10(体积公式四)若记1P ,2P ,3P分别为四面体相对两棱(互为异面的两条棱)的积的平方,再乘以另外四条棱的平方和与这对棱的平方和的差所得的积;P 为四面体每个面上三条棱的积的平方和,则四面体的体积V 性质11(正弦定理一)在四面体ABCD 中,有(1)sin sin sin sin C D AB A D BC B C DA B D ACAB BC DA ACS S S S S S S S θθθθ===⋅⋅⋅⋅⋅⋅⋅⋅2sin sin 3A B CD A C BD CD BD S S S S Vθθ===⋅⋅⋅⋅; (2)22sin sin sin sin sin sin 9A B C D AB CD AD BC AC BD S S S S AB CD AD BC AC BDVθθθθθθ⋅⋅⋅⋅⋅⋅===⋅⋅⋅;(3)若()sin A 表示顶点A 处的三棱中,任意两棱上的二面角的正弦与这两条棱夹角的正弦三者的积,余类同,则()()()()22sin sin sin sin 9C A B C D A B DS S S S S S S S A B C D V====.注此性质由性质8即证.性质12(正弦定理二)四面体中各个面上三条棱长的积与其所对三面角的特征值之比都相等,该比值等于六条棱长的积与体积的六倍之比,即对四面体ABCD ,有 ()()()()BC CD BD AC CD AD AB BD AD AB BC ACS A S B S C S D ⋅⋅⋅⋅⋅⋅⋅⋅===6AB BC CD BD AC ADV⋅⋅⋅⋅⋅=.注此性质由性质9即证,性质13(对棱所成角公式)四面体一对对棱所成角的余弦等于其他两对对棱平方和之差的绝对值与这对对棱乘积的二倍之比.即对四面体ABCD ,有 ¼()cos ,AB CD =()()22222BC AD AC BD AB CD+-+⋅;¼()cos ,BC AD =()()22222AB CD AC BD BC CD+-+⋅;¼()cos ,AC BD =()()22222BCAD AB DC AC BD+-+⋅;注其证明可参见第18章中例1或补成平行六面体,运用三角形余弦定理及平行四边形的对角线平方和等于四边平方和即证.性质14(对棱距离公式)若a 和1a ,b 和1b ,c 和1c 是四面体的三对对棱长,三对对棱之间的距离分别记为()1,d a a ,()1,d b b ,()1,d c c ,则 ()112,Vd a a =;()1,d b b =()1212,Vd c c =.注补成平行六面体证.性质15若四面体的一对对棱长分别为a ,1a ,这对对棱间的距离为d ,对棱所成的角为θ,则四面体的体积V 为11sin 6V aa d θ=⋅.性质16(二面角平分面定理)四面体二面角的内(或外)平分面分所对的棱得两条线段和这个二面角的两个面的面积对应成比例.性质17(空间张角公式)设过四面体ABCD 的棱BC 的截面EBC 交所对的棱AD 于E ,二面角A BC E --,E BC D --的大小分别为1θ,2θ,则 ()1212sin sin sin EBCDBC ABCS S S θθθθ+=+△△△. 性质18(空间莱布尼兹公式)设四面体ABCD 的六条棱长分别为a ,b ,c ,d ,e ,f ,G 为其重心,P 为空间中任一点,则()()2222222222211416PG PA PB PC PD a b c d e f =+++-+++++性质19(空间塞瓦定理)设E ,F ,G ,H ,M ,N 分别为四面体ABCD 的棱CD ,DB ,BC ,AD ,AB ,AC 上的点,若六个平面ABE ,ACF ,ADG ,BCH ,CDM ,DBN 共点,则 1CE DH AM BGED HA MB GC⋅⋅⋅= 性质20(空间梅涅劳斯定理)平面KLMN 交四面体ABCD 的棱AB ,BD ,CD ,AC 于K ,L ,M ,N ,则1AK BL DM CNKB LD MC NA⋅⋅⋅=.证明设四边形KLMN 是四面体ABCD 被平面α所截的截面,1AA ,1BB ,1CC ,1DD 是平面α的垂线(1A ,1B ,1C ,1D 分别为垂足).考察棱AB 与平面α相交的部分,显然11AA K BB K △△≌,则11AA AK KB BB =.同理,11BB BL LD DD =,11DD BM MC CC =,11CC CN NA AA =. 以上四式两边相乘即证.性质21(空间斯特瓦尔特定理)在四面体ABCD 中.AD BC ⊥,过棱BC 作截面BCE 交棱AD 于E ,则222214BCE ABC BCD DE AE S S S BC AE DE AD AD =⋅+⋅-⋅⋅△△△.证明如图221-,作AF BC ⊥于F ,连BF ,DF .注意到AD BC ⊥,知BC ⊥面ADF ,所以BC EF ⊥,BC EF ⊥.记AEF α∠=. 在AEF △中,由余弦定理,有 2222cos AF EF AE AE EF α=+-⋅⋅. 上式两边同乘以2BC 后,整理得EFBDC图22-1A222244cos 4BCE ABCBCES BC AE S AE BC S α+⋅-=⋅⋅△△△.同理在DEF △中,有222244cos 4BCE BCDBCES BE DE S DE BC S α+⋅--=⋅⋅△△△.由上述两式消去α,整理便证得结论.推论1当ABC BCD S S =△△时,有22214BCE ABCS S BC AE DE =-⋅⋅△△. 推论2当E 为AD 中点时,有222221112216BCE ABC BCD S S S BC AD =+-⋅△△△ 推论3当面BCE 平分二面角A BC D --时,有2214BCE ABC BCD S S S BC AE DE =⋅-⋅⋅△△△. 事实上,由ABC EABC BCD EBCD S V AE S V DE ==△△,有BCD ABC BCD S DE AD S S =+△△△,ABC ABC BCDS AECD S S =+△△△.由此即证. 推论4当AEk ED=时,有 ()222222111141BCE ABC BCD k k S S S AD BC k k k =+-⋅⋅⋅+++△△△. 性质22四面体ABCD 中,E ,F ,G ,H 分别在棱AB ,BC ,CD ,DA 上,且1AE EB λ=,2BFFCλ=, 3CG GD λ=,4DHHA λ=,则内接四面体EFGH 的体积与四面体ABCD 的体积之间有关系式 ()()()()1234123411111EFGH ABCDV V λλλλλλλλ⋅⋅⋅-=⋅++++.证明连ED ,BG ,得四棱锥E FBDG -,G EBDH -.在CBD △,ABD △中,有 ()()33232311111CFG CBD S CF CG S CB CD λλλλλλ⋅==⋅=⋅++++△△, ()()11141411111AEH ABD S AF AH S AB AD λλλλλλ⋅==⋅=⋅++++△△, ()()23223111FBDG CBD CFG CBD CBD S S S S S λλλλλ-++==++△△△△, ()()14414111ABD AFH EBDH ABD ABD S S S S S λλλλλ-++==++△△△△. 又()()()2321231111G FBDG FBDG ACBD CBD V S BE V S AB λλλλλλ-++=⋅=+++△ ()()()1441341111G EBDH EBDH CABD ABD V S GD V S CD λλλλλλ-++=⋅=+++△, ()()13111EBDG BDG ABDC BDC V S BE DG BE V S AB DC AB λλ=⋅=⋅=++△△. 设六面体EGFBDH 的体积为V ',则()()()()124224142324241231411111E FBDG G EBDH EBDG V V V V λλλλλλλλλλλλλλλλλλ--+++++++'=+-=++++ 设六面体FHEACG 的体积为V '',则()()()()123134121334131231411111F GCAH H FCAE HACF V V V V λλλλλλλλλλλλλλλλλλ--+++++++'=+-=++++当B ,F 在平面EHG 的同侧时,有()EFGH ABCD V V V V '''=+-. 当C ,F 在平面EHG 的同侧时,有()EFGH ABCD V V V V '''==+. 综合,得()EFGH ABCD V V V V '''=-+.即证. 注由此性质可得E ,F ,G ,H 共面的充要条件是1AE BF CG DH EB FC GD HA⋅⋅⋅=. 【典型例题与基本方法】例1已知三棱锥S ABC -的底面是正三角形,A 点在侧面SBC 上的射影H 是SBC △的垂心,二面角H AB C --的平面角等于30︒,SA =S ABC -的体积.(1999年全国高中联赛题)解如图222-,由题设,知AH ⊥面SBC ,作BH SC ⊥于E ,则由三垂线定理知SC ⊥面ABE .设S 在面ABC 的射影为O ,则SO ⊥面ABC .由三垂线定理的逆定理,可知CO AB ⊥于F .同理,BO AC ⊥.故O 为ABC △的中心,从而SA SB SC ===又CF AB ⊥,CF 是EF 在面ABC 上的射影,由三垂线定理知EF AB ⊥,所以EFC ∠是二面角H AB C --的平面角,故30EFC ∠=︒,cos6030OC SC =⋅︒=︒,tan603SO OC =⋅︒=.又OC AB =,则3AB ==,所以,21333S ABC V -=⋅例2证明:任意一个四面体总有一个顶点,由这个顶点出发的三条棱可以构成一个三角形的三边.(IMO 10-试题) 证明利用反证法来证,设四面体ABCD 中AB 是最长的棱,如果任意一个顶点出发的三条都不能构成一个三角形,则对由A 出发的三条棱,有AB AC AD +≥.又对由B 出发的三条棱,有BA BC BD +≥.两式相加,得2AB AC AD BC BD +++≥.()*但在ABC △与ABD △中,有AB AC BC <+,AB AD BD <+.此两式相加,有 2AB AC AD BC BD <+++. 上式与()*式矛盾,故原结论获证.注和这道试题类似的命题还有(1)任意四面体的三组对棱之和可以构成一个三角形的三边; (2)任意四面体的三组对棱之积可以构成一个三角形的三边;FOCBE HS图22-2A(波兰1975~1976年竞赛题)(3)任意四面体的三组对棱的平方和可以构成一个三角形的三边.例3若一个四面体恰有一棱之长大于1,求证这四面体的体积18V≤.证明如图223-,设AB是这个四面体的最长的棱,则ACD△,BCD△的边长不大于1.作BCD△的高BE和ACD△的高AF,则BE,AF1a≤表示CD的长度),四面体的高AO h AF=-≤111332BCDV h S a=⋅△≤()21424a a=-,而()()()()22431213a a a a a-=---+-≤,故当1a=时,()24a a-取最大值3,故31248V=≤.例4证明:在四面体中至多有一个顶点具有如下性质:该顶点处的任何两个平面角之和都大于180︒.(第22届莫斯科竞赛题)证明假定顶点A和B都具备所述的性质,则有180CAB DAB∠+∠>︒及180CBA DBA∠+∠>︒,但是作为CAB△和DAB△的全部6个内角之和也只有180180︒+︒,此为矛盾,从而原结论获证.例5设d是任意四面体的相对棱间距离的最小值,h是四面体的最小高的长.证明2d h>.(第24届全俄竞赛题)证明如图224-,为确定起见,假定h是四面体ABCD中由顶点A所引出的高,而d是棱AB和CD之间的距离.经过顶点B引直线l CD∥,过点A作平面垂直于棱CD交CD于F,交l于E,于是AEF△的高AH和FG就分别等于h和d.由于AEF△的第三条高等于四面体ABCD的某一条高,所以其值不小于h,因此AF EF≤,且图22-3B C图22-4HGlFE BDAC2h AH AE AF FE d FG FE FE+==<≤,此即为所证. 例6试证:过四面体相对棱的中点的任一截面平分四面体的体积.(IMO 29-预选题)证法1如图225-,设M 和P 分别是四面体ABCD 的棱AC 和BD 的中点,MNPQ 是四面体ABCD 的一个包含线段MP 的截面,因为P 为BD 的中点,则BCP CDP S S =△△,即有ABCP ACDP V V =.因此,要证截面MNPQ 将四面体ABCD 分成体积相等的两部分,只要证明AMNP V 与OMPQ V 相等就可以了.由N 和Q 分别作平面APC 的垂线,垂足分别为E ,F ,如图225-.因为M 为AC 的中点,则有APM CPM S S =△△,故要证AMNP CMPQ V V =,只要证NE FQ =即可.设MP 与NQ 交于点O ,易证E ,O ,F 三点共线.要证NE FQ =,只要证明NO OQ =就可以了(通过Rt Rt NEO QFO △△≌得到). 为此,考察两个平行平面,异面直线AB 和CD 分别在这两个平面上(如图226-).因为MP 是连接AC ,BD 中点的线段,所以它在与上述两平面平行的平面上,这个平面到两已知平面的距离相等.由于线段NQ 与MP 相交于O ,所以O 等分线段NQ ,即有NO OQ =.故结论获证. 注上述证明中,没有对截面MNPQ 的形状进行讨论.若对其形状进行讨论,则有下述两种证法. 证法2如图227-,设M ,P 分别是四面体ABCD 的对棱AC ,BD 的中点.OF E P QNMA BD图22-5N OP M QBDCA图22-6当截面是平行四边形或特殊三角形时,证明比较简单(略). 当截面是一般四边形MNPQ 时. 由AM CM =,有A MNPQ C MNPQ V V --=又在ABC △中,对截线MNG 应用梅涅劳斯定理,有1AM CG BNMC GB NA⋅⋅=. 从而,有1CG BNGB NA⋅=. 同理,在BCD △中,有1BP DQ CG PD QC GB ⋅⋅=,即1DQ CGQC GB⋅=. 于是BN DQ NA QC =,得BN DQBA DC=. 又1C BPN Q APD V BN CDV BA QD--⋅==⋅,即C BPN Q APD V V --=. 故C MNPQ C BPN A MNPQ Q APD V V V V ---+=+一.证毕.证法3前面同证法2,下证截面为一般四边形MNPQ 时的情形.记A d 表示顶点A 到截面MNPQ 的距离(其余类同),设N 分AB 的比为m n ∶.则由M ,P 分别是AC ,BD 的中点,可知Q 点分CD 的比C A D B d d CQ AN mQD d d NB n====. 由A C d d =,有A MNPQ C MNPQ V V --=.又13113APD Q APDQ APD C BPNBPN C APD S d V AB QD m n n V NB CD n m n S d ----⋅+==⋅=⋅=+⋅△.即Q APD C BPN V V --=.故C MNPQ C BPN A MNPQ Q APD V V V V ----+=+.例7如图228-,设四面体1234A A A A 的外接球与内切球的半径分别为R 与r ,则3R r ≥.图22-7DG证明设O 为四面体的外心,i A 所对的面的面积为(14)i S i ≤≤,球心O 到i A 所对的面的距离为(14)i d i ≤≤,四面体体积为V ,过顶点1A 的高11A H h =,则易知1111d OA d R h +=+≥,从而()111113S d R S h V +⋅=≥,即1111133S d S R V ⋅+⋅≥.同理2221133S d S R V ⋅+⋅≥,3331133S d S R V ⋅+≥, 4441133S d S R V +⋅≥. 以上四式相加,并注意()1122334413S d S d S d S d V ⋅+⋅++⋅=, 有4113i i V R S V =+⋅∑≥4,即419i i R S V =⋅∑≥.因4113i i V r S ==⋅∑,从而44113i i i i R S r S ==⋅⋅∑∑≥,即3R r ≥.例8在四面体1234A A A A 中,顶点i A 所对的面的面积为(14)i S i ≤≤,侧面面积为k S ,j S 的两侧面所夹的内二面角的大小记为,k j()14k j <≤≤,棱k j A A 的中点记为kj M ,含点kj M 与另两顶点(不含顶点k A ,j A )的三角形称为四面体的一个中线面(或一棱与对棱中点的面),这个中线面的面积记为kj S ()14k j <≤≤,则()22212cos ,4kj k j k j S S S S S k j =++⋅⋅,其中k ,j 满足14k j <≤≤.证明对四面体1234A A A A ,由性质6,有223434131423242cos cos 1,3cos 1,42,32,4S S S S S S S S S S S S +=⋅⋅++⋅+⋅⋅+⋅⋅+⋅⋅及221212131423242cos 1,2cos 1,3cos 1,4cos 2,3cos 2,4S S S S S S S S S S S S +=⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅. 亦即13142324cos 1,3cos 1,4cos 2,3cos 2,4S S S S S S S S ⋅⋅++⋅+⋅⋅+⋅⋅2212122cos 1,2S S S S =+-⋅⋅.图22-843A 2A对四面体13412A A A M 和四面体23412A A A M 分别运用性质6,有2222123423411112cos 3,44422S S S S S S =++-⋅⋅⋅-3242112cos 2,32cos 2,422S S S S ⋅⋅-⋅⋅⋅,2222123413411112cos 3,44422S S S S S S =++-⋅⋅⋅-3141112cos 1,32cos 1,422S S S S ⋅⋅⋅-⋅⋅⋅上述两式相加,并将前面结果代入,有()22222123412131412cos 1,3cos 1,42S S S S S S S S S =+++-⋅⋅-⋅-232434cos 2,3cos 2,4cos 3,4S S S S S S ⋅⋅-⋅⋅-⋅⋅2212131411cos 1,3cos 1,422S S S S S S =+-⋅⋅-⋅-232411cos 2,3cos 2,422S S S S ⋅⋅-⋅⋅()222212121212cos 1,22S S S S S S =+-+-⋅ ()2212121cos 1,22S S S S =++⋅. 故()22212121212cos 1,24S S S S S =++⋅⋅. 同理,得()22212cos ,4kj k j k j S S S S s k j =++⋅⋅. 注由性质5,有421412cos ,k j t k j i S S k j S =⋅⋅=∑∑≤≤≤,则推知()22214141412cos ,4kj k j k j k j k j k j S S S S S k j <<⎡⎤=++⋅⋅⎢⎥⎣⎦∑∑∑≤≤≤≤≤≤≤ 444222111134i i i i i i S S S ===⎛⎫=+= ⎪⎝⎭∑∑∑ 例9设G 为四面体1234A A A A 的重心,则222222221232434213143444GA A A A A A A GA A A A A A A +++=+++ 222222223121424412132344GA A A A A A A GA A A A A A A =+++=+++21434k j k j A A =∑≤≤≤.43图22-9证明如图229-,连A ,G 并延长交面234A A A 于点1G ,则1G 是234A A A △的重心,连21A G 并延长交34A A 于M ,则M 是34A A 的中点.连1A M ,对12A A M △及点1G 应用斯特瓦尔特定理,有2221121211212211AG A M A A MG A M A G A M A G MG ⋅=⋅+⋅-⋅⋅.而21121A G G M =∶∶,则2222111212122339AG A A A M A M =+-.()* 由三角形中线公式,有 ()224211212341124A M A A A A A A =+-,()222222324341124A M A A A A A A =+-, 并将其代入()*,有()()2222222111213142324341139AG A A A A A A A A A A A A =++-++. 从而()()222222232221111213142324342324343314164GA A G A A A A A A A A A A A A A A A A A A ⎛⎫==+++++-++ ⎪⎝⎭.故22222123243414344k j k j GA A A A A A A A A <+++=∑≤≤.同理可证其他三式均等于例10设R ,r 分别为四面体1234A A A A 的外接球半径与内切球半径,i h 为顶点i A 到所对面的距离,内切球切各顶点i A 所对的面于i A '(1234)i =,,,.求证: (Ⅰ)21416k j k j A A R <∑≤≤≤;(Ⅱ)4214194k j i k j i A A h <=∑∑≤≤≤(Ⅲ)422164i i h r =∑≥;(Ⅳ)141419nk j k j i k j k j i A A A A X <<=''∑∑∑≤≤≤≤≤.证明(Ⅰ)设O ,G 分别为四面体1234A A A A 的外心和重心,延长1A G ,交面234A A A 于1G ,则1G 为234A A A △的重心,连21A G 交34A A 于M 点,则M 点为34A A 中点,如图229-. 由例9中证明,知2222222111213142324341[3()()]9AG A A A A A A A A A A A A =++-++. 同理,在四面体234OA A A 中,有222222212342324341[3()()]9OG OA OA OA A A A A A A =++-++.()222223243419R A A A A A A =-++ 由于G 为四面体重心,由性质3,知1131AG GG =.于是,在11AOG △中,对点G 应用斯特瓦尔特定理,有 ()222211111[433]16OG OG OA AG =+- 2222222121314232434116()()16R A A A A A A A A A A A A ⎡⎤=-++-++⎣⎦. 由于20OG ≥,故21416k j k j A A R <∑≤≤≤.(Ⅱ)显然11AG h ≥,则()()22222221121314232434139h A A A A A A A A A A A A ⎡⎤++-++⎣⎦≤. 同理,对2h ,3h ,3h 也有类似于上述的不等式.此四式相加,得4214194k j i k j i A A h <=∑∑≤≤≤.(Ⅲ)由13i i V S h =()1,2,3,4i =,则有4411113ii i iSh V ===∑∑又由4113i i V S r ==⋅∑,则4111i ih r ==∑.由14411234114i i h h h h h =⎛⎫ ⎪⎝⎭∑≥,有()412344h h h h r ≥. 故()()()114222222212341234448h h h h h h h h r r ⎡⎤+++=⎣⎦≥≥4.(Ⅳ)四面体1234A A A A ''''的外接球半径记为R ',则214116k j k j R A A <'''∑≤≤≥. 又四面体1234A A A A ''''的外接球半径恰是四面体1234A A A A 的内切球半径,故R r '=.于是4222214119999166416k j i k j i R A A h r R <='=∑∑≤≤≥≥≥≥14k j k j A A <''∑≤≤.故214149k j kj k j k j A A R A A <<'''∑∑≤≤≤≤≥8≥. 例11四面体1234A A A A 中,外接球半径为R ,体积为V ,过顶点k A ,j A 的中线面为()14kj S k j <≤≤.试证:141k j kjS <∑≤≤ 证明设1d ,2d ,3d 与1θ,2θ,3θ分别为三对对棱12A A ,34A A ;13A A ,24A A ;14A A ,23A A 的距离与夹角,则由性质15,有1234111sin 6V A A A A d θ=⋅⋅⋅,亦即113346V d A A A A ⋅≤. 同理,有213246V d A A A A ⋅≤,314236Vd A A A A ⋅≥.取34A A 的中点M ,则121212112MA A S S A A d =⋅△≥,同理,可得关于kj S 的不等式,从而412113214323324234111111112k j kj S A A d A A d A A d A A d A A d A A d <⎛⎫+++++ ⎪⋅⋅⋅⋅⋅⋅⎝⎭∑1≤≤≤122141413k j k j k j k j A A A A V <<⎫⎪⎭∑∑≤≤≤≤≤)12216R =例12设四面体1234A A A A 的内心为I ,记k j A IA △的面积为kj S ',顶点i A 所对的面的面积为i S .试证:4141kji k j i S S <='∑≤≤ 证明过I 作1IA '⊥面234A A A 于1A ',作34IN A A ⊥于N ,若记面积为k S ,j S 的两侧面夹角为()14kj k j θ<≤≤,则易见11212A NI θ'∠=.设r 为四面体1234A A A A 的内切球半径,则在1Rt IA N '△中,有121sin 2rIN θ=,则34121212sin 2A A r S θ⋅'=. 由性质8,有1212342sin 3S S V A A θ⋅⋅=,于是消去34A A ,得12121221cos 32S V S S θ'⋅=⋅,注意到4113i i V S r ==⋅∑,则1212124121cos 2ii S S S S θ='''=⋅∑.对上述两边取∑,并用canchy 不等式,有1241414121cos 2kj k j k j ii S S θ<<=⎫'=⋅⎪⎭∑∑∑≤≤≤≤ 12241414121cos 2k j k j kj k j k j i i S S S S S θ<<=⎡⎤⎛⎫⎛⎫⋅⋅⋅⋅⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∑∑∑≤≤≤≤≤.()* 注意到性质5,有1212313414cos cos cos S S S S θθθ=⋅+⋅+⋅,即42213121423411cos cos cos 2222i i S S S S θθθ==⋅+⋅+⋅∑, 对上式两边同乘以1S 后,再两边取∑,有241141cos 42kj i k j i k j S S S θ=<⎛⎫=⋅⋅ ⎪⎝⎭∑∑≤≤.又由对称平均不等式,有1421141146i k j i k j S S S =<⎛⎫=⋅ ⎪⎝⎭∑∑≤≤ 于是,由()*式(将上述结果代入()*式)即有414114kj i k j i S S <='∑≤≤.例13四面体1234A A A A 的三组对棱乘积的平方和不小于各侧面面积平方和的4倍,即若令12A A a =,34A A a '=,13A A b =,24A A b '=,14A A c =,23A A c '=,顶点i A 所对面的面积为()1234i S i =,,,,则 222222222212344()a a b b C C S S S S '''+++++≥,其中等号当且仅当各对棱的平方和相等.证明对234A A A △应用海伦一秦九韶公式,有 ()24442222221122216S a b c a b a c b c '''''''''=---+++ 同理,()24442222222122216S a b c a b a c b c '''=---+++, ()2444222223122216S a b c a b a c b c '''=---+++, ()24442222224122216S a b c a b a c b c '''=---+++. 以上四式相加并整理,得22221234S S S S +++=()()()()()()(){}2222222222222222222221416a a b b a a c c b b c c a a b b c c ⎡⎤⎡⎤⎡⎤'''''''''-+-+-+-+-+-++++⎣⎦⎣⎦⎣⎦()22222214a ab bc c '''++≤. 例14四面体1234A A A A 内一点P 到顶点i A 及i A 所对的面的距离分别为i l ,i d ,顶点i A 到所对的面的距离为()1234i h i =,,,,34k ≥ .求证:41423ki k i i i l h d =⎛⎫ ⎪+⎝⎭∑≥.证明先证一个结论:设()01,2,3,4i x i >=,41i i x a ==∑,则4143ki k i i x a x =⎛⎫ ⎪-⎝⎭∑≥.其中等号当且仅当1234x x x x ===时取得.事实上,由()443333()44i i i i x a x a x a x ⎡⎤+-⎛⎫-=⎢⎥ ⎪⎝⎭⎣⎦≤,有443343k kk i i k i x x a x a ⎛⎫⎛⎫⎪ ⎪-⎝⎭⎝⎭≥,从而 4434444433314114443343k k k kk ii i i k ki i i x x x a x a a ===⎛⎫ ⎪⎛⎫⎛⎫ ⎪⋅=⎪ ⎪- ⎪⎝⎭⎝⎭⎪⎝⎭∑∑∑≥≥ 下证原题:设四面体1234A A A A 的体积为V ,如图2210-,作11A H ⊥面234A A A 于1H ,作11PE A H ⊥于E ,作1PD ⊥面234A A A 于1D ,则11A P l =,11PD d =,111A H h =.设i A 所对面的面积为(1234)i S i =,,,,则()1111111113S l S d S A E d S h V ⋅+⋅+==≥, 从而2341133PA A A S l V V ⋅-≥.同理,1342233PA A A S l V V ⋅-≥,1243333PA A A S l V V ⋅-≥, 1234433PA A A S l V V ⋅-≥.从而()13412412322334493PA A A PA A A PA A A V S l S l S l V V V +++-+≥()234111632PA A A V V S h d =+=+,即111112233442l S l h d S l S l S l '+++≥. 同理,222221133442l S l h d S l S l S l +++≥,333331122442l S l h d S l S l S l +++≥,444441122332l S l h d S l S l S l +++≥. 令()1,2,3,4i i i x l R i =⋅=,由前述结论,得4411423kki i ki i i i i l x h d a x ==⎛⎫⎛⎫ ⎪ ⎪+-⎝⎭⎝⎭∑∑≥≥. 【解题思维策略分析】1.解四面体的有关问题时,要善于与三角形类比A 3A 4图22-10例15一个球内切于四面体,将每个切点与该点所在面的三顶点连结起来,这样形成的每面的三个角(以切点为顶点)组成一个集合.试证这四个集合是相等的.(第16届普特南竞赛题)证明设四面体的顶点为()1234i P i =,,,,又设i Q 是正对着i P 的面与球相切的切点.用i ,j ,k ,l 表示{}1234,,,的不同元素,由于i j PQ 与i k PQ 是从同一顶点向球所作的切线,故ij i k PQ PQ =. 同理,i j i k PQ PQ =,从而i j l i k l PQ p PQ P △△≌(边,边,边).于是i j l i k l PQ P PQ P ∠=∠, 并用il θ表示这种角,即有il li θθ=.由于以i Q 为顶点的三个角相加是2π,故有2334422πθθθ++=,3441132πθθθ++=,4112242πθθθ++=,1223312πθθθ++=.将这些等式的前两个相加减去后两个,且利用ij ji θθ=.得3412220θθ-=,即1234θθ=. 又由对称性,得ij kj θθ=.()*以1Q 为顶点的角是23θ,34θ,42θ,由()*式,它们分别等于以2Q 为顶点的三个角,即41θ,34θ,13θ. 由对称性,在所有四个面上的中心角都有同样的情形.证毕,注第26届IMO 由前苏联提供的预选题:“四面体ABCD 的内切球与面ABD 和DBC 分别相切于K 和M 点,证明:AKB DMC ∠=∠.”显然,这道试题是例15的特殊情形. 例16已知ABC △的面积力S △,外接圆半径为R ,过A ,B ,C 作平面ABC 的垂线,并在平面ABC 的同一侧的垂线分别取1A ,1B ,1C ,使1a AA h =,1b BB h =,1c CC h =,这里a h ,b h ,c h 分别表示边BC ,CA ,AB 边上的高.求四个平面11A B C ,11B C A ,11C A B ,ABC 所围成的四面体的体积.解求解此问题的关键是确定这个四面体的四个顶点的位置.设平面11A B C 与直线AB 相交于K 点,则点K 在11A B 上.由11AA BB ∥知11a b h AA KA b ACKB BB h a BC====.因此,K 是BCA ∠的外角平分线与BA 的交点,从而平面11A B C 与ABC 的交线是BCA ∠的外角平分线. 同理,类似可得:平面11B C A 与ABC 的交线是CAB ∠的外角平分线.上述两条外角平分线的交点是ABC △的旁心B I ,因此B I 就是平面11A B C ,11B C A 与ABC 的公共点,即为所求四面体的一个顶点.这样,旁心A I ,B I ,C I 是所求四面体的三个顶点.设第四个顶点为P ,则P 是平面11A B C 和11B C A 的公共点,因而在直线1B B I 上,P 在平面ABC 上的射影在B BI 上,也在A AI 上,因而P 的射影就是ABC △的内心I .由相似三角形,1PI AA ∥,且1A P 与AI 相交于A I ,可得1a A a A ar rII PI PI AA h AI r -===,其中r 为ABC △的内切圆半径,a r 为劳切圆半径.设ABC △的周长为2l ,则11221a a a a r r S S l a l PE h r a l l a ---=⋅=⋅=-△.由平面几何知识,易证A B C I I I △的面积为 ()1222a b c S a b c S S ar br cr l a l b l c ⎛⎫'=+++=+++ ⎪---⎝⎭△△△()()()2abc S l a l b l c ⋅=---△. 故所求体积()()()211332A B C PI I I S abc S V S PI l l a l b l c ⋅'=⋅=⋅⋅---△△△1433abc S R ==⋅△. 例17在四面体1234A A A A 中,顶点i A 所对的面的面积记为()1234i S i =,,,,以i j A A 为棱的二面角为il θ,则 (Ⅰ)2142cos 3ij k j θ<∑≤≤≥;(Ⅱ)6141cos 3ij k j θ<≤≤≤C . 证明联想到在ABC △中,运用三角形射影定理并结合柯西不等式,有2223cos cos cos 4A B C ++≥,31cos cos cos 2A B C ⋅⋅≤,于是有下述证法: (Ⅰ)由性质5,1234324423cos cos cos S S S S θθθ=⋅+⋅+⋅, 由Cauchy 不等式,有221234324423(cos cos cos )S S S S θθθ=⋅+⋅+⋅()()222222234342423cos cos cos S S S θθθ++++≤,从而22221342423222234cos cos cos S S S S θθθ++++≥. 同理,还有类似于上式的三个式子,四式相加,得2444222141112cos 4111i ii ij k j i i i i i i S x x S S x x θ<===⎛⎫==-++ ⎪---⎝⎭∑∑∑∑≤≤≥ ()1234141ix x x x x =-++++-∑()4411111641143133i i i ix x ==⎛⎫⎡⎤=-+-⋅-+= ⎪⎢⎥-⎣⎦⎝⎭∑∑≥. 故2142cos 3ijk j θ<∑≤≤≥. (Ⅱ)由1234324423cos cos cos S S S S θθθ=⋅+⋅+⋅≥.同理,还有类似于上式的三个不等式,此四式相乘,化简即得6141cos 3ij k j θ<∏≤≤≤. 注将三角形与四面体的上述两个不等式各统一为(Ⅰ)2111cos ,2k j n n i j n<++∑≤≤≥; (Ⅱ)()11211cos ,n n i j n i j n -+<+∏≤≤≤,其中2n =为三角形的,3n =为四面体的.2.善于将有关问题进行转化例18四面体ABCD 三个侧面ABD ,ACD ,BCD 上,由顶点D 引出的中线与底面ABC △对应边所成的角相等,证明:每个侧面的面积小于另外两个侧面面积之和.(1997年波兰竞赛题)证明设E ,F ,G 分别是边AB ,BC ,CA 的中点,连结DE ,DF ,DG 如图2211- (a ).设DE 与AB 所成角为θ,则 1sin sin 2DAB S DE AB DE FG θθ=⋅⋅=⋅⋅△, 1sin sin 2DBC S DF BC DF GE θθ=⋅⋅=⋅⋅△, 1sin sin 2DCA S DG CA DG EF θθ=⋅⋅=⋅⋅△. 由于sin 0θ>,所要证明的命题转化为证明:在四面体DEFG 中,任意一组对棱的乘积小于另两组对棱乘积之和.为此,我们来证明: DE FG DF GE DG EF ⋅<⋅+⋅.将四面体DEFG 的面DFG △绕FG 翻转到底面所在的平面上,得D FG '△如图2211- (b ).在四边形D FFG '中,显然,有D G DG '=,D F DF '=.由Ptolemy (托勒密)不等式,有D E GF D F GE D G EF DF GE DG EF '''⋅++⋅=⋅+⋅≤.设D E '与GF 交于点O ,由DFG D FG '△△≌,得DO D O '=.在DOE △中, DE DO OE D O OE D E ''<+=+=.故DE GF D E GF DF GE DG EF '⋅<⋅⋅+⋅≤.从而原题得证.例19给出三个四面体()123i i i i A B C D i =,,,过点i B ,i C ,i D 作平面i α,i β,i γ() 123i =,,分别与棱i i A B ,i i A C ,i i A D 垂直()123i =,,.如果九个平面i α,i β,i γ()123i =,,相交于一点E ,而三点1A ,2A ,3A 在同一直线l 上,求三个四面体的外接球面的交集(形状怎样?位置怎样?).(CMO 3-试题)解由于几何元素太多,画出准确的全图几乎不可能.为此,画出一个局部图.COCDEFGABDEFG(b)(a)图22-11连1A E 与1B E 如图2212- (a ),可知111A B B E ⊥,此表明以1A E 为直径的球过1A ,1B ,E 三点.同样可知,这球过1A ,1B ,1C ,1D ,E 五点,此表明中心在1A E 的中点1O ,直径为1A E 的球也正好是四面体1111A B C D 的外接球.类似地可定出四面体i i i i A B C D 的外接球直径和中心()123i =,,. 于是问题转化为到直线123A A A 及其线外一点E 所决定的平面上来了.这个平面与三个球的交线是三个圆,它们有一个公共点E ,从E 向直线123A A A 作垂线,垂足为E ',显然E '是E 关于直线123O O O 的对称点,所以E 与E '是这三圆的公共点.由此知以EE '为直径且垂直于直线123A A A 的圆就是三个四面体的外接球的交集.当E 在直线123A A A 上时,此圆就退化为一个点E .此时三个球面相切于E 点. 例20如图22-13,过四面体PABC 的重心G 的任一直线l 与四个面分别相交于M ,N ,S ,T 四点.求证:11110GM GN GS GT+++=u u u u r u u u r u u u r u u u r .(《数学通报》问题1362题)证明设1G 为ABC △的重心,连1PG ,并设直线L 与直线1PG 确定的平面α与侧面ABC 的交线分别与ABC △的三边交于1A ,1B ,1C .连1PA ,1PB ,1PC ,在平面α内,直线l 与1PA ,1PB ,1PC ,11A B 的交点分别为M ,N ,S ,T .因G 是四面体重心,1G 是ABC △的重心,由重心性质,知G 分1PG u u u u r所成的比为31∶,且1112111110G A G B G C ++=u u u u r u u u u u r u u u u r .231B 1图22-12(a)(b)B 1lG 1C 1A 1G TPNMSAC B图22-13以1G 为原点,以直线11G A 为x 轴,建立平面直角坐标系如图2214-.设()1,0A a ,()1,0B b ,()1,0C c ,(),P m n ,别由1112121110G A G B G C ++=u u u u r u u u u u r u u u u u r ,知1110a b c ++=,,44m n G ⎛⎫ ⎪⎝⎭.由两点式得直线1PA ,1PB ,1PC ,11A B 的方程分别为()n y x a m a =--,()ny x b m b=--, ()ny x c m c=--,0y = 设直线l 的参数方程为 1cos 41sin 4x m t y n t αα⎧=+⋅⎪⎪⎨⎪=+⋅⎪⎩(α为倾斜角,t 为参数) 并设M ,N ,S ,T 对应的参数分别为1t ,2t ,3t ,4t . 将直线l 的方程分别代入直线1PA ,1PB ,1PC ,11A B 方程,得 114sin 4cos 4sin 33m n t na nααα-⋅-⋅=+, 214sin 4cos 4sin 33m n t nb nααα-⋅-⋅=+, 314sin 4cos 4sin 43m n t nc nααα-⋅-⋅=+,414sin t n α-= 由1110a b c++=,得123411110t t t t +++=,故11110GM GN GS GT +++=u u u ur u u u r u u u r u u u r . 3.适当构作辅助体例21求证:若四面体相对棱间的距离分别为1d ,2d ,3d ,则四面体的体积V 不小于13123d d d .图22-14证明如2215-,过四面体ABCD 的三组对棱AB 与CD ,AD 与BC ,AC 与BD ,分别引三对相互平行的平面,得平行六面体(或以四面体ABCD 的棱为侧面对角线构作平行六面体),各相对面的距离分别等于四面体三组对棱的距离,又易知该平行六面体的体积正好是四面体ABCD 体积的3倍. 在底面11A DB C 中,作1EF CA ⊥于E ,则1EF B D ⊥.设垂足为F ,则EF 不小于平面11A AC C 与平面11DD BB 间的距离,即3EF d ≥.又12AC d ≥,所以1123A DB CS d d ⋅≥Y . 又平面11A DB C 与平面11AD BC 的距离为1d ,因此, 1111111123AD BC A DB C A DB C V S d d d d -=⋅⋅⋅≥Y .Suoyi 12313ABCD V d d d ≥.例22设a ,b 为四面体ABCD 的一对对棱AB 与CD 的长,r 为四面体内切球半径,求证:()2abr a b <+.(第22届全苏竞赛题)证明如图2416-,过AB 与CD 分别作ABEF Y 与CDGH Y ,使得AF CD ∥,CH AB ∥,连AC ,BH ,EG ,FD ,得一个平行六面体AFEB CDGH -(或以四面体ABCD 的三棱CA ,CB ,CD 为共顶点的棱构成平行六面体). 设AB 与CD 之间的距离为d ,它们所成的角为θ,则由性质15,知1sin 6V ab d θ=⋅⋅四面体.设a h 为ABD △中AB 边上的高,显然D 到AB 的距离大于D 到面AFEB 的距离,即a h d >,而1122ABD a S a h ad =⋅>△.同理,12ABC S ad >△,12ACD S bd >△,12BCD S bd >△.于是,四面体ABCD 的表面积D B CA EFC 1D 1A 1B 1图22-15GABCDHFE图22-16()ABD ABC ACD BCD S S S S S a b d =+++>+△△△△表.注意到性质1,即13V S r =⋅表,得到()3sin 222V abd abd ab r S S S a b θ⋅==<+表表表≤ 4.注意运用向量知识求解例23设平面α,β,γ,δ与四面体ABCD 的外接球面分别切于点A ,B ,C ,D .证明:如果平面α与β的交线与直线CD 共面,则γ与δ的交线与直线AB 共面.(1981年保加利亚竞赛题)证明设四面体ABCD 的外心为O ,半径为R .令OA a =u u u r ,OB =b u u u r ,OC c =u u u r ,CD d =u u u r.对空间中任意一点X ,令OX x =u u u r,则222222R =====a b c b d .因为OA α⊥,所以平面α上的点X 满足()0⋅-=a x a ,即2⋅a x =R . 同理,平面β,γ,δ上的点X 分别满足2R ⋅=b x ,2⋅c x =R ,2R ⋅=d x . 注意到,对任意不同时为零的数λ,μ,有方程()()2R λλλμ⋅⋅+a b x =.给出了一个过平面α与β的交线l 的平面(因0λλ≠a +b ,且对任意X l ∈,有2R ⋅=⋅a x b x =.另外,对空间中任意一点X 也存在一对不同时为零的数λ,μ,使得()()220R R λμ⋅-+⋅-=a x b x .即适当选取λ与μ,可使相应的平面过点X .因此直线CD 与直线l 共面的充要条件是:关于未知数λ与μ的方程组()()()()22220,0,R R R R λμλμ⎧⋅-+⋅-=⎪⎨⋅-+⋅-=⎪⎩a c b c a c b c 有非零解,即有()()()()2222R R R R ⋅-⋅-=⋅-⋅-a c b c a b b c . 同理可证,平面γ与δ的交线和直线AB 共面的充要条件为()()()()2222R R R R ⋅-⋅-=⋅-⋅-c a d b c b d a .因为上面得到的两个条件是等价的,所以题中结论得证.例24设四面体ABCD 对应于各顶点的高分别为a h ,b h ,c h ,d h ,在各高线上分别取1A ,1B ,1C ,1D ,使1a k AA h =,1a k BB h =,1c k CC h =,1dkDD h =为任一实数.求证:四面体1111A B C D 的重心合于四面体ABCD 的重心. 证明令AB b =u u u r ,AC c =u u u r ,AD d =u u u r ,根据向量矢量积的意义,知同BD BC ⨯u u u r u u u r 的方向是对应A 点高线的方向,而它的长度是BCD △面积的2倍.设A 点对应高线的单位向量为i ,则2BCDBD BCi S ⨯=△u u u r u u u r,而()()BD BC ⨯=-⨯-=⨯⨯⨯d b c d b d +d c +c b u u u r u u u r .故2i S⨯⨯⨯=b d +dc +c d.同理,设B ,C ,D 点对应的高线的单位向量分别为j ,k ,l ,则22ACD ACD AC AD S S ⨯⨯=△△c d j =u u u r u u u r ,2ADB S ⨯△d b k =,2ABCS ⨯△b c l =.若设四面体ABCD 的体积为V , 因而()16a k k AA h V ==⨯⨯⨯i =b d +d c +c d u u u r .同理,()16k BB V =⨯c d u u u r ,()16k CC V =⨯d b u u u u r ,()16kDD V =⨯b c u u u u r . 因而,有11110AA BB CC DD +++=u u u r u u u r u u u u r u u u u u r. 又设1O 为四面体1111A B C D 的重心,则()1111111114AO A B AC A D =++u u u u r u u u u r u u u u r u u u u r()11111114A A AB BB A A AC CC A A AD DD =++++++++u u u r u u ur u u u r u u u r u u u r u u u u r u u u r u u u r u u u u r ()11111144A A AA BB CC DD =++++b +c +d +u u u r u u u r u u u r u u u u r u u u u r ()114A A =-b +c +d u u u r . 而111AO AA A O =+u u u u r u u u r u u u u r ,故()114AO AO ==b +c +d u u u u r u u u r,这表示1O 与O 重合.【模拟实战】 习题A1.在三棱锥S ABC -的棱SA ,SB ,SC 上分别取点1A ,1B ,1C ,使得11SA SA SB SB ⋅=⋅1SC SC =⋅.证明:点A ,B ,C ,1A ,1B ,1C .在同一球面上.(第15届全俄竞赛题)2.在四面体ABCD 内求作一点P ,使四个四面体的体积比满足P BCD P CDA P DAB P ABC V V V V αβγδ----=∶∶∶∶∶∶,其中α,β,γ,δ为给定的正数.3.设P ,Q ,R 分别是四面体ABCD 的棱AC ,AD ,AB 或延长线上的点,E ,F 在BC 上,且BE EF FC ==,AE ,AF 分别与RP 交于点G ,H .记四面体APQR 与AGHQ 的体积分别为V ,1V .求证:13V V ≥,当且仅当RP BC ∥或RP 与BC 重合时等号取得.4.四面体ABCD 内接于半径为R 的球,且球心O 在四面体内部.求证:四面体ABCD 至少有一条棱长. 5.在四面体ABCD 中,P 为各棱长之和,V 为其体积,用()CD S 表示过四面体棱CD 及相对棱AB 中点。
第二十一章平行六面体的性质及应用

第二十一章平行六面体的性质及应用【基础知识】平行六面体是平行四边形的一个三维类比模型,平行四边形的一系列有趣性质可推证到平行六面体中去.平行四边形与三角形有着极为密切的关系,因而平行六面体与四面体也有着极为密切的关系,这些构成了平行六面体一系列既有趣又有重要应用的性质.性质1平行六面体的四条对角线相交于一点,且在这一点互相平分,并称该点为中心.推论称侧面对角线的交点为侧面中心,则相对侧面中心的连线也交于平行六面体的中心,且在这一点互相平分.(见例5)性质2平行六面体所有对角线的平方和等于所有棱的平方和.推论1平行六面体所有侧面对角线的平方和等于其所有(体)对角线平方和的两倍.推论2平行六面体每一侧棱的平方等于与这侧棱共面的两侧面四条面对角线的平方和减去与这侧棱不共面而共端点的两条侧面对角线平方和所得差的四分之一.推论3平行六面体的每一对角线长的平方等于过这条对角线一端点的三条侧面对角线的平方和减去过另一端点的三条棱的平方和.性质3平行六面体的每一对角线长的平方等于共一端点的三条棱长的平方和减去这三条棱中每两条棱长及其所夹角余弦之积的两倍.性质4平行六面体的每一对角线通过与该对角线共端点的三条棱的另一端点构成的三角形截面的重心,且被这三角形截面分成三等分.性质5平行六面体的每个由三条侧面对角线构成的三角形截面面积平方的4倍,等于这截面所截三个侧面面积的平方和减去这三个侧面中每两个侧面面积及其所夹二面角余弦之积的两倍.推论平行六面体的八个由三条侧面对角线构成的三角形截面面积的平方和等于六个侧面面积的平方和.性质6设平行六面体的全面积为S ,四条对角线长为1AC l 、1A C l 、1BD l 、1BD l 、1B D l ,则111122222AC A C BD B DS l l l l +++≤. 性质7通过平行六面体中心的任何平面,将平行六面体分成体积相等的两部分.推论1以平行六面体任一顶点及这顶点出发的三条棱的端点构成的四面体体积是平行六面体体积的六分之一.推论2以平行六面体任一顶点及这顶点出发的三条侧面对角线端点构成的四面体体积是平行六面体体积的三分之一.性质8平行六面体的体积等于底面积与高的乘积,或任一侧面面积与相对面距离之积. 推论设共一顶点的三条棱长为a 、b 、c ,每两条棱的夹角为α、β、γ,则体积V 为V abc ==若记()12θαβγ=++,则2V =. 性质9()11113/22222124AC A C BD BDV l l l l +++≤;3/26S V ⎛⎫ ⎪⎝⎭≤.推论l 表面积一定的平行六面体中,以正方体之体积为最大.推论2在各个侧面面积为定值的平行六面体中,以长方体之体积为最大.性质11由平行六面体的各顶点,至不截此体的一平面所引诸垂线段之和,等于由其对角线之交点至同平面所引垂线段之和的8倍.性质10在平行六面体1111ABCD A B C D -中,截面分别与AB 、AD 、1AA 、1AC 交于0B 、0C 、0A 、0D 各点,则11000AC AA AB AD AC AB AD AA =++. 下面介绍平行六面体与四面体的密切关系. 1.对应关系作四面体的外接平行六面体,且使四面体的六条棱均成为平行六面体的侧面对角线.此时,四面体与其外接平行六面体是一一对应的.特别地,一个正四面体对应着一个正方体,一个等腰四面体(三对对棱分别相等的四面体)对应着一个长方体,一个两对对棱分别相等的四面体对应着一个直平行六面体,一个对棱均互相垂直的四面体(直角四面体或正三棱锥四面体)对应着一个菱形六面体等等.当四面体的共一顶点的三棱成为平行六面体的共顶点的三棱时,一个四面体对应着四个外接平行六面体,特别地,一个正四面体对应着一个一顶点面角均为60︒的菱形六面体,一个等腰四面体对应着两个一顶点面角之和为180︒的平行六面体等等. 2.隐显关系从本世纪初开始,人们试图将三角形的许多性质引申到四面体——最简单的多面体,事实证明发展四面体的几何学比三角形几何学困难得多,有些提法并不复杂的问题解答起来非常费劲,甚至未能解决.下面的例题将启示我们:四面体某些数量关系的发现及几何特征的显露,借助于其外接平行六面体的性质的运用是一种方便的重要途径.因此,可以说四面体的一些性质可以利其外接平行六面体来显现,平行六面体隐含了四面体的一些重要性质. 【典型例题与基本方法】例1在四面体ABCD 中,AB m =,CD n =,AD p =,BC q =,AC u =,BD u =.若AB 与CD 所成的角为θ,则()()2222cos 2p q u v mn+--=.证明如图211-,作四面体ABCD 的外接平行六面体A DB C AD BC ''''-,使四面体的棱都成为平行六面体的侧面对角线.A'B'C 'D '图21-1DA C显然,AB 与CD 所成的角θ就是A B ''与CD 所成的角,于是 ()()2222221/21/24cos 112222m n B D m n B D mn m n θ'+-⎡⎤⎡⎤'+-⎣⎦⎣⎦==⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭ 222222242222A D B D B D A D B D mn mn'''''+--==()()22222222222222p q u v A D D D D D B D mn mn+--''''---==. 例2若四面体的六条棱长分别为a 、b 、c 、d 、e 、f ,体积为V ,则有333333a b c d e f +++++≥(Weisenbock 不等式的一种三维推广).证明如图211-,将四面体ABCD 补成平行六面体,则3ABCD V V =平行六面体.设平行六面体共顶点A 的三条棱长为l 、m 、n ,由前面的性质2的推论1,即有()2222222224a b c d e f l m n +++++=++.又由V l m n ⋅⋅平行六面体≤及幂平均值不等式,有113333332222223266a b c d e f a b c d e f ⎛⎫⎛⎫++++++++++ ⎪ ⎪⎝⎭⎝⎭≥.于是()322224212ABCD l m nV ⎡⎤++⎢⎥⎢⎥⎣⎦①()32222222112a b c d e f ⎡⎤=+++++⎢⎥⎣⎦()312233333331612a b c d e f ⎧⎫⎪⎪⎡⎤+++++⎨⎬⎢⎥⎣⎦⎪⎪⎩⎭≤②)333333a b c d e f =+++++.故333333a b c d e f +++++≥.其中等号当且仅当①、②中满足l 、m 、n 互相垂直且l m n ==,即平行六面体为正方体,亦即a b c d e f =====时成立.类似上例,并运用前面的性质5的推论,可证明Weisenbock 不等式的另一种三维推广:若四面体各顶点A 、B 、C 、D 所对的面的面积分别为A S 、B S 、C S 、D S ,体积为V ,则33332A B C D S S S S +++ 例3空间四平面互相平行,相邻两面间距离都是h .今有一正四面体,它的四个顶点分别在这四个面上.求正四面体的棱长.解设正四面体ABCD 的外接正方体为'AC BD A CB D '''-.又设过棱D D '及B C '中点F 的截面为3α,过棱C C '及A D '中点E 的截面为2α,过棱A A ',过棱B B '且与3α、2α平行的平面分别为1α、4α,这样这四个平面即为两相邻距离都相等的互相平行的四平面.又设过A B ''的中点O '与CE 垂直的直线为l ,l 与4α、3α、2α、1α的交点分别为B ''、D ''、C ''、A '',如图21-2(b),则4α、3α、2α、1α两相邻平面间距离为B D ''''、D C ''''、C A ''''.DEGO 'B"A"C "D "A'B'C 'D (b)(a)D图21-2CF当A C h ''''=时,可求得A E '=,从而A B ''=.这就是我们所要求的正四面体的棱长. 例4四面体ABCD 中,若AB CD ⊥,AC BD ⊥,则AD BC ⊥.(1957年天津市、1979年上海市中学竞赛题)证明如图211-,作四面体ABCD 的外接平行六面体A DB C AD BC ''''-.由平行六面体每一侧面两对角线所夹的角(锐角)的余弦值等于这侧面两相邻棱的平方差的绝对值除以这两条侧面对角线长的乘积,即()22cos A D DB A B CD A B CD''-'=''⋅.由AB CD ⊥,则()cos cos()0AB CD A B CD ''==,从而A D DB ''=,即侧面A DB C ''为菱形,同理,由AC BD ⊥.有侧面A CC A ''为菱形,从而侧面A DD A ''也为菱形,故AD BC ⊥. 例5求证四面体的三双对棱中点连线必交于一点,且互相平分.证明如图213-,设E 、F 、G 、H 、M 、N 分别是四面体ABCD 的六条棱的中点.作四面体的外接平行六面体1A C ,则E 、F 、G 、H 、M 、N 分别是其六侧面对角线的交点.图21-3G N EH OCDBAC 1A 1D 1B 1MF在11AAC C 中,连EF ,则11EF AA CC ∥∥,且过六面体对角线1A C 的中点O ,同时被O 平分.因六面体的四条对角线共点O ,于是同理可证GH 、MN 过O ,且被O 平分.例6立方体八个顶点中有四个恰是正四面体的顶点.求出立方体的表面积与四面体的表面积之比.(1980年美国中学生竞赛AHSME 第16题) 解设立方体表面积为S ,四面体表面积为0S ,由平行六面体所有三角形截面(三角形的边由六面体侧面对角线组成)面积的平方和等于所有侧面面积的平方和,有2206/4264S S ⎛⎫⎛⎫⋅⋅= ⎪ ⎪⎝⎭⎝⎭,故0/S S =【解题思维策略分析】1.善于将四面体问题转化为平行六面体问题例7若A 、B 、C 、D 表示空间四点,AB 表示A 、B 两点间的距离,AC 表示A 、C 两点间的距离,⋯.证明:222222AC BD AD BC AB CD ++++≥.(第4届美国中学生竞赛题) 证明以空间四边形的边为侧面对角线构造平行六面体,由平行六面体所有侧面对角线的平方和等于所有棱的平方和的两倍及图213-,有222222222111444AC BD AD BC AB CD AD AA A B +++++=++()22242AD AB CD =++故222222AC BD AD BC AB CD ++++≥.当A 、B 、C 、D 共面时,10AD =,上式取等号.此时,可看作是压扁了的四面体.例8在四面体ABCD 中,BDC ∠是直角,由D 到ABC △所在的平面的垂线的垂足H 是ABC △的垂心,证明:()()22226AB BC CA AD BD CD ++++≤.(IMO 12-试题)证明如图214-,平行六面体1111AC BD B D AC -为四面体ABCD 的外接平行六面体.由题设,D 到ABC △所在的平面的垂线的垂足是ABC △的垂心,知这个四面体的对棱互相垂直,又BDC ∠是直角,即知四面体ABCD 的三面角D ABC -是直三面角,故此平行六面体为长方体.CDBAC 1A 1D 1B 1图21-4H由()2222AD BD CD ++()()()222222AD BD BD CD CD AD =+++++222AB BC AC =++.故()()22222263AD BD CD AB BC AC ++=++222222AB BC CA AB BC BC CA AB CA +++⋅+⋅+⋅≥ ()2AB BC CA =++.例9若a 、b 、c 是四面体共顶点的三条棱的长,α、β、γ,是这三条棱组成的面角,ω是这三个面角和的一半,则四面体的体积为:13V abc =四面体证明如图21-4,设DA a =,DB b =,DC c =,BDC α∠=,ADC β∠=, ADB γ∠=.由平行六面体的体积公式()V abc S A =⋅平行六面体,其中()S A= 有16V V =四面体平行六面体1=3abc 2.善于构造平行六面体解答有关问题例10已知a 、b 、c +∈R ,且2221a b c ++=3a b c ++>.证明由2221a b c ++=3a b c ++>.参见图212- (a),构作长方体AB '.设对角线1AB '=,AD a '=,AC b '=,AA c '=,则A B ''B C ''=,B D ''.在A AB ''△中,A A A B B A ''''+>,即1c >.同理,1b >1a >.以上三式相加,即证.例11锐角α.β、γ满足222sin sin sin 1αβγ++=,求证:π3π24αβγ<++<. 证明构造长方体D AC B DA CB ''''-,参见图212- (a),使其长、宽、高分别为sin D A α'=,sin AC β'=,sin C C γ'=,则1AB D C ''===,D B A α''∠=,C B A β''∠=,C D C γ''∠=,且AB BA '>.sin sin sin D A D AD B A D BA B A BA α'''''∴=∠=<=∠', sin sin sin AC AC C B A C BA B A BAβ'''''=∠=<=∠'.从而D BA α'<∠,C BA β'<∠. 1π2D BA C BA αβ''∴+<∠+∠=.同理,π2βγ+<,π2αγ+<,即3π4αβγ++<. 设B A '与D C '相交于O ,则知2D OA α'∠=,2AOC β'∠=,2C OC γ'∠=. 由于三面角的任意两个面角的和大于第三个面角,则 22D OA AOC D OC αβ'''+=∠+∠>∠. ()2πD OC C OC αβγ''∴++=∠+∠=.故π3π24αβγ<++<. 3.注意特殊平面体的性质的运用例12正方体1111ABCD A B C D -的棱长为1,求正方体底面ABCD 内切圆周上的点与过顶点1A 、C 和1B 的圆周上的点之间的最小距离.(第19届全苏奥林匹克题)图21-5C1A B解如图215-,考察两个圆周分别在以正方体的对称中心为球心的两个同心球面上,即与正方体各棱都)上,这两个球面上的点之间的最小距离是它们的半径之差12d =.如果两圆周上各有一点恰好在球心O 发出的同一射线上,那么d 即为最小值.考察在以O 为位似比的变换下,小球面变为大球面,而小球面上的圆周的象集为大球面上的圆周.注意到ABCD 的内切圆1O 与线段BD 的交点E 和F 在该位似变换下的象在平面1AB C 的两侧(因11145O OF BB O ∠=︒>∠,故射线OF 不与平面1AB C 相交),因此,1O 的象集(圆周)将与过顶点A ,C 和1B 的圆周相交.设一交点为N ,而N 的原象为M,那么M ,N 之间的距离就是考察的两圆周上的点之间的距离的最小值,其值为12d =.【模拟实战】习题A1.在正方体1111ABCD A B C D -中,O 是面ABCD 的中心,1O 是面11ADD A 的中心.求异面直线1D O 与1BO 所成角的余弦值.2.已知空间一个平面与一个正方体的12条棱的夹角都等于口α,求α的值.3.能否用一个平面去截一个正方体,使得截面为五边形?进一步,截面是否为正五边形?4.设一个平面截棱长为1的正方体1111ABCD A B C D -,过顶点1C ,交1A D 1中点于E ,1A A 距A 较近的一个三等分点于F ,AB 于G ,BC于H .求截面1C EFGH 的周长.5.已知一个平面截棱长为1的正方体所得截面是—个六边形.证明:此六边形周长≥. 6.正三棱锥S ABC -的侧棱与底面边长相等,如果E ,F 分别为SC ,AB 的中点,那么异面直线EF 与SA 所成的角等于多少?7.已知111ABC A B C -是直三棱柱,90BAC ∠=︒,点1D ,1F 分别是11A B ,11B C 的中点.若1AB CA AA ==,求1BD 与1CF 所夹角的余弦值.8.已知ABCD 是边长为4的正方形,E ,F 分别是AB ,AD 的中点,GC ⊥面ABCD ,且2GC =.求点B 到面EFG 的距离.9.在四面体SABC 中,已知SA BC a ==,SC AB b ==,SB AC c ==,求此四面体的体积. 10.在四面体1234A A A A 中,相应对棱中点的三条连线分别为1m ,2m ,3m ,顶点i A 所对侧面的重心为i G ,其四面体体积记为V ,则 (Ⅰ)1233m m m V ⋅⋅≥;(Ⅱ)421412716i j i i i j i A A AG =-∑∑≤≤≤≥(Ⅲ)421i i i AG =∑ 11.已知α,β,γ是锐角,且222cos cos cos 1αβγ++=.求证:(Ⅰ)tan tan tan αβγ⋅⋅≥ (Ⅱ)3ππ4αβγ<++<. 12.已知0a >,0b >,0c >,且1a b c ++=.习题B1.有一立方体,中心和边长为a b c <<的长方体的对称中心重合,诸界面与长方体各界面平行,求立方体的棱长,使得它与长方体的并的体积减去它与长方体的交的体积的差最小.(1979年捷克竞赛题) 2.证明:在棱长为a 的立方体内部可以作两个棱长为a 的正四面体,使得它们没有公共点.(1983年民主德国竞赛题)。
第二十一章 平行六面体的性质及应用答

第二十一章 平行六面体的性质及应用 习题A1.连1AD ,AC ,设E 为OA 的中点,则11O E D O ∥,于是1EO B ∠即为1D O 与1BO 所成的角,且1112O E D O =.不妨设正方体棱长为1,则11BO D O ==,1O E =,BE =.在△1BO E 中15cos 6BO E =∠为所求. 2.问题的难度在于不易确定该平面与正方体的位置.由条件,设正方体1111ABCD A B C D -的棱AB ,AC ,AD 与所给平面的夹角相同,可知所给平面与面BCD 平行.进一步,面BCD与此正方体的12条棱的夹角都相同,因而,只需求出棱AD 与面BCD 所成的角.为此,过A 作AH ⊥面BCD ,H 为在面BCD 上的射影,连DH ,就有ADH α=∠.注意到△BCD 为正三角形,可证H 为△BCD 的外心,重心.设正方体棱长为a ,则2sin 603DH CD =⋅⋅︒,而90AHD =︒∠,于是cos cos DH ADH AD α===∠,故α=. 3.可以用一个平面截正方体得截面为凸五边形.设点I 为正方体1111ABCD A B C D -的棱1BB 延长线上一点,使得112IB BB =,E 为11A D 的中点,F 为1A A 上的点,113AF A F =,则由△EAF ∽△11C B I ,知1EF C I ∥,从而1C ,E ,F ,I 共面.设此截面交AB 于G ,交BC于H ,连GH ,则截面1C EFGH 为凸五边形.用一个平面去截一个正方体所得截面不能是一个正五边形.若截面可以为一个正五边形,则此五边形的五条边分属于此正方体的五个不同的面,过相对的两个面的截线平行,而正五边形中没有平行的边.结论获证.4.由第3题,知截面交棱1BB 的延长线于I ,则112BI BB =,可证12AG AF GB BI ==,11113BH BI B C B I ==,于是23BG =,14BH =,从而可求得GH =1C H =,512FG =,EF =1C E =512+. 5.将正方体PQRS P Q R S ''''-的各个面依次展开,从正方形PQQ P ''出发,依次为PP Q Q '',Q QRR '',Q R S P '''',R S SR '',S SPP '',PSRQ .从上述展开图可知截面六边形的周长AA '≥,而AA '=6.作出正方体AS BC A SB C ''''-,则图中三棱锥S ABC -符合题设条件.连S C ''',则EF SS '∥,EF 与SA 所成的角即为SS '与SA 所成的角,而45S SA '=︒∠,故异面直线EF 与SA 成45︒的角.7.将题给直三棱柱补成正方体1111ABPC A B PC -.分别取BP ,1CF 的中点E ,H ,连1EF ,CE ,EH ,则1BD EF ∥,故1EF H ∠为1BD 与1CF 所成的角.设正方体棱长为2,则11EF BD ==1F H =且1EH CF ⊥,故111cos F H EF H EF =∠为所求.8.以正方体ABCD 为底面,GC 为棱,补作长方体ABCD A B GD '''-.由BD ∥面EFG ,则B 到面EFG 的距离等于直线BD 到面EFG 的距离,即ABCD 的中心O 到面EFG 的距离. 过O 作OK GH ⊥于K (H 为EF 与AC 的交点),则OK ⊥面EFG ,线段OK 是点O 到面EFG 的距离.由题设有2GC =,CH =OH =GH ==OK OHGC GH=,故OH GC OK GH ⋅==. 9.作四面体的外接平行六面体,使四面体的棱成为外接平行六面体的侧面对角线,由于四面体三对对棱相等,则此平行六面体为长方体.设长方体的长、宽、高分别为x ,y ,z ,则由222222222x x z a y z b y x y c z ⎧=⎪⎧+=⎪⎪⎪+=⇒=⎨⎨⎪⎪+=⎩⎪=⎪⎩而V xyz =长方体,13V V =四面体长方体,故V =四面体10.(Ⅰ)作四面体的外接平行六面体,使四面体的棱成为平行六面体的侧面对角线.设长度分别为1m ,2m 的线段成α角,长度为i m 的线段所在直线与过相应对棱的两平行平面成i β角,则123V m m =⋅⋅ 33sin sin m αβ⋅⋅,故123333sin sin Vm m m V αβ⋅⋅=⋅≥.(Ⅱ)由四面体重心定义,知G 将1m ,2m ,3m 互相平分.设棱i j A A 的中点为ij B ,由三角形中线长公式,有()22222222211241132121424132111111()224484AG A B A B m A A A A A A A A m =+-=+---. 同理,2222222232131242111()()484A G A A A A A A A A m =+---, 2222223343242312111()()484A G A A A A A A A A m =+---, 2222224114313422111()()484A G A A A A A A A A m =+---. 于是 422222212233441211()2ii AG A A A A A A A A m ==+++-∑.同理,422222213344221311()2ii AG A A A A A A A A m ==+++-∑, 422222214422331111()2i i AGA A A A A A A A m ==+++-∑. 故 42221231143()i i j i i j G A A A m m m =<=-++∑∑≤≤,而222123m m m ++≥34ii iAG AG =,由此即证.(Ⅲ)由斯特瓦尔特定理,有22221112134234122339AG A A A B A B =+- 222222212141334232434121112111332249224A A A A A A A A A A A A A A ⎛⎫⎛⎫=++--+- ⎪ ⎪⎝⎭⎝⎭ ()()2222221213142324341139A A A A A A A A A A A A =++-++. 同理,()()222222222324213431411139A G A A A A A A A A A A A A =++-++, ()()2222222333431324142121139A G A A A A A A A A A A A A =++-++, ()()2222222444142431213231139A G A A A A A A A A A A A A =++-++.于是,2141414224399i i i j i j i ji j i j i j AG A A A A A A <<<=-=∑∑∑∑≤≤≤≤≤≤. 11.作长方体1111ABCD A B C D -,使1ABD α=∠,11B BD β=∠,1CBD γ=∠.令AB a =,BC b =,1B B c =.(Ⅰ)由1tan AD AB α=111tan B D B B β==,221tan D C a c BC bγ+==,有tan tan tan αβγ⋅⋅=. (Ⅱ)在三面角1B AD C -中,有π2ABC αγ+>=∠.同理ππ22αββγ+>+>,故3π4αβγ<++. 在三面角1O ACD -中,112πAOD COD AOC ++<∠∠∠,即2222παβγ++<,故παβγ++<.由此结论获证.注:若令1π2αα=-,1π2ββ=-,1π2γγ=-,则知1α,1β,1γ均为锐角,且222111sin sin sin 1αβγ++=,有111π3π24αβγ<++<. 12.设2cos a α=,2cos b β=,2cos c γ=,且α,β,γ为锐角.作长方体1111ABCD A B C D -,使1ABD α=∠,11B BD β=∠,1CBD γ=∠.令AB x =,BC y =,1B B z =,1BD l =,则cos x l α=,cos z l β=,cos ylγ=. 由α,β,γ均为锐角,则cos 0α>,cos 0β>,cos 0γ>,于是cos cos cos αβγ+=++=x y zl++==注:由上可知α,β,γ均为锐角,且222cos cos cos 1αβγ++=,则有0cos cos cos αβγ<++习题B1.因x 表示立方体的棱长,则题中所说的体积差为 32233,0,(),0,()(),,,.abc x x a abc x a x ax x b f x x ab c x abx b x c x abc c x ⎧-<⎪+--<⎪=⎨+--<⎪⎪-<⎩当≤时当≤时当≤时当时注意到当0x >时,函数()f x 是连续的,且它的系数为 22223,0,34,0,()32,,3,x x a x ax x b f x x ab b x c x x c ⎧-<<⎪-<<⎪'=⎨-<<⎪⎪>⎩当时当时当时当时.因此,当0x a <<时,函数()f x 是递减的.当x b >时,则是逆增的,而在区间(,)a b 上,因为2234340x ax b ab -<-≤,所以如果43b a <,则()f x 是递减的;如果43ab >,则()f x 在43a x =处有极小值.于是,函数()f x 的最小值要么在x b =处取到(当43ab ≤时),要么在43a x =处取到(当43a b >时),从而所求的min x 为4,3a b ⎧⎫⎨⎬⎩⎭.2.过给定的立方体12341234A A A A A A A A ''''-的中心O 作垂直于对角线13A A '的平面,它分别过棱14A A '',22A A ',34A A 的中点1B ,2B ,3B .又点1B ,2B ,3B 到顶点1A 与3A '的距离相等,都是,且123B O B O B O ==,122311B B B B B B ===>,所以正棱锥1123A B B B 及3123A B B B '13AO A O '==,而其底面123B B B '''△与△123B B B 关于中心O 是位似的.最后,所求的正四面体分别在1123A B B B '''与3123A B B B ''''1<,从而其棱长即为a .。
平行六面体

平行六面体的性质: 平行六面体的性质: 10 相对两面平行且全等; 相对两面平行且全等; 20 四条对角线相交于一点, 四条对角线相交于一点, 且在交点处互相平分; 且在交点处互相平分; 30 四条对角线的平方和等 于各棱的平方和
D1 C1 B1 D
D
CLeabharlann A1oA B A
O
B
C
D1
C1 B1 D
已知长方体AC 例1 已知长方体 1中A1 A =a, A1D1=b, A1B1=c, , , 求对角线A 的长 的长. 求对角线 1C的长. 例2
A1
C B
A
已知长方体的对角线AC 已知长方体的对角线 1与 三条棱AD、 、 三条棱 、AB、AA1所成的角 分别为α、 、 , 分别为 、β、γ,
求证: 求证:cos2α+cos2β+cos2γ=1. .
已知长方体的对角线与过其一个端点 的三个面所成的角分别为δ,θ,φ , 的三个面所成的角分别为 求证: 求证: sin2δ+sin2θ+sin2φ=2
四棱柱
底面是 平行六面体 侧棱与 底面垂直 平行四边形 棱长都相等 长方体
直平行六面体
底面是矩形
正方体
平行四边形性质: 平行四边形性质: (1) 对边平行且相等; 对边平行且相等; (2) 两条对角线交于一点, 两条对角线交于一点, 且互相平分; 且互相平分; (3) 两条对角线的平方和 等于它四条边的平方和。 等于它四条边的平方和。
边 形
边 不 直多 形 垂
直棱柱
边 直 多 形 形垂 形矩 多 形矩 边
正棱柱
正 边 多
正 边 矩 多 形 形矩 形
垂 直
形
平行六面体与长方体-P

一、特殊四棱柱的一些性质
D1
1、平行六面体的一些性质:
A1
(1)平行六面体的对角线相交于 一点,并且在交点处互相平分。
D
(2)相对两个面平行且全等; 四条对角线的平方和等于各
A
棱的平方和。
C1 B1
C B
2、长方体的一些性质:
(1)长方体的一条对角线 的平方等于一个顶点上三条 棱长的平方和。
C1 D底面为平
侧棱与底
底面为
行四边形{平行六面体}面垂直 {直平行六面体}矩形
底面为
侧棱与底面
{长方体}正方形 {正四棱柱} 边长相等 {正方体}
2、有以下四个命题,真命题的个数是( A )
(1)底面是矩形的平行六面体是长方体;(2)棱 长相等的直四棱柱是正方体;(3)有两条侧棱都 垂直于底面一边的平行六面体是直平行六面体;
知识回顾
1、什么叫棱柱? 如果一个多面体有两个面互相平行,而其余相邻 两个面的交线互相平行,这样的多面体叫棱柱。
2、棱柱的分类:棱柱按侧棱与底面是否垂直分为 __________,按底面多边形的边数可分为_______ 底面是________________称为正棱柱。
3、棱柱的性质:棱柱的侧棱______;侧面是 _________;两个底面与平行于底面的截面是 __________;过不相邻的两条侧棱的截面是 ___________。
C D
B1 A1
B
A
(2)如果长方体的一条对角线与这一对角线交于
一点的三条棱所成的角分别为 , , ,则
cos2 cos2 cos2 1
(3)如果长方体的一条对角线和经过这条对角
线的一端点的三个面所成的角分别为 , , ,
平行六面体

3、能够画出空间两条直线、直线和平面、两个 平面的各种位置关系的图形。
证明面面垂直的方法:
(1)定义(2)面面垂直的判定定理
例1:如图所示,PA 矩形ABCD所在平面,M , N分别是AB, PC的中点 (1)求证:MN // 平面PAD; (2)求证: MN CD;
(3)若PDA 45 求证:MN 平面PCD
P
K
N
D
LC
o
AM
B
(四)空间的角
A
C
D B
A 1
C1
E
B1
F
(五)空间图形的距离
1、点与直线的距离:自该点向直线引垂线(通常利 用三垂线定理或逆定理),该点与垂足间的距离即是。
2、点与面的距离:自该点向平面引垂线(通常利用平 面与平面垂直的性质定理)该点与垂足间的距离即是
3、异面直线间的距离:异面直线的公垂线段的长度。 4、直线与平面的距离:直线与平面平行时,直线上 任意一点到平面的距离。 5、平行平面间的距离:平面上任意一点到另一个 平面的距离
平行与垂直关系图 请按箭头
定义
定义
定义
公理4
线线平行
线面平行 面面平行
三垂线 线线垂直 线面垂直 面面垂直
定义
定义
定义
一、学习内容
1、平面 2、空间直线 3、直线和平面平行 4、直线和平面垂直 5、两个平面平行 6、两个平面垂直
平行六面体与长方体

则 cos2 cos2 cos2 ___2___
二、知识应用与解题研究:
例:长方体的全面积为11,十二条棱的长度之和 为24,求这个长方体的一条对角线长。
练习:已知以长方体的一个顶点为端点的三条棱 长为3、4、5,则它的对角线长为_____
部猛然射出一片浅绿色的幽光,这片神光很快化作上万成千的辽阔无边的鸟影,以飘然飞向每个考官和所有在场的学生,随着声声奇妙的声响,这些鸟影都变成了一份份 考
题的答卷……与此同时,闪亮的文字纷纷变成光闪闪的鲜红色圣液从上面纷纷落下,眨眼间在九只巨碗之上变成了闪烁怪异、质感华丽的幽静冒烟的蛔虫……这时蘑菇王子发
三、小结
通过本节学习,我们必须: 1、正确理解几种特殊的四棱柱及它们之间的关系。 2、掌握几种特殊的四棱柱的性质。 3、理解事物之间相互转化、互为统一的辩证关系。 4、学会运用整体化思维方法去分析、探究和解决问题。
作业:P
(4)对角线相等的平行六面体是直平行六面体。
A1
B2
C3
D4
的时生出了二只活似竹竿形态的水绿色脸皮。紧接着灵敏机警、闪着荧光的薄耳朵怪异蜕变扭曲起来……淡红色的古树般的嘴唇窜出亮白色的丝丝明烟……天使般的黑色神童
眉窜出暗绿色的飘飘余寒!最后甩起有着无限活力的神脚一闪,突然从里面滚出一道鬼光,他抓住鬼光诡异地一摇,一套金灿灿、怪兮兮的兵器∈追云赶天鞭←便显露出来,
花柱从园林灌木中突兀而立,钻石材质的花柱顶部垂下缕缕簇簇优雅的娇美的花卉,宛若紫宝石色的飘逸长发和火橙色的轻纱飘然而下……大道左侧不远处是一片浓绿色的海
藻林,海藻林旁边银、绿、灰三色相交的林带内不时隐现着一两只灵巧奇妙的动物和几声兽吟鸟鸣……大道右侧远处是一片暗灰色的针叶林,那里似乎生长着一片浅绿色的雨
棱柱与平行六面体

A
N
x
BM
C6
几种六面体的关系:
底面变为 平行四边形
侧棱与底面 垂直
四棱柱
平行六面体
练习:P58-1,2,3
直平行六面体
底面是 矩形
长方体
底面为 正方形
侧棱与底面 边长相等
正四棱柱
正方体
7
例题选讲
定理 平行六面体的对角线交于一点, 并且在交点处互相平分。
已知:平行六面体AC’(如图)
求证:对角线AC’、BD’、CA’、DB’交于一点 且在点O处互相平分。
D'
C'
B'
A'
O
D
C
A
B
8
例题选讲
定理 长方体的一条对角线的平方 等于一个顶点上三条棱长的平方和。
已知:长方体AC’中,AC’是一条对角线(如图) 求证:AC’2=AB2+AD2+AA’2
即:l 2 = a 2 + b 2 + c 2
练习: P58-4,5
A'
B'
l
A
B
a
D'
C' c
D
Cb
9
练习:
(1) MN是平面B1MA的法向量。
提示:只需再证MN⊥MB1
A1
(2) CA1//平面B1MA。
提示:只需证 MN⊥CA1
B1
z
P
C1
(3) 求AC与平面B1MA所成角的大小。
y
提示:先求 < AC , MN > , 再求
(4) 求平面B1MA与平面ACC1A1 所夹锐角的大小。
提示:先求两面法向量所成角, 再求
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十一章平行六面体的性质及应用【基础知识】平行六面体是平行四边形的一个三维类比模型,平行四边形的一系列有趣性质可推证到平行六面体中去.平行四边形与三角形有着极为密切的关系,因而平行六面体与四面体也有着极为密切的关系,这些构成了平行六面体一系列既有趣又有重要应用的性质.性质1平行六面体的四条对角线相交于一点,且在这一点互相平分,并称该点为中心.推论称侧面对角线的交点为侧面中心,则相对侧面中心的连线也交于平行六面体的中心,且在这一点互相平分.(见例5)性质2平行六面体所有对角线的平方和等于所有棱的平方和.推论1平行六面体所有侧面对角线的平方和等于其所有(体)对角线平方和的两倍.推论2平行六面体每一侧棱的平方等于与这侧棱共面的两侧面四条面对角线的平方和减去与这侧棱不共面而共端点的两条侧面对角线平方和所得差的四分之一.推论3平行六面体的每一对角线长的平方等于过这条对角线一端点的三条侧面对角线的平方和减去过另一端点的三条棱的平方和.性质3平行六面体的每一对角线长的平方等于共一端点的三条棱长的平方和减去这三条棱中每两条棱长及其所夹角余弦之积的两倍.性质4平行六面体的每一对角线通过与该对角线共端点的三条棱的另一端点构成的三角形截面的重心,且被这三角形截面分成三等分.性质5平行六面体的每个由三条侧面对角线构成的三角形截面面积平方的4倍,等于这截面所截三个侧面面积的平方和减去这三个侧面中每两个侧面面积及其所夹二面角余弦之积的两倍.推论平行六面体的八个由三条侧面对角线构成的三角形截面面积的平方和等于六个侧面面积的平方和. 性质6设平行六面体的全面积为S ,四条对角线长为1AC l 、1A C l 、1BD l 、1BD l 、1B D l ,则111122222AC A C BD B DS l l l l +++≤. 性质7通过平行六面体中心的任何平面,将平行六面体分成体积相等的两部分.推论1以平行六面体任一顶点及这顶点出发的三条棱的端点构成的四面体体积是平行六面体体积的六分之一.推论2以平行六面体任一顶点及这顶点出发的三条侧面对角线端点构成的四面体体积是平行六面体体积的三分之一.性质8平行六面体的体积等于底面积与高的乘积,或任一侧面面积与相对面距离之积. 推论设共一顶点的三条棱长为a 、b 、c ,每两条棱的夹角为α、β、γ,则体积V 为V abc ==若记()12θαβγ=++,则2V =. 性质9()11113/22222124AC A C BD B D V l l l l +++≤;3/26S V ⎛⎫ ⎪⎝⎭≤.推论l 表面积一定的平行六面体中,以正方体之体积为最大.推论2在各个侧面面积为定值的平行六面体中,以长方体之体积为最大.性质11由平行六面体的各顶点,至不截此体的一平面所引诸垂线段之和,等于由其对角线之交点至同平面所引垂线段之和的8倍.性质10在平行六面体1111ABCD A B C D -中,截面分别与AB 、AD 、1AA 、1AC 交于0B 、0C 、0A 、0D 各点,则110000AC AA AB AD AC AB AD AA =++u u u u r u u u r u u u r u u u r u u u ur u u u u r u u u u r u u u u r . 下面介绍平行六面体与四面体的密切关系. 1.对应关系作四面体的外接平行六面体,且使四面体的六条棱均成为平行六面体的侧面对角线.此时,四面体与其外接平行六面体是一一对应的.特别地,一个正四面体对应着一个正方体,一个等腰四面体(三对对棱分别相等的四面体)对应着一个长方体,一个两对对棱分别相等的四面体对应着一个直平行六面体,一个对棱均互相垂直的四面体(直角四面体或正三棱锥四面体)对应着一个菱形六面体等等.当四面体的共一顶点的三棱成为平行六面体的共顶点的三棱时,一个四面体对应着四个外接平行六面体,特别地,一个正四面体对应着一个一顶点面角均为60︒的菱形六面体,一个等腰四面体对应着两个一顶点面角之和为180︒的平行六面体等等. 2.隐显关系从本世纪初开始,人们试图将三角形的许多性质引申到四面体——最简单的多面体,事实证明发展四面体的几何学比三角形几何学困难得多,有些提法并不复杂的问题解答起来非常费劲,甚至未能解决.下面的例题将启示我们:四面体某些数量关系的发现及几何特征的显露,借助于其外接平行六面体的性质的运用是一种方便的重要途径.因此,可以说四面体的一些性质可以利其外接平行六面体来显现,平行六面体隐含了四面体的一些重要性质. 【典型例题与基本方法】例1在四面体ABCD 中,AB m =,CD n =,AD p =,BC q =,AC u =,BD u =.若AB 与CD 所成的角为θ,则()()2222cos 2pq u v mn+--=.证明如图211-,作四面体ABCD 的外接平行六面体A DB C AD BC ''''-,使四面体的棱都成为平行六面体的侧面对角线.显然,AB 与CD 所成的角θ就是A B ''与CD 所成的角,于是 ()()2222221/21/24cos 112222m n B D m n B D mn m n θ'+-⎡⎤⎡⎤'+-⎣⎦⎣⎦==⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭ 222222242222A D B D B D A D B D mn mn'''''+--==A'B'C 'D '图21-1DBA C()()22222222222222p q u v A D D D D D B D mn mn+--''''---==. 例2若四面体的六条棱长分别为a 、b 、c 、d 、e 、f ,体积为V ,则有333333a b c d e f +++++≥(Weisenbock 不等式的一种三维推广).证明如图211-,将四面体ABCD 补成平行六面体,则3ABCD V V =平行六面体.设平行六面体共顶点A 的三条棱长为l 、m 、n ,由前面的性质2的推论1,即有()2222222224a b c d e f l m n +++++=++.又由V l m n ⋅⋅平行六面体≤及幂平均值不等式,有113333332222223266a b c d e f a b c d e f ⎛⎫⎛⎫++++++++++ ⎪ ⎪⎝⎭⎝⎭≥.于是()322224212ABCD l m nV ⎡⎤++⎢⎥⎢⎥⎣⎦①()32222222112a b c d e f ⎡⎤=+++++⎢⎥⎣⎦()312233333331612a b c d e f ⎧⎫⎪⎪⎡⎤+++++⎨⎬⎢⎥⎣⎦⎪⎪⎩⎭≤②)333333a b c d e f =+++++.故333333a b c d e f +++++≥.其中等号当且仅当①、②中满足l 、m 、n 互相垂直且l m n ==,即平行六面体为正方体,亦即a b c d e f =====时成立.类似上例,并运用前面的性质5的推论,可证明Weisenbock 不等式的另一种三维推广:若四面体各顶点A 、B 、C 、D 所对的面的面积分别为A S 、B S 、C S 、D S ,体积为V ,则33332A B C D S S S S +++ 例3空间四平面互相平行,相邻两面间距离都是h .今有一正四面体,它的四个顶点分别在这四个面上.求正四面体的棱长.解设正四面体ABCD 的外接正方体为'AC BD A CB D '''-.又设过棱D D '及B C '中点F 的截面为3α,过棱C C '及A D '中点E 的截面为2α,过棱A A ',过棱B B '且与3α、2α平行的平面分别为1α、4α,这样这四个平面即为两相邻距离都相等的互相平行的四平面.又设过A B ''的中点O '与CE 垂直的直线为l ,l 与4α、3α、2α、1α的交点分别为B ''、D ''、C ''、A '',如图21-2(b),则4α、3α、2α、1α两相邻平面间距离为B D ''''、D C ''''、C A ''''.当A C h ''''=时,可求得A E '=,从而A B ''=.这就是我们所要求的正四面体的棱长. 例4四面体ABCD 中,若AB CD ⊥,AC BD ⊥,则AD BC ⊥.(1957年天津市、1979年上海市中学竞赛题)证明如图211-,作四面体ABCD 的外接平行六面体A DB C AD BC ''''-.由平行六面体每一侧面两对角线所夹的角(锐角)的余弦值等于这侧面两相邻棱的平方差的绝对值除以这两条侧面对角线长的乘积,即¼()22cos A D DB A BCD A B CD''-'=''⋅.由AB CD ⊥,则¼()cos cos()0ABCD A B CD ''==撩妹妹?,从而A D DB ''=,即侧面A DB C ''为菱形,同理,由AC BD ⊥.有侧面A CC A ''为菱形,从而侧面A DD A ''也为菱形,故AD BC ⊥. 例5求证四面体的三双对棱中点连线必交于一点,且互相平分.证明如图213-,设E 、F 、G 、H 、M 、N 分别是四面体ABCD 的六条棱的中点.作四面体的外接平行六面体1A C ,则E 、F 、G 、H 、M 、N 分别是其六侧面对角线的交点.在11AAC C Y 中,连EF ,则11EF AA CC ∥∥,且过六面体对角线1A C 的中点O ,同时被O 平分.因六面体的四条对角线共点O ,于是同理可证GH 、MN 过O ,且被O 平分.例6立方体八个顶点中有四个恰是正四面体的顶点.求出立方体的表面积与四面体的表面积之比.(1980年美国中学生竞赛AHSME 第16题) 解设立方体表面积为S ,四面体表面积为0S ,由平行六面体所有三角形截面(三角形的边由六面体侧DEGO 'B"A"C "D "A'B'C 'D (b)(a)D图21-2CF 图21-3G N EH OCDBAC 1A 1D 1B 1MF面对角线组成)面积的平方和等于所有侧面面积的平方和,有2206/4264S S ⎛⎫⎛⎫⋅⋅= ⎪ ⎪⎝⎭⎝⎭,故0/S S =【解题思维策略分析】1.善于将四面体问题转化为平行六面体问题例7若A 、B 、C 、D 表示空间四点,AB 表示A 、B 两点间的距离,AC 表示A 、C 两点间的距离,⋯.证明:222222AC BD AD BC AB CD ++++≥.(第4届美国中学生竞赛题) 证明以空间四边形的边为侧面对角线构造平行六面体,由平行六面体所有侧面对角线的平方和等于所有棱的平方和的两倍及图213-,有222222222111444AC BD AD BC AB CD AD AA A B +++++=++()22242AD AB CD =++故222222AC BD AD BC AB CD ++++≥.当A 、B 、C 、D 共面时,10AD =,上式取等号.此时,可看作是压扁了的四面体.例8在四面体ABCD 中,BDC ∠是直角,由D 到ABC △所在的平面的垂线的垂足H 是ABC △的垂心,证明:()()22226AB BC CA AD BD CD ++++≤.(IMO 12-试题)证明如图214-,平行六面体1111AC BD B D AC -为四面体ABCD 的外接平行六面体.由题设,D 到ABC △所在的平面的垂线的垂足是ABC △的垂心,知这个四面体的对棱互相垂直,又BDC ∠是直角,即知四面体ABCD 的三面角D ABC -是直三面角,故此平行六面体为长方体.由()2222AD BD CD ++()()()222222AD BD BD CD CD AD =+++++222AB BC AC =++.故()()22222263AD BD CD AB BC AC ++=++222222AB BC CA AB BC BC CA AB CA +++⋅+⋅+⋅≥ ()2AB BC CA =++.例9若a 、b 、c 是四面体共顶点的三条棱的长,α、β、γ,是这三条棱组成的面角,ω是这三个面角和的一半,则四面体的体积为:13V abc =四面体证明如图21-4,设DA a =,DB b =,DC c =,BDC α∠=,ADC β∠=, ADB γ∠=.由平行六面体CDBC 1A 1D 1B 1图21-4H的体积公式()V abc S A =⋅平行六面体,其中()S A= 有16V V =四面体平行六面体1=3abc 2.善于构造平行六面体解答有关问题例10已知a 、b 、c +∈R ,且2221a b c ++=3a b c +++>.证明由2221a b c ++=3a b c +++>.参见图212- (a),构作长方体AB '.设对角线1AB '=,AD a '=,AC b '=,AA c '=,则A B ''=B C '',B D ''=.在A AB ''△中,A A A B B A ''''+>,即1c >.同理,1b >1a +>. 以上三式相加,即证.例11锐角α.β、γ满足222sin sin sin 1αβγ++=,求证:π3π24αβγ<++<. 证明构造长方体D AC B DA CB ''''-,参见图212- (a),使其长、宽、高分别为sin D A α'=,sin AC β'=,sin C C γ'=,则1AB D C ''==,D B A α''∠=,C B A β''∠=,C D C γ''∠=,且AB BA '>.sin sin sin D A D AD B A D BA B A BA α'''''∴=∠=<=∠', sin sin sin AC AC C B A C BA B A BAβ'''''=∠=<=∠'.从而D BA α'<∠,C BA β'<∠. 1π2D BA C BA αβ''∴+<∠+∠=.同理,π2βγ+<,π2αγ+<,即3π4αβγ++<. 设B A '与D C '相交于O ,则知2D OA α'∠=,2AOC β'∠=,2C OC γ'∠=.由于三面角的任意两个面角的和大于第三个面角,则 22D OA AOC D OC αβ'''+=∠+∠>∠.()2πD OC C OC αβγ''∴++=∠+∠=. 故π3π24αβγ<++<. 3.注意特殊平面体的性质的运用例12正方体1111ABCD A B C D -的棱长为1,求正方体底面ABCD 内切圆周上的点与过顶点1A 、C 和1B 的圆周上的点之间的最小距离.(第19届全苏奥林匹克题)解如图215-,考察两个圆周分别在以正方体的对称中心为球心的两个同心球面上,即与正方体各棱都)上,这两个球面上的点之间的最小距离是它们的半径之差12d =.如果两圆周上各有一点恰好在球心O 发出的同一射线上,那么d 即为最小值.考察在以O为位似比的变换下,小球面变为大球面,而小球面上的圆周的象集为大球面上的圆周.注意到ABCD 的内切圆1O e 与线段BD 的交点E 和F 在该位似变换下的象在平面1AB C 的两侧(因11145O OF BB O ∠=︒>∠,故射线OF 不与平面1AB C 相交),因此,1O e 的象集(圆周)将与过顶点A ,C 和1B 的圆周相交.设一交点为N ,而N 的原象为M ,那么M ,N 之间的距离就是考察的两圆周上的点之间的距离的最小值,其值为12d =.【模拟实战】习题A1.在正方体1111ABCD A B C D -中,O 是面ABCD 的中心,1O 是面11ADD A 的中心.求异面直线1D O 与1BO 所成角的余弦值.2.已知空间一个平面与一个正方体的12条棱的夹角都等于口α,求α的值.3.能否用一个平面去截一个正方体,使得截面为五边形?进一步,截面是否为正五边形?4.设一个平面截棱长为1的正方体1111ABCD A B C D -,过顶点1C ,交1A D 1中点于E ,1A A 距A 较近的一个三等分点于F ,AB 于G ,BC 于H .求截面1C EFGH 的周长.5.已知一个平面截棱长为1的正方体所得截面是—个六边形.证明:此六边形周长≥. 6.正三棱锥S ABC -的侧棱与底面边长相等,如果E ,F 分别为SC ,AB 的中点,那么异面直线EF 与SA 所成的角等于多少?图21-5C1A B7.已知111ABC A B C -是直三棱柱,90BAC ∠=︒,点1D ,1F 分别是11A B ,11B C 的中点.若1AB CA AA ==,求1BD 与1CF 所夹角的余弦值.8.已知ABCD 是边长为4的正方形,E ,F 分别是AB ,AD 的中点,GC ⊥面ABCD ,且2GC =.求点B 到面EFG 的距离.9.在四面体SABC 中,已知SA BC a ==,SC AB b ==,SB AC c ==,求此四面体的体积. 10.在四面体1234A A A A 中,相应对棱中点的三条连线分别为1m ,2m ,3m ,顶点i A 所对侧面的重心为i G ,其四面体体积记为V ,则(Ⅰ)1233m m m V ⋅⋅≥;(Ⅱ)421412716i j i i i j i A A AG =-∑∑≤≤≤≥(Ⅲ)421i i i AG =∑ 11.已知α,β,γ是锐角,且222cos cos cos 1αβγ++=.求证:(Ⅰ)tan tan tan αβγ⋅⋅≥ (Ⅱ)3ππ4αβγ<++<. 12.已知0a >,0b >,0c >,且1a b c ++=.习题B1.有一立方体,中心和边长为a b c <<的长方体的对称中心重合,诸界面与长方体各界面平行,求立方体的棱长,使得它与长方体的并的体积减去它与长方体的交的体积的差最小.(1979年捷克竞赛题) 2.证明:在棱长为a 的立方体内部可以作两个棱长为a 的正四面体,使得它们没有公共点.(1983年民主德国竞赛题)。